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ABSTRACT

This study compiles and interprets three-dimensional Weather Surveillance Radar-1988 Doppler (WSR-
88D) data during a 2.5-yr period and examines the typical orographic effects on precipitation mainly
associated with winter storms passing over coastal northern California.

The three-dimensional mean reflectivity patterns show echo structure that was generally stratiform from
over the ocean to inland over the mountains. The flow above the 1-km level was strong enough to be
unblocked by the terrain, and the mean echo pattern over land had certain characteristics normally asso-
ciated with an unblocked cross-barrier flow, both on the broad scale of the windward slopes of the coastal
mountains and on the scale of individual peaks of the terrain on the windward side. Upward-sloping echo
contours on the scale of the overall region of coastal mountains indicated broadscale upslope orographic
enhancement. On a smaller scale, the mean stratiform echo pattern over the mountains contained a strong
embedded core of maximum reflectivity over the first major peak of terrain encountered by the unblocked
flow and a secondary echo core over the second major rise of the coastal mountain terrain.

Offshore, upstream of the coastal mountains, the reflectivity pattern showed a region of enhanced mainly
stratiform echo within �100 km of the coast, with an embedded echo core, similar to those over the inland
mountain peaks, along its leading edge. It is suggested that the offshore enhancement is caused by inten-
sified frontogenesis in the offshore coastal zone and/or by the onshore directed low-level flow rising over
a thin layer of cool, stable air dammed against the coastal mountains.

The orographically enhanced precipitation offshore and over the coastal mountains was present to some
degree in all the landfalling storms. However, the degree to which each feature was present varied. All the
features were more pronounced when the 500–700-hPa flow was strong, the midlevel humidity was high, and
the low-level cross-barrier wind component was strong. When the low-level stability was greater, the
offshore enhancement of precipitation was proportionately increased, and the general broadscale enhance-
ment inland was reduced.

1. Introduction

Coastal northern California is an ideal laboratory for
observing stable to weakly unstable orographic precipi-
tation. Deep convection is rare along the West Coast,
and heavy precipitation is usually associated with land-
falling baroclinic systems that direct strong, moist low-
level flow against the terrain from the Pacific Ocean

(e.g., Nagle and Serebreny 1962; Elliott and Hovind
1964; Hobbs et al. 1975, 1980; Houze et al. 1976; Braun
et al. 1997; Doyle 1997; Colle et al. 1999, 2002; Yu and
Smull 2000; Neiman et al. 2004; Ralph et al. 2004). The
terrain in the region contains quasi-two-dimensional
mountain ridges that are analogous to traditional ide-
alized model studies of flow over terrain (e.g., Queney
1948). The ridges are oriented from north-northwest to
south-southeast and are approximately orthogonal to
the prevailing low-level flow during heavy-precipitation
events (Fig. 1). The South Fork Mountain and the King
Range ridges will be prominent in the subsequent dis-
cussions of this paper.
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When strong, moist, low-level wind interacts with the
California coastal orography, heavy rainfall accumula-
tion (up to 250 mm in a day) can occur. The rain may
combine with rapid snowmelt and produce extreme
flooding of local rivers and streams. During one flood
in December 1964, the Eel River (Fig. 1) rose approxi-
mately 25 m above flood stage and reached a peak
discharge rate of 21 300 m3 s�1 (Sommerfield et al.
2002). These extreme events can occur when the low-
level jet (LLJ) required by hydrostatic and semigeo-
strophic balance ahead of a front conveys moisture and
heat into the region of the mountains for a prolonged
period of time, sometimes for several days (Ralph et al.
2004, 2005). Floods occur in the European Alps for
much the same reason, as the low-level moist jet ahead
of a front impinges on the barrier (Buzzi et al. 1998;
Doswell et al. 1998; Rotunno and Ferretti 2001).

Browning (1986) emphasized the strong poleward
sensible and latent heat flux in the LLJ to the east of an
approaching cyclone by calling it a “warm conveyor
belt.” LLJs approaching the California coastline origi-
nate in the northern fringes of the Tropics and are cor-
respondingly quite moist. Ralph et al. (2004) referred to
the narrow belt of moisture flux within a warm con-
veyor belt as an “atmospheric river.” When fronts ap-
proach the northern California coast, this narrow zone
of moist flow is nearly always southwesterly, oriented

quasi-perpendicular to the two-dimensional ridges of
the coastal mountains of northern California and thus
in an optimal orientation for orographic modification of
the precipitation associated with the passing baroclinic
system.

The modification of the precipitation that occurs as
the LLJ impinges on a mountain range is a multiscale
process. The flow pattern in the baroclinic system is
modified on the mesoscale, depending on the stratifi-
cation of the temperature, moisture, and wind stratifi-
cation of the impinging flow. Over the Alps, Houze et
al. (2001, hereafter HJM) found that the basic pattern
of precipitation enhancement depended on whether the
upstream flow was blocked or unblocked. In the
blocked cases, the enhancement began upstream of the
barrier (as suggested, e.g., by Grossman and Durran
1984). In the unblocked cases, the enhancement oc-
curred almost entirely over the lower slopes of the bar-
rier with little activity upstream. Major Alpine floods
occur primarily with the unblocked cases, in which the
near-surface boundary layer air rises directly over the
barrier, with little tendency to turn parallel to the bar-
rier or flow around individual peaks. The unblocked
cases are marked by rapid growth and fallout of pre-
cipitation over the lower windward slopes and espe-
cially over the first steep rise of the terrain (Buzzi et al.
1998; Doswell et al. 1998; HJM; Yuter and Houze
2003). In the combined case where lower-level flow is
blocked and an upper layer is unblocked, it is also evi-
dent from the Mesoscale Alpine Program (MAP) that
orographic precipitation enhancement can occur both
upstream from and over a mountain barrier [the inten-
sive observation period 8 (IOP8) case studied by Me-
dina and Houze (2003, 2005) and Medina et al. (2005)].
In this paper, we suggest an analogous behavior occurs
over coastal northern California, where the flow above
1 km is generally strong and largely unblocked but may
have a lower layer of blocked flow also affecting the
precipitation processes.

