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ABSTRACT

Ayyagari, Suma MSAE, Embry-Riddle Aeronautical University, December 2017. Mechan-

ical and Electrical Characterization of Carbon Fiber / Bucky paper /Zinc Oxide Hybrid

Composites.

The quest for multifunctional carbon fiber reinforced composites (CFRPs) expedited the

use of several nano reinforcements such as zinc oxide nanorods (ZnO) and carbon nan-

otubes (CNTs). Zinc oxide is semi-conductor with good piezoelectric and pyroelectric

properties. These properties could be transmitted to CFRPs when a nanophase of ZnO

is embedded within CFRPs. In lieu of ZnO nanorods, Bucky paper comprising mat of

multiwall-carbon nanotubes (MWCNTs) could be sandwiched in-between laminae to con-

struct a functionally graded composite with elevated electrical and thermal conductivities.

In this study, a low temperature ( 90◦C) hydrothermal synthesis method was utilized to

grow ZnO nanorods on the surface of carbon fiber fabrics. Different configurations of hy-

brid composites based on carbon fibers, in combination with ZnO nanorods and Bucky

paper were fabricated. The composites were tested mechanically via tensile and dynamic

mechanical analysis (DMA) tests to examine the effect of the different nanoadditives on

the stiffness, strength and damping performance of the hybrid composites. Surface electri-

cal resistivities of the hybrid composites were probed to examine the contributions of the

different nanoadditives. The results suggest that there are certain hybrid composite combi-

nations that could lead to the development of highly multifunctional composites with better

strength, stiffness, damping and electrical conductivity.
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1. Introduction

Composites comprise two or more materials combined on a macroscopic scale to form a

third useful material (Jones, 1998). The main constituents of a composite are fiber and

matrix as shown in Figure 1.1. The strength of the constituents individually and their

bonding determine the total strength and load carrying capacity of the composite.

Figure 1.1: Composite constituents (Jones, 1998)

1.1 Carbon Fiber Reinforced Plastics (CFRP)

Carbon fiber-reinforced plastics (CFRPs) are made of polymer matrix reinforced with

fibers. The various fibers used in industry include glass, carbon, aramid, paper, wood,

asbestos and others. The polymers in use are epoxy, vinylester, polyester thermosetting

plastic, or phenol formaldehyde resins, among others. (Alberto, 2013) Carbon fiber, in

particular is used in applications where fatigue resistance, elevated strength and electri-
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cal conductivity are required. Also, CFRPs have less than 2-3% strain to failure and are

available in standard, intermediate and high stiffness.

(a) Top View

(b) Cross-Sectional View

Figure 1.2: Fiber Views in CFRP [Unpublished Work, Dr.Al Haik]

CFRPs possess various advantages which include the high strength to weight ratio,

stiffness to weight ratio, high utilization factor, chemical and fatigue resistance, ease of

formability, and higher performance. The applications of CFRPs are seen in various do-

mains like automobiles, marine, aeronautical, communication, military and many more.

Finally, they have a few disadvantages which include the high cost of raw material, skilled

manufacturing techniques, sparse repair and recycling techniques, and out of plane me-

chanical properties in the finished products. The molds required for making products with
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CFRPs in bulk manufacturing need skilled labor which significantly increases the initial

cost. In a repair scenario, the conventional materials like steel and aluminum are easy to

work with. Research is still in progress to study the behavior of fibers in CFRPs during

crack propagation and thus, patching techniques are yet to be established. Composite parts

are replaced currently in case of an incident. This results in high maintenance cost. Similar

is the case with recycling.

1.2 Hybrid Composites

Hybrid composites have evolved due to the need to enhance the interlaminar strength in

the CFRPs. These composites are made by the addition of nanoreinforcements to the matirx

or by growing nano phase on the fibres. Apart from better mechanical and in-plane prop-

erties, these composites possess multi-functional properties based on the procedures being

performed to incorporate the nano phase. Various synthesis methods will be discussed in

the literature review.

Figure 1.3: Hybrid composites Preparation Methods
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1.3 Importance of ZnO Nanotubes and Buckypaper

Zinc oxide (ZnO) is a material of high importance due to its combined piezoelectric,

pyroelectric and semiconducting properties since 1960s. These properties result from the

unique asymmetrical structure of wurtzite Figure (1.4 ), large electromechanical coupling,

and high exciting band energy respectively. Thus, this material has a wide range of appli-

cations including optoelectronics, sensors, transducers and catalysis.

Figure 1.4: ZnO wurtzite structure and planes (Fu et al., 2010)

ZnO is also known for various possible growth morphologies depending on the surface

structure orientation chosen for the procedure. The rapid directions for growth in ZnO

include 〈21̄1̄0〉,〈011̄0〉and± [0001]. Growth is also controlled by various parameters like

temperature, pressure, surface diffusion, time and various other factors(Ma, Wang, Kong,

Jia, & Wang, 2015). The different kinds of possible ZnO structures include nanocombs,

nanobelts, branched hierarchial structures, nanohelixes, nanorods, and nanorings as shown

in Figure 1.5.
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Figure 1.5: Various nanostructures of ZnO (Wang, 2004)

There are various methods to synthesize these nanostructures. These include vapor de-

position methods, wet-chemical synthesis methods such as sol-gel, electrodeposition, and

low temperature aqueous chemical growth methods (Byrne et al.,2011), (Hung & Whang,

2003), (Liu et al., 2016), and (Akgun et al., 2012). The vapor deposition method which

is frequently used for highly controlled and perfect nanostructures, involves deposition of

Zinc and Oxygen vapors on the required substrate where they react to form ZnO. However,

this procedure requires expensive equipment, elevated temperatures, special substrates and

source materials. Thus, the cost, and the preference of lower temperature synthesis for car-

bon fiber substrate led to the selection of aqueous chemical growth method in the current

research.
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Buckypaper, known as a novel material for aerospace industry promises multifunctional

advanced structures. It is 10 times lighter than steel when being 250 times stiffer at the

same time. It is a mat of carbon nanotubes (CNTs) which are extremely thin even in

comparison to human hair. Further, it is as conductive as copper and comparable to steel

in heat dissipation. Incorporation of Buckypaper, as a ply layer in composites made of

carbon fiber has the capacity to increase the overall mechanical and conductive properties

of the resulting structure. Thus, in this thesis, the combined effect of Buckypaper and ZnO

nanorods in a hybrid composite will be analyzed.

1.4 Thesis Proposal

This research is an attempt to fabricate and characterize a hybrid composite with en-

hanced mechanical, and electrical properties. Various references were suggested using

CNTs as a matrix filler, or growing nanorods of various oxides on Carbon Fiber, employ-

ing various procedures for growth in each case. These are discussed in detail in the next

section. But the combined effect of Buckypaper and ZnO nanorods together is yet to be

explored in detail since this involves enhancement of both matrix and fiber at the same

time. Thus, in the current work, various configurations of two-layer composites were made

with combinations of ZnO nanorods and Buckypaper with carbon fiber. This is followed

by characterization through various analysis which includes tensile testing, dynamic ma-

terial analysis (DMA), fracture analysis and electrical conductivity test. The results were

analyzed and conclusions were drawn on how their stiffness, strength, and conductivity

parameters vary as a result of different nano fillers.
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2. Literature Review

Enhancement of stiffness and strength in composites has been an active research area since

the realization of their wide application scope. One of the many investigators include Kow-

bel et al. (Kowbel et al., 1996) whose work aimed at increasing the laminar shear strength

in carbon-carbon composites. This was attempted through whiskerization of pre heated

carbon fabric using SiO which formed SiC whiskers with varied areal density. Scanning

and transmission electon microscopy techniques were used to study surface morphologies

of the modified carbon fabric and the micro-structure of the SiC whiskers, respectively.

This study observed a reduction in flexural strength of C-C composites with increase in

SiC whiskers. Also, fiber surface pittng and defected β-SiC were observed in the mi-

crostructure analysis. Thus, it was concluded that significant increase in interlaminar shear

strength (around 300%) was possible with low whiskerized fabric without compromising

the flexural strength.

Recently, carbon nanotubes (CNTs) were widely used to improve the carbon fiber com-

posite properties. Liu et al. (W. Liu et al., 2015), fabricated carbon nano-tube carbon

fiber, also called a hybrid fiber by sizing unsized unidirectional carbon fiber with a poly-

phthalazinone ether ketone (PPEK) sizing agent containing CNTs. Three point bending test

was performed to determine the inter-laminar shear strength (ILSS), drop tests to measure

impact toughness and SEM analysis to study fracture surface. Along with improvement
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in wetting performance with the resin used, an increase in ILSS by 115.4% and impact

toughness by 27% was observed in the resulting composites. However, improvements in

other mechanical properties were limited.

Carbon nanotubes (CNTs) (Iijima, 1991) are unique allotrope of carbon visualized by

considering a single graphene sheet (representing a lattice of carbon atoms distributed in

a hexagonal pattern) rolled into a tube (Sinnott & Andrews, 2001). The appealing prop-

erties of CNTs, typically 1 to a few nm in diameter, are attributed to their unique and

minimal defect nanostructure. Single wall carbon nanotubes (SWCNTs) possess excep-

tional mechanical, thermal, and electric properties compared to macroscale fibers such as

graphite, Kevlar, SiC and alumina (Dresselhaus et al., 2004). The extraordinary mechani-

cal, electrical, and thermal properties of CNTs have spurred investigations to utilize these

nano-scale structures as a reinforcement phase in composites to enhance the properties of

the host matrix. A wealth of studies have been published since the discovery of the mul-

tiwall carbon nanotubes (MWCNTs) in 1991 on utilizing them for different applications

including, but not limited to, structural, thermal, electromagnetic, electroacoustic, chemi-

cal, and electrical circuits (Baughman et al., 2002). The strength, stiffness and the fracture

properties of CNTs are orders of magnitudes higher than most common structural mate-

rials used in civilian and military applications (Erik & Tsu-Wei, 2002). For example, an

epoxy nanocomposite based on MWCNTs (≈ 2% volume fraction) showed an increase in

Young’s modulus and yield strength by 100% and 200%, respectively and nine orders of

magnitude improvement in the electrical conductivity compared to the neat epoxy (Allaoui
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et al., 2002). Moreover, CNTs reinforcement increases the toughness of the composite to

absorb impact energy due to their highly elastic behavior during loading.

