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Abstract 

This individual Capstone project examined and evaluated current industry methods of testing, 

certification, and maintenance of advanced composite materials for the construction of 

commercial transport aircraft and the FAA regulations governing their use.  The project critically 

compared and contrasted existing FAA standards and regulations governing the testing, 

certification, and maintenance of advanced composites for commercial transport aircraft 

structural applications with current industry practices to determine whether there were any areas 

of conflict between the two in order to accept or reject that current testing, certification, and 

maintenance procedures for advanced composites used in primary and secondary commercial 

transport aircraft structures are standardized throughout the aerospace industry and sufficiently 

capable of detecting damage or component failure.  This was accomplished by performing a 

qualitative and quantitative analysis utilizing meta-analysis to contrast and compare past and 

current aerospace composite materials studies with non-destructive inspection (NDI) testing and 

structural health monitoring (SHM) data to determine statistical significance that supported or 

refuted the hypothesis of comprehensive process improvement throughout the industry.  The 

results of the analysis showed that the hypothesis was accepted for testing and certification, but 

overwhelmingly rejected for current maintenance and repair.  In addition, industry concerns were 

examined to determine whether limitations exist that would preclude the future use of advanced 

composites in structural applications based on current FAA standards and regulations.  This 

project determined how current industry practices and FAA methodologies for the testing, 

certification, and maintenance of advanced composites in commercial transport aircraft structural 

applications may need to be modified in order to capture and address future industry use. 

 

Keywords: advanced composites, testing, certification, maintenance, damage detection
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Proposal 

(Approved by ERAU Worldwide Aeronautics Department on April 6
th

, 2013) 

The Application of Advanced Composites for the 

Construction of Commercial Transport Aircraft 

Structural Composite Materials Integration 

The use of composite materials by the aerospace industry has increased over the past 

several decades for the construction of commercial transport aircraft that now includes the use of 

advanced composites in primary and secondary structures such as wings and fuselage 

components.  This increased use also brings with it the requirement for new validation tests, 

certification processes, and standardized repair procedures that will differ significantly from 

traditional metallic aircraft structure testing, certification, and repair.  This recent expanded use 

of advanced composites by aerospace manufacturers warrants further discussion into current and 

future testing, certification, and repair procedures for primary and secondary structures advanced 

composite parts and assemblies used in the construction of commercial transport aircraft. 

The integration of composite materials for use in aerospace applications originated from 

the desire to replace conventional metallic structures with a light-weight, higher strength 

alternative.  Advanced composites are used by the aerospace industry and in other high-

performance applications where high-strength and stiffness are required.  Advanced composites 

are composite materials that start with high-strength and high extensional stiffness fibers such as 

carbon, boron, and aramid (Kevlar™) that are imbedded within a homogenous resin matrix of 

epoxy, bismaleimide, or polyimide which then becomes a composite of the two separate 

materials that forms a single material (laminate) with high strength and stiffness properties.  The 

strength and stiffness characteristics that are created by lightweight composite materials have 
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allowed them to replace traditional heavier metallic structures in order to yield a higher strength-

to-weight ratio for aerospace applications.  Early structural use of advanced composites by 

aerospace manufacturers included parts and assemblies such as doors and panels, engine 

nacelles, control surfaces, and nose radomes.  Due to the high-strength and stiffness properties of 

advanced composites, the use has been expanded to include aircraft structural load-bearing parts 

and assemblies primary structures such as wings and fuselage components.  With the 

demonstrated advantages of advanced composites in the aerospace industry such as increased 

strength-to-weight and stiffness, and increased fatigue life and static life, there are also industry 

concerns such as damage detection, standardized maintenance procedures and structural health 

monitoring. 

Damage Vulnerability 

According to the U.S. Navy’s description of typical damage that occurs to advanced 

composite materials, most damage is not readily detectable.  Non-visible sub-surface damage can 

exist due to the brittle characteristics of advanced composites that make it prone to impact 

damage.  Impact forces that occur on the surface of composite materials can rupture the matrix 

which will cause matrix cracking, delamination between fiber plies, and broken fibers.  Because 

the full extent of the damage is impossible to detect by visual inspection alone, non-destructive 

inspection (NDI) such as ultrasonic testing must be performed to evaluate and assess the 

damaged area.  As well as NDI testing, structural health monitoring such as piezoelectric SMART 

Layers™ and in-flight load monitoring are also critical for the detection of sub-surface material 

failure that may be occurring due to other factors such as fatigue or material softening from 

liquid intrusion or high heat.  The relevance of NDI testing and structural health monitoring of 

advanced composite components suggests a need for further discussion into the current 
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techniques used for damage and failure detection of composite materials in the aerospace 

industry with respect to maintenance and repair for commercial transport aircraft applications. 

Statement of the Project 

Are current testing, certification, and maintenance procedures for advanced composites 

used in primary and secondary commercial transport aircraft structures standardized throughout 

the aerospace industry and sufficiently capable of detecting damage or component failure?  This 

proposed research project will examine current industry methods of testing, certification, and 

maintenance of advanced composite materials for the construction of commercial transport 

aircraft and the FAA regulations governing their use to determine whether the continued use of 

advanced composites is sustainable within the industry under the current regulations by 

completing a mixed-method qualitative and quantitative analysis.  The scope will be to critically 

compare and contrast existing FAA standards and regulations governing the testing, certification, 

and maintenance of advanced composites for commercial aircraft structural applications with 

current industry practices to determine whether there are any areas of conflict between the two, 

and examine industry concerns to determine whether limitations exist that would preclude the 

future use of advanced composites in structural applications based on current FAA standards and 

regulations by utilizing meta-analysis with ANOVA.  The goal of this project will be to 

determine how the current FAA standards and regulations governing the testing, certification, 

and maintenance of advanced composites in commercial transport aircraft structural applications 

may need to be modified in order to capture and address future industry use.  Conclusions and 

recommendations will be made based on data that shows comprehensive process improvement 

throughout the aerospace industry and government regulatory agencies. 
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Program Outcomes (POs) 

PO (1) 

Students will be able to apply the fundamentals of air transportation as part of a global, 

multimodal transportation system, including the technological, social, environmental, and 

political aspects of the system to examine, compare, analyze and recommend conclusions. 

This research project will examine current testing, certification, and maintenance of 

advanced composites for commercial transport aircraft applications in the aerospace industry and 

analyze the impact of its use on air transportation.  The multimodal transportation system aspect 

will be addressed by examining and comparing current structural validation testing used by 

industry manufacturers with the certification requirements established by the FAA for the use of 

advanced composites in primary and secondary commercial transport aircraft structures in order 

to show how this has impacted the overall air transportation industry.  The technological aspect 

will be addressed by examining the integration of advanced composites for the construction of 

commercial transport aircraft and how this integration has benefited and challenged the 

aerospace industry with the development and manufacturing of innovative and more efficient 

aircraft that have significant differences over traditional commercial transport aircraft.  The 

social aspect will be addressed by examining and contrasting the confidence that airline 

passengers have towards commercial transport aircraft that are constructed mostly from 

advanced composites such as the new Boeing 787 Dreamliner with traditional commercial 

aircraft that utilize metallic construction.  The environmental aspect will be addressed by 

examining the impact of composite commercial transport aircraft on the environment such as 

fuel conservation, noise abatement, and improvements in manufacturing efficiency.  The 

political aspect will be addressed by critically examining the government regulatory 

methodology to determine composite materials testing and certification requirement criteria for 
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both primary and secondary commercial transport aircraft structures and the proactive 

improvement approaches implemented by the FAA such as the establishment of funded research 

for the Joint Advanced Materials & Structures Center of Excellence (JAMS).  Conclusions and 

recommendations will be made for possible process improvements and the continued use of 

advanced composites in the aerospace industry based on the research presented. 

PO (2) 

The student will be able to identify and apply appropriate statistical analysis, to include 

techniques in data collection, review, critique, interpretation and inference in the aviation and 

aerospace industry. 

This research project will utilize a meta-analysis to contrast and compare past and current 

aerospace composite materials studies (> 5) from the Joint Advanced Materials & Structures 

Center of Excellence (JAMS) with Composites Materials Handbook (CMH-17) non-destructive 

inspection (NDI) testing (disbond/delamination and damage tolerance) and structural health 

monitoring (SHM fatigue and reliability) data to determine statistical significance that supports 

or refutes comprehensive process improvement throughout the industry in order to answer the 

research question.  Utilizing ANOVA, the effectiveness of NDI testing and structural health 

monitoring of advanced composite structures will be analyzed to examine whether there is a 

statistically significant difference (p = .05) between damage and failure detection and 

standardized testing, certification, and maintenance/repair procedures currently being utilized 

throughout the aerospace industry.  Data interpretation and inferences for aerospace composite 

materials studies with NDI testing and structural health monitoring of composite materials in the 

aerospace industry will be made based on the results of the meta-analysis and ANOVA. 
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PO (3) 

The student will be able (across all subjects) to use the fundamentals of human factors in all 

aspects of the aviation and aerospace industry, including unsafe acts, attitudes, errors, human 

behavior, and human limitations as they relate to the aviators adaption to the aviation 

environment to reach conclusions. 

The fundamentals of human factors will be examined based on the critical nature of 

component failure and the relation to performing composite repair correctly.  The aspect of 

unsafe acts will be addressed by examining how component failure can be directly related to 

how the repair is performed and how this is especially critical if the composite part or component 

is used in a load-bearing area of the aircraft which could cause catastrophic failure if the 

component fails due to improper repair.  The attitudes aspect will be addressed by examining 

and comparing past and current composite repair artisan best practice methods that may be 

unique to manufacturers and airline maintenance with the prescribed industry standard methods 

of composite repair.  The human limitations and error aspects will be addressed by examining 

multiple composite repair techniques and procedures to show how composite repair artisan 

training and experience will impact the quality and correctness (free of defects and errors) for the 

type of repair being performed.  Additionally, this research project will critically examine non-

standard repairs and maintenance performed on damaged composite components by addressing 

how the human behavior aspect in the aerospace industry can cause malpractice within the 

organizational (airline) and intermediate (manufacturer and repair facility) levels of composite 

maintenance and repair. 
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PO (4) 

 

The student will be able to develop and/or apply current aviation and industry related research 

methods, including problem identification, hypothesis formulation, and interpretation of findings 

to present as solutions in the investigation of an aviation/aerospace related topic. 

This research project will present a qualitative and quantitative study that will be used to 

identify and examine current industry concerns and problems regarding the use of advanced 

composites in commercial transport aircraft applications with the hypothesis that industry-wide 

comprehensive process improvement should be implemented and maintained for the 

promulgation of improved structural validation testing, certification, and standardized repair 

procedures.  Meta-analysis in-conjunction with ANOVA data interpretation will be used to 

formulate proposals that address current testing, certification, and standardized repair with 

recommendations and changes for aerospace industry manufacturers and the FAA to determine 

whether current industry practices and FAA regulations support the continued use of advanced 

composites in primary and secondary structures for the construction of commercial transport 

aircraft. 

PO (5) 

The student will investigate, compare, contrast, analyze, and form conclusions to current 

aviation, aerospace, and industry-related topics in aeronautics, including advanced 

aerodynamics, advanced aircraft performance, simulation systems, crew resource management, 

advanced meteorology, rotorcraft operations, and advanced aircraft/spacecraft systems. 

This research project will compare and contrast the standards and regulations currently 

implemented by the FAA governing the use of advanced composites for commercial transport 

aircraft structural applications with current industry practices to determine whether they are 

congruent.  The topic of advanced aerodynamics will be addressed by examining the 
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performance benefits of advanced composites integration for the construction of commercial 

transport aircraft with respect to design innovation that will show how the use of composite 

materials has increased the aerodynamic flight performance characteristics.  The topic of 

simulation systems will be addressed by examining the industry methods currently used to 

predict fatigue life and failure mode for advanced composites used in aerospace structural 

applications.  The topic of advanced meteorology will be addressed by examining the industry 

concern of lightning strike protection for commercial aircraft that utilize composite materials in 

place of traditional metallic structures.  The topic of advanced aircraft/spacecraft systems
1
 will 

be addressed by further examining current commercial transport aircraft design and 

manufacturing industry concerns and determining whether any limitations exist that would 

preclude the future use of advanced composites in structural applications based on current FAA 

regulations and industry practices and if the continued use of advanced composites for the 

construction of commercial transport aircraft is sustainable within the industry.  Additionally, the 

topic of crew resource management (CRM) will also be addressed by examining and comparing 

the maintenance training of composite materials repair artisans at the organizational (airline) and 

intermediate (manufacturer and repair facility) levels with the prescribed composite industry 

repair procedures, methods, and techniques to show how aerospace industry-wide CRM for 

composite materials repair will need to be implemented and standardized in order to maintain 

effective and safe repairs for commercial transport aircraft. 

Note.  Refer to Table A1 in the Capstone Project Guide (Appendix A) for Program Outcome 

correlation.  The topics of advanced aircraft performance and rotorcraft operations will not be 

addressed because they were not included in the student’s Aeronautics specialization curriculum. 

[1] The topic of advanced aircraft/spacecraft systems will be sufficiently addressed with the 

student’s applicable Aeronautics specialization curriculum core topic of aircraft and spacecraft 

development from the 2008-2010 Worldwide Catalog. 
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The Application of Advanced Composites for the 

Construction of Commercial Transport Aircraft 

Project Introduction 

With the manufacturing of new composite transport aircraft such as the Boeing 787 

Dreamliner and Airbus A350 XWB, multi-national regulatory agencies (FAA and EASA) have 

addressed the industry concerns of using carbon fiber reinforced polymers (advanced 

composites) for primary and secondary aircraft structures (wings, fuselage, and empennage).  

This has been accomplished here in the United States through the formation of the Joint 

Advanced Materials & Structures Center of Excellence (JAMS) in 2003 by the FAA for the Air 

Transportation Centers of Excellence under the FAA Research, Engineering and Development 

Authorization Act of 1990.  After the first JAMS Technical Review Meeting was conducted in 

2005, annual coordination meetings have been taking place in-conjunction with the following 

composite materials standardization organizations: CMH-17 (Composite Materials Handbook) 

and ASTM International Committee D30 on Composite Materials.  These organizations along 

with the JAMS partnership research universities (University of Washington and Wichita State 

University), combined with over 200 industry members from all over the world, converge in an 

open forum environment for the sole purpose of presenting studies and data in order to advance 

the field of polymer matrix composites in the aerospace industry.  This type of collaboration is 

necessary (and critical) not only for updating composite materials standards, but it also allows 

for new research and data to be presented that can be used by manufacturers and the FAA.  As 

aerospace manufactures increase the use and integration of advanced composites for Part 25 

aircraft, increased industry collaboration will also be required for its continued and safe use. 
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Literature Review 

The Impact of Composite Aircraft on Air Transportation 

Validation Testing 

In order to receive FAA certification, all aircraft manufacturers must prove (through 

validation testing) that their aircraft meet the structural criteria as prescribed in Part 25 

regulations.  Under the Code of Federal Regulations (CFR) for the Airworthiness Standards of 

Part 25 (Transport Category Airplanes), subpart (a) under § 25.307 (Proof of Structure) states: 

Compliance with the strength and deformation requirements of this subpart must be 

shown for each critical loading condition.  Structural analysis may be used only if the 

structure conforms to that for which experience has shown this method to be reliable.  

The Administrator may require ultimate load tests in cases where limit load tests may be 

inadequate (Government Printing Office [GPO], 1990, Subpart C – Structure § 25.307). 

This requirement revealed the need for new validation testing of primary structural composite 

components used for the construction of transport aircraft based on the fact that this type of 

structural analysis had not yet been accomplished or proven reliable as in the case of Boeing’s 

new 787 Dreamliner.  From a multimodal transportation system perspective, this regulatory 

requirement impacts the air transportation industry (commercial transport aircraft manufacturers) 

by creating a new demand for structural analysis that must be proven reliable to regulatory 

administrators before aircraft certification can be considered.  The burden of proof for new 

structural analysis rests solely with the manufacturer in order to keep up with the performance 

demands of the industry which will also include high uncertainty and risk (Wells & Wensveen, 

2004). 
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For 787 Dreamliner structural validation testing, Boeing contracted NSE Composites to 

develop damage tolerance analysis methods for the wings and fuselage structures.  NSE was able 

to combine large-scale wing and fuselage tests from Boeing with finite element models in order 

to predict the necessary strength curves required for the performance envelope of the aircraft 

(NSE Composites [NSE], “n.d.”, Aerospace Projects).  NSE used the strength curve modeling to 

develop engineering guidelines for the sizing of 787 structural components.  In order to prove 

and validate that the design was sufficiently damage tolerant, testing was performed on structural 

stringers with large notches/damage to show that the aircraft can still fly safely even if damage 

occurs to primary structural components such as the wings or fuselage (NSE, “n.d.”, Aerospace 

Projects).  This method of damage tolerance analysis developed by NSE was the initial structural 

validation needed for Boeing to show regulatory administrators that the 787’s design was 

sufficient to meet Part 25 structural requirements. 

FAA Certification Requirements 

Recognizing that CFR Part 25 did not address the use of composite materials for the 

construction of transport aircraft, the FAA released AC 20-107A (Composite Aircraft Structure) 

in April of 1984 which has been superseded with the release of AC 20-107B in September of 

2009, and Change 1 release in August of 2010.  This is the most current FAA certification 

requirements publication for the airworthiness standards of composite aircraft structures.  

However, as AC 20-107B was published as a means to provide guidance for the use of 

composite materials in-conjunction with CFR Part 25 regulations, its purpose is exactly that (for 

guidance only) and as AC 20-107B states: “is not mandatory or regulatory in nature” (Federal 

Aviation Administration [FAA], 2009, p. 1).  What this means is that while Part 25 was first 

established for traditional transport aircraft structures and was void of any composite structure  
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regulations, it is still the governing publication for certification requirements.  AC 20-107B was 

published for composite aircraft structure guidance to be used in-conjunction with the regulations 

published in Part 25.  According to Dr. Melanie Violette of the FAA, final (adherence to) and 

compliance with all applicable regulations and guidance governing the use of composite 

materials for the construction of transport aircraft is the responsibility of the manufacturer and 

will dictate the certification process (M. G. Violette, personal communication, April 9, 2013).  

With respect to the multimodal transportation system and air transportation industry, this 

philosophy supports the FAA’s responsibility for the safety of civil aviation by maintaining and 

enforcing regulations and minimum standards for the manufacturing and certification of 

composite structure transport aircraft (Wells & Rodrigues, 2004, p. 2). 

Structural Integration 

Early uses of composite materials for the construction of commercial transport aircraft 

included secondary and ancillary structures such as doors, engine nacelles, control surfaces, and 

nose radomes starting with the Boeing 747 in 1970 (Stickler, 2002).  Typical composite use/type 

for early applications included light-weight sandwich construction that consisted of thin face 

sheets with a honeycomb core that was prone to water intrusion (Stickler, 2002).  Boeing and 

Airbus began using advanced composites in structural applications in the 1990’s with the 777 

and A320; Boeing’s 777 entire empennage assembly is constructed with advanced composites.  

Figure 1 shows the progression of composite material integration by aircraft model and 

percentage of use in relation to structural weight (Stickler, 2002, figure 1).  With Boeing’s recent 

integration of advanced composites in primary structures construction (wings and fuselage) for 

the 787 Dreamliner, the industry’s first full structural integration for a commercial transport  
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aircraft has now been achieved and is shown in Figure B1 (Appendix B) by the breakdown in 

materials used for the 787’s construction ("Boeing 787," 2006, p. 18-19). 

 

Figure 1.  Timeline progression of integration showing aircraft model and percent of composite 

materials used in relation to total structural weight.  Reproduced from “Introduction – 

Composites use in Commercial Transport Aircraft,” by P. B. Stickler, 2002, Composite 

Materials for Commercial Transport – Issues and Future Research Direction, Figure 1, p. 2. 

 

Dr. Patrick B. Stickler’s research study conducted in 2002 suggested that further 

integration and increased use of advanced composites for the construction of commercial 

transport aircraft will occur based on the future need (and requirement) to increase 

manufacturing efficiency and lower operating costs for the airlines in order to sustain the 

industry (Stickler, 2002).  This was proven with the development of the Boeing 787 Dreamliner 

starting in 2003, and then finally entering service in 2011.  With respect to the technological 

aspect, this advancement by Boeing in the structural integration of advanced composites for 

transport aircraft has yielded performance and production benefits for both industries (airline and 
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aerospace) such as increased fuel efficiency due to the reduction of airframe weight, and the 

utilization of bonded joints in the manufacturing process (reducing the number of mechanical 

fasteners) which lowers the assembly cost.  Enabling this technology has also created challenges 

such as focusing on new research and development efforts that create low-cost products, 

automated processes, new analysis methods, and the establishment of certification requirements 

in order to utilize advanced composites for the construction of transport aircraft (Stickler, 2002).  

To derive maximum benefit from advanced composite technology as its use increases within the 

aerospace industry will require continued research and critical analysis of milestone structural 

integration that exists and is being actively applied with aircraft such as the 787 by developing 

(and sharing) best practice methods throughout the industry. 

Passenger Confidence 

Will people feel safe flying on a commercial transport aircraft that is constructed with 

composite materials?  This is certainly a question that Boeing had to consider in 2003 when 

development of the 787 began.  If queried, the general population would not know the difference 

between a traditionally constructed aircraft (mostly aluminum) such as the 737 versus the 787 

(mostly composite) until the material and construction differences are explained in detail.  

Hypothetically, if both aircraft were placed side-by-side at an airport, airline passengers would 

make a typical comparison based on both aircraft being relatively the same shape and form 

without much consideration given to the materials that they are constructed from.  Are they 

concerned with or do they really care about the materials used?  The most likely response (if 

asked) would be “no” based on the aforementioned hypothetical scenario.  Their biggest concern 

will be safety.  When contrasting the 787 with a traditionally constructed commercial transport 

aircraft, the Boeing 737 is the most widely used commercial aircraft in the world that has a 
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proven safety record.  This proven reliability instills a sense of security and confidence that 

makes passengers feel safe (Wells & Rodrigues, 2004). 