Small-scale processes also participate in orographic
precipitation enhancement. Smith (1979) pointed out
the likely importance of convective-scale cellularity for
enhancing orographic precipitation particle growth by
coalescence or riming. Elliott and Hovind (1964) sug-
gested that precipitation associated with fronts passing
over California indeed manifested embedded small
convection cells, which they thought enhanced the total
rainfall. Also examining California precipitation, White
et al. (2003) suggested that small convective cells might
enhance the rainout. They also suggested, on the mi-
crophysical scale, that the coalescence of liquid drops in
the cloud layer below the 0°C level (sometimes referred

FIG. 1. Digital terrain map of coastal northern California with
terrain elevation shaded. The locations of important geographic
features and the Eureka WSR-88D are labeled. Black-filled
circles over land represent automated rain gauge stations; black
dots over ocean depict the locations of Eta Model grid points. The
four points enclosed by the ellipse were horizontally averaged to
produce a synthetic sounding representative of the upstream flow.
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to as “warm rain”) is an important microphysical
mechanism producing precipitation fallout in storms
passing over the coastal mountains of California. White
et al. (2003) also showed, as will be shown in this paper,
that major precipitation systems accounting for most of
the rain in the northern California coastal region ex-
tend well above the 0°C level and exhibit a pronounced
bright band, signaling that the ice phase is also impor-
tant. Browning et al. (1975) suggested that both liquid-
water coalescence and ice-phase processes contribute
to high precipitation efficiencies in orographic precipi-
tation. Yuter and Houze (2003) found that small cells
embedded in orographic precipitation in baroclinic sys-
tems over the European Alps were important in en-
hancing the growth of precipitation particles both
above and below the 0°C level. The rates of coalescence
below and riming above the 0°C level were comparable
within small-scale embedded updrafts. Medina and
Houze (2005) have found that strong turbulent over-
turning in the shear layer separating a lower layer of
retarded or blocked flow from an upper layer of un-
blocked flow may enhance the growth and fallout of
precipitation particles on the windward slopes. Larger,
deep convective cells can overwhelmingly dominate the
precipitation over the windward slope if the flow over a
mountain barrier is sufficiently unstable (e.g., Caracena
et al. 1979); however, the northern California region in
winter is not a favored location for deep convection,
and the weak instability leads primarily to embedded
shallow convection in a basically stratiform cloud layer.

In this study, we seek insight into the multiscale
physical processes involved in orographic precipitation
enhancement over the coastal mountains of northern
California and how the nature of the enhancement var-
ies with the strength, stability, and layering of the up-
stream flow. Achieving this objective will help deter-
mine whether processes occurring over this mountain-
ous region are similar to or different from processes
over the Alps and other major mountain ranges. We
use the Weather Surveillance Radar-1988 Doppler
(WSR-88D) operational radar data collected over a
two-and-a-half-year period at Eureka, California (Fig.
1). This radar covers precipitation both over the ocean
and as it crosses the windward slopes of the mountain
barrier. This is not a study of rain measurement by
radar. Rather, we aim to understand how the coastal
mountains affect the physical processes of precipitation
growth and fallout. To accomplish this aim, we compile
time-mean three-dimensional patterns of radar reflec-
tivity and radial velocity. By examining simultaneously
the detailed mean spatial structure of both the reflec-
tivity and radial velocity fields, we deduce aspects of the
interplay of microphysics (indicated grossly by reflec-

tivity) and air motions (indicated by radial velocity). By
further relating the radar reflectivity and velocity fields
to the details of the topography of the terrain, we fur-
ther infer how the orography modifies the microphysics
and dynamics.

In section 2 of this paper, we describe the data and
methods used in this study. Section 3 presents the large-
scale setting of major rain events over the northern
California coastal region. Section 4 describes the over-
all average three-dimensional radar echo climatology.
Section 5 explains how we stratify the dataset into “ep-
ochs” defined by combinations of environmental vari-
ables. Section 6 discusses the variability of the radar
echo climatology with respect to midlevel flow. Section
7 analyzes the orographic precipitation processes with
respect to the wind velocity and stability of the low-
level flow impinging on the mountains. Section 8 inte-
grates all the results.

2. Data and methods

The basic dataset for this study is a two-and-a-half-
year archive of major precipitation events from the Eu-
reka, California, WSR-88D. This coastal radar, located
near Cape Mendocino, has a relatively unimpeded view
of precipitation over the mountains to its east and over
the ocean to its west. This location (Fig. 1) allows sam-
pling of precipitation systems as they approach the
coast, make landfall, and move over the mountains.
Terrain clutter and shadowing are less of a problem for
the Eureka WSR-88D than other West Coast WSR-
88D sites (Westrick et al. 1999). Archived level II data
of reflectivity and radial velocity (Crum and Alberty
1993) were obtained for most of the heavy-precipitation
days during 1 October 1995–31 March 1998, a period
that included the California Landfalling Jets Experi-
ment (CALJET; Ralph et al. 1999).

A major precipitation event was defined as a day on
which at least 25% of the 73 automated rain gauges in
the region bounded by 39°N, 42°N, 122°W, and the
California coastline recorded 25 mm (1 in.) or more of
precipitation. The black-filled circles in Fig. 1 show the
locations of the gauges. Radar archives were available
for 61 of the 67 heavy-precipitation days identified
(Table 1). The basic unit of radar data was the three-
dimensional volume scanned by the WSR-88D eleva-
tion angle sequence. To reduce autocorrelation and
minimize data storage requirements, we reduced the
time resolution of the radar data by using only the data
volumes obtained at 1-h time intervals.

Since the radar processor’s clutter suppression algo-
rithm was insufficient to remove all terrain contamina-
tion, we developed a digital terrain mask. The terrain
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mask used an equivalent-earth-radius ray-propagation
model to approximate the altitude of the radar’s lowest
tilt (0.5°) at each radar gate (Doviak and Zrnic 1993,
14–23). The equivalent earth radius corresponding to
the strongest vertical refractivity gradient of all 61
heavy-precipitation days was used to give a liberal es-
timate of the amount of beam refraction. Then, a ter-
rain elevation dataset with 30-s spatial resolution was
used to determine whether any terrain intersected the
bottom of the radar beam within a horizontal latitude–
longitude element of dimensions 1� � 1�. If the main
lobe of the radar (width 0.94°) was intersected by ter-
rain, then that range bin and all bins at farther range in
that radial were removed. To reduce sidelobe contami-
nation, if terrain was located within 0.5° of the bottom
of the main lobe, then the corresponding radar bin was
deleted. This technique removed virtually all terrain
clutter and shadowing from the dataset and allowed all
remaining radar reflectivity bins over terrain to be in-
terpreted as precipitation rather than clutter contami-
nation.

To remove noise, radial velocity data were removed
if their corresponding reflectivity values were deleted
or below a threshold of �10.0 dBZ. The radial velocity
data were then dealiased using a University of Wash-
ington algorithm similar in construction to the WSR-
88D algorithm (Eilts and Smith 1990). A small fraction
of the volumes that were not successfully dealiased by
the algorithm were rejected, leaving a total of 1176 for
analysis. The volumes were bilinearly interpolated to a
three-dimensional Cartesian grid with 2-km horizontal
spacing and 0.5-km vertical spacing using the National
Center for Atmospheric Research’s (NCAR) SPRINT
software (Mohr and Vaughan 1979) and finally con-
verted to Unidata’s Network Common Data Format
(NetCDF) for analysis using MountainZebra (James et
al. 2000), which is a version of NCAR’s Zebra software
(Corbet et al. 1994) in which the detailed terrain field is
included. The interpolation grid, superposed with a ver-
tical cross section of the most commonly used WSR-
88D volume coverage pattern (VCP 21), is shown in
Fig. 2.