Researchers have attempted to incorporate CNTs in polymer matrices with limited suc-

cess due to the extreme difficulty in uniformly dispersing CNTs in polymeric matrices

because of the large surface area of CNT (Erik & Tsu-Wei, 2002). The high-aspect ratio

CNTs tend to entangle and form agglomerates when dispersed into a matrix (e.g., polymer).

Rather complicated chemical and physical routes should be employed to moderately dis-

entangle CNTs and disperse them into the matrix. These chemo-physical processes could

damage the CNT covalent bonds, or induce undesired functionalizing to it and / or remov-

ing CNTs semispherical end caps. Sonication (Allaoui, Bai, Cheng, & Bai, 2002) and

calendaring (Y. L. Li et al., 2004) have been utilized considerably to alleviate this problem,

but are not effective beyond ≈ 3.0 wt % CNT volume fraction due to the formation of ag-

gregates (Y. L. Li, Kinloch, & Windle, 2004). A combination of dispersion and extrusion

techniques have been reported in the literature for producing CNTs composites (Y. L. Li

et al., 2004) with tailored microstructure, e.g. aligned CNTs. However, in both dispersion

and extrusion techniques, producing uniform and well-dispersed CNTs composite is diffi-

cult because of the small amount of solid powder (carbon) compared with the large amount

of liquid polymer (matrix) in early mixing stages. This often leads to phase separation

due to the strong Van der Waals attractions amongst the CNTs bundle compared with that

between the CNTs and the polymer matrix (Garmestani et al., 2003). Furthermore, exces-

sive sonication of SWCNTs toward better dispersion might result in breaking them into
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shorter tubes and thus reducing their aspect ratio (Zeineldin et al., 2009) and, consequently,

negatively affects their corresponding composites performance.

2.1 Evolution of hybrid composites

To exploit the remarkable properties of both CFRPs and CNTs, hybrid carbon fiber

reinforced CNT-polymer were developed (Alipour Skandani et al., 2012). However, the

inadequacies with the dispersion of CNTs into the matrix were present. Alternatively, to

eliminate the need for dispersion and deagglomeration, CNTs can be controlled-grown on

the surfaces where they are needed. CNTs can be grown on most substrates such as silicon,

silica, and alumina (Garcia et al., 2008). However, there are fewer reports discussing the

CNTs growth on carbon materials; in particular yarns and fabrics (Otsuka et al., 2004).

Two challenges in CNTs growth on carbon substrates are (i) transition metals (i.e. catalysts

for CNTs synthesis) are easily diffused into the carbon substrates and, (ii) the different

phases of carbon materials are able to form on the graphite substrates because the growth

conditions are similar to the diamond or diamond-like carbon growth (Zhu et al., 2003).

Catalytic chemical vapor deposition (CCVD) has been broadly utilized to grow carbon

nanofilaments on the surface of carbon fiber yarns with the aid of catalysts such as nickel,

iron, cobalt and palladium at temperatures ranging from 700 to 1100◦C (Sinnott & An-

drews, 2001), (Gibson, 2010), (Luhrs et al., 2009), (Al-Haik et al., 2010), (Boskovic et

al., 2005), (Garcia et al., 2008), (Phillips et al., 2007) and (Chen et al., 2011). However,

the temperature needed for the growth of CNTs utilizing CCVD is rather high and is de-

structive to the substrate carbon fiber strength itself (Zhang et al., 2009); (Westwood et al.,
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1996). For example, Thostenson et al. (Erik & Tsu-Wei, 2002) utilized CVD (at 700 ◦C) to

grow CNTs on carbon fibers then fabricated a composite based on them. They reported that

the exposure to growth conditions resulted in significant degradation of the fiber/matrix in-

terface. Similarly, Zhang et al. (Zhang et al., 2009), upon utilizing CVD (at 700-800 ◦C) to

grow CNTs on PAN carbon fibers, reported that the strength of the T650 fiber was reduced

by nearly 40% due to the exposure to elevated temperatures. While the fiber dominated

properties of the CFRPs were shown to degrade due to the exposure to the high CCVD

temperatures, the interlaminar properties (e.g. interlaminar shear strength) of the compos-

ites containing CCVD grown CNTs was reported to improve (Askari Ghasemi-Nejhad,

2011) and (Wicks et al., 2010).

Recently, Tehrani et al (Tehrani et al., 2013) utilized graphitic structure by design

(GSD) synthesis at relatively lower temperature (≈ 500◦C) to grow MWCNTs over the

surface of PAN-based carbon fibers. Compared to the carbon fiber/epoxy composite, re-

sults showed a slight decrease in the composite tensile strength (3.4%) and an improve-

ment of the Youngs modulus (8.17%). However, more pronounced enhancements were

reported for the DMA loss modulus (120%). Also, computational models were developed

using Monte Carlo percolation method to study how the variation of CNT and graphene

nanoplatelet (GNP) fillers change electrical and piezoresistive properties of hybrid com-

posites (Gbaguidi, Namilae, & Kim, 2017) .

Hybrid composites are usually made by adding nano-fillers to either matrix or grow-

ing nano structures on fibers. The current research is more focused on the latter. Deka

et al., (Deka et al., 2016), utilized a technique which involves both. Copper oxide (CuO)
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nano-paritcles on woven carbon fiber were synthesized from copper nitrate and hexam-

ethylenetetramine via microwave green synthesis, in addition to Graphene Oxide which

was produced by modifying Hummer’s method and dispersed in the resin. These compo-

nents are further used to make polyester composites via a vacuum-assisted resin transfer

molding (VARTM) process. This procedure significantly improved the tensile strengths

and modulus by 61.2% and 57.5%, respectively. Enhancement in composite elasticity and

impact energy absorption capacity were noticed. Finally, inter-laminar resistive heating of

the composite laminate was increased with a slower cooling rate.

Like CNTs, zinc oxide (ZnO) nanowires (NWs) can be grown on carbon fibers sur-

face to enhance the interface between the fibers and the matrix. Zinc oxide species (tubes,

belts, particles, films, wires, etc.) possess semiconductor and piezoelectric properties which

makes them well-suited for a variety of applications from solar cells, sensors, structural

applications, to energy harvesting devices (Awan et al., 2012); (Gullapalli et al., 2010).

Different synthesis protocols were developed to grow ZnO nanostructures such as vapor-

phase transport, metallorganic chemical vapor deposition (MOCVD), sputtering, molecular

beam epitaxy (MBE), thermal evaporation and vapor-liquid-solid (VLS) (Wagner & Ellis,

1964). These techniques are time-consuming and / or require elevated synthesis tempera-

tures which limit their potential use for industrial applications.

Unlike CNTs, despite their extraordinary physical properties, there are fewer reports

on the effect of ZnO as interfacial reinforcement for FRPs. Allington et al. (Allington et

al., 1998) tested the shear strength of a single carbon fiber wrapped with ZnO NWs and re-

ported 113% increase in the interfacial shear strength. Ehlert et al. (Ehlert & Sodano, 2009)
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utilized identical ZnO growth process on aramid fiber and suggested that the carboxylic

acid group is responsible for the good interfacial shear strength between the ZnO NWs and

the carbon fiber. More recently, (Skandani et al., 2012) reported 50% enhancement in the

CFRPs loss modulus upon growing ZnO NWs on the interface. This improvement was

attributed to the increased interfacial area between the NWs and the epoxy matrix. How-

ever, such enhancement was accompanied with a slight decrease in the storage modulus (≈

7.0%).

Although there are various studies on the topics mentioned above, the current research

is more focused on ZnO nano-rod growth on carbon fiber. Thus, the research involv-

ing various processing methods and their analysis is thoroughly studied in the following

works. (Byrne, McGlynn, Cullen, & Henry, 2011) investigated a technique for growth of

aligned ZnO nanorods at high temperature aiming to eliminate the limitations of epitaxi-

ally matched substrates and use of catalysts. Nonosphere lithography, in combination with

chemical bath deposition and vapour phase transport were used to be finally called catalyst-

free inverse nanosphere lithography method. As a result, aligned c-axis ZnO nanorods with

controlled density and spacing were observed in addition to excellent optical properties for

usage in optoelectronic applications. However, the high temperature exposure of the sub-

strate is a limitation in this procedure.

Hung and Whang (Hung & Whang, 2003) proposed a low temperature growth tech-

nique for single crystal ZnO nanorods growth on nanostructured substrates in two steps.

