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With safety management systems (SMS) occupying an increasingly 

prominent position in the aviation landscape, the ability to benchmark safety 

performance not only against past internal effectiveness but also across similar 

organizations seems a necessary element of one of SMS’s foundational themes: 

continuous improvement. At present, anecdotal evidence, supported by limited 

available research in the field, suggests that few organizations are engaged in 

meaningful evaluation and benchmarking of safety performance through an 

established methodology. This research investigates a method of evaluating an 

organization’s efficiency in creating a robust and positive safety culture using 

efficiency frontier estimation, specifically through data envelopment analysis 

(DEA). 

 

Introduction 

 

Whether as a byproduct of legislative requirement or as a result of corporate 

obligations and responsibility, aviation operators are increasingly implementing 

structured safety systems, many in the form of SMS. One of the “essential” 

elements of an SMS is a “safety culture” (Federal Aviation Administration, 2015, 

pp. 3-4). Acknowledging that the notion of safety culture has become widely 

accepted, if not comprehensively defined, the International Civil Aviation 

Organization (2013) addresses culture in the context of safety as largely an 

organizational issue that is supported by and manifested in safety reporting 

procedures and practices designed to identify inherent hazards. Safety management 

systems seek to create an environment in which organizations move from mere 

compliance with minimum regulatory requirements to a performance-based 

approach (International Civil Aviation Organization, 2009). In a performance-

based safety environment, there must be measurable indicators of the capacity for 

safety beyond lagging indicators such as accident or injury rate. The logical 

inference, consistent with the axiom often attributed to the management consultant 

Peter Drucker: “if you can’t measure it, you can’t manage it,” is that safety culture 

should be the subject of consistent evaluation and measurement as part of attempts 

to purposefully manage or shape an organization’s culture. This assertion is 

supported by standards such as those promulgated in the International Standard for 

Business Aircraft Operations (IS-BAO), ISO 9001:2000 and ISO 9001:2008, and 

AS 9100, all of which contain language referencing the achievement of objectives 

and targets, performance measurement and monitoring, and continual 

improvement; elements which are arguably central to the concept of safety culture.  

  

Despite the apparent requirement for a quantitative means of measuring and 

benchmarking safety culture and performance in aviation organizations, a 

commonly accepted approach does not presently exist. This research addresses this 
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problem by proposing the development of a mathematical model through the use of 

data envelopment analysis (DEA) to provide a quantitative benchmark of efficiency 

in establishing safety culture relative to a set of organizations, or from a single 

organization based on historical data.  

 

This research contributes to the body of knowledge by introducing a 

methodology for assessment of the relative efficiency of organizations in creating 

and maintaining a positive safety culture, and as such, the relative effectiveness of 

safety programs. The results of this study, when applied to operational data, present 

a method to guide organizations in identifying the most appropriate means of 

increasing their efficiency in developing a thriving safety culture. It further forms 

a foundation on which additional investigation of stochastic measurements, such as 

bootstrapped DEA, can be adopted as a measurement system. 

 

Review of Literature 

 

Safety Culture Measurement 

 

Measurement of safety program effectiveness is an onerous task for many 

organizations, not only those in the aviation industry. In the context of safety, 

traditional performance indicators tend toward a focus on forensic data, often 

reporting metrics like accident and incident rate, cost of accidents, insurance 

claims, and lost days due to injury (Arezes & Miguel, 2003). Peterson (2001) argues 

that safety systems should be evaluated based on a multiple-measures approach, 

suggesting that safety programs should be assessed using a minimum of three 

measures: accident record; audit scores, and results from perception surveys. In this 

context, perception surveys are intended to measure the state of an organization’s 

safety culture, an issue which has been the subject of growing attention within the 

aviation community (Wiegmann, Zhang, von Thaden, Sharma, & Mitchell 

Gibbons, 2004). 

 

Understanding safety culture as a science is somewhat of a paradox, given 

that it can act “simultaneously as precondition both for safe operations and for the 

oversight of incubating hazards” (Pidgeon, 1998, p. 205). This observation is 

suggestive of the somewhat abstract status of safety culture as a concept in practice. 

It is generally accepted that safety culture operates as a subset of a larger 

organizational culture in the same context as identified by Zohar (1980), though 

consensus has not necessarily been reached on exactly what the concept is, or on 

why it should be the subject of empirical inquiry (Frost, Moore, Louis, Lundberg, 

& Martin, 1991). Guldenmund (2010, p.1466) notes that “culture is an intangible, 

fuzzy concept encompassing acquired assumptions that is shared among the 
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members of a group and that provides meaning to their perceptions and actions and 

those of others.”  Schein (2010) generally agrees with Guldenmund’s 

characterization of the concept, despite also suggesting that there is no such thing 

as a safety culture independent of the more significant organizational construct 

(Conklin, 2016). Despite an apparent lack of conceptual specificity, from a practical 

standpoint, the study of safety and its related constructs is of apparent importance.  