Mean reflectivity and radial velocity were computed
using the interpolated radar volumes. For reflectivity
averaging, a missing value indicates absence of precipi-
tation. Therefore, the reflectivity factor (mm6 m�3) at
the corresponding grid point was set to zero. Missing
radial velocity information, on the other hand, merely
indicates the absence of scatterers. Therefore, the mean
reflectivity factor Z and radial velocity V at each grid
point were computed as

Z �

�
i�1

N

Zi

N
�1�

and

V �

�
i�1

n

Vi

n
, �2�

FIG. 2. Height vs range representation of the Eureka WSR-88D
tilt sequence looking east from the radar site (indicated by the
open circle at 767-m altitude and 0-km range). Each radar tilt is
shaded, and interpolation grid points are indicated by “	.”
(Adapted from James et al. 2000.)

TABLE 1. Heavy-rain days identified during 1 Oct 1995–31 Mar 1998 when WSR-88D archives were available.

1995 1996 1997 1998

11, 12, 14, 15 Dec 15, 16, 18, 27 Jan 1 Jan 2, 3, 11, 12, 14, 16, 18, 25, 26 Jan
4, 17, 18, 19, 20 Feb 16 Mar 1, 2, 3, 5, 6, 7, 14, 16, 19, 21 Feb
4 Mar 18 Apr 12, 21, 22, 23 Mar
21 May 3 Jun
17, 18, 19 Nov 8 Oct
4, 7, 8, 9, 10, 26, 29, 30, 31 Dec 15, 16, 26, 29 Nov

7, 14 Dec
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where N is the total number of volumes (�1176), and n
(� N) is the number of volumes with nonmissing radial
velocity values. From (1), it is evident that Z maxima
indicate regions where the precipitation was either
more frequent, more reflective, or both. Higher reflec-
tivity is generally correlated with heavier rainfall. To
reduce unwanted noise and radar artifacts, inverse
range-squared horizontal smoothing was applied at
each interpolation grid point within a 16-km horizontal
radius of influence for all horizontal maps (6-km hori-
zontal radius for vertical cross sections).

To investigate the sensitivity of rainfall to the up-
stream flow and stability, superposed epoch analyses
(e.g., Reed and Recker 1971; HJM), or “composites,”
were constructed by dividing the radar volumes into
subsets or epochs defined by some specific wind or ther-
modynamic condition. Then, the mean and standard
deviation were computed at each grid point in the sub-
set of volumes. The statistical significance of these sub-
set means were indicated by two-sided Student’s t dif-
ference-of-means tests that were performed at each
grid point using an a priori confidence level of 95%
(Spiegel 1972). As in HJM, the sample sizes in this
study and the low autocorrelation between successive
radar scans both appear to be adequate for difference-
of-means tests (e.g., Wilks 1995).

The superposed epoch analyses led to conclusions
about the sensitivity of the precipitation in the vicinity
of Eureka to dynamic and thermodynamic variables of
the large-scale flow offshore. We estimate these up-
stream variables using analyses and 6-h forecasts from a
90 km � 90 km � 50-hPa resolution National Centers
for Environmental Prediction (NCEP) Eta Model grid.
The model data at the four upstream model grid points
bounded by the ellipse in Fig. 1 were horizontally av-
eraged to produce smooth vertical soundings at 6-h in-
tervals. If no model grid was available within 3 h of a
radar-volume time, the volume was not used for those
calculations that required sounding information. Model
grids were available for 1116 of the radar volumes. The
700–500-hPa layer in the synthetic soundings was used
to represent “midlevel” characteristics of the flow. The
900–800-hPa layer (�1–2 km MSL) in the synthetic
soundings, corresponding to the LLJ altitude and the
strongest correlation with precipitation (Neiman et al.
2002), was used to estimate the static stability, wind
speed, wind direction, and dewpoint temperature up-
wind. The static stability was represented by the moist
Brunt–Väisälä frequency (Durran and Klemp 1982)
and was computed using finite differences.

Figure 3 summarizes the static stability estimates in
the 900–800-hPa layer of onshore flow, as computed
from the Eta Model output. The squared moist Brunt–

Väisälä frequency was small in magnitude (i.e., less
than 10�4 s�2), indicating that deviation from moist
neutrality was minimal, with some days being slightly
moist-unstable and others slightly moist-stable. Fur-
thermore, the 900–800-hPa stability was generally un-
correlated with wind direction, although northwest
flows were seldom absolutely stable.

3. Large-scale flow and stability

Figures 4a and 4b show the mean large-scale synoptic
conditions indicated by 12-hourly NCEP global model
reanalysis output at 2.5° � 2.5° resolution for the major
rain events (Kalnay et al. 1996). This map shows that on
average the 1000- and 500-hPa flows were generally
southwesterly, perpendicular to the mountain ranges of
coastal northern California, consistent with Ralph et al.
(2004) and other studies mentioned earlier. A baro-
clinic trough was located offshore with the maximum of
large-scale upward motion located over the northern
California coast. Figure 4 also depicts the mean synop-
tic maps for two subsets of cases. For reasons discussed
in section 6, we focus on cases for which the 900–800-
hPa flow was west-southwesterly, which produces the
greatest orographic effect on the precipitation.

The west-southwesterly events are subdivided into
days in which the thermodynamic stratification of the
900–800-hPa layer was slightly unstable or neutral ver-
sus absolutely stable. The large-scale mean synoptic
patterns for the unstable/neutral cases (Figs. 4c,d) and
stable cases (Figs. 4e,f) were qualitatively very similar,
except that the stable events exhibited slightly weaker
southwesterly gradient wind. The midlevel height pat-
terns (Figs. 4d,f) were also very similar, with compa-
rable 700-hPa upward motion between unstable and
unstable events. The 700-hPa vertical motion patterns

FIG. 3. The interdependence of squared moist Brunt–Väisälä
frequency and wind direction in the 900–800-hPa layer over vir-
tually all of the Eta-derived upstream soundings. Negative Brunt–
Väisälä frequencies denote conditional instability in the 900–800-
hPa layer.
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are both elongated in Figs. 4d and 4f, with apparent
frontal orientation from south-southwest to north-
northeast. In both cases, the California coast appeared
to be located in prefrontal flow.

