
Dissertations and Theses

8-2017

A GPS Signal Generator Using a ROACH FPGA Board A GPS Signal Generator Using a ROACH FPGA Board

Kurt L. Pedrosa

Follow this and additional works at: https://commons.erau.edu/edt

 Part of the Electrical and Computer Engineering Commons

Scholarly Commons Citation Scholarly Commons Citation
Pedrosa, Kurt L., "A GPS Signal Generator Using a ROACH FPGA Board" (2017). Dissertations and Theses.
373.
https://commons.erau.edu/edt/373

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted
for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more
information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fedt%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/373?utm_source=commons.erau.edu%2Fedt%2F373&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

A GPS Signal Generator Using a ROACH
FPGA Board

A Thesis submitted in partial fulfillment of
the requirements for the award of the degree of

Master of Science
in

Electrical and Computer Engineering

Submitted by
Kurt L. Pedrosa

Under the guidance of
Dr. William C. Barott

Radar & Microwaves Laboratory

Daytona Beach, Florida - USA

August 2017

Embry-Riddle Aeronautical University

Abstract
Master of Science in Electrical and Computer Engineering

A GPS Signal Generator Using a ROACH FPGA Board

by Kurt Pedrosa

Dr. William C. Barott, Dr. Richard Stansbury, Dr. Brian Butka

Department of Electrical, Computer, Software, and Systems Engineering

A Global Positioning System (GPS) signal simulator is a valuable testing tool. It

allows for testing of GPS receivers, systems, and anti-spoofing algorithms. With

the increased popularity of software defined radios (SDRs) merging GPS signal

simulators and SDRs is a natural choice. A detailed review of the construction of

a GPS signal generator using the ROACH processing board is presented herein.

The ROACH, developed by the Collaboration for Astronomy Signal Processing

and Electronics Research (CASPER) team, is a processing board that can be

configure to function as a SDR. In this research, the ROACH was transformed

to function as a GPS signal generator able to transmit the C/A L1 civilian GPS

signal. Maximum manipulation of the GPS signal was built-in to the firmware

allowing the user to change the signal for different applications. Its modular

architecture and ease of reproduction makes this GPS signal simulator design a

viable research tool in the field of GPS anti-spoofing, GPS system fabrication, and

as a great GPS educational tool.

ii

The GPS signal generator presented herein simulates the GPS C/A L1 signal at a

frequency of 50.127 MHz. The generated signal contains no time delay or Doppler

shift. A total of four independent GPS signals can be generated and transmitted

as a single composite signal. The signal generator is capable of generating all

of the current NAVSTAR defined PRN sequences allowing the simulation of any

four satellite combination. It also uses the most up-to-date almanac data in the

transmitted signal.

Future improvements to this GPS signal generator includes development of an

up-converter to convert the transmitted signal frequency to the C/A L1 signal

frequency of 1575.42 MHz, implementation of Doppler shift and time delay logic

to the firmware, and software front end providing the user the ability to enter tra-

jectory coordinates used to generate dynamic GPS signal along defined trajectory.

iii

Acknowledgements

As this stressful but extremely rewarding period comes to an end the time has

come to give acknowledgments to those who cheered me on every step of the

way. I would first like to thank my thesis advisor, Dr. William C. Barott at

Embry-Riddle Aeronautical University. He has been a beacon of strength, a well

of patience. He has guided me every step of the way and set me up for a bright

professional future. He has made me a life long student excited about discovery,

learning, and curiosity.

To the Electrical, Computer, Software, and System (ECSSE) department at Embry-

Riddle Aeronautical University I extend my deepest appreciation. With special

mention of Dr. Brian Butka and Dr. Richard Stansbury for their support on

this thesis research. To Dr. Timothy Wilson and Professor Farahzad Behi for all

of their help and patience. As my days end as a student in the Department the

memories and growth gained will forever remain. My time spent there will forever

be in my heart.

Most importantly I would like to acknowledge the three women of my life. My

Grandmother, Reny De Lima Torres, who at 89 years old continues to be the

biggest trouble maker in the family. To my Mother, Sheila Tecchio; Your perse-

verance, strength, and determination inspires me. The man I am today is because

of her. To my Wife, Michelle Dos Anjos Pedrosa, who is my biggest cheerleader.

She endured countless lonely days and nights while I finished my thesis. All I am

is hers, who I became will be because of her.

vi

Contents

Abstract ii

Acknowledgements vi

Contents x

List of Figures xv

List of Tables xvi

Abbreviations xviii

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Organization . 2

2 Background and Theory 4

2.1 Global Positioning System . 4

2.2 Orbital Description . 7

vii

2.3 Almanac and Ephemeris . 10

2.4 GPS Signal Characteristics . 12

2.4.1 Binary Phase Shift Keying 16

2.4.1.1 Direct Sequence Spread Spectrum 17

2.4.2 C/A Code . 19

2.4.3 Message Signal Format . 24

2.5 Augmentation Systems . 27

2.5.1 Global Differential GPS . 28

2.5.2 Wide Area Augmentation System 28

3 Methodology 31

3.1 GPS Signal Reproduction . 31

3.1.1 ROACH FPGA . 32

3.1.2 Firmware . 33

3.1.2.1 Single Signal Model 35

3.1.2.2 Multisignal Model 48

3.1.2.3 Lessons Learned 49

3.2 Software Design . 50

3.2.1 Subframe Generator Functions 53

3.2.2 Parity Function . 60

viii

3.2.3 Supporting Functions . 60

3.2.4 Lessons Learned . 61

3.3 GPS Software Decoder . 63

3.3.1 Post-Processing . 63

3.3.2 Decoder . 68

3.4 Signal Acquisition . 70

3.4.1 Ettus N210 SRD . 70

3.4.1.1 WBX USRP Daughterboard 72

3.4.2 GNU Radio Software . 73

3.4.2.1 Lessons Learned 79

3.4.3 GNSS-SDR Project . 80

3.4.3.1 Lessons Learned 82

4 Results 83

4.1 Hardware Setup . 83

4.2 GPS Signal Validation . 86

4.2.1 PRN Signal Validation . 86

4.2.2 Test Vector Data Results . 93

4.2.3 Message Signal Validation 100

4.2.3.1 Lessons Learned 106

ix

4.3 Ettus SDR Results . 108

4.3.1 Lessons Learned . 113

4.4 Decoder Results . 114

5 Research Conclusion 122

6 Future Work 124

References 128

x

List of Figures

2.1 GPS Constellation Map [6] . 5

2.2 GPS Control Segment Map [7] . 6

2.3 Keplerian orbital elements . 9

2.4 Different Almanac Formatting of Satellite with PRN 1 11

2.5 SPS and PPS signal structure . 15

2.6 Generation of BPSK on a sinusoidal carrier frequency 16

2.7 BPSK modulation . 17

2.8 XOR multiplication of two signals 18

2.9 DSSS modulation [2] . 19

2.10 C/A code generator design schema. G1 register in green, G2 register

in red, and the Bit Selector in yellow 21

2.11 Subframe structure, size, and direction of data flow from SV 24

2.12 Telemetry word format . 25

2.13 Handover word format . 26

2.14 Timing graph of the GPS message data 27

xi

2.15 WASS LPV Coverage [23] . 29

3.1 Diagram showing connection between the software and the firmware 32

3.2 Complete firmware flow diagram with markings identifying the sig-

nals of the four SVs . 35

3.3 Block flow diagram of the single signal model highlighting the four

subsystems . 36

3.4 PRN Clock subsystem showing clock divider logic and bit stream size 38

3.5 First sequence of clock divider reducing a 1.023 MHz clock to 1000

Hz . 39

3.6 Second sequence of clock divider reducing a 1000 Hz clock to 50 Hz 40

3.7 G1 10-bit shift register logic . 41

3.8 G2 10-bit shift register logic . 42

3.9 G2 register bit selector output logic 42

3.10 Close-up of the G2 register bit selector upper MUX 43

3.11 Message Data subsystem block logic 45

3.12 PRN and Message bit modulation with the carrier signal 47

3.13 Additional blocks used in the single signal model 48

3.14 Close-up view of the first stage addition logic 49

3.15 High-level software flow diagram . 52

3.16 High-level function flow diagram for the subframe generation process 56

xii

3.17 Power density spectrum of both shifted signals 64

3.18 Bit sample length at 4 MHz sample rate 65

3.19 Cross correlation result for PRN 30 66

3.20 Message data extracted from PRN 30 before and after normalization 67

3.21 Message data bit stream from bits 580 to 780 before and after nor-

malization . 68

3.22 High-level software decoder design 69

3.23 Ettus N210 SDR showing the internal board and the WBX daugh-

terboard . 71

3.24 High-level diagram of the Ettus N210 and WBX daughterboard

connection . 73

3.25 Data recording and signal analysis GNU radio flow diagram 76

3.26 USRP Source block parameters . 77

3.27 General properties for the File Sink and QT GUI Sink blocks 78

4.1 Hardware setup . 84

4.2 Signal Generator configurations and ROACH input/output ports. . 85

4.3 Reference Clock connection between the Ettus and the signal gen-

erator . 86

4.4 Correlation output (single frame) of all four PRN signals 88

4.5 Correlation output (all frames) of individually transmitted PRN

signals . 89

xiii

4.6 Low correlation output of PRN 28 90

4.7 Correlation output (all frames) for composed transmitted signal . . 91

4.8 Correlation output (single frame) for composit signal 92

4.9 Power spectrum of PRN signal . 93

4.10 Diagram representing test vector data 1 stored in BRAM 95

4.11 Normalized bit stream test vector 1 data received 95

4.12 Bit normalization error . 96

4.13 Diagram representing test vector data 2 stored in BRAM 97

4.14 Normalized bit stream test vector 2 data received 97

4.15 Diagram representing test vector data 3 stored in BRAM 98

4.16 Normalized bit stream test vector 3 data received 98

4.17 Diagram representing test vector data 4 stored in BRAM 99

4.18 Normalized bit stream test vector 4 data received 100

4.19 Message signal bit change at 40 ns 101

4.20 Visual inspection of message signal with no bit change at 40 ns . . . 102

4.21 Message signal showing multiple bit changes at 200 µs 103

4.22 Power spectrum of the message signal centered at 50.127 MHz . . . 104

4.23 Sum of four message signals resulting in amplitude change 105

4.24 Message clock error showing burst of data every 10 ms 107

4.25 Message clock error showing rapid change of bits 108

xiv

4.26 Connection between the ROACH and the Ettus N210 109

4.27 Failed acquisition results from GNSS-SDR software 111

4.28 Partially successful acquisition results from GNSS-SDR software . . 112

4.29 Subframe 4 decoded data . 115

4.30 Subframe 4 data format as defined by NAVSTAR specifications . . 116

4.31 Subframe 5 decoded data . 117

4.32 Subframe 5 data format as defined by NAVSTAR specifications . . 117

4.33 Subframe 1 decoded data . 118

4.34 Subframe 1 data format as defined by NAVSTAR specifications . . 118

4.35 Subframe 2 decoded data . 120

4.36 Subframe 3 decoded data . 121

xv

List of Tables

2.1 Ephemeris data definitions . 10

2.2 Truth table of the XOR . 18

2.3 C/A code bit assignment and first 10-chip sequence 23

3.1 Summary of the various data contained in subframe 4 and 5 57

4.1 Almanac parameters with scale factors and number of bits 115

4.2 Almanac data for SV 16 generated on July 6, 2017 119

xvi

Abbreviations

ADC Analog to Digital Converter
CASPER Collaboration for Astronomy Signal

Processing and Electronics Research
C/A Coarse Acquisition Code
CTTC Centre Tecnològic de Telecomunicacions de

Cataluny
BPSK Binary Phase Shift Keying
BRAM Block Random Access Memory
DAC Digital to Analog Converter
DGPS Differential Global Positioning System
DOD Department of Defense
DOT Department of Transportation
DSSS Direct Sequence Spread Spectrum
DTV Digital Television
FAA Federal Aviation Administration
FPGA Field Programmable Gate Array
GPS Global Positioning System
GNSS Global Navigation Satellite System
GRC GNU Radio Companion
GUI Graphical User Interface
HDL Hardware Discriptive Language
HOW Handover Word
ILS Instrument Landing System
IMU Inertial Measuring Unit
IP Internet Protocol
ISF Integrity Status Flag
LAN Local Area Network
LO Local Oscillator
LSB Least Significant Bit
LUT LookUp Tables
MEO Medium Earth Orbit
MUX Multiplexer
MSB Most Significant Bit
NASA National Aeronautics and Space

Administration
NDGPS Nationwide Differential Global Positioning

System
NMEA National Marine Electronics Association
NUDET Nuclear Detonations
PC Personal Computer
PPS Precise Position Service

xvii

PRN Pseudo Random Noise
PVT Position, Velocity, and Time
P(Y) Precision code
RF Radio Frequency
RINEX Receiver Independent Exchange Format
ROACH Reconfigurable Open Architecture

Computing Hardware
SDR Software Defined Rardio
SPS Standard Position Service
SV Satellite Vehicle
SIS Signal-in-space
TCP Transmission Control Protocol
TLM Telemetry
TOW Time of the Week
UHF Ultra High Frequency
UTC Coordinated Universal Time
USCG United States Coast Guard
USNDS United States Nuclear Detonation Detection

System
VOR Very High Frequency Omnidirectional Range
WAAS Wide Area Augmentation System
WMS Wide Area Augmentation System Master

Station
WRS Wide Area Augmentation System Reference

Station

xviii

Chapter 1

Introduction

This chapter discusses the motivations that led to the work of this thesis research

on GPS (Global Positioning System) signal simulation. It further presents an

outline of this thesis document.

1.1 Motivation

A GPS signal generator is a valuable educational, research, and development tool.

As a research and development tool it can be used to test new anti-spoofing

algorithms, new GPS navigation systems, GPS dependent systems, and many

others. As an educational tool it can be used to teach many subjects including

the GPS signal structure, provide hands-on experience with signal transmission

and acquisition, and provide live demonstration of signal processing applications.

GPS signal generators can cost upwards of $10,000, a price out of range for many

research laboratories, universities, and enthusiasts. Naturally a demand exists for

an inexpensive, modular system capable of generating a GPS signals for a wide

range of applications.

GPS is the primary form of air, sea, and ground navigation used across all in-

dustries and virtually every part of the world. Problems like spoofing, signal

1

multipath, and interference must be analyzed. A well-designed GPS signal simu-

lator with a modular architecture fulfills not only nearly every research area but

it can also be used as an educational tool.

To assist with GPS signal research and to promote education in this area were not

the only motivators for this thesis work. A driving curiosity for this thesis work

was founded by a 2013 experiment by Todd Humphreys, professor and researched

at University of Texas at Austin, where he and his team successfully spoofed a

yacht’s navigation system [1]. A quote from Humphreys where he said "The ship

actually turned and we could all feel it, but the chart display and the crew saw

only a straight line" really sparked a deep curiosity for GPS. This curiosity was

the driving motivator for this research project.

Although a GPS signal simulator is not a spoofing device it can be used to test

anti-spoofing algorithms. The device presented herein attempts to set a foundation

for future research by providing a robust GPS signal simulator with a modular

architecture that can be configured to nearly all applications. The Radar and

Microwaves Laboratory focus on passive radar research and the tools used for

this research were available as resources. Given the hardware and software tools

available in the laboratory, a signal simulator architecture design that utilizes

those tools is put forth.

1.2 Thesis Organization

The organization of this thesis document attempts to build up on the informa-

tion presented. Chapter 1 conducts a background discussion of the GPS signal

characteristics, satellite orbital description, ground and air support systems, and

augmented GPS. The methodology, chapter 2, details the procedures used in the

construction of the GPS signal simulator. It starts by first describing the firmware,

2

then the software design, followed by a GPS software decoder and signal acqui-

sition procedures. Lastly, the results found during the construction of the GPS

signal simulator are provided in chapter 4. A brief conclusion and discussion about

possible future works closes out the document.

3

Chapter 2

Background and Theory

2.1 Global Positioning System

The NAVSTAR Global Positioning System, known as GPS, is a satellite navigation

system owned and deployed by the United States of America. Its main purpose is

to provide its users with navigation, positioning, and timing services. The need for

such a system was proposed by several U.S. government organizations including

the Department of Defense (DOD), the National Aeronautics and Space Adminis-

tration (NASA), and the Department of Transportation (DOT) [2]. Although the

current user base is both civilian and military, the initial objective for GPS was to

provide the U.S. military with three-dimensional position determination. It was

only after a civilian aircraft was shot down by the USSR Air Defense, killing 269

people, for deviating from its original route and flying into Soviet airspace [3] that

President Ronald Reagan allowed GPS to be used in civilian applications.

The GPS program was launched in the early 1970s [4] with the first 11 GPS

satellites launched between 1974 and 1985. These satellites were Block I satellites

used to validate the concept and test various parts of the system. After the initial

11 Block I satellites the Air Force launched nine Block II satellites between 1989

and 1990, followed by 19 Block IIA satellites between 1990 and 1997, and 13 Block

4

IIR satellites launched between 1996 and 2004 [5]. Now, GPS is fully operational

and meets all of the criteria put forth in the 1960s when it was first proposed. It

currently is a dual-use system, providing the the Standard Position Service (SPS)

for all civilian applications and Precise Position Service (PPS) for military use.

The current GPS constellation consists of 31 active satellites, as of the publication

of this thesis, in six orbital planes. Each plane has four to six satellites. The GPS

constellation, shown in figure 2.1, is arranged in such a way that the user can

expect between six to ten visible satellites at any point in time or position on

earth.

Figure 2.1: GPS Constellation Map [6]

There are three segments that make up GPS: the space segment, control segment,

and the user segment. The space segment was initially composed of a 24-satellite

constellation arranged into six equally-spaced orbital planes [7]. The constella-

tion expended three of the 24 slots and repositioned six satellites to make room

for the addition of three new satellites. This occurred in June of 2011 and was

known as the "Expandable 24" expansion. The current active GPS constellation

consists of 31 total satellites under full operational capability (FOC) [8]. The 31

satellites include 27 used for GPS, three reserve satellites, and one test satellite.

The expansion from 24-slot to 27-slot constellation improves coverage in parts of

the world and ensures users are able to receive signals from at least four satellites

from virtually any point on earth [9].

5

The control segment is charged with tracking all 31 satellites, monitoring their

transmissions, and transfers data to the entire constellation. Ground facilities

spread around the world make up the control segment. The location of these

facilities, seen on figure 2.2, were strategically chosen to monitor the satellites with

minimal downtime. The Master Control Station, located in Colorado, is charged

with conducting the primary control segment functions. The Monitor Stations

track the satellites as they pass overhead. The 11 ground antennas position around

the world are used to communicate with the satellites.

The user segment is made up of the GPS receivers able to use the GPS signal to

determine their position, velocity, and time. The use of GPS has spread among

virtually every industry. From agriculture to sports, surveying to emergency ser-

vice, GPS has become an integral part of our daily lives. As such, the development

of the GPS signal generator presented in this research helps test such applications.

Vandenberg AFB
California

Alternate Master Control Station

Air Force Monitor Station

Hawaii

Master Control Station

Schriever AFB
Colorado

NGA Monitor Station

South Korea

Australia

Bahrain

South Africa

United Kingdom

Ecuador

USNO Washington

Alaska

New
Zealand

AFSCN Remote Tracking Station

Ascension Diego Garcia

Cape Canaveral
Florida

Kwajalein

Ground Antenna

New Hampshire

Greenland

Guam

Updated May 2017

GPS Control Segment

Uruguay

Figure 2.2: GPS Control Segment Map [7]

6

2.2 Orbital Description

GPS satellites operate in medium Earth orbit (MEO) at an altitude of about

20,000 km above the Earth’s surface. Each satellite orbits around earth twice

a day. MEO is characterize by an orbital altitude of 2000 km to 35,790 km,

which is where most Global Navigation Satellite Systems (GNSS) operate. GPS

satellites operate in six approximately-circular orbital planes and have an orbital

period of 11 hours and 58 minutes. These orbital planes form an elliptical path

focused around the center of the Earth. As part of the navigation message GPS

provides the receivers with orbital description and satellite coordinates describing

the position of the satellites within the orbital path. Accurate information about

the satellites’ position is needed for a GPS receiver to determine its position on

Earth.