Unfortunately, building passenger confidence in the first composite aircraft is on hold 

due to the present grounding of all Boeing 787s for lithium-ion battery modification and re-

certification at the time this paper was written.  With respect to the social aspect, even though the 

787 battery issue has caused a lengthy and costly grounding period for Boeing, immediate 

passenger concern will be the safe return-to-flight of all 787s which will be accomplished 

through rigorous testing and re-certification to prove that this aircraft is once again safe and 

reliable (Wells & Rodrigues, 2004).  After the 787 is re-certified by the FAA and given the green 

light to resume service, passenger concern (or social impact) regarding the confidence in 

composite construction will be negligible (non-existent) unless a problem arises that is specific 

to a composite component on the 787 found by Boeing or an operator (Garland, Wise, & Hopkin, 

1999).  Future research of this topic after sustained in-service time of the Boeing 787 would 

reveal an accurate representation of the social impact of composite commercial transport aircraft. 

Environmental Impact 

As previously mentioned, one of the primary advantages of increasing the use of 

composite materials for the construction of commercial transport aircraft is the parallel increase 

in aircraft performance due to the overall weight savings that are intrinsic to composites.  

Another intrinsic benefit previously mentioned is the increase in the manufacturing efficiency by 

reducing the overall part and fastener count through the use of secondary bonding (co-curing and 

co-bonding) techniques (Stickler, 2002) that exemplifies the lean manufacturing process which 

creates less waist in order to decrease manufacturing costs while simultaneously reducing 

environmental impact (U.S. Environmental Protection Agency [EPA], 2000). 



APPLICATION OF ADVANCED COMPOSITES 19 

 

By reducing the weight of an aircraft, less fuel burn is required during all phases of flight 

(takeoff, cruise, and landing) which immediately decreases the aircraft’s CO2 and noise footprint 

on the environment due to the use of reduced engine power (Fielding, 1999).  For every barrel of 

crude oil that is refined, jet fuel (kerosene) is the third largest (by volume) refined output 

(approximately 4.2 gallons) per barrel (42 U.S. gallons) with gasoline as the highest (19.3 

gallons) and diesel/home fuel oil being the second highest at 9.8 gallons ("Oil: petroleum 

products," “n.d.”).  With jet fuel being the third highest output of crude oil refinement, it is no 

surprise that the airline industry is the largest consumer of jet fuel which equates to 

approximately 30% of a typical airline’s operating cost according to Airlines for America ("High 

airline costs," 2012).  With respect to the environmental aspect, the immediate desire and need to 

decrease fuel operating costs with the use of more efficient composite aircraft in order to sustain 

the airline industry will have an immediate impact on the environment by reducing its 

dependency on fossil fuels which will lower emissions to help sustain the environment. 

Regulatory Methodology 

Dr. Stickler’s research on the growth and increased use of composite materials in the 

aerospace industry conducted in 2002 states: 

The approach for composite and metallic materials involves analysis supported by 

coupon thru component level test evidence.  Analysis approaches and structural testing is 

performed in compliance with FAA/JAA regulations.  The “analysis supported by test 

evidence” approach is accomplished by establishing material allowables, performing 

element level tests on structural details such as joints, subcomponent, and full-scale 

component level tests on wings, fuselage barrel sections and horizontal and vertical 

stabilizers (Stickler, 2002, p. 2). 
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This methodology supports current FAA guidance for the certification of composite 

aircraft (as previously discussed) and was first used and evidentiary in Boeing’s approach with 

early composite certification for the 777 that included static and fatigue full-scale testing of the 

horizontal and vertical stabilizers which are constructed with advanced composites (Stickler, 

2002). 

The FAA realized the need for continued improvement and development of the 

certification process for composite materials used in the aerospace industry based on increased 

use by aerospace manufacturers for the construction of Part 25 commercial transport aircraft by 

forming the Joint Advanced Materials & Structures Center of Excellence (JAMS) in 2003 for the 

Air Transportation Centers of Excellence under the Federal Aviation Administration Research, 

Engineering and Development Authorization Act of 1990 ("FAA Creates Center of Excellence," 

n.d.).  The center’s primary focus is on “the safety and certification of existing and emerging 

applications of composites and advanced materials in commercial transport aircraft.” ("FAA 

Creates Center of Excellence," n.d., About Us). 

In September of 2011, the U.S. Government Accountability Office published its own 

independent report on the safety of composite commercial transport aircraft in order to review 

FAA and EASA certification processes based on the safety concerns associated with transport 

aircraft constructed primarily with composite materials in structural areas (wings and fuselage) 

for  the Boeing 787, which is the first large commercial transport aircraft to undergo this 

certification process (U.S. Government Accountability Office [GAO], 2011).  The findings of 

this report will be discussed later, and presented in the meta-analytic review section of this 

project.  With respect to the political aspect, this GAO report is a prime example of government 

oversight for the purpose of checks and balances within its own (and joint) administrations in 
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order to verify that the process of certification and all applicable standards of regulation have 

been adhered to. 

The Human Factors Associated with Composite Repair and Maintenance 

Component Failure 

According to Mr. Kenneth Cooper
2
 and Mr. Timothy Moore of the U.S. Navy’s Fleet 

Readiness Center Southwest Advanced Composite Repair School at Naval Air Station North 

Island, California, advanced composite component failure due to substandard repair is probable 

and likely to occur based on lack of experience and the complexity of the repair procedures (K. 

Cooper, personal communication, December 3, 2012).  All repair procedures for advanced 

composite components used in structural and high-load applications are extremely complex and 

difficult to master.  Special care and extreme attention-to-detail must be maintained throughout 

the entire repair process in order to comply with the strict guidelines and procedures as 

prescribed in the applicable structural repair manual (SRM).  If not followed correctly, 

significant change in part stiffness could cause excessive part deflection, improper function, and 

dynamic instability which could lead to structural failure (Naval Air Systems Command 

[NAVAIR], 2011). 

With respect to unsafe acts, regardless of either intentionally or unknowingly performing 

improper composite repair, the resulting effects will increase the probability of components 

returned to service that are insufficiently capable of handling their designed load tolerances 

which could lead to structural or catastrophic failure (NAVAIR, 2011). 

[2] Mr. Kenneth Cooper is a Master Composite Materials Repair Artisan and Advanced 

Composites Work Leader/Training Instructor, and Mr. Timothy Moore is the Training 

Specialist/Master Composite Materials Repair Artisan at FRCSW, NAS North Island, CA. 
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Composite Repair Methods 

 

 According to Dr. Lamia Salah of the National Institute for Aviation Research at Wichita 

State University, current composite repair at the depot level (airline maintenance) is deficient in 

the areas of composite repair technician training and quality control (Salah, 2013).  Dr. Salah’s 

research and findings will be presented in the meta-analytic review section of this project.  While 

Dr. Salah’s research of airline composite maintenance practices revealed severe deficiencies in 

the areas of training and quality control, original equipment manufacturer (OEM) in-house 

practices by Boeing are currently being reviewed for training standardization according to Ms. 

Holly Thomas of the Boeing Company (H. Thomas, personal communication, April 9, 2013).  

Based on these observations, the attitudes aspect of human factors regarding the repair and 

maintenance methods for composite materials may indeed have a very strong impact on the 

quality of repairs being carried out on all levels (Hawkins, 1993).  With the advent of composite 

commercial transport aircraft, in-service damage will occur and will need to be effectively 

repaired.  As previously discussed, due to the critical nature of composite repair, it is imperative 

that the repair methods used (at every level) are standardized throughout the industry.  Based on 

Dr. Salah’s research, this concern validates the need for further research of this topic in order to 

actively engage all applicable industry professionals for the development of standardized repair 

and maintenance methods/procedures for composite materials used in the aerospace industry. 

Artisan Training and Experience 

As previously mentioned, the SRM procedures for repairing advanced composites are 

extremely difficult and require extensive training and practice in order to become proficient with 

the many complex repair procedures.  Some of the common types of advanced composite field 

repairs that are taught by the U.S. Navy include bonded repairs such as standard wet layups,  
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double vacuum debulk (DVD) wet layup, delamination/disbond repair, pre-cured patch repair, 

and substructure (honeycomb) repairs (NAVAIR, 2011).  Refer to Figures 2-5 for an illustration 

of the DVD advanced composite repair method.  With respect to the human limitations aspect, it 

cannot be overstated that mastery and proficiency of these repair methods and procedures will be 

critical in order for the repair to be correct and free of defects.  Without proper training, 

experience, and proficiency, the probability of error will be much greater (Garland, Wise, & 

Hopkin, 1999). 

   

Figure 2      Figure 3 

 

   

Figure 4      Figure 5 

Figures 2-5.  Illustration of the U.S. Navy’s 9-ply artisan certification panel using the double 

vacuum debulk (DVD) wet layup repair procedure that all technicians have to perform in order 

to become certified to perform DVD repairs for their type/model aircraft.  The DVD process is 

an extremely labor-intense and complex evolution that involves starting with dry woven carbon-  
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fiber fabric ply preparation/fiber orientation, and then laying up each ply in the correct 

orientation after resin impregnation (Figures 2-3).  The 9-ply laminate is then placed on a double 

vacuum bench for heat curing (Figures 4-5).  The DVD method was developed by the U.S. Navy 

(NAWC Warminster) to produce superior repairs in order to eliminate porosity (small voids) that 

cause strength degradation (NAVAIR, 2011).  Photos provided by K. Cooper, U.S. Navy. 

 

The U.S. Navy has multiple levels of repair artisan training with proficiency standards in 

order to become a qualified composite repair technician.  After the technician receives artisan 

training, proficiency must be maintained through practical repair experience.  If proficiency (by 

making frequent repairs) is not maintained, the artisan’s skills will diminish over time and repeat 

proficiency training may be required depending on the time lapse between repairs.  This 

information suggests that the U.S. Navy’s standard of training and certification for composite 

repair could be used as a model program for standardization throughout the aerospace industry. 

Non-Standard Repairs and Maintenance Malpractice 

For the purpose of discussion, it is assumed that aircraft maintenance technicians 

(AMTs) would not intentionally or maliciously perform composite repair incorrectly based on 

the potential results of that human behavior; possible catastrophic failure with loss of life 

(Garland et al., 1999).  Based on the previous statement, then any (or all) defective composite 

repairs can be attributed to either maintenance malpractice or the environmental condition at the 

time of repair (Salah, 2013).  When considering the malpractice factors for improper/non-

standard or substandard composite repair (excluding intentional acts), SRM procedural violations 

due to unfamiliarity (lack of proper training), or non-use of SRM procedures stand out as the 

cause of malpractice. 

As previously discussed, performing bonded repairs on advanced composites used in 

structural applications is complex and also time-consuming; if performed incorrectly, the 

likelihood of structural failure is high.  Conditions for field repairs may not always be adequate 
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for airline maintenance technicians that are performing composite repairs.  Constraints such as 

short aircraft turnaround time would cause inadequate time allotted for a complex repair 

procedure, and the environment in which the repair is being performed (moisture/high humidity) 

have been identified as causal factors for defective/substandard repairs (Salah, 2013).  Also, field 

repairs made by airline maintenance technicians are not performed with the same systems used at 

the OEM level such as autoclave processes that provide the optimal (heat and pressure) 

conditions for part production (Salah, 2013).  However, it has been shown in Dr. Salah’s 

research that maintenance technician training and experience directly affects the quality and 

structural integrity of a bonded repair (Salah, 2013) which validates the impact of the human 

behavior aspect with respect to improper/non-standard or defective/substandard composite 

repairs that are performed at all levels (airline, intermediate repair facilities, and OEM). 

Aeronautics Discussion 

Performance and Design Innovation 

Boeing has indeed challenged the boundaries of the commercial transport aircraft 

industry with the development and manufacturing of the 787 Dreamliner, which is the first 

commercial transport aircraft in the industry that uses composite materials for its primary 

structures (wings and fuselage).  By being the first commercial aircraft manufacturer to make the 

transition from traditional metallic construction to composite materials for primary structures, 

Boeing is demonstrating Blue Ocean
3
 innovation (Tidd & Bessant, 2009, p. 171). 

Monolithic and sandwich structures. 

The two most common types of advanced composite structures used in primary and 

secondary structural aircraft applications are monolithic carbon fiber reinforced polymer (CFRP) 

and sandwich construction.  Monolithic construction typically consists of multi-ply CFRP  
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laminate panels that are used for a variety of aircraft parts and components such as panels, 

structural parts, and entire fuselage sections (Boeing 787) as illustrated and explained further in 

Figures B4-B7 (Appendix B).  Advanced composite sandwich construction typically consists of 

a honeycomb core made from aluminum that is covered with two (top and bottom) carbon fiber 

face sheets bonded to the core with an adhesive in order to create a high-strength and light-

weight structure that is used for control surfaces, wings, and the empennage where greater 

structural loading occurs.  As previously mentioned, honeycomb sandwich construction was one 

of the very first applications of composite materials by the aerospace industry, and has been used 

for several decades.  Typical honeycomb sandwich construction is illustrated in Figure 6. 

 

 

Figure 6.  Illustration of typical aluminum honeycomb sandwich construction.  The strength of 

the core material is determined by its hexagonal cell size, material type, and foil thickness 

(NAVAIR, 2011, p. 5-8).  Reproduced from “Honeycomb Core Repair Sections,” by Naval Air 

Systems Command, 2011, General Composite Repair, Change 1, p. 5-9, Figure 5-2. 
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Performance benefits through improved design characteristics. 

The immediate performance benefit gained from using composite materials for the 

construction of commercial transport aircraft (or any aircraft) is the reduction in airframe weight 

due to the light-weight characteristics of composites which increases the overall efficiency of the 

aircraft.  The 787 nets close to 20% weight savings with the use of composite materials when 

compared to a traditional metallic airframe of roughly the same size ("Boeing 787," 2006).  This 

increase in efficiency will translate into fuel savings; one of the key performance benefits that 

the operators (airlines) will desire in order to lower their operating costs.  Another major benefit 

of using composite materials is the relative ease in creating unlimited design configurations that 

contain complex shapes and curves which is more difficult, time-consuming, and costly with 

traditional metallic aircraft construction (Stickler, 2002).  This can be seen by the elegant 

features of the Boeing 787 Dreamliner as illustrated in Figures B2 and B3 (Appendix B), paying 

close attention to the shape of the wings, the curves for the blended wing tips and vertical 

stabilizer, and the smooth transition of the nose and cockpit.  This is due in part to the autoclave 

manufacturing process associated with composite materials that allow parts and components to 

be molded into almost any shape which yield high strength and stiffness for aerospace 

applications.  With respect to the topic of advanced aerodynamics, the use of composite 

materials for the manufacturing of transport aircraft that utilize complex shapes and curves in 

their design will create a more efficient streamlined aircraft design.  This streamlined design 

(through the use of complex shapes and curves) will also increase the aircraft’s aerodynamic 

efficiency by increasing the laminar characteristics (decreasing turbulent airflow) which will 

lower the drag coefficient (cd) due to the unlimited shape possibilities of composite materials that 

effectively create a streamlined design (Anderson, 2008).  This increase in aerodynamic  
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efficiency combined with the weight savings gained through the use of composite materials 

decreases the aircraft fuel burn rate, making the Boeing 787 20% more fuel efficient when 

compared to a traditional commercial aircraft of the same size (The Boeing Company, n.d.). 

 [3] Blue Ocean innovation represents all potential markets which currently do not exist and 

must be created. (Tidd & Bessant, 2009, p. 171) 

 

Fatigue Life and Failure Mode 

Another intrinsic characteristic and benefit of composite materials is improved fatigue 

performance over metallic structures which will increase airframe service life and reduce 

maintenance costs (Stickler, 2002, p. 2).  However, the poor out-of-plane load transfer 

characteristics of composite materials have proven to be challenging for engineers to predict and 

accurately model failure mode.  Due to the complex nature of the failure modes associated with 

composite materials, extensive non-destructive inspection (NDI)
4
 testing is required to detect the 

flaw growth within a composite component (Seneviratne, 2008).  In Mr. Waruna Seneviratne’s 

research for the National Institute for Aviation Research (NIAR), it was found that even though 

the loading and failure modes for composite commercial transport aircraft structures are 

significantly different, current certification programs use the load-life factors generated by the 

U.S. Navy’s F/A-18 program (Seneviratne, 2008, p. 2) based on the fact that these are the only 

known load-life factors for composite materials structural applications.  Mr. Seneviratne’s 

primary research objective suggested a probabilistic approach to synthesize life factor, load 

factor, and damage in composite structures to determine fatigue life (Seneviratne, 2008, p. 3). 

Modeling and simulation systems. 

Some of the modeling and simulation systems used to predict fatigue and failure mode in 

composite materials include: double cantilever beam (DCB), four points end notched flexure  
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(4ENF), 3D plane strain modeling, and finite element analysis (FEA).  The most common and 

robust FEA simulation system currently being used in the aerospace industry for composite 

materials is SIMULIA Abaqus developed by Dassault.  Abaqus performs virtual tests with 

realistic simulation which helps reduce product development time and costs while improving 

reliability (Dassault Systemes, n.d.).  According to Dr. Ernest L. Roetman
5
, robust simulation 

modeling in-conjunction with new research and approaches to theoretical problem-solving will 

be required for the development of new non-destructive testing (NDT) computational methods 

that address the dynamic problems of anisotropic
6
 materials in order to effectively create new 

analysis tools for the prediction of composite materials fatigue and failure mode (E. L. Roetman, 

personal communication, April 16, 2013). 

[4] The NDI method most commonly used to detect damage in aerospace composite 

components is pulse-echo ultrasonic (UT) scanning. (Buckley, 2006) 

[5] Dr. Ernest L. Roetman is an Adjunct Professor for ERAU Worldwide and is recognized as 

one of the leading professionals in the field of non-destructive testing for composite 

materials. 

[6] Anisotropic properties (dependent/differs based on direction) are common to composite 

materials due to the multi-directional fiber construction which exhibits different or varying 

properties depending on the axis or plane. (NDT Education Resource Center, n.d.)   

 

Lightning Strike Protection 

Lightning is a discharge of electricity (giant spark) that is typically associated with a 

thunderstorm that can occur inside a cloud, from cloud to cloud, from a cloud to the air, or from 

a cloud to the ground (Ahrens, 2009, p. 389).  The destructive nature of the electrical current and 

heat associated with a lightning strike (around 54,000°F) posses a significant threat to composite 

materials used in aerospace applications due to their poor electrical conductivity characteristics 

and susceptibility to weaken when exposed to high heat.  Traditionally constructed aircraft with 

metallic (aluminum) airframes are excellent conductors of electricity which will allow the 

electrical discharge of a lightning strike to flow through and exit as if it were a piece of wire; the 
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metallic airframe is simply completing the electrical circuit (Severson, 2012).  The following is 

true for a metallic aircraft provided that the entire airframe is electrically bonded: 

As long as the electrical circuit is not interrupted (does not encounter resistance), the 

lightning strike will be able to flow through the external skin of the aircraft without 

causing any damage.  Poorly fastened joints or gaps could cause arcing and burning when 

the electrical current from the lightning strike tries to continue its path by jumping to the 

closest piece of metal (Severson, 2012, p. 8). 

To clarify and emphasize this point, if electrical bonding is maintained throughout the metallic 

airframe and metallic aircraft skin, the aircraft should be sufficiently protected from a lightning 

strike and simply act as a large electrical circuit.  The same holds true for a composite aircraft 

with some differences.  The FAA’s AC 20-107B, Composite Aircraft Structure, under part 11 

(Additional Considerations), subpart (c) Lightning Protection states: 

Lightning protection design features are needed for composite aircraft structures.  Current 

carbon fiber composites are approximately 1,000 times less electrically conductive than 

standard aluminum materials, and composite resins and adhesives are traditionally non-

conductive.  Glass and aramid fiber composites are non-conductive.  A lightning strike to 

composite structures can result in structural failure or large area damage, and it can 

induce high lightning current and voltage on metal hydraulic tubes, fuel system tubes, 

and electrical wiring if proper conductive lightning protection is not provided (FAA, 

2009, para. (c), p. 26). 

As AC 20-107B recognizes, composite materials (fibers, resins, and adhesives) are non-

conductive and must be given conductive properties in order to be adequately protected and to 

protect critical aircraft systems (hydraulic, fuel, and electrical) from the potential catastrophic  
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damage caused by lightning strikes.  This is accomplished by adding a wire mesh layer to the 

external ply of a composite laminate in order to make the entire panel or component electrically 

conductive as illustrated in Figure 7 (Dexmet Corporation, 2007).  When properly bonded with 

other composite components and panels that have been made conductive with wire mesh, the 

same conductive qualities (and protection) inherent to metallic components can now be achieved 

with composite structures (Severson, 2012).  This is especially important for aircraft such as the 

Boeing 787 that use advanced composites for the entire skin of the fuselage, wings and 

empennage. 

Lightning strike protection (LSP) for composite materials used by the aerospace industry 

was a valid and known concern early on (several decades ago), and has been properly addressed 

by the FAA with the applicable LSP Aircraft Circulars (ACs) as prescribed in AC 20-107B for 

certification guidance with respect to LSP and how to mitigate the specific risks for composite 

structures (FAA, 2009). 

 

Figure 7.  Illustration of protective wire mesh imbedded within typical honeycomb construction.  

Reproduced from “Lightning Strike Testing Results on Honeycomb Panels Protected with a 

Series of Dexmet Microgrid® Products,” by the Dexmet Corporation, 2007, Lightning Strike 

Protection for Carbon Fiber Aircraft, Figure 3, p. 2. 
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Industry Concerns 

Validation testing and load data. 