First, sol-gel reaction is used to form uniform ZnO nanoparticle colloids with the reac-

tion of cetyltrimethylammonium hydroxide (CTAOH) added to the stirred solution of zinc
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acetate and ethanol. Secondly, these colloids were dipped into heat treated glass sub-

strates (Figure 2.1). These substrates were then immersed in equimolar of zinc nitrate

and methenamine aqueous solutions for 24 hours at 90◦C to promote large scale nanorods

growth of around 45nm (in diameter). This is a low cost technique which has potential ap-

plications in optoelectronic nanodevices. (Liu et al., 2016) suggested a similar method with

a slight variation in the method of producing nanofibers. Electrospinning method was used

for the preparation of polymer nanofibers from various zinc salts which are then deposited

on glass substrate. Calcination followed by hydrothermal growth in a nutrient solution re-

sulted in a dense and more organized nanowires (Figure 2.2). The various parameters like

length, diameter, and morphologies could be controlled by changing the reaction parame-

ters like incubation time and concentration of zinc salts.

Tak and Yong (Tak & Yong, 2005) proposed a multi-step procedure for the growth of

patterned and more controlled nanorods on a silicon substrate. Thermal evaporation was

used to deposit thin ZnO metal seed layer on the substrate This was followed by the growth

of nanorods in an aqueous solution of zinc nitrate and ammonia. Then, the patterning of

the substrate was carried out using photolithography technique (Figure 2.3). This method

seemed promising for the development of facile and controlled nanodevices.

Contributing more to patterning growth techniques, (L. Li et al., 2009) proposed a

method to grow ultralong nanowires with honeycomb-like micro patterns. This method

was realized by a reaction of zinc foil with aqueous Na2C2O4 as shown in detail in Figure

2.4. Their photosensitivity was found to be about 10 at 5V. After the characterization of
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Figure 2.1: The soft chemical method used on the glass substrate. (a) and (b) describes the
sol-gel reaction and the dispersion on substrate. (c) describes the growth of ZnO nanorods

through hydrolysis-condensation process. (Hung & Whang, 2003)
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Figure 2.2: Different nanowire growth for fibers calcined at different temperatures and
varied amount of time. (Liu et al., 2016)

Figure 2.3: Proposed Procedure by (Tak & Yong, 2005)

various parameters, it is concluded that these nanowires are ideal as chemical sensors or

photoelectronic devices.

Literature suggests, various seeding techniques are used in each hydro-thermal method.

Some authors compared the resulting nanorods via two or more seeding techniques. One
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Figure 2.4: Procedure for formation of micropatterned arrays of ultralong ZnO nanowires
(L. Li et al., 2009)

such study was carried out by (Dong et al., 2013) comparing results of dip coating and radio

frequency magnetron sputtering on a Silicon substrate. It was found that, RF magnetron

sputtering, dip coating results in larger size distribution and surface roughness of the seed

layer. Also, the nanorods aligned perfectly normal to the substrate with uniform length

in the sputtering method proving that this method has a clear advantage. However, this

method is expensive and has a wide range of limitations on substrate size. Thus, in the

current research, dip coating is employed.

All the studies above described various methods for the growth of ZnO nanorods. There

are also investigators that summarized various morphologies of ZnO being produced in the

hydrothermal procedure. (Pal & Santiago, 2005) categorized various morphologies of ZnO

nanorods based on the pH of the growth solution as shown in Table 2.1. The constituents of

the aqueous solution were water, ethylenediamine (En), zinc acetate dihydrate and sodium

hydroxide in various proportions. In this context, it is apt to mention a model developed

by (Demes et al., 2016) which describes the nanowire growth in relation to seed layer

properties and growth duration. Mean grain size (MGS), surface coverage rate (SCR),
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and texture coefficients of the sol-gel procedure via grown ZnO nanowires are varied, in

addition to various combinations of growth time and multilayer procedures to vary film

thickness (Table 2.2). Equations to determine the diameter and length of the nanowires

were formulated with some valid assumptions. The initial diameter of the nanowires were

found to be 20 nm with approximate longitudinal and lateral growth rates of 25-30 nm/min

and 0.01 nm/min, respectively.

Table 2.1: Change in morphology of ZnO nanostructures with various parameters (Pal &
Santiago, 2005)

Table 2.2: Summary of various combinations of specimen (Demes et al., 2016)

Moving more towards the chemistry involved in the hydrothermal process, dispersions

of various metal oxides nanowires and nanoparticles in different solvents was studied by



19

Ghosh et al. (Ghosh et al., 2009). The nanowires of ZnO, Fe3O4, and TiO2 were dispersed

in water, dimethylformamide (DMF) and toluene separately in the presence of various dif-

ferent combinations of surfactants. In the particular case of ZnO, which is of great signif-

icance in the current research, polyethylene oxide (PEO), sodium dodecyl sulphate (SDS)

and sodium bis (2-ethylhexyl) sulphosuccinate (AOT) in water, AOT, polyethylene glycol

(PEG), polyvinyl alcohol (PVA), PEO and Triton X-100 (TX-100) in DMF, PEO in toluene

were found be the best surfactant-solvent combinations. Weak non-covalent interactions

were formed with the nanostructures by the surfactants keeping their physical properties

intact.

Various inverstigators worked on a wide range of hydro-thermal methods as described

above. Some of them along with various parametric analysis are described in the following

works. (Akgun et al., 2012) synthesized ZnO nanowires using zinc acetate dihydrate as

a zinc salt as opposed to commonly used salts like zinc nitrate hexahydrate, zinc acetate,

and zinc chloride. The effects of parameters like time, temperature, solution concentra-

tion and concentration ratios of the precursor chemicals on the growth were studied.It was

concluded that the diameter of the nanowires depend on the concentration of the precursor

chemicals while their length is more likely to depend on the temperature and time involved

during their growth. Also, it was observed that this salt eliminates the usage of additional

capping agents and results in formation of ZnO nanowires with comparatively less or no

impurities.

The next logical step after looking into the seeding and zinc salts is to understand the

effects of various chemicals in used in the aqueous bath used for inducing the growth
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Figure 2.5: The variation of diameter and length of nanowires with various parameters
(Akgun et al., 2012)

of nanorods. Though each chemical has its own significance, hexamethylenetetramine

(HMTA) is worth mentioning due to the role it plays. (Strano et al., 2014) explained the

dual role of HMTA in the growth of ZnO nanorods in chemical bath deposition growth

method. It was noticed that in the presence of less HMTA, the ZnO nanorods structures

were not to be seen, confirming that HMTA bias growth along c-axis and ensures vertical

alignment. This was achieved through a steric hindrance effect which results in inhibition

of lateral growth. Also, it is a well known, pH regulator. Thus, this study highlights the

clear advantages of HMTA in a hydrothermal growth process.
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3. Synthesis

This section details the various experimental trials carried out for growing ZnO nanorods on

carbon fibers. The IM7 carbon fiber manufactured by Hexcel company was used through-

out. As mentioned in the previous section, there is an abundant research available for the

growth of ZnO as such on flat substrates like silicon and glass. But there are very few

who tried the same on woven fiber surface. This has proven a challenge which led to the

prolonged parametric method employed throughout this research. Before achieving a valid

synthesis, there are three major steps in this procedure:

3.1 Desizing Step

Every carbon fiber manufacturer adds a protective layer called “sizing” to the fiber

for various purposes which include to improve the interfacial properties between fiber and

matrix, protect fiber from moisture or aid the processing or production of fiber. A dilute,

aqueous liquid consisting of a complex blend of several polymeric components, a coupling

agent, a lubricant and a range of additives in water, is coated on fiber in this procedure

called sizing. It is necessary for research purposes to remove sizing to expose the true

properties of the fiber. Thus, this is the first step called desizing.

Desizing in the current research was carried out by heating the cut fibers to a temper-

ature of 400◦C and then cooling down in a span of three hours. The furnace used in this
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procedure is as shown in the Figure 3.1 with various components like vacuum pump, nitro-

gen tank and an electronic console. However, after a few trials, desized fiber was purchased

directly from the manufacturer.

Un-sized plain-woven SGP196 (IM7-GP, provided by Hexcel Inc.,) carbon fiber fabric

(6 K filaments count in a tow) was used as the main reinforcements.

Figure 3.1: Furnace used for desizing
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3.2 Seeding Step

The seeding of the carbon fiber with zinc nano particles is the second step after desizing.

There are various methods to do this as described in the literature review. Two methods

were tried in this research. They are spray-coating and dip-coating. Spray coating is a

technique in which the chemical is loaded to a nozzle from which it is sprayed onto the

fibers with a uniform human wrist movement. The thickness of the zinc nanoparticles

coated will depend on number of times the chemical was sprayed throughout the fiber.

There was one minute time interval between the spraying cycles to allow the sample to dry

and prevent agglomeration of ZnO nanoparticles. The chemical solutions tried using this

technique were:

Solution 1: 150 mg of ZnO nanoparticles (Nano Tek 40-100nm APS powder, Alfa

Aesar) were dispersed in 150 ml of dimethylformamide (DMF) and 1.5 ml of Triton X-

100 (TX-100, Alfa Aesar) and homogenized using a Vibra-Cell VCX 500 tip ultrasonic

processor for a time of 2 hours at an amplitude of 40%. Then, the mixture was set for 24

hours to stabilize it. Also, after spraying the required amount of layers, the samples are

kept at 60◦for 24 hours to make sure the complete evaporation of DMF when this chemical

solution was used.

Solution 2: Solution 1 was mixed with additional 500 mg of ZnO nanoparticles, 4.5 ml

of Triton X-100 and 50ml of water and sonicated using the ultrasonic processor to make a

homogenized mixture.
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Solution 3: This solution was made by mixing 10 ml of ZnO solution (Zinc Oxide,

NanoTek ZN-2551, 50% in H2O, colloidal dispersion with dispersant 5nm APS for dry

powder (typical)-OZn) with 290 ml of water and then homogenizing it with the ultrasonic

processor.