 

Beus, Payne, Bergman, and Arthur (2010) cite 2008 U.S. Bureau of Labor 

Statistics figures that indicate in the United States in 2007; there were over 5,600 

work-related fatalities and over four million nonfatal work injuries. In the 

environment of aviation operations and specifically those that occur during ground 

operations, the Flight Safety Foundation (n.d.) estimates that around 27,000 ramp 

accidents occur worldwide each year, with over 243,000 injuries and a total cost of 

at least $10 billion annually. Although they are illustrative as examples of why 

safety endures as an area of intense scrutiny, these figures make no provision for 

attempting to capture the psychological costs or damage to an organization’s 

reputation as the result of an accident (Neal & Griffin, 2002). 

 

Attempts at measuring safety culture have come about in part as a result of 

the realization that the forensic, retrospective measurements that have long 

characterized attempts to assess safety, such as accident or incident rate, injuries, 

or fatalities, provide little support for proactive initiatives (O'Connor, O'Dea, 

Kennedy, & Buttrey, 2011). In aviation, as in many industries, actual accident rates 

have fallen to so low a level as to make their analysis as a measure of safety 

performance almost obsolete. In fact, the measurement of such metrics as accident 

rate can be viewed mainly as a reactive response to events that, assuming a 

functional safety system, theoretically occur with decreasing frequency (Keren, 

Mills, Freeman, & Shelley, 2009). It is often difficult to discern, reliant on such low 

base-rate phenomena, whether a lack of injuries or accidents is the result of 

organizational measures designed to reduce hazards, or if the absence of injury is 

merely a reflection of too short a period of observation (Beus, Payne, Bergman, & 

Arthur, 2010). Rather than require that a system reach failure as a means of 

identifying latent faults, the concept of measuring safety culture as a leading 

indicator of organizational safety performance is appealing from a management 

perspective in that it allows the potential for reduction of operational accidents 

through a proactive, and even predictive, approach. 

 

  While it is generally understood at the theoretical level that a positive 

safety culture is an essential element in the prevention of accidents, Wiegmann et 

al. (2004) note that no broadly standardized tools exist that can be used to assess 

safety culture. Reviewing the extant literature on the subject, however, Wiegmann 
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et al. (2004) identify five common themes that serve as indicators of safety culture. 

These indicators include organizational commitment, management involvement, 

employee empowerment, reward systems, and reporting systems. The importance 

of organizational commitment is echoed by Flin, Mearns, O'Connor, and Bryden 

(2000), who identified management behaviors and attitudes as an emergent theme 

in their own research.  Fuller (1997) also addresses organizational commitment as 

being a key indicator of safety performance, though not in an aviation-specific 

occupational health and safety context. In reviewing assessment instruments in the 

UK offshore oil industry, Davies, Spencer, and Dooley (2001) found that of 114 

different questionnaire items, 30 related directly to an organizational and 

managerial commitment to safety. Management involvement, like organizational 

commitment, is also well-supported as an indicator of the health of an 

organization’s safety culture. Choudry, Fang, and Mohamed (2007) assert that 

management commitment to safety initiatives and compliance is central to the very 

definition of safety culture, an observation echoed by Flin et al. (2000). That 

comparison of a different culture or climate assessment tools would indicate a 

preponderance of questions centered about managers’ safety behaviors is not 

surprising, given that supervisors “undoubtedly set the tone and tempo for 

organizational atmosphere” including perceptions regarding safety (Flin et al., 

2000, p. 186).  

 

Employee involvement appears in a number of safety culture instruments 

(Davies, Spencer, & Dooley, 2001; Fuller, 1997) and its importance is stressed by 

Geller (1994), who notes that employees who feel “part of a cohesive group” are 

more likely to act empathetically toward their fellow employees, increasing safety-

compliant behavior (p.21). Reason (1997) speaks to the matter of rewards, 

commenting that rewarding desirable safety behaviors can be a key element of 

creating a just culture, which he argues is a necessary component of a functional 

safety culture. Reward programs, naturally, rely on the consistent use and formal 

documentation; but when these conditions are satisfied, properly designed and 

implemented rewards can positively reinforce safety behaviors and safety culture 

(Wiegmann et al., 2004). Finally, the assertion by Wiegmann et al. (2004) that a 

healthy reporting system is a key indicator of a safety culture is echoed by Reason 

(1997), who notes that the rationale for any reporting system is to identify 

“organizational factors promoting errors and incidents” (p. 198). In summary, clear 

evidence exists within the literature in support of the previously identified 

indicators of safety culture performance. 

 

The body of knowledge of safety culture clearly suggests that the construct 

of safety culture is still developing, with a litany of definitions and tools for 

assessment. However vaguely-specified the concept of culture may be, the evidence 

4

International Journal of Aviation, Aeronautics, and Aerospace, Vol. 4 [2017], Iss. 4, Art. 9

https://commons.erau.edu/ijaaa/vol4/iss4/9



 

 

overwhelmingly supports its importance as a foundation for positive safety 

performance. The literature is also far from ambiguous in its support of attempts to 

quantify and analyze measures of safety culture as a leading indicator, allowing 

organizations to assess safety performance even in the absence of accidents. Data 

envelopment analysis is one such method for evaluation and analysis of safety 

culture 

 

Use of DEA for Benchmarking 

 

DEA is a robust, nonparametric alternative to regression analysis for 

measuring the efficiency of business operations as compared to an estimated 

production efficiency frontier (El-Mashaleh, Rababeh, & Hyari, 2010; Ray, 2004). 