The forces acting on a satellite are the Earth’s gravitational field, other bodies in

space like the Sun, the Moon and solar radiation pressure [10]. The major force is

Earth’s gravitational field and it can be described using Newton’s laws where the

force acting on the satellite is described in equation 2.1. Force F is the product of

the acceleration of the satellite a and its mass m. Then, the force is found by

F = ma = −GmM
r3 r (2.1)

using the radial r, gravitational constant G, and Earth’s mass M. The minus sign

defines the attractive nature of the gravitational force [2]. Solving for the satellite’s

acceleration by taking the second derivative of the position solves to equation 2.2,

where µ = G ·M

d2r

dt2
= − µ

r3 r (2.2)

7

This equation is known as two-body or Keplerian motion equation where the

only force acting on the satellite is the Earth [2] and describes the acceleration

of the satellites with respect to Earth. A satellite, an object in motion in three-

dimensional space, has a position vector and a velocity vector each with x, y, and

z component which dictates the use of six parameters to describe its trajectory.

These parameters are known as Keplerian elements defined as semi-major axis, a,

eccentricity, e, inclination, i, right ascension of the ascending node, Ω, argument

of perigee, ω, and true anomaly, v. Figures 2.3a and 2.3b show four of the six

orbital elements in reference to the orbital plane and the reference plane. The two

orbital elements not shown in the figures due to graphical constraints are e and a.

The shape and size of the orbit are described by e and a. The e element is a number

between 0 and 1 that describes the amount the orbit deviates from a perfect circle

where e = 0 is a perfect circle. The a element is the mean between the apogee,

a point on the orbital path furthest from the Earth’s center, and the perigee, a

point on the orbital path closest to the Earth’s center. Equation 2.3 shows how e

relates to the a and the semi-minor axis b. The orbital period Tp, which is time

that it takes the satellite to complete one orbit around the Earth, of the satellite

is calculated by equation 2.4. The orbital period has a direct relationship to the

orbital altitude where the orbital altitude is the difference between the Earth’s

radius and the a.

e =
√

1− b2

a2 (2.3)

Tp = 2π
√
a3

µ
(2.4)

8

(a) Inclination between orbital plane and reference plane

(b)

(c) Three orbital elements, ω, v, and Ω

Figure 2.3: Keplerian orbital elements

The orientation of the orbital plane is described by i, Ω, and ω. The position of

the satellite is defined by v. The GPS receiver needs each of the six orbital planes

for all of the satellites in the constellation. This information together with timing

and angle corrections are contained in the ephemeris data encoded in the downlink

message. A full list of the ephemeris data as defined by the GPS documentation is

listed in table 2.1. Ephemeris data contain Keplerian elements containing periodic

terms that correct gravitational perturbations.

9

t0e Reference time of ephemeris√
a Square root of the semi-major axis

e Eccentricity
i0 Inclination angle a reference time
Ω0 Longitude of the ascending node
ω Argument of perigee
M0 Mean anomaly
Ω̇ Rate of change of longitude of the ascending node
∆n Mean motion correction
Cuc Amplitude of cosine correction to argument of latitude
Cus Amplitude of sine correction to argument of latitude
Crc Amplitude of cosine correction to orbital radius
Crs Amplitude of sine correction to orbital radius
Cic Amplitude of cosine correction to inclination of angle
Cis Amplitude of sine correction to inclination of angle

Table 2.1: Ephemeris data definitions

2.3 Almanac and Ephemeris

The GPS almanac contains low-resolution ephemeris data about every satellite in

the GPS constellations. Each satellite transmits almanac data for all satellites

but transmits only its own ephemeris data. The almanac data includes satellite

states (e.g., health), coarse ephemeris, an ionospheric model, and timing correction

information. Both the almanac data and ephemeris data are contained within the

GPS message signal which will be furthered discussed later in this chapter. The

difference between ephemeris and almanac is one of detail: whereas ephemeris

data is a detailed description of the satellite’s orbital and timing characteristics

while almanac data is a general description. Ephemeris data are typically valid

for 4 hours from the time of transmission while the almanac data can be valid

for several weeks if no significant changes occur in the constellation [11]. It is

important to acknowledge the separation between the validity of both ephemeris

and almanac data and the transmission of that data by the satellites. Due to

the characteristics of the message signal (further discussed in this section), each

10

satellite transmits ephemeris data every 30 seconds, but requires 12.5 minutes

to transmit the complete almanac. This means that a GPS receiver can receive

updated ephemeris data every 30 seconds but it would take roughly 12.5 minutes

to attain all of the almanac data.

The control segment generates a new almanac once a day. The new almanac is

transmitted to each satellite during its next communication with the control seg-

ment. The United States Coast Guard (USCG) logs almanacs in a public database

[11]. The almanac data is saved in two formats called YUMA and SEM. Although

both YUMA and SEM contain the same almanac data, the major difference is

how the data are formatted. A YUMA almanac file separates the data in differ-

ent lines, SEM clumps data together in the same line but different column. This

formatting difference can be seen in figure 2.4, which shows a line-by-line snippet

of the first satellite in the almanac.

(a) YUMA almanac snippet (b) SEM almanac snippet

Figure 2.4: Different Almanac Formatting of Satellite with PRN 1

For this project the YUMA almanac format was chosen for two reasons. First

the YUMA almanac file is more "human readable," meaning that the description

of each data provided is listed; the SEM does not define the data in the file

itself. Second it was faster to parse each line individually instead of parsing lines

and spaces, as would have required with the SEM almanac format. However an

advantage of using the SEM is that the data provided is already in the units of

11

semi-circles or semi-circles per seconds while the YUMA almanac file kept all

of its data in radians or radians per second. Using YUMA almanac required a

conversion to the NAVSTAR standard, semi-circles an arbitrary choice that had

no effect on the overall simulator quality.

2.4 GPS Signal Characteristics

The GPS satellites transmit navigation signals on two carrier frequencies called

L1 and L2, both transmitted in the Ultra High Frequency (UHF) band that spans

from 500 MHz to 3 GHz [12] and in particular in the L-band (1-2 GHz). These

frequencies are derived from a single nominal reference frequency, f0, at 10.23 MHz.

Calculations for L1 and L2 are:

fL1 = 154× f0 = 1575.42 MHz (2.5)

fL2 = 120× f0 = 1227.60 MHz (2.6)

The carrier frequencies, fL1 and fL2, contain GPS navigation data and uses three

unique spreading sequences. The navigation data contains the information used

by the GPS receivers to calculate position. The spreading sequence is a modula-

tion method that widens the signal’s bandwidth deliberately spreading it in the

frequency domain. This type of modulation is typically done to ensure a secure

communication, to decrease interference by other signals, or to prevent detection.

The three spreading sequence used by GPS are the coarse acquisition code (C/A),

precision (P) code, and the Y-code. The Y-code and P code are encrypted and

referred to as P(Y) code, its encryption can only be decrypted by users with valid

decryption key. The C/A code is not encrypted and for that reason it is used

in civil applications making it the most widely used GPS signal. The C/A code

12

is also used for acquisition of the P(Y) code by users with access to the signal.

The frequency fL1 is modulated by both C/A and P(Y) code because until 2000

Selective Availability, a GPS mode that denied full accuracy of GPS to SPS users,

was still active and required the P code encoding to deny full access to the signal.

Frequency fL2 is modulated only by the P(Y) code and used by the PPS users.

Interplexing scheme combines the C/A, P(Y) and the message data on a common

carrier while keeping the signal envelope the same [13]. The transmitted signal is

composed of two orthogonal components and can be written as:

SL1 = AP (Y) ·P (t) ·D(t) · cos(2π · fL1 · t) +AC/A ·C(t) ·D(t) · sin(2π · fL1 · t) (2.7)

where the signal transmitted by the L1 channel, SL1, is the sum of two orthogonal

signals where AP (Y) is the amplitude of the P(Y) code; P (t) = ±1, P(t) is the

P(Y) code sequence, AC/A is the amplitude of the C/A code; C(t) = ±1, D(t)

is the message data code; D(t) = ±1,and C(t) is the C/A code sequence. The

minimum L1 signal power level measure at the receiver are -133 dBm for P(Y)

code and -130 dBm for the C/A code [14]. Typically the GPS receiver expects a

L1 signal power level about 16 dB below the noise.

User position accuracy is the measurement of a three-dimension position using

GPS signal. The user position accuracy of these signals is based on the reference

of the transmitted signal by the satellite, this reference is referred to as the signal-

in-space (SIS). The performance standard for SPS states that for L1 C/A code,

single-frequency position accuracy is ≤ 7.8 meters 95% of the time [15]. The

performance standard for PPS states that that L2 P(Y), the dual-frequency (both

fL1 and fL2 being used) position accuracy is ≤ 5.9 meters 95% of the time [16].

With the use of differential GPS (discussed further in section 2.5.1) accuracy can

improve to ≤ 3 meters for SPS and ≤ 2 meters for PPS. User position accuracy

13

is heavily dependent on the quality of the receiver, atmospheric conditions, and

blocking of the signal due to building, bridges, trees, and other objects.

Each GPS satellite has the same signal structure and transmit both fL1 and fL2. A

simplified diagram of this signal structure is show in figure 2.5 where the derivation

of both transmitted signals is clearly demonstrated. The diagram must be read

form left to right (same as direction of data flow) to accurately depict the signal

construction. It is important to note that the f0 is tuned to exactly 10.22999999543

MHz to adjust for relativistic effects but the observed frequency on by a GPS

receiver is 10.23 MHz; therefore all depictions of the signal structure are from the

receiver’s perspective.

Current plans for GPS improvements are the addition of the L5 band, transmitted

at 1176.45 MHz (or 115× f0). This band is being developed for civilian safety-of-

life providing a secure and robust signal to life critical applications. Compared to

L1 C/A the new L5 band will enhance performance of the signal, have a higher

transmitted power, and other upgrades. Lastly, GPS transmits at 1381.05 MHz

(or 135× f0) a signal used to detect nuclear detonations (NUDET) supported by

the United States Nuclear Detonation Detection System (USNDS). This signal

is referred to as the L3 band carrier signal and is part of the Detection System

Payload.

14

Figure 2.5: SPS and PPS signal structure

The signal structure diagram references equations 2.5 and 2.6 where the f0 is mul-

tiplied by two constants, 120 for fL2 and 154 for fL1. The bottom of diagram,

encased by a red square, depicts the spreading sequence generators. Each of the

two generator blocks, the C/A Code Generator and P(Y) Code Generator, pro-

duces a sequence of chips (bits that do not hold any information) which modulate

the carriers. The C/A code generates a repeating sequence of 1023 chips at a

rate of 1.023 MHz. The P(Y) code generates a sequence of about 2.35× 106 chips

with a chip rate of 10.23 MHz. Each generated spreading sequence is multiplied

to the data sequence of bits and modulated on to the L1 and L2 carriers using

Binary Phase Shift Keying (BPSK) modulation. The C/A code is modulated only

15

onto the L1 carrier frequency while the P(Y) code is modulated on both L1 and

L2 carrier frequencies. The GPS control segment selects the spreading sequence

modulated on to the L2 carrier. This is usually the P(Y) code but for unpublished

reasons the control segment still has the option to switch between them, hence

the switch block on the diagram.

2.4.1 Binary Phase Shift Keying

Using a sinusoidal signal as the carrier frequency and modulating it with a bipolar

stream of bits will reverse the polarity of the sinusoidal signal, this is illustrated

in figure 2.6.

Figure 2.6: Generation of BPSK on a sinusoidal carrier frequency

BPSK uses two phases separated by 180◦ which means that the carrier is either

transmitted in its original form or with a phase shift. The change in phase occurs

at the time of the bit change. The top graph in figure 2.7 shows a sinusoidal carrier

signal at 2 Hz. This carrier signal is modulated by the square wave signal in the

middle graph. The modulated signal is the BPSK signal shown in the bottom

graph.

16

Figure 2.7: BPSK modulation

Observe the symmetrical shape of the BPSK signal in figure 2.7. This symmetry

is caused by making the bit rate of the bipolar bit stream signal a sub-multiple

of the carrier frequency. In GPS, this bipolar bit stream is the navigation data

transmitted by the satellite. This navigation data is transmitted at a rate of 50

bits-per-second (bps) and modulated onto both the L1 and L2 carrier.

2.4.1.1 Direct Sequence Spread Spectrum

Direct Sequence Spread Spectrum (DSSS) extends BPSK by including a third

signal called pseudo random noise (PRN) spreading code. PRN spreading code

signal is similar to the data bit stream signal: it also contains a stream of -1 and

1 values, but at a significant higher chip rate. In GPS, the data bit stream is the

navigational data and has a bit rate of 50 bps, while the PRN bit stream is the

17

C/A code at a chip rate of 1.023 MHz (20460 times more than the navigational

data bit rate). The PRN sequence is periodic, finite, and is completely known to

the receiver.

The modulation of the carrier is done by taking the output of an exclusive-or,

defined as XOR, multiplication of the PRN sequence and the navigation data,

this is shown in figure 2.8. Only when the value of one of the two signals is high

will the output of the XOR multiplication be high, this input/output relationship,

called a truth table, is shown in table 2.2.

Input Output
0 0 0
0 1 1
1 0 1
1 1 0

Table 2.2: Truth table of the XOR

Figure 2.8: XOR multiplication of two signals

18

An illustration of how a DSSS modulation is applied can be seen in figure 2.9.

The primary reason to use DSSS in GPS is to enable all of the satellites in the

constellation to transmit on the same frequency. It is important to design proper

PRN sequences so that cochannel interference can be reduced as small as possible

[17]. The GPS C/A code uses the Gold code, a liner shift register sequence [18],

with 1023 chip sequence.

Figure 2.9: DSSS modulation [2]

2.4.2 C/A Code

The C/A code is the spreading sequence used in the L1 channel and consists of

a binary sequence of 1 and 0 states. This binary sequence is called a PRN code,

which indicates that the code may appear random while being generated by a

deterministic process. It has a chip rate of 1.023 MHz generated using a 1023

length Gold code. Equation 2.8 shows that the C/A code sequence repeats every

1 ms. The PRN code allows the access to the carrier signal, by despreding a

specific PRN sequence the user can then extract the data from the carrier signal.

C/Achiprate = 1023
1.023× 106 Hz = 1 ms (2.8)

19

Each satellite in the GPS constellation is assigned a satellite vehicle (SV) number

and a PRN number. These numbers are not the same, but are unique to the

constellation: whereas the SV number identifies the satellite, the PRN number

identifies the PRN signal. When a receiver is acquiring a satellite signal, a locally

generated C/A code is cross-correlated with the acquired signal which in turn

removes nearly all of the other signals from other satellites form the acquired

signal. This only works when the locally generated C/A code has the correct code

phase. Therefore, multiple SVs can transmit under the same frequency but with

different PRN codes and a receiver can receive the signal from multiple SVs and

be able to separate them.

The generation of a C/A code is published in [19] with the intent to be replicated in

civilian GPS receivers. GPS only works when all segments are coherent, meaning

that the user segment must be properly develop in accordance with the published

specifications in order to work with the space segment. Figure 2.10 shows the

design schema of the C/A code generator where two shift registers and a bit

selector are color coded to represent the important sections of the generator.

20

Figure 2.10: C/A code generator design schema. G1 register in green, G2 register
in red, and the Bit Selector in yellow

The green section in the C/A code generator diagram shows the G1 shift register.

It is a 10-bit shift register with an input clock of 1.023 MHz. The 10 bits on

the register are shifted right at every rising edge of the input clock. Bit 10, the

least significant bit (LSB), is shifted out of the register and all other 9 bits are

shifted right. The value of bits 2 through 10 is described as G∗
1[n] = G1[n − 1]

where n is the bit number. The left most bit depends on the XOR result of bits

3 and 10 and is described as G∗
1[1] = G1[3] ⊕ G1[10] . The bit shifted out of the

registered is used as one of the two input into the XOR that will result on the

C/A code bit sequence. The red section in the diagram shows the G2 shift register.

Much like the G1 register, G2 holds 10-bits and also shifts each bit to the right

at the rising edge of the clock input. Both shift registers are synchronized to the

same input clock, this means that the shifting happens at the same time in both

21

registers. The value of the left most bit shifted into the register is described as

G∗
2[1] = G1[2]⊕G1[3]⊕G1[6]⊕G1[8]⊕G1[9]⊕G1[10]. The resulting value is 1 only

when the compared bits have an odd number of bits equal to 1. The right most

bit is shifted out of the register but not used. The feedback configuration of both

registers can be represented using a polynomial equation, defined in equation 2.9

and 2.10, where the exponential value refer to the bit that is being fed back into

the register. The output of register G2, which is the bit used to be XOR compared

with the output of the G1 register, is a combination of two bits. The two bits are

chosen by the Bit Selector, identified as the yellow section in the diagram. The

Bit Selector selects two of the 10 bits of the G2 register and the XOR comparison

of those bits is then used to generate the C/A code sequence. Table 2.3 shows the

bits that need to be selected by the Bit Selector to generate the desired C/A code

sequence. Each bit pair is unique to a single SV except for PRN 34 and 37 which

have the same bit pair and generating the same PRN sequence. PRN numbers 33

through 37 are never used for C/A code L1 signal, they have other uses.

fG1(x) = 1 + x3 + x10 (2.9)

fG2(x) = 1 + x2 + x3 + x6 + x8 + x9 + x10 (2.10)

At the start of the sequence both registers are initialized to all ones and neither

of the shift registers will ever be a sequence of all zero bits.

22

PRN Number Tap Bits First 10 Chips (Octal)
1 2 ⊕ 6 1440
2 3 ⊕ 7 1620
3 4 ⊕ 8 1710
4 5 ⊕ 9 1744
5 1 ⊕ 9 1133
6 2 ⊕ 6 1455
7 1 ⊕ 8 1131
8 2 ⊕ 9 1454
9 3 ⊕ 10 1626
10 2 ⊕ 3 1504
11 3 ⊕ 4 1642
12 5 ⊕ 6 1750
13 6 ⊕ 7 1764
14 7 ⊕ 8 1772
15 8 ⊕ 9 1775
16 9 ⊕ 10 1776
17 1 ⊕ 4 1156
18 2 ⊕ 5 1467
19 3 ⊕ 6 1633
20 4 ⊕ 7 1615
21 5 ⊕ 8 1746
22 6 ⊕ 9 1763
23 1 ⊕ 3 1063
24 4 ⊕ 6 1706
25 5 ⊕ 7 1743
26 6 ⊕ 8 1761
27 7 ⊕ 9 1770
28 8 ⊕ 10 1774
29 1 ⊕ 6 1127
30 2 ⊕ 7 1453
31 3 ⊕ 8 1625
32 4 ⊕ 9 1712
33 5 ⊕ 10 1745
34 4 ⊕ 10 1713
35 1 ⊕ 7 1134
36 2 ⊕ 8 1456
37 4 ⊕ 10 1713

Table 2.3: C/A code bit assignment and first 10-chip sequence

23

2.4.3 Message Signal Format

Navstar specifications define how the message data are modulated onto the carrier

signal [19]. It contains ephemeris data, health data, almanac data, and other useful

data used by the receivers for navigation purpose. The navigation data is a stream

of binary values, zeros and ones, that, together with the C/A code, is modulated

onto the carrier signal. The navigation data rate is at 50 bits per second, meaning

that every 2 ms a bit is generated. When modulated using DSSS modulation, the

message signal is the slower sequence of binary bits, while the C/A code is the

much faster sequence (refer back to section 2.4.1.1). Together these create the

transmitted signal called SPS, or L1C (short for L1 C/A).