Figure 5a shows the overall mean upstream sounding

at 50-hPa vertical resolution derived from the Eta
Model analysis and 6-h forecast fields (section 2) for the
61 heavy-precipitation days. The average 0°C level is
around 780 hPa (2.1 km MSL), and the �15°C level is
about 560 hPa (�4 km MSL). The dewpoint depression

FIG. 4. Mean NCEP reanalysis fields, averaged over 60 heavy-precipitation events during 1 Oct 1995–31 Mar 1998. (a) MSL pressure,
1000–500-hPa thickness, and isotachs of gradient wind; (b) 500-hPa height and 
; (c) and (d) composite synoptic patterns for the subset
of heavy-rain events that had unstable or neutral west-southwesterly flow in the 900–800-hPa layer, with the 0°C level above 2.5 km
MSL; and (e) and (f) same as (c) and (d), respectively, except that only stable events are shown.
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in the profile gradually increases from about 2°C at the
surface to 8°C above 4 km MSL, indicating that
midlevel cloud was less frequent than at low levels. In
addition, the temperature profile reveals the preva-
lence of weak conditional instability below the 850-hPa
level, combined with abundant near-surface moisture.
Within the layer of conditional instability below 850
hPa, the wind profile veered with height, indicative of
warm advection and/or Ekman turning, with an average
900–800-hPa wind speed of 30–35 kt (�15–18 m s�1)
from the west-southwest. The mean Eta-derived profile
in Fig. 5a is consistent with the point dropsonde obser-
vations of Ralph et al. (2005) within 17 different land-
falling LLJs, except that the larger area sampling in our
Eta Model profile depicts slight conditional instability
rather than moist neutrality in the 900–800-hPa layer
and dry air intrusion at midlevels.

Figure 5b shows the average sounding for the un-
stable/neutral events, while Fig. 5c shows the average
sounding for the stable events. A small but notable
difference between the stable and unstable events is
that the stable events (Fig. 5c) had higher humidity
(indicated by much smaller dewpoint depression val-
ues) at midlevels. As will be shown, the intensity of the
orographic modification of the synoptic-scale precipita-
tion pattern was sensitive to these slight differences in
stability and/or humidity.

4. Radar climatology

The horizontal cross sections of echo patterns de-
scribed in this section are mostly taken at the 2-km
level, which is high enough to avoid much of the near-
field blocking of the radar beam by the terrain while
being in the rain layer below the 0°C level (Fig. 2).
Vertical cross sections incorporate all available grid
levels.

Figure 6a shows the 2-km-altitude horizontal display
of reflectivity over coastal northern California, aver-
aged over the 61 heavy-precipitation days. Partial beam
shadowing occurred behind South Fork Mountain (Fig.
1) and other terrain features, and corresponding radar
gates beyond those obstacles to the beam were re-
moved from the dataset. Removal of these blocked and
partially blocked beams results in the circle of radar
observations being much smaller to the east of the ra-

←

of days with west-southwesterly flow at 900–800-hPa flow and 0°C
level above 2.5 km MSL. The temperature profile is solid, and the
dewpoint temperature is dashed.

FIG. 5. Mean upstream soundings (location shown in Fig. 1)
derived from Eta Model output. (a) The average over all 60
heavy-precipitation days. (b) and (c) Mean soundings for subsets
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dar than to the west in Fig. 6 and similar figures
throughout the paper.

The overall pattern of reflectivity in Fig. 6a indicates
both enhancement of echo directly over the coastal
mountains and upstream of the coastline. The enhance-
ment over the terrain is evident from the echo maxima
over the King Range and over the crest and windward
slopes (southwest side) of South Fork Mountain and
the immediately adjacent terrain to its south (locations
in Fig. 1), while upstream enhancement of the precipi-
tation processes is evident from the echo pattern over
the ocean.

The echo contours offshore are oriented roughly par-
allel to the coast, with echo intensity generally increas-
ing toward shore. The strongest offshore gradient of

reflectivity is roughly 60 km from the coastline, which is
roughly 150 km from the crest of the Coastal Range.
Estimates of the Rossby radius (L � NH/f ) using the
representative dry Brunt–Väisälä frequency (N � 0.01
s�1), characteristic terrain height (H � 1.5 km MSL),
and Coriolis parameter f � 10�4 s�1 correspond to this
offshore distance, suggesting that convergent lifting due
to geostrophic adjustment in subcloud air may be en-
hancing precipitation upstream, before the southwest-
erly airstream (Fig. 6c) directly encounters the coastal
terrain. The Rossby radius estimated using a moist
Brunt–Väisälä frequency (Durran and Klemp 1982)
characteristic of absolutely stable events (N � 0.002
s�1) is only about 30 km, and within this distance from
the barrier the reflectivity was even higher, suggesting

FIG. 6. Radar-derived precipitation climatology obtained for all heavy-precipitation events observed by the Eureka WSR-88D,
comprising a total of 1176 hourly radar volumes. Constant altitude plots of 2 km depict (a) mean reflectivity, (b) the rainfall frequency,
or percentage of radar volumes in which the reflectivity was at least 13 dBZ, and (c) mean Doppler radial velocity. Negative (positive)
radial velocity indicates flow toward (away from) the radar. Range ring spacing is 20 km, and azimuth lines are drawn every 45°. The
white contour represents the coastline. (d) A vertical cross-section plot of mean reflectivity from southwest to northeast along the solid
red line in (a), with the underlying terrain shaded green. The dashed red line in (a) indicates the position of vertical cross sections in
Fig. 7.
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additional adjustment within the cloud layer itself,
closer to shore. However, these are only rough esti-
mates. The Doppler velocity data do not provide con-
clusive evidence of the suspected upstream flow adjust-
ment, and the complexity of the terrain and variability
in the static stability make scale analysis to obtain the
appropriate expression of the Rossby radius problem-
atic.

A quasi-circular maximum of reflectivity is apparent
offshore at a radar range of about 40 km in Fig. 6a. This
curved maximum is associated with the brightband ef-
fect of melting ice particles. However, the ringed pat-
tern also mimics the shape of the coastline, which
bulges westward at Cape Mendocino, and the curved
reflectivity pattern could therefore also indicate up-
stream enhancement of the precipitation. Braun et al.
(1997) analyzed aircraft data and found that the up-
stream modification of echo patterns appeared as an
echo maximum paralleling the Pacific coastline.

Figure 6a shows that maxima of the mean reflectivity
occurred over specific areas of the terrain, especially
over the King Range and South Fork Mountain (Fig. 1).
The question arises whether the precipitation was more
intense or more frequent in these locations. Figure 6b
depicts the percentage of radar volumes in which the
reflectivity equaled or exceeded 13 dBZ, which is
roughly equivalent to a rainfall rate of 0.2 mm h�1.
Overall, the patterns in Figs. 6a and 6b are qualitatively
similar, suggesting that orographic forcing generally
makes the precipitation more frequent rather than more
intense. (An exception to this rule will be discussed in
section 7b.) Calculations of mean conditional rainfall
rate (not shown), which is related to mean echo inten-
sity, confirm this result, with the exception that slightly
higher echo intensity occurred both over the higher ter-
rain and offshore within roughly 60 km of the coast.