This frontier is the estimated, but unobserved “geometrical locus of optimal 

production plans” (Simar & Wilson, 1998, p. 49). The estimated technical 

efficiency of any decision-making unit is the ratio of the distance from the origin 

to the unit under evaluation and the distance from the origin to the composite unit 

on the efficiency frontier (Barros & Dieke, 2008). Introduced by Farrell in 1957 

and refined to form the techniques which serve as the basis for this research by 

Charnes, Cooper, and Rhodes in a 1978 article, DEA was proposed as a means of 

objectively evaluating the efficiency of each participating decision-making unit 

(DMU) in a public program. In its original form (hereafter referred to as the CCR 

model after Charnes, Cooper, and Rhodes), DEA was limited by an assumption of 

constant returns to scale; that is, outputs change proportionately to a change in all 

inputs (Charnes et al., 1978). Following up on their earlier model, Banker, Charnes, 

and Cooper (1984) introduced a more refined set of variables to the DEA ratio that 

allowed for variable returns to scale, accommodating contestable market theory 

rather than a simple, single output economic model.  

 

The ability of the Banker, Charnes, and Cooper (BCC) model to 

accommodate reallocation of resources to more attractive or more profitable 

activities allows for the possibility that resources available within many safety 

systems are dynamic and may be apportioned as such. For this research, however; 

the inability of the BCC model to accommodate inefficiencies beyond those 

attributed to technical or managerial elements makes it an inappropriate technique 

as compared to the CCR model, which includes estimation of scale efficiencies, 

combining estimates into a single value while assuming constant returns to scale 

(Barros & Dieke, 2008). As opposed to methods such as stochastic frontier analysis 

(SFA), DEA was chosen in this study because, unlike in SFA, it requires neither a 

large sample size nor that the functional form for estimation of cost or production 

technologies be pre-specified, a characteristic that limits flexibility and makes SFA 

ill-suited to the research at hand (Assaf & Josiassen, 2011).  
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 El-Mashaleh, Rababeh, and Hyari (2010) undertook a study to benchmark 

the safety performance of construction contractors in Jordan. The El-Mashaleh et 

al. (2010) benchmarking study sought to compare the efficiency of utilization of 

safety-related expenses with safety expenses as a percent of total revenue as input 

variables and accident count as output variables. The authors acknowledge a 

limitation of their technique implicitly by suggesting a separate analysis of variance 

(ANOVA) be utilized to further examine differences between contractors. This 

study demonstrates that safety performance can be benchmarked against 

homogenous operators as well as internal measures evaluated over time through the 

use of DEA. In a similar vein, Beriha, Patnaik, and Mahapatra (2011) studied the 

applicability of DEA as a tool for the evaluation of safety performance in Indian 

organizations in the construction and manufacturing sectors.  

 

The use of DEA in production and technical efficiency estimation is due in 

large part to its ability to compare DMUs directly to peer organizations while 

avoiding the many assumptions inherent in similar techniques such as stochastic 

frontier analysis (Ray, 2004). Adding to the applicability of DEA as a tool for safety 

benchmarking is that inputs need not be expressed as homogenous units; a trait that 

is particularly appropriate given that influences of safety performance may occur 

across varying levels of measurement. Despite its apparent applicability to 

benchmarking, DEA is not without its limitations. First, because it is an extreme 

point technique, DEA is particularly susceptible to measurement and sampling 

errors (Simar & Wilson, 1998). Second, DEA as a method is only concerned with 

performance relative to the sample. If for instance, none of the subject organizations 

is efficient relative to a theoretical maximum value, DEA will only reflect relative 

efficiency and not the gap between reality and how well an organization could 

ideally be performing. Finally, and of particular interest in this study, DEA is 

considered a nonparametric, or deterministic, technique. As such, it does not 

produce standard errors and makes hypothesis testing extremely difficult (Ray, 

2004; Simar & Wilson, 1998). With this in mind, the present study was designed 

as a first step toward demonstrating the applicability of DEA to safety culture 

benchmarking in aviation, with the secondary goal of illustrating the need, along 

with suggestions for future directions, for expansions to native DEA techniques that 

allow stochastic efficiency measures. 

 

Method 

 

This research assumed a two-phase approach for model development. In the 

first phase, a native, nonparametric DEA model was developed and tested. In the 

second phase, the primary, native DEA model was used as a basis for the limited 

expansion of the model into stochastic, double-bootstrapped DEA form. In this 
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study, each organization whose measurement data are used as input information for 

DEA was considered a DMU. In a parallel use of the model, it is possible for an 

individual organization to self-audit and track performance at regular intervals 

considering each measurement taken over time as a separate DMU. In order to 

avoid inconsistencies in the measurement of production output, in this case, the 

previously-discussed indicators of safety culture, this study proposes to use a single 

conventional cultural measurement instrument for all DMUs. For the purposes of 

this research, the cultural survey described and implemented by von Thaden, 

Wiegmann, Mitchell, Sharma, and Zhang (2003) has been identified for its 

harmony with the five aforementioned cultural traits. To ensure that input and 

output variables are correctly identified as well as relevant to the intended 

efficiency estimate, the methodology outlined by Simar and Wilson (2001) was 

employed. 