The navigation data are divided into pages, subframes, and words. A page is a

collection of 5 subframes (a subframe is made up of 10 words) and a word is 300

bits. There are a total of 5 subframes, each containing specific data about the

satellite or the constellation. Figure 2.11 shows a typical subframe structure as

well as the size of each word, size of the subframe, and the direction the data flows

out.

Figure 2.11: Subframe structure, size, and direction of data flow from SV

The data flows from left to right, meaning that the first bit transmitted is the

left most bit of word 1. Word 1 is named TLM which is short for telemetry. The

telemetry word is the first word of every subframe. It contains a preamble, an 8 bit

known sequence used to identify the start of a new subframe. Figure 2.12 shows

24

the whole telemetry word starting with the 8-bit preamble, a telemetry message,

one reserve bit, one status flag, and a 6 party bits. The telemetry message is

a 14-bit-long message reserved to relay information about the PPS signal. The

flag bit number 24 is an Integrity Status Flag (ISF). The last 6 bits are called

the parity bits. Every word in every subframe reserves the last 6 bits for parity

checking. These 6 bits are used by the receiver for error correction. The algorithm

used for parity check is well-defined in [11] paragraph 20.3.5.2.

Figure 2.12: Telemetry word format

The HOW, short for handover word, is the second word of every subframe. The

handover word starts with the time-of-the-week (TOW) count. The TOW (in the

HOW word) is 17-bit truncated version of the 19-bit TOW count, and is an integer

between 0 and 403,199, which equals to one full week. The full TOW count is

the least significant bits of the Z-count, which is a time count that started in the

night of January 5, 1980/ morning of January 6, 1980 [19]. The truncated TOW

count maximum value is 100,799: once reached the count rolls over to zero and

starts again. Figure 2.13 is the HOW word format including the TOW as the first

17 bits followed by two flags, bit 18 is the alert flag, and bit 19 is the anti-spoof

flag. The 3-bit subframe ID represents the current subframe, with 000, 110, and

111 being invalid states. Bits 21 and 22 are used to solve for parity. In the HOW

word, the last two parity bits, bits 29 and 30, must always be zeros. This is done

by calculating the ‘Solve Parity’ bits such that, when calculating the parity, bits

29 and 30 are zero. Like the TOW word, the HOW data also flows right to left

with the first bit of the TOW count being the first transmitted bit. The HOW

word is always the second word in every subfame and always follows the TOW.

25

Figure 2.13: Handover word format

Words 3 through 10 vary depending on the subframe and page number. A short

description of the eight words of data on each subframe is listed below. Refer to

[19] for a full description of all the bits.

Subframe 1 : Contains the GPS week number (relative to the epoch of midnight

of January 6 1980), SV accuracy and health data (uses to determine if the SV

is trustworthy), and clock correction data (to assist in computing the time the

navigation message was transmitted from the SV).

Subframe 2 and 3 : Contains the transmitting SV’s ephemeris data which includes

satellite orbits parameters, and correction terms used to calculate the transmitting

SV’s position.

Subframe 4 : This subframe is subcommuted 25 times, once in each page. Each

page of subframe 4 contains the almanac and health data for SVs 25 through 32.

Subframe 4 can have 4 different formats depending on the page number. Those

different formats contain special messages, satellite configuration flags, Coordi-

nated Universal Time (UTC), and ionospheric data, in addition to almanac data.

Subframe 5 : This subframe is also subcommuted into 25 different pages. Unlike

the previous subframe, this frame only uses two formats. These two formats con-

26

tain almanac data for SVs 1 through 24, almanac reference time, week number,

and health data.

Figure 2.14 illustrates a time graph showing the transmission timing of the navi-

gation data. At the start of the transmission, time = 0s, the first bit of the first

word in subframe 1 is transmitted. The message data is transmitted at 50 bps,

therefore the transmission of 30 bits takes 0.6 seconds, 300 bits takes 6 seconds, 5

subframes takes 30 seconds, and 25 pages takes 750 seconds. It takes 12.5 minutes

(750 seconds) to receive a full GPS navigation message. Receivers with augmented

GPS connect to a database to acquire almanac data, so do not require receiving

the full navigation message before their position can be calculated.

Figure 2.14: Timing graph of the GPS message data

2.5 Augmentation Systems

GPS augmentation system helps improve the accuracy, integrity, or availability of

GPS. Augmentation systems can be space-based, like geostationary satellite, or

ground-based, like a network to help accuracy in cellular telephones. A different

type of GPS augmentation can include sensors and compasses that provide nav-

igation in areas where GPS is not available. Some vehicles integrate the use of

inertial measuring units (IMU), which measure force, angular rate, and magnetic

field, and blend results with GPS to enable navigation in places like tunnels, inside

27

building. There are many augmentation systems worldwide, a few of which will

be further discussed in this section.

2.5.1 Global Differential GPS

Sometimes called Nationwide Differential GPS (NDGPS), Differential GPS (DGPS)

is a system that increases the accuracy and integrity of the GPS signal. These

systems are ground-based and placed in areas where an increase in GPS accu-

racy is needed. The current DGPS Service is operated by the USCG and consists

of one control center and forty-six broadcast sites [11]. These broadcast sites in-

clude weatherproof reference station antennas that broadcasting correction signals

to improve position accuracy to better than 10 m to users who required better

accuracy. The USCG transmits these correction signals in the long wave radio, fre-

quencies between 285 kHz to 325 kHz, and typically near waterways and harbors.

In 1993 the DOT calculated an estimated error growth in this system of 0.67 m

per 100 km from the broadcasting site, further measurements in the Atlantic and

Portugal suggested an error growth of just 0.22 m per 100 km [20]. The standard

GPS accuracy of about 15 meters can be augmented to 10 m or better with DGPS

[21].

2.5.2 Wide Area Augmentation System

On August of 1994 the Federal Aviation Administration (FAA) and the DOT an-

nounced that a new GPS augmentation service for civil aviation was going to be

deployed to improve navigation. The goal of this new service was to increase ac-

curacy, integrity, and availability of GPS and enable aircraft to use it throughout

all phases of flight. The Wide Area Augmentation System (WAAS) was commis-

sioned in 2003 and is an extremely accurate system with requirements enabling a

horizontal accuracy of 16 meters or less at least 95% and vertical accuracy of 4

28

meters or less at least 95% of the time. The FAA WAAS Test Team measured

actual accuracy performed at horizontal accuracy of 0.7 m and vertical accuracy

of 1.2 m [22]. Figure 2.15 shows WAAS coverage of localized performance with

vertical guidance (LPV), which are the highest precision GPS with WASS enabled

instrument approach procedures into airports, in the whole Continental U.S. and

Canada. Compared to the GPS horizontal accuracy requirements of 36 meters and

vertical accuracy requirements of 77 meters it is clear why civil aviation requires

the use of WAAS for flight navigation, and landing sequences.

Figure 2.15: WASS LPV Coverage [23]

The current WAAS works by using 38 WAAS Reference Stations (WRS) spread

around the US, Canada and Central America. These stations monitor GPS sig-

nals to determine position errors. The calculated position errors are sent to three

WAAS Master Stations (WMS) via terrestrial communications. Augmentation

29

messages are generated at each WMS, which contain information that removes

errors from the GPS signal. WAAS sends the augmentation messages to three

geostationary satellites which then relay the GPS-like message to GPS/WAAS

receivers on Earth.

The implementation of WAAS in civil aviation has enabled landing approaches

with visibility as low as 200 feet, improving airport access to places where instru-

ment landing system (ILS) are not available. It has provided the direct navigation

between two airports without the need of ground base navigation instruments

like VHF omnidirectional range (VOR) signals or distance measuring equipment

(DME).

30

Chapter 3

Methodology

3.1 GPS Signal Reproduction

The reproduction of the C/A L1 signal consisted of generating the PRN and Mes-

sage data on firmware and software, respectively. The process used to reconstruct

the signal is outlined in this section.

The GPS signal reproduction was done by a combination of firmware and software.

The firmware programmed the hardware and generated the signal to be transmit-

ted. The software constructed the data to be transmitted over the signal and

controlled the firmware during execution. This relationship between software and

hardware is described in the diagram on figure 3.1. The firmware was developed

using Simulink, a block based programming tool, and the software was written in

MATLAB, a popular programming tool used in signal processing.

31

Figure 3.1: Diagram showing connection between the software and the firmware

The reproduced signal was the L1 C/A GPS signal transmitted for civilian use all

over the world. It consists of the PRN signal and message signal, which are both

modulated onto the carrier frequency L1. This project simulated transmission of

the GPS signal from four concurrent SVs, therefore the same signal structure was

replicated four times with a few data points being changed to distinguish each SV.

The reproduced signal is a BPSK modulated signal with a spreading sequence.

The signal is transmitted at 50.127 MHz and is modulated by a message data

signal at 50 Hz and a spreading signal at 1.023 MHz. Each SV has a unique

message signal and spreading sequence. The resulting transmitted signal is the

sum of four independently modulated BPSK signals.

3.1.1 ROACH FPGA

The Collaboration for Astronomy Signal Processing and Electronics Research

(CASPER) developed a serveral processing boards for radio astronomy. One

of these boards is the Reconfigurable Open Architecture Computing Hardware

(ROACH), a Field Programmable Gate Array (FPGA) based processing board

that uses the CASPER and Xillinx, a FPGA manufacture, Simulink software

blocks to provide signal analysis. The Radar and Microwaves Laboratory com-

32

missioned a set of ROACH processing boards to be used in various signal pro-

cessing projects within the laboratory. The author of [24] provides a guide that

details the setup of the ROACH and the software tools required for development

of firmware. His application of the hardware and software environment was meant

for real-time symbol recovery of digital television (DTV) signals for passive radar

applications. Particular knowledge about the use of the software environment,

the digital to analog converter (DACs), and access to the block random access

memory (BRAM) was translated into this thesis project.

The ROACH runs on a Xilinx Virtex5 FPGA and an embedded AMCC PowerPC

440EPx processor [25]. The DAC used in this work is a Texas Instrument DAC5681

with 16 bit resolution and sample rate of 1 GS/s. The Simulink blocks used to

develop the firmware for the thesis project was a combination between Xilinx and

CASPER blocks. The Xilinx blocks performed logic targeting the FPGA and the

CASPER blocks allowed control over the DAC and the BRAM.

3.1.2 Firmware

The firmware is software written to internal memory and used to program the

ROACH in order to generate the desired signal. The Simulink software tool was

used to design the firmware. Blocks used within the Simulink model are blocks

from the Xilinx and CASPER toolbox. These blocks, when connected together

in a block flow, produce logic that is compiled to FPGA hardware descriptive

language (HDL) and uploaded onto the ROACH’s internal read-only memory.

The firmware design requirement was to produce a sum of four GPS signals

containing the PRN spreading sequence and the message data. The resulting

firmware, shown in figure 3.2, meets the design requirements. In addition, it al-

lows control over the number of signals being transmitted, configuration of the

33

PRN sequence to be generated, independent message data storage for each signal,

clock synchronization, and other testing modes allowing the live testing of the

generated signal.

For simplicity, the firmware will be described in parts. Descriptions of each indi-

vidual block follow the data flow from left to right. Because each SV signal has

an exact signal architecture, the firmware will be initially described as a single

signal model. The block logic that connects the four SV signals together and

the composite four signal transmission will be described as the multisignal model.

This breaks traditional Simulink terminology where each SV signal model would

be referred to as subsystems. The declaration of subsystems has been reserved

to each of the four signal components, PRN Clock, Message Clock, and Message

Signal, and PRN Generator.

An important distinction to make is the difference between the system clock, and

the model clock. The system clock is running at 200.508 MHz and is derived from

the FPGA input clock at four times this rate. Therefore each clock tick, or clock

count, happens at the rate of the system clock, 200.508 MHz. A bit transition,

signal delay, or other logic happens at the rising edge of the input clock. Keeping

each clock domain separate is of paramount importance in order to understand

the firmware model and data flow. In addition, it is important to emphasize that

all of the logic in the firmware is referenced by bit-by-bit logic that transitions at

the rate of the input clock. Simulink blocks manipulate data at bit level precision,

so conventional programming thinking does not apply.

34

Figure 3.2: Complete firmware flow diagram with markings identifying the signals
of the four SVs

3.1.2.1 Single Signal Model

The single signal model, shown in figure 3.3, generates a complete GPS signal from

one SV. A complete GPS signal consists of the PRN signal, message signal, and

the carrier frequency. Each of these subsystems are highlighted in the single signal

model figure. The design called for the simulated GPS signal to be transmitted

over a cable at the transmission frequency of 50.127 MHz. Future plans included

an up-conversion of the simulated signal to the GPS L1 frequency, 1575.42 MHz.

35

Critical relationship among the ADC rate fadc, which is 4 times the system clock

fsys. The FPGA operates best for fsys ≈ 200 MHz. The 50.127 MHz clock is fsys
4

(selected for ease of generating the subcarrier) and should have an integer number

of code chips per cycle (50.127 MHz
1.023 MHz = 49).

Figure 3.3: Block flow diagram of the single signal model highlighting the four
subsystems

36

The PRN Clock, at 1.023 MHz, is the internal model clock. All logic is synchro-

nized to this clock by setting the clock pulse of the logic block to the rising edge

of the model clock. To generate a clock at this frequency, a clock divider logic

was constructed. This logic used the system clock as an input to a counter. The

counter counts to a number determined by equation 3.1. A high output is pro-

duced if and only if the counter has reach its maximum count, any other time the

logic yields a low output.

Countint = Systemclk

Desiredclk
(3.1)

The PRN Clock subsystem used the clock divider logic to generate 1.023 MHz,

the desired clock frequency, from 200.508 MHz, the system clock. Using equation

3.1, the counter maximum count is 200.508MHz
1.023MHz

= 196. The counter defines the

maximum count as a 8-bit number because the least amount of digits needed to

represent 196 is 8 digits. Using the binary equivalent of 196, ‘11000100’, bits 8,

7 and 3 can be used to check if the maximum count has been reached. In other

words the counter starts the count at ‘00000001’ then progresses up to ‘1100100’,

the only time during the count that bits 8, 7 and 3 are all one is when it reaches the

full count. The choice of starting the count at ‘00000001’ is to reduce the number

of bits that needs to be checked for maximum counter count. By connecting those

three bits to a logic AND block the output of the logic will only be high when the

three bits are high. This logic, used to generate the PRN Clock, is shown in figure

3.4. The three middle blocks labeled Bit 8, Bit 7, and Bit 3 are splice blocks used

to splice specific bits from the incoming bit stream. These splice blocks are used

throughout the firmware flow diagram.

37

Figure 3.4: PRN Clock subsystem showing clock divider logic and bit stream size

The Message clock subsystem is of similar logic as the PRN sequence. This clock

first uses two clock divider to take the input 1.023 MHz clock to 1000 Hz then to

50 Hz. Shown in figure 3.5 is the first clock divider logic. The multiplexer (MUX)

block starts the logic flow. Its selector bit depends on the PRN clock output. The

MUX will only output a high value when the PRN clock output is a high value

otherwise outputs a low value. This logic synchronizes the counter to the rising

edge of each PRN clock tick. The counter following the MUX is the first clock

divider counter, Message_Counter (1023). This counter’s maximum count is to

1023. For simplicity the count starts at 2 and counts up to 1024, which is an

11-bit number. Splicing just the 11th bit serves as the clock pulse, as bit 11 will

only be high every 1023 counts, which provides the 1000 Hz clock input to the

second clock divider logic.

38

Figure 3.5: First sequence of clock divider reducing a 1.023 MHz clock to 1000 Hz

The second clock divider adds new logic used to check the rising edge of the input

clock. Figure 3.6 shows the divide by 20 clock divider. The red rectangle surrounds

the rising edge detector logic. The Delay block checks the input bit value one clock

tick prior to the current clock tick, hence the z−1 label on the block face, then

negates the value using the Inverter block. The logic AND result between the

current value of the input clock and the negated previous value can only be high

when the current clock input value is high and the previous value was low. The

same logic follows on from there by dividing the 1000 Hz clock by 20, a counter

with a maximum count of 20. The logical AND result between counter output

bits 5 and 3 can only be high when the counter reaches maximum count, in turn

resulting in a 50 Hz clock.

39

Figure 3.6: Second sequence of clock divider reducing a 1000 Hz clock to 50 Hz

The PRN Generator has two sets of logic, labeled as G1 and G2 registers, that

mimic the PRN schema shown in figure 2.10. The G1 register logic, shown in

figure 3.7, is a 10-bit shift register logic that shifts the 9 MSB to the right and

40

calculates a new bit that is shifted into the MSB position. As defined in the GPS

documentation, the new bit value is defined as G∗
1[1] = G1[3] ⊕ G1[10]. Note,

the MSB of the register is referred to as bit 1 in this thesis document as well as

in GPS documents. The shifting of the register happens at the rate of the PRN

clock. The output of the PRN clock controls the MUX selector, a high clock pulse

selects the high MUX output and triggers a shift. The output of the register is

always the 10th bit and at a rate of 1.023 MHz.

Figure 3.7: G1 10-bit shift register logic

The register G2, shown in figure 3.8, follows the same shift logic as G1 ; however,

the calculation of the output depends on what SV is currently selected. Like the

G1, register G2 shifts to the right yet the new bit value is defined as G∗
2[1] =

G2[2]⊕G1[3]⊕G1[6]⊕G1[8]⊕G1[9]⊕G1[10]. This new calculated value is shifted

into the register. The output logic, shown in figure 3.9, is determined by 2 bits, one

selected by the upper MUX and the other from the bottom MUX. The selection

of these bits is done through software: a command writes an integer value to a

writable register in the firmware.

41

Figure 3.8: G2 10-bit shift register logic

Figure 3.9: G2 register bit selector output logic

42

A close up of the upper MUX, figure 3.10, shows the 10 bit MUX input, controlled

by a writable register labeled REG1 and colored yellow. These yellow blocks are

from the CASPER toolbox and are used to read data from, or write data to, the

firmware. They are 32-bit registers by default so a splice block must be used to

define which register bits are being used. The 10-bit MUX input comes from the

G2 register. Their selection depends on the PRN signal being generated. For

example, if PRN 9 is selected then bit 2 of the upper MUX would be selected and

bit 10 of the lower MUX would be selected. The XOR result of those two bits will

yield the G2 output.

Figure 3.10: Close-up of the G2 register bit selector upper MUX

The Message Data subsystem generates the second part of the signal. The data

modulated onto the carrier at 50 Hz is first created in software. Through write

commands, the data are written to a BRAM block. The stored data are trans-

mitted bit-by-bit at the rate of the Message Clock. Figure 3.11 shows the com-

43

plete logic flow of the Message Data subsystem. Most of the logic used here is

also used throughout the rest of the firmware. Data flow starts with the address

counter controlled by a 2-input MUX. The output of the Message Clock com-

mands the MUX output to high at every rising clock edge. The counter, labeled

Bit_output_counter and surrounded by a blue box, following the MUX counts is

the bit counter. It counts starting at 0 and ends at 29, ignoring the last two bits,

and each count selects the corresponding MUX input bit. Note, input MUX bits 31

and 32 are ignored. A second counter labeled address, and surrounded by a green

box, counts through the BRAM address. The BRAM block is the yellow block in

the center of the diagram flow and labeled as bram1. By default the BRAM has a

address length of 1023 and a bit width of 32-bits meaning it can store up to 32,736

bits. The counter address counts up every time the Bit_output_counter reaches

the maximum count of 32. An edge detector is triggered once the maximum count

is reached, enabling the address counter to move up to the next address. This

whole logic repeats indefinitely. In summary, this logic iterates to all bits of all of

the BRAM addresses in a sequential order. Once the address counter reaches the

value of 1023 it is reset back to zero and transmission of the first 30 bits begin

once again.

