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Limits on violations of Lorentz symmetry from Gravity Probe B
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Generic violations of Lorentz symmetry can be described by an effective field theory framework that

contains both general relativity and the Standard Model of particle physics called the Standard-Model

extension (SME). We obtain new constraints on the gravitational sector of the SME using recently

published final results from Gravity Probe B. These include for the first time an upper limit at the 10�3

level on the time-time component of the new tensor field responsible for inducing local Lorentz violation

in the theory, and an independent limit at the 10�7 level on a combination of components of this tensor

field.

DOI: 10.1103/PhysRevD.88.102001 PACS numbers: 04.80.Cc, 11.30.Cp

I. INTRODUCTION

The two leading approaches to the challenge of unifying
the fundamental interactions, string theory and loop quan-
tum gravity, involve extending space to higher dimensions
and discretizing spacetime, respectively. Spontaneous vio-
lations of Lorentz symmetry can appear in some versions
of the former [1], while the latter can violate Lorentz
symmetry explicitly since it entails fixed scales of length
or time [2]. Experimental tests of Lorentz symmetry have
lately gained tremendous traction with the introduction of a
comprehensive effective field theory framework for the
study, evaluation and comparison of models for Lorentz
violation in all sectors of both general relativity (GR) and
the Standard Model of particle physics: the Standard-
Model extension or SME [3].

The full SME includes all possible Lorentz-violating
couplings of background tensor fields to curvature, torsion,
and matter fields. We focus here on the minimal pure-
gravity sector of the theory [4,5], whose action includes,
besides the usual Einstein-Hilbert term, a new tensor field
sAB coupled to the traceless part of the Ricci tensor [6].
This field induces violations of local Lorentz invariance,
acquiring vacuum expectation values �sAB which are as-
sumed constant in asymptotically inertial Cartesian coor-
dinates [5]. The symmetry breaking is assumed to be
spontaneous, that is, associated with the state of the system
rather than the underlying dynamics [7]. There are nine
independent coefficients in �sAB and the most promising
ways of constraining them have been detailed in
Refs. [5,8,9]. Seven are of particular interest in this paper
because they affect the motion and orientation of a gyro-
scope in orbit around a central mass: �sTT, �sXX, �sXY, �sXZ,
�sYY, �sYZ and �sZZ. Strong upper bounds have been placed on

five different linear combinations of the six spatial coef-
ficients using atom interferometry and lunar laser ranging
[10–13]. Other limits have been investigated based on
short-range gravity tests [14] and solar-system orbital con-
straints [15]. Simulations have also been performed with
Doppler tracking of the Cassini spacecraft [16]. However,
the time-time coefficient �sTT has remained unconstrained.
In Ref. [5] it was shown that Gravity Probe B (GPB)

would be sensitive to combinations of the seven coeffi-
cients above via its measurement of the geodetic and
frame-dragging effects. We check this using the recently
published GPB final results [17] and obtain an upper limit
on �sTT. We also find that the new constraint breaks an
algebraic degeneracy among existing experimental limits,
enabling us for the first time to extract individual upper
bounds on all the SME coefficients in the pure-gravity
sector.
Our paper is organized as follows. Section II provides a

brief review of gyroscopic tests of gravitational theories
and summarizes the experimental results from GPB. Our
constraints (based on the framework of Ref. [5]) are
derived in Sec. III. In Sec. IV we consider the effects of
a rescaling of Newton’s gravitational constant G in the
theory, and Sec. V examines the effects of orbital pertur-
bations on a circular orbit. We discuss additional effects
from aberration and light-bending in Sec. VI and VII is a
discussion. Following Sec. Vof Ref. [5], we adopt standard
Sun-centered celestial equatorial coordinates and label
Cartesian coordinates in this frame with capital latin letters
such that A; B; C; . . . are spacetime indices while
J;K; L; . . . refer to space only. Physical units are assumed
except where otherwise noted.

II. GYROSCOPIC TESTS

The geodetic effect, first investigated by Willem de
Sitter, Jan Schouten and Adriaan Fokker beginning in
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1916, provides the sixth experimental test of GR (after
the three ‘‘classical tests,’’ radar time delay and pulsar
binaries) and the first to involve the spin of the test body
[18]. It may be thought of as arising from two separate
contributions: one due to space curvature and the other a
spin-orbit coupling between the spin of the gyroscope and
the ‘‘mass current’’ of the central mass (which is moving
in the rest frame of the orbiting gyroscope). The geometric
(space-curvature) effect arises because the gyroscope’s

spin vector ~S, orthogonal to the plane of the motion, no
longer lines up with itself after one complete circuit
through curved spacetime around the central mass [19].
The spin-orbit effect can be regarded as a gravitational
analog of Thomas precession in classical electromagne-
tism [20,21], though this identification (and the splitting
between the two factors) is to a certain extent coordinate
dependent [22] and some authors argue for different
interpretations [23,24].