When discussing the topic of aircraft and spacecraft development, any newly developed 

aircraft will have system validation concerns that are identified and must be addressed (proven 

reliable) through proper testing (Fielding, 1999).  With respect to the first large-scale application 

of composite materials for primary structures (fuselage and wings) for a commercial transport 

aircraft, structures validation (for certification) must be performed through coupon testing.
7
  

However, since there is no pre-existing load data for such an aircraft, actual in-service load data 

collection may be required in order to correct possible deficiencies that could not be produced 

during developmental simulation due to a lack of proven data for load enhancement factor 

(LEF)
8
 computation (FAA, 2009).  In-service structural health monitoring (SHM) for large-scale 

composite transport aircraft will be vital for the collection of working load data in order to 

accurately compute LEF for future applications (Stickler, 2002). 

The utilization of structural health monitoring (SHM) for load monitoring. 

Structural health monitoring (SHM) has been used in the aerospace industry for several 

decades through many different techniques that include simple strain gauges affixed to load-

bearing structures, to more advanced devices such as piezoelectric actuators/sensors called 

SMART Layers™ that can be surface-mounted or embedded within the structure (Lin, Qing, 

Kumar, & Beard, 2005) similar to a wire mesh layer as previously discussed for lightning strike 

protection.  Current piezoelectric devices such as SMART Layers™ and the SMART Suitcase™ 

that have been developed by Acellent Technologies, Inc. are extremely sensitive and robust 

systems of load measurement that have been proven reliable in several aerospace applications 

(Acellent Technologies, Inc., n.d.).  The current applications of this technology for composite  

  



APPLICATION OF ADVANCED COMPOSITES 33 

 

structures are: sub-surface damage detection (delaminations), hot-spot monitoring and crack 

detection, impact detection, and in-flight load monitoring (Acellent Technologies, Inc., n.d.).  All 

of these are critical concerns for large composite structures that have been identified throughout 

the industry for composite transport aircraft applications.  Advancements in SHM and non-

destructive testing (NDT) technology will also be required in order to keep up with industry use 

by developing new and more efficient/accurate methods of monitoring and testing that will 

provide the empirical data needed for future applications (Stickler, 2002).  One such 

advancement for SHM that is currently being researched by Mr. Peter Osterc
9
 proposes the use 

of phased array beam-steering
10

 for guided wave structural health monitoring by developing a 

new beam-forming algorithm that is specific to composite materials (Osterc, Kim, & Yoo, 2012).  

This type of research is indicative of observed advancement needs that address developmental 

process improvements directed towards existing material concerns for the continued use of 

advanced composites in the aerospace industry. 

FAA methodology and GAO safety concerns. 

 

As previously discussed, the FAA has been taking a very proactive approach in 

collaborating with industry leaders to address the concerns with the expanded use of composite 

materials in the aerospace industry by sponsoring research organizations such as the Joint 

Advanced Materials & Structures Center for Excellence (JAMS), and the Commercial Aircraft 

Composite Repair Committee (CACRC) which is responsible for the development of improved 

maintenance, inspection, and repair of commercial aircraft composite structures and components 

(GAO, 2011, p. 34).  The 2011 GAO report Status of FAA’s Actions to Oversee the Safety of 

Composite Airplanes stated the following regarding safety concerns specific to composite repair 

and maintenance: 
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On the basis of expert interviews and a review of literature, GAO identified four key 

safety-related concerns with the repair and maintenance of composites in commercial 

airplanes – (1) limited information on the behavior of airplane composite structures,  

(2) technical issues related to the unique properties of composite materials,  

(3) standardization of repair materials and techniques, and (4) training and awareness.  

None of the experts believed these concerns posed extraordinary safety risks or were 

insurmountable.  FAA is taking action to help address these concerns identified by GAO 

related to the repair and maintenance of composite airplane structures.  However, until 

these composite airplanes enter service, it is unclear if these actions will be sufficient 

(GAO, 2011, para. What GAO Found). 

Based on this information and recent research presented by Dr. Lamia Salah (CACRC 

Committee Member), it is apparent that the industry concern of commercial aircraft composite 

maintenance and repair is sufficiently valid and must be addressed, but also suggests that it is too 

early for assessment of this concern based on the lack of in-service time of composite aircraft. 

Composite materials fire safety concern. 

Fire safety for large composite commercial transport aircraft such as Boeing’s 787 has 

been a valid concern since its initial development with respect to crashworthiness and passenger 

safety due to the flammability of the components used for composite materials (fiber, resins, and 

adhesives).  Most composite materials in their raw form are vulnerable (can weaken) when 

exposed to high-heat and are less fire resistant than traditional metallic structures if a protective 

coating is not used (Ohlemiller & Shields, 1998).  The FAA was aware of this safety hazard with 

the early use of composite materials for air transport applications and implemented extensive 

guidelines under AC 20-170B Composite Aircraft Structure that addresses the mitigation 
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required for proper fire protection which initially states under part 11 (Additional 

Considerations) subsection (b) Fire Protection, Flammability and Thermal Issues: 

(1) Fire and exposure to temperatures that exceed maximum operating conditions require 

special considerations for composite airframe structure.  (Refer to note below)  

Requirements for flammability and fire protection of aircraft structure attempt to 

minimize the hazard to occupants in the event that flammable materials, fluids, or vapors 

ignite.  The regulations associated with each aircraft product type (i.e., transport, small 

airplane, rotorcraft) should be used accordingly.  Compliance may be shown by tests or 

analysis supported by test evidence.  A composite design, including repair and 

alterations, should not decrease the existing level of safety relative to metallic structure.  

In addition, maintenance procedures should be available to evaluate the structural 

integrity of any composite aircraft structures exposed to fire and temperatures above the 

maximum operating conditions substantiated during design (FAA, 2009, para. (b), p. 24). 

Note: Aircraft cabin interiors and baggage compartments have been areas of 

flammability concerns in protecting passenger safety.  This revision of the AC 

does not address composite materials used in aircraft interiors and baggage 

compartments.  Please consult other guidance material for acceptable means of 

compliance with flammability rules for interiors. 

 

Boeing 787 special conditions. 
 

In the previously discussed GAO report that addresses composite aircraft safety concerns, 

the FAA required Boeing to conduct fire tests as delineated in AC 20-170B for the certification 

of the fuselage and wings as outlined in Table 1.  This special condition testing was performed 

in-part by Boeing Aircraft Rescue and Firefighting (ARFF) professionals in June of 2012 with 

conclusive results that showed the 787’s combustion hazard was similar to that of a metallic 

structured aircraft, and that the toxicity levels of the 787’s skin panels were also similar to that of 
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a metallic structure aircraft (The Boeing Company, 2012).  It was also shown in Boeing’s flame 

tests that “composite fuselage structures do not sustain combustion and do not aid in the spread 

of fire” (The Boeing Company, 2012, p. 5) which is in compliance with the FAA’s special 

condition test “to show that the 787 composite fuselage is resistant to flame propagation.” (GAO, 

2011, table 1)  Overall, the tests showed that composite structures did not exhibit any flame 

propagation characteristics, and that they actually had slower burn-through times than aluminum 

structures with lower radiant heat transfer (The Boeing Company, 2012, p. 5). 

Table 1 

FAA Special Conditions for the Boeing 787 (Fire Testing for the Fuselage and Wings)   

 

Note.  Reproduced from “FAA Established Special Conditions for Boeing to Demonstrate That 

the 787’s Composite Airframe Meets Existing Safety Levels,” by U.S. Government 

Accountability Office, 2011, GAO Report, GAO-11-849, Table 1, p. 16. 

 

In summary, the industry concerns that have been discussed are unique aircraft 

developmental processes that needed to be addressed by Boeing and its industry partners for the 

development and construction of the first composite commercial transport aircraft, and will need 

to be continued throughout the entire life cycle of the 787 in order to effectively improve design 

characteristics for the enabling of future composite materials technology.  However, current  
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research has identified that composite maintenance and repair is an observed limitation that 

exists within the industry which may cause future safety concerns regarding the continued use of 

advanced composites for commercial transport aircraft.  With respect to the sustainability of 

advanced composites used for structural applications within the aerospace industry for Part 25 

aircraft, continued in-service time will be required to fully assess the adequacy of current actions 

and to allow for the identification and correction of unexpected deficiencies that may occur. 

[7] Composite coupon testing is a small test specimen (e.g., usually a flat laminate) for 

evaluation of basic lamina or laminate properties or properties of generic structural 

features (e.g., bonded or mechanically fastened joints). (FAA, 2009, Appendix 2) 

[8] Load (or Life) Enhancement Factor (LEF) is an additional load factor and/or test duration 

applied to structural repeated load tests, relative to the intended design load and life 

values, used to account for material variability. It is used to develop the required level of 

confidence in data. (FAA, 2009, Appendix 2) 

[9] Mr. Peter Osterc is a Graduate Student at Embry-Riddle Aeronautical University’s 

Department of Aerospace Engineering, Daytona Beach, Florida.  

[10] Electronic beam-steering is a method of non-destructive evaluation (NDE) developed and 

used for metals. (NDT Education Resource Center, n.d.) 

 

 

Maintenance and Repair Standardization 

When discussing and applying the topic of crew resource management (CRM) for 

composite repair standardization, teamwork and organizational factors will dictate how standard 

operating procedures (SOPs) are formed which will directly impact the safe maintenance of 

composite transport aircraft (Kanki, Helmreich, & Anca, 2010).  As previously discussed, 

composite repair and maintenance was found to be a valid safety concern in the GAO report that 

addressed composite aircraft safety.  Both the GAO report and Dr. Lamia’s research show that 

there is an immediate need for standardization of composite repair throughout the aerospace 

industry with specific concentration at the airline level on training and quality control.  Dr. 

Lamia has identified that even though the published structural repair manual (SRM) procedures 

for specific composite repairs applicable to the type/model aircraft are being utilized (and have 
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been developed) based on current industry standards and best practice methods, variances in 

repair techniques exist between each depot (airline) facility due to a lack of training and 

experience (Salah, 2013). 

Mitigating composite material repair variance and technician training deficiency at all 

levels (OEM, airline, and intermediate) is the mission of the Commercial Aircraft Composite 

Repair Committee (CACRC) in order to “reduce the cost of maintaining composite structures 

through standardization of materials, technique, and training.” (Commercial Aircraft Composite 

Repair Committee [CACRC], n.d., Mission Statement)  To date, the CACRC’s repair technique 

task group has published eight documents with another six (pending) for the standardization of 

common composite repairs such as wet layup and vacuum bagging. 

OEM level training development and standardized repairs. 

As previously mentioned, Boeing is actively pursuing composite repair training 

standardization for all of its manufacturing facilities (commercial and military) which is 

currently in the developmental stage according to Ms. Holly Thomas of the Boeing Company (H. 

Thomas, personal communication, April 9, 2013).  According to Ms. Kirsten Bossenbroek of the 

Boeing Company, Boeing’s approach to composite repair standardization for the 787 was the 

development and implementation of a quick composite repair (QCR) kit that is used to perform 

pre-cured patch
 
repairs (see note) in less than one hour with a cure time of 30 minutes, making 

this process/type of composite repair (when applicable) highly beneficial to the airlines for short 

maintenance turnarounds in order to reduce aircraft down time.  The QCR kit has been 

distributed to all 787 operators along with proper training for its use in accordance with the 

applicable SRM composite repair procedures for pre-cured patch use (K. Bossenbroek, personal 

communication, April 29, 2013). 
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Note.  The utilization of a pre-cured patch repair (while common) may not apply to all composite 

repair situations and will depend on the type/severity of damage.  With ALL composite damage, 

thorough inspection (NDI) must be performed for complete damage assessment (NAVAIR, 

2011).  

 

Implementation of organizational crew resource management (CRM). 

The concept of CRM can be applied to the problem of composite maintenance and repair 

standardization by addressing factors such as organizational cultures and subcultures which are 

directly related to the type/style of leadership and mid-level managers (Kanki et al., 2010).  

Depending on how well any organization recognizes and deals with these organizational cultures 

and subcultures is a direct reflection of that organization’s measure of health with respect to its 

safety culture, and the first step to creating a working safety culture is to develop and refine an 

organization’s standard operating procedures (SOPs) (Kanki et al., 2010, p. 71). 

By taking the basic approach of CRM which is to focus on attitudes, behavior, and 

performance, SOP’s can be developed for composite maintenance and repair by creating a 

philosophy that states how the organization will conduct their composite maintenance and repair 

in a safe and efficient manner that is in compliance with all published procedures and regulations 

(Kanki et al., 2010).  As composite maintenance and repair will become more common-place for 

airline maintenance departments with the arrival of composite commercial transport aircraft such 

as the Boeing 787 Dreamliner and the Airbus A350 XWB, a CRM based approach to composite 

maintenance and repair standardization can be adopted (and may be needed) in order to create a 

working environment that effectively addresses the challenges associated with the safe repair of 

advanced composites used in structural applications; in-part due to the complexity of composite 

repair procedures and the skill that is required to perform them correctly.  This methodology in-

conjunction with the CACRC will prove to be successful for composite repair standardization. 
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Methodology 

Overview 

The qualitative meta-analysis performed in this project is divided into three independent 

categories (validation testing, certification, and maintenance/repair) for the purpose of grouping 

each study used to the applicable category for isolated comparison of each group in order to 

validate the hypothesis that industry-wide comprehensive process improvement should be 

implemented and maintained for the promulgation of improved structural validation testing, 

certification, and standardized repair procedures.  The quantitative statistical analysis performed 

in this project is accomplished by analyzing the data from specific studies in order to accept or 

reject the hypothesis and to answer this project’s research question: are current testing, 

certification, and maintenance procedures for advanced composites used in primary and 

secondary commercial transport aircraft structures standardized throughout the aerospace 

industry and sufficiently capable of detecting damage or component failure?  This type of 

organizational analysis has been chosen based on the number/type of studies used in order to 

effectively extract the information presented in each study for correlation. 

Meta-Analytic Review 

The studies used for the meta-analysis are identified and listed by category in Table 2.  

Summaries of the studies with findings are presented in this section of the project for reader 

familiarization and are quoted directly for accuracy.  Composite materials study selection was 

accomplished by recognizing each study’s applicability to current problems/concerns and needed 

research/data that has been identified by regulatory agencies, standards organizations, and 

through industry collaboration.  The project findings for each study with respect to their overall 

impact and effectiveness for each category will be presented in the results section of this paper. 
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Table 2 

 

Composite Materials Studies Listed by Category used for the Meta-Analysis 

 

Validation Testing 

 

1. Damage Tolerance Testing and Analysis Protocols for Full-Scale Composite Airframe 

Structures Under Repeated Loading (J. Tomblin, W. Seneviratne) 

2. Durability of Adhesively Bonded Joints for Aircraft Structures (D. Adams, K. DeVries, and 

C. Child) 

3. Damage Tolerance Test Method Development for Sandwich Composites (D. Adams, B. 

Kuramoto) 

4. In-service Inspection Guidelines for Composite Aerospace Structures (J. Heida, D. 

Platenkamp), [Study 4-1] 

NDT Inspection of Composites for In-Service Defects (T. Marshall)
a
, [Study 4-2] 

5. Boeing Composite Airframe Damage Tolerance and Service Experience (A. Fawcett, G. 

Oakes) 

6. Impact Damage Formation on Composite Aircraft Structures (H. Kim) 

7. Structural Health Monitoring for Advanced Composite Structures (I. Herszberg, et al.) 

 

Certification Standards 

 

1. Status of FAA’s Actions to Oversee the Safety of Composite Airplanes (Government 

Accountability Office) 
2. FAA Composite Safety and Certification Initiatives (L. Ilcewicz) 
3. Simplifying Certification of Discontinuous Composite Material Forms for Primary Aircraft 

Structures (M. Tuttle, et al.) 

 

Maintenance and Repair 

 

1. CACRC Depot Bonded Repair Investigation – Round Robin Testing (2013 Technical 

Review) (J. Tomblin, L. Salah) 

2. CACRC Depot Bonded Repair Investigation – Round Robin Testing (2012 Technical Review) 

(J. Tomblin, L. Salah) 

3. Effect of Repair Procedures Applied to Composite Airframe Structures (J. Tomblin, L. Salah, 

and C. Yang), Laminate and sandwich structures.  [Study 3-1] 

Effect of Repair Procedures Applied to Composite Airframe Structures (J. Tomblin, L. Salah, 

and C. Yang), Laminate scarf joints.  [Study 3-2] 

 

 

Note.  Studies also used for quantitative statistical analysis (ANOVA and linear regression) are 

in boldface. 
a
This study is used for the test data in-conjunction with (and also contained in) In-service 

Inspection Guidelines for Composite Aerospace Structures (J. Heida, D. Platenkamp).  
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Qualitative Analysis Criterion 

Meta-analysis hypothesis validation criterion has been established and simplified for each 

category.  The criterion is used to specifically evaluate each study (diagnostically) in order to 

show hypothesis validation for the purpose of answering this project’s research question.  The 

specific criterion (arguments) for each category used to evaluate each study are as follows: 

Validation Testing – does the study critically investigate (with credible research) to 

conclusively prove that the testing methodology presented is needed for standardization within 

the industry and/or regulatory agencies and has the potential for implementation? 

Certification Standards – does the study critically investigate (with credible research) to 

conclusively prove that the certification methodology presented is effective at improving and 

standardizing certification processes for the industry and/or regulatory agencies? 

Maintenance and Repair – does the study critically investigate (with credible research) 

to conclusively prove that the maintenance and repair methodology presented will effectively 

create standardization for the industry? 

Validation Testing (VT) Studies 

VT Study (1). 

Damage Tolerance Testing and Analysis Protocols for Full-Scale Composite Airframe Structures 

Under Repeated Loading (J. Tomblin, W. Seneviratne) 

 

Summary and findings of the study. 

The purpose of this study was to “produce a guideline FAA document, which 

demonstrates a “best practice” procedure for full-scale testing protocols for composite airframe 

structures with examples.” (Tomblin & Seneviratne, 2008, Presentation p. 2)  The primary 

objective was to “develop a probabilistic approach to synthesize life factor, load factor and 
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damage in composite structure to determine fatigue life of a damage tolerant aircraft” by 

performing the following: 

Demonstrating acceptable means of compliance for fatigue, damage tolerance and static 

strength substantiation of composite airframe structures.  Evaluating existing analysis 

methods and building-block database needs as applied to practical problems crucial to 

composite airframe structural substantiation.  Investigating realistic service damage 

scenarios and the inspection & repair procedures suitable for field practice (Tomblin & 

Seneviratne, 2008, p. 3). 

The secondary objectives stated for this study are as follows: 

Extend the current certification approach to explore extremely improbable high energy 

impact threats, i.e. damages that reduce residual strength of aircraft to limit load 

capability by investigating realistic service damage scenarios and establishing inspection 

& repair procedures suitable for field practice.  And to also incorporate certain design 

changes into full-scale substantiation without the burden of additional time-consuming 

and costly tests (Tomblin & Seneviratne, 2008, p. 3). 

The findings of this study revealed the following: 

The future need for training and reliable NDI and health monitoring techniques for 

damage characterization during full-scale testing and service, as well as focusing further 

studies on extremely improbable high energy impact threats and their impact on the 

residual strength of the composite structure and inspection intervals (Tomblin & 

Seneviratne, 2008, p. 30). 
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VT Study (2). 

Durability of Adhesively Bonded Joints for Aircraft Structures (D. Adams, K. DeVries, and C. 

Child) 

 

Summary and findings of the study. 

The purpose and objective of this study was to “revisit and revise the Metal Wedge Crack 

Durability Test ASTM D3762 in order to consider a reliable method for investigating adhesive 

bond durability.”  The current test “provides minimal guidance regarding acceptable metal 

bonded joints with concerns regarding strength reduction over time due to hydration.” (Adams, 

DeVries, & Child, 2011, Presentation p. 3)  After the researchers of this study conducted their 

literature review and discussions with industry stakeholders, current wedge test potential issues 

were identified as the following: 

Several aspects of the ASTM D3762 wedge test were identified for experimental 

investigation, including methods of specimen manufacturing, testing procedures, 

accounting for the failure mode produced (cohesion vs. adhesion), environmental 

conditions during testing, and the need for an improved acceptance criterion.  Those 

aspects associated with specimen manufacturing and the initial test procedure have been 

investigated first.  Two issues associated with the wedge specimen manufacturing that 

were investigated are controlling the bondline thickness and proper machining of the 

specimens from the test panel.  Additionally, three issues associated with the initial 

testing procedures were also investigated concurrently: the method of wedge insertion, 

measurement of the initial crack length, and the specimen orientation during testing 

(Adams et al., 2011, Abstract). 
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The findings of this study revealed the following: 

Testing was performed using 2024-T3 aluminum specimens bonded using AF 163-2K 

adhesive.  Test results showed that the method of wedge insertion does affect the initial 

crack length, especially for the “weak” bonded specimens. Not only were the initial crack 

lengths affected by the method of wedge insertion, but the crack growth and resulting 

crack length from five days in ambient air were also affected. While crack growth and 

length during environmental exposure varied with surface preparation, specimen 

orientation caused no recurring trend in any of the three surface preparation methods 

tested to date.  Expected benefits to aviation include an improved adhesive bond 

durability test method for use in assessing the reliability of adhesively bonded aircraft 

structures as well as an FAA Technical Center report to provide additional guidance for 

aviation industry users (Adams et al., 2011, Abstract). 

VT Study (3). 

Damage Tolerance Test Method Development for Sandwich Composites (D. Adams, B. 

Kuramoto) 

 

Summary and findings of the study. 

The purpose and objective of this study was to “investigate candidate damage tolerance 

test methodologies for sandwich composites and to propose specific methodologies for 

standardization.” (Adams & Kuramoto, 2012, Abstract)  The researchers identified three 

candidate test configurations with the following methodologies: 

The first methodology utilizes an end loaded compression after impact (CAI) test 

configuration.  Second, a four-point flexure test methodology has been identified for 

evaluating post-impact performance when the damaged facesheet is loaded in 
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compression.  Additionally, a third candidate test method has been developed by the 

marine composites community.  This test method, based upon ASTM D6416, supports 

the damaged sandwich composite panel on the edges and a distributed load is applied by 

a bladder until failure.  This test methodology is believed to also be of interest for aircraft 

applications such as fuselages were pressure loadings are present.  A secondary focus of 

this investigation is to provide a comparison of residual strength of sandwich composites 

obtained using all three of the proposed test methodologies.  Initial efforts have focused 

on performing a preliminary evaluation of the three candidate damage tolerance test 

methodologies using sandwich composites composed of G11 glass/epoxy facesheets and 

Nomex honeycomb cores.  The three methodologies will be examined for their limits of 

applicability and recommended procedures.   Additionally, guidance will be established 

for interpreting test results and selecting the most appropriate test method for a particular 

application (Adams & Kuramoto, 2012, Abstract). 