 

Variables in a DEA model represent the conversion of inputs, such as 

resources or investment, into outputs, such as specific performance measures by the 

DMUs under study (El-Mashaleh, Rababeh, & Hyari, 2010). In the context of the 

present research, input and output variables are different from those that typify 

DEA models which aim to estimate financial or production efficiency. In early 

stages of this research, a number of variables for potential inclusion in the model 

were identified, including: annual safety budget (per capita or as a percentage of 

total budget); normalized lost-time injuries; normalized aircraft incidents; 

normalized hazard report submissions; mean-time-to-resolution of hazard reports; 

count of overdue hazard resolutions; workers’ compensation experience modifier; 

aircraft and general liability insurance loss ratio; and standardized scores derived 

from the selected cultural measurement instrument or its subsections. While the 

inclusion of many input or output variables could arguably increase the fidelity of 

the measurement, one limitation of DEA in this regard is the tendency for the 

number of variables to be too great relative to the sample size (Ray, 2005).  

 

To alleviate this concern, variables were checked in accordance with the 

methods proposed by Jenkins and Anderson (2003) for confirmation of input or 

output status and were aggregated to the extent practicable. The simplified output 

variable is the composite score of the von Thaden et al. (2003) cultural 

measurement instrument previously discussed. Input variables were limited to 

include measures selected to represent three facets of investment: capital, 

personnel, and leadership. Each of these variables relates back to the factors 

addressed by von Thaden et al. (2003). Table 1 summarizes the variable definitions 

and assumptions used in the context of this research. 
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Table 1 

Variable Descriptions and Measures 

 
Variable Input/ 

Output 

Description Measure 

Percent of total 

annual expenses 

spent on safety 

Input Measures the financial 

commitment of the 

organization to safety. The 

higher the metric, the 

higher the share of its 

expenses that an 

organization devotes to 

safety; and thus, the higher 

the financial commitment 

to safety. Computed as the 

ratio of annual expense on 

safety to the total expenses 

of the organization.  

Generally, the metric will 

be computed from actual 

annual expenditures. 

However, it may also be 

computed from budgeted 

annual expenses. 

% FTEs 

dedicated to 

safety positions 

Input This metric measures the 

human resource 

commitment of the 

organization to safety. The 

higher the metric, the 

higher the share of total 

workforce that an 

organization devotes to 

safety and thus, the higher 

the human resource 

commitment to safety. 

Computed as the ratio of 

the total full-time 

equivalents (FTE) 

dedicated to safety to the 

total FTEs of the 

organization.  

The use of FTE accounts 

for resources partially 

dedicated to safety, such 

as a pilot who in addition 

to flying duties also 

serves for 10% of work 

time on the union’s safety 

committee. Such a 

resource would be 

counted as .1 of an FTE 

dedicated to safety. The 

metric can be computed 

for any given point in 

time (snapshot), or 

averaged over a period of 

time. 

Mean hours of 

safety training 

per 

employee/year 

Input Measures the training 

commitment of the 

organization to safety. The 

higher the metric, the more 

safety training employees 

receive on average. 

Computed as total hours 

of safety training received 

by employees in the 

organization during a 

year divided by the 

average total number of 

employees in the 

organization during that 

year. 
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Variable Input/ 

Output 

Description Measure 

Safety 

prominence in 

leadership 

communication 

Input This metric measures the 

organization’s top 

leadership commitment to 

safety. The higher the 

metric, the more prominent 

safety is in top leadership 

communication. 

Computed by scoring 

each top leadership 

message to employees for 

the prominence of safety, 

and averaging the scores 

over leadership messages 

sent that year. Scoring is 

based on the following 

point system: 0 for no 

mention of safety; 1 for 

single-line mention of 

safety (e.g., "Work safe 

and take care of each 

other), 2 for dedicating 

one paragraph to safety, 3 

for dedicating more than 

one paragraph but not the 

entire message to safety, 

and 4 for dedicating the 

whole message to safety. 

Safety culture Output von Thaden et al. (2003) 

culture assessment 

instrument. 

Composite safety culture 

survey score. 

 

 

The methodology proposed in this study has a strong foundation in the CCR 

model previously discussed, and it follows the linear programming model also used 

by Beriha, Patnaik, and Mahapatra (2011). This model, adapted from Charnes, 

Cooper, and Rhodes (1978), is a maximization of the ratio of weighted outputs to 

weighted inputs subject to the constraint that the equivalent ratios for every 

decision-making unit (DMU) are equal to or less than unity (p. 430). The input and 

outputs variables are represented by yrj and xij and the variable weights determined 

by the solution are represented as ur and vi. This model is the basic foundation of 

DEA, and it aggregates measures of efficiency into a single value. There are two 

ways to state the ratio in the “ratio-form” or DEA model of technical efficiency 

(Cooper, Seiford, & Zhu, 2011). In the output-oriented form, the ratio considered 

is the ratio of outputs to inputs, where a higher ratio corresponds to higher 

efficiency. In the input-oriented form, the ratio considered is the reciprocal ratio, 

namely the ratio of inputs to outputs. In this case, a lower ratio corresponds to 

higher efficiency. For this research, the output-oriented CCR model was chosen as 
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a means of efficiency comparisons along a frontier based upon best practices or 

optimal implementation of cultural interventions.  