Frame dragging, first studied by Hans Thirring and Josef
Lense in 1918, provides the seventh experimental test of
GR and the first to involve the spin, not only of the test
body, but of the source of the field as well. It arises due to
the spin-spin coupling between these two masses, and is
the gravitational analog of the interaction between a mag-
netic dipole and an external magnetic field, or the hyperfine
interaction between electron and nuclear spin in atomic
physics. (The corresponding analog of geodetic precession
is the interaction between electron spin and orbital angular
momentum associated with atomic fine structure [25].)
Also known as the Lense-Thirring effect, frame dragging
plays an important role in astrophysics and cosmology
[18,19], but in the field of the Earth it is exceedingly
weak, and more than two orders of magnitude weaker
than the geodetic effect.

Within GR the geodetic and frame-dragging precession
rates of a gyroscope with position ~r and velocity ~v in orbit
around a central mass M with moment of inertia I and
angular velocity ~! are [26]

~�g;GR ¼
�
3

2

GM

c2r3

�
~r� ~v;

~�fd;GR ¼ GI

c2r3

�
3~r

r2
ð ~! � ~rÞ � ~!

�
:

(1)

The combined precession ~�GR ¼ ~�g;GR þ ~�fd;GR causes

the unit spin vector Ŝ of the gyroscope to undergo a
relativistic drift given by

~R � dŜ

dt
¼ ~�GR � Ŝ: (2)

(In engineering parlance the term ‘‘drift’’ connotes an
unwanted disturbance, but we use it here to distinguish
the desired relativistic signal from unwanted classical dis-
turbances on the gyroscope.) Averaging over a circular,
polar orbit of radius r0 around a spherically symmetric
central mass, Eqs. (1) simplify to

~�g;GR ¼ 3ðGMÞ3=2
2c2r5=20

�̂;

~�fd;GR ¼ � GI!

2c2r30
Ẑ;

(3)

where �̂ ¼ r̂� v̂ is a unit vector normal to the orbit plane

and Ẑ ¼ !̂ is the unit vector along the Earth’s rotation axis

(Fig. 1). With Ŝ aligned initially along the direction to the
guide star (GS), the corresponding relativistic drift rates
are, from Eq. (2),

~Rg;GR ¼ � 3ðGMÞ3=2
2c2r5=20

êNS;

~Rfd;GR ¼ �GI! cos�GS

2c2r30
êWE;

(4)

where �GS is the declination of the guide star and êNS and
êWE are defined in Fig. 1. The choice of polar orbit

orthogonalizes the two effects so that ~Rg;GR points en-

tirely along êNS and ~Rfd;GR points entirely along êWE. In

what follows, it is helpful to keep in mind that a WE
component of precession causes the spin vector to drift
in the NS direction, and vice versa. It is also important
to note that there is no third component of precession
around the GS or guide-star direction, since the gyro-
scope spin axes were aligned within arcseconds of the

FIG. 1. Experimental results are expressed in GPB coordinates
ðêGS; êNS; êWEÞ where êGS points toward the guide star (located in
the orbit plane at right ascension�GS and declination �GS), êWE is
an orbit normal pointing along the cross product of êGS and the
unit vector Ẑ of the inertial JE2000 frame (aligned with the Earth’s
rotation axis) and êNS is a tangent to the orbit directed along
êWE � êGS [17]. The theoretical SME predictions are derived in
Ref. [5] using inertial ðX; Y; ZÞ coordinates where X̂ points toward
the vernal equinox and Ŷ ¼ Ẑ� X̂. They are subsequently
projected onto a hybrid coordinate system (�̂, Ẑ, n̂) aligned
with the orbit plane, where �̂¼�êWE and n̂¼ �̂� Ẑ.
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guide star in order to maximize sensitivity to the geodetic
and frame-dragging effects. (In practice, there were brief
intervals when this condition was not met—as during the
post-flight calibration—but the data taken during such
periods was unusable by definition.) Thus we expect
GPB to be able to constrain at most two new linear
combinations of SME coefficients.

For GPB with IM Pegasi as the guide star, r0 ¼
7018:0 km [27] and �GS ¼ 16:841�, leading to predicted
general relativistic drift rates Rg;GR ¼ 6606:1 mas=yr

(geodetic) and Rfd;GR ¼ 39:2 mas=yr (frame-dragging;

mas ¼ milliarcsecond) [17]. [The former value differs
slightly from that obtained with Eq. (3), as it takes into
account the actual GPB orbit, whose radius and inclination
were affected at the 0.1% level by the nonsphericity of the
Earth [28].] The final results of the GPB experiment using
all four gyroscopes with 1� uncertainties are RNS;obs ¼
6601:8� 18:3 mas=yr and RWE;obs ¼ 37:2� 7:2 mas=yr
[17]. Thus the NS and WE components of relativistic
drift may deviate from the predictions of GR by at
most j�RNSj ¼ jRg;GR � RNS;obsj< 22:6 mas=yr and

j�RWEj ¼ jRfd;GR � RWE;obsj< 9:2 mas=yr.