The second technique was dip-coating in which the fibers were coated by dipping di-

rectly in the chemical solution which was as follows:

Solution 4: 164.6 mg of Zinc acetate was dispersed in 150 ml of Deionised water.

20 ml of ethanol was added to this mixture and then sonicated for 10 minutes to make a

homogenized mixture.

This solution was poured into a vessel of large surface area to dip the fibers of a partic-

ular cut size. Each time the samples were dipped, they were allowed to dry for 30 seconds

and rinsed with ethanol. Finally, after the dipping procedure, the sample was heated at a

temperature of 100 ◦C for 30 minutes.

3.3 Synthesis Step

Once the fibers are coated with zinc nanoparticles, there are certain conditions like tem-

perature, catalysts, pH regulator, etc., which provoke their further growth into nanorods.

A chemical bath is prepared using zinc acetate dihydrate (Zn(O2CCH3)22H2O) (ZCD),

hexamethylenetetramine (HMTA) and deionized water (DI) in certain proportions homog-

enized thoroughly using the ultrasonic processor. These chemicals were used in different

proportions until the best recipe was found. The fibers were immersed in this aqueous so-

lution and placed inside the furnace at a particular temperature for a certain amount of time
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to grow the nanorods. So the varying parameters were the time, temperature and concentra-

tion of the chemicals. Finally, the density of the nanorod growth, their length and diameter

are observed under the Scanning Electron Microscope (SEM).

The various experiments performed and their results are summarized in the following

tables and figures:

Table 3.1: Variations in the seeding methods, substrates, and layers through various trials

Trial No. Seeding Technique Seeding Solution No. of layers Substrate
1 Spray coating Solution 1 5 Carbon fiber(CF)
2 Spray coating Solution 1 5,7,10 CF
3 Spray coating Solution 2 5 CF
4 Spray coating Solution 3 5 CF
5 Spray coating Solution 3 5,8,10 CF
6 Spray coating Solution 3 8 CF
7 Spray coating Solution 3 8 CF
8 Dip coating Solution 4 5 Silicon wafer
9 Spray and dip Solutions 2,3,4 5 CF,Silicon wafer

10 Dip coating Solution 4 5 CF
11 Dip coating Solution 4 5 CF
12 Dip coating Solution 4 10 Graphene Sheet
13 Dip coating Solution 4 5 CF
14 Dip coating Solution 4 10 Desized CF
15 Dip coating Solution 4 5 Desized CF
16 Dip coating Solution 4 10 Buckypaper
17 Dip coating Solution 4 5 Buckypaper



26

Table 3.2: Variations of chemical concentrations, temperature and time through various
trials

Trial No. ZCD (mg) HMTA (mg) Water (ml) Temperature (◦C) Time (hrs)
1 1310 841.08 Distilled 300 83 8
2 2620 1682.16 Distilled 600 83 8
3 2620 1682.16 Distilled 600 83 8
4 2620 1682.16 Distilled 600 83 8
5 5240 3364 Distilled 600 83 6
6 5240 3364 Deionized(DI) 600 83 6
7 2634 1682 DI 600 90 8
8 823 525 DI 300 90 8
9 2634 1682 DI 600 90 8

10 2634 1682 DI 600 90 8
11 2634 1682 DI 600 90 8
12 2634 1682 DI 600 90 8
13 2634 1682 DI 600 90 1,2,3,4,6,8
14 2634 1682 DI 600 90 3:30,6
15 2634 1682 DI 600 90 3:30,6
16 2634 1682 DI 600 90 4
17 2634 1682 DI 600 90 4

Figure 3.2: Desized fibers, Fibers with Zinc nanoparticle, and Nanoflowers after growth in
Trial 1 (clockwise)
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Figure 3.3: Nanorod growth for 7 layers, 5 layers with two magnifications, and 10 layers
for Trial 2 (clockwise)

Figure 3.4: Nanorod growth for 5 layers at different magnifications, sparse growth on the
bottom side of CF in Trial 3 (clockwise)
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Figure 3.5: Nanorod growth at different magnifications for Trial 4

Figure 3.6: Nanorod growth for 5 layers at two magnifications, 8 layers and 10 layers in
Trial 5 (clockwise)
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Figure 3.7: Nanorod growth for 8 layers in Trial 6, Sparse growth on the bottom side and
nanorod growth at different magnifications on top side in Trial 7 (clockwise)

Figure 3.8: Nanorods burnt into silicon, growth on bottom side and top side in Trial 8,
Wild nanorod growth on silicon in Trial 9 (clockwise)
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Figure 3.9: Growth using solution 2 in two magnifications, growth using solution 3 in two
magnifications in Trial 9 (clockwise)

Figure 3.10: Too long dispersion of carbon fiber in growth solution due to a faulty furnace
resulting in long and entangled nanorods in Trial 10
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Figure 3.11: Top side nanorod growth on CF at two magnifications, bottom side growth on
CF at two magnifications in Trial 11 (clockwise)

Figure 3.12: Bottom side growth of nanorods on graphene sheet in two magnifications,
Top side growth of nanorods on same graphene sheet in two magnifications as explained

in Trial 12 (clockwise)
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Figure 3.13: The nanorod growth at two magnifications after 1 hour growth, and after 2
hours growth at two different magnifications in Trial 13 (clockwise)

Figure 3.14: Nanorod growth after 3:30 hours(two magnifications) and after 6 hours
growth (two magnifications) in Trial 14 (clockwise)
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Figure 3.15: Nanorod growth after 3:30 hours(two magnifications) and after 6 hours
growth (two magnifications) in Trial 15 (clockwise)

Figure 3.16: Nanorod growth after 4 hours, 10 coatings(two magnifications) and after 4
hours, 5 coatings (two magnifications) in Trial 16 and 17 on Buckypaper (clockwise)



34

3.4 Summary

To summarize, the first seven trials were attempted with spray coating technique with

varying number of coatings of seeding solution from five to ten. Also, in these trials, the

best method and time to dry the sample was established. Distilled water was replaced

by deionized (DI) water in the 6th trial for better results. The concentrations of HMTA

and Zinc Acetate were doubled in 5th trial to look at the variation in growth it causes.

The results for growth were still not good enough. Growth was sparse and not uniformly

distributed across the fiber.

Eighth trial was carried out on silicon wafer as it has a flat surface to easily comprehend

the results. A new method for seeding called dipping was used. Also , a different growth

solution was utilized.

In the ninth trial, samples were tested with all dipping solutions, and techniques, and

same growth solution on carbon fiber but with one major difference. During the growth

stage when the sample was immersed in the solution was placed in the furnace, it was

covered with aluminum foil to prevent evaporation during the process.

It was also observed in the above trials that the growth was sparse on the bottom layer

of carbon fiber due to the way it was being placed inside the furnace in the growth solution

(initially placed face down). This was rectified by using aluminum placeholders to mount

the carbon fiber inside the container when placing it in the furnace.

The next trials till the number 15 were made to establish the best growth time for the

nano-rods with the required size for our application. This is done by varying the number of
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times the fiber is dipped in the seeding solution and also performing the growth on various

samples in intervals of 1 hr, 3 hr, 6 hr and 8 hr and finally, observing the growth under

SEM. Also, one experiment was done to observe the growth on graphene sheet. Finally,

it was established that solution 4 using dipping technique, five layers, and six hours in the

furnace at 90◦C yields best results.
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4. Composite Preparation and Characterization

The plane woven carbon fibers of equal dimensions were cut based on the number of layers

required. ZnO nanotubes were grown as explained in the previous chapter. Else they

were used unprocessed after drying in oven at 90◦C to remove any accumulated moisture.

Following the fibers, epoxy accounting to 60% of the weight of the fibers was formulated.

The hardener (Aeropoxy, PH3665) and resin (Aeropoxy, PR2032) were blended in 1:4

ratio for the purpose. Simultaneously, aluminum plate and vacuum bag were assembled to

house the fibers inside the composite press machine (Wabash MPI). The fibers were then

mounted on this assembly by rolling epoxy in between layers in a uniform fashion. The

breather cloth is then placed on the top followed by a cover up using vacuum bag. This

assembly is then positioned inside the press and connected to a vacuum pump. This setup

was achieved to eliminate any epoxy leakages or voids due to the presence of air. The

machine was programmed to maintain a pressure of (0.8 Torr) at 60◦C for two hours. Later

the composite was cured for 24 hours at room temperature.

To proceed with the tensile testing process after fabricating the composite, it was nec-

essary to attach tabs and the cut the composite plates to a minimum of 10 samples. Tabs

provide the necessary friction to hold the composite strip in the flat hydraulic grips of the

tensile testing machine. These were made of fiber glass in this research. They were ma-

chined to have rough surfaces and tapered edges for better adhesion. Epoxy, in the similar
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ratio as before (1:4 hardener to resin) was used as an adhesive. The assembly of the com-

posite plate and tabs was allowed to cure for 24 hours before it was cut into strips of half

inch width in the machine shop using cutting saw in the machine shop.

Five configurations of two layer composites were made for this experiment: One with

just carbon fiber as is, no Bucky paper, no ZnO (CF as is, no BP), second with carbon

fiber, and nanorods on bucky paper (CF as is, ZnO on BP), third with ZnO nanorods on

carbon fiber, no Bucky paper (ZnO on CF, no BP), fourth with nanorods on carbon fiber,

Bucky paper as is (ZnO on CF, BP as is), fifth with both carbon fiber and Bucky paper as

is (CF and BP as is). Initially, tensile test was performed followed by fracture, DMA and

resistivity analysis.