Figure 6c shows the prevailing Doppler velocity at 2
km MSL, averaged over all 1176 radar volumes. The
mean flow was nearly perpendicular to the Coastal
Range from the southwest at speeds approaching 20
m s�1 at 2 km MSL. Maps of the Doppler velocities at
other altitudes indicated that the wind was veering with
height, especially below 3-km-MSL altitude, consistent
with frictional turning, flow blocking, and/or warm ad-
vection. The strong horizontal low-level wind toward
the coast in the storms examined in this study (�20
m s�1) was at least twice the strength of the cross-
barrier low-level wind component of �8 m s�1 ob-
served during heavy-rainfall events in the Alps during
MAP (see HJM). The mean soundings (Fig. 5) show
that the strong flow toward the barrier in the 1–3-km
(900–700 hPa) layer during heavy-precipitation events
had Froude numbers greater than unity for both satu-

rated and unsaturated air, indicating that flow blocking
was not occurring at these levels. Figure 7 shows the
average Doppler radial velocity along a southwest–
northeast cross section passing through the radar site
for unstable/neutral and stable conditions (as defined in
section 3). Both sections show strong southwesterly
flow increasing gradually with height throughout the
layer observed by the radar. The flow was slightly less
intense in the stable cases but nevertheless rapidly mov-
ing over the coast and up over the mountains. These
sections are, again, consistent with unblocked flow
above the 1-km level.

The vertical cross section of average reflectivity in
Fig. 6d, taken parallel to the prevailing southwesterly
wind along the red line in Fig. 6a is consistent with
unblocked flow over the coastal terrain. A maximum of
echo intensity occurred over the first major peak of
terrain (i.e., the King Range, located at about 70 km on
the horizontal scale in Fig. 6d). This maximum ex-
tended to the higher levels as an upward protrusion of

FIG. 7. Vertical cross sections of mean radial velocity during (a)
unstable/neutral and (b) stable events (analysis V) taken approxi-
mately parallel to the wind along the dashed red line in Fig. 6a.
The terrain is shaded green, and negative (positive) radial velocity
indicates flow toward (away from) the radar location shown at
140-km distance and 767-m altitude.
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the reflectivity contours over the first peak. A similar
echo structure is seen in the radar echo climatology of
unblocked flow cases on the Mediterranean side of
Alps (HJM; Medina and Houze 2003). A secondary
maximum of reflectivity occurred in the cross section
over the second major rise of terrain (120–150 km on
the horizontal scale in Fig. 6d). The echo contours over
land slope upward in the same sense as the generally
increasing height of the terrain at distances greater than
110 km in Fig. 6d. This upward-sloping aspect of the
echo contours over the terrain indicates a general oro-
graphic enhancement of the precipitation-formation
processes over the windward slopes of the coastal
mountains. This type of enhancement is consistent with
unblocked flow, and it will be shown below that this
upward slope of contours is more pronounced when the
cross-barrier wind component is stronger and when the
static stability of the upstream flow is reduced. Echo
features embedded within the general echo pattern
over the terrain are also consistent with unblocked
flow.

Despite the overwhelming evidence for unblocked
flow above the 1-km level in both the sounding data
(Fig. 5) and the radar data just discussed, upstream
precipitation enhancement was noted in Fig. 6a and is
also evident in the offshore portion of the vertical cross
section in Fig. 6d. Such upstream precipitation en-
hancement is often associated with low-level flow
blocking (e.g., Grossman and Durran 1984; HJM; Me-
dina and Houze 2003). However, in the case of frontal
systems approaching a coastal mountain barrier, the
dynamics of frontogenesis is enhanced in the offshore
coastal zone (Yu and Smull 2000; Colle et al. 2002;
Olson and Colle 2004). Enhanced frontogenesis imme-
diately offshore could therefore account for the off-
shore precipitation enhancement while unblocked flow
over the mountains accounts for precipitation over the
land.

However, blocking offshore cannot be ruled out as
an explanation for the echo enhancement seen in the
echo climatology over the ocean upstream from the
coastal mountains. Because the Eureka radar is located
on a mountain (767 m MSL), radar data for the major
rain events considered here do not extend below the
1-km level close to the radar, or below 3 km far from
the radar. It is therefore impossible to know the reflec-
tivity or radial velocity conditions in the boundary layer
or near the sea surface, and we can only speculate about
what happens at these very low levels. The echo en-
hancement upstream of the coastal mountains could
have been influenced by a very thin (�1 km deep) layer
of near-surface air, in contact with the cold ocean and/
or dammed against the coastal terrain. Neiman et al.

(2002, 2004) have found such a thin layer of cool stable
air off the coast of California and have suggested that it
was associated with blocking and modification of land-
falling cyclones with southwesterly LLJs of the type
prevalent in the cases we are considering here. The
landward-moving air seen above the surface layer could
have been lifted upstream over this shallow layer of
cold air. Lifting of the upper layer over the lower cool
layer could provide sufficient upward mass transport
and condensation to produce the observed offshore
echo enhancement. The layer of air overriding the thin
layer of cool air over the ocean could have then pro-
ceeded inland and further risen over the coastal moun-
tains in a relatively unblocked fashion. This behavior
would explain why upstream echo enhancement of the
type associated with blocked flow occurs offshore even
though the soundings and radar data above the 1-km
level exhibit unblocked flow characteristics. Thus, the
echo enhancement upstream of the mountains could be
produced either by flow rising over a thin cold pool
dammed against the coastal mountains or by coastal-
zone enhancement of frontogenetic processes in the
landfalling baroclinic systems.

5. Epochs

We performed many superimposed epoch analyses to
investigate the sensitivity of the coastal orographic pre-
cipitation enhancement to characteristics of the up-
stream low-level (900–800 hPa) and midlevel (700–500
hPa) flow. In the MAP studies of Alpine precipitation,
HJM and Medina and Houze (2003) found that the
radar data grouped distinctly according to the Froude
number F of the flow [where F � U/(Nh), U is the speed
of the wind normal to an idealized two-dimensional
barrier of height h, and N is either the moist or dry
Brunt–Väisälä frequency]. In the present study, how-
ever, we find that the radar data in the vicinity of the
northern California coastal mountains had low correla-
tion with the Froude number of the upstream 900–800-
hPa layer. A difference between the Alpine cases and
the northern California coastal cases is that in the Alps,
the flow over the terrain was not directly associated
with the front, which was usually on the northwestern
side of the Alps. Moist flow from the Mediterranean
impinged on the Alpine barrier without frontal effects,
and the ocean was quite far upstream of the barrier. In
northern California, frontogenetic effects in the coastal
zone (Yu and Smull 2000; Colle et al. 2002; Olson and
Colle 2004) and possibly a shallow layer of stable air
over the cold water immediately in front of the coastal
mountains produced effects not present in the Alpine
cases. These effects apparently led to upstream en-
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hancement of precipitation in addition to the enhance-
ment associated with unblocked upslope flow directly
over the mountains. In this case, the echo pattern would
not be expected to correlate simply with F. The super-
posed epoch analyses show instead that, to a first ap-
proximation, the radar echo patterns tended always to
be similar, regardless of the observed flow strength and
stability. The echo patterns in the various data group-
ings generally resemble the mean patterns in Fig. 6.
However, the various features of the mean echo fields
seen in Fig. 6 vary in degree depending on the strength
of the cross-barrier flow, the upstream stability, and the
degree of saturation prevailing in the cloud layers of the
storms passing over the coastal mountains.