44

Figure 3.11: Message Data subsystem block logic

A cascade of MUX blocks create the last bit of logic before data are sent to the

DAC to be transmitted. The output of the PRN Generator and the Message

data subsystems are compared and the results of this comparison modulates the

carrier frequency. The logic sequence is shown in figure 3.12 where the two MUX

blocks received the output of the PRN Generator and Message Data subsystem

and calculate the XOR result of both of those inputs. This is the first time in logic

flow that two clock domains meet. The PRN Generator output changes at a rate of

45

1.023 MHz while the Message Data output changes at 50 Hz. The PRN bit input

into the XOR changes at a much faster rate. This change translates to a typical

DSSS modulation where a much faster bit change spreads the frequency while a

much slower data bit modulates the frequency phase. In the spreading logic shown

below the XOR block output controls a MUX block yielding a constant zero or

one value that is fed into the selector bit of the carrier frequency MUX block. The

DSS Compiler 4.0 block generates a sinusoidal digital wave form at 50.127 MHz.

This sinusoidal wave and its negated inverse can be selected via a MUX block.

This selection depends on the XOR output result between the PRN sequence and

the Message Data. The XOR comparator block acts as a multiplier. The resulting

wave form is passed on to the DAC where it is staged for transmission. At this

point in the logic flow a complete single SV GPS signal has been reconstructed.

46

Figure 3.12: PRN and Message bit modulation with the carrier signal

The reconstructed signal, the output of the DSS Compiler 4.0 block modulated by

the PRN Sequence Generator and Message Data subsystems, is connected to the

DAC as recommended in [24]. Other blocks in the model that were not mentioned

were the configuration blocks. The CASPER toolbox requires the placement of the

XSG_core_config block to configure the Xilinx System Generator block automat-

ically, both blocks are shown in figure 3.13b, which defines a hardware platform,

clock source, clock rate, and sample period. It must be present in the top level of

the firmware logic flow. For additional of control registers were added in different

47

points to act as switches and allow live control of the signal structure. Some of the

subsystems describe show some of these switches. Three registers, shown in figure

3.13a, control the message clock rate, the PRN sequence, and the message data.

At any point while the firmware is running these registers can be written to via

software commands. The message clock switch controls the rate of the message

clock. This is implemented as a testing tool, allowing the increase of the message

clock rate to be the same as the PRN clock rate. The PRN shutdown switch and

the message shutdown switch were also implemented as testing tool allowing the

on and off control of each individual signal. This made possible the individual

testing of each subsystem.

(a) Three CASPER register blocks used to
control the transmitted signal structure

(b) CASPER and Xilinx configuration
block

Figure 3.13: Additional blocks used in the single signal model

3.1.2.2 Multisignal Model

The multisignal model takes the single signal model and repeats it four times.

Each repetition represents one of four SV signals. The multisignal model firmware

generates four independent civilian GPS signals. The transmitted signal contains

multiple copies of a single SV signal where each SV is independently configured.

These copies are added together to generate the multi-SV signal. The full firmware

flow diagram in figure 3.2 shows each SV copy connected by a addition logic. The

signals are added together in steps. Signals SV 1 and SV 2 are together the same

48

time as signals SV 3 and SV 4. The two addition results are added once again to

produce the multi-SV signal. A close up of the addition logic is shown in figure

3.14. The addition of signals is based on the amplitude of the signal at each clock

tick. Signals can negate each other resulting on a zero amplitude or sum together

to double the amplitude. This was important to consider in defining output levels.

Figure 3.14: Close-up view of the first stage addition logic

For further control of the multi-SV, signal two register switches were added in the

first addition stage. These two register switches allowed individual control over

which signals are transmitted. Any of the four SV signals can be switched off

during live execution of the firmware. This control was added as a testing tool.

3.1.2.3 Lessons Learned

It is easy to get confused with the different clock domains. Keeping track of which

clock controls which logic is of paramount importance. Use of incorrect clocks

49

can produce undetectable errors. Because the different clock domains had vastly

different frequencies, unwanted behavior was a common occurrence. Testing each

logic set for proper clock rates was the most important test.

Bit delays had to be implemented throughout the block flow due to timing restric-

tions. During the compiling process of the firmware the compiler runs a timing

check. This timing check analyzes the timing restriction of each block and deter-

mines, based on the complexity of the logic, if proper timing can be met. When

timing is not met, a delay must be added on the bit flow into the block present-

ing timing restrictions. This process has been one of trial and error. The two

ways to add a signal delay is either by the inclusion of Delay blocks or, in some

block configuration parameters, setting an internal delay on the block logic. An

example of this can be seen in figure 3.12 where both MUX blocks have a 4 tick

delay represented by z−4 on the block face. Remember that each added delay is

a system clock tick, meaning that a 4 tick delay at 200.508 MHz is much faster

than any of the internal model clocks (PRN of Message clock).

3.2 Software Design

The software, written entirely in Matlab, provides control over the data stored in

the firmware and control over different configurations parameters in the firmware.

It stages the ROACH providing it with the necessary data to generate and transmit

the desired signal.

The software flow diagram, shown in figure 3.15, starts with the attempt to connect

the the ROACH using the KATCP tool. KATCP, the Karoo Array Telescope

Control Protocol, is a tool created by CASPER to control ROACH devices over

Transmission Control Protocol (TCP) or RS232 connection. Installation of this

tool and steps on how to use it have been described in detail by the author of

50

[24]. In this project, it was found that to use the KATCP tool the directory where

the KATCP library was stored had to be added to the software path. This was

accomplished by the addpath Matlab command.

Once the software has established connection to the ROACH, using KATCP and

the ROACH’s internet protocol (IP) number, it will attempt to load the desired

firmware. The firmware must be already saved in the ROACH’s internal memory

and the name of the firmware must be identical to the name defined in the software.

KATCP will attempt to find the firmware defined in the function call in the /boffile

directory in the ROACH file system. Note, during the firmware load command the

ROACH automatically executes the selected firmware therefore, if a oscilloscope is

connected to the ROACH output, a garbage transmitted signal can be seen. Once

the firmware has been loaded, which the only indication of a successfully loaded

firmware is the absence of any errors, the software will define the two bit pair used

for the PRN sequence generator. The selection of these bits depend on the SV

selected. The software holds an internal list of bit pairs, each pair is assigned to

a specific SV. Table 2.3 shows which SV gets which pair. The four selected bit

pairs are later passed on to the firmware and translated into selector bits for the

MUX controlling the PRN generator. For example, if SV 9 is selected then the

input bits 3 and 10 of the MUX will be selected and used to generate the PRN

sequence.

Following the SV selection process is the generation of all of the message data

that is to be written to the BRAM in the firmware. The message data is gener-

ated part by hard coded values, most setting specific unused bits to zero, and by

fetching an almanac database for the most up-to-date data file. A full description

of this process is to follow. Finally, the software configures all of the configura-

tion parameters in the firmware and writes the message data to the BRAM for

each individual SV. Section 3.1.2 described a number of switches embedded in

51

the firmware to give live control of the generated signal. The software uses the

KATCP write command to set these switches to different values depending on the

desired signal output. By default, the software configures all switches to values

that produce a true C/A L1 GPS signal.

Figure 3.15: High-level software flow diagram

52

3.2.1 Subframe Generator Functions

A large part of the software functionality is to generate data for each of the five

subframes and 25 pages. Those data are converted into bit arrays that are written

onto the BRAM in the firmware. The data constructed in these functions are

used to modulate the carrier frequency along with the PRN sequence, which is

generated purely in firmware. The function CreateMessageData(sv_selected) is

called when generation of message data is requested. It takes in vector composed

of 4 integer values, with each relating to the selected SV. The function uses the

selected SV number to fetch the proper data for each of the four SVs selected from

the almanac database. Initially, the function defined the GPS epoch, a reference

time used by the GPS, and calculates GPS week and the seconds of the week.

This process, shown in the code snippet below, provides the system with accurate

GPS time. These time values are later passed on to every subframe and are used

by the GPS received to calculate PVT.

1 gps_epoch = [1980 1 6 00 00 00.000]; % Jan 6 1980 00:00:00.000
2 correction_EST = 4/24; % Time correction for EST
3 gps_week = ((now() + correction_EST) - datenum(gps_epoch))/7;
4 true_gps_week = floor(gps_week); % GPS week number
5 gps_seconds_of_week = floor(((gps_week - true_gps_week)...
6 *hours_in_day*minutes_in_hour*seconds_in_hour*days_in_week));

Once current GPS time has been calculated, the fetching of almanac data starts

by calling the fetchYumaData() function. By determining the current day of the

year and passing it to the end of the database URL, it downloads the almanac

data for the current day. The algorithm used will always determine the current

day of the year and fetch the most up-to-date almanac data available from the

database. The almanac data is saved to the .alm file stored in the current directory,

usually the directory containing all of the function files. Prior to returning the

save file to the calling function, the recently generated almanac file is checked

53

to ensure that it contains data for 32 total satellites. Although at the time of

this writing only 31 SVs were operational, the almanac data still transmits data

for 32 different satellites. To fix this, the fetching function fills in dummy data

for missing SV. It iterates through each data entry in the almanac file, when a

missing SV is detected it fills in the missing data with the dummy data. This

process follows recommended instructions in [19] and the dummy data is defined

to be the recommended values.

With almanac data available the generation of 5 subframes for 25 pages starts.

A design choice made was to have one function for each subframe. A total of 5

functions generate all of the data for the message signal. Two additional functions

generate the HOW and TLM word for the subframes. These two functions are

called by all 5 subframe functions to generate the first two words of data. Figure

3.16 describes the function calling process executed during the subframe data

generation. A loop dictates how many times the 5 subframes need to be generated.

Each time a subframe function is called, that function calls both the TLM and

HOW functions to generate the first 2 words (60 bits) of the subframe. The

following snippet of code shows how subframe 1 generates all of its 300 bits. It

starts by defining the subframe number then calling a function to generate each of

the 10 words, each requiring different parameters depending on what data needs

to be generated for that word.

54

1 function subframe_1_300_bits = GenerateSubframe1(...
2 GPS_week_number, TOW_truncated, sv_health,...
3 sv_af0, sv_af1, D_star)
4 frame_id = [0 0 1];
5 word_1 = GenerateTLMWord(D_star);
6 word_2 = GenerateHOWWord(TOW_truncated,...
7 frame_id, word_1(29:30));
8 word_3 = GenerateWord3(GPS_week_number,...
9 sv_health, word_2(29:30));

10 word_4 = GenerateWord4(word_3(29:30));
11 word_5 = GenerateWord5(word_4(29:30));
12 word_6 = GenerateWord6(word_5(29:30));
13 word_7 = GenerateWord7(word_6(29:30));
14 word_8 = GenerateWord8(word_7(29:30));
15 word_9 = GenerateWord9(sv_af1, word_8(29:30));
16 word_10 = GenerateWord10(sv_af0, word_9(29:30));
17 subframe_1_300_bits = [word_1 ; word_2 ; word_3 ;
18 word_4 ; word_5 ; word_6 ;
19 word_7 ; word_8 ; word_9 ; word_10];
20 end

55

Figure 3.16: High-level function flow diagram for the subframe generation process

Functions generating subframes 2 through 5 use much of the same design as sub-

56

frame 1. The major changes occur in subframe 4 and 5 whose data depend on

the current page number. During the function calls for subframe 4 and 5 each

function call for word generation checks the current page number. Depending on

the page number it will generate a set of data specific for that page number. As

explained in section 2.4.3, subframe 4 and 5 are subcommuted 25 times. Subframe

5 transmits almanac data for SVs 1 through 24 and subframe 4, pages 2, 3, 4, 5,

7, 8, 9 and 10, transmitting almanac data for SVs 25 through 32 respectively. As

such the word generator functions check the page number to determine the proper

data to generate. Note that the word generator functions do not actually create

the data, they read the data from the almanac file and converts it to bit arrays.

Each word generator function returns a vector array containing 30 bits. A detailed

summary of the various data contained in each of the pages of subframe 4 and 5

is shown in table 3.1.

Subframe Pages Data
4 2, 3, 4, 5, 7, 8, 9 and 10 Almanac data for SV 25 through 32

1, 6, 11, 16, and 21 Reserved for future use
12,19,20,22,23 and 24 Reserved for future use

13 Navigation Message Correction Table
14 and 15 Reserved for system use

17 Special Messages
18 Ionospheric and UTC data
25 Anti-spoofing flag, SV health for SV 25 through 32

5 1 through 24 Almanac data for SV
25 SV health for SV 1 through 24, Reference Time, Reference Week Number

Table 3.1: Summary of the various data contained in subframe 4 and 5

The subframe 4 function uses a polynomial equation to generate the SV index.

The SV ID is a number between 25 and 32 that identifies the SV. This number

is a 6 bit number that is store in word 3 of subframe 4 pages 2, 3, 4, 5, 7, 8, 9,

10, and subframe 4 pages 1 through 14. The SV ID in subframe 5 is the same as

the page number. The use of this polynomial equation is only necessary for the

pages mentioned above of subframe 4. This is because the SV ID in subframe 5

are the same as the page number, page number 1 in subframe 5 transmits almanac

data for SV 1 therefore the SV ID is also 1. However, there is a discontinuity on

57

the relationship between page number and SV ID for subframe 4. In those pages

almanac data is contained, the SV ID does not equal the page number. Instead of

creating if/else logic for all 9 pages in subframe 4 and in turn increasing executing

time and resources, a single polynomial equation is used to generate the SV ID.

Below is the line of code that defines and calculates the polynomial equation. This

polynomial is calculated once at the beginning of subframe 4 and depends only on

the current page number.

1 sv_ID = round((-1787/181440) * page_number^9 + ...
2 (2161/4480) * page_number^8 - ...
3 (152611/15120) * page_number^7 + ...
4 (339491/2880) * page_number^6 - ...
5 (1455307/1728) * page_number^5 + ...
6 (21846103/5760) * page_number^4 - ...
7 (969047939/90720) * page_number^3 + ...
8 (181025839/10080) * page_number^2 - ...
9 (40634899/2520) * page_number + ...

10 5789);

The generation of this polynomial used a numerical analysis known as Newton

polynomial, named after Isaac Newton. This numerical analysis calculates the

coefficients of the polynomial using divided differences method. The author of [26]

explains the process of divided differences in detail, which was the same process

used to find the polynomial equation used.

To overall process of generating all of the message data ends with writing each

data set to a specific BRAM in the firmware. While the firmware and software

are separate entities, the software, through KATCP, can communicate with the

firmware. This communication allows the software to command different registers

that control the signal structure. It also allows access to all of the BRAM blocks

defined in the firmware. The software uses the KATCP functions wordwrite

and write to control the registers and write to the BRAM block. The following

snippet of code shows the configuration of the PRN register bit selectors followed

58

by writing the message data sets to their respective BRAM blocks.

1 % PRN Register bit selector
2 pause(global_pause);wordwrite(roach, 'G2_1_SV_SEL_REG1',...
3 (selected_bit_sv1(1,1)-1));
4 pause(global_pause);wordwrite(roach, 'G2_1_SV_SEL_REG2',...
5 (selected_bit_sv1(1,2)-1));
6 pause(global_pause);wordwrite(roach, 'G2_2_SV_SEL_REG1',...
7 (selected_bit_sv2(1,1)-1));
8 pause(global_pause);wordwrite(roach, 'G2_2_SV_SEL_REG2',...
9 (selected_bit_sv2(1,2)-1));

10 pause(global_pause);wordwrite(roach, 'G2_3_SV_SEL_REG1',...
11 (selected_bit_sv3(1,1)-1));
12 pause(global_pause);wordwrite(roach, 'G2_3_SV_SEL_REG2',...
13 (selected_bit_sv3(1,2)-1));
14 pause(global_pause);wordwrite(roach, 'G2_4_SV_SEL_REG1',...
15 (selected_bit_sv4(1,1)-1));
16 pause(global_pause);wordwrite(roach, 'G2_4_SV_SEL_REG2',...
17 (selected_bit_sv4(1,2)-1));
18 % Write the message signal data to BRAM
19 pause(global_pause);
20 write(roach, 'Message_Signal1_bram1',...
21 repeated_message_signal_bytes_sv1');
22 pause(global_pause);
23 write(roach, 'Message_Signal2_bram1',...
24 repeated_message_signal_bytes_sv2');
25 pause(global_pause);
26 write(roach, 'Message_Signal3_bram1',...
27 repeated_message_signal_bytes_sv3');
28 pause(global_pause);
29 write(roach, 'Message_Signal4_bram1',...
30 repeated_message_signal_bytes_sv4');

The wordwrite command connects to the object ‘roach’, which is the connected

ROACH development board running the active firmware, and writes the values of

‘selected_bits_sv’ to the G1 and G2 selector registers. Thewrite command is used

to write the data stored in the ‘repeated_message_signal_bytes_sv’ to the BRAM

blocks. Note the constant use of the pause command. It was found through the

process of trial and error that the firmware needed time before receiving a new

write command.

59

3.2.2 Parity Function

Every subframe used the party function, GpsParityMaker(), to calculate the 6

parity bits. The algorithm used for this function is defined in [19]. In summary,

the function takes in a 24 or 22 bit message and calculates 6 or 8 parity bits,

respectively. If a 22 bit message is passed to the function a forced parity sequence

is used to force the parity calculation to set bits 23 and 24 to zero by generating

some 6 bit sequence. In turn, if a 24 bit message is passed the parity function will

calculate the 6 bit parity sequence. The parity bits depend on the message bits.

The parity function looks at the last two bits of the previous message, which are

passed to the function, and uses it to calculate the parity. If the last bit of the

previous word is a ‘1’ then all of the message bits must be negated, meaning ‘1’

become ‘0’ and vice-versa. The parity calculation uses a defined sequence for each

parity bit. The calculations depend on the sequence and the last two bits of the

previous word. The returned value from the parity function is a 30 bit number

containing the message bits and the newly calculated 6 parity bits. In the case of

the force parity, the return value is the message bits having bit 23 and 24 set to

zero and the newly calculated parity bits.

3.2.3 Supporting Functions

A few supporting functions were implemented to assist with the generation of the

message data. A brief explanation of each function and how it assisted the data

generation is to follow. Some of these functions converted data types or format,

others assisted in signal generation.

SvData2Binary(): This function takes in a decimal value and returns its binary

equivalent. It differs from any Matlab built-in function because the return value

is an array of bits and not a string of bits. Before converting to a bit array this

60

function also checks to see if the input decimal value is a negative number. If so, it

calculates the two’s complement and generates the negative binary representation

of the value. This function is called when data are fetched from the almanac and

written to the message data array stored in the BRAM.

cacode(): This function was written by Dan Boschen [27]. It generates a given

PRN sequence. It takes in as a parameter the desired PRN number to be generated

and the desired bit sample rate. The function is used during post-processing to

generate a PRN signal to be correlated against the received GPS signal.

read_complex_binary(): This function is provided by GNU Radio project to ex-

tract the digital signal form the .dat file. During recording of the signal using the

Ettus N210 a file is saved that contains a complex representation of the received

signal. This function reads that file and returns an array of data points usable by

Matlab for post-processing.