4.1 Analysis

4.1.1 Tensile Testing

The samples were ready to be analyzed after the positioning of tabs. Each sample was

the size of 5”×1/2”. The tensile tests were carried out following the ASTM-D3039/D3039M-

08 standard (Standard Test Method for Tensile Properties of Polymer Matrix Composite

Materials, 1995), utilizing a Tinius Olsen testing frame (Model 150ST) under 1.0 mm/min

constant crosshead speed. A Tinius Olsen extensometer with 1 inch gauge length was used

to record the strain. The stress vs. strain data for different test coupons were recorded

and analyzed in order to report the samples elastic modulus, ultimate strength and strain
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to failure. A minimum of 12 samples were tested for each configuration. The results were

exported and analyzed in Microsoft Excel.

4.1.2 Fracture Analysis

After tensile testing, the fractured surface are handled with utmost care and mounted

on the Scanning Electron Microscope (SEM) sample holder. This is a highly advanced

technique in the field of microscopy used for magnifications inaccessible by light micro-

scopes. In simple terms, SEM uses electrons from a focused electron beam to scan the

sample back and forth which results in the formation of an image. These images are called

micrographs. The electron beam, when interacted with the sample emits a multitude of sig-

nals like secondary electrons, backscattered electrons, X-Rays, cathodoluminescence, and

auger electrons. However, only secondary electrons and backscattered electrons are used

in common for imaging purposes.
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Figure 4.1: Various parts and working of SEM (Scanning Electron Microscope Training
Module, n.d.)

Figure 4.2: Fracture in Samples
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Figure 4.3: Delamination and fracture surfaces

FEI Quanta 650 SEM was operated in a High vacuum mode with a tungsten thermionic

gun for emitting electron beams, in this research. Also, secondary electron detector (Everhart-

Thornley Detector), with a positive bias to attract low energy secondary electrons was used

for forming micrographs. Due to the low atomic number of the specimen, various problems

arose in imaging at high magnifications. Thus, gold coating, proper accelerating voltage

and ideal spot size for the current were various factors which decided the quality of the

topographical information acquired. In fracture analysis, for each composite configura-

tion, sample with high proximity to the average strength of a particular configuration was

chosen. The sample was examined for the presence of fiber or matrix failure and possible

defects in nanorods. Micrographs at various magnifications were captured.
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4.1.3 Dynamic Mechanical Analysis (DMA)

This test is used to find the damping and stiffness of a given sample during the appli-

cation of a sinusoidal force. The quantities being measured for the purpose are tan (δ),

storage modulus and loss modulus. The storage modulus, E is the measure of sample’s

elastic nature. Tan (δ) is the ratio of loss to storage moduli. In addition, this method is also

used to find the glass transition temperature of a material.

In the current research, PerkinElmer Dynamic Mechanical Analyzer, DMA 8000 was

used. The DMA tests were carried out utilizing the following the ASTM D4056-06 stan-

dard. Samples of size (44.5 × 6.4 × 1.6 mm) were cut accordingly. Dual cantilever tech-

nique is used to mount each of them on the machine. This is followed by temperature and

frequency sweep tests being performed on that sample. In the former test, a constant fre-

quency of 1Hz is applied, with variation in temperature from 30◦C to 160◦C at a constant

force and strain of 2N and 0.03mm respectively. The glass transition temperature was ob-

served from the results to estimate the range for frequency analysis. Once the range was

established, the latter test was performed with a frequency variation from 1Hz to 200Hz

scanning over three different temperatures of 30◦C, 55◦C, and 80◦C. The force and strain

applied remains constant for both types of tests.

4.1.4 Electrical Resistivity Test

Electrical resistivity is a material property unlike resistance. There are various types of

resistivity which include surface resistivity, bulk resistivity and contact resistivity. Though
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it is a common practise to measure both surface and bulk resistivity for composites, only

surface was possible with the given equipment and time. The samples of each configuration

were initially cut into a size following the ASTM standards. Aluminum electrodes using

conductive silver epoxy were glued to the samples, followed by curing for 24 hours. The

resistance was then measured between the two electrode ends. The sensitivity of the mea-

sured resistance was: (±0.05%). Finally, the resistivity was calculated using the formula:

(R)× (L/W ) = ohms/square

4.2 Characterization of Two Layer Composite Configurations

As mentioned in the introduction, the main aim of thesis was to perform characteri-

zation of various hybrid composites. Also, Bucky paper was used as an additional layer

in some hybrids. Bucky Shield Grade 100% MWCNT from Buckeye Composites, Inc.

comprising MWCNTs with average thickness of 125 micron and density of 0.3-0.4 g/cm3

was used in the current research . ZnO nanorods were grown on Bucky paper using the

identical procedure used for carbon fiber substrate, with the one exception of ten seeding

layers instead of five. This number was established by observing the growth for five and ten

layers using SEM. Thus, after concluding the synthesis procedures on various substrates,

i.e. carbon fiber and Bucky paper, hybrid composites were prepared and analyzed.
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4.2.1 Tensile Test

Tensile test was conducted as explained before for each sample. Each configuration

had around twelve samples to be analyzed. The data was exported into Excel for each of

them after the test. The parameters of interest were strength and stiffness. Thus, calcula-

tions were performed accordingly for each sample. Once the strength and stiffness of each

sample were calculated, the data was normalized accounting for different volume fractions

of fibers in various configurations. Finally, the average parameters of all twelve samples of

each configuration was calculated. These results were plotted as shown in Figures 4.5 and

4.6.

Representative stress vs. strain curves for the designed CFRPs, obtained from the ten-

sion tests, are illustrated in Figure 4.4. Figures 4.5, and 4.6 show the average values and

the standard deviations for the CFRPs tensile strength, and elastic modulus, respectively.

The slope of the stress Vs. strain curves of the CFRPs up to the strain value of 0.30% was

considered as their elastic moduli. The tensile strength of the designed CFRPs was consid-

ered the maximum stress value in the stress Vs. strain data, and the strain to failure to be

the strain value at the last data point of the curves.

Figure 4.6 suggests a slight increase 2.0-3.0% in the elastic moduli of the three configu-

rations of CFRPs based on the fibers incorporating ZnO (grown either directly on the fibers

or on Bucky paper). Incorporating Bucky paper without functionalizing in between car-

bon fibers yielded poor results in stiffness as the composite encountered early delamination

during the test, which reduced the stiffness by 14%. Functionalized Bucky papers are well-
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known for poor impregnation of the epoxy specially in composite fabrication techniques

employing pressure (i.e., composite press) Vs. techniques employing vacuum (e.g. auto-

clave) (Ashrafi et al., 2010). To alleviate this shortcoming some groups utilized carboxyl

group functionalization of Bucky paper which yielded structures with more favorable con-

tact angles for epoxy composite processing (Lopes et al., 2010). In this investigation we

observed that the growth of ZnO on carbon fiber or on Bucky paper alleviates this delami-

nation by inducing a z-pinning mechanism.

Inferred from Figure 4.4, all the CFRPs showed initial linear-elastic behavior. However,

as load increases their behavior deviates from linearity due to initiation of matrix cracking

and some individual fiber breakages. The cracks in the matrix could propagate towards the

fibers increasing stress intensity close to the fibers causing fiber breakage (more apparent

in the CFRPs with no ZnO nanorods; i.e. CF as is with no Bucky paper and CF and BP as

is with no ZnO nanorods. Unless the crack is stopped or deflected by the ZnO nanorods

forest in the fiber/matrix interface region (such as the CFRPs with surface grown ZnO

nanorods and CFRPs with ZnO grown on Buckypaper). In the case of individual fiber

breakage, the stress transfer mechanism through the matrix in the fiber / matrix interface

region aids the composite to withstand the load. The surface grown ZnO nanorods provide

stronger fiber/matrix interface, thereby, help the hybrid CFRPs to resist the failure up to

higher strains, and therefore to exhibit more ductile behavior than the CFRPs with no nano-

reinforcements as can be seen in Figure 4.4. Hence, the samples with ZnO nanorods (with

and without Bucky paper) exhibited enhancements in the strain to failure compared to the

reference CFRPs by 27-45%, Figure 4.4.
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The strong fiber / matrix region produced by randomly distributed ZnO nanorods in the

samples where ZnO was grown directly on the carbon fiber- with no Buckypaper presence-

improved the strength of the reference CFRPs by 20%. Growing ZnO on the surface of

Buckypaper also yielded 23% improvement of the strength; suggesting that ZnO acts as

z-pinning hurdles that assist reducing the delamination of the composite due to poor im-

pregnation of the Bucky paper.

An enhancement of 17% was also shown for a composite where the ZnO grown on

the carbon fiber act like an anchoring mechanism for Bucky paper setting on top of the

ZnO forests. The only sample exhibited lesser strength than the sample based on raw car-

bon fiber was the sample incorporating Bucky paper with no ZnO nanorods. As these

sample lack the mechanism to resist stress propagation between the matrix and the sur-

face of the Bucky paper (no Z-pinning and no adhesion group between the matrix and the

Bucky paper), the stress transfer easily detaching the Bucky paper from the surface of the

fibers, leading to local delamination. Delamination failure has a negative effect on the final

strength of the FRPs.
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Figure 4.4: Comparison of Tensile Test Data of Various Configurations

Figure 4.5: Comparison of normalized strength for different configurations
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Figure 4.6: Comparison of normalized stiffness for different configurations

Table 4.1: Comparison with respect to the original CF as is , no BP sample

Configuration % Change in Strength % Change in Stiffness
CF as is, ZnO on BP 23.26 1.98
ZnO on CF, no BP 20.14 2.61

ZnO on CF, BP as is 17.67 3.36
CF and BP as is -1.69 -13.88

These figures clearly indicate the increase in strength and stiffness of the hybrid com-

posites due to the growth of ZnO nanorods. Also, it was observed that both stiffness and

strength fall drastically in the configuration of carbon fiber (CF) and Bucky paper (BP) as

is. This was due to the delamination failure observed in a majority of samples with Bucky

paper as the middle layer during the tensile test. The adhesion between carbon fiber and
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Bucky paper in hybrid composites should be further investigated to mitigate this type of

failure. The highest strength and stiffness were seen in CF as is, ZnO on BP and CF with

ZnO, BP as is respectively.