The summary of this study stated the following: 

An initial evaluation of the three identified damage tolerance test methodologies is 

underway.  Impact damage is to be idealized as a circular hole in the upper facesheet to 

minimize the variability in test results due to variations in damage states.  These tests will 

provide an initial comparison of residual strength among the three candidate test 

methodologies as well as provide an initial assessment of each test methodology.  

Expected benefits to aviation from this research project include the development of 

standardized test methodologies for use in assessing the damage tolerance of sandwich 

composites used in aircraft structures (Adams & Kuramoto, 2012, p. 12). 
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VT Study (4-1). 

In-service Inspection Guidelines for Composite Aerospace Structures (J. Heida, D. Platenkamp) 

 

Summary and findings of the study. 

The purpose and objective of this study was to review “the damage tolerance design 

approach for composites and conclude with general guidelines for the in-service inspection of 

composite aerospace structures.” (Heida & Platenkamp, 2012, para. 1)  This was performed 

through the evaluation of carbon fiber reinforced polymer (CFRP) test specimens that are 

“representative for primary composite aerospace structures, including relevant damage types 

such as impact damage, delaminations and disbonds.” (Heida & Platenkamp, 2012, Abstract)  

The following NDI methods were evaluated based on critical aspect: 

A range of NDI methods were evaluated such as visual inspection, vibration analysis, 

phased array ultrasonic inspection, shearography and thermography inspection.  

Important aspects of the evaluation were the capability for defect detection and 

characterization, portability of equipment, field of view, couplant requirements, speed of 

inspection, and level of training required and the cost of equipment (Heida & 

Platenkamp, 2012, Abstract). 

The findings of this study revealed the following: 

Damage tolerance requirements for composite aerospace structures should be interpreted 

so that as long as damage occurring in-service cannot be detected visually, it should not 

be structurally significant in the sense that is does not affect the safety during the aircraft 

life.  In terms of load capability this implies that the damage should never reduce the 

structural strength below ultimate load (UL) capability.  Only detectable damage may 

cause structural degradation below UL (but never below LL, limit load – the maximum 
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load per fleet lifetime) and should be timely detected by visual inspection or more 

advanced NDI methods.  The inspection interval should be related to the probability of 

damage occurrence, depending e.g. on the structure type.  In the period before detection, 

any damage should not show significant growth.  After detection, the damage should be 

repaired to restore UL capability or the component should be replaced.  Recommended 

NDI methods are automated tap test for detecting relevant impact damage, and ultrasonic 

conventional or, preferably, phased array inspection for the detection and characterization 

(size, depth) of relevant impact damage, delaminations and disbonds.  Shearography and 

thermography are considered to be less applicable because of their poor to moderate 

defect characterization capabilities, when compared to ultrasonic inspection.  But, 

thermography and shearography may be optional, non-contact techniques (especially 

thermography) for specific inspection configurations such as curved panels and repaired 

structures, and for the inspection of specific defect types such as water ingress in 

honeycomb structures (Heida & Platenkamp, 2012, para. 5). 

 

VT Study (4-2). 

NDT Inspection of Composites for In-Service Defects
11

 (T. Marshall) 

 

Summary and findings of the study. 

The purpose and objective of the aerospace applications section of this study conducted 

by Sonatest, Ltd was to show the effectiveness of NDI (C-Scan) for the detection of in-service 

BVID (barely visible impact damage) on four separate common advanced composite structures 

used in aerospace structural applications using the prescribed impact test protocol under AR-

03/74 Bonded Repair of Composite Aircraft Structures.  “Mixed monolithic and sandwich panels 

with manufactured defects and controlled energy impacts were tested with the RapidScan™ 
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system.” (Marshall, n.d., Presentation p. 26)  The findings of the C-Scan evaluation revealed the 

following: 

Measurements can be “drawn” onto scan for sizing.  The sizes and areas of defects can be 

evaluated.  Statistical data can assist with the evaluation.  Depths of defects are easily 

measured.  Evaluation results are easily reported.  The evaluation can determine volume 

of material to repair (Marshall, n.d., Presentation p. 33). 

[11] The data from this study was used for ANOVA (2) and will be examined in the next section. 

 

VT Study (5). 

Boeing Composite Airframe Damage Tolerance and Service Experience (A. Fawcett, G. Oakes) 

 

Summary and findings of the study. 

The purpose and objective of this study was to evaluate “Boeing’s design criteria for 

damage tolerant CFRP primary structures and their relationship to maintainability as well as 

CFRP structures service experience.” (Fawcett & Oakes, n.d., Outline)  The criteria requirements 

for barely visible impact damage (BVID) and visual impact damage (VID) are identified as well 

as sample damage tolerance for impact by type and location.  In-service aircraft (737 and 777) 

composite structures are evaluated.  The findings of this study revealed the following: 

In-service experience with primary composite structure has been excellent.  Visual based 

inspection program validated.  In-service NDT techniques validated.  Damage 

occurrences are at or below those for equivalent metal structure.  Repair techniques have 

proven to be effective and efficiently applied (Fawcett & Oakes, n.d., Summary). 
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VT Study (6). 

Impact Damage Formation on Composite Aircraft Structures (H. Kim) 

 

Summary and findings of the study. 

The purpose and objective of this study was to investigate the “impact of composite 

structures from sources that involve wide area contact due to the tendency to produce internal 

damage with little or no exterior visibility.” (Kim, 2012, Abstract)  This was accomplished with 

the following specific objectives and approach: 

Characterize blunt impact threats and locations where damage can occur.  Understand 

BID formation and visual detectability.  Determine key failure modes, phenomena and 

parameters by evaluating how failure is affected by bluntness/contact-area, ID & predict 

failure thresholds (useful for design), and what conditions relate to development of 

significant internal damage with minimal or no exterior visual detectability.  Develop 

analysis & testing methodologies, and establish new modeling capabilities validated by 

tests.  The approach uses experiments that are impact representative structure/specimens 

wide area high energy blunt impact – e.g., from ground service equipment, high velocity 

hail ice impacts – in-flight and ground-hail conditions, internal stiffeners low velocity 

impacts – non-deforming impactor, large radius effects.  Modeling – nonlinear FEA, 

analytical, and to communicate results to industry, collaboration on relevant 

problems/projects via workshops and meetings (Kim, 2012, Presentation p. 4). 

The findings of this study revealed the following: 

Low velocity large radius metal tip impact conclusions: The failure thresholds increase 

with both panel thickness and tip radius.  The primary forms of damage are surface 

denting and delamination, followed by back wall fiber breakage with increasing energy.  
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Impacts often create a visible surface dent which is more pronounced with the smaller 

impact tips than the blunt ones.  Dent formation does not necessarily indicate internal 

damage. Internal damage can be present without a surface dent and surface dents can be 

present without internal damage.  Dents measured immediately after the impact event 

will be deeper than when measured at another point in the future.  The dent relaxes, 

decreasing in depth as well as visibility.  Large radius metal tips: Deeper understanding 

of material behavior subject to impacts, particularly how increased radius affects damage 

formation and visual detectability.  Establish correlation between the onset of damage 

and the radius of the impactor.  Determine the relationship between visible damage and 

internal damage.  Material level test described by failure threshold force results are 

applicable to other conditions and specimen configurations (Kim, 2012, p. 53-55). 

VT Study (7). 

Structural Health Monitoring for Advanced Composite Structures (Herszberg, et al.) 

 

Summary and findings of the study. 

The purpose and objective of this study “focuses SHM application to aircraft as a means 

of highlighting the issues that face SHM in composite structures, including those in the maritime, 

oil and gas, civil infrastructure and other industries.” (Herszberg, Bannister, Li, Thomson, & 

White, n.d., Abstract)  This is accomplished by “addressing issues involved in the design, 

certification, manufacture and through life support of such structures as well as identifying the 

critical areas of development to enable the implementation of SHM in future composite aircraft 

structures.” (Herszberg et al., n.d., Abstract).  The findings of this study revealed the following: 

Within the aircraft industry the benefits of SHM relate to the opportunity for reduced 

maintenance costs through an adoption of condition based maintenance, together with 
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reduced aircraft weight and improved performance through more optimized aircraft 

design.  In order to achieve these goals, research and development is needed in the 

following areas: Development of validated post-buckling design and analysis tools to 

accurately predict the behavior of thinner, more efficient structures.  Material models that 

accurately predict damage evolution at high strain levels and under increased through-

thickness stresses, with the possible need to incorporate composite fatigue analysis.  

Validated diagnostic systems that can identify the size and location of damage within the 

composite structure to the required accuracy.  Validated prognosis methodologies to 

predict the structural integrity of the damaged structure.  Robust techniques for sensor 

embedding and connection.  Power and data handling equipment compatible with aircraft 

on-board systems.  Validation of SHM system durability under aircraft service 

conditions, including repair or replacement procedures for damaged sensors.  Through 

dialogue with the airworthiness authorities, SHM has the potential to be accepted within 

the aircraft industry.  However, addressing the issues raised in this paper needs to be a 

focus for future work within the composites and SHM research community if the 

acceptance of this technology and its potential benefits are ever to be realized (Herszberg 

et al., n.d., para. 7). 
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Certification Standards (CS) Studies 

CS Study (1). 

Status of FAA’s Actions to Oversee the Safety of Composite Airplanes (Government 

Accountability Office) 

 

Summary and findings of the study. 

The purpose and objective of this GAO report was to “review FAA’s and EASA's 

certification processes and FAA's oversight of the composite airplanes once they enter service.” 

(GAO, 2011, Highlights)  The GAO objectively “examined how FAA and EASA assessed the 

use of composite materials in the Boeing 787 fuselage and wings, and the extent to which FAA 

has addressed safety-related concerns associated with the repair and maintenance of composite 

airplanes.” (GAO, 2011, Highlights)  This was accomplished by “reviewing certification 

documentation, conducting a literature search, discussing repair and maintenance issues with 

experts, and interviews with FAA and EASA officials and Boeing representatives.” (GAO, 2011, 

Highlights)  The findings of the GAO report revealed the following: 

GAO found that FAA followed its certification process in assessing the Boeing 787 

airplane's composite fuselage and wings (see fig.) against applicable FAA airworthiness 

standards.  FAA applied five special conditions when it found that its airworthiness 

standards were not adequate to ensure that the composite structures would comply with 

existing safety levels.  These special conditions require Boeing to take additional steps to 

demonstrate the 787's structures meet current performance standards.  FAA also granted 

Boeing an equivalent level of safety finding when the manufacturer determined it could 

meet the standard but prove it differently from the method specified in that standard.  On 

the basis of a review of FAA’s special condition requirements, Boeing submissions, and 

discussions with FAA and Boeing officials, GAO found that FAA followed its process by 
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documenting the technical issues related to the design of the composite fuselage and 

wings, determining the special conditions and equivalent level of safety finding, 

obtaining public comments on draft special conditions, and monitoring Boeing’s 

compliance with those conditions (GAO, 2011, What GAO Found). 

The following safety concerns were identified in the GAO report: 

On the basis of expert interviews and a review of literature, GAO identified four key 

safety-related concerns with the repair and maintenance of composites in commercial 

airplanes – (1) limited information on the behavior of airplane composite structures, (2) 

technical issues related to the unique properties of composite materials, (3) 

standardization of repair materials and techniques, and (4) training and awareness.  None 

of the experts believed these concerns posed extraordinary safety risks or were 

insurmountable.  FAA is taking action to help address these concerns identified by GAO 

related to the repair and maintenance of composite airplane structures.  However, until 

these composite airplanes enter service, it is unclear if these actions will be sufficient 

(GAO, 2011, What GAO Found). 

CS Study (2). 

FAA Composite Safety and Certification Initiatives (L. Ilcewicz) 
 

Summary and findings of the study. 

The purpose and objective of this study was to identify and explain composite safety and 

certification initiatives that included: background, expanding the FAA composite team, industry 

interface, the role of research, and how research projects are identified and prioritized (Ilcewicz, 

2010).  This study focused on the methodology of the FAA with respect to initiative progress and 

relevance to the Joint Advanced Materials & Structures Center of Excellence (JAMS), as well as 
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future plans and review of progress that concentrates on technical issues addressing safety issues 

and training initiatives (Ilcewicz, 2010).  The findings of the study identified the following: 

Challenges for JAMS - Need More Industry, FAA & other Govt. Agency Involvement.  

Help JAMS identify key R&D areas, realizing the need for a safety & certification 

emphasis: outline existing industry problems and near-term applications, participate in 

FAA Safety Awareness Course developments, cost sharing partners should have 

proactive involvement in project from start to finish.  Actively participate in ongoing 

projects: provide advice/guidance to the PI and researchers, interface with additional 

FAA personnel directing the project, help convert results to practice (deliverables to 

support industry and FAA needs).  Review JAMS detailed project descriptions, 

references and presentations: provide feedback and suggestions for improvement 

(Ilcewicz, 2010, Presentation p. 29). 

CS Study (3). 

Simplifying Certification of Discontinuous Composite Material Forms for Primary Aircraft 

Structures (M. Tuttle, et al.) 

 

Summary and findings of the study. 

The purpose and objective of this study was to evaluate “discontinuous fiber composite 

(DFC) parts produced using compression molding that are being implemented in complex 

structural geometries in new generation commercial aircraft.” (Tuttle, Shifman, Boursier, & 

Head, 2013, Abstract)  This study identified that “structural analysis of DFC parts is a challenge 

since DFC materials do not behave like traditional composites or isotropic materials.” (Tuttle et 

al., 2013, Abstract)  The objectives of the study were accomplished by “presenting some initial 

results related to the behavior of HexMC®, a proprietary DFC system produced by the Hexcel 
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Corporation.” (Tuttle et al., 2013, Abstract)  “Flat HexMC test panels were produced using 

compression molding and used to study the effects of material flow on material behavior.” 

(Tuttle et al., 2013, Abstract)  The findings of the study revealed the following: 

This paper has focused on tensile tests performed using HexMC coupon specimens that 

had been machined from special ‘high-flow’ panels.  The high-flow panels experienced 

far higher levels of material flow during the compression molding process than normally 

occurs during production of a DFC actual part.  Panels of three different thicknesses were 

produced and tested: 2.3 mm, 3.6 mm, and 5.8 mm (0.09 in, 0.140 in, and 0.230 in) 

(Tuttle et al., 2013, Summary). 

It was found that high levels of material flow had little or no impact on fiber volume 

fraction.  Fiber/chip orientations were also found to remain nearly random, even in 

regions of the panel that had experienced substantial levels of material flow. Orientation 

did occur near the boundaries of the mold cavity. In these latter regions the fiber/chips 

tend to become aligned with the boundary, causing an increase in modulus measured 

parallel to the boundary (Tuttle et al., 2013, Summary). 

For a given panel thickness the nominal tensile modulus remained more-or-less constant 

throughout interior regions of the panel, reflecting essentially random fiber/chip 

orientation.  Tensile modulus increased markedly in regions near the panel boundary, 

where fiber/chip alignment occurred.  An unexplained observation was that the nominal 

tensile modulus increased with panel thicknesses.  The nominal stiffness of the 5.8 mm 

thick panel was 31% higher than the nominal modulus measured of the 2.3 mm panel.  

The source of this increase in stiffness with panel thickness has not yet been identified 

(Tuttle et al., 2013, Summary). 
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Maintenance and Repair (M&R) Studies 

M&R Study (1). 

CACRC Depot Bonded Repair Investigation – Round Robin Testing
12

 (2013 Technical Review) 

(J. Tomblin, L. Salah) 

 

Summary and findings of the study. 

The purpose and objectives of this study are as follows: 

Evaluate the existing CACRC standards for repair of composite structures using CACRC 

approved repair materials.  Assess the repair process variability between depots, using the 

same SRM-like procedures (using CACRC repair techniques) provided to all the depots.  

Investigate the variability associated with technician training (minimal level of 

experience versus extensive experience) on the performance of the repair.  Compare the 

strength of the different repairs (CACRC-R1/R2 field repairs vs. OEM-R1/R2 repairs) to 

a set of control “pristine” panels and to a set of open-hole panels.  Evaluate the 

environmental effects on the static and residual strength after fatigue of bonded repairs 

(Tomblin & Salah, 2013, Presentation p. 4). 

The findings and observations/considerations of this study are as follows: 

CACRC standards cannot be used as a sole document replacing an SRM: can be used 

along with an SRM, best practices/techniques for repair, part specific document required, 

difficulties interpreting the standards (wet lay-up repair standard), missing or incomplete 

information as well as outdated nomenclature (mushroom sanding disk holder).  

Perspective on OEM versus Airline Depot/ MRO: many repairs are performed on similar 

parts at an OEM, whereas at an airline depot a mechanic may only repair a given part 

occasionally (practice/training needed on the same part).  Constraints to perform the 
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repair within a limited timeframe (AOG), and continuity between shifts (Tomblin & 

Salah, 2013, Presentation p. 20). 

Technicians’ perspective: need more accessibility to engineering documentation and data, 

need training with OEM documents and SRMs, training to particular repair manual, 

differences between aircraft to aircraft, no standard structural repair manual (“2 years to 

get familiar with one SRM”), need for standardized SRMs and for material 

standardization (more robust processes, improved efficiency “5 days spent gathering 

repair information and tooling/5 hours to complete the repairs”) (Tomblin & Salah, 2013, 

Presentation p. 21). 

Recommended topics to be included in training: working on example parts, history of 

composites, composite part identification (know what to look for, material type, style…), 

computer training for lead mechanics (access SRMs, find required documentation), 

understand the differences between wet lay-up and prepreg repairs (cure temperature and 

outcome on structure, performance of wet lay-up and prepreg resins), show examples of 

bad processes and the consequences, pass-fail criteria (Inadequate drying of a part, 

consequences of using wrong materials/bad material replacement). 

Implications on safety: inspection required for critical steps, inspection points, and 

process verification coupons.  Need for composite repair technician training and 

certification & periodic certification validation (Tomblin & Salah, 2013, Presentation p. 

22). 

[12] The maintenance depot repair/technician experience data from this study was used for a 

linear regression and will be examined in the next section. 
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M&R Study (2). 

CACRC Depot Bonded Repair Investigation – Round Robin Testing (2012 Technical Review) 

(J. Tomblin, L. Salah) 

 

Summary and findings of the study. 

The purpose and objectives of this study are as follows: 

To evaluate the static strength and residual strength after fatigue of OEM vs. field bonded 

repairs applied to composite sandwich structures, performed at different operator depots.  

Repair method evaluation (OEM/CACRC): variability/repeatability of repairs performed 

at different depots, evaluation of existing CACRC standards for repair implementation/ 

technician training, and residual strength/environmental durability.  To evaluate the static 

strength and residual strength after fatigue of OEM vs. field bonded repairs subjected to 

impact damage and defective process parameters (Tomblin & Salah, 2012, Presentation 

p. 8). 

The in-service experience/lessons learned of this study are as follows: 

Outstanding performance where reliable processes were used.  Rigorous surface 

preparation yielding a clean chemically active interface is necessary for a durable bond.  Surface 

preparation must yield an interface resistant to degradation.  Adhesion failures are caused by 

deficient processes (pre-bond contamination, poor surface preparation, and inadequate cure 

parameters) that inhibit the formation of strong chemical bonds.  Cohesion failures are caused by 

poor design (thermal residual stresses, stiffness mismatch between adherends, poor material 

selection, inadequate repair overlap, and porous bondlines) (Tomblin & Salah, 2012, 

Presentation p. 11). 
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M&R Study (3-1). 

Effect of Repair Procedures Applied to Composite Airframe Structures (J. Tomblin, L. Salah, 

and C. Yang), Laminate and sandwich structures. 

 

Summary and findings of the study. 

The purpose and objectives of this study are as follows: 

To assess the effects of different variables on the strength and durability of repairs 

applied to composite laminate and sandwich structures: substrate stiffness, lap length, 

thickness, repair materials, cure temperatures, and static/fatigue performance.  To 

evaluate the strength and durability of poorly bonded repairs that passed NDI: poor 

surface preparation, pre-bond moisture, improper cure, and contamination.  To validate 

existing CACRC standards and provide recommendations pertaining to proper repair 

process implementation.  To develop an analysis method and corresponding failure 

criteria for structural sizing of bonded repairs (Tomblin, Salah, & Yang, 2006, 

Presentation p. 3). 

The in-progress results of this study are as follows: 

Laminate mechanical testing to generate baseline repair data for various repair materials 

in progress.  Laminate repair using ACG MTM45/T800 in progress.  Panel Machining to 

generate mechanical data for contaminated coupons is in progress.  Screening panels for 

the sandwich configuration have been tested and are being resized to induce failure in the 

repair.  Improved analytical test results correlation with experimental data (3D FEM 

model) (Tomblin et al., 2006, Presentation p. 26). 
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M&R Study (3-2). 

Effect of Repair Procedures Applied to Composite Airframe Structures (J. Tomblin, L. Salah, 

and C. Yang), Laminate scarf joints. 

 

Summary and findings of the study. 

The purpose and objectives of this study are as follows: 

To investigate different variables on the performance of repairs applied to solid laminates 

representative of 787 structure configurations.  Basic scarf joint parameters: lap length, 

stiffness, thickness, and 4 different repair materials: factory (350°F cure) vs. field repairs 

(250°F cure).  Effect of process parameters on the static and fatigue life of these joints 

(surface contamination, pre-bond moisture, cure cycle deviations) (Tomblin, Salah, & 

Yang, 2005, Presentation p. 3).  The research methodology included 3 tasks that are 

outlined as follows: 

Task 1: Initial testing to define coupon width/geometry FEM Validation of Experimental 

results.  Task 2: Establish repair strength baseline (OEM/field repairs), validation of 

standards required for composite repair and inspection technicians FEM validation of 

experimental results.  Task 3: Investigate the effects of different repair process 

parameters on the strength and durability of repairs.  Validate the inspection/surface 

preparation methods developed by the FAA “chemical characterization of adhesive 

joints” team (Tomblin et al., 2005, Presentation p. 4). 