 

The Beriha et al. model (2011) is a functional one and is nearly identical to 

the original CCR formulation. In the context of this study, the model is formulated 

in virtually the same arrangement, though written in ratio form as in Equation 1.  

 

max ℎ𝑒(𝑢, 𝑣) = ∑ 𝑢𝑟𝑦𝑟𝑒

𝑟∈𝑅

/ ∑ 𝑣𝑖𝑥𝑖𝑒

𝑖∈𝐼

 

    s.t.:       
 (1) 

∑ 𝑢𝑟𝑦𝑟𝑑

𝑟∈𝑅

/ ∑ 𝑣𝑖𝑥𝑖𝑑

𝑖∈𝐼

≤ 1 ∀𝑑 ∈ 𝐷 

𝑢𝑟 ≥ 0 ∀𝑟 ∈ 𝑅 

𝑣𝑖 ≥ 0 ∀𝑖 ∈ 𝐼 

 

Where:  he is the objective function and represents the efficiency of DMU e 

which is evaluated, 

  ur is a decision variable and represents the weight of output r, 

  vi is a decision variable and represents the weight of input i, 

  yrd is the observed value of output r for DMU d, 

  xid is the observed value of input i for DMU d, 

  R is the set of all outputs, 

  I is the set of all inputs, and 

D is the set of all DMUs. 

 

To select a unique solution, the CCR model is transformed into a linear 

programming problem using the transformation by Charnes and Cooper (1962), 

which selects the representative solution in which the weighted sum of inputs 

equals unity. Equation 2 shows the resulting linear programming problem for the 

output-oriented CCR model. 

 

max 𝐸𝑒(𝜇) = ∑ 𝜇𝑟𝑦𝑟𝑒

𝑟∈𝑅

 

    s.t.:       

 (2) 

∑ 𝜇𝑟𝑦𝑟𝑑

𝑟∈𝑅

− ∑ 𝑣𝑖𝑥𝑖𝑑

𝑖∈𝐼

≤ 0 ∀𝑑 ∈ 𝐷 

∑ 𝑣𝑖𝑥𝑖𝑒

𝑖∈𝐼

= 1 
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𝜇𝑟 ≥ 0 ∀𝑟 ∈ 𝑅 

𝑣𝑖 ≥ 0 ∀𝑖 ∈ 𝐼 

 

Where:  Ee is the objective function and represents the efficiency of DMU e 

which is evaluated, 

 µr is a decision variable and represents the weight of output r, 

 vi is a decision variable and represents the weight of input i, 

 yrd is the observed value of output r for DMU d, 

 xid is the observed value of input i for DMU d, 

 R is the set of all outputs, 

 I is the set of all inputs, and 

 D is the set of all DMUs. 

 

 This linear programming model maximizes the sum of weighted outputs of 

the DMU that is being evaluated. The first constraint ensures that for each DMU 

the sum of weighted output is smaller or equal than the sum of weighted inputs. 

Through this constraint, a relationship between inputs and outputs is enforced. The 

second constraint ensures that the sum of weighted input for the DMU that is being 

evaluated is equal to one. Through this constraint, the uniqueness of a solution with 

maximum technical efficiency scores of one is enforced. The final two constraints 

ensure that the weights are non-negative. 

 

 The linear programming model shown in Equation 2 needs to be solved 

once for each DMU. To enable simpler processing of the model for the complete 

set of DMUs in commercial solver software, the researcher extended the model into 

a form in which the efficiency of all DMUs can be solved within one model run. 

Equation 3 shows the extended model. 

 

max ∑  𝐸𝑒(𝜇)

𝑒∈𝐷

= ∑ ∑ 𝜇𝑟𝑒𝑦𝑟𝑒

𝑟∈𝑅𝑒∈𝐷

 

    s.t.:       

 (3) 

∑ 𝜇𝑟𝑒𝑦𝑟𝑑

𝑟∈𝑅

− ∑ 𝑣𝑖𝑒𝑥𝑖𝑑

𝑖∈𝐼

≤ 0      ∀𝑑 ∈ 𝐷, 𝑒 ∈ 𝐷 

∑ 𝑣𝑖𝑒𝑥𝑖𝑒

𝑖∈𝐼

= 1       ∀𝑒 ∈ 𝐷 

𝜇𝑟𝑒 ≥ 0             ∀𝑟 ∈ 𝑅, 𝑒 ∈ 𝐷 

𝑣𝑖𝑒 ≥ 0         ∀𝑖 ∈ 𝐼, 𝑒 ∈ 𝐷 
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Where:  Ee is the objective function and represents the efficiency of DMU e 

which is evaluated, 

µre is a decision variable and represents the weight of output r for the 

evaluation of DMU e, 

vie is a decision variable and represents the weight of input i for the 

evaluation of DMU e, 

 yrd is the observed value of output r for DMU d, 

 xid is the observed value of input i for DMU d, 

 R is the set of all outputs, 

 I is the set of all inputs, and 

 D is the set of all DMUs. 

 

This linear programming model maximizes the sum of weighted outputs of 

all DMUs rather than just one. The constraints are similar as in Equation 2, with 

the difference that they now apply for all DMUs rather than for just the one DMU 

that is being evaluated. As such, the number of constraints increases as a multiple 

of the number of DMUs in the set. Once populated with input data, the model was 

computed within the software program LINGO, version 13.0.   