The sample with the nearest average strength in each configuration was selected to plot

the graph as shown in Figure 4.4. The data was normalized by volume fraction before

plotting to ensure valid comparison. This compares the elastic behaviour of various hybrid

composites. The highest and least slopes were seen in the hybrid composite with ZnO

on CF, no BP, and CF and BP as is respectively. Again, the effects of delamination were

confirmed.

4.2.2 Fracture Analysis Using SEM

After the tensile test was performed following the ASTM standards, fracture analysis

using SEM was followed. The sample with strength closer the average strength of the

respective configuration was chosen for analysis in each case. Once the sample was chosen,

the area where the tensile test failure occurred was carefully severed and mounted under

the SEM. In the case of delaminated samples, both split surfaces were analyzed to get a

comprehensive idea of how failure occurred. The results are as shown in the following

micrographs:
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Figure 4.7: Fracture analysis of the configuration with just CF and no BP

Considering Figure 4.7 clockwise, the first micrograph shows both matrix and fiber

failure at a higher magnification. The second one shows broken and mis-aligned fibers at

a lower magnification. The third one shows just matrix failure for a very lower magnifica-

tion. The last one shows broken fibers at different layers. Thus, it can be concluded this

composite, made just out of carbon fiber experienced both matrix and fiber failure.
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Figure 4.8: Fracture analysis of the configuration with just CF and ZnO on BP

Considering Figure 4.8 clockwise, the first micrograph shows the failure along matrix

while the fibers seemed intact. The second one shows mis-oriented fibers at various layers.

The third one shows the nanorods on Bucky paper entangled with fibers. The last one

shows the Bucky paper on fibers at higher magnification. Thus, it can be concluded that

the failure predominantly was along the matrix.
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Figure 4.9: Fracture analysis of the configuration with ZnO on CF and no BP

Considering Figure 4.9 clockwise, the first micrograph shows split fibers between dif-

ferent layers. The second one shows an extended crack along the matrix. The third one

shows the void the matrix failure leaved behind between fibers. The fourth one shows a

cluster of nanrods.Thus, it is safe to conclude that, the failure predominantly was along the

matrix.
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Figure 4.10: Fracture analysis of the configuration with ZnO on CF, BP as is

Considering Figure 4.10 clockwise, the first micrograph shows the haphazardly oriented

fibers with a clear matrix failure. The second one shows the Bucky paper split along the

matrix. The third one shows the ZnO nanorods on the fibers. The last one shows the bucky,

ZnO nanrods and fibers entangled together. Thus, even in this hybrid composite, it can be

concluded that the failure is predominantly along the matrix.
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Figure 4.11: Fracture analysis of the configuration with CF and BP as is

Considering Figure 4.11 clockwise, the first micrograph shows the failure along the ma-

trix with continuous fibers running through the middle. The second one shows the interface

of Bucky paper, carbon fiber and the matrix. The third one shows the fiber fracture. The

last one shows the Bucky and fiber interface. Thus, this hybrid composite failed along both

matrix and fiber.

Thus, the fracture analysis of all the hybrid composites concludes that the presence of

nanorods reduce the chances of failure along the fiber, thus increasing the overall strength

and stiffness of the structure. Bucky paper, though split due to delamination, remained con-

tinuous throughout. Thus, if the adhesion between various layers was better, the parameters

of interest will be enhanced.
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4.2.3 DMA Analysis

The samples for DMA analysis were cut before the tensile testing. This was to prevent

any discrepancies which may appear in the results. One sample of each configuration was

tested. As stated before, both temperature and frequency scans were carried out. The results

were analyzed from the following graphs:

Temperature Scan Graphs

Figure 4.12: Graph showing the variation of tan delta with temperature for various
configurations of two layer composite samples

The thermal DMA curves are depicted in Figure 4.12 showing variation of the loss

tangent; tan (δ) with temperature. Three composites configuration seem to attain peak

values of tan (δ) at an identical glass to rubber transition temperature (Tg) close to 78◦C;

namely the composites based on raw fibers, or based on fibers with surface grown ZnO and
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sample with ZnO grown over Bucky paper. The two other configurations of carbon fiber

and Bucky paper; Carbon fiber with ZnO nanorods grown on the surface sandwiched with

Bucky paper attained a glass transition temperature closer to 90◦C; which is close to the

glass transition of the neat epoxy systems as provided by the manufacturer (Tg = 96◦C). The

reduction of glass transition is indicative of the filler influencing the epoxy cure reaction

kinetics. In the present thesis no kinetics studies were performed (due to lack of access

to differential scanning calorimetry; DSC system) so it is uncertain if early stage catalysis

took place in the case of reaction in the presence of heat-treated composites. However, this

thesis is concerned with the product so it is not relevant if minor differences took place in

the initial cure mechanism. The final degree of cure is associated with the later stages of

the curing process when the molecular weight is such that the mixture exhibits very high

viscosity and cure rate is diffusion controlled. In experiences with nano fillers such as CNTs

(in the Bucky paper) and ZnO the explanation for a lower degree of cure is ascribed to the

fact the presence of nanofillers significantly enhances hindrance to the physical mobility

of epoxy active groups and curing agent (Puglia, Valentini, Armentano, & Kenny, 2003),

(Tao et al., 2006). In comparison to the composite based on raw fibers tan (δ) exhibited

improvement when both ZnO nanorods and the Bucky paper coexisted in the composite.

The composite with ZnO grown directly on the Bucky paper attained an increase of 65%

in tan (δ) over the composite with no nanofillers. Improvements of 15-28 % were observed

for the composites closer to the resin glass transition. The only configuration that exhibited

lesser tan(δ), reduced by 9%, is associated with the sample with ZnO grown over the carbon
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fiber without Bucky paper. Insufficient drying of the fibers upon growing ZnO is a possible

explanation for this behavior.

Figure 4.13: Graph showing the variation of storage modulus with temperature for various
configurations of two layer composite samples

In the Figure 4.13, the trend of the storage modulus evolution reemphasizes the pres-

ence of two sets of composites with two different glass transition temperatures. At room

temperature, the trend of the storage modulus is comparable to the tensile stiffness trend;

composites with both ZnO and Buckypaper achieve higher stiffness (273-555%) than the

composite based on raw fibers. The only exception is for the sample comprising carbon

fiber and Bucky paper; as it did not delaminate under the low load of DMA test this sample

showed a higher storage modulus than the composite based on the raw fiber while exhibit-

ing lower stiffness in the tensile test due to premature delamination.

As the temperature increases and pass through the glass transition temperature into the

rubbery plateau the storage modulus value drop significantly and beyond the glass transition
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the difference between the composites with one or more nanofiller is negligible (see Figure

4.13). However, the gap between storage moduli in the rubbery phase temperature range

for all the composites with nanofillers are still higher than that for the composite based on

raw fibers.

Table 4.2: Comparison with respect to the original CF as is , no BP sample

Configuration % Change in tan(δ) % Change in Storage Modulus
CF as is, ZnO on BP 60.61 555.82
ZnO on CF, no BP -14.23 273.98

ZnO on CF, BP as is 90 366
CF and BP as is 41.98 395.93

Frequency Scan Graphs

The DMA test provides the viscoelastic properties of materials when subjected to cyclic

loading, namely the storage modulus (dynamic stiffness E’), loss modulus (energy dissipa-

tion E”) and the tangent of phase angle (E’/E”). Depicted in Figures 4.14, 4.15, 4.16 are

the tan (δ) and of the five different composites configurations, under 30◦C, 55◦C and 80◦C,

respectively, within frequency range of 1-100 Hz.

Evident by Figure 4.14 , at 30◦C, a composite that incorporates Bucky paper and ZnO

nanowires attained highest increase in tan (δ); an increase by 77% followed by the compos-

ite that contains Bucky paper alone (65% increase) and a composite with ZnO grown over

the carbon fiber with Bucky paper in between the layers (17.11% increase). The composite

with ZnO only did not attain improvements in tan (δ) which is again attributed to insuffi-

cient drying of the fibers upon ZnO growth. This drop can also be attributed to the relative
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mobility of the nanowires inside the matrix, which, despite enhancing the interfacial inter-

action, reduces the composite ability to dissipate mechanical energy.

The increase in tan (δ) demonstrates the capability of the Bucky paper and ZnO nanowires

combination, as fiber / matrix reinforcements, to promote the energy dissipation within the

material. The energy dissipation in the composite is influenced by the epoxy matrix more

than the fibers due to the inherent viscoelastic nature of the polymeric matrix. Besides the

matrix contribution, vibrational energy can be dissipated through slippage and frictional

interactions between the nano-reinforcement and the matrix. The small size nanowires

and the MWCNTs in the Bucky paper yield large reinforcement-matrix interface, thereby

enhancing the energy dissipation due to interfacial friction during vibration. As the tem-

perature increases to 55◦C, Figure 4.15, some samples; namely with ZnO grown on Bucky

paper did not show improvements in tan (δ) indicating that the epoxy matrix underwent

further curing. Having two nanofillers will interfere negatively with the curing process,

which explains the slight drop in tan (δ). Samples with Bucky paper in general showed

improvements in tan (δ) as the Buck paper adheres better to the epoxy than ZnO. Upon

heating the sample at 80◦C, the composite retained the same trend of tan (δ)as it was at

30◦C indicating that no further curing is possible beyond that temperature which is close to

the glass transition of the epoxy.