The task completion and in-progress results of this study are as follows: 

Task 1 (complete): Details of scarf machining procedure, OEM repair implementation, 

coupon tabbing and machining.  Details of experimental results including ARAMIS strain 

maps/adhesive stress-strain data/SEM analysis of fractured surfaces.  FEM Validation of 

the mechanical tests.  Task 2 (in progress): Panels are being machined into sub panels 



APPLICATION OF ADVANCED COMPOSITES 62 

 

that will be subsequently repaired, tabbed, machined into specimens and tested to 

determine the static and fatigue properties of these repairs.  Baseline repairs 

will be cured under pressure and vacuum bag (using the OEM proprietary vacuum 

debulking method) to establish the repair properties under both cure cycle variations.  

Details of experimental data characterizing the static and fatigue performance of the 

OEM repair under CTD, RTA and ETW conditions.  Baseline repair data will also be 

generated for materials typically used in the field.  FEM Validation of the mechanical 

tests (Tomblin et al., 2005, Presentation p. 26). 

ANOVA and Linear Regression Review 

Two separate ANOVA and two linear regression analyses
13

 are performed using the data 

from the previously identified studies in Table 2.  These analyses represent a statistical 

correlation of the data in the selected studies to the hypothesis/research question of this project.  

The ANOVA and linear regression descriptions of each selected study are explained in Table 3.  

The purpose of the ANOVA and linear regression analyses is to directly support and validate the 

findings of the applicable study in order to effectively argue the hypothesis/research question. 

A limited number of studies presented for the qualitative meta-analysis contained useable 

data for a quantitative statistical analysis.  Quantitative data evaluation was performed before a 

determination was made to use the identified studies for statistical analysis based on the 

robustness of the data presented, and if an actual analysis had been performed in the study.  The 

studies identified and selected for statistical analyses in this project were also chosen based on 

their potential for quantitative contribution applicable to the hypothesis/research question and 

how they effectively supported this project’s goal. 

[13] ANOVA and linear regression modeling was performed using XLSTAT. 

 



APPLICATION OF ADVANCED COMPOSITES 63 

 

Table 3 

 

ANOVA and Linear Regression Analyses 

 

ANOVA (1) 

 

Study: Durability of Adhesively Bonded Joints for Aircraft Structures (D. Adams, K. DeVries, 

and C. Child) 

Description: The ASTM D3762 metal wedge crack durability test data presented in this study is 

analyzed from four separate test conditions by comparing the variance found in each condition. 

Purpose: To show statistical significance that supports the study’s effectiveness of improving 

the ASTM D3762 test characteristics for adhesively bonded aircraft structures. 

 

ANOVA (2) 

 

Study: NDT Inspection of Composites for In-Service Defects (T. Marshall), [Study 4-2] 

Description: The non-destructive inspection (NDI) C-Scan data presented in this study is 

analyzed from four typical composite structures by comparing the variance found in observed 

width and depth of barely visible impact damage (BVID) from manufactured defects and FAA 

prescribed impact damage testing. 

Purpose: To show statistical significance that NDI testing is effective at detecting damage in 

typical composite structural components by correlating the results of variance in each structure. 

 

Linear Regression (1) 

 

Study: CACRC Depot Bonded Repair Investigation – Round Robin Testing (2013 Technical 

Review) (J. Tomblin, L. Salah) 

Description: The maintenance depot repair/experience polling data presented in this study is 

analyzed to correlate the relationship between the dependent and explanatory variables that were 

identified in the maintenance experience poll. 

Purpose: To model the estimated effects at the depot (airline) level of composite maintenance 

and repair to validate the findings of the study. 

 

Linear Regression (2) 

 

Study: Structural Health Monitoring for Advanced Composite Structures (I. Herszberg, et al.) 

Description: The structural health monitoring (SHM) load data presented in this study is 

analyzed to correlate the relationship between the stress to cycles (S-N) fatigue properties. 

Purpose: To model the estimated effects of fatigue in order to show the effectiveness of SHM 

for detecting fatigue damage growth in advanced composite structural components. 
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Results 

Meta-Analysis 

Validation Testing (VT) Studies 

VT Study (1). 

Damage Tolerance Testing and Analysis Protocols for Full-Scale Composite Airframe Structures 

Under Repeated Loading (J. Tomblin, W. Seneviratne) 

 

This study exceeds the categorical evaluative criteria by identifying the methodology and 

approaches necessary for comprehensive process improvements of full-scale validation testing 

by determining fatigue life with respect to damage tolerance (life and load factors), evaluating 

impact threats with respect to load-life capability, and the incorporation of design changes 

without the addition of extra testing (Tomblin & Seneviratne, 2008).  This is a methodology-

based study that lays the groundwork for achieving best practice methods and procedures for 

full-scale testing of composite airframe structures (Tomblin & Seneviratne, 2008).  The 

following benefits and advantages to aviation were identified: 

Incorporation of damage into scatter analysis.  Load-Life-Damage: investigate large VID 

damage, further studies.  Load-Life Shift: investigate different categories of 

damages/repairs in the same full-scale test article damage, design changes, i.e. gross 

weight increase, LEF during certification vs. improved LEF and reliability of designed 

life (Tomblin & Seneviratne, 2008, Presentation p. 29). 

The future needs and direction were identified in the findings of the study
14

 that points out the 

need for “reliable NDI and health monitoring techniques for damage characterization during full-

scale testing and service” which should be noted that this correlates to the findings in other 

studies and validates the hypothesis/research question of this project. 

[14] The findings of this study can be found on p. 43 of this paper.  
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VT Study (2). 

Durability of Adhesively Bonded Joints for Aircraft Structures (D. Adams, K. DeVries, and C. 

Child) 

This study meets the categorical evaluative criteria by identifying improvements for the 

ASTM D3762 metal wedge crack durability test characteristics for use with adhesively bonded 

composite joints which validates the need to improve this test for composite applications.  This 

study is ongoing with future research required before new ASTM D3762 can be implemented.  

The methodologies for implementation and benefits to aviation have been identified as follows: 

As this research project progresses, test results and proposed additions and revisions to 

the ASTM D3762 standard will continue to be communicated regularly to ASTM 

Committee D14 on adhesives.  In addition to proposing revisions to this standardized test 

method, research results from this investigation will be disseminated through an FAA 

technical report and journal publications.  Expected benefits to aviation include an 

improved adhesive bond durability test method for use in assessing the reliability of 

adhesively bonded aircraft structures (Adams et al., 2011, p. 20). 

The test data from this study is analyzed in the next section of this paper to validate the results 

and findings in order to show that the test was effective. 

VT Study (3). 

Damage Tolerance Test Method Development for Sandwich Composites (D. Adams, B. 

Kuramoto) 

This study meets the categorical evaluative criteria by identifying needed standardized 

damage tolerance test methods for sandwich composites.  The proposed methodology of this 

study focused on the “high level of maturity” of existing damage tolerance and damage 

resistance standards in-place for monolithic composite structures (Adams & Kuramoto, 2012, 
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Presentation p. 4).  This study’s primary objective was to develop a standardized ASTM test 

method for structural sandwich composite components that (at present) does not exist.  When 

this research is complete, its potential for implementation is high due to the immediate industry 

standard need of this test method which validates this study’s effectiveness.  The benefits and 

advantages to aviation have been identified as follows: 

Expected benefits to aviation from this research project include the development of 

standardized test methodologies for use in assessing the damage tolerance of sandwich 

composites used in aircraft structures.  Other benefits include test results used to predict 

damage tolerance of sandwich composites, and research results on scaling of results 

towards composite sandwich structures (Adams & Kuramoto, 2012, p. 12), (Adams & 

Kuramoto, 2012, Presentation p. 23). 

VT Study (4-1). 

In-service Inspection Guidelines for Composite Aerospace Structures (J. Heida, D. Platenkamp) 

This study meets the categorical evaluative criteria (with limitations) by identifying and 

evaluating in-service non-destructive inspection (NDI) testing methods and techniques used in 

the aerospace industry.  Through this study’s evaluation of in-service NDI methods and 

techniques, guidelines are proposed for their use of detecting damage in composite structures.  

The limiting factor of this study is that while it is highly informative as a guideline for use, it 

does not propose any new methods or techniques for NDI.  However, due to the relevance of 

NDI as pointed out in other studies, this study’s effectiveness for implementation as a 

standardized authoritative guide to aerospace NDI methods and techniques is suggested and can 

be adopted as such.  The testing performed in this study was adapted from study 4-2 (below) and 

will be analyzed using the data from study 4-2 to show the effectiveness of NDI testing. 
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VT Study (4-2). 

NDT Inspection of Composites for In-Service Defects (T. Marshall) 

This study is used for quantitative analysis only and will be discussed in the next section.  

The summary and findings of this study can be found on p. 48-49 of this paper. 

VT Study (5). 

Boeing Composite Airframe Damage Tolerance and Service Experience (A. Fawcett, G. Oakes) 

This study meets the categorical evaluative criteria (with limitations) by identifying and 

providing industry examples of design criteria for damage tolerant carbon fiber reinforced 

polymer (CFRP) primary aircraft structures used for commercial transport aircraft, and how the 

manufacturer (Boeing) has enabled its maintainability (Fawcett & Oakes, n.d.).  The limiting 

factor of this study is that while it is highly informative and effective for the dissemination of in-

service impact damage experience, it does not suggest or propose new methodologies for damage 

tolerance or damage detection.  However, this study does contribute to industry collaboration for 

the promulgation of robust design criterion and standards for maintainable structures.  It is also 

noted that this study found that Boeing’s current non-destructive testing (NDT)
15

 methods and 

techniques for detecting damage on in-service structures (737 and 777) have been validated and 

are effective.  This study points out that current in-service use of non-destructive inspection 

(NDI) is effective for the detection of composite damage and component failure. 

[15] The term NDT is synonymous with non-destructive inspection (NDI). 

 

VT Study (6). 

Impact Damage Formation on Composite Aircraft Structures (H. Kim) 

This study meets the categorical evaluative criteria by identifying and evaluating the 

impact damage vulnerability of aircraft composite structures specific to wide-area contact from 
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ground support equipment (GSE), high-velocity hail/ice, and large radius metal tips.  This study 

critically examines and investigates non-visible impact damage (NVID) on structural composite 

components in order to fully assess NVID caused by an impact event.  The testing methodologies 

used in this study included finite element analysis (FEA) modeling of impact events that 

produced accurate damage simulation for analysis of typical aircraft composite structures that 

provides the industry with a better understanding of blunt-force impact damage (Kim, 2012).  

This study validates the need for impact damage testing due to the typical occurrence of sub-

surface damage after an impact event without any visible surface indications.  The benefits and 

advantages to aviation regarding wide-area blunt impact are as follows: 

 GSE wide-area blunt impact: understanding of prospective damage produced from wide-

area GSE impact events.  Awareness of phenomena and possible internal failure modes 

for damage tolerance considerations.  Provides key information on mode and extent of 

seeded damage, particularly non-visible impact damage (NVID) from blunt impact 

threats.  Threat conditions causing significant damage – range of energy level needed.  

Establish FEA models that provide the capability to predict: full detailed failure process – 

large deformations, failure initiation, growth, key failure modes.  Visibility of the damage 

produced – failure criteria for impact damage visibility.  Small scale onset of cracks and 

delamination leading to greater damage and degradation of structural integrity.  Establish 

methodologies to analyze whole composite aircraft vs. substructures: GSE impacts 

inducing whole-aircraft motion.  Surrounding GSE secondary impact: identify how to 

detect/monitor occurrence of damaging events.  What inspection technique should be 

used and where, e.g., video cameras and sensors that can help to determine impact energy 

(Kim, 2012, Presentation p. 12). 
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VT Study (7). 

Structural Health Monitoring for Advanced Composite Structures (Herszberg, et al.) 

 

This study is used for quantitative analysis only in-conjunction with the fatigue data from 

FAA AR-03/46 and will be discussed in the next section.  The summary and findings of this 

study can be found on p. 51-52 of this paper. 

Certification Standards (CS) Studies 

CS Study (1). 

Status of FAA’s Actions to Oversee the Safety of Composite Airplanes (Government 

Accountability Office) 

This report exceeds the categorical evaluative criteria by providing oversight for the 

certification of composite Part 25 aircraft.  The report was conducted by the GAO to address the 

safety concerns associated with the increasing use of composites for commercial aircraft 

construction; specifically for primary structural applications such as wings and fuselage 

components.  This report is directed towards the certification process of Boeing’s 787 

Dreamliner due to the 787 being the first large commercial transport aircraft constructed mostly 

with advanced composites (GAO, 2011).  The GAO’s methodology for conducting this report 

was extensive and is described as follows: 

 This report addresses the Federal Aviation Administration’s (FAA) and the European 

Aviation Safety Agency’s (EASA) certification of airplanes using composite materials, 

specifically the agencies’ processes for developing special requirements to ensure that 

Boeing demonstrates the 787 composite fuselage and wings meet current safety levels, 

and FAA’s actions to address safety-related concerns associated with repairing and 

maintaining composite airplanes identified by literature and stakeholders. We focused on 

FAA’s and EASA’s actions as they relate to the certification of the Boeing 787 because it 
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is the first large transport category airplane for commercial use with a composite airframe 

structure to undergo the certification process. To address these objectives, we reviewed 

FAA and EASA regulations, policies, and processes and Boeing certification documents 

for the special conditions and review items the agencies indicated were related to the 

787’s composite fuselage and wings. We conducted a literature search and reviewed 39 

journal articles and technical papers related to the repair and maintenance of composite 

airplanes. We interviewed 11 stakeholders with expertise in the area of maintenance and 

repair of composite materials in airplanes and representing a variety of perspectives, 

including manufacturers, repair stations, academic researchers, and air carriers (GAO, 

2011, Appendix I p. 40). 

The methodologies and objectives also included the “review of FAA’s process to develop special 

conditions for the 787 composite structures, EASA certification review process, and the 

identification of repair and maintenance concerns.” (GAO, 2011, Appendix I p. 40-42). 

The purpose and objectives of this report were warranted based on valid certification and 

safety concerns for this type of aircraft.  The repair and maintenance concerns found by the GAO 

were also revealed in the supporting research performed by the Commercial Aircraft Composite 

Repair Committee (CACRC) and can be directly correlated.  Although this report found that the 

FAA “followed its certification process in assessing the Boeing 787 airplane's composite 

fuselage and wings against applicable FAA airworthiness standards.” (GAO, 2011, What GAO 

Found)  However, due to the lack of applicable certification standards, the FAA “applied five 

special conditions when it found that its airworthiness standards were not adequate to ensure that 

the composite structures would comply with existing safety levels.” (GAO, 2011, What GAO 

Found) 
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CS Study (2). 

FAA Composite Safety and Certification Initiatives (L. Ilcewicz) 

This study exceeds the categorical evaluative criteria by identifying and evaluating the 

FAA’s methodologies used to address current industry concerns specific to safety and 

certification initiatives.  The primary objectives for this study were to “work with industry, other 

government agencies, and academia to ensure safe and efficient deployment of composite 

technologies used in existing and future aircraft, and to update policies, advisory circulars, 

training, and detailed background used to support standardized composite practices.” (Ilcewicz, 

2010, Presentation p. 4).  The goal to promote industry standardization is an important aspect of 

this study that validates the need for new composite aircraft certification standards.  The 

summary of action stated in this study from 2006 to 2009 is as follows: 

Critical safety data shared in unique forum of practitioners – captured in web files, new 

CMH-17 content and FAA course.  Five categories of damage were proposed for damage 

tolerance and maintenance consideration.  Integrated efforts in structural substantiation, 

maintenance and operations interface help ensure complete coverage for safety.  

Coordinated inspection, engineering disposition and repair is needed for safe 

maintenance.  Reporting by operations is essential for detection of critical damage from 

anomalous events.  FAA is committed to CS&CI with industry, academia and 

government groups (~380 participants in three workshops).  Damage tolerance and 

maintenance initiatives are active.  Principles of safety management will continue to be 

used in future developments (policy, guidance and training) (Ilcewicz, 2010, Presentation 

p. 16). 
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CS Study (3). 

Simplifying Certification of Discontinuous Composite Material Forms for Primary Aircraft 

Structures (M. Tuttle, et al.) 

 

This study meets the categorical evaluative criteria by identifying and evaluating the 

certification methodology required for discontinuous fiber composite (DFC) parts that are 

“produced using compression molding and are being implemented in complex structural 

geometries in new generation commercial aircraft.” (Tuttle et al., 2013, Abstract)  Although DFC 

parts are not as common as traditional monolithic or sandwich components (at present), their use 

will undoubtedly increase for future applications based on their unique characteristics and design 

potential.  Increase of DFC material use will mandate the requirement for adequate certification 

guidelines.  This study reveals some initial data and results regarding the physical behavior of 

DFC material.  While this study does not form conclusive certification guidelines for DFC 

material, it does (proactively) research and test the material behavior in order to begin a 

comprehensive approach for future certification guidance.  The following is a summary of action 

for this study: 

A multi-year study with an ultimate goal of simplifying certification of Discontinuous 

Fiber Composite (DFC) parts has been undertaken by members of AMTAS (Advanced 

Materials for Transport Aircraft Structures), which is one of two university groups that 

together form the Joint Advanced Materials & Structures (JAMS) Center of Excellence.  

HexMC®, a DFC system produced by the Hexcel Corporation, is being used as a model 

material.  The multi-year study will involve tests and analyses at both the coupon level 

and at the component level (Tuttle et al., 2013, Summary). 
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The benefits and advantages to aviation are as follows: 

FAA: Program objective supports safety regulations for design, production, and 

airworthiness certification of DFC parts.  Industry: Program will contribute towards 

broader use of DFC structures at lower cost and lower weight.  Academia: Represents an 

applied research project addressing an immediate need in industry and providing 

pertinent research & educational training for new aerospace engineers (Tuttle et al., 2013, 

Presentation p. 22). 

Maintenance and Repair (M&R) Studies 

M&R Study (1). 

CACRC Depot Bonded Repair Investigation – Round Robin Testing (2013 Technical Review) 

(J. Tomblin, L. Salah) 

 

This study exceeds the categorical evaluative criteria by investigating and evaluating 

current depot (airline) level composite bonded repair.  This was accomplished by comparing 

current industry standardized repair procedures (CACRC) with actual depot level repairs to 

analyze the variances based on technician experience and training.  Material standardization and 

acquisition at the depot level was also investigated as well as a comparison of repair strength 

between CACRC field repairs with the same type of original equipment manufacturer (OEM) 

repair.  This study’s investigative and evaluative methodology proved to be effective at revealing 

process deficiencies with depot level repairs that included a lack of composite repair training 

programs, and a lack of inspection required for critical steps of the repair (Tomblin & Salah, 

2013).  This study validates the need for composite maintenance and repair standardization 

throughout the industry (at every repair level), and clearly identifies that composite repair 

standardization (currently) is a safety concern which was also identified in the GAO report 
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previously evaluated.  The maintenance technician polling data from this study is used for a 

linear regression in the next section of this paper to validate the study’s findings and show the 

correlation between technician experience/maintenance actions performed vs. the amount of 

rework.  This study concluded with the following benefits and advantages to aviation: 

Evaluate the completeness and adequacy of the existing CACRC standards (identify areas 

of improvement).  Objective: robust/validated CACRC repair procedures/techniques 

standardized across different OEMs, airlines and repair stations.  Provide 

recommendations pertaining to repair training, materials and standards to improve 

structural integrity of repaired composite components (robust infrastructure for 

maintenance and supportability).  Need for composite repair technician training and 

certification, and periodic certification validation.  Provide a measure of the structural 

integrity (static strength and residual strength after fatigue) of field repairs as compared 

to the OEM baseline repairs (Tomblin & Salah, 2013, Presentation p. 24). 

M&R Study (2). 

CACRC Depot Bonded Repair Investigation – Round Robin Testing (2012 Technical Review) 

(J. Tomblin, L. Salah) 

 

This study meets the categorical evaluative criteria by establishing and evaluating 

standardized (CACRC) composite repair methods and procedures that are used for the 

comparative standard in the 2013 continuation study previously evaluated.  This study’s 

methodology focuses on initial research and investigation of bonded repairs by establishing the 

program objectives that “evaluate the static strength and residual strength after fatigue of OEM 

vs. field bonded repairs applied to composite sandwich structures, performed at different 

operator depots, and evaluate the static strength and residual strength after fatigue of OEM vs. 
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field bonded repairs subjected to impact damage and defective process parameters.” (Tomblin & 

Salah, 2012, Presentation p. 8).  This study concluded with the following benefits and advantages 

to aviation: 

To investigate the effectiveness of “OEM environment” vs. field repairs and the 

variability due to repair implementation at various operator depots.  To understand the 

environmental durability and the residual strength after fatigue of bonded repairs 

subjected to various processes and environments.  To identify key elements in the 

implementation of bonded repairs that ensures repeatability and structural integrity of 

these repairs.  To provide recommendations pertaining to repair technician training and 

repair process control (Tomblin & Salah, 2012, Presentation p. 25). 

M&R Study (3-1). 

Effect of Repair Procedures Applied to Composite Airframe Structures (J. Tomblin, L. Salah, 

and C. Yang), Laminate and sandwich structures. 