III. PRELIMINARY CONSTRAINTS

The precession of a gyroscope within the pure-gravity
sector of the SME framework has the same form as in
standard GR, Eq. (2), but with additional ‘‘anomalous’’
terms containing contributions from the coefficients for
Lorentz violation �sAB [5],

��J ¼ gv0

�
9

8
ð~ið�1=3Þ �sTT � ~ið�5=3Þ �sKL�̂K�̂LÞ�̂J

þ 5

4
~ið�3=5Þ �sJK�̂K

�
: (5)

Here gv0 ¼ 2
3�g;GR, ~ið�Þ � 1þ �I=Mr20 and �̂J ¼

ð�sin�GS; cos�GS; 0Þ, where �GS ¼ 343:26� is the right
ascension of the guide star [29]. The factor of 2

3 suggests

that Lorentz violation affects the geometric but not the
spin-orbit contribution to the geodetic effect. This is logi-
cal, since the violation arises through the coupling of a new
field to the curvature tensor. A detailed investigation of this
issue could build on existing studies of the gravitoelectro-
magnetic limit of the SME [30,31].

The projections of Eq. (5) along ð�̂; Ẑ; n̂Þ are given by
Eqs. (158)–(160) of Ref. [5] as

��� ¼ 2

3
�g;GR

�
9

8
~ið�1=3Þ �sTT þ 1

8
~ið9Þ �sJK�̂J�̂K

�
;

��z ¼ 2

3
�g;GR

�
5

4
~ið�3=5Þ �sZK�̂K

�
;

��n ¼ 2

3
�g;GR

�
5

4
~ið�3=5Þ �sJKn̂J�̂K

�
;

(6)

where n̂J ¼ ðcos�GS; sin�GS; 0Þ [32].
By expanding the vector products, collecting terms

and simplifying, Eqs. (6) can be expressed in terms of
the individual �sAB coefficients as

� ~� ¼

!T �s
TT þ!NSð�sXXsin 2�GS

� �sXY sin 2�GS þ �sYYcos 2�GSÞ
!WEð �sYZ cos�GS � �sXZ sin�GSÞ
1
2!GSð �sYY � �sXXÞ sin 2�GS

þ!GS �s
XY cos 2�GS

0
BBBBBBBB@

1
CCCCCCCCA
; (7)

where !T¼ 3
4ð1�I=3Mr20Þ�g;GR¼4503mas=yr, !NS¼

1
12ð1þ9I=Mr20Þ�g;GR¼1904mas=yr and !WE ¼ !GS ¼
5
6 ð1� 3I=5Mr20Þ�g;GR ¼ 4603 mas=yr.

To transform from ð�̂; Ẑ; n̂Þ coordinates to those used in
the GPB data analysis, we reflect across the orbit plane (to
carry �̂ into êWE) and rotate about �̂ by �GS (to carry n̂ into
êGS). The resulting components of anomalous precession
along the NS, WE and GS axes are

� ~� ¼

�!T �s
TT �!NSð�sXXsin 2�GS � �sXY sin 2�GS þ �sYYcos 2�GSÞ

!WE

�
1
2 ð�sXX � �sYYÞ sin 2�GS sin�GS � �sXY cos 2�GS sin�GS � �sXZ sin�GS cos�GS þ �sYZ cos� cos�GS

�

!GS

�
1
2 ð �sYY � �sXXÞ sin 2�GS cos�GS þ �sXY cos 2�GS cos�GS � �sXZ sin�GS sin�GS þ �sYZ cos�GS sin�GS

�

0
BBBBBB@

1
CCCCCCA
:

(8)

The corresponding components of anomalous relativistic drift are obtained by taking the cross product of � ~� with
Ŝ ¼ êGS, as in Eq. (2). Putting in the numbers, we obtain (in mas/yr)

�RNS ¼ �4503�sTT � 158�sXX � 1050�sXY � 1746�sYY;

�RWE ¼ �368�sXX � 1112�sXY þ 1269�sXZ þ 368�sYY þ 4219�sYZ;

�RGS ¼ 0:

(9)
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In the same units, GPB tells us that j�RNSj< 22:6 and
j�RWEj< 9:2. As discussed above, there is no component
of drift around the direction to the guide star, since this is
also the direction of the gyroscope spin axes. The experi-
ment has been designed for optimal measurement of the
geodetic and frame-dragging effects. Of necessity, this
entails a loss of sensitivity to any possible third component
of precession orthogonal to the other two. Thus, in princi-
ple we have two constraint equations for seven unknown
coefficients: �sTT, �sXX, �sXY, �sXZ, �sYY, �sYZ, �sZZ.

To obtain upper limits on all seven coefficients we
turn to the literature for additional constraints from experi-
ment [13]. At present there are five of these, from a
combined analysis of atom interferometry and lunar laser
ranging [12],

j�sXYj< 2:1� 10�9; (10)

j�sXZj< 4:1� 10�9; (11)

j�sYZj< 2:0� 10�9; (12)

j�sXX � �sYYj< 2:8� 10�9; (13)

j�sXX þ �sYY � 2�sZZj< 39:8� 10�9: (14)

Thus it appears that we may have seven equations in seven
unknowns. However, �RWE is a linear combination of
�sXX � �sYY, �sXY, �sXZ and �sYZ. Hence the WE or frame-
dragging constraint from GPB is equivalent to a linear
combination of Eqs. (10)–(13), and is moreover superseded
by them (since it is about six orders of magnitude weaker).