ConverToBytesAndPad(): This function returned a 10 by 30 bit array as a 4 by

10 byte array. Each 30 bits of the input array would be padded, adding two bits

to the LSB, to include 32 total bids then converted into bytes, 8-bit chunks. The

byte values would be stored in a column matrix. Each column representing a 32

bit word. This matrix is returned and used as the data set written to the BRAM.

3.2.4 Lessons Learned

The Matlab function urlwrite does not recognized self-signed web certificates.

It only accepts trusted authorities to determine if a specific certificate should be

trusted. The server used for fetching almanac data uses a HTTPS protocol and

the certificate used is not accepted by Matlab; therefore the certificate must be

manually declared as a trusted certificate. This is accomplished by first download-

ing the certificate file using a web browser. Running the code shown in source code

61

1 to add the certificate as a trusted MATLAB JRE key store. Execution must be

performed with administrator (or root if on Linux) permissions and Matlab must

be restarted after completion.

1 function importcert(filename)
2 if (nargin == 0)
3 % Show open file dialog to select
4 [filename,path] = uigetfile({'*.cer;*.crt','Certificates
5 (*.cer,*.crt)'},'Select Certificate');
6 if (filename==0), return, end
7 filename = fullfile(path,filename);
8 end
9 % Determine Java keytool location and cacerts location

10 keytool = fullfile(matlabroot,'sys','java','jre',...
11 computer('arch'),'jre','bin','keytool');
12 cacerts = fullfile(matlabroot,'sys','java','jre',...
13 computer('arch'),'jre','lib','security',...
14 'cacerts');
15 % Create backup of cacerts
16 if (~exist([cacerts '.org'],'file'))
17 copyfile(cacerts,[cacerts '.org'])
18 end
19 % Construct and execute keytool
20 command = sprintf...
21 ('"%s" -import -file "%s" -keystore "%s" -storepass changeit',
22 keytool,filename,cacerts);
23 dos(command);
24 end

Source Code 1: Manual addition of trusted certificate to the Matlab key store

A new almanac is generated and available in the database every 23.9 hours. To

fetch the almanac the software calculates the current day of the year. At times,

the calculated day of the year may reference a day that a new almanac has not

yet been generated for. This will result in a fetching error and the software will

terminate. Simply changing the function datenum input date to January 1,

0000 will change the day of the year calculation to be one less than the previous

calculation resulting in a successful fetch.

62

Lastly, at times when writing to the firmware registers the software will hang and

not execute any of the write commands. The cause of this was not identified;

however, arbitrarily removing the pause commands would change the behavior

of the execution and fix the problem. Whenever this problem was encountered

the current firmware would be manually terminated via SSH connection to the

ROACH and the software executed after changes to delay command were made.

3.3 GPS Software Decoder

As an alternative to signal acquisition using a GPS receiver demodulation of the

transmitted signal was accomplished in software. The transmitted signal, C/A

L1 GPS signal, was recorded using the Ettus N210 and saved to file. The file

was read by a Matlab scripts that extracts the received signal as complex values

of each sample point recorded. These complex values were analyzed using signal

processing methods so the transmitted bits, modulated into the signal, could be

extracted.

3.3.1 Post-Processing

The post-processing demodulated the signal and extracted the message bit stream.

Post-processing analysis accommodates recorded signal at a sample frequency fs of

4 MHz and 8 MHz but explanation of the analysis assumes fs = 4 MHz. Analysis

differences dependent on the sample rate were highlighted.

The first step was to recover the carrier by estimating the frequency difference

between the recorded signal and the Ettus N210 local oscillator (LO). The recorded

signal was shifted by an initial guess of 98 kHz. The first shifted signals, called

coarse tune signal, was squared and the resulting recovered carrier was checked

for proper shifting of the frequency to DC. A more precise tuning of the frequency

63

shift was done using the coarse tune signal. The maximum frequency found in

the recovered carrier from the coarse tune signal was indexed and the difference

from DC measured. This difference was used as a more precise second guess for

shifting the coarse tune signal to DC. The second shifted signal, called fine tune

signal, was successfully shifted to DC. Figure 3.17 shows the power spectrum of

the coarse tune (top graph) and fine tune (bottom graph) signals.

-1 -0.5 0 0.5 1 1.5

Frequency (MHz)

-100

-50

0

50

100

P
o

w
e

r

Coarse Tune Spectrum

-1 -0.5 0 0.5 1 1.5

Frequency (MHz)

-100

-50

0

50

P
o

w
e

r

Fine Tune Spectrum

Figure 3.17: Power density spectrum of both shifted signals

The second step was determining the clock rate of the recorded signal. Knowing

the clock rate would defined the rate at which the bits changed. The expected

clock rate was the PRN clock frequency, fPRN = 1.023 MHz but due to differences

in the recorded signal a new clock rate had to be estimated. The clock rate was

estimated by comparing it to an initial guess calculated based on the clock edges

of the recorded data. The clock edges were determined by setting a threshold as

half of the median absolute value of amplitudes in the fine tune signal. The use

of a threshold helped reduced error by excluding the first 25% of the recorded

data avoiding the fragmented data that routinely happened at the beginning of

a recorded file. Change in angle greater than the threshold were identified and

64

sorted. From the list of sorted angles a π
2 difference in angle was identified as

a signal bit change. Expecting that one bit should persists for fs

fPRN
samples, at

fs = 4 MHz a single bit lasts about 4 to 5 samples. This was checked by counting

the number of bits that lasted 3, 4, and 5 samples. The average of those bits

lengths was used to guess the clock rate of the recorded signal. Figure 3.18 shows

all of the bits found that lasted 3, 4, or 5 samples. The estimation of the clock

rate was done a second time using the average bit length. Each estimation sets

the recorded signal clock rate closer to the expected clock rate of 1.023 MHz

2 4 6 8

of bits ×106

3

3.5

4

4.5

5

S
a

m
p

le
s
 p

e
r

b
it

Sorted Bit Time

Figure 3.18: Bit sample length at 4 MHz sample rate

The third step was to generate a synthesized C/A code signal, a PRN code se-

quence generated in software. This was accomplished by using a Matlab script

developed by [27]. The synthesized signal was resampled to the calculated clock

rate of the recorded signal and generated for a PRN sequence known to be part

of the recorded signal. The resulting signal was cross correlated against the fine

tune signal. The result of the correlation showed the existence of the synthesized

signal in the recorded signal in turn proving that a PRN sequence was correctly

generated by the firmware and successfully transmitted to the Ettus N210. Figure

65

3.19 shows the cross correlation result between a synthesized C/A code signal for

PRN 30 and a recorded signal containing the same C/A code sequence. Note

the inclination of the correlation result. This inclination indicates a residual time

difference between frames.

Figure 3.19: Cross correlation result for PRN 30

The recorded signal is demodulated using the synthesized C/A code, meaning that

the PRN signal is removed and all that is left is the carrier modulated by the GPS

message bits. Before extraction of the message bits was done the residual time

difference was investigated to determine if it caused any bit loss. The message

bits at a clock frequency fmsg of 50 Hz were expected to last for fPRN·fs

fmsg
= 81840

samples per bit. The loss rate due to the residual timing difference was calculated

by the mean timing difference between each 2 ms correlation frames divided by

the fs. Therefore the calculated message bit length was determined by the integer

result of the sum between the actual and expected bit lengths multiplied by the

66

loss rate.

The extraction of the message bit stream was done by determining how many bits

could be contained in the recorded carrier signal given the calculated number of

sampled a single message bit would take. Then, by iterating through each sample

point in the recorded carrier signal and mapping the sample count to the phase

change. Where a phase change of more than π
2 happened determined a new bit.

Figure 3.20a shows the raw bit stream extracted from the signal containing the

PRN 30 C/A sequence. After applying a threshold value to the raw bit stream

values were normalized to 0 and 1. Figure 3.20b show the normalized bit stream

with 0 or 1 bit values. Figures 3.21a and 3.21b shows a zoomed in view of the raw

and normalized bit stream from bit number 580 to 780. Note how the bit values

has changed but the bit change remained the same.

0 500 1000 1500 2000

Bits

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

B
it
 V

a
lu

e

Extracted Bits from PRN 30

(a) Message data bit stream without nor-
malization

0 500 1000 1500 2000

Bits

-0.5

0

0.5

1

1.5

B
it
 V

a
lu

e

Normalized Bits from PRN 30

(b) Message data bit stream after normal-
ization

Figure 3.20: Message data extracted from PRN 30 before and after normalization

67

600 650 700 750

Bits

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
B

it
 V

a
lu

e

Extracted Bits from PRN 30

(a) A section of the message data bit stream
without normalization

600 650 700 750

Bits

-0.5

0

0.5

1

1.5

B
it
 V

a
lu

e

Normalized Bits from PRN 30

(b) A section of the message data bit
stream after normalization

Figure 3.21: Message data bit stream from bits 580 to 780 before and after nor-
malization

3.3.2 Decoder

The software decoder is made up of seven different functions. The decoder works

by analyzing a stream of bits and identifying bit groupings that relate to specific

terms in the message data. The development of the decoder was done by using

the GPS NAVSTAR documentation [19] and knowledge of the signal expected to

be parsed was not used. The diagram shown on figure 3.22 gives a high-level view

of how the decoder parses the received bit stream.

The decoder uses the NAVSTAR standard to define each specific bit sequence

contained in the message data. First, it searches the bit stream for the presence of

a preamble. The preamble is an 8-bit sequence that defines the start of a subframe.

When a start of a subframe is found, the decoder extracts 292 bits that follow the

preamble. Those 292 bits plus the 8-bit preamble make up a single subframe.

68

Figure 3.22: High-level software decoder design

With a full subframe extracted, the decoder follows the NAVSTAR specification

to identify the subframe ID number. Depending on what subframe ID number

is found a specific function parses the extracted subframe. A further analysis is

done for subframes 4 and 5 that depend on the current page number. As such,

the decoder finds the page ID value and parses it accordingly. If the page ID or

the subframe ID are values not recognized by the decoder then that subframe is

considered invalid and those 300 bits are ignored. This process repeats until all

bits in the received bit stream have been analyzed.

69

3.4 Signal Acquisition

To acquire the generated GPS signal different hardware and software methods

were used. Instead of testing the acquisition of the generated GPS signal using an

off-the-shelf GPS receiver, a combination of software and hardware was used that

would give better control over the acquisition process. GPS signal acquisition is

the process where a receiver identifies a signal from a specific SV by using the

received PRN signal and calculates the Doppler shift in the carrier frequency.

General steps taken by a common receiver are to first determine all SVs currently

in range of the receiver, calculate each SV signal Doppler shift, and detect the

signal C/A code delay and carrier frequency.

3.4.1 Ettus N210 SRD

The Ettus N210 is an SDR that can be configured to either transmit or receive

virtually any type of signals. It is powered by a Xilinx Spartan 3A-DSP 3400

FPGA [28]. It provides a dual 100 MS/s analog-to-digital converter (ADC), and

a dual 400 MS/s DAC. For connectivity between a host PC, it uses a Gigabit

Ethernet connection. Different daughterboards and radio frequency (RF) front

ends can be purchased to provide the Ettus N210 with transmitter, receiver, or

transceiver capabilities ranging from DC frequencies all the way up to 6 GHz.

Figure 3.23 shows the Etttus N210 used in this project with its lid open where the

internal board and the daughterboard can be seen.

70

Figure 3.23: Ettus N210 SDR showing the internal board and the WBX daugh-
terboard

Configuration of the Ettus N210 uses signal processing software to create flow

graphs using pre-programmed blocks, these blocks include code written to execute

a given task, which is then complied down to FGPA logic where it is represented by

hundreds or thousands of small lookup tables (LUT) known as logic cells. These

logic cells are D flip-flops and a 2 to 1 MUX interconnected together to create

complex logical functions.

The Ettus N210 served as the GPS receivers used to test the generated signal.

The generated signal, transmitted by the ROACH FPGA, was transmitted via a

physical cable to the Ettus N210 RF 1 input. The Ettus N210, with the help

of software running on a target PC, processed the received signal and produced

records later used to compare the generated signal to. As opposed to using an

off-the-shelf GPS receiver, the Ettus N210 gave a level of modularity perfect for

the project. While a standard off-the-shelf GPS receiver would have only been

71

able to receive signals at the GPS civilian frequencies, 1575.42 MHz, the Ettus

N210, using the WBX daughterboard, allowed a frequency range from 50 MHz to

2.2 GHz. This was useful due to national restrictions on over-the-air transmission

of GPS signals allowing the transmission of the generated GPS signal to be over-

the-cable and at a different fequency, 50.127 MHz, than the GPS L1 standard.

Due to limitations of the Ettus signal synthesizer its frequency range is reduced

to 68.75 MHz to 2.2 GHz. This required experiments to target the third harmonic

of the transmitted signal, 150.381 MHz, instead.

3.4.1.1 WBX USRP Daughterboard

A daughterboard is a circuit with RF components designed to transmit or receive

signals at a set frequency range. It prepares a received signal to be processed by

the FPGA or prepares a generated signal to be transmitted by the RF front-end.

The DAC and ADC work between the daughterboard and the FPGA converting

the signal to digital, if its a received signal, or to analog, if its a signal to be

transmitted. Figure 3.24 shows a high-level diagram of the system.

The WBX USRP daughterboard was designed to fit on the Ettus N210. It is

a transceiver, it both transmits and receives signals, with a bandwidth capabil-

ity of 40 MHz, and a frequency range of 50 MHz to 2.2 GHz. The WBX uses

the ADF4350 wideband synthesizer with integrated voltage controlled oscillator

(VCO). It can generate a range of frequencies from 2200 MHz to 4400 MHz having

the additional capability to divide these frequencies by 1, 2, 4, 8 and 16 allowing

to output an RF frequency as low as 137.5 MHz [29]. Therefore the operational

frequency range is 68.75 MHz to 2.2 GHz, which is half of the upper and lower

limits of the synthesizer due to another division by 2 performed by the quadra-

ture demodulation chip on the WBX board. It is important to distinguish the

difference between the reported frequency range and the operational frequency

72

range. Since the desired received signal is transmitted at 50.127 MHz which falls

within the reported range but outside the operational range and therefore cannot

be processed.

Figure 3.24: High-level diagram of the Ettus N210 and WBX daughterboard con-
nection

3.4.2 GNU Radio Software

GNU Radio is a open-source and free software that provides a variety of SDRs

with different signal processing capabilities. It is native to Linux operating sys-

tem distributions. It is often used by academia, hobbyists, and some commercial

products. As of the time of this writing the last stable release was version 3.7.10.2.

The use of GNU Radio in this project facilitated with signal acquisition, signal

analysis, and data recording. The use of pre-packaged blocks help speed up the

acquisition process which would otherwise require a considerable amount of time

to develop. The data recording and signal analysis process was accomplished using

73

GNU Radio Companion (GRC), a graphical user interface (GUI) that uses blocks

to process a wide variety of signals. GPS signal acquisition was performed using

GNSS-SDR software, which was built using the GNU Radio framework.

The installation process of GNU Radio was done by following various online guides.

Due to a considerable number of failed installation attempts, a more inclusive

script was written that applied specifically for the hardware and operating system

(OS) used for this project. PyBombs and UHD were two add-on installations

required in conjunction with GNU Radio installation. PyBombs (Python Build

Overlay Managed Bundle System) is a dependency that manages all of the "out-

of-tree" modules which are signal processing blocks created by GNU Radio users.

UHD (USRP Hardware Drivers) are drivers required by GNU Radio if any of the

Ettus USRP SDRs are to be used. The scrip shown in source code 2 was written to

successfully install GNU Radio, PyBombs, and UHD. The installation procedures

were tested using Ubuntu 14.04 LTS.

74

1 #!/bin/bash
2 currentuser=$USER
3 # Change to sudo user
4 sudo su
5 # Make sure you have sudo access
6 if ["$(whoami)" != "root"]; then
7 echo "You are not root."
8 exit 1
9 fi

10 # Change to root directory
11 cd ~
12 # Update OS packages and upgrade OS
13 apt-get update && time apt-get dist-upgrade
14 # Install GNU Radio
15 apt-get install gnuradio
16 # Open GNU Radio companion
17 gnuradio-companion
18 # Install git package
19 apt-get install git
20 # Change directory to Downloads
21 cd ~/home/$currentuser/Downloads
22 # Clone and install PyBombs
23 git clone git://github.com/pybombs/pybombs
24 cd pybombs/
25 # Open PyBombs GUI. Prepare to install UHD using GUI
26 ./app_store.py

Source Code 2: Installation script for GNU Radio and dependencies

Note that on line 26 of the script the user must take over installation and use

the PyBombs GUI to install UHD. To install the UHD, navigate to Available

hardware Apps tab on the GUI. Select the gr-ettus blue circular icon to install

UHD. Running the bash script and following the UHD steps listed above will have

successfully installed all required software to run GNU Radio with the Ettus N210

SDR.

Data recording and signal analysis was done by creating a simple flow graph using

GNU Radio blocks. Figure 3.25 shows the flow graph used. The flow graph is

75

composed of a USRP Source block, a file sink block, and a QT GUI sink block.

Figure 3.25: Data recording and signal analysis GNU radio flow diagram

Each block in GRC is designed to show the flow and type of data as it is laid out

in the flow graph. The flow of data is represented by arrows that connect one

block to the next and point to the direction of the data flow. The data type is

represented by the color of the small square-like ports on the sides of the block.

The USRP Source block displays a gray square port on its left side indicating that

it does not contain any incoming data and a blue square port on its right side

indicating that a complex data type (the color blue indicates complex type) is

transmitted from it. The parameters of the USRP Source block, shown in figures

3.26a and 3.26b, allow the user to define the IP address, clock source, sample

rate, and many other parameters. Note parameters sample rate and bandwidth

are assigned to variables which are defined by the Variable blocks located on the

left side of the flow graph. These variable blocks are used only to define variables

and do not generate or receive any data. The center frequency parameter was set

to 150.381 MHz, which is the third harmonic of the transmitted carrier frequency,

50.127 MHz. The use of the third harmonic instead of the carrier frequency is due

to the limitation of the Ettus N210 which is only able to receive frequencies above

68.75 MHz.

76

(a) USRP Source block general properties (b) USRP Source block RF properties

Figure 3.26: USRP Source block parameters

The File Sink block receives complex data type and saves it to a specified .dat file

name. It gives the option in its properties to either overwrite the file or append,

and to record the data unbuffered or buffered. The unbuffered option increases

the chance to lose data but increases the write speed while the buffered option is

slower but decreases the chance to lose the data before writing it to file. Properties

for the file sink block are shown in figure 3.27a. The QT GUI Sink block is used

to analyze the signal. It receives a complex data type and displays its content in

a series of plots. The plots used the most were a time domain plot and frequency

domain plot, however, it could also display waterfall and constellation plots. The

properties for the QT GUI Sink block are shown in figure 3.27b.

77

(a) File Sink block general properties (b) QT GUI Sink block general properties

Figure 3.27: General properties for the File Sink and QT GUI Sink blocks

Running the above flow graph in GRC records any data being received by Ettus

N210. Before recording it is a good idea to first check the signal using the different

GUI plots provided by the QT GUI sink block. It is important to remember that

the flow graph controls the hardware and any limitation on signal processing come

from the hardware being used and the connection between the hardware and the

target PC. In this project, signal limitations were due to the Ettus N210 daugh-

terboard which provides a signal band between 50 MHz and 2.2 GHz, however

as explained in section 3.4.1 the Ettus N210 internal signal synthesizer limits the

lower signal band to 68.75 MHz.

The connection between the Ettus N210 and the target PC running GNU Radio

used a direct gigabit Ethernet connection. While no loss of data was detected

while using GNU Radio there could have been undetected data loss during the

file write process. Because all of the recording used for post-processing produced

good recordings ensuring no data loss occurred was not needed.