 

This study meets the categorical evaluative criteria by identifying and assessing the 

variable effects on the repair strength of laminate and sandwich structures, evaluating the 

“strength and durability of poorly bonded repairs that passed NDI”, and “validating existing 

CACRC standards” (Tomblin et al., 2006, Presentation p. 3).  Further objectives also included 

“providing recommendations pertaining to proper repair process implementation” and 

“developing an analysis method and corresponding failure criteria for structural sizing of bonded 

repairs” (Tomblin et al., 2006, Presentation p. 3).  The research methodology was task-oriented 

which effectively “generated baseline repair data for various laminate and sandwich materials” 

(Tomblin et al., 2006, Presentation p. 26). 
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The benefits and advantages to aviation are as follows: 

To assess the effects of surface contamination and process variations on the performance 

of bonded repairs.  To develop rigorous repeatable repair processes that ensure structural 

integrity of bonded repairs.  To gain confidence in bonded structural repairs.  To provide 

guidance for analytical modeling of repairs (Tomblin et al., 2006, Presentation p. 27). 

M&R Study (3-2). 

Effect of Repair Procedures Applied to Composite Airframe Structures (J. Tomblin, L. Salah, 

and C. Yang), Laminate scarf joints. 

 

This study meets the categorical evaluative criteria by identifying and assessing the 

variable effects “on the performance of repairs applied to solid laminates representative of 787 

structure configurations” specific to laminate scarf joints (Tomblin et al., 2005, Presentation p. 

3).  The research methodology for this study was the same as M&R Study 3-1 (task-oriented) 

with the difference in tested structures (laminate scarf joints) for this study.  This study was also 

effective at generating baseline repair data after the completion of each task, and concluded with 

the same benefits and advantages to aviation as M&R Study 3-1. 

Both of these studies (3-1 and 3-2) validate the need for assessing the repair effects on 

these structures in order to identify a best practice repair method/technique applicable to each 

structure that yields the highest strength and longevity.  This can be directly correlated to repair 

standardization and process improvement with respect to the category of composite maintenance 

and repair. 

Note.  This concludes the meta-analysis results for composite materials studies, categorical 

results are given in the summary section of this project. 
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ANOVA and Linear Regression Analysis 

ANOVA (1) 

Durability of Adhesively Bonded Joints for Aircraft Structures (D. Adams, K. DeVries, and C. 

Child) 

 

The “weak” bonded specimen test data was analyzed to accept or reject the hypothesis 

that the effect of specimen orientation caused significant crack growth during environmental 

exposure.  This was selected based on the data presented in study that suggests the following: 

 Both the “ideal” bonded and the “weak” bonded specimens that received the PAA 

surface treatment performed similarly while the specimens that received the grit blast and 

prime treatment experienced additional crack extension.  While the difference between 

surface preparations was very discernible, the variation caused by specimen orientation 

did not show any recurring trend (Adams et al., 2011, p. 18). 

Two separate ANOVA analyses were performed using the data from the “weak” bonded 

specimens for the conditions: PAA without prime treatment, and grit blast.  The results of both 

analyses are shown in Table 4 and Table 5 with complete statistical summaries in Appendix D.  

The extracted data from the study is shown in Figure C1 (Appendix C). 

Table 4 

ANOVA Results for PAA Specimen without Prime 

Analysis of variance: 
    

      Source DF Sum of squares Mean squares F Pr > F 

Model 3 0.454 0.151 0.118 0.949 

Error 28 35.765 1.277 
  Corrected Total 31 36.219       

Computed against model Y=Mean(Y) 
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Orientation / Tukey (HSD) / Analysis of the differences 
   between the categories with a confidence interval of 95%: 

  Contrast Difference Standardized difference Critical value Pr > Diff Significant 

O2 vs. O4 0.025 0.044 2.730 1.000 No 

O2 vs. O1 0.150 0.265 2.730 0.993 No 

O2 vs. O3 0.300 0.531 2.730 0.951 No 

O4 vs. O1 0.125 0.221 2.730 0.996 No 

O4 vs. O3 0.275 0.487 2.730 0.961 No 

O1 vs. O3 0.150 0.265 2.730 0.993 No 

Tukey's d critical value: 
 

3.861 
  

      

      Category LS means Groups 
   O2 38.063 A 
   O4 38.038 A 
   O1 37.913 A 
   O3 37.763 A 
    

Table 5 

ANOVA Results for Grit Blast Specimen 

Analysis of variance: 
    

      Source DF Sum of squares Mean squares F Pr > F 

Model 3 12.771 4.257 0.615 0.611 

Error 28 193.734 6.919 
  Corrected Total 31 206.505       

Computed against model Y=Mean(Y) 
    

Orientation / Tukey (HSD) / Analysis of the differences  
   between the categories with a confidence interval of 95%: 

  Contrast Difference Standardized difference Critical value Pr > Diff Significant 

O3 vs. O1 0.563 0.428 2.730 0.973 No 

O3 vs. O4 1.213 0.922 2.730 0.793 No 

O3 vs. O2 1.663 1.264 2.730 0.593 No 

O1 vs. O4 0.650 0.494 2.730 0.960 No 

O1 vs. O2 1.100 0.836 2.730 0.837 No 

O4 vs. O2 0.450 0.342 2.730 0.986 No 

Tukey's d critical value: 
 

3.861 
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      Category LS means Groups 
   O3 41.188 A 
   O1 40.625 A 
   O4 39.975 A 
   O2 39.525 A 
    

Results: 

The analyses of specimen orientation data revealed no significance in crack length.  This 

rejects the hypothesis and supports the findings of the test in the study that states: 

“While crack growth and length during environmental exposure varied with surface 

preparation, specimen orientation caused no recurring trend in any of the three surface 

preparation methods tested to date.” (Adams et al., 2011, p. 20) 

Using ANOVA to validate the test results of this study confirms that the research presented was 

effective at evaluating the characteristics of the ASTM D3762 metal wedge crack durability test 

with the intent to “propose revisions to this standardized test method” which will be used to 

“assess the reliability of adhesively bonded aircraft structures.” (Adams et al., 2011, p. 20) 

ANOVA (2) 

NDT Inspection of Composites for In-Service Defects (T. Marshall), [Study 4-2] 

 

The NDI C-Scan BVID test data was analyzed to accept or reject the hypothesis that NDI 

testing is effective at consistently detecting impact damage in advanced composite structural 

components.  The impactor test data presented in this study from four different test panels was 

sufficient to evaluate the observed NDI damage imagery for consistency.  The study’s test was 

conducted using standardized impact testing in accordance with FAA guidelines under AR-03/74 

Bonded Repair of Aircraft Composite Structures.  ANOVA analyses were performed for the 

width and depth delamination impact observations of each test panel: “thin” monolithic, “thick” 
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monolithic, stringer, and honeycomb.  The results for each panel are shown in Tables 6 through 

13 with complete statistical summaries in Appendix E.  The extracted data from the study is 

shown in Figures C2 through C5 (Appendix C). 

Table 6 

ANOVA Results for “Thin” Monolithic Panel (Width Observations) 

Analysis of variance: 
    

      Source DF Sum of squares Mean squares F Pr > F 

Model 3 14.330 4.777 1.415 0.265 

Error 22 74.286 3.377 
  Corrected Total 25 88.615       

Computed against model Y=Mean(Y) 
    

Location / Tukey (HSD) / Analysis of the differences  
  between the categories with a confidence interval of 95%: 
  Contrast Difference Standardized difference Critical value Pr > Diff Significant 

R3 vs. R2 0.571 0.582 2.777 0.937 No 

R3 vs.R4 1.714 1.677 2.777 0.359 No 

R3 vs. R1 1.714 1.677 2.777 0.359 No 

R2 vs. R4 1.143 1.118 2.777 0.683 No 

R2 vs. R1 1.143 1.118 2.777 0.683 No 

R1 vs. R4 0.000 0.000 2.777 1.000 No 

Tukey's d critical value: 
 

3.927 
  

      

      Category LS means Groups 
   R3 3.714 A 
   R2 3.143 A 
   R1 2.000 A 
   R4 2.000 A 
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Table 7 

ANOVA Results for “Thin” Monolithic Panel (Depth Observations) 

Analysis of variance: 
    

      Source DF Sum of squares Mean squares F Pr > F 

Model 3 413.538 137.846 3.735 0.026 

Error 22 812.000 36.909 
  Corrected Total 25 1225.538       

Computed against model Y=Mean(Y) 
    

Location / Tukey (HSD) / Analysis of the differences 
  between the categories with a confidence interval of 95%: 
  Contrast Difference Standardized difference Critical value Pr > Diff Significant 

R2 vs. R3 0.000 0.000 2.777 1.000 No 

R2 vs. R4 8.000 2.367 2.777 0.113 No 

R2 vs. R1 8.000 2.367 2.777 0.113 No 

R3 vs. R4 8.000 2.367 2.777 0.113 No 

R3 vs. R1 8.000 2.367 2.777 0.113 No 

R1 vs. R4 0.000 0.000 2.777 1.000 No 

Tukey's d critical value: 
 

3.927 
  

      

      Category LS means Groups 
   R2 10.000 A 
   R3 10.000 A 
   R1 2.000 A 
   R4 2.000 A 
    

Table 8 

ANOVA Results for “Thick” Monolithic Panel (Width Observations) 

Analysis of variance: 
    

      Source DF Sum of squares Mean squares F Pr > F 

Model 3 13.687 4.562 1.331 0.290 

Error 22 75.429 3.429 
  Corrected Total 25 89.115       

Computed against model Y=Mean(Y) 
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Location / Tukey (HSD) / Analysis of the differences  
  between the categories with a confidence interval of 95%: 
  Contrast Difference Standardized difference Critical value Pr > Diff Significant 

R3 vs. R2 0.714 0.722 2.777 0.887 No 

R3 vs. R4 1.714 1.664 2.777 0.366 No 

R3 vs.R1 1.714 1.664 2.777 0.366 No 

R2 vs. R4 1.000 0.971 2.777 0.767 No 

R2 vs. R1 1.000 0.971 2.777 0.767 No 

R1 vs. R4 0.000 0.000 2.777 1.000 No 

Tukey's d critical value: 
 

3.927 
  

      

      Category LS means Groups 
   R3 3.714 A 
   R2 3.000 A 
   R1 2.000 A 
   R4 2.000 A 
    

Table 9 

ANOVA Results for “Thick” Monolithic Panel (Depth Observations) 

Analysis of variance: 
    

      Source DF Sum of squares Mean squares F Pr > F 

Model 3 2326.242 775.414 2.984 0.053 

Error 22 5717.143 259.870 
  Corrected Total 25 8043.385       

Computed against model Y=Mean(Y) 
    

Location / Tukey (HSD) / Analysis of the differences  
  between the categories with a confidence interval of 95%: 
  Contrast Difference Standardized difference Critical value Pr > Diff Significant 

R3 vs. R2 2.857 0.332 2.777 0.987 No 

R3 vs. R4 20.286 2.262 2.777 0.138 No 

R3 vs. R1 20.286 2.262 2.777 0.138 No 

R2 vs. R4 17.429 1.943 2.777 0.240 No 

R2 vs. R1 17.429 1.943 2.777 0.240 No 

R1 vs. R4 0.000 0.000 2.777 1.000 No 

Tukey's d critical value: 
 

3.927 
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      Category LS means Groups 
   R3 22.286 A 
   R2 19.429 A 
   R1 2.000 A 
   R4 2.000 A 
    

Table 10 

ANOVA Results for Stringer Panel (Width Observations) 

Analysis of variance: 
    

      Source DF Sum of squares Mean squares F Pr > F 

Model 3 54.638 18.213 14.767 0.000 

Error 12 14.800 1.233 
  Corrected Total 15 69.438       

Computed against model Y=Mean(Y) 
    

Location / Tukey (HSD) / Analysis of the differences  
  between the categories with a confidence interval of 95%: 
  Contrast Difference Standardized difference Critical value Pr > Diff Significant 

R1 vs. R3 4.000 5.094 2.969 0.001 Yes 

R1 vs. R4 4.300 5.772 2.969 0.000 Yes 

R1 vs. R2 4.500 5.305 2.969 0.001 Yes 

R3 vs. R4 0.300 0.403 2.969 0.977 No 

R3 vs. R2 0.500 0.589 2.969 0.933 No 

R4 vs. R2 0.200 0.247 2.969 0.994 No 

Tukey's d critical value: 
 

4.199 
  

      

      Category LS means Groups 
  R1 6.500 A   
  R3 2.500 B 

   R4 2.200 B 
   R2 2.000 B   
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Table 11 

ANOVA Results for Stringer Panel (Depth Observations) 

Analysis of variance: 
    

      Source DF Sum of squares Mean squares F Pr > F 

Model 3 8896.500 2965.500 40.600 < 0.0001 

Error 12 876.500 73.042 
  Corrected Total 15 9773.000       

Computed against model Y=Mean(Y) 
    

Location / Tukey (HSD) / Analysis of the differences  
   between the categories with a confidence interval of 95%: 
   Contrast Difference Standardized difference Critical value Pr > Diff Significant 

 R1 vs. R3 22.500 3.447 2.969 0.022 Yes 
 R1 vs. R2 57.000 8.168 2.969 < 0.0001 Yes 
 R1 vs. R4 58.500 9.680 2.969 < 0.0001 Yes 
 R3 vs. R2 34.500 5.285 2.969 0.001 Yes 
 R3 vs. R4 36.000 6.526 2.969 0.000 Yes 
 R2 vs. R4 1.500 0.248 2.969 0.994 No 
 Tukey's d critical value: 

 
4.199 

   

       

       Category LS means Groups 
  R1 60.000 

 
A   

  R3 37.500 
 

B 
   R2 3.000 

 
C 

   R4 1.500   C   
   

Table 12 

ANOVA Results for Honeycomb Panel (Width Observations) 

Analysis of variance: 
    

      Source DF Sum of squares Mean squares F Pr > F 

Model 3 82.716 27.572 20.880 < 0.0001 

Error 13 17.167 1.321 
  Corrected Total 16 99.882       

Computed against model Y=Mean(Y) 
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Location / Tukey (HSD) / Analysis of the differences  
  between the categories with a confidence interval of 95%: 
  Contrast Difference Standardized difference Critical value Pr > Diff Significant 

R4 vs. R3 4.500 4.290 2.935 0.004 Yes 

R4 vs. R2 5.333 5.684 2.935 0.000 Yes 

R4 vs. R1 6.000 7.832 2.935 < 0.0001 Yes 

R3 vs. R2 0.833 0.794 2.935 0.856 No 

R3 vs. R1 1.500 1.670 2.935 0.377 No 

R2 vs. R1 0.667 0.870 2.935 0.820 No 

Tukey's d critical value: 
 

4.151 
  

      

      Category LS means Groups 
  R4 8.000   A 
  R3 3.500 

 
B 

  R2 2.667 
 

B 
  R1 2.000   B 
   

Table 13 

ANOVA Results for Honeycomb Panel (Depth Observations) 

Analysis of variance: 
    

      Source DF Sum of squares Mean squares F Pr > F 

Model 3 6575.863 2191.954 11.885 0.001 

Error 13 2397.667 184.436 
  Corrected Total 16 8973.529       

Computed against model Y=Mean(Y) 
    

Location / Tukey (HSD) / Analysis of the differences  
  between the categories with a confidence interval of 95%: 
  Contrast Difference Standardized difference Critical value Pr > Diff Significant 

R2 vs. R4 0.833 0.080 2.935 1.000 No 

R2 vs. R3 8.333 0.672 2.935 0.906 No 

R2 vs. R1 41.333 4.496 2.935 0.003 Yes 

R4 vs. R3 7.500 0.638 2.935 0.918 No 

R4 vs. R1 40.500 4.870 2.935 0.002 Yes 

R3 vs. R1 33.000 3.074 2.935 0.039 Yes 

Tukey's d critical value: 
 

4.151 
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      Category LS means Groups 
  R2 43.333   A 
  R4 42.500 

 
A 

  R3 35.000 
 

A 
  R1 2.000   B 
   

Results: 

The analyses of width and depth impact delamination observations in each panel revealed 

no significance for the “thin” and “thick” monolithic panels which accepts the hypothesis that 

NDI testing is effective at consistently detecting impact damage in advanced composite 

structural components (see note).  However, significance was detected for both width and depth 

observations for the stringer and honeycomb panels which can be attributed to the construction 

characteristics of those panels causing variances to be observed at specific locations on the 

panels where irregular width and depth occurred.  It should be noted that the significant 

variances in the impact observations only occurred at a rate of 58% (sum of both panels).  This 

mathematically suggests that the study’s test results for the stringer and honeycomb panel 

supports the hypothesis and can be conditionally accepted
16

 at an observation rate of 42% for the 

impact observations that did not show significance in width and depth observations. 

Note.   The ANOVA results of “no significance” for the NDI C-Scan test results in this study is 

the desirable outcome in order to show that the NDI C-Scan is consistently detecting the damage 

created under test conditions with no variance.  Significance in the data would prove that the 

NDI C-scan test results show variance in the observations which would suggest inconsistency for 

damage detection. 

 

[16] The hypothesis is conditionally accepted with the assumption that panel construction 

characteristics caused the 58% rate of observed variances. 
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Linear Regression (1) 
 

CACRC Depot Bonded Repair Investigation – Round Robin Testing (2013 Technical Review) 

(J. Tomblin, L. Salah) 

 

The depot level (airline) composite repair technician polling data from this study was 

used to perform two linear regressions that compare the following sets of variables: years of 

experience by percentage of rework, and number of repairs by percentage of rework.  The results 

are shown in Figures 8 and 9.  The extracted data
17

 from this study is shown in Figure C6 located 

in Appendix C. 

 

 

Figure 8.  Linear regression showing years of experience by rework percentages for 11 out of 13 

composite repair maintenance technicians.  The R
2
 coefficient value (0.017) in this model is quite 

low which does not represent a good fit for variability.  However, the model shows a mean of 13 

years with the least amount of rework occurring above the regression line within the confidence 

interval (Mean 95%) which suggests that technicians with more years of experience have less 

rework. 
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Figure 9.  Linear regression showing number of repairs by rework percentages for 11 out of 13 

composite repair maintenance technicians.  The R
2
 coefficient value (0.185) in this model is 

higher, but is also very low which does not represent a good fit for variability.  However, the 

model shows a mean of 2,072 repairs with the highest amount of rework occurring above the 

regression line within the confidence interval (Mean 95%) which suggests that technicians 

performing a higher number of repairs experience more rework. 

 

[17] The data for Mechanic 2 and 9 from Figure C6 was removed from both regression models 

due to low reported values that would significantly alter the results of the predictions. 

 

Results: 

The polling data presented in this study created a unique opportunity to determine if 

either technician experience or number of repairs were a good fit for variability with respect to 

the percentage of rework.  Due to the low coefficient values in each regression model, this 

cannot be proven with the data that is provided.  However, both models do suggest (through 

limited observation) that there is a correlation between the sets of variables based on what is 

observed either above or below the regression lines in each of the models. 
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Linear Regression (2) 

Structural Health Monitoring for Advanced Composite Structures (I. Herszberg, et al.) 

 

The fatigue data from Damage Tolerance and Durability of Selectively Stitched, Stiffened 

Panels (FAA AR-03/46) presented in this study is used to create a linear regression stress to 

number of cycles (S-N) curve to support the findings of the study that structural health 

monitoring (SHM) is effective for detecting fatigue damage growth in advanced composite 

structural components.  The regression model is shown in Figure 10.  The complete data set is 

shown in Figures C7 and C8 in Appendix C. 

 

 

Figure 10.  Linear regression S-N fatigue curve showing normalized stress by cycles until 

failure.  The R
2
 coefficient value (0.319) in this model represents a low fit for variability.  

However, the model shows a normalized stress mean of 1.013 with the highest concentration 

occurring just below the regression line within the confidence interval (Mean 95%) and then 

continuing to decrease below the confidence interval.  The model also shows minimum observed 

normalized stress occurring at 0.735 close to the confidence interval (Obs. 95%) which directly 

correlates to the findings of the study regarding higher working strains. 
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Results: 

 

The S-N linear regression fatigue curve revealed a normalized stress (minimum) 

observation of the FAA AR-03/46 fatigue data to be 73.5% (static strength) which directly 

correlates to the study’s predicted fatigue curve for SHM damage growth detection of 70% to 

75% and further states that: 

 In the event that SHM systems facilitate the use of higher design allowables, the extent 

of these improvements may be limited by fatigue considerations.  A no-growth approach 

to composite fatigue substantiation is practical because of low design allowables and 

correspondingly low operating strain levels together with the characteristic flat S-N curve 

for composite structures.  For typical carbon fiber reinforced composites, significant 

fatigue damage occurs only at strain levels above approximately 60% of static strength. 

However, once growth commences, its progression is generally rapid and, consequently, 

the no-growth option for composites is currently applied (Herszberg et al., n.d., para. 

5.2). 

Based on the findings in this study and the S-N regression modeling results for the AR-03/46 

fatigue test data, SHM will be critical for the detection and monitoring of fatigue damage in 

structural composite components that are under higher design loads.  As this study points out, 

significant fatigue damage in carbon fiber composite structures occurs at strain levels above 60% 

of the static strength.  This is observed in the regression model which shows failure starting to 

occurring at 73.5% with the highest number of failure observations occurring just above 100%.  

However, it should be noted (as stated in the study) that due to the rapid progression of fatigue 

damage growth in composite structures, a no-growth approach must be maintained in order to 

prevent failure from occurring; SHM is the only enabler for this approach through early detection 

of fatigue damage and will prove to be vital in large applications such as the 787 and A350. 



APPLICATION OF ADVANCED COMPOSITES 91 

 

Analysis Summary 

Composite Materials Studies Meta-Analysis 

The findings of the meta-analysis revealed that industry-wide comprehensive process 

improvements and standardization are occurring for validation testing, certification standards, 

and maintenance/repair procedures of advanced composite structures used for the construction of 

commercial transport aircraft.  However, it should be noted that even though significant progress 

is being made towards the standardization of composite maintenance and repair procedures by 

the CACRC, current deficiencies in technician experience, training, and repair inspection at the 

airline level do not presently support standardized composite maintenance and repair processes 

within the airline industry. 