It is worth noting that the GS component of� ~� consists of
another linear combination of the same constraints, so that
the GS component of relativistic drift would also not
provide an additional constraint in practice, even if it could
do so in principle.

We are left with only the NS or geodetic-effect con-
straint (9) from GPB, making a total of six experimental
constraints on seven unknowns. The new limit from GPB
may be expressed as

j�sTT þ 0:035�sXX þ 0:39�sYY þ 0:23�sXYj< 5:0� 10�3;

(15)

consistent with pre-GPB estimates of between 5� 10�4

[5] and �10�2 [33]. Although it is quantitatively weaker
than existing upper limits from atom interferometry,
Eq. (15) is qualitatively important for two reasons. First,
it is the first experimental constraint on the time-time
coefficient �sTT [13]. Second, it allows us to break the
degeneracy between existing constraints. We need only
one additional relationship between the SME coefficients,
which comes from the requirement that �sAB must be
traceless [4],

�sTT � �sXX � �sYY � �sZZ ¼ 0: (16)

(This condition arises because the Lorentz-violating tensor
field s�� couples to the trace-free Ricci tensor in the action
of the theory. Physically, it reflects the fact that an unob-
servable overall scaling factor can be removed from the
theory.)
Equations (10)–(16) together provide us with seven

linearly independent equations that we can use to constrain
all the SME coefficients individually for the first time.
To see this it is convenient to reexpress Eq. (15) in terms
of experimentally accessible combinations of the �sAB

parameters, using the traceless condition (16). When this
is done, the GPB constraint reads

j�sTT � 0:15ð�sXX � �sYYÞ þ 0:062ð �sXX þ �sYY � 2�sZZÞ
þ 0:20�sXYj< 4:4� 10�3: (17)

In combination with the constraints (10)–(14) from atom
interferometry and lunar laser ranging, we then find that
j�sTTj< 4:4� 10�3 while j�sXXj, j�sYYj and j�sZZj are all less
than 1:5� 10�3 [34].

IV. RESCALING OF NEWTON’S
GRAVITATIONAL CONSTANT

There are two approximations built into the treatment
above. The first involves a rescaling of the effective gravi-
tational constant G, which is expected to affect primarily
the �sTT coefficient since this always appears together with
GM in the equations of motion in the SME [5]. To see this,
we note that all the anomalous drift rates (6) in the theory
depend on the gravitational mass of the central body
through the dimensional factor �g;GR. To be fully self-

consistent, we must deduce the value of GM from the way
that a test body behaves in the vicinity of the central mass.
The equation of motion, at the Newtonian level of

approximation, is

d2rJ

dt2
¼ �GM

r3

��
1þ 3

2
�sTT

�
rJ � �sJKrK þ 3

2
�sKLr̂Kr̂LrJ

�

þGI

r5

�
��sJKrK � 5

2
�sKLr̂Kr̂LrJ

�
; (18)

from Eq. (162) of Ref. [5]. The terms involving the Earth’s
inertia I have been added since they are relevant when the
orbit is close to the surface. Here and in the remainder of
the paper we set c ¼ 1 for convenience and express our
results in terms of an explicitly traceless version of �sJK

defined by

�sJKt � �sJK � 1

3
�JK �sTT; (19)

where �JK is the usual Kronecker delta. (This is not a
new physical condition, but merely a mathematically
convenient way for us to assess the effects of the rescaling
on �sTT.) Equation (18) then becomes
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d2rJ

dt2
¼ �GM

r3

��
1þ 5

3
�sTT

�
rJ � �sJKt rK þ 3

2
�sKLt r̂Kr̂LrJ

�

þGI

r5

�
��sJKt rK � 5

2
�sKLt r̂Kr̂LrJ

�
: (20)

In writing the equation this way, we have separated the
isotropic (or Keplerian) terms—those that merely scale the
spherically symmetric acceleration—from the anisotropic
terms, which can potentially deform the elliptical shape of
the orbit.

From this result [Eq. (20)] it is clear that the effective
gravitational mass of the central body is

GM0 ¼ GM

�
1þ 5

3
�sTT

�
: (21)

Inserting Eq. (21) into Eq. (5), and again expressing the
results in terms of �sJKt , we obtain a revised expression for
the anomalous precession,

��J ¼ �g;GR

�
� 4

3
~ið0Þ �sTT � 9

8
~ið�5=3Þ �sKLt �̂K�̂L�̂J

þ 5

4
~ið�3=5Þ �sJKt �̂K

�
; (22)

where the ‘‘GM’’ in�g;GR now refers to the rescaled GM0.
This is, however, an effective or measured quantity, so its
value remains the same as before. The only change to
Eq. (5) occurs in the projection along �̂. The first of
Eqs. (6) becomes

��� ¼ 2

3
�g;GR

�
� 4

3
�sTT þ 1

8
~ið9Þ �sJKt �̂J�̂K

�
: (23)

By expanding, collecting terms and simplifying terms as

before, we find that the first component of � ~� in Eq. (7)
becomes !T �s

TTþ!NS½�sXXðsin2�GS� 1
3Þ� �sXYsin2�GSþ

�sYYðcos2�GS� 1
3Þ� 1

3
�sZZ�. The only numerical change

is to the value of !T, which now reads �5872 mas=yr.
The rest of the analysis follows the preceding section. The
second (WE) and third (GS) components of Eqs. (9) are
unchanged, but the first or NS component is revised to

�RNS ¼ 5872�sTT þ 477�sXX � 1050�sXY

� 1111�sYY þ 634�sZZ: (24)

We then find that the constraint (15), once again expressed
in terms of the experimentally relevant coefficient combi-
nations, is modified to

j�sTT þ 0:14ð �sXX � �sYYÞ � 0:054ð �sXX þ �sYY � 2�sZZÞ
� 0:18�sXYj< 3:8� 10�3: (25)

In combination with Eqs. (10)–(14), we then obtain the
slightly stronger upper limits listed in Table I.