78

3.4.2.1 Lessons Learned

Errors were encounter when installing UHD. These errors were solved by research-

ing forums and asking Ettus lists serves. For sake of completion these solutions

are compiled below. Let it be known that this compilation of solutions are in no

way conclusive. Other errors may arise with solutions not covered by the ones

below.

At times, when installing UHD a warning may appear that states the inability

to locate the USRP1 firmware. Running the terminal commands listed in source

code 3 will solve this error by downloading a new UHD image. Before execution of

the code below the Ettus N210 is to be connected to the target PC and powered

on.

1 cd ~/Downloads/target/lib
2 sudo mv uhd/ /usr/share/
3 cd /usr/share/uhd/utils
4 sudo ./uhd_images_downloader.py
5 cd ~/Downloads/target/share/uhd
6 sudo mv images/ /usr/share/uhd/

Source Code 3: Solution for a warning that occurs during UHD installation

Another error encountered was due to user permissions in Ubuntu. Certain con-

figurations done by the UHD installation required specific permissions that need

to be manually configured. The terminal commands listed in source code 4 de-

fine new user permissions and restarts the target PC. Like the previews solution

this solutions required that the Ettus N210 was powered on and connected to the

target PC.

79

1 sudo su
2 groupadd usrp
3 usermod -G usrp -a $USER
4 echo 'ACTION=="add", BUS=="use"SYSFS{idVendor}="fffe",
5 SYSFS{idProduct}=="0002", GROUP:="usrp", MODE:="0660"'
6 > tmpfile
7 chown root.root tmpfile
8 mv tmpfile /etc/udev/rules.d/10-usrp.rules
9 reboot

Source Code 4: Solution for an error that occurs during UHD installation

The installation procedures and some of the solutions to the errors encountered

were found in [30] and [31]. A considerable amount of time learning GRC was spent

utilizing the useful tutorials found in [32]. GNU Radio and GRC in particular has

a vast amount of features not explored in this project. The GNU Radio framework

is a powerful signal processing software that helped further development of this

project.

3.4.3 GNSS-SDR Project

The GNSS-SDR project was started by a non-profit research foundation called

Centre Tecnològic de Telecomunicacions de Catalunya (CTTC) [33]. It is a free,

open-source software under the General Public License V3 [34]. It was built as

a GNSS research effort to provide a software receiver that has the capability to

target multiple signal bands and multiple GNSS [35]. It was chosen as the GPS

software receiver because it allowed many kinds of changes to be made, such as

changing the source of the signal (either hardware of file based), and access to all

the intermediate signals, parameters and variables [35].

Using the Ettus N210 as the RF front end, the GNSS-SDR software received the

signal captured by the RF front end, processed it in accordance to a configura-

80

tion file, and returned output parameters. The configuration of the software is

managed by the Control Plane, a software subsystem charged with creating a flow

graph according to the configuration of the processing blocks, while all the signal

processing is controlled by the software Signal Processing Blocks. The Signal Pro-

cessing Plane is built upon the GNU Radio framework which is why it requires a

full installation of GNU Radio and its dependencies.

The ROACH FPGA generates the desired GPS signal which is transmitted at the

carrier frequency of 50.127 MHz via a physical cable to the Ettus N210. The target

PC, which communicates to the Ettus N210 via a gigabit Ethernet port, runs the

GNSS-SDR during the transmission process. Over time the GNSS-SDR software

processes the received signal providing information about the signal’s composition

which include the number of SV’s acquired, their PRN sequence, and message

signal data.

The installation process for the GNSS-SDR is well documented in [36]. It is impor-

tant to ensure that GNU Radio and its dependencies are installed prior to attempt

GNSS-SDR installation. In order to execute the software, ensure proper connec-

tion the the RF front-end, in this case the Ettus N210, by the following commands

on a terminal window: uhd_usrp_probe or uhd_find_devices. The first

command returns the information about the Ettus N210 and detailed information

about the daugtherboard currently installed. The latter returns summarized infor-

mation about the Ettus N210, however both commands verify proper connection

the RF front-end. When proper connection to the RF front-end has been verified

and the GNSS-SDR .conf configuration file has been configures the following com-

mand will execute the GNSS-SDR software and being processing the received sig-

nal: gnss-sdr - -config_file=$LOCATION_OF_CONFIG_FILE$.conf.

A successful acquisition of the GPS signal will result in a stream of data flow

in the terminal window reporting that individual subframes have been received.

81

An indication of which SV (described by its PRN sequence number) transmitted

the received subframe is also indicated. At the termination of the GNSS-SDR

software, files will be generated and saved to the directory which the software was

invoked from. The position, velocity, and time (PVT) block can be configured to

produce a file using The National Marine Electronics Association (NMEA) 0183

format which gives direct access to the PVT data. Two other files, a KML file

with geographic data and a Receiver Independent Exchange Format (RINEX)

file providing raw satellite navigation data, are produced automatically by the

acquisition and tracking blocks. These files are great for post-processing and

analysis of the received signal.

3.4.3.1 Lessons Learned

Installation process for the GNSS-SDR can be fragmented depending on the ver-

sions of the many packages that can be already installed in the OS. It is important

to follow the instruction in [36] regarding installation, and to be familiar with the

packages currently installed in the Ubuntu version in use. The configuration file

is the interface between the user and the software. Understanding each block con-

figuration, and the process used will give better signal analysis control. A mistake

was made during this project by using the GNSS-SDR software as a "black box",

only interested on its input and outputs and not diving deeper into the inner

workings of the software. More time needs to be devoted to understanding each

process, from acquisition to tracking.

82

Chapter 4

Results

To validate the construction of the GPS signal, a number of tests were conducted

on the firmware, software, and the successful acquisition of the GPS signal. The

firmware tests were focused on ensuring correct data transfers, timing, and various

unit testing. The software tests were mainly done to verify logic and process used.

The signal acquisition test was performed using a GPS software decoder and a

SDR GPS receiver.

All tests were conducted using the apparatus presented in Section 4.1. It is im-

portant to note that no over-the-air transmission was conducted during any of the

testing process.

4.1 Hardware Setup

All tests conducted were done with the apparatus listed below and the same con-

figurations on each of the instruments. All of the hardware and instruments used

were owned by the Radar & Microwaves Laboratory therefore no other equipment

was needed. The hardware setup consisted of two personal computers (PCs),

ROACH board, Ettus N210 SDR, signal generator, oscilloscope, and a spectrum

analyzer.

83

Figure 4.1 shows the hardware setup, note that only one PC is shown in the figure.

The second PC, use for data and signal acquisition, was setup in a different part

of the laboratory.

Figure 4.1: Hardware setup

The development PC, labeled Dev PC was used to develop the firmware and

software deployed in this project. It was connected to a local area network (LAN)

where the ROACH board was also connected. The ROACH board had one input,

the system clock, and two outputs, I and Q. The system clock input received a

clock signal from the signal generator. The I and Q outputs were connected to the

oscilloscope, spectrum analyzer, or the Ettus N210 depending on the test being

performed. Both ROACH outputs were the same, meaning it transmitted the same

signal on both outputs, therefore it was possible to scope the same signal using the

oscilloscope and the spectrum analyzer and see the signal in both the time domain

84

and frequency domain. A better view of the ROACH’s input/output ports and

the signal generator is show in figure 4.2. Note the labels on the input/output

ports. The system clock labeled Co is the clock input to the output board.

Figure 4.2: Signal Generator configurations and ROACH input/output ports.

Figure 4.2 also shows the configuration of the signal generator. The ROACH

system clock was set to a frequency of 802.032 MHz, and an amplitude of 0 dBm.

Changing the frequency would change the system clock and in turn change the

overall characteristics of the transmitted signal, and possibly cause timing errors

in the firmware.

The Ettus N210 SDR was used for data and signal acquisition. One of the

ROACH’s outputs, either I or Q, was connected to the the RF1 input on the Et-

tus. The Ettus was connected directly to the acquisition PC via Ethernet cable.

The time base output provided in the back of the signal generator was connected

to the REF IN input on the Ettus N210.

85

The Ettus N210 external reference clock is used to synchronize the master oscil-

lator and must be a 10 MHz signal with a power level between 0 dBm to 15 dBm.

Figure 4.3 shows the time base output on the signal generator, 4.3a, and the front

of the Ettus N210, 4.3b, with the REF IN port on the bottom left corner.

(a) Back of signal generator showing the
time base output connection

(b) Front of the Ettus N210 showing the
reference in port

Figure 4.3: Reference Clock connection between the Ettus and the signal generator

4.2 GPS Signal Validation

Prior to testing a full GPS signal, PRN and message data were transmitted and

acquired by a GPS receiver. Each individual signal was verified for timing accuracy

and correctness of data generation. A switch on the firmware allowed control

over transmission of both signals, the PRN signal could be switched off allowing

only the transmission of the message signal or vice-versa. This allowed for the

independent test of each signal.

4.2.1 PRN Signal Validation

The test validation of the PRN signal attempted to answer two questions. First,

was the PRN signal transmitted correctly for all of the possible PRN sequences.

Second, when multiple PRN sequences are transmitted at once was the signal still

86

correct and detectable.

To answer both questions a test was conducted by generating 4 random PRN

sequence signals at once. This was done by assigning one random PRN sequence

signal to each of the four PRN generators in the firmware. As explained in section

3.1.2, the firmware was designed to allow the transmission of four independent

signals. These four signals mimic a signal configuration of four different SVs. Each

of these four independent signals generated unique PRN sequences from their PRN

generator section in the firmware. The four PRN sequences chosen were 9, 15, 23,

and 30 assigned to signal of SV 1, SV 2, SV 3, and SV 4, respectively. Neither

order assignment of the PRN sequence nor the chosen SV affected the signal, they

were chosen arbitrarily. Any PRN sequence on any SV would produce the same

results.

Each signal was independently transmitted starting with SV 1 (PRN 9). The

signal was acquired and the data saved as explained in section 3.4. The PRN

signal test consisted of correlating the raw signal data with a synthesized PRN

signal of the same sequence. A synthesized PRN signal for each of the chosen

PRN sequences was created, then correlated against the raw signal data of the

same PRN sequence. The expected result of the correlation was a high correlation

peak if both the synthesized signal and the raw were equal and low correlation

peak if they were not.

Figure 4.4 shows the correlation results of a single frame, at an arbitrary time in

the correlation, for all four PRN signals. The high correlation peak is evidence that

a known signal, the synthesized PRN signal, in fact exists within the transmitted

PRN signal.

87

1000 1500 2000 2500 3000 3500

Correlation Sample Offset

0

1

2

3

4

5
C

ro
s
s
 C

o
rr

e
la

ti
o
n

Correlation Ouput (PRN 9) Frame 3015

(a) Correlation Output of PRN 9

500 1000 1500 2000 2500 3000 3500

Correlation Sample Offset

0

1

2

3

4

5

6

7

8

C
ro

s
s
 C

o
rr

e
la

ti
o
n

Correlation Ouput (PRN 15) Frame 11000

(b) Correlation Output of PRN 15

500 1000 1500 2000 2500 3000

Correlation Sample Offset

0

1

2

3

4

5

6

7

8

C
ro

s
s
 C

o
rr

e
la

ti
o
n

Correlation Ouput (PRN 23) Frame 18500

(c) Correlation Output of PRN 23

500 1000 1500 2000 2500 3000 3500

Correlation Sample Offset

0

1

2

3

4

5

6

7

8

C
ro

s
s
 C

o
rr

e
la

ti
o
n

Correlation Ouput (PRN 30) Frame 200

(d) Correlation Output of PRN 30

Figure 4.4: Correlation output (single frame) of all four PRN signals

Because the transmitter and receiver were not phase locked there was some residual

drift in the signal. This drift is visible when plotting the correlation over all

frames as well as plotting the correlation output of different individual frames.

Figure 4.5 shows the drift of the same correlated signals mentioned above. The

slightly slanted line is the correlation peak over all frames. Note the position of

the correlation line as it shifts due to drift. This result is a clear indication of a

successful correlation and evidence of a drift. A correlation output without any

drift would show a completely horizontal line indicating that no correlation offset

from frame to frame. Section 3.3.2 describes the post-processing performed on the

transmitted signal to reduce the drift before correlation was done.

88

(a) Correlation output of PRN 9 (b) Correlation output of PRN 15

(c) Correlation output of PRN 23 (d) Correlation output of PRN 30

Figure 4.5: Correlation output (all frames) of individually transmitted PRN sig-
nals

The above correlation was conducted for all possible PRN sequences. All tests

yield the same results certifying proper detection of any desired PRN sequence.

A second test was performed to validate the correlation process. This second test

used a transmitted signal composed of all four SVs. Each of the four SVs contained

a different PRN sequence. Again, the chosen PRN sequences were the same as

the previous test, the only difference was instead of individually transmitting each

PRN signal all signals were transmitted at once: the transmitted signal was the

sum of all four PRN signals. Much like the previous test a synthesized PRN signal

was created but this time the PRN sequence was one known to not be one of the

four PRN sequences contained in the transmitted signal. The expected result was

89

a low correlation between the PRN sequence not present in the transmitted signal.

Figure 4.6 shows the correlation between PRN sequence 28, which is not expected

to be in the transmitted signal, and the transmitted signal which is a combination

of the PRN signals, 9, 15, 23, and 30. Low correlation is presented in all frames,

figure 4.6b, as well as in a single frame, figure 4.6a.

0 1000 2000 3000 4000 5000 6000

Correlation Sample Offset

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

C
ro

s
s
 C

o
rr

e
la

ti
o
n

Correlation Output (PRN 28) Frame 6250

(a) Correlation Output (single frame)

Coorelator Output (PRN 28)

2000 4000 6000 8000 10000 12000 14000

Arbitrary Frame Number

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

C
o
rr

e
la

ti
o
n
 S

a
m

p
le

 O
ff
s
e
t

(b) Correlation output (all frames)

Figure 4.6: Low correlation output of PRN 28

Finally, the detection of each individual PRN sequence in the composite trans-

mitted signal was performed. The purpose of this last test was to detect one of

the four PRN sequences in the transmitted signal which was composed of all four

PRN sequences. As expected, the test resulted in high correlation of all four PRN

sequences present in the transmitted signal. The multiple frame correlation out-

put plots are shown in figure 4.7. A single, random frame output correlation is

shown in figure 4.8. This test was conducted for all PRN sequences not present

in the transmitted signal yielding the same results.

90

Coorelator Output (PRN 9)

2000 4000 6000 8000 10000 12000 14000

Arbitrary Frame Number

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

C
o
rr

e
la

ti
o
n
 S

a
m

p
le

 O
ff
s
e
t

(a) Correlation output of PRN 9

Coorelator Output (PRN 15)

2000 4000 6000 8000 10000 12000 14000

Arbitrary Frame Number

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

C
o
rr

e
la

ti
o
n
 S

a
m

p
le

 O
ff
s
e
t

(b) Correlation output of PRN 15
Coorelator Output (PRN 23)

2000 4000 6000 8000 10000 12000 14000

Arbitrary Frame Number

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

C
o
rr

e
la

ti
o
n
 S

a
m

p
le

 O
ff
s
e
t

(c) Correlation output of PRN 23

Coorelator Output (PRN 30)

2000 4000 6000 8000 10000 12000 14000

Arbitrary Frame Number

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

C
o
rr

e
la

ti
o
n
 S

a
m

p
le

 O
ff
s
e
t

(d) Correlation output of PRN 30

Figure 4.7: Correlation output (all frames) for composed transmitted signal

91

0 1000 2000 3000 4000 5000 6000

Correlation Sample Offset

0

1

2

3

4

5

6

7

8

9

C
ro

s
s
 C

o
rr

e
la

ti
o
n

Correlation Ouput (PRN 9) Frame 2000

(a) Correlation Output of PRN 9

0 1000 2000 3000 4000 5000 6000

Correlation Sample Offset

0

1

2

3

4

5

6

7

8

9

C
ro

s
s
 C

o
rr

e
la

ti
o
n

Correlation Ouput (PRN 15) Frame 1000

(b) Correlation Output of PRN 15

0 1000 2000 3000 4000 5000 6000

Correlation Sample Offset

0

1

2

3

4

5

6

7

8

9

C
ro

s
s
 C

o
rr

e
la

ti
o
n

Correlation Ouput (PRN 23) Frame 199

(c) Correlation Output of PRN 23

0 1000 2000 3000 4000 5000 6000

Correlation Sample Offset

0

1

2

3

4

5

6

7

8

9

C
ro

s
s
 C

o
rr

e
la

ti
o
n

Correlation Ouput (PRN 30) Frame 12500

(d) Correlation Output of PRN 30

Figure 4.8: Correlation output (single frame) for composit signal

The resulting PRN signal transmitted by the ROACH FPGA is a signal with

a wide bandwidth where the nulls are at every +/-1.023 MHz from the center

frequency. Figure 4.9 shows the resulting spectrum plot of the four PRN sig-

nals transmitted at once. The carrier frequency of the GPS signal was tuned to

50.127 MHz due to the DAC running at 200.508 MHz and the external clock at

802.032 MHz. Measurements done using the spectrum analyzer placed the nulls

at the expected positions. A visual inspection of the plot shows the nulls being

symmetrically distributed by about 1 MHz separation within each 2 MHz boxes.

92

Figure 4.9: Power spectrum of PRN signal

4.2.2 Test Vector Data Results

Four test signals were constructed to ensure proper data storage by the inter-

nal BRAM. As mentioned in section 3.1.2, BRAM blocks were designed into the

firmware to store the data used to modulate the carrier frequency. In the GPS

signal, the data stored in the BRAM is the navigation data; ephemeris and al-

manac data. To test, the BRAMs were loaded with test vector data, each properly

constructed to test different possible scenarios. The software, detailed in section

3.2, loaded the BRAM with either the test vector or message data depending on

a test flag called TESTING_IN_PROGRESS. If the test flag was set to ’1’ the

test vector data would be loaded onto the BRAM.

93

During testing of the four test vector each vector was loaded onto the BRAM of

one of the four SVs. Four data vectors for four SVs. One SV signal was transmitted

at a time via a control switch in the firmware allowing for independent testing of

each data vector. However, since the overall transmitting signal structure had not

changed, the test data was still modulated onto the carrier with a PRN signal. The

chosen PRN signal sequence was PRN 9. Since PRN signal testing had already

been conducted, choice of PRN sequence was completely arbitrary and any other

PRN sequence could have been chosen.

The first SV transmitted a repeating pattern of zeros and ones. This vector pattern

tests the BRAM address counter and validates that the format used to write data

to the BRAM is correct. Figure 4.10 shows a representation of how the data

vector is supposed to be stored in the BRAM. The left column, in blue, shows

the address of the BRAM and the right column, in yellow, shows the data stored

in the given address. Each address in the BRAM can store 32-bits, however a

word is defined to be 30-bits. The test vectors are generated in groups of 30-bits

therefore the last two bits, bit 31 and 32, of the BRAM in any given address are

terminated in the firmware. In other words, the BRAM can store 32-bits in each

address but in this project only the first 30 bits are being used and the last 2

bits are ignored. This is represented by the red zero digits in the diagram. This

vector produces 270 ones followed by 330 zeros. This test proves that the counter

is sequentially counting through each of the 32 bits in each of the addresses before

switching to a new address. Due to the long repetition of this sequence, if the

BRAM address counter switched to a new address too early the sequence would

be shorted than expected. The recorded test vector is first decoded than the raw

bit stream data is normalized using an arbitrary threshold value to produce the

figure 4.11. This figure shows the expected sequence of ones and zeros. A count

of bits was performed to ensure that in fact there were 270 ones followed by 330

94

zeros in turn proving that the format used to write data to the BRAM was correct

and that address counter was counting properly through each bit before going to

the following address.