ANOVA and Linear Regression Analyses 

ANOVA (1) proved that that the research presented was effective at evaluating the 

characteristics of the ASTM D3762 metal wedge crack durability test in order to propose 

effective revisions for this validation testing methodology to be used for future assessment and 

reliability testing of adhesively bonded aircraft structures.  ANOVA (2) proved that non-

destructive inspection (NDI) testing is effective at consistently detecting impact damage in 

advanced composite structural components by analyzing the C-Scan consistency of width and 

depth impact damage observations.  Linear Regression (1) showed limited modeling prediction 

for airline composite repair technician experience and number of repairs variability with respect 

to the percentage of rework.  Linear Regression (2) proved that structural health monitoring 

(SHM) will be critical for the detection and monitoring of fatigue damage in structural composite 

components that are under higher design loads. 
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Recommendations 

Based on the interpretation and inferences of the findings in this project with respect to 

the identification and examination of current industry concerns and problems regarding the use 

of advanced composites in commercial transport aircraft applications, and current 

implementation of industry-wide comprehensive process improvements for the promulgation of 

improved structural validation testing, certification, and standardized repair procedures, the 

following recommendations are suggested for sustainment: 

1.  Manufacturer Collaboration.  Boeing and Airbus will need to share and compare in-

service structural data for the 787 Dreamliner and A350 XWB in order to identify commonalities 

pertaining to design, manufacturing, or maintenance concerns that have the potential to impact 

safety-of-flight.  This should be accomplished through extensive NDI and SHM utilization.  

2.  Continued Standardization.  Robust FAA partnership research and industry 

collaboration should continue in order to improve testing standardization and certification 

processes.  Manufacturers need to collaborate with the CACRC and the airlines in order to 

partner for the development and establishment of standardized composite materials maintenance 

training and repair procedures for use throughout the industry – model training and certification 

programs (military) should be investigated and evaluated by the CACRC for potential industry-

wide implementation. 

3.  Active Structural Evaluation.  This should be implemented for the detection of 

defects, damage, and insipient failure.  Robust NDI and SHM system utilization will be needed 

to create a preemptive evaluative approach.  Implementing this type of methodology will allow 

for early detection and mitigation.  Don’t wait until it breaks! 
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Conclusion 

Accomplishments 

Specific tasks and milestones were completed for this project.  The first task and 

milestone involved a visit to the U.S. Navy’s Advanced Composite Repair School at Naval Air 

Station North Island in San Diego, CA (December, 2012).  This allowed for observation of 

artisan training, as well as advanced composite structures familiarization prior to literature 

review.  The second task and milestone was the attendance of the 2013 JAMS/CMH-17 PMC 

meeting at the Boeing Future of Flight Facility in Everett, WA (April, 2013) where valuable 

research was conducted with over 200 industry participants which also allowed for interviews to 

be conducted with key research professionals and FAA Administrators.  While attending the 

meeting, the author of this project was invited to join the CMH-17 sandwich composite working 

group and will be contributing to the technical review of MIL-23 Handbook chapters for the 

publishing of CMH-17 Volume 6. 

Benefits to Aviation 

Potential benefits to aviation from this research include the identification and validation 

of industry concerns associated with the continued use of advanced composites for structural 

aerospace applications.  It is the desire of the project’s author that the findings and 

recommendations from this research are reviewed by industry professionals in order to provide 

an independent exploratory perspective for future research.   

Future Direction 

This project contains many specific topics that can be researched independently and 

presented to the FAA’s Joint Advanced Materials & Structures Center of Excellence for industry 

benefit.  It is the desire of the project’s author to continue this research with Embry-Riddle 

Aeronautical University under the Aviation Doctorate program of study. 
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Appendix B 

Illustrations 

 

 

Figure B1.  Materials used (by percentage and location) for the construction of the Boeing 787 

Dreamliner.  Reproduced from “Boeing 787 From the Ground Up – Composites in the Airframe 

and Primary Structure,” by J. Hale, 2006, AERO Magazine, QTR_04, p. 18-19.  Copyright © 

2006 by the Boeing Company.  Reprinted with permission under the personal use agreement. 
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Figure B2.  Illustration of Boeing 787 Dreamliner showing blended wing tips.  Reproduced from 

the Boeing website.  Copyright © 2013 by the Boeing Company.  Reprinted with permission. 

 

 

 
 

Figure B3.  Illustration of Boeing 787 Dreamliner showing wing shape.  Reproduced from the 

Wikipedia website.  Copyright © 2007 by Y. Obara.  Reprinted with permission under GFDL. 

http://www.google.com/url?sa=i&rct=j&q=boeing+787&source=images&cd=&cad=rja&docid=ZYC0spLhwYmDWM&tbnid=pqbYABLFFT94XM:&ved=0CAUQjRw&url=http://blogpool4tool.com/2013/02/08/a-large-supply-chain-increases-boeings787-difficulties/&ei=um94UeytOcjxiQK8hoDwCA&bvm=bv.45645796,d.cGE&psig=AFQjCNFRS1AIL6LPu20e-RblvBLqNWdJKA&ust=1366933475139859
http://www.google.com/url?sa=i&rct=j&q=boeing+787&source=images&cd=&cad=rja&docid=ox5Es4w4EEJ61M&tbnid=jiFiFNt7WQlvRM:&ved=0CAUQjRw&url=http://commons.wikimedia.org/wiki/File:Boeing_787_Roll-out.jpg&ei=rnB4UfzyL67ligK69IGABQ&bvm=bv.45645796,d.cGE&psig=AFQjCNGwU7gLcUPifKTYXv5milRcTNfY2A&ust=1366934021599107
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Figure B4      Figure B5 

 

  

Figure B6      Figure B7 

 

 

Figures B4-B7.  Illustration of a Boeing 787 composite fuselage section showing monolithic 

carbon fiber reinforced polymer (CFRP) panel construction.  Note the longitudinal and lateral 

longeron-stringer construction in Figure B6 and B7 which shows the multiple composite 

longerons bonded to the monolithic fuselage skin (no mechanical fasteners used) in comparison 

to the two composite stringers which are mechanically fastened (riveted) to the skin and 

reinforced with riveted composite doubler plates.  By bonding all of the numerous composite 

longerons (as shown in Figure B5) to the monolithic skin with adhesive (vice riveting) 

throughout the entire fuselage significantly decreases the amount of mechanical fasteners used 

which decreases airframe weight.  Photos taken by M. Severson at the Boeing Future of Flight 

Facility in Everett, WA (all rights reserved). 
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Appendix C 

ANOVA and Linear Regression Data 

 
Figure C1.  Crack length data for “weak” bonded specimens during environmental exposure.  

Reproduced from “Specimen Orientation,” by D. Adams, et al., 2011, Durability of Adhesively 

Bonded Joints for Aircraft Structures, Figure 7, p. 18. 

 

 

Figure C2.  NDI C-Scan image of “thin” monolithic composite panel BVID testing data.  

Reproduced from “Aerospace Applications,” by T. Marshall, Sonatest, Ltd., n.d., NDT 

Inspection of Composites for In-Service Defects, p. 28. 
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Figure C3.  NDI C-Scan image of “thick” monolithic composite panel BVID testing data.  

Reproduced from “Aerospace Applications,” by T. Marshall, Sonatest, Ltd., n.d., NDT 

Inspection of Composites for In-Service Defects, p. 29. 

 

 

 

Figure C4.  NDI C-Scan image of stringer composite panel BVID testing data.  Reproduced 

from “Aerospace Applications,” by T. Marshall, Sonatest, Ltd., n.d., NDT Inspection of 

Composites for In-Service Defects, p. 30. 
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Figure C5.  NDI C-Scan image of honeycomb composite panel BVID testing data.  Reproduced 

from “Aerospace Applications,” by T. Marshall, Sonatest, Ltd., n.d., NDT Inspection of 

Composites for In-Service Defects, p. 31. 

 

 

Figure C6.  CACRC polling data for airline composite repair technicians.  Reproduced from 

“CACRC Depot Repairs – Technicians’ Experience,” by J. Tomblin and L. Salah, CACRC Depot 

Bonded Repair Investigation – Round Robin Testing (2013 Tech. Review), Presentation, p. 31. 
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Figure C7.  S-N Fatigue Data (Set 1).  Reproduced from “Constant-Amplitude Fatigue Results: 

Selectively Stitched CVSD Panels,” by H. Thomas Hahn, et al., Damage Tolerance and 

Durability of Selectively Stitched, Stiffened Panels, FAA AR-03/46, Table 17, p. 57. 

 

 

Figure C8.  S-N Fatigue Data (Set 2).  Reproduced from “Constant-Amplitude Fatigue Results: 

Selectively Stitched CVSD Panels,” by H. Thomas Hahn, et al., Damage Tolerance and 

Durability of Selectively Stitched, Stiffened Panels, FAA AR-03/46, Table 18, p. 58. 

 

  



APPLICATION OF ADVANCED COMPOSITES 110 

 

Appendix D 

ANOVA (1) Summary Statistics 

Summary statistics for PAA without prime specimen: 
   

         

Variable Observations 
Obs. with missing 

data 
Obs. without missing 

data Minimum Maximum Mean 
Std. 

deviation 
 

Crack Length 32 0 32 34.500 39.000 37.944 1.081 
 

         

         
Variable Categories Frequencies % 

     
Orientation O1 8 25.000 

     

 
O2 8 25.000 

     

 
O3 8 25.000 

     
  O4 8 25.000 

     

         

         
Correlation matrix: 

       

         

Variables 
Orientation-

O1 Orientation-O2 Orientation-O3 
Orientation-

O4 Crack Length 
   Orientation-

O1 1.000 -0.333 -0.333 -0.333 -0.017 
   Orientation-

O2 -0.333 1.000 -0.333 -0.333 0.064 
   Orientation-

O3 -0.333 -0.333 1.000 -0.333 -0.098 
   Orientation-

O4 -0.333 -0.333 -0.333 1.000 0.051 
   

Crack Length -0.017 0.064 -0.098 0.051 1.000 
   

         

         
Multicolinearity statistics: 

      

         

Statistic 
Orientation-

O1 Orientation-O2 Orientation-O3 
Orientation-

O4 
    

Tolerance 0.000 0.000 0.000 0.000 
    

VIF 0.000 0.000 0.000 0.000 
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Regression of variable Crack Length: 

         
Goodness of fit statistics: 

      

         
Observations 32.000 

       Sum of 
weights 32.000 

       
DF 28.000 

       
R² 0.013 

       
Adjusted R² -0.093 

       
MSE 1.277 

       
RMSE 1.130 

       
MAPE 2.027 

       
DW 1.726 

       
Cp 4.000 

       
AIC 11.559 

       
SBC 17.422 

       
PC 1.270 

       

         

         
Analysis of variance: 

      

         
Source DF Sum of squares Mean squares F Pr > F 

   
Model 3 0.454 0.151 0.118 0.949 

   
Error 28 35.765 1.277 

     Corrected 
Total 31 36.219       

   
Computed against model Y=Mean(Y) 

     

         

         
Type I Sum of Squares analysis: 

     

         
Source DF Sum of squares Mean squares F Pr > F 

   
Orientation 3 0.454 0.151 0.118 0.949 

   

         

          
 
 
 
Type III Sum of Squares analysis: 

     

         
Source DF Sum of squares Mean squares F Pr > F 

   
Orientation 3 0.454 0.151 0.118 0.949 
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Model parameters: 

       

         

Source Value Standard error t Pr > |t| 
Lower bound 

(95%) 
Upper bound 

(95%) 
  

Intercept 38.038 0.400 95.193 < 0.0001 37.219 38.856 
  Orientation-

O1 -0.125 0.565 -0.221 0.827 -1.283 1.033 
  Orientation-

O2 0.025 0.565 0.044 0.965 -1.133 1.183 
  Orientation-

O3 -0.275 0.565 -0.487 0.630 -1.433 0.883 
  Orientation-

O4 0.000 0.000         
  

         

         
Equation of the model: 

      

         
Crack Length = 38.0375-0.124999999999997*Orientation-O1+0.025000000000001*Orientation-O2-0.275000000000003*Orientation-O3 

         

         
Standardized coefficients: 

      

         

Source Value Standard error t Pr > |t| 
Lower bound 

(95%) 
Upper bound 

(95%) 
  Orientation-

O1 -0.051 0.230 -0.221 0.827 -0.522 0.420 
  Orientation-

O2 0.010 0.230 0.044 0.965 -0.461 0.481 
  Orientation-

O3 -0.112 0.230 -0.487 0.630 -0.583 0.359 
  Orientation-

O4 0.000 0.000         
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Summary statistics for grit blast specimen: 
    

         

Variable Observations 
Obs. with missing 

data 
Obs. without missing 

data Minimum Maximum Mean 
Std. 

deviation 
 

Crack Length 32 0 32 34.000 44.000 40.328 2.581 
 

         

         
Variable Categories Frequencies % 

     
Orientation O1 8 25.000 

     

 
O2 8 25.000 

     

 
O3 8 25.000 

     
  O4 8 25.000 

     

         

         
Correlation matrix: 

       

         

Variables 
Orientation-

O1 Orientation-O2 Orientation-O3 
Orientation-

O4 Crack Length 
   

Orientation-O1 1.000 -0.333 -0.333 -0.333 0.067 
   

Orientation-O2 -0.333 1.000 -0.333 -0.333 -0.183 
   

Orientation-O3 -0.333 -0.333 1.000 -0.333 0.195 
   

Orientation-O4 -0.333 -0.333 -0.333 1.000 -0.080 
   

Crack Length 0.067 -0.183 0.195 -0.080 1.000 
   

         

         
Multicolinearity statistics: 

      

         

Statistic 
Orientation-

O1 Orientation-O2 Orientation-O3 
Orientation-

O4 
    

Tolerance 0.000 0.000 0.000 0.000 
    

VIF 0.000 0.000 0.000 0.000 
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Regression of variable Crack Length: 

         
Goodness of fit statistics: 

      

         
Observations 32.000 

       Sum of 
weights 32.000 

       
DF 28.000 

       
R² 0.062 

       
Adjusted R² -0.039 

       
MSE 6.919 

       
RMSE 2.630 

       
MAPE 5.111 

       
DW 1.025 

       
Cp 4.000 

       
AIC 65.624 

       
SBC 71.487 

       
PC 1.206 

       

         

         
Analysis of variance: 

      

         
Source DF Sum of squares Mean squares F Pr > F 

   
Model 3 12.771 4.257 0.615 0.611 

   
Error 28 193.734 6.919 

     Corrected 
Total 31 206.505       

   
Computed against model Y=Mean(Y) 

     

         

         
Type I Sum of Squares analysis: 

     

         
Source DF Sum of squares Mean squares F Pr > F 

   
Orientation 3 12.771 4.257 0.615 0.611 

   

         

          
 
 
 
 
Type III Sum of Squares analysis: 

     

         
Source DF Sum of squares Mean squares F Pr > F 

   
Orientation 3 12.771 4.257 0.615 0.611 
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Model parameters: 

       

         

Source Value Standard error t Pr > |t| Lower bound (95%) 

Upper 
bound 
(95%) 

  
Intercept 39.975 0.930 42.984 < 0.0001 38.070 41.880 

  
Orientation-O1 0.650 1.315 0.494 0.625 -2.044 3.344 

  
Orientation-O2 -0.450 1.315 -0.342 0.735 -3.144 2.244 

  
Orientation-O3 1.213 1.315 0.922 0.364 -1.482 3.907 

  
Orientation-O4 0.000 0.000         

  

         

         
Equation of the model: 

      

         
Crack Length = 39.975+0.65*Orientation-O1-0.449999999999998*Orientation-O2+1.2125*Orientation-O3 

         

         
Standardized coefficients: 

      

         

Source Value Standard error t Pr > |t| 
Lower bound 

(95%) 
Upper bound 

(95%) 
  

Orientation-O1 0.111 0.224 0.494 0.625 -0.348 0.570 
  

Orientation-O2 -0.077 0.224 -0.342 0.735 -0.536 0.383 
  

Orientation-O3 0.207 0.224 0.922 0.364 -0.253 0.666 
  

Orientation-O4 0.000 0.000         
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Appendix E 

ANOVA (2) Summary Statistics 

Summary statistics for "thin" panel (width): 
      

         

Variable 
Observati

ons 
Obs. with 

missing data 
Obs. without missing 

data 
Minimu

m Maximum Mean Std. deviation 
 

Width 26 0 26 1.000 8.000 2.769 1.883 
 

         

         
Variable Categories Frequencies % 

     
Location R1 6 23.077 

     

 
R2 7 26.923 

     

 
R3 7 26.923 

     
  R4 6 23.077 

     

         

         
Correlation matrix: 

       

         

Variables 
Location-

R1 Location-R2 Location-R3 
Locatio

n-R4 Width 
   

Location-R1 1.000 -0.332 -0.332 -0.300 -0.228 
   

Location-R2 -0.332 1.000 -0.368 -0.332 0.123 
   

Location-R3 -0.332 -0.368 1.000 -0.332 0.311 
   

Location-R4 -0.300 -0.332 -0.332 1.000 -0.228 
   

Width -0.228 0.123 0.311 -0.228 1.000 
   

         

         
Multicolinearity statistics: 

      

         

Statistic 
Location-

R1 Location-R2 Location-R3 
Locatio

n-R4 
    

Tolerance 0.000 0.000 0.000 0.000 
    

VIF 0.000 0.000 0.000 0.000 
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Regression of variable Width: 

         
Goodness of fit statistics: 

      

         
Observations 26.000 

       
Sum of weights 26.000 

       
DF 22.000 

       
R² 0.162 

       
Adjusted R² 0.047 

       
MSE 3.377 

       
RMSE 1.838 

       
MAPE 64.857 

       
DW 1.835 

       
Cp 4.000 

       
AIC 35.295 

       
SBC 40.328 

       
PC 1.143 

       

         

         
Analysis of variance: 

       

         
Source DF Sum of squares Mean squares F Pr > F 

   
Model 3 14.330 4.777 1.415 0.265 

   
Error 22 74.286 3.377 

     
Corrected Total 25 88.615       

   
Computed against model Y=Mean(Y) 

      

         

         
Type I Sum of Squares analysis: 

      

         
Source DF Sum of squares Mean squares F Pr > F 

   
Location 3 14.330 4.777 1.415 0.265 

   

         

         
Type III Sum of Squares analysis: 

      

         
Source DF Sum of squares Mean squares F Pr > F 

   
Location 3 14.330 4.777 1.415 0.265 
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Model parameters: 

         

Source Value Standard error t Pr > |t| 

Lower 
bound 
(95%) 

Upper bound 
(95%) 

  
Intercept 2.000 0.750 2.666 0.014 0.444 3.556 

  
Location-R1 0.000 1.061 0.000 1.000 -2.200 2.200 

  
Location-R2 1.143 1.022 1.118 0.276 -0.977 3.263 

  
Location-R3 1.714 1.022 1.677 0.108 -0.406 3.834 

  
Location-R4 0.000 0.000         

  

         

         
Equation of the model: 

       

         
Width = 2+1.14285714285714*Location-R2+1.71428571428571*Location-R3 

    

         

         
Standardized coefficients: 

      

         

Source Value Standard error t Pr > |t| 

Lower 
bound 
(95%) 

Upper bound 
(95%) 

  
Location-R1 0.000 0.242 0.000 1.000 -0.502 0.502 

  
Location-R2 0.275 0.246 1.118 0.276 -0.235 0.784 

  
Location-R3 0.412 0.246 1.677 0.108 -0.098 0.921 

  
Location-R4 0.000 0.000         

  

          
Summary statistics for "thin" panel (depth): 

       

          

Variable 
Observati

ons 
Obs. with 

missing data 
Obs. without missing 

data 
Minimu

m Maximum Mean Std. deviation 
  

Depth 26 0 26 1.000 20.000 6.308 7.002 
  

          

          
Variable Categories Frequencies % 

      
Location R1 6 23.077 

      

 
R2 7 26.923 

      

 
R3 7 26.923 

      
  R4 6 23.077 
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Correlation matrix: 

          

Variables 
Location-

R1 Location-R2 Location-R3 
Locatio

n-R4 Depth 
    

Location-R1 1.000 -0.332 -0.332 -0.300 -0.344 
    

Location-R2 -0.332 1.000 -0.368 -0.332 0.326 
    

Location-R3 -0.332 -0.368 1.000 -0.332 0.326 
    

Location-R4 -0.300 -0.332 -0.332 1.000 -0.344 
    

Depth -0.344 0.326 0.326 -0.344 1.000 
    

          

           
Multicolinearity statistics: 

       

          

Statistic 
Location-

R1 Location-R2 Location-R3 
Locatio

n-R4 
     

Tolerance 0.000 0.000 0.000 0.000 
     

VIF 0.000 0.000 0.000 0.000 
     

          

          
Regression of variable Depth: 

       

          
Goodness of fit statistics: 

       

          
Observations 26.000 

        
Sum of weights 26.000 

        
DF 22.000 

        
R² 0.337 

        
Adjusted R² 0.247 

        
MSE 36.909 

        
RMSE 6.075 

        
MAPE 133.333 

        
DW 0.973 

        
Cp 4.000 

        
AIC 97.476 

        
SBC 102.509 

        
PC 0.903 
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Analysis of variance: 

          
Source DF Sum of squares Mean squares F Pr > F 

    
Model 3 413.538 137.846 3.735 0.026 

    
Error 22 812.000 36.909 

      
Corrected Total 25 1225.538       

    
Computed against model Y=Mean(Y) 

       

          

          
Type I Sum of Squares analysis: 

       

          
Source DF Sum of squares Mean squares F Pr > F 

    
Location 3 413.538 137.846 3.735 0.026 

    

          

          
Type III Sum of Squares analysis: 

       

          
Source DF Sum of squares Mean squares F Pr > F 

    
Location 3 413.538 137.846 3.735 0.026 

    

          

          
Model parameters: 

        

          

Source Value Standard error t Pr > |t| 

Lower 
bound 
(95%) 

Upper bound 
(95%) 

   
Intercept 2.000 2.480 0.806 0.429 -3.144 7.144 

   
Location-R1 0.000 3.508 0.000 1.000 -7.274 7.274 

   
Location-R2 8.000 3.380 2.367 0.027 0.990 15.010 

   
Location-R3 8.000 3.380 2.367 0.027 0.990 15.010 

   
Location-R4 0.000 0.000         

   