V. ORBITAL EFFECTS

The second assumption inherent in the treatment above
also relates to the motion of a massive test body in orbit
around the central mass. Our discussion to this point has
assumed a circular orbit. This is an excellent approxima-
tion in the case of GPB, whose orbit had an eccentricity of
e ¼ 0:00134 [27]. For the terms in Eqs. (5) that are already
proportional to �sAB coefficients, the effects of noncircular-
ity will be insignificant. The Lorentz-violating coefficients
may, however, also perturb the leading-order general-
relativistic precessions in Eqs. (4), introducing new
�sAB-dependent terms into the relativistic drift equation
that might compete with the anomalous drifts already
identified.
Since �sTT is associated only with the ‘‘unperturbed’’

(Keplerian) ellipse in the equation of motion (20), we
expect that the other coefficients will play a stronger
role. They will act as perturbing accelerations, distorting
the shape of the orbit. But this will also feed back into our
upper limits on all the SME coefficients via the relativistic
drift equation (2). To assess the possible importance of this
effect, the most straightforward approach is to look for the
effect of secular changes in the orbital elements, due to the
coefficients �sAB, on the precession rate. Any extra anoma-
lous drift that accumulates can be calculated using Eq. (2).
We will focus on the effects from the geodetic preces-

sion, the first of Eqs. (1), which can be expected to domi-
nate Lorentz-violating orbital corrections arising from the
frame-dragging precession. The geodetic precession rate,
time-averaged over one orbit but generalized to the case of
an arbitrary ellipse, is

h ~�ig;GR ¼ 3n3a2�̂

2ð1� e2Þ3=2 ; (26)

where a, n, and e are the semimajor axis, mean frequency,
and eccentricity of the orbit. We now consider possible
secular precessions of the orbital elements that appear in
this expression. These precessions can be calculated using
the equations of motion (20) and the standard perturbative
method of ‘‘osculating’’ elements [35], which allows for
time variation of the six orbital elements specifying an
orbit.
For small perturbations on a Keplerian ellipse, the

equations for the time derivatives of the orbital elements

TABLE I. 1� upper limits on the magnitudes of the SME
coefficients, taking into account the rescaling of Newton’s
constant G.

Coefficient Upper limit

j�sTTj 3:8� 10�3

j�sXXj 1:3� 10�3

j�sYYj 1:3� 10�3

j�sZZj 1:3� 10�3

LIMITS ON VIOLATIONS OF LORENTZ SYMMETRY FROM . . . PHYSICAL REVIEW D 88, 102001 (2013)
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(e.g., da=dt, de=dt, etc.) can be averaged over one orbit to
obtain the leading secular changes in the elements. We can
then expand around the initial values of the orbital ele-
ments in a Taylor series, for which it suffices to truncate the
series to first order. Thus we will use, for example,

a¼ a0 þ
�
da

dt

�
tþ � � � ; e¼ e0 þ

�
de

dt

�
tþ � � � ; (27)

where a0 and e0 are the initial values of the semimajor axis
and eccentricity, and the averaged da=dt and de=dt are to
be evaluated also with the initial values.

The secular precessions of the orbital elements for the
case of point masses were calculated in Ref. [5]. We
include in our results here the terms involving the inertia
I in Eq. (20). It will be convenient here to refer to a triad

f ~P; ~Q; ~kg of orthonormal vectors for a generic elliptical

orbit that were used and defined in Ref. [5]. Briefly, ~P

points along the perigee direction, ~k points normal to the
orbit in the direction of the orbital angular momentum

(thus k̂ ¼ �̂ for the gyroscope), and ~Q points in the orbital

plane perpendicular to ~P ( ~P� ~Q ¼ ~k). For the semimajor
axis a, there is no change when averaged over one orbit,

�
da

dt

�
¼ 0: (28)

The frequency n is related to the semimajor axis by the
relation n2a3 ¼ GM0, which holds even for the ‘‘osculat-
ing’’ ellipse. Thus the frequency also does not change. The
secular change in the eccentricity to leading order in the
initial eccentricity is given by

�
de

dt

�
¼ 1

4
n�sPQe0; (29)

where the error terms are fourth order in e0. The subscript

PQ stands for the projection of the coefficients along ~P and
~Q ( �sPQ ¼ �sJKPJQK). Since e0 ¼ 0:00134, the effect of this
secular change on Eq. (26) is negligible compared to the
�sAB-dependent terms already present in the expression for
the anomalistic drift (5). Thus it appears that if there are
any relevant secular changes in the orbital elements they
must be confined to changes in the orbital angular momen-

tum direction ~k ¼ �̂.