 

Results and Discussion 

 

Because of limitations on the accessibility of safety culture survey data as 

well as direct measurement data for the proposed model variables, the model was 

tested using randomized, contrived data. The nature of the cultural measurement 

instrument suggested for use in this model made it incompatible with the timeframe 

imposed upon this study. As such results are limited by their ability to inform 

generalizable conclusions. Yet these remain useful as a means of testing the model 

as an incremental step toward demonstrating the applicability of DEA as a safety 

culture benchmarking tool. 

 

Simulated Data and Testing 

 

To test the model in the absence of real experimental data, an artificial set 

of test data were developed. Testing was completed in three phases. In the first 

phase, artificial test data were evaluated both through the researcher’s algorithm 

and a step-by-step manual computation based on a Microsoft Excel spreadsheet to 

ensure proper functioning of the algorithm. Data for five organizations were 

purposively synthesized with apparent differences in the input and output values, 

and the results from both the researcher’s algorithm and the step-by-step 

computation were compared for consistency in results, shown in Table 3. In the 

second phase, test cases of artificial data with known efficiency ranking between 
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organizations were created and evaluated in the model to ensure the model would 

provide the correct ranking of efficiency. Finally, testing of the model was 

completed using random, simulated data. In this way, the model was both verified 

to ensure computational accuracy and validated to demonstrate that performance 

was as expected given both purposive and random input selection. A primary 

limitation to testing of the model is that the literature indicates that no analog 

measures to the proposed model currently exist. As such, this study takes on some 

exploratory characteristics. Rather than attempt comparison of model results to an 

established measure, testing of the model was limited to simulated data and 

evaluation of whether the results were logically supported by input data. 

Descriptive statistics of data used in the first phase of testing are presented in Table 

2. Excel computation of the DEA problem resulted in the scores for each of the five 

phase one test organizations as given in Table 3. 

 

Table 2 

Test Phase 1 Variable Descriptive Statistics 

 

Variable Mean Standard Deviation Min Max 

% of budget 0.87 0.57 0.35 1.80 

% of FTEs 1.41 0.63 0.75 2.30 

Hours of annual training 19.40 7.47 12.00 30.00 

Top leadership message score 1.48 0.43 1.00 2.10 

Safety score 4.32 1.37 2.80 6.30 

 

 

Table 3 

DEA Efficiency Estimates for Phase 1 Testing 

 

Organization DEA Estimate 

A 1.00 

B 1.00 

C 0.98 

D 1.00 

E 1.00 

 

 

The test data were evaluated in the researcher’s algorithm for the DEA 

model. The results from the authors’ algorithm were consistent with those from the 

step-by-step manual computation, providing an initial verification of the accuracy 

of the researcher’s algorithm. For second phase testing, artificial data for test DMUs 

were created. Table 4 shows the artificial test data. Table 5 shows the relative 
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efficiency expected from the DEA for this test set of data, as well as the efficiencies 

computed from DEA. This test verified that for predictable situations, that 

researcher’s algorithm provides accurate, logical efficiency rankings. 

 

The third phase, randomized test dataset included data for the four input 

variables and the one output variable for 14 organizations. The number of test 

organizations was limited to 14 due to an a priori testing constraint limit of 250, 

and 14 organizations with 4 inputs and 1 output resulted in 225 constraints. The 

input data were generated by choosing at random from a normal distribution, with 

lower-bound truncation at zero for values that fell below zero for all variables, 

upper-bound truncation at 75 for percentage input values, and upper-bound 

truncation for top leadership message at 4. The parameters of the normal 

distribution are shown in Table 6. 

 

Table 4 

Phase 2 Test Data  

 

Inputs  Output 

Org. % 

Budget 

% 

FTEs 

Training 

Hours 

Leadership 

Messages 

 Safety 

Culture  

 

A 1 1 1 1  7  

B 0 0 15 0  3  

C 0 0 30 0  3  

D 0 0 60 0  6  

E 0 0 45 0  3  

 

 For each of the 14 test organizations, a value for the output variable safety 

culture score was generated based on the four input variables of each organization 

and a random noise. Equation 4 describes the formula used to generate the safety 

culture score. 

 

 [safety culture] =  7 – 7 / (1 + .6 * [% of budget]  

   + .4 * [% of FTEs]    

 (4) 

   + .02 [training hours] 

   + .4 [leadership message]) 

   + ε  
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Table 5 

Expected and Actual Efficiency Ranking 

 

Expected  DEA evaluation 

Org. Rank Rationale  Efficiency Rank 

A 1 Highest possible outcome with lowest 

possible inputs ensures this organization 

lies on the frontier 

 1.00 1 

B 1 Highest possible outcome to input ratio 

with only training input, ensures this 

organization lies on the frontier as input 

mix different than A 

 1.00 1 

C 3 Second highest possible outcome to input 

ratio with only training input 

 .50 3 

D 3 Linear multiple (2x) of C for both inputs 

and outputs 

 .50 3 

E 5 Lowest possible outcome to input ratio 

with only training input 

 .33 5 

 

Table 6 

Phase 3 Input Variable Parameters 

 

Input variable Mean Standard Deviation 

% of budget 1.0 .5 

% of FTEs 2 .75 

Hours of annual training 32 6 

Top leadership message score 1.75 .5 

 

 

This equation was developed to ensure that safety culture increases with increasing 

values for the input variable and that the mean safety culture score was 5.1, 

consistent with prior research validating the selected measurement instrument 

(Wiegmann, von Thaden, Mitchell, Sharma, & Zhang, 2003). Each input variable 

value range was developed by researcher consensus based on anecdotal experience. 