Table 2 lists the upstream flow characteristics that
will be presented hereafter in this paper. For brevity,
only those superposed epoch analyses connected with
substantial variations in the observed radar echo fields
have been included. These characteristics are subdi-
vided into low-level and midlevel flow features. The
radar volumes were divided into “analysis” subsets
based on environmental variables as shown in Table 2.
Within each analysis subset (labeled I–V), the data are
subdivided into “epochs” of interest.

Analysis I indicates how the mean radar echo field
varies according to the prevailing low-level wind direc-
tion. Figure 8 displays horizontal cross sections of the
mean reflectivity composites when the offshore low-
level layer-averaged wind direction was (a) south-
southwesterly (180°–210°), (b) southwesterly (210°–
240°), (c) west-southwesterly (240°–270°), and (d) west-
northwesterly (270°–300°). In this figure, it is evident
that each low-level flow direction had at least some

precipitation enhancement over South Fork Mountain
and the King Range (Fig. 1).

Figure 8a shows the southerly to south-southwesterly
epoch. The overall intensity of echo in this epoch was
much greater than those shown in the other three echo
panels. However, it was based on a much smaller
sample of volumes, 54 compared to 330, 365, and 235 in
the other three panels. This sample may not be repre-
sentative of all cases with this wind direction. On the
other hand it may indicate that this rare type of case has
particularly heavy rainfall. In any case, the sample is
not large enough for further analysis.

Of primary interest are the epochs represented in
Figs. 8b and 8c, which are based on a large number of
volumes and which represent wind directions orthogo-
nal to the ridgelines of the coastal mountains. These
southwesterly wind directions typify the LLJs of Cali-
fornia baroclinic storms of the type described by Ralph
et al. (2004) and others. This flow brought plentiful
moisture into the region (Ralph et al. 2004) and typi-
cally possessed a higher static stability. Precipitation
was enhanced both by the mountains over land and well
upstream, as was seen in the overall average reflectivity
patterns for all heavy-rain events (Fig. 6a).

Figure 8d represents west-northwesterly low-level
flow, which was likely postfrontal and therefore less
stable. This regime exhibited lower-than-average mean
reflectivity values over most of the domain and espe-
cially over the ocean, upstream of the coastal terrain.
These flow directions provided less moisture and lower
static stability, and therefore favored less upstream
blocking and more intermittent convective showers di-
rectly over the terrain. The mean radar reflectivity pat-

TABLE 2. Superimposed epoch analyses. Shown are the criteria used to separate the WSR-88D archive into epochs for superimposed
analyses I–V. Also tabulated are the number of hourly radar volumes used for each analysis and all corresponding figures (FZL �
freezing level).

Analysis Epoch 1 Epoch II Epoch III Epoch IV

I. 900–800-hPa wind direction 180°–210°
54 volumes
Fig. 8a

210°–240°
330 volumes
Fig. 8b

240°–270°
362 volumes
Fig. 8c

270°–300°
235 volumes
Fig. 8d

II. 700–500-hPa wind speed (low-level wind direction
225°–270°; FZL � 2.5 km)

0–30 m s�1

125 volumes
Figs. 9a,b

30 m s�1–�
103 volumes
Figs. 9c,d

III. 700–500-hPa dewpoint depression (low-level wind
direction 225°–270°; FZL � 2.5 km)

3°C��
104 volumes
Figs. 10a,b

0°–3°C
124 volumes
Figs. 10c,d

IV. 900–800-hPa wind speed (low-level wind direction
225°–270°; FZL � 2.5 km)

0–20 m s�1

104 volumes
Figs. 13a,b

20 m s�1–�
130 volumes
Figs. 13c,d

V. 900–800-hPa moist Brunt–Väisälä frequency
(low-level wind direction 225°–270°; FZL � 2.5 km)

Imag.–0 s�1

153 volumes
Figs. 3c,d; 4b;

14a,b; 7a; 16a

0 s�1��
81 volumes
Figs. 3e,f; 4c;

14c,d; 7b; 16b
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tern under these conditions exhibited the same general
upslope enhancement as the southwesterly cases. How-
ever, the enhancement was more evident in the coastal
mountains north of the radar and reduced to the south
of the radar in response to the more reduced southerly
component of flow and increased westerly component.
A brightband ring pattern at 60-km range from the ra-
dar is apparent in both Figs. 8c and 8d, consistent with
lower 0°C levels in the colder postfrontal air when the
flow became more westerly.

In the remainder of the paper, we will restrict the
discussion to the set of echo volumes for which the
low-level (900–800 hPa) wind directions were 225°–
270°. These directions fall within the southwesterly–
westerly epochs of Figs. 8b and 8c but are restricted to
the directions most orthogonal to the coastal mountain

ranges and hence most likely to produce strong oro-
graphic precipitation enhancement. The results in the
remainder of the paper are further restricted to cases
for which the 0°C level was at least 2.5-km-MSL alti-
tude. Constraining the height of the 0°C level in this
way minimized brightband contamination of the echo
patterns in the 2-km-MSL horizontal displays.

6. Relationship of radar climatology to midlevel
flow

a. Analysis II: Midlevel wind speed

The strength of the midlevel (700–500 hPa) flow is an
indication of the strength of the large-scale baroclinic
forcing. Figure 9 shows the mean reflectivity at 2-km-
MSL altitude as a function of the 700–500-hPa layer-

FIG. 8. Superimposed epoch analysis of mean reflectivity at an altitude of 2 km MSL when the 900–800-hPa flow direction upstream
was (a) south-southwesterly, (b) southwesterly, (c) west-southwesterly, and (d) west-northwesterly. Range ring spacing is 20 km with
azimuth lines drawn every 30°.
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averaged wind speed. When the midlevel wind speed
was weaker (�30 m s�1; Fig. 9a), the echo enhance-
ment over the coastal mountains was evident, but the
mean echo pattern had a somewhat random character
offshore. The vertical cross section of reflectivity in Fig.
9b lies along the red line in Fig. 9a, which is generally
parallel to the LLJ. The offshore upstream echo en-
hancement produced an upward-protruding mean echo
at a horizontal distance of about 35–40 km.