Figure 4.10: Diagram representing test vector data 1 stored in BRAM

200 300 400 500 600 700 800

Bits

0

0.2

0.4

0.6

0.8

1

B
it
 V

a
lu

e

Data Vector 1 - Normalized

Figure 4.11: Normalized bit stream test vector 1 data received

The second test vector is a sequence of 30 ones followed by 30 zeros. This at-

tempted to test bit loss, to test bit shifting, and to tune the post-analysis script.

The expected results were; first, no bit value would show out of place, meaning

that a 1 bit or more would not show between a sequence of zeros. Second, no

sequence would be shorter or longer than 30 bits of the same value. Third, the

95

post-analysis script normalized the bits accurately by not assigned a value of one

to a raw bit that should have been zero. The third test was more of a validation,

it just helped with configuration of the threshold for the bit normalization. By

tuning the threshold the script can better determine the normalized value, either

one or zero, of every given raw bit sample. This cuts down on how many times

the raw bits have to be normalized due to change in threshold. This is important

because the vector test results depend on the normalization of the raw data. In-

correct assertions of bits will result in faulty data and test failures. An example

of incorrect bit normalization is shown in figure 4.12.

1075 1080 1085 1090 1095 1100 1105 1110 1115

Bits

0

0.2

0.4

0.6

0.8

1

B
it
 V

a
lu

e

Normalization Error

Figure 4.12: Bit normalization error

Figure 4.13 shows a representation of how test vector data was to be stored in

the BRAM. The normalized bit stream result in figure 4.14 shows successfully

transmission of test vector with the expected sequence of bits.

96

Figure 4.13: Diagram representing test vector data 2 stored in BRAM

100 120 140 160 180 200 220

Bits

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
it
 V

a
lu

e

Data Vector 2 - Normalized

Figure 4.14: Normalized bit stream test vector 2 data received

Test vector three was better designed sequence to further validate the proper write

process used. It tested bit precision within each address in the BRAM. Unlike

previous test which tested blocks of address at a time, this test was designed

to analyze the 30 bits within each address on the BRAM. This was done by

positioning sequences of 3-bits, 1-bit, 9-bits, and 14-bits. Figure 4.15 shows a

representation of test vector three data in the BRAM. The first 6-bits are three

zero bits followed by three one bits. This identifies the most significant bit (MSB)

in the BRAM which should be the first bit to be transmitted. A zero bit follows

97

this sequence which then proceeded by 9 one bits. The single zero bit tests any

drifting in the bit counter, meaning that the bit counter shift by a non-zero value

during each iteration. The following 9 one bits and the 14 zero bits to follow test

the ending and beginning of each address. If there were any count error these

23 bits would catch it by showing up in the beginning on the next address or by

being a different number of ones and zeros at the end of a given address. A second

sequence of 30 bits continues the address count test, seeing if any of the 16 one

bits or 14 zero bits are shifted into a different address. Overall, test vector three is

the most robust test conducted and a passing result, shown in figure 4.16, ensured

proper use of the BRAM.

Figure 4.15: Diagram representing test vector data 3 stored in BRAM

60 70 80 90 100 110 120

Bits

0

0.2

0.4

0.6

0.8

1

B
it
 V

a
lu

e

Data Vector 3 - Normalized

Figure 4.16: Normalized bit stream test vector 3 data received

98

Lastly, the fourth test vector was a sanity check test to make sure no obvious

errors were missed. This test vector left shifted 1 bit each 30 bits. Starting with

a sequence of 29 zero bits followed by 1 one bit. The next 30 bits sequence was 28

zero bits followed by 1 one bit followed by 1 zero bit. This repeats until the MSB

of 30th sequential address is a one bit followed by 29 zero bits. Figure 4.17 shows

a representation of the test vector 4 data in the BRAM. This is the longest test

vector composed of 960 bits. Data recording and analysis power was unable to

handle a complete test vector data capture. Recording of the full test vector would

require processing of a large file (around 4 to 5 GB) and no computer available

could process such large file. However, parts of the data vector were analyzed for

correctness. Figure 4.18 shows part of the test vector after the raw bit stream was

normalized. Note the reverse polarity of the bits cause by improper normalization

of the raw bit stream. Regardless of the reverse polarity the bit shift is clearly

shown.

Figure 4.17: Diagram representing test vector data 4 stored in BRAM

99

420 430 440 450 460 470 480 490 500 510

Bits

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
it
 V

a
lu

e

Data Vector 4 - Normalized

Figure 4.18: Normalized bit stream test vector 4 data received

4.2.3 Message Signal Validation

To validate the message signal the initial test was to ensure that the message

signal was transmitting at 50 Hz. It is important to note that the validation of

the message signal attempted to test only the correctness of the signal, meaning

that tests were performed to ensure that the rate at which the data was being

transmitted was in fact 50 bits per second. The validation of the data transmitted

by the message signal was tested later by the use of a software decoder.

The initial test verified the transmission of a single message signal from one SV.

This was possible by controlling a switch on the firmware that allowed turning

off the PRN signal and transmitting only the message signal. Another switch in

the firmware allowed control over how many SVs were transmitting at once. Once

the firmware was configured to transmit only the message signal from one SV the

transmitted signal was analyzed using an oscilloscope. The signal transmitted

was expected to show a change in bit, which in the time domain of a BPSK signal

would consist of a change in phase of the signal, no faster than every 20 ms.

Checking the bit change at 50 Hz was difficult to be analyzed because it is hard

to see a 20 ms bit stream modulated on a 50 MHz wave. With the oscilloscope

100

was set to 40 ns unit scale it was possible to catch a bit transition on the screen.

The idea behind this test was to visually inspect the scope and see how often a

bit change was detected. Detecting more than one bit change in a single slice

of 40 ns was an indication that the message signal rate was not correct. Figure

4.19 shows one bit change is detected. It took about 8 seconds to capture that

figure, meaning that around 400 bits had already been transmitted if the message

signal was at a rate of 50 Hz. Not seeing more than one bit change at a time and

taking about 8 seconds to capture a bit change were both good indications of a

proper message signal rate. Furthermore, a 10 second visual inspection yielded a

constant sinusoidal signal without any bit changes. Part of this visual inspection

was capture in figure 4.20.

Figure 4.19: Message signal bit change at 40 ns

101

Figure 4.20: Visual inspection of message signal with no bit change at 40 ns

To ensure that bit changes were actually occurring and that the visual inspections

resulting in no bit change were not just periods where the data remained the

same, the message signal was scoped at 200 µs. Figure 4.21 shows multiple bit

changes which was the expected result. Ideally there would have been about 100

bit changes in each of the 200 µs boxes on the scope, but do to limitations on the

oscilloscope there was no way to confirm this.

102

Figure 4.21: Message signal showing multiple bit changes at 200 µs

The message signal was also inspected in the frequency domain to ensure that

the 50 Hz message signal modulated with the carrier at 50.127 MHz was in fact

centered on the carrier frequency. Figure 4.22 shows the power spectrum of the

transmitted message signal with the peak centered at the carrier frequency.

103

Figure 4.22: Power spectrum of the message signal centered at 50.127 MHz

Progressing from a single message signal in one carrier to four message signals

in one carrier was as simple as controlling two switches in the firmware. This

allowed for the transmission of four message signals. Each of the four message

signals shared a common clock but generated different data. The transmitted

signal was a sum of four message signals. This sum would either output zero, half,

or full amplitude. This change in amplitude that depends on the sum of each of

the message signal bits is shown in figure 4.23.

104

Figure 4.23: Sum of four message signals resulting in amplitude change

The resulting change in amplitude captured by the oscilloscope absolutely shows

proper bit time due to the duration of each 20 ms bit streams with equal amplitude.

Due to instrument limitations inspecting a signal at such low frequency was not

easy. These initial tests using the oscilloscope were done mainly to ensure that no

major problems with the construction of the message signals were present. A more

complete test was transmitting the message signal to a decoder to ensure the data

had been created at the appropriate rate. However, it was important to analyze

the message signal both from a single SV and all four SVs to not compound large

errors before testing transmission and acquisition of the full GPS signal.

105

4.2.3.1 Lessons Learned

During testing of the message signal a mistake was found in the message signal

clock schema of the firmware. The message signal clock is synchronized with the

PRN signal clock which is at a 1.023 MHz. The PRN clock is divided down to 50 Hz

through a series of clock dividers. First 1.023 MHz was divided by 1023 producing

a 1000 Hz clock, which was further divided by 20 producing the 50 Hz message

clock. The process used to detect each clock pulse was done by implementing a

rising edge detector. This rising edge detector checked the previous clock count

and the current clock count then determined if the current clock count was a rising

edge. However, a mistake was made on the logic of the edge detector resulting in

an incorrect clock count for the message signal.

The error caused the message generated block to produce all bits stored in the

BRAM at the rate of system clock, 200.508 MHz, every 50 Hz. Figure 4.24 shows

the burst of data being transmitted every 20 ms. Each box on the scope screen

is 10 ms. The reoccurring peaks present every 20 ms are the burst of data being

dumped out of the BRAM.

106

Figure 4.24: Message clock error showing burst of data every 10 ms

Further analysis showed the rapid bit change happening every 50 Hz. Figure

4.25a shows the rapid bit change at 80 ns. Note no bit changes occur prior to the

center line of the graph followed by multiple changes in the signal phase. This

rapid change pointed to a message clock error which was keeping the clock from

transmitting at 50 bits per second. Figure 4.25b shows the same rapid bit change

at 20 µs, further indication of the message clock error.

107

(a) Message clock error at 80 ns (b) Message clock error at 20 µs

Figure 4.25: Message clock error showing rapid change of bits

The early discovery of this error assisted on the testing of the message signal.

Analyzing the message signal at 20 ms without amplitude change was not feasible

due to difficulties in analyzing a 20 ms bit rate in a 50 Hz signal. Removing the

clock error then checking for rapid bit changes was the best way to test for proper

clock rate of 50 Hz. Fixing the error then looking for the absence of the error

helped not only correct the message signal but served as a way to further test it.

4.3 Ettus SDR Results

A desired outcome of this thesis project was to receive the generated GPS signal

using an off-the-shelf GPS receiver. Instead, a SDR GPS receiver was chosen to

provide the control needed not available with an off-the-shelf option. Previous

experience with the Ettus N210 made the use of it in this project a natural choice.

Connectivity between the Ettus N210 and the GNURadio software had already

been established, all parts of the system had been tested, and it was ready to be

used. Furthermore, the use of GNSS-SDR software, a software built on top of the

GNURadio framework, was installed and utilized to receive the generated GPS

108

signals.

A diagram shown in figure 4.26 describes the connection set up between the

ROACH and the Ettus N210. The ROACH generated signal was transmitted

via a cable to the RF 1 input port of the Ettus N210 after going through 45 dB

of attenuation. The attenuation provided a power deduction for better simulation

of a GPS signal. It was a concerned that the GNSS-SDR software would reject

any signal above an expected power level therefore the attenuation helped reduced

the power of incoming signal. The Ettus N210 communicated with a target PC

running the GNSS-SDR software. The target PC controlled the parameters of the

Ettus N210 in order to receive the signal.

Figure 4.26: Connection between the ROACH and the Ettus N210

In order to acquire the GPS signal a GNSS-SDR configuration file had to be modi-

fied to the specifics of the desired signal to acquire. GNSS-SDR installs with many

different configuration files. These configuration files target many different GNSS

and hardware configurations. The gnss-sdr_GPS_L1_USRP_realtime.conf con-

figuration file was modified so it could be used by the Ettus N210. Code 5 shows

the changes made to the original file in order to be used by the Ettus N210. Lines

1-10 defined the hardware configuration parameters including the Ettus N210 IP

address, the clock source it uses, and what frequency to tune it to. The subdevice

parameter, line 9, specifies the RF 1 input port on the Ettus N210. The samples

parameter, line 10, is set to zero meaning infinite samples. Lines 12-15 define the

channel parameters. Line 13 assigns 8 channels for signal acquisition but line 14

allows only one of those 8 channels to acquire a signal at a time.

109

1 ;######### SIGNAL_SOURCE CONFIG ############
2 SignalSource.implementation=UHD_Signal_Source
3 SignalSource.device_address=192.168.10.2
4 SignalSource.clock_source=external
5 SignalSource.item_type=gr_complex
6 SignalSource.sampling_frequency=2000000
7 SignalSource.freq=150380000.005776
8 SignalSource.gain=0
9 SignalSource.subdevice=A:0

10 SignalSource.samples=0
11

12 ;######### CHANNELS GLOBAL CONFIG ############
13 Channels_1C.count=8
14 Channels_1C.in_acquisition=1

Source Code 5: Changes made to GNSS-SDR configuration file

The configuration defines a vast amount of parameters. For a detailed explanation

of the above parameters as well as all of the configuration parameters, and a step-

by-step guide on how to set up GNSS-SDR to receive C/A L1 GPS signal refer

to [36]. The main test conducted using GNSS-SDR was to acquire the generated

GPS signal therefor parameter configurations for tracking, and PVT (user position,

velocity, and time) were unchanged.

Initial acquisition results failed during testing of a single SV full GPS signal (PRN

and message signals modulated with the carrier) being transmitted to the Ettus

N210. The results viewed on a terminal window on the target PC are shown in

figure 4.27. The GNSS-SDR would identify that a signal was being received but no

identification of the signal was made. The time of acquisition did not matter, the

GNSS-SDR never acquired the signal when only one SV was being transmitted.

110

Figure 4.27: Failed acquisition results from GNSS-SDR software

Failed acquisition results do not indicate error with the received GPS signal, is

just shows that the current signal being received has no characteristics of GPS

signal detectable by the GNSS-SDR software in its current configurations. For

example, if the Ettus N210 was currently received an authentic GLONASS signal

but configured to receive a GPS signal instead the GNSS-SDR software would

yield the same result.

By modifying the ROACH firmware to include four SVs with a full GPS message

the acquisition test was conducted again using the same parameters. This time

the GNSS-SDR was able to successfully detect a GPS signal. As shown in figure

4.28, GNSS-SDR correctly identified subframes 3 and 5 from PRN 15, 1, 6, and 4.

However, as it continued to acquire the signal it began to identify subframes from

random PRN sequences not being transmitted at that time. Although unable to

correctly acquire the correct subframes the test results proved that a GPS signal

was being transmitted. Either some characteristics of the GPS signal were incor-

rectly generated or the GNSS-SDR software was improperly configured hindering

the correct identification of subframes.

111

Figure 4.28: Partially successful acquisition results from GNSS-SDR software

Despite partial test failures, mainly the inability to correctly identify the PRN

signals and extract the message data, the use of GNSS-SDR helped ensure con-

fidence on the integrity of the generated GPS signal. The signal generated only

included the PRN signal and message signal and lacked the proper Doppler delays

as well as the G2 register delays. Even though the message data transmitted was

authentic almanac data it is believed that the GNSS-SDR software required all

parts for a typical, "real-world", GPS signal. Any GPS receiver calculates the

user position by using ephemeris data, contained in the message signal, and time

elapsed since transmission. The generated signal transmission time changed sub-

frame to subframe, however with no delay in the received signal the GNSS-SDR

112

software will not be able to calculate position.

Further time needed to be devoted to fully understanding the GNSS-SDR software.

Gathering more knowledge of the acquisition process used by the software would

assist in altering the generated signal to be successfully acquired by the software.

4.3.1 Lessons Learned

A considerable amount of time was spent attempting to acquire the generated

GPS signal. At the time, the generated GPS signal consisted of only one SV

signal transmitting both the PRN and an incomplete message signal. It later

evolved to a true message signal with a tested PRN signal but no acquisition by

the Ettus N210 was made.

After reading through the GNSS-SDR online documentation it was discovered that

the software only acquires when at least four SV signals are detected, meaning four

different PRN sequences. It was also discovered that, besides needing four SV

signals, it also needed to receive at least the first three subframes of the message

signal.

Once the ROACH firmware was updated to include four different SVs with com-

plete message signals, five frames and 25 pages, the Ettus N210 and the GNSS-SDR

software started yielding results.

Another observation made was with the input signal attenuation. The ROACH

signal was fed into the Ettus N210 after going through 45 dB of attenuation. After

increasing attenuation to 130 dB the GNSS-SDR software was no longer able to

detect any incoming signal. However, decreasing the attenuation from 130 dB

down to 0 dB did not change how the GNSS-SDR software acquired the signal. It

was concluded that the attenuation at the input of the Ettus N210 did not impact

113

the acquisition of the transmitted signal.

4.4 Decoder Results

A software decoder was developed as an alternative to signal acquisition by a GPS

receiver. The results presented in this section are decoded data from a composite

signal demodulated to recover the carrier signal transmitting by the SV using PRN

30 spreading sequence.

The message data, as defined by the NAVSTAR specifications [11], is a stream of

bits with specific sequences. A stream of 300 bits contains data from one of five

possible subframes. The decoder identifies each subframe and parses it as defined

by the NAVSTAR specifications and in the method described in section 3.3.2. The

subframes represented by the results presented in this section are indicative of the

success of the decoder and not a collection of all possible results attainable by the

it.

A stream of roughly 3000 bits was analyzed by the decoder. In these 3000 bits all

5 subframes were sequentially (every 300 bits) identified and parsed. The TLM

word is kept out of the parsed results because it is repeated over every subframe.

The contents of the TLM word contain the preamble (‘10001011’), telemetry mes-

sage (a sequence of 14 zeros), a reserved bit (always of value ‘0’), a status flag

(always of value ‘0’), and parity bits. Although parity bits were parsed they were

never used to check the validity of the parsed message.

All of the almanac parameters contain a scale factor. These scale factors, specific to

each parameter, scales the value to a specific range such that it can be represented

by a given number of bits. The scale factors are listed on table 4.1 along with

114

number of bits for each almanac parameter. All decoded almanac parameters must

be multiplied by the proper scale factor to compute the true almanac parameter

value.

Parameter No. of bits Scale Factor
e 16 2−21

toa 8 212

δi 16 2−19

Ω̇ 16 2−38
√
A 24 2−11

Ω0 24 2−23

ω 24 2−23

M0 24 2−23

af0 11 2−20

af1 11 2−38

Table 4.1: Almanac parameters with scale factors and number of bits

Subframe 4, page 16, was the first subframe and page identified by the decoder

within the stream of 3000 bits. The parsed data are shown on figure 4.29 in

the same format used by the NAVSTAR specifications shown in figure 4.30. The

decoder determined this subframe to be subframe 4 by looking at bits 50 through

52. The page number was identified by the page ID, a 6-bit number located

starting at bit 63. In subframe 4 the page ID is defined value (see Table 20-V in

[19]) that depends on the page number. For page 16 the defined value is 57. All of

the reserved bits were sequences of alternating ‘1s’ and ‘0s’. All subframe 4 data

decoded produced similar results (with expected changes in page and subframe

ID).

Figure 4.29: Subframe 4 decoded data

115

Figure 4.30: Subframe 4 data format as defined by NAVSTAR specifications

Following subframe 4, the decoder identified subframe 5, page 16. Figure 4.31

shows the parsed date for subframe 5, page 16. Figure 4.32 shows the NAVSTAR

format for subframe 5, pages 1-24. The decoded TOW value (bits 31 through 47)

of 54291 was expected given that the previews TOW value (from subframe 4) was

one less than this value. This means that the previews subframe happened exactly

6 seconds before subframe 5 (each count of the TWO equals to 6 seconds), which

follows the expected timing of the subframe transmission. The decoder checked

the subframe ID bits (bits 50 through 52) to determine how to parse this bit.

Given that the value of the subframe ID was found to be 5 the data was parsed as

such subframe. Validation of the correct identification of the subframe was done

by analyzing the data present in words 3 thought 10 and ensuring they coincided

with the NAVSTAR specification and almanac data.