The random noise ε, which is randomly drawn from a normal distribution with zero 

mean and standard deviation 0.3, ensured that efficiencies varied between different 

organizations. To ensure the safety score values were valid on the scale of the 

variable, the values were truncated at a lower bound of 1 and an upper bound of 7. 

Table 7 shows the descriptive statistics of the test data. The full test data is 

reproduced in Table 8. The safety score mean of 4.83 is about .5 standard deviations 
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lower than the design target of 5.1. This difference is due to sampling, and these 

data were found to be suitable for testing of the model. 

 

Figure 1 shows a plot of the relative technical efficiency scores compared 

to safety culture for the 14 test organizations. It is important to note that some of 

the relatively most efficient organizations have relatively low safety culture scores. 

Organization G has the overall lowest safety culture score of 3.93. However, it is 

also among the efficient organizations. This shows that organization G is able to 

efficiently use very few inputs and still achieve a safety culture score of 3.93. 

 

Table 7 

Phase 3 Test Variable Descriptive Statistics 

 

Variable Mean Standard Deviation Min Max 

% of budget 1.19 0.50 0.30 1.98 

% of FTEs 1.79 0.50 0.88 2.40 

Hours of annual training 23.32 5.72 13.52 32.48 

Top leadership message score 1.61 0.39 1.11 2.23 

Safety score 5.13 0.71 3.93 6.21 

 

 

Table 8 

Phase 3 Test Data  

 

 Inputs  Output 

Org. % 

budget 

% 

FTEs 

Trng. 

hours 

Leadership 

msg. 

 Safety 

Culture  

Efficiency 

A 0.81 2.00 24.69 2.09  5.51 0.76 

B 1.27 2.18 28.54 1.35  4.35 0.68 

C 1.57 1.49 21.11 2.09  5.37 0.87 

D 1.76 1.97 25.20 1.83  5.97 0.84 

E 1.71 1.31 24.36 1.40  5.83 1.00 

F 1.98 2.40 19.67 1.44  4.37 0.74 

G 0.30 0.89 13.78 1.18  3.93 1.00 

H 0.50 2.26 19.35 1.11  4.53 1.00 

I 1.32 2.18 13.52 1.57  5.67 1.00 

J 1.13 2.05 31.54 1.16  6.21 1.00 

K 1.14 0.88 26.66 1.32  4.76 1.00 

L 0.76 1.36 32.48 2.04  5.25 0.84 

M 0.80 2.08 24.69 2.23  5.49 0.73 

N 1.55 1.96 20.94 1.68  4.54 0.71 
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Figure 1. Relative technical efficiency scores versus safety culture. 

 

 

Bootstrapped DEA 

 

As discussed earlier, one of the primary limitations of DEA is that it is an 

inherently deterministic model, and it does not make allowances for measurement 

error in the derivation of efficiency scores. As an extension of the technique 

previously outlined, bootstrapping allows for the flexibility of DEA to be 

maintained while allowing for statistical properties of efficiency estimates to be 

determined. Bootstrapping in the context of DEA was introduced by Simar and 

Wilson in 1998 based on earlier work introducing the bootstrap by Efron in 1979; 

and it has since been refined to represent an established technique, as is described 

in their 2007 article. At its core, bootstrapping is a technique based on the idea of 

repeated simulation of the data-generating process (DGP) (Simar & Wilson, 1998). 

Bootstrapping repeatedly resamples the original estimator in order to mimic the 

sampling distribution missing from deterministic methods. Because the asymptotic 

distribution in DEA is not only difficult to determine, but also prone to error, 

bootstrapping is used to estimate the sample properties without the need for fully 

specifying the DGP (the sample serves as the population from which estimates are 

treated as valid samples).  In their seminal 2007 work, Simar and Wilson describe 

the advantages of their bootstrapping strategy and test it through a series of Monte 

Carlo simulations. Simar and Wilson (2007) address concerns regarding the 

sensitivity of nonparametric frontier approach to outliers and to the inclusion of 
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stochastic noise, both of which are efficiently suppressed by the double-

bootstrapping technique (Murillo-Zamorano, 2004; Simar & Wilson, 2007). In 

short, bootstrapping allows for statistical inferences to be made within the domain 

of DEA, a traditionally nonparametric technique. 

 

This study suggests that the concept of performance may be extended to 

those measures that make up a composite evaluation of safety culture. The literature 

supports that by using a safety culture assessment instrument to gain performance 

inputs, DEA can be applied to form a mathematical model that estimates the 

efficiency of organizational safety culture with respect to peer organizations. By 

mitigating some of the limitations of traditional DEA and allowing for stochastic 

analysis, bootstrapped DEA is an appropriate and feasible methodological approach 

to the issue of benchmarking safety culture in aviation organizations taking into 

consideration the compounding effects of environmental determinants of 

efficiency. Further discussion along these lines is included in the results and 

conclusions that follow. 