The greatest echo enhancement was at low levels
over the windward slopes, midway up the range (Fig.
9b; x � 130–170 km). The maximum echo over the first
peak of terrain was apparent but weaker than average
(cf. Fig. 6d). The echo core at the leading edge of the
offshore enhanced echo region was evident as an up-
ward protrusion of the echo contours at �35–40 km on
the horizontal distance scale. Proceeding shoreward,

the echo contours drop in height to a minimum near the
coast. Progressing inland, the echo contours slope up-
ward in apparent response to orographic lifting over the
windward slopes of the coastal mountains. The echo
enhancement at lower levels over land (as seen in the
25–30-dBZ filled contours) exhibits local maxima over
both the King Range and South Fork Mountain ridges
(Fig. 1).

Stronger midlevel wind speed (�30 m s�1) produced
a much stronger and less noisy pattern of radar echo
enhancement (Fig. 9c). This epoch shows clearly all the
orographic effects on the baroclinic precipitation seen
in the mean pattern (Fig. 6a), thus indicating the strong
role of the cross-barrier flow strength in the orographic
modification of the precipitation processes. The off-
shore echo intensity gradient associated with upstream
enhancement was strong and sharply defined, and the

FIG. 9. For the subset of radar volumes in which the 900–800-hPa wind direction fell between 225° and 270° and the 0°C level was
at least 2.5 km, this analysis shows the mean reflectivity at 2 km MSL when the layer-averaged 700–500-hPa wind speed was (a) less
than 30 m s�1 and (c) at least 30 m s�1. (b) and (d) Vertical cross sections of mean reflectivity from west-southwest to east-northeast
along the red lines in (a) and (c), respectively, with the underlying terrain profile shaded green. Range ring spacing is 20 km with
azimuth lines drawn every 45°.
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echo intensity directly over the first two primary ridges
in the terrain was greatly intensified. The strong up-
stream enhancement began �50–60 km offshore.

Figure 9d shows the bright band clearly both just
ahead of and just downstream from the first peak of
terrain. The bright band emphasizes the broad strati-
form nature of the precipitation. Over land the echo
contours slope upward in concert with the mean rise of
the terrain, indicating a general upslope enhancement
of the precipitation as the strong cross-barrier winds
rose over the terrain. The broad stratiform pattern was
punctuated by strong mean upward-protruding echo
cores at the leading edge of the offshore upstream en-
hancement (�40–50 km on the horizontal distance
scale), over the first peak of terrain (King Range at
�115 km), and to a lesser extent over the second major
rise of terrain (South Fork ridge at �160–170 km). In
this well-defined pattern, the precipitation extrema
over individual peaks (especially over the King Range)
were apparently displaced downwind from their posi-

tions in Fig. 9b by the stronger midlevel flow. Precipi-
tation was thus more apt to spill over into inland areas
of the stronger midlevel cases. The stratiform precipi-
tation marked by the strong bright band in the offshore
region possibly was enhanced by ice particles advected
from the upper portion of the upward-protruding echo
core at the leading edge of the offshore enhancement
zone, analogous to a trailing stratiform region following
a squall line (e.g., Houze et al. 1989).

b. Analysis III: Midlevel dewpoint depression

The importance of midlevel humidity to the oro-
graphic precipitation enhancement is indicated by the
Eta Model 700–500-hPa dewpoint depression (tem-
perature minus dewpoint) of the midlevel flow (Fig.
10). The greater the dewpoint depression at these lev-
els, the better developed are the midlevel clouds of the
baroclinic storm system passing over the coastal moun-
tain ranges. The lower humidity upstream implies that
the cloud layer developing over the mountains would

FIG. 10. As in Fig. 9, with the exception that the mean reflectivity is depicted for those events when the 700–500-hPa layer-averaged
dewpoint depression was (a) at least 3°C and (c) less than 3°C. (b) and (d) Vertical cross sections respective to (a) and (c).
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have lower condensed water content since some of the
lifting would be used to saturate the air prior to con-
densation. A weakly developed cloud layer might con-
tain layers of unsaturated air. In the lower humidity
(dewpoint depression 
3°C), much lower reflectivity
was generally observed; however, all the main oro-
graphic precipitation features remained intact (Figs.
10a and 10b). The vertical cross section (Fig. 10b)
shows the echo core at the leading edge of the offshore
enhancement zone, the bright band offshore downwind
of the leading core, the local echo maxima over and
slightly downwind of the first and second major rises of
terrain, and the overall upward slope of the contours
over the windward slopes of the coastal mountains.
When the midlevel dewpoint depression was �3°C, in-
dicating that the midlevel clouds of the passing storm
system were well developed, all the same orographic
precipitation features were evident in the cross section
(Fig. 10d), but they were all more intense. Figures 9c,d
and 10c,d together demonstrate that the strength of the
large-scale midlevel flow and the humidity (i.e., degree
of cloud development) were the two primary control-
ling factors over the intensity of the orographic precipi-
tation features appearing upstream and over the coastal
mountains at midlevels in the baroclinic system passing
over the mountains.

7. Sensitivity of heavy precipitation to low-level
flow characteristics

a. Analysis IV: Low-level wind speed

Heavy-precipitation events over the coastal moun-
tains of northern California are associated with a south-
westerly LLJ (Ralph et al. 2004). To analyze the re-
sponse of the radar reflectivity field to the strength of
the LLJ, we examine the radar volumes in the heavy-
precipitation events that had low-level wind directions
of 225°–270° and 0°C level at or above 2.5 km MSL.
These criteria included nearly one-quarter (234) of the
radar volumes in heavy-precipitation events (Fig. 11)
and segregated those events for which the low-level
wind was approximately orthogonal to the ridges of the
Coastal Range (Fig. 1). Figure 12 shows that most of
the radar volumes with wind directions of 225°–270°
had LLJ speeds between 15 and 25 m s�1. In this sec-
tion, we analyze the response of the radar reflectivity
field to the strength of the LLJ by subdividing the
dataset into epochs according to whether the 900–800-
hPa wind speeds were � or �20 m s�1 (Fig. 13).

In the weaker low-level wind epoch (Fig. 13a), the
reflectivity pattern was overall somewhat weaker and
differed in some details from the stronger low-level
wind epoch (Fig. 13b). Nonetheless, the vertical cross

sections in Figs. 13b and 13d both exhibit the same basic
structure seen in Figs. 6d, 9d, and 10d. Widespread
stratiform precipitation extended across the region of
the cross section, with a bright band evident both up-
stream and downstream of the coast. The bright band
was better defined when the flow was stronger, and the
generally upward-sloping reflectivity contours over the
inland terrain indicate that the stratiform precipitation
was being enhanced by the forced ascent on the scale of
the broadscale mountain barrier. As in previous cross
sections, the stratiform echo pattern was punctuated by
upward bulges of the reflectivity contours over the first
and second major peaks of the terrain (the King Range
at 110 km on the horizontal distance scale and the
South Fork Mountain ridge at 160 km).