The data ID (bits 61 and 62) value of ‘1’ is the correct values for all pages in

subframe 5. The SV ID (bits 63 through 68) of 16 means that the almanac data

presented within this subframe belongs to SV 16. In order to check the almanac

data for SV 16 subframe 1 must be parsed because it contains the week number,

which is a number of weeks since the GPS epoch (night of January 5, 1980/morning

of January 6, 1980). Using the week number and the time of applicability toa,

contained in subframe 5, the almanac used for this data set could be identified.

A visual inspection of the bit placements suggest proper parsing of subframe 5.

Further analysis of the bit values was done after parsing of subframe 1.

116

The toa had to be scaled so the proper value could be determined. This was done

by using the decimal equivalent of toa (shown in blue) and multiplying by its scale

factor shown in table 4.1. The scaled value of toa = 99 · 212 = 405504 was the true

parameter transmitted.

Figure 4.31: Subframe 5 decoded data

Figure 4.32: Subframe 5 data format as defined by NAVSTAR specifications

Further parsing of the bit stream identified subframe 1 succeeding subframe 5, as

expected. Figure 4.33 shows the parsed data for subframe 1. Figure 4.34 shows

the NAVSTAR format for subframe 1. Right away reserve bits (in word 4, 5, 6

and 7) can be visually identified by the sequence of alternating ‘1s’ and ‘0s’. The

important data parsed from subframe 1 are the TWO (bits 31 through 47) and

the week number (bits 61 through 70). As expected, the TOW value is one count

more than the previews TOW indicating that 6 seconds had passed since the last

subframe was transmitted. The week number 932 indicate how many weeks had

passed since the GPS epoch and is the second data needed to identify the almanac

used for this data sat. Notice the red bits in word 9 and 10. During inspection

of proper bit values it was found that the values used for af0, af1 and af2 were

incorrect. Instead of generating those data using almanac data they should have

117

been calculated by the given equations in paragraph 20.3.3.3.1 of [19]. Because

these values were clock correction terms it was not believed to have caused any

test failures.

Figure 4.33: Subframe 1 decoded data

Figure 4.34: Subframe 1 data format as defined by NAVSTAR specifications

Given the week number 932, the almanac must have been generated during the

week of July 2, 2017. That week was the second 932 week number since GPS

epoch with the first 932 week number occurring the week of November 19, 1997.

Tracing the almanac back to the database and cross checking all the generated

almanac for the week number 932 the one generated during toa = 405504 was the

almanac used for this data set. Table 4.2 shows almanac data for SV 16; the same

data decoded from subframe 5.

118

Parameter Value Units
ID 16
Health 000
Eccentricity (e) 0.9305000305E-002
Time of Application (toa) 405504.0000 (s)
Orbital Inclination (i) 0.9893660760 (rad)
Rate of Right Ascension (Ω̇) 0.7931758961E-008 (rad/s)√
A 5153.677246 (m 1/2)

Right Ascension at Week (Ω0) 0.1116336917E+001 (rad)
Argument of Perigee (ω) 0.461919965 (rad)
Mean Anomaly (M0) 0.3052356242E+001 (rad)
af0 0.3528594971E-004 (s)
af1 0.0000000000E+000 (s/s)
Week Number 932

Table 4.2: Almanac data for SV 16 generated on July 6, 2017

Comparison between subframe 5 and almanac data was done in a number of steps.

First, by converting the binary value to its decimal equivalent (shown in blue in

the parsed data diagrams). Second, by multiplying the decimal value to its scaling

factor. Decimal values marked with ‘*’ indicate that the two’s complement of the

value must be taken to determine the true almanac value. The two’s complement

of a binary number is used to represent negative decimal numbers. However an

error in the handling of a negative number by the message data generator required

that the negative sign be dropped and calculations to restore the true almanac

value be done using the absolute value of the two’s complement decimal equivalent.

Starting the comparisons with eccentricity defined in word 3 (bits 69 through 84)

as e = 19513. The almanac data value for e was 0.009305000305. Therefore,

e = 19513 = 19513 · 2−21 = 0.0093 ≈ 0.009305000305. The loss in resolution

is due to the number of bits used to represent eccentricity. Next was bits 121

through 136 that defined the rate of right ascension Ω̇. Notice that Ω̇ is marked

with a ‘*’ indicating that a two’s complement conversion needs to be done in order

to restore the true almanac value. True almanac value is in units of radians per

119

second (rad/s) so a conversion to semi-circles, units used by the GPS message

data, must be done. The complete calculation to restore Ω̇ to its true almanac

value is Ω̇ = 64843 7→ Ω̈ = | − 693| = 693 ∴ Ω̈ · π = 2177.1 = 2177.1 · 2−38 =

0.7924e−8 ≈ 0.7931758961e−8. The process to restore the parsed that to the true

almanac data, although convoluted, proves that the correct data was transmitted.

Applying the same process to the remaining almanac parameters in subframe

5 results in the correct restoration of true almanac values. For
√
A (bits 151

through 175) the restored almanac value was
√
A = 10554371 = 10554371 ·2−11 =

5153.5 ≈ 5153.677246. For argument of perigee ω (bits 211 through 235) the

restored almanac value was ω = 15543807 7→ =̇| − 1233409| = 1233409 ∴

ω̇ · π = 3874900 = 3874900 · 2−23 = 0.4619 ≈ 0.461919965. For mean anomaly M0

(bits 241 through 265) the restored almanac value was M0 = 15543807 7→ Ṁ0 =

| − 8150331| = 8150331 ∴ Ṁ0 · π = 2.5605e + 07 = 2.5605e + 07 · 2−23 =

3.0524 ≈ 3.052356242. Lastly, af0 defined by combining bits 271 through 278

and bits 290 through 292. The restored almanac value for af0 was af0 = 37 =

37 · 2−20 = 0.35286e−4 ≈ 0.3528594971e−4

The decoder parsing results for subframe 2 and 3 are shown in figure 4.35 and 4.36.

Applying the same value restoration process to subframe 2 and 3 will yield similar

results. Note, almanac data from the transmitting SV was used in subframe 2

and 3 instead of SV 16. Values not defined by almanac were hard coded into the

subframe generator functions.

Figure 4.35: Subframe 2 decoded data

120

Figure 4.36: Subframe 3 decoded data

121

Chapter 5

Research Conclusion

The results presented in this thesis document shows a successful recreation of the

civilian GPS signal using the ROACH processing board and a few off-the-shelf

software tools. The recreation of the GPS signal follows the signal characteristics

set forth by [19]. It has been shown that the C/A L1 GPS signal was been

constructed with all of its parts. When using a software decoder programmed to

process signal data using the format prescribed the generated GPS signal contains

a correctly generated PRN sequence and full message data. Difficulties arose

during acquisition using the GNSS-SDR GPS receiver due unfamiliarity with the

GNSS-SDR software and possibly lack of Doppler shift and time delay on the

reconstructed signal. Although thoroughly tested, signal acquisition failure may

have been due to SNR levels, acquisition power levels, or fluke signal reconstruction

errors not discovered during testing.

The process of reconstructing the civilian GPS signal has proven difficult. Even

with access to the hardware and software used in this thesis work, producing a

true GPS signal worthy of being mistaken as an authentic signal is a task hard

to reach. It is the hope of this author that this thesis work has shown how many

moving parts must fit together with microsecond precision in order to produce the

most rudimentary version of the civilian GPS signal. While achievable, to recreate

122

a signal accurate enough to be mistaken as an authentic signal is a monumental

task requiring years of work, knowledge, and money. While the work focused on

the reconstruction of the GPS signal as a side effect it has produced valuable

experience with the ROACH processing board and the software tool chain that

can be applied to any future signal processing research.

123

Chapter 6

Future Work

Doppler shift and time delay are used by the GPS receiver to calculate its position.

The implementation of Doppler shift and time delay in the reconstructed signal

is a natural next step to improve reconstruction accuracy and signal robustness.

A simple process for implementing the Doppler shift and time delay is using four

BRAMs that are configure with different delay values. A counter would progress

through the BRAM address and pass the delay value in that current address to

logic that implements the delay onto the signal. The logic would be implemented

before it is modulated onto the carrier so that each individual SV could have

its own delay encoded into the signal before being added together to create the

transmitted composite signal.

Given the proper testing environment, future up conversion of the signal from

50.127 MHz to 1575.42 MHz and transmitting it over-the-air would not only fa-

cilitate testing, allowing testing of the generated signal by any GPS receiver, but

would also add an important characteristic of the traditional GPS signal. Trans-

mission of the signal at its intended frequency would be valuable as a testing

instrument. A robust GPS signal at the L1 frequency would provide any GPS

systems in need of testing with a tool that does not required the system to un-

dergo any modifications. It would also allow for robust testing of anti-spoofing

124

and anti-jamming techniques. Up conversion would require an RF mixer and a

signal generator. Preliminary tests have been performed using a Mini-Circuits

ZX05-43MH-S+ RF mixer which resulted in a up conversion to 1573.13 MHz.

This test was done by connecting the output of ROACH, at 50.127 MHz, to the

IF port on the mixer and a signal generator tuned to 1525.293 MHz connected

to the LO port. Although not exactly the desired frequency, with some tuning

of the local oscillator the desired frequency can be achieved. An emphasis must

be made to the fact that no over-the-air transmission was done during this thesis

project. With proper signal isolation and frequency up conversion an over-the-air

transmission should be tested in the future.

125

Bibliography

[1] UT News, “UT Austin Researchers Successfully Spoof an $80 million Yacht
at Sea,” Jul. 2013. [Online]. Available: https://news.utexas.edu/2013/
07/29/ut-austin-researchers-successfully-spoof-an-80-million-
yacht-at-sea.

[2] E. D. Kaplan and C. J. Hegarty, Understanding gps: Principles and appli-
cations, 2nd ed. Norwood, MA: Artech House, 2006.

[3] International Civil Aviation Organization, “ICAO Completes Fact-Finding
Investigation,” ICAO News Release, vol. PIO, no. 8/93, 1993.

[4] B. W. Parkinson and S. W. Gilbert, “NAVSTAR: Global Positioning System
– Ten Years Later,” Proc. IEEE, vol. 71, no. 10, Oct. 1983.

[5] C. J. Hegarty and E. Chatre, “Evolution of the Global Navigation Satellite
System (GNSS),” Proc. IEEE, vol. 96, no. 12, Dec. 2008.

[6] M. A. Earl. (2017). CASTOR - Canadian Astronomy, Satellite Tracking and
Optical Research, [Online]. Available: http://www.castor2.ca/.

[7] Navigation National Coordination Office for Space-Based Positioning and
Timing. (2017). The Global Positioning System, [Online]. Available: http:
//www.GPS.gov.

[8] GPS WORLD, “Almanac: Orbit Data and Resources on Active GNSS Satel-
lites,” pp. 1–5, 2017.

[9] 50th Space Wing Public Affairs, “50 SW completes GPS Constellation Ex-
pansion,” Schiriever Air Force Base, Colo., Jun. 2011. [Online]. Available:
http : / / www . schriever . af . mil / News / Article - Display / Article /
277054/50-sw-completes-gps-constellation-expansion/.

[10] P. Misra and P. Enge, Global Positioning System - Signals, Measurements,
and Performance, 2nd ed. Lincoln, MA: Ganga-Jamuna Press, 2012.

126

https://news.utexas.edu/2013/07/29/ut-austin-researchers-successfully-spoof-an-80-million-yacht-at-sea
https://news.utexas.edu/2013/07/29/ut-austin-researchers-successfully-spoof-an-80-million-yacht-at-sea
https://news.utexas.edu/2013/07/29/ut-austin-researchers-successfully-spoof-an-80-million-yacht-at-sea
http://www.castor2.ca/
http://www.GPS.gov
http://www.GPS.gov
http://www.schriever.af.mil/News/Article-Display/Article/277054/50-sw-completes-gps-constellation-expansion/
http://www.schriever.af.mil/News/Article-Display/Article/277054/50-sw-completes-gps-constellation-expansion/

[11] U.S. Cost Guard, “NAVSTAR GPS: User Equipment Introduction,” Tech.
Rep., Sep. 1996. [Online]. Available: https://www.navcen.uscg.gov/pubs/
gps/gpsuser/gpsuser.pdf.

[12] K. Borre, D. M. Ajos, N. Bertelsen, P. Rinder, and S. H. Jensen, A Software-
Defined GSP and Galileo Receiver. A Single-Frequency Approach. New York,
NY: Birkhauser Boston, 2007.

[13] S. Butman and U. Timor, “Interplex-An Efficient Mulichannel PSK/PM
Telemetry System,” IEEE Trans. on Communication Technology, vol. COM-
20, no. 3, Jun. 1972.

[14] J. B.-Y. Tsui, Fundamentals of Global Positioning System Receivers: A Soft-
ware Approach. New York, NY: John Wiley & Sons, 2000.

[15] Department of Defense, Global positioning System Precise Positioning Ser-
vice Performance Standard, 4th ed., Feb. 2007.

[16] ——, Global positioning System Precise Positioning Service Performance
Standard, 4th ed., Feb. 2007.

[17] H. Fukumasa and R. Kohno, “Design of Psudonoise Sequence with Good
Odd and Even Correlation Properties for DS/CDMA,” IEEE Journal on
Selected Areas in Communications, vol. 12, no. 5, pp. 828–836, 1994.

[18] R. Gold, “Optimal Binary Sequence for Spread spectrum Multiplexing,”
IEEE Transaction on Information Theory, vol. 13, no. 4, pp. 619–621, 1967.

[19] Navigation National Coordination Office for Space-Based Positioning and
Timing, Global Positioning System Directorate Systems Engineering & In-
tegration Interface Specification IS-GPS-200, Rev. H, Dec. 2015.

[20] Department of Defense and Department of Transportation, “2001 Feredal
Radionavigation Plan,” Dec. 2001. doi: https://www.navcen.uscg.gov/
pdf/frp/frp2001/FRP2001.pdf.

[21] J. McNamara, GPS for Dummies, 2nd ed. Noboken, NJ: Wiley Publishing.

[22] Federal Aviation Administration. (2014). Satellite Navigation - Wide Area
Augmentation System (WAAS), [Online]. Available: https://www.faa.
gov/about/office_org/headquarters_offices/ato/service_units/
techops/navservices/gnss/waas/.

[23] ——, (2017). Welcome to the William J. Hughes Technical Center WAAS
Test Team, [Online]. Available: http://www.nstb.tc.faa.gov/.

127

https://www.navcen.uscg.gov/pubs/gps/gpsuser/gpsuser.pdf
https://www.navcen.uscg.gov/pubs/gps/gpsuser/gpsuser.pdf
https://doi.org/https://www.navcen.uscg.gov/pdf/frp/frp2001/FRP2001.pdf
https://doi.org/https://www.navcen.uscg.gov/pdf/frp/frp2001/FRP2001.pdf
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/waas/
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/waas/
https://www.faa.gov/about/office_org/headquarters_offices/ato/service_units/techops/navservices/gnss/waas/
http://www.nstb.tc.faa.gov/

[24] R. Tubbesing IV, “Commissioning Field Programmable Gate Arrays for Pas-
sive Radar Signal Processing,” Dec. 2015.

[25] Collaboration for Astronomy Signal Processing and Electronics Research.
(Apr. 2013). ROACH, [Online]. Available: https : / / casper . berkeley .
edu/wiki/ROACH.

[26] J. Johansen. (Dec. 1999). How To Find a Formula for a Set of Numbers, [On-
line]. Available: http://www.johansens.us/sane/education/formula.
htm.

[27] D. Boschen, “GPS C/A Code Generator,” version 1.1, MATLAB, 2010. [On-
line]. Available: https://www.mathworks.com/matlabcentral/fileexchange/
14670-gps-c-a-code-generator?s_tid=prof_contriblnk.

[28] Ettus Research. (2017). USRP N210 Software Defined Radio (SDR), [On-
line]. Available: https://www.ettus.com/product/details/UN210-KIT.

[29] Analog Devices,Wideband Synthesizer with Integrated VCO, ADF4350 datasheet,
Rev. B, Feb. 2017.

[30] Ettus Research. (2015). USRP Hardware Driver and USRP Manual: USRP2
and N2x0 Series, [Online]. Available: http://files.ettus.com/manual/
page_usrp2.html.

[31] GNU Radio. (2015). GNU Radio: InstallingGR, [Online]. Available: http:
//files.ettus.com/manual/page_usrp2.html.

[32] ——, (Jul. 2017). Guided Tutorial GRC, [Online]. Available: https://wiki.
gnuradio.org/index.php/Guided_Tutorial_GRC.

[33] Carles Fernandez-Prades, CTTC. (2017). Configurations - About Us, [On-
line]. Available: http://gnss-sdr.org/about/.

[34] Free Software Foundation. (Jun. 2007). The GNU General Public License
v3.0, [Online]. Available: https://www.gnu.org/licenses/gpl-3.0.html.

[35] C. Fernandez-Parades, J. Arribas, P. Closas, C. Aviles, and L. Esteve, “GNSS-
SDR: An Open Source Tool For Researchers and Developers,” Proceedings
of the 24th International Technical Meeting of t he Satellite Division of the
Institute of Navigation (ION GNSS 2011), pp. 780–794, 2011.

[36] Carles Fernandez-Prades, CTTC. (Apr. 2016). Configurations - GNSS-SDR,
[Online]. Available: http://gnss-sdr.org/conf/.

128

https://casper.berkeley.edu/wiki/ROACH
https://casper.berkeley.edu/wiki/ROACH
http://www.johansens.us/sane/education/formula.htm
http://www.johansens.us/sane/education/formula.htm
https://www.mathworks.com/matlabcentral/fileexchange/14670-gps-c-a-code-generator?s_tid=prof_contriblnk
https://www.mathworks.com/matlabcentral/fileexchange/14670-gps-c-a-code-generator?s_tid=prof_contriblnk
https://www.ettus.com/product/details/UN210-KIT
http://files.ettus.com/manual/page_usrp2.html
http://files.ettus.com/manual/page_usrp2.html
http://files.ettus.com/manual/page_usrp2.html
http://files.ettus.com/manual/page_usrp2.html
https://wiki.gnuradio.org/index.php/Guided_Tutorial_GRC
https://wiki.gnuradio.org/index.php/Guided_Tutorial_GRC
http://gnss-sdr.org/about/
https://www.gnu.org/licenses/gpl-3.0.html
http://gnss-sdr.org/conf/

	A GPS Signal Generator Using a ROACH FPGA Board
	Scholarly Commons Citation

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Motivation
	Thesis Organization

	Background and Theory
	Global Positioning System
	Orbital Description
	Almanac and Ephemeris
	GPS Signal Characteristics
	Binary Phase Shift Keying
	Direct Sequence Spread Spectrum

	C/A Code
	Message Signal Format

	Augmentation Systems
	Global Differential GPS
	Wide Area Augmentation System

	Methodology
	GPS Signal Reproduction
	ROACH FPGA
	Firmware
	Single Signal Model
	Multisignal Model
	Lessons Learned

	Software Design
	Subframe Generator Functions
	Parity Function
	Supporting Functions
	Lessons Learned

	GPS Software Decoder
	Post-Processing
	Decoder

	Signal Acquisition
	Ettus N210 SRD
	WBX USRP Daughterboard

	GNU Radio Software
	Lessons Learned

	GNSS-SDR Project
	Lessons Learned

	Results
	Hardware Setup
	GPS Signal Validation
	PRN Signal Validation
	Test Vector Data Results
	Message Signal Validation
	Lessons Learned

	Ettus SDR Results
	Lessons Learned

	Decoder Results

	Research Conclusion
	Future Work
	References