          

          
Equation of the model: 

        

          
Depth = 2+7.99999999999999*Location-R2+7.99999999999999*Location-R3 
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Standardized coefficients: 

          

Source Value Standard error t Pr > |t| 

Lower 
bound 
(95%) 

Upper bound 
(95%) 

   
Location-R1 0.000 0.215 0.000 1.000 -0.446 0.446 

   
Location-R2 0.517 0.218 2.367 0.027 0.064 0.970 

   
Location-R3 0.517 0.218 2.367 0.027 0.064 0.970 

   
Location-R4 0.000 0.000         

   

           
Summary statistics for "thick" panel (width): 

      

         

Variable Observations 
Obs. with 

missing data 
Obs. without 
missing data Minimum Maximum Mean Std. deviation 

 
Width 26 0 26 1.000 8.000 2.731 1.888 

 

          
 

        
Variable Categories Frequencies % 

     
Location R1 6 23.077 

     

 
R2 7 26.923 

     

 
R3 7 26.923 

     
  R4 6 23.077 

     

         

         
Correlation matrix: 

       

         
Variables Location-R1 Location-R2 Location-R3 Location-R4 Width 

   
Location-R1 1.000 -0.332 -0.332 -0.300 -0.216 

   
Location-R2 -0.332 1.000 -0.368 -0.332 0.088 

   
Location-R3 -0.332 -0.368 1.000 -0.332 0.322 

   
Location-R4 -0.300 -0.332 -0.332 1.000 -0.216 

   
Width -0.216 0.088 0.322 -0.216 1.000 

   

         

         
Multicolinearity statistics: 

      

         
Statistic Location-R1 Location-R2 Location-R3 Location-R4 

    
Tolerance 0.000 0.000 0.000 0.000 

    
VIF 0.000 0.000 0.000 0.000 
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Regression of variable Width: 

         
Goodness of fit statistics: 

      

         
Observations 26.000 

       
Sum of weights 26.000 

       
DF 22.000 

       
R² 0.154 

       
Adjusted R² 0.038 

       
MSE 3.429 

       
RMSE 1.852 

       
MAPE 65.229 

       
DW 1.828 

       
Cp 4.000 

       
AIC 35.692 

       
SBC 40.725 

       
PC 1.154 

       

                   
 
Analysis of variance: 

       

         

Source DF 
Sum of 
squares Mean squares F Pr > F 

   
Model 3 13.687 4.562 1.331 0.290 

   
Error 22 75.429 3.429 

     
Corrected Total 25 89.115       

   
Computed against model Y=Mean(Y) 

      

         

         
Type I Sum of Squares analysis: 

      

         

Source DF 
Sum of 
squares Mean squares F Pr > F 

   
Location 3 13.687 4.562 1.331 0.290 

   

         

         
Type III Sum of Squares analysis: 

      

         

Source DF 
Sum of 
squares Mean squares F Pr > F 

   
Location 3 13.687 4.562 1.331 0.290 
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Model parameters: 

         

Source Value 
Standard 

error t Pr > |t| 
Lower bound 

(95%) 

Upper 
bound 
(95%) 

  
Intercept 2.000 0.756 2.646 0.015 0.432 3.568 

  
Location-R1 0.000 1.069 0.000 1.000 -2.217 2.217 

  
Location-R2 1.000 1.030 0.971 0.342 -1.136 3.136 

  
Location-R3 1.714 1.030 1.664 0.110 -0.422 3.851 

  
Location-R4 0.000 0.000         

  

         

         
Equation of the model: 

       

         
Width = 2+0.999999999999998*Location-R2+1.71428571428571*Location-R3 

    

         

         
Standardized coefficients: 

      

         

Source Value 
Standard 

error t Pr > |t| 
Lower bound 

(95%) 

Upper 
bound 
(95%) 

  
Location-R1 0.000 0.243 0.000 1.000 -0.505 0.505 

  
Location-R2 0.240 0.247 0.971 0.342 -0.272 0.751 

  
Location-R3 0.411 0.247 1.664 0.110 -0.101 0.923 

  
Location-R4 0.000 0.000         

  

          
Summary statistics for "thick" panel 
(depth): 

      

         

Variable Observations 
Obs. with missing 

data 
Obs. without missing 

data Minimum Maximum Mean 
Std. 

deviation 
 

Depth 26 0 26 1.000 60.000 12.154 17.937 
 

         

         
Variable Categories Frequencies % 

     
Location R1 6 23.077 

     

 
R2 7 26.923 

     

 
R3 7 26.923 

     
  R4 6 23.077 
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Correlation matrix: 

         
Variables Location-R1 Location-R2 Location-R3 Location-R4 Depth 

   
Location-R1 1.000 -0.332 -0.332 -0.300 -0.316 

   
Location-R2 -0.332 1.000 -0.368 -0.332 0.251 

   
Location-R3 -0.332 -0.368 1.000 -0.332 0.350 

   
Location-R4 -0.300 -0.332 -0.332 1.000 -0.316 

   
Depth -0.316 0.251 0.350 -0.316 1.000 

   

         

         
Multicolinearity statistics: 

      

         
Statistic Location-R1 Location-R2 Location-R3 Location-R4 

    
Tolerance 0.000 0.000 0.000 0.000 

    
VIF 0.000 0.000 0.000 0.000 

    

         

         
Regression of variable Depth: 

      

         
Goodness of fit statistics: 

      

         
Observations 26.000 

       
Sum of weights 26.000 

       
DF 22.000 

       
R² 0.289 

       
Adjusted R² 0.192 

       
MSE 259.870 

       
RMSE 16.120 

       
MAPE 258.330 

       
DW 1.360 

       
Cp 4.000 

       
AIC 148.221 

       
SBC 153.254 

       
PC 0.969 
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Analysis of variance: 

         
Source DF Sum of squares Mean squares F Pr > F 

   
Model 3 2326.242 775.414 2.984 0.053 

   
Error 22 5717.143 259.870 

     
Corrected Total 25 8043.385       

   
Computed against model Y=Mean(Y) 

      

         

         
Type I Sum of Squares analysis: 

      

         
Source DF Sum of squares Mean squares F Pr > F 

   
Location 3 2326.242 775.414 2.984 0.053 

   

         

         
Type III Sum of Squares analysis: 

      

         
Source DF Sum of squares Mean squares F Pr > F 

   
Location 3 2326.242 775.414 2.984 0.053 

   

         

          
 
Model parameters: 

       

         
Source Value Standard error t Pr > |t| Lower bound (95%) Upper bound (95%) 

  
Intercept 2.000 6.581 0.304 0.764 -11.648 15.648 

  
Location-R1 0.000 9.307 0.000 1.000 -19.302 19.302 

  
Location-R2 17.429 8.969 1.943 0.065 -1.171 36.028 

  
Location-R3 20.286 8.969 2.262 0.034 1.686 38.885 

  
Location-R4 0.000 0.000         

  

         

         
Equation of the model: 

       

         
Depth = 2.00000000000001+17.4285714285714*Location-R2+20.2857142857143*Location-R3 
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Standardized coefficients: 

         
Source Value Standard error t Pr > |t| Lower bound (95%) Upper bound (95%) 

  
Location-R1 0.000 0.223 0.000 1.000 -0.462 0.462 

  
Location-R2 0.440 0.226 1.943 0.065 -0.030 0.909 

  
Location-R3 0.512 0.226 2.262 0.034 0.043 0.981 

  
Location-R4 0.000 0.000         

  

          
Summary statistics for stringer panel 
(width): 

      

         

Variable Observations 
Obs. with 

missing data 
Obs. without missing 

data Minimum Maximum Mean Std. deviation 
 

Width 16 0 16 1.000 8.000 3.313 2.152 
 

         

         
Variable Categories Frequencies % 

     
Location R1 4 25.000 

     

 
R2 3 18.750 

     

 
R3 4 25.000 

     
  R4 5 31.250 

     

         

          
Summary statistics (Validation): 

      

         
Variable Categories Frequencies % 

     
Location R1 0 0.000 

     

 
R2 0 0.000 

     

 
R3 0 0.000 

     
  R4 1 100.000 

     

         

         
Correlation matrix: 

       

         
Variables Location-R1 Location-R2 Location-R3 Location-R4 Width 

   
Location-R1 1.000 -0.277 -0.333 -0.389 0.883 

   
Location-R2 -0.277 1.000 -0.277 -0.324 -0.303 

   
Location-R3 -0.333 -0.277 1.000 -0.389 -0.225 

   
Location-R4 -0.389 -0.324 -0.389 1.000 -0.360 

   
Width 0.883 -0.303 -0.225 -0.360 1.000 
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Multicolinearity statistics: 
      

         
Statistic Location-R1 Location-R2 Location-R3 Location-R4 

    
Tolerance 0.000 0.000 0.000 0.000 

    
VIF 0.000 0.000 0.000 0.000 

    

         

         
Regression of variable Width: 

      
         Goodness of fit statistics: 

      

         
Observations 16.000 

       
Sum of weights 16.000 

       
DF 12.000 

       
R² 0.787 

       
Adjusted R² 0.734 

       
MSE 1.233 

       
RMSE 1.111 

       
MAPE 38.754 

       
DW 2.053 

       
Cp 4.000 

       
AIC 6.753 

       
SBC 9.843 

       
PC 0.355 

       

         

         
Analysis of variance: 

       

         

Source DF 
Sum of 
squares Mean squares F Pr > F 

   
Model 3 54.638 18.213 14.767 0.000 

   
Error 12 14.800 1.233 

     
Corrected Total 15 69.438       

   
Computed against model Y=Mean(Y) 

      

         

         
Type I Sum of Squares analysis: 

      

         

Source DF 
Sum of 
squares Mean squares F Pr > F 

   
Location 3 54.638 18.213 14.767 0.000 
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Type III Sum of Squares analysis: 

         

Source DF 
Sum of 
squares Mean squares F Pr > F 

   
Location 3 54.638 18.213 14.767 0.000 

   

         

         
Model parameters: 

       

         

Source Value 
Standard 

error t Pr > |t| Lower bound (95%) 

Upper 
bound 
(95%) 

  
Intercept 2.200 0.497 4.430 0.001 1.118 3.282 

  
Location-R1 4.300 0.745 5.772 < 0.0001 2.677 5.923 

  
Location-R2 -0.200 0.811 -0.247 0.809 -1.967 1.567 

  
Location-R3 0.300 0.745 0.403 0.694 -1.323 1.923 

  
Location-R4 0.000 0.000         

  

         

         
Equation of the model: 

       

         
Width = 2.2+4.3*Location-R1-0.200000000000001*Location-R2+0.299999999999999*Location-R3 

  

         

         
Standardized coefficients: 

      

         

Source Value 
Standard 

error t Pr > |t| Lower bound (95%) 

Upper 
bound 
(95%) 

  
Location-R1 0.894 0.155 5.772 < 0.0001 0.556 1.231 

  
Location-R2 -0.037 0.152 -0.247 0.809 -0.369 0.294 

  
Location-R3 0.062 0.155 0.403 0.694 -0.275 0.400 

  
Location-R4 0.000 0.000         

  

          
Summary statistics for stringer panel 
(depth): 

      

         

Variable Observations 
Obs. with 

missing data 
Obs. without missing 

data Minimum Maximum Mean 
Std. 

deviation 
 

Depth 16 0 16 1.000 70.000 21.750 25.525 
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Variable Categories Frequencies % 

     
Location R1 3 18.750 

     

 
R2 3 18.750 

     

 
R3 4 25.000 

     
  R4 6 37.500 

     

         

         
Summary statistics (Validation): 

      

         
Variable Categories Frequencies % 

     
Location R1 1 100.000 

     

 
R2 0 0.000 

     

 
R3 0 0.000 

     
  R4 0 0.000 

     

         

         
Correlation matrix: 

       

         
Variables Location-R1 Location-R2 Location-R3 Location-R4 Depth 

   
Location-R1 1.000 -0.231 -0.277 -0.372 0.743 

   
Location-R2 -0.231 1.000 -0.277 -0.372 -0.364 

   
Location-R3 -0.277 -0.277 1.000 -0.447 0.368 

   
Location-R4 -0.372 -0.372 -0.447 1.000 -0.635 

   
Depth 0.743 -0.364 0.368 -0.635 1.000 

   

         

         
Multicolinearity statistics: 

      

         
Statistic Location-R1 Location-R2 Location-R3 Location-R4 

    
Tolerance 0.000 0.000 0.000 0.000 

    
VIF 0.000 0.000 0.000 0.000 
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Regression of variable Depth: 

         
Goodness of fit statistics: 

      

         
Observations 16.000 

       
Sum of weights 16.000 

       
DF 12.000 

       
R² 0.910 

       
Adjusted R² 0.888 

       
MSE 73.042 

       
RMSE 8.546 

       
MAPE 26.362 

       
DW 1.684 

       
Cp 4.000 

       
AIC 72.054 

       
SBC 75.144 

       
PC 0.149 

       

         

         
Analysis of variance: 

       

         
Source DF Sum of squares Mean squares F Pr > F 

   
Model 3 8896.500 2965.500 40.600 < 0.0001 

   
Error 12 876.500 73.042 

     
Corrected Total 15 9773.000       

   
Computed against model Y=Mean(Y) 

      

         

         
Type I Sum of Squares analysis: 

      

         
Source DF Sum of squares Mean squares F Pr > F 

   
Location 3 8896.500 2965.500 40.600 < 0.0001 

   

         

         
Type III Sum of Squares analysis: 

      

         
Source DF Sum of squares Mean squares F Pr > F 

   
Location 3 8896.500 2965.500 40.600 < 0.0001 
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Model parameters: 

         

Source Value Standard error t Pr > |t| Lower bound (95%) 
Upper bound 

(95%) 
  

Intercept 1.500 3.489 0.430 0.675 -6.102 9.102 
  

Location-R1 58.500 6.043 9.680 < 0.0001 45.333 71.667 
  

Location-R2 1.500 6.043 0.248 0.808 -11.667 14.667 
  

Location-R3 36.000 5.517 6.526 < 0.0001 23.980 48.020 
  

Location-R4 0.000 0.000         
  

         

         
Equation of the model: 

       

         
Depth = 1.5+58.5*Location-R1+1.50000000000001*Location-R2+36*Location-R3 

    

         

         
Standardized coefficients: 

      

         

Source Value Standard error t Pr > |t| Lower bound (95%) 
Upper bound 

(95%) 
  

Location-R1 0.924 0.095 9.680 < 0.0001 0.716 1.132 
  

Location-R2 0.024 0.095 0.248 0.808 -0.184 0.232 
  

Location-R3 0.631 0.097 6.526 < 0.0001 0.420 0.841 
  

Location-R4 0.000 0.000         
  

          
Summary statistics for honeycomb panel 
(width): 

      

         

Variable Observations Obs. with missing data 
Obs. without 
missing data Minimum Maximum Mean Std. deviation 

 
Width 17 0 17 1.000 9.000 3.353 2.499 

 

         

         
Variable Categories Frequencies % 

     
Location R1 9 52.941 

     

 
R2 3 17.647 

     

 
R3 2 11.765 

     
  R4 3 17.647 
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Summary statistics (Validation): 

         
Variable Categories Frequencies % 

     
Location R1 0 0.000 

     

 
R2 0 0.000 

     

 
R3 0 0.000 

     
  R4 1 100.000 

     

         

         
Correlation matrix: 

       

         
Variables Location-R1 Location-R2 Location-R3 Location-R4 Width 

   
Location-R1 1.000 -0.491 -0.387 -0.491 -0.592 

   
Location-R2 -0.491 1.000 -0.169 -0.214 -0.131 

   
Location-R3 -0.387 -0.169 1.000 -0.169 0.022 

   
Location-R4 -0.491 -0.214 -0.169 1.000 0.887 

   
Width -0.592 -0.131 0.022 0.887 1.000 

   

         

         
Multicolinearity statistics: 

      

         
Statistic Location-R1 Location-R2 Location-R3 Location-R4 

    
Tolerance 0.000 0.000 0.000 0.000 

    
VIF 0.000 0.000 0.000 0.000 

    

         
         
Regression of variable Width: 

      
         
Goodness of fit statistics: 

      

         
Observations 17.000 

       
Sum of weights 17.000 

       
DF 13.000 

       
R² 0.828 

       
Adjusted R² 0.788 

       
MSE 1.321 

       
RMSE 1.149 

       
MAPE 41.249 

       
DW 1.887 

       
Cp 4.000 

       
AIC 8.166 

       
SBC 11.499 

       
PC 0.278 
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Analysis of variance: 

       

         
Source DF Sum of squares Mean squares F Pr > F 

   
Model 3 82.716 27.572 20.880 < 0.0001 

   
Error 13 17.167 1.321 

     
Corrected Total 16 99.882       

   
Computed against model Y=Mean(Y) 

      

         

         
Type I Sum of Squares analysis: 

      

         
Source DF Sum of squares Mean squares F Pr > F 

   
Location 3 82.716 27.572 20.880 < 0.0001 

   

         

         
Type III Sum of Squares analysis: 

      

         
Source DF Sum of squares Mean squares F Pr > F 

   
Location 3 82.716 27.572 20.880 < 0.0001 

   

         

          
 
Model parameters: 

       

         

Source Value Standard error t Pr > |t| 
Lower bound 

(95%) 
Upper bound 

(95%) 
  

Intercept 8.000 0.663 12.058 < 0.0001 6.567 9.433 
  

Location-R1 -6.000 0.766 -7.832 < 0.0001 -7.655 -4.345 
  

Location-R2 -5.333 0.938 -5.684 < 0.0001 -7.360 -3.306 
  

Location-R3 -4.500 1.049 -4.290 0.001 -6.766 -2.234 
  

Location-R4 0.000 0.000         
  

         

         
Equation of the model: 

       

         
Width = 8-6*Location-R1-5.33333333333333*Location-R2-4.5*Location-R3 
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Standardized coefficients: 

         

Source Value Standard error t Pr > |t| 
Lower bound 

(95%) 
Upper bound 

(95%) 
  

Location-R1 -1.236 0.158 -7.832 < 0.0001 -1.576 -0.895 
  

Location-R2 -0.839 0.148 -5.684 < 0.0001 -1.158 -0.520 
  

Location-R3 -0.598 0.139 -4.290 0.001 -0.899 -0.297 
  

Location-R4 0.000 0.000         
  

          
Summary statistics for honeycomb panel 
(depth): 

       

          

Variable Observations Obs. with missing data 
Obs. without 
missing data Minimum Maximum Mean 

Std. 
deviatio

n 
  

Depth 17 0 17 1.000 70.000 22.706 23.682 
  

          

          
Variable Categories Frequencies % 

      
Location R1 8 47.059 

      

 
R2 3 17.647 

      

 
R3 2 11.765 

      
  R4 4 23.529 

      

          

           
 
Summary statistics (Validation): 

       

          
Variable Categories Frequencies % 

      
Location R1 1 100.000 

      

 
R2 0 0.000 

      

 
R3 0 0.000 

      
  R4 0 0.000 

      

          

          
Correlation matrix: 

        

          
Variables Location-R1 Location-R2 Location-R3 Location-R4 Depth 

    
Location-R1 1.000 -0.436 -0.344 -0.523 -0.850 

    
Location-R2 -0.436 1.000 -0.169 -0.257 0.416 

    
Location-R3 -0.344 -0.169 1.000 -0.203 0.195 

    
Location-R4 -0.523 -0.257 -0.203 1.000 0.478 

    
Depth -0.850 0.416 0.195 0.478 1.000 
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Multicolinearity statistics: 

       

          
Statistic Location-R1 Location-R2 Location-R3 Location-R4 

     
Tolerance 0.000 0.000 0.000 0.000 

     
VIF 0.000 0.000 0.000 0.000 

     

          

          
Regression of variable Depth: 

       

          
Goodness of fit statistics: 

       

          
Observations 17.000 

        
Sum of weights 17.000 

        
DF 13.000 

        
R² 0.733 

        
Adjusted R² 0.671 

        
MSE 184.436 

        
RMSE 13.581 

        
MAPE 46.706 

        
DW 1.421 

        
Cp 4.000 

        
AIC 92.134 

        
SBC 95.466 

        
PC 0.432 

        

          

          
Analysis of variance: 

        

          
Source DF Sum of squares Mean squares F Pr > F 

    
Model 3 6575.863 2191.954 11.885 0.001 

    
Error 13 2397.667 184.436 

      
Corrected Total 16 8973.529       

    
Computed against model Y=Mean(Y) 

       

          

          
Type I Sum of Squares analysis: 

       

          
Source DF Sum of squares Mean squares F Pr > F 

    
Location 3 6575.863 2191.954 11.885 0.001 
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Type III Sum of Squares analysis: 

          
Source DF Sum of squares Mean squares F Pr > F 

    
Location 3 6575.863 2191.954 11.885 0.001 

    

          

          
Model parameters: 

        

          

Source Value Standard error t Pr > |t| 
Lower bound 

(95%) 
Upper bound 

(95%) 
   

Intercept 42.500 6.790 6.259 < 0.0001 27.830 57.170 
   

Location-R1 -40.500 8.316 -4.870 0.000 -58.467 -22.533 
   

Location-R2 0.833 10.372 0.080 0.937 -21.575 23.242 
   

Location-R3 -7.500 11.761 -0.638 0.535 -32.909 17.909 
   

Location-R4 0.000 0.000         
   

          

          
Equation of the model: 

        

          
Depth = 42.5-40.5*Location-R1+0.833333333333319*Location-R2-7.50000000000002*Location-R3 

   

          

          
Standardized coefficients: 

       

          

Source Value Standard error t Pr > |t| 
Lower bound 

(95%) 
Upper bound 

(95%) 
   

Location-R1 -0.880 0.181 -4.870 0.000 -1.270 -0.490 
   

Location-R2 0.014 0.172 0.080 0.937 -0.358 0.386 
   

Location-R3 -0.105 0.165 -0.638 0.535 -0.461 0.251 
   

Location-R4 0.000 0.000         
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