For a general elliptical orbit, the expression for ~k, in
terms of the orbital inclination i and the longitude of the
node �, is

~k ¼
sin i sin�

� sin i cos�

cos i

0
BB@

1
CCA; (30)

written in terms of the underlying XYZ coordinates in

Fig. 1. The time rate of change of ~k is

d ~k

dt
¼

cos i sin� di
dt þ sin i cos� d�

dt

� cos i cos� di
dt þ sin i sin� d�

dt

� sin i didt

0
BBB@

1
CCCA: (31)

The remaining secular changes in the orbital elements that
are needed describe the changes in the orientation of the
ellipse due to the presence of the coefficients �sAB. For the
inclination and longitude of the node we obtain to lowest
order in eccentricity�

di

dt

�
¼ 1

2
n

�
1þ I

Ma2

�
ð�sPk cos!� �sQk sin!Þ;

�
d�

dt

�
¼ 1

2
n

�
1þ I

Ma2

�
csc ið�sPk sin!þ �sQk cos!Þ:

(32)

Note that the dependence on the perigee angle ! actually

vanishes when the expressions for ~P, ~Q, and ~k are inserted
into the coefficient combinations �sPk and �sQk. Furthermore,

we will specialize to the GPB orbit for which i ¼ �=2
and � ¼ �GS.
We can now collect the results obtained into an expres-

sion for the anomalous precession due to Lorentz-violating
orbital effects. Denoting this extra precession vector by

� ~�
0
, we obtain in XYZ coordinates

� ~�
0 ¼ 3

4
n4a2

�
1þ I

Ma2

�

� t

�sXZ sin�GS cos�GS � �sYZcos 2�GS

�sXZsin 2�GS � �sYZ sin�GS cos�GS

�ð �sXX � �sYYÞ sin�GS cos�GS

þ�sXY cos 2�GS

0
BBBBB@

1
CCCCCA; (33)

where t is the time elapsed from the start of the gyroscope
orbit. Note that the explicit appearance of coordinate time t
is qualitatively different from two types of precession in
the standard GR result. This implies that the precession
rate due to the coefficients �sAB not only changes with but is
also amplified by the duration of the orbiting gyroscope
experiment.
The result (33) can be projected into the GPB coordi-

nates described in Sec. II. There are actually only two

linearly independent vectors in � ~�
0
, as the result is per-

pendicular to the ~k direction. Expressed in the
ðêGS; êNS; êWEÞ frame, and upon plugging in the values
for the GPB orbit, we obtain

� ~�
0 ¼ ½0:362ð�sXX � �sYYÞ þ 1:095�sXY � 1:249�sXZ

� 4:152�sYZ�têGS þ ½1:196ð�sXX � �sYYÞ þ 3:616�sXY

þ 0:378�sXZ þ 1:257�sYZ�têNS; (34)

where t is in seconds and � ~�
0
is in mas/yr.

Because of the dependence of Eq. (34) on time t, the
precession rate is not constant, and we must integrate the
first-order differential equation for the spin vector, Eq. (2),
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over the span of one year to find the extra precession or
drift induced by these �sAB-dependent terms. The results of
this integration can be viewed as an extra drift of the
gyroscopic spin along the WE directions which we can
add to the results in Eq. (9). Specifically we find that the
effects of SME coefficients on the spin precession via
orbital perturbations produce the following extra drift
(in mas/yr):

�R0
WE ¼ �1:89� 107ð�sXX � �sYYÞ � 5:71� 107 �sXY

� 5:96� 106 �sXZ � 1:98� 107 �sYZ: (35)

There is no extra drift in the NS direction, as expected,

since the precession vector � ~� lacked a component in the
WE direction.

Adding this drift to �RWE in Eq. (9), we find an addi-
tional term in the WE constraint from GPB. In fact, it now
becomes strong enough to be almost competitive with
existing limits from atom interferometry and lunar laser
ranging. The revised GPB constraint from the WE (frame-
dragging) direction reads

jð�sXX � �sYYÞ þ 3:0�sXY þ 0:32�sXZ þ 1:0�sYZj< 4:9� 10�7:

(36)

Repeating the analysis of Sec. III together with
Eqs. (10)–(14), we find that the frame-dragging constraint
is still weaker than existing limits, but now by a factor of
only 10 (rather than 106). Our upper limits on the SME
coefficients thus remain unchanged from those in Table I.
Nevertheless this gain of some four orders of magnitude in
sensitivity highlights the potential importance of frame
dragging as a probe of Lorentz violation through the
latter’s effects on the gyroscope orbit.

VI. ADDITIONAL EFFECTS: ABERRATION
AND LIGHT BENDING

Other effects enter into the total measured drift as well,
and it is worthwhile to ask whether these might also lead to
further constraints. Two examples are aberration and rela-
tivistic light deflection, both of which are fully modeled
and accounted for in the GPB data analysis, assuming the
validity of GR. In fact, an independent cross-check of this
assumption was made when the guide star approached
within 22.1 degrees of the Sun and GPB measured a
deflection angle of 21� 7 mas, in agreement with the
GR prediction of 21.7 mas [17].