The trend for the storage modulus at 30◦C which is an indicative of the viscoelastic

stiffness is shown in Figure 4.17. The composite incorporating ZnO nanowires on Bucky-

paper exhibited 200% increase in the storage modules compared to the baseline composite

with no nanofillers. All the composites with one or two nanofillers showed improvements
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of at least 90%. It is worth noting that unlike tan (δ), the storage modulus shows little

variation over the frequency range. The same frequency-dependent pattern was observed

for all the different composite configurations. It can be also discerned from Figures 4.18

and 4.19 that even at 55◦C and 80◦C , the same trend holds as far as the composite with

ZnO grown on Bucky paper achieving the largest enhancement in the storage modulus. In

general, as the temperature increases- like the stiffness- the storage modulus decreases.

Figure 4.14: Graph showing the variation of tan (δ) with frequency at 30◦C for various
configurations of two layer composite samples
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Figure 4.15: Graph showing the variation of tan (δ) with frequency at 55◦C for various
configurations of two layer composite samples

Figure 4.16: Graph showing the variation of tan (δ) with frequency at 80◦C for various
configurations of two layer composite samples
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Figure 4.17: Graph showing the variation of storage modulus with frequency at 30◦C for
various configurations of two layer composite samples

Figure 4.18: Graph showing the variation of storage modulus with frequency at 55◦C for
various configurations of two layer composite samples
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Figure 4.19: Graph showing the variation of storage modulus with frequency at 80◦C for
various configurations of two layer composite samples

Table 4.3: Comparison with respect to the original CF as is , no BP sample at 30◦C

Configuration % Change in tan(δ) % Change in Storage Modulus
CF as is, ZnO on BP 77.68 202.86
ZnO on CF, no BP -4.58 122.86

ZnO on CF, BP as is 17.11 90.86
CF and BP as is 64.85 116

Table 4.4: Comparison with respect to the original CF as is , no BP sample at 55◦C

Configuration % Change in tan(δ) % Change in Storage Modulus
CF as is, ZnO on BP -0.48 170.54
ZnO on CF, no BP -7.76 108.42

ZnO on CF, BP as is 17.16 91.38
CF and BP as is 19.47 97.39
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Table 4.5: Comparison with respect to the original CF as is , no BP sample at 80◦C

Configuration % Change in tan(δ) % Change in Storage Modulus
CF as is, ZnO on BP 141.98 146.29
ZnO on CF, no BP -20.93 111.23

ZnO on CF, BP as is 57.92 73.50
CF and BP as is 32.08 87.52

4.2.4 Surface Resistivity Comparison

The surface resistivity (SR) of one sample of each configuration was measured. The

data obtained was as follows:

Table 4.6: The trend of surface resistivity for various configurations of two layer
composite samples

Configuration Length(mm) Width(mm) Resistance(ohms) SR(ohms/mm2)
CF as is, no BP 56.21 5.71 19 187.04

CF as is, ZnO on BP 56.46 6.51 3.93 34.08
ZnO on CF, no BP 66.11 5.17 7.5 95.90

ZnO on CF, BP as is 66.71 6.62 4.67 47.06
CF and BP as is 66.78 5.6 4.12 50.60
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Figure 4.20: Electrical Resistivity Samples

To quantify the improvements of the electrical conductivity, the surface electrical re-

sistivity was measured along the in-plane direction. The results were normalized by the

surface area as illustrated in Table 4.6. In comparison to the baseline composite with no

nanofillers, the sample with highest measurable conductivity (or least resistivity) was the

sample with the ZnO nanowires grown over the surface of Bucky paper. This sample ex-

hibited 82% improvements in conductivity followed by the samples that have ZnO grown

over carbon fiber with Bucky paper in between the two laminae (increase by 75%) and the

sample with Bucky paper with no ZnO ( 72%). These results suggest the presence of Bucky

paper as a conductive phase plays larger role than that for ZnO, which is a semiconductor.

Nevertheless, the sample based on ZnO also exhibited a 49% decrease in resistivity. Hence,

one conclude that the presence of a nanophase such as MWCNTs (in Bucky paper) or ZnO
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nanowires or both assist in forming continuous conductive pathways which translates to

better conductivity.

Table 4.7: Comparison with respect to the original CF as is , no BP sample

Configuration % Change in Electrical Resistivity
CF as is, ZnO on BP -81.78
ZnO on CF, no BP -48.72

ZnO on CF, BP as is -74.84
CF and BP as is -72.95
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5. Conclusion

This work was an attempt to make new hybrid composite with the best combination of

Bucky paper, ZnO nanowires, carbon fiber and epoxy at low temperatures. Several experi-

ments were performed to grow ZnO nanowires on various substrates utilizing a hydrother-

mal synthesis procedure. The various substrates included silicon, carbon fiber and Bucky

paper. Dipping technique in a homogenized solution of zinc acetate, ethanol and deionised

(DI) water was used as for seeding purposes. A chemical bath comprising zinc acetate

dihydrate, hexamethylenetetramine and DI water in measured concentrations was prepared

to provide appropriate catalysts and enzymes to accommodate the growth of nanorods. A

very low temperature of 90◦C was chosen during the synthesis.

Synthesis was followed by composite preparation. Composites of five different config-

urations were made: CF as is, no BP; CF as is, ZnO on BP; ZnO on CF, no BP; ZnO on

CF, BP as is; and CF and BP as is. Characterization using tensile test, fracture analysis, dy-

namic mechanical analysis was performed for each. Also, surface resistivity was calculated

to compare the electrical conductivity among various configurations.

It was observed that delamination results in significant decrease in strength and stiffness

of CFRPs. Also, Buckypaper is well known for its poor impregnation with epoxy while

employing pressure based techniques for composite fabrication. Thus, CF and BP as is,

with no ZnO nanorods showed 14% decrease in stiffness and 1.69% decrease in strength
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compared to the original CF as is, no BP composite. In this research, ZnO nanorods were

seen to act as z-pinning hurdles, resisting crack propagation and thus helping the composite

to withstand higher loads. Thus, CFRPs with ZnO on Bucky paper or on carbon fiber were

seen to be more ductile with enhanced strength and stiffness. The largest enhancement in

stiffness was 3.36% in ZnO on CF, BP as is hybrid composite, while the highest strength

enhancement was seen in CF as is, ZnO on BP hybrid composite by 23.26%.

The results of the fracture analysis validated the z-pinning effect of the ZnO nanorods.

The samples with nanofillers showed predominant matrix failure, while the other samples

showed both matrix and fiber failure. Temperature scan during the DMA analysis showed a

reduction in glass transition temperature of few samples indicating that the filler influenced

the epoxy cure reaction kinetics. To further explain this behavior, kinetics studies is to be

performed. Increase in tan (δ) was seen in all the samples expect for one configuration

where 9% drop was seen. This was attributed to possible insufficient drying of fibers. The

storage modulus trend was comparable to the stiffness trend seen during tensile testing

with one exception. The sample with carbon fiber and Bucky paper showed higher storage

modulus in comparison to raw composite as DMA loading was not high enough to cause

premature delamination.

Frequency scan was also performed at 30◦C, 55◦C and 80◦C with frequency values

ranging from 1-100Hz. Tan (δ) trends at 30◦C and 55◦C were similar, while the different

trend at 55◦C was attributed to curing of epoxy. Enhancement in tan (δ) was because of the

promotion of energy dissipation, resulting from the large reinforcement matrix interface

formed by the presence of both MWCNTs in Bucky paper and ZnO nanowires. Stor-
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age modulus shows insignificant variation over the frequency range unlike tan(δ). Also,

nanofillers on Bucky paper showed a 200% increase compared to the raw composite. Other

nanofiller configurations also showed a singnificant increase in storage modulus. With in-

crease in temperature, storage modulus was seen to decrease. Finally, conductivity was

increased by 82% on the sample with ZnO nanowires on Bucky paper sandwiched between

two carbon fiber laminae. Also, the sample with just ZnO nanowires showed a 49% in-

crease in conductivity. This proves that both nanofillers and MWCNTs in Bucky paper aid

in charge dissipation in structures.

Thermal and kinetic analysis can further be performed to observe the heat dissipation

trends and explain the effects seen due to curing of epoxy.



69

REFERENCES

Akgun, M. C., Kalay, Y. E., & Unalan, H. E. (2012). Hydrothermal zinc oxide nanowire growth
using zinc acetate dihydrate salt. Journal of Materials Research, 27(11), 1445-1451.

Alberto, M. (2013). Introduction of fibre-reinforced polymers-polymers and compos-
ites:concepts, properties and processes.

Al-Haik, M., Luhrs, C. C., Reda Taha, M. M., Roy, A. K., Dai, L., Phillips, J., & Doorn, S.
(2010). Hybrid carbon fibers/carbon nanotubes structures for next generation polymeric
composites. Journal of Nanotechnology, 2010, 9.

Allaoui, A., Bai, S., Cheng, H. M., & Bai, J. B. (2002). Mechanical and electrical properties of
a mwnt/epoxy composite. Composites Science and Technology, 62(15), 1993-1998.

Ashrafi, B., Guan, J., Mirjalili, V., Hubert, P., Simard, B., & Johnston, A. (2010). Correlation be-
tween young’s modulus and impregnation quality of epoxy-impregnated swcnt buckypaper.
Composites Part A : Applied Science and Manufacturing, 41(9), 1184-1191.