 

Stochastic Model 

 

As an expansion of the previously discussed native DEA model, a stochastic 

form of the same is presented here following the methods outlined by Simar and 

Wilson (2007). To allow bootstrapping, an output-oriented DEA efficiency 

estimator must first be calculated as was illustrated by the linear programming 

model in equation 3. The efficiency estimator hereafter referred to as 𝛿𝑖, can now 

be used in a two-stage bootstrapping procedure. Even a cursory review of the 

relevant literature illustrates that in many cases of bootstrapping, a single bootstrap 

is utilized in conjunction with ordinary least squares (OLS) regression of DEA 

estimates on covariates treated as environmental variables (Simar & Wilson, 2007). 

Equation 5 illustrates a common model by which this is accomplished. 

 

(5) 𝛿𝑖 = 𝑧𝑖𝛽 + 휀𝑖      

  

This method presents a problem in that serial correlation is almost always 

present in DEA efficiency scores, given that calculating an efficiency estimate of 

one DMU necessarily requires an evaluation of all other DMUs in the subject set. 

This correlation renders normal regression analysis invalid. In addition, 

environmental variables as previously described are also correlated with the input 

and output variables used in the model, leading to biased results, especially in small 

sample sizes (Assaf & Josiassen, 2011). To circumvent these issues, the double 

bootstrap proves well suited. As outlined by Simar and Wilson (2007) and as in 
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Coelli, Perelman, and Romano (1999), Equation 6 represents a second-stage 

estimation to determine what factors contribute to variation in production 

efficiency. Size and accident rate for each DMU are proposed as appropriate 

environmental actors for second-stage estimation and analysis. 

 

(6) 𝛿𝑖𝑡 = 𝛽0 + 𝛽1𝑆𝑖𝑧𝑒𝑖𝑡 + 𝛽2𝑅𝑎𝑡𝑒𝑖𝑡 + 휀𝑖𝑡     

 

Where:  𝛿𝑖𝑡 represents the CCR DEA efficiency estimates, 

𝑆𝑖𝑧𝑒𝑖𝑡 is a dummy variable wherein organizations of greater than 50 

employees, are represented by 1, otherwise, 0, 

𝑅𝑎𝑡𝑒𝑖𝑡 is the annual normalized accident rate, 

and 휀𝑖𝑡 is random error representing statistical noise as was included 

in the previously described native DEA model. 

 

This model, once populated with appropriate data, can then be double 

bootstrapped as described and first- and second-stage estimation values can, 

assuming that second-stage estimation variables conform to expectations of 

constant returns to scale, be evaluated by truncated regression (Barros & Dieke, 

2008; Simar & Wilson, 2007). In this way, a stochastic evaluation of the effect of 

the first- and second-stage may be evaluated in terms of both statistical and practical 

significance. 

 

Practical Implications 

 

In terms of practical implementation, it is intended that the results of the 

model presented here be used as a tool for identifying standardized practices as well 

as the most efficient use of limited resources earmarked for safety initiatives 

designed to improve safety culture. The absence of accidents, for instance, is not 

an absolute indicator of either effectiveness or efficiency, and the model presented 

in this study provides a more proactive, granular approach to the evaluation of 

particular safety-related initiatives in terms of the efficient use of finite resources 

toward a focus on the most effective interventions. Of interest in the model 

proposed here is to note to readers that efficiency and effectiveness may exist as 

separate constructs. Organizations G and J, as examples, are both operating 

efficiently, though their safety culture total scores, given in Table 4, are entirely 

different. This disparity is the impetus behind benchmarking of safety and 

illustrates the need for further empirical investigation of organizational factors 

contributing to safety. 

 

As a measure of efficiency improvement over time, this model allows an 

organization to evaluate how different budgetary allocation or cultural intervention 
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strategies affect actual output in terms of efficiency of use. At present, such 

evaluation of safety initiatives is generally poorly specified and as previously 

discussed is in large part based on forensic and imprecise measures such as accident 

rate. The double bootstrap procedure suggested herein allows for a more robust 

evaluation of estimation variables, including those related to technical, managerial, 

and environmental conditions. Reasoning counterfactually about the efficiency of 

safety investments, as this method allows, is a substantial step forward in not only 

understanding the role of organizational safety culture but in the purposeful 

maturation of culture. 

 

Future Research Directions 

 

As was discussed previously, native DEA techniques are particularly 

susceptible to errors in both measurements and in sampling. It is a deterministic 

technique, and as such is limited in that native DEA results cannot be extended to 

hypothesis testing. Instead, stochastic analysis must be achieved using individual 

input and output measures, and not the DEA results themselves. The results realized 

in this study are sufficient to inform the development of further models that may 

address the restrictions inherent to native DEA as a single-solution benchmarking 

tool. Further research would likely be best focused on the sequential model 

expansion proposed herein, and on potential means of counterfactual reasoning 

within such models. For example, the model presented here requires extensive 

validation of variable selection, a process that must require data unavailable within 

the scope of the present study. Results from this study could be used as points of 

comparison for future research as well, and along those lines, the present study 

would benefit from the availability of actual organization data.  
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