A covariant derivation of gyroscope precession, that
matches the actual experimental technique of referencing
the gyroscopic spin to the incoming light from the guide
star, was carried out for GR in Ref. [36]. It is a priori
unclear what happens in this derivation for the modified
metric of the SME when the �sAB terms are included. In
particular, it is not clear that this alternative derivation

should completely match the method used in Ref. [5],
where the spin four-vector S was projected along a comov-
ing but not corotating set of spatial vectors ej attached to

the satellite. Some preliminary calculations for the SME,
paralleling those in Ref. [36], show that the relativistic
precession for the SME that arises in this alternative deri-
vation matches the previously obtained results in Eq. (5),
after averaging over one gyroscope orbit. As in the GR
case, light deflection terms arise when the gyro spin vector
is projected along the tangent vector to the incoming star-
light. However, the size of the light deflection terms that
involve the coefficients �sAB are negligible for GPB. (Note
that a full analysis of the merits of dedicated light-bending
tests for the SME was performed in Ref. [9].)
The leading aberration terms that arise in this calculation

take the standard form. Specifically we can write the
accumulated change in the gyro spin due to aberration as

ð�ŜNSÞaberration ¼ �êNS � ~vþ 1

2
ðêNS � ~vÞðêGS � ~vÞ; (37)

with a similar equation holding for the WE direction. To
the necessary order, the velocity ~v can be written in

the SCF as ~v ¼ ~V	 þ ~vs, where ~V	 is the velocity of the
Earth’s orbit around the Sun and ~vs is the velocity of the
gyroscope around the Earth. For most of these aberration
terms, the possible effects from the coefficients �sAB would
arise through changes in the orbit via the perturbation
terms in the equations of motion for the satellite (18).
If we average these terms over the time scale of the
gyroscope orbit, we find that the possible effects due to
the coefficients �sAB average to zero or are negligible,
except for the term in Eq. (37) that is linear in the

Earth’s velocity ~V	.
The coefficients �sAB would also perturb the Earth’s orbit.

For the time scale of the experiment, secular changes to the
Earth’s orbit are irrelevant and so the focus is on determin-
ing how oscillatory changes in the Earth’s orbit might
manifest in Eq. (37). The conventional annual variation
of the leading aberration term is known and has an ampli-
tude of about 20 mas. The oscillations of the Earth’s orbit
that would arise due to Lorentz violation in the form of

the �sAB coefficients, and could affect the velocity ~V	 and
hence Eq. (37), would include both annual oscillations and
twice annual oscillations [5]. Note that the actual GPB data
collection time scale was just shy of 1 year. It is therefore
conceivable that GPB could be sensitive to a combination
of �sAB coefficients via the oscillatory orbital effects on the
Earth’s velocity aberration terms. On the other hand, the
standard time dependence of the conventional aberration
term was in fact used by the GPB experiment for calibra-
tion [17]. It is therefore unclear whether constraints on
such oscillatory effects could even be garnered from
the GPB data. This issue remains an open question for
investigation but we remark that, regardless of this issue,
our result constraining �sTT would remain unchanged since

LIMITS ON VIOLATIONS OF LORENTZ SYMMETRY FROM . . . PHYSICAL REVIEW D 88, 102001 (2013)

102001-7



orbital effects are not sensitive to this coefficient at the
post-Newtonian order we consider in this work.

VII. DISCUSSION

We have used measurements of geodetic precession and
frame dragging by Gravity Probe B to put the first direct
experimental constraint on the time-time coefficient of
Lorentz violation ( �sTT) in the Standard-Model extension.
This coefficient controls Lorentz-violating effects associ-
ated with relativistic, post-Newtonian gravitational effects,
and can also be measured by experiments involving light
trajectories [8,9].

Because the new constraint is linearly independent of
existing limits on the spatial coefficients �sJK, it allows us to
obtain individual upper bounds on �sTT, �sXX, �sYY and �sZZ

for the first time. These upper bounds strengthen slightly
when a rescaling of Newton’s gravitational constant in the
theory is taken into account. Our final upper bounds on the
SME coefficients are given in Table I.

We have also considered orbital effects. Our preliminary
results suggest that these do not significantly affect the
geodetic constraint from GPB, but can greatly strengthen
the frame-dragging one, as given in Eq. (36), so that it
almost becomes competitive with laboratory limits on
some of the spatial coefficients �sJK. If these results are
confirmed, then frame-dragging would appear to be an
unexpectedly sensitive probe of Lorentz violation. This
possibility should be investigated further. For instance,
the inclusion of the Earth’s quadrupole moment, both the
conventional one from its rotation and a possible Lorentz-
violating contribution due to spherical deformation, could
affect the results in this work. Also open for investigation
is the issue of possible Lorentz-violating effects on the

aberration terms arising from modifications to the Earth’s

orbit, as described in Sec. VI.
Since the �sAB coefficients may have either sign, we note