Boskovic, B. O., Golovko, V. B., Cantoro, M., Kleinsorge, B., Chuang, A. T. H., Ducati, C., . . .
Johnson, B. F. G. (2005). Low temperature synthesis of carbon nanofibres on carbon fibre
matrices. Carbon, 43(13), 2643-2648.

Byrne, D., McGlynn, E., Cullen, J., & Henry, M. O. (2011). A catalyst-free and facile
route to periodically ordered and c-axis aligned zno nanorod arrays on diverse substrates.
Nanoscale, 3(4), 1675-82. (Byrne, Daragh McGlynn, Enda Cullen, Joseph Henry, Mar-
tin O eng Research Support, Non-U.S. Gov’t England 2011/02/18 06:00 Nanoscale. 2011
Apr;3(4):1675-82. doi: 10.1039/c0nr00919a. Epub 2011 Feb 15.)

Deka, B. K., Hazarika, A., Kong, K., Kim, D., Park, Y.-B., & Park, H. W. (2016). Interfacial
resistive heating and mechanical properties of graphene oxide assisted cuo nanoparticles in
woven carbon fiber/polyester composite. Composites Part A: Applied Science and Manu-
facturing, 80, 159-170.

Demes, T., Ternon, C., Riassetto, D., Stambouli, V., & Langlet, M. (2016). Comprehensive study
of hydrothermally grown zno nanowires. Journal of Materials Science, 51(23), 10652-
10661.

Dong, J. J., Zhen, C. Y., Hao, H. Y., Xing, J., Zhang, Z. L., Zheng, Z. Y., & Zhang, X. W. (2013).
Controllable synthesis of zno nanostructures on the si substrate by a hydrothermal route.
Nanoscale Research Letters, 8. (ISI Document Delivery No.: 226FV Times Cited: 9 Cited
Reference Count: 30 Dong, Jing-Jing Zhen, Chun-Yang Hao, Hui-Ying Xing, Jie Zhang,
Zi-Li Zheng, Zhi-Yuan Zhang, Xing-Wang Fundamental Research Funds for the Central
Universities [2652013067] This work was financially supported by ’the Fundamental Re-
search Funds for the Central Universities’ (grant no. 2652013067). Springer New york)



70

Ehlert, G. J., & Sodano, H. A. (2009). Zinc oxide nanowire interphase for enhanced interfacial
strength in lightweight polymer fiber composites. ACS Applied Materials Interfaces, 1(8),
1827-1833.

Erik, T. T., & Tsu-Wei, C. (2002). Aligned multi-walled carbon nanotube-reinforced compos-
ites: processing and mechanical characterization. Journal of Physics D: Applied Physics,
35(16), L77.

Fu, Y. Q., Luo, J. K., Du, X. Y., Flewitt, A. J., Li, Y., Markx, G. H., . . . Milne, W. I. (2010).
Recent developments on zno films for acoustic wave based bio-sensing and microfluidic
applications: a review. Sensors and Actuators B: Chemical, 143(2), 606-619.

Garcia, E., Wardle, B., deVilloria, R., Guzman de Villoria, R., Wicks, S., Ishiguro, K., . . . Hart,
A. (2008). Aligned carbon nanotube reinforcement of advanced composite ply interfaces.
In 49th aiaa/asme/asce/ahs/asc structures, structural dynamics, and materials conference,
16th aiaa/asme/ahs adaptive structures conference,10th aiaa non-deterministic approaches
conference, 9th aiaa gossamer spacecraft forum, 4th aiaa multidisciplinary design op-
timization specialists conference. American Institute of Aeronautics and Astronautics.
(doi:10.2514/6.2008-1768)

Garmestani, H., Al-Haik, M. S., Dahmen, K., Tannenbaum, R., Li, D., Sablin, S. S., & Hussaini,
M. Y. (2003). Polymer-mediated alignment of carbon nanotubes under high magnetic
fields. Advanced Materials, 15(22), 1918-1921.

Gbaguidi, A., Namilae, S., & Kim, D. (2017). Monte carlo model for piezoresistivity of hy-
brid nanocomposites. Journal of Engineering Materials and Technology, 140(1), 011007-
011007-11. (10.1115/1.4037024)

Gibson, R. F. (2010). A review of recent research on mechanics of multifunctional composite
materials and structures. Composite Structures, 92(12), 2793-2810.

Gullapalli, H., Vemuru, V. S. M., Kumar, A., Botello-Mendez, A., Vajtai, R., Terrones, M., . . .
Ajayan, P. M. (2010). Flexible piezoelectric zno-paper nanocomposite strain sensor. Small,
6(15), 1641-1646.

Hung, C. H., & Whang, W. T. (2003). A novel low-temperature growth and characterization
of single crystal zno nanorods. Materials Chemistry and Physics, 82(3), 705-710. (ISI
Document Delivery No.: 753PG Times Cited: 98 Cited Reference Count: 29 Hung, CH
Whang, WT Elsevier science sa Lausanne)

Iijima, S. (1991, November). Helical microtubules of graphitic carbon. , 354, 56-58. doi:
10.1038/354056a0

Jones, R. (1998). Mechanics of composite materials. Taylor Francis.

Li, L., Yang, H., Yu, J., Chen, Y., Ma, J., Zhang, J., . . . Gao, F. (2009). Controllable growth of
zno nanowires with different aspect ratios and microstructures and their photoluminescence
and photosensitive properties. Journal of Crystal Growth, 311(17), 4199-4206.

Li, Y. L., Kinloch, I. A., & Windle, A. H. (2004). Direct spinning of carbon nanotube fibers
from chemical vapor deposition synthesis. Science, 304(5668), 276-278. Retrieved from
http://science.sciencemag.org/content/sci/304/5668/276.full.pdf

Liu, J., Chang, M.-J., & Du, H.-L. (2016). Controllable growth of highly organized zno nanowires
using templates of electrospun nanofibers. Journal of Materials Science: Materials in
Electronics, 27(7), 7124-7131.



71

Lopes, P. E., van Hattum, F., Pereira, C. M. C., Nvoa, P. J. R. O., Forero, S., Hepp, F., &
Pambaguian, L. (2010). High cnt content composites with cnt buckypaper and epoxy resin
matrix: Impregnation behaviour composite production and characterization. Composite
Structures, 92(6), 1291-1298.

Luhrs, C. C., Garcia, D., Tehrani, M., Al-Haik, M., Taha, M. R., & Phillips, J. (2009). Generation
of carbon nanofilaments on carbon fibers at 550◦c. Carbon, 47(13), 3071-3078.

Ma, Q., Wang, Y., Kong, J., Jia, H., & Wang, Z. (2015). Controllable synthesis of hierarchical
flower-like zno nanostructures assembled by nanosheets and its optical properties. Super-
lattices and Microstructures, 84, 1-12.

Otsuka, K., Abe, Y., Kanai, N., Kobayashi, Y., Takenaka, S., & Tanabe, E. (2004). Synthesis
of carbon nanotubes on ni/carbon-fiber catalysts under mild conditions. Carbon, 42(4),
727-736.

Pal, U., & Santiago, P. (2005). Controlling the morphology of zno nanostructures in a low-
temperature hydrothermal process. The Journal of Physical Chemistry B, 109(32), 15317-
15321.

Puglia, D., Valentini, L., Armentano, I., & Kenny, J. M. (2003). Effects of single-walled carbon
nanotube incorporation on the cure reaction of epoxy resin and its detection by raman
spectroscopy. Diamond and Related Materials, 12(3), 827-832.

Scanning electron microscope training module. (n.d.).

Sinnott, S. B., & Andrews, R. (2001). Carbon nanotubes: Synthesis, properties, and applications.
Critical Reviews in Solid State and Materials Sciences, 26(3), 145-249.

Standard test method for tensile properties of polymer matrix composite materials. (1995).
ASTM D3039/D 3039M.

Strano, V., Urso, R. G., Scuderi, M., Iwu, K. O., Simone, F., Ciliberto, E., . . . Mirabella, S.
(2014). Double role of hmta in zno nanorods grown by chemical bath deposition. The
Journal of Physical Chemistry C, 118(48), 28189-28195.

Tak, Y., & Yong, K. J. (2005). Controlled growth of well-aligned zno nanorod array using a novel
solution method. Journal of Physical Chemistry B, 109(41), 19263-19269. (ISI Document
Delivery No.: 974SQ Times Cited: 330 Cited Reference Count: 40 Tak, Y Yong, KJ Amer
chemical soc Washington)

Tao, K., Yang, S., Grunlan, J. C., Kim, Y.-S., Dang, B., Deng, Y., . . . Wei, X. (2006). Effects of
carbon nanotube fillers on the curing processes of epoxy resin-based composites. Journal
of Applied Polymer Science, 102(6), 5248-5254.

Tehrani, M., Safdari, M., Boroujeni, A. Y., Razavi, Z., Case, S. W., Dahmen, K., . . . Al-Haik,
M. S. (2013). Hybrid carbon fiber/carbon nanotube composites for structural damping
applications. Nanotechnology, 24(15), 155704.

Wagner, R. S., & Ellis, W. C. (1964). Vapor-liquid-solid mechanism of single crystal growth.
Applied Physics Letters, 4(5), 89-90.

Wang, Z. L. (2004). Nanostructures of zinc oxide.


	Mechanical and Electrical Characterization of Carbon Fiber/Bucky Paper/Zinc Oxide Hybrid Composites
	Scholarly Commons Citation

	tmp.1513873736.pdf.dlHyA