from Eqs. (9) that the SME can accommodate precessions

greater than as well as less than those predicted by standard

general relativity. It shares this property with generaliza-

tions of Einstein’s theory based on torsion [37], but differs

from others based on scalar fields or extra dimensions [38],

for which GR is a limiting case.
Future work can build on these results in various ways. It

would be of interest to study possible constraints from

frame dragging in other contexts, such as laser ranging to

artificial satellites [5,39] or signals from accretion disks

around collapsed stars [40]. We have focused on the �sAB

coefficients, but other sectors in the SME framework may

also contribute, such as the matter-gravity coupling coef-

ficients a� discussed in the literature [41]. These coeffi-

cients are generically species dependent, so extracting

limits would likely require using test bodies of different

composition [42].
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by V.A. Kostelecký (World Scientific, Singapore, 2011),

p. 258.
[15] L. Iorio, Classical Quantum Gravity 29, 175007 (2012).
[16] A. Hees et al., in Proceedings of the 13th Marcel

Grossmann meeting, edited by K. Rosquist, R. T. Jantzen

and R. Ruffini (World Scientific, Singapore, 2013) (to be

published).
[17] C.W. F. Everitt et al., Phys. Rev. Lett. 106, 221101

(2011).

BAILEY, EVERETT, AND OVERDUIN PHYSICAL REVIEW D 88, 102001 (2013)

102001-8

http://dx.doi.org/10.1103/PhysRevD.39.683
http://dx.doi.org/10.1103/PhysRevD.39.683
http://dx.doi.org/10.1103/PhysRevD.59.124021
http://dx.doi.org/10.1103/PhysRevD.55.6760
http://dx.doi.org/10.1103/PhysRevD.55.6760
http://dx.doi.org/10.1103/PhysRevD.58.116002
http://dx.doi.org/10.1103/PhysRevD.69.105009
http://dx.doi.org/10.1103/PhysRevD.74.045001
http://dx.doi.org/10.1103/PhysRevD.74.045001
http://dx.doi.org/10.1073/pnas.93.25.14256
http://dx.doi.org/10.1073/pnas.93.25.14256
http://dx.doi.org/10.1103/PhysRevD.71.065008
http://dx.doi.org/10.1103/PhysRevD.71.065008
http://dx.doi.org/10.1103/PhysRevD.80.044004
http://dx.doi.org/10.1103/PhysRevD.84.085025
http://dx.doi.org/10.1103/PhysRevLett.99.241103
http://dx.doi.org/10.1103/PhysRevLett.99.241103
http://dx.doi.org/10.1103/PhysRevLett.100.031101
http://dx.doi.org/10.1103/PhysRevD.80.016002
http://dx.doi.org/10.1103/RevModPhys.83.11
http://dx.doi.org/10.1103/RevModPhys.83.11
http://arXiv.org/abs/0801.0287v6
http://dx.doi.org/10.1088/0264-9381/29/17/175007
http://dx.doi.org/10.1103/PhysRevLett.106.221101
http://dx.doi.org/10.1103/PhysRevLett.106.221101


[18] J.M. Overduin, in Space, Time and Spacetime:
Fundamental Theories of Physics, edited by V. Petkov
(Springer, Heidelberg, 2010), p. 25.

[19] K. S. Thorne, in Near Zero: New Frontiers of Physics,
edited by J. D. Fairbank et al. (Freeman, New York, 1988),
p. 573.

[20] W. Rindler, Essential Relativity (Springer, Berlin, 1969),
p. 141.

[21] D. C. Wilkins, Ann. Phys. (N.Y.) 61, 277 (1970).
[22] D. Bini, P. Carini, R. T. Jantzen, and D. Wilkins, Phys.

Rev. D 49, 2820 (1994).
[23] C.W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation

(Freeman, New York, 1973), p. 1118.
[24] J. Schwinger, Am. J. Phys. 42, 510 (1974).
[25] B. R. Holstein, Am. J. Phys. 69, 1248 (2001).
[26] L. I. Schiff, Proc. Natl. Acad. Sci. U.S.A. 46, 871 (1960).
[27] J. Li, W. Bencze, D. Debra, G. Hanuschak, T. Holmes, G.

Keiser, J. Mester, P. Shestople, and H. Small, Adv. Space
Res. 40, 1 (2007).

[28] R. J. Adler and A. S. Silbergleit, Int. J. Theor. Phys. 39,
1291 (2000).

[29] We note that precessions in Ref. [5] are expressed in
dimensionless form, so that the dimensional factor gv0

does not appear in Eqs. (154)–(160) of Ref. [5], but is
instead multiplied explicitly onto the equivalent of the
relativistic drift equation (2) above. Here we prefer to
express both precessions and relativistic drift rates in
physical units of mas/yr. Also in Ref. [5], the quantity
denoted by � differs from �GS by -�.

[30] Q. G. Bailey, Phys. Rev. D 82, 065012 (2010).
[31] J. Tasson, Phys. Rev. D 86, 124021 (2012).
[32] There is a missing ‘‘�’’ sign in front of the expression for

the unit vector n̂ in terms of � on p. 32 of Ref. [5].
[33] J.M. Overduin, in Fourth Meeting on CPT and Lorentz

Symmetry, edited by V.A. Kostelecký (World Scientific,
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