As in Figs. 6d, 9d, and 10d, upstream echo enhance-
ment is seen out to �40 km from shore in Figs. 13b and
13d. An upward protrusion of echo at the leading edge
of the offshore enhanced echo region in both Figs. 13b
and 13d suggests an abrupt rise of the air at that dis-
tance offshore, perhaps indicating the onshore low-
level flow was bumped upward over a thin surface layer
of denser air. This behavior would support the idea that

FIG. 12. Histogram of the frequency of occurrence of average
wind speed in the 900–800-hPa layer expressed as the number of
hourly WSR-88D volumes in the radar archive corresponding to
the indicated wind speed (m s�1). Only cases for wind directions
of 225°–270° are included.

FIG. 11. Histogram of the frequency of occurrence of average
wind direction in the 900–800-hPa layer expressed as the number
of hourly WSR-88D volumes in the radar archive corresponding
to the indicated wind direction (°).
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a shallow cold pool offshore is a typical feature encoun-
tered by landfalling storms in this region. But, again, we
have no way to verify this hypothesis with the present
dataset. The upward protrusion of echo at the leading
edge of the zone of offshore enhanced echo could have
been exaggerated by brightband contamination or by
other range-dependent interpolation effects. However
the abrupt nature of the upward protrusion suggests
that it is a real feature.

The strong local reflectivity enhancement at the first
large peak of terrain (King Range) seen in Figs. 13b and
13d (similar to the cross sections in Figs. 6d, 9d, and
10d) and the associated upward bulge of reflectivity
contours over this first peak are consistent with the
behavior of precipitation enhancement by an un-
blocked upslope flow (HJM; Medina and Houze 2003).
A secondary maximum of reflectivity occurred at the

second major rise of terrain (at �160 km on the hori-
zontal scale of Figs. 13b and 13d), probably also as a
result of the rise of the unblocked flow over the terrain.
The maxima of reflectivity seen in the cross sections to
be associated with the first and second major peaks of
terrain were actually slightly offset in the downwind
directions. This behavior is consistent with the results
of Sinclair et al. (1997), who concluded that heavier
precipitation amounts occurred immediately downwind
when the cross-barrier flow was stronger.

b. Analysis V: Stability and humidity

Figure 14 divides the west-southwesterly flow events
with the 0°C level �2.5 km MSL into the categories of
neutral to slightly unstable and slightly stable (defined
in section 3). In sections 3 and 6b, we noted that the
stable cases had higher upstream relative humidity in

FIG. 13. Of those volumes whose 900–800-hPa wind direction was west-southwesterly (between 225° and 270° azimuth) and the 0°C
level was at least 2.5 km MSL, this analysis depicts the mean reflectivity at 2-km altitude when the layer-averaged 900–800-hPa wind
speed was (a) �20 and (c) �20 m s�1. (b) and (d) Vertical cross-section plots from west-southwest to east-northeast along the red
segments (a) and (c), respectively, with the underlying terrain shaded green. Range ring spacing is 20 km, with azimuth lines drawn
every 45°.
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midlevels, indicating that this subset of storms tended
to have better-developed midlevel cloud layers (i.e.,
higher condensed water contents in the terrain-
enhanced cloud areas). We also noted that the subset of
stable cases had somewhat lower wind speeds above the
1-km level than did the unstable/neutral subset. Be-
cause of these synoptic differences in humidity and
large-scale wind, differences between the unstable/
neutral versus the stable subsets cannot be attributed
solely to stability stratification.

Comparison of Figs. 14a and 14c shows that the re-
flectivity was stronger everywhere when absolute sta-
bility prevailed. This overall greater precipitation inten-
sity likely reflects the generally more humid conditions
in midlevels in the stable cases; that is, for synoptic
reasons the stable cases had better-developed cloud
layers than the unstable cases before they encountered
the coastal orography. Figure 10 demonstrates the pow-
erful influence of the higher humidity, and Fig. 5c
shows that stable cases were more humid in midlevels.

In spite of the difference in overall intensity, both the
more stable, more humid cases and the less stable, less
humid cases were characterized by a deep broad region
of stratiform echo across the entire zone of the cross
sections in Figs. 14b and 14d. The offshore precipitation
between the initial reflectivity core offshore and the
first peak of terrain, and between the first and second
peaks of terrain, exhibited a bright band under both
unstable/neutral (Fig. 14b) and stable (Fig. 14d) condi-
tions. Echo perturbations associated with the leading
edge of the hypothesized offshore cold pool and the
first and second major rises of terrain were embedded
within the general overall continuous enhanced strati-
form precipitation, as seen in previous cross sections.

In addition to exhibiting overall greater intensity,
likely related to the higher humidity, the stable cases
also exhibit some characteristics that appear to be re-
lated strictly to the stability. The cross section for un-
stable/neutral conditions in Fig. 14b shows reflectivity
contours generally sloping upward over the terrain,

FIG. 14. As in Fig. 13, except when the layer-averaged 900–800-hPa moist Brunt–Väisälä frequency was (a) imaginary or zero and (c)
greater than zero. (b) and (d) Vertical cross sections respective to (a) and (c). Bins A–C were used to create the histograms in Fig. 16.
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similar to cross sections in Figs. 6, 9, 10, and 13. This
upward slope of contours is in concert with the broad-
scale upward slope of the terrain and indicates that the
unstable/neutral air rose easily—that is, unblocked—
over the terrain. The cross section in Fig. 14d differs
noticeably from Fig. 14b in that the echo contours re-
main more horizontal over the terrain, thus indicating
that the general upslope enhancement over the inland
terrain was less than in the stable cases. Since the over-
all greater intensity of echo in the stable case was likely
related to greater average humidity in those cases, we
attempted to isolate the effect of stability by deriving
the echo anomaly field by removing the mean echo
pattern from Fig. 14. The results are in Fig. 15. Com-
paring Figs. 15b and 15d, we see that the unstable/
neutral events had less offshore enhancement and
greater upward sloping enhancement of echo over the
inland terrain. We further note that the stable cases had
a much more prominent pattern of offshore enhanced

precipitation anomaly, exhibiting a bright band and an
upward echo protrusion at its leading edge.

Further insight is achieved by subdividing the reflec-
tivity data contained within regions A, B, and C at the
1.5-km-MSL level (0.5 km lower in altitude than
shown) in Fig. 14. Figure 16 displays histograms of the
relative frequency of occurrence of different reflectivity
values in each bin. Comparing the upstream oceanic
data point A with the downstream overland points B
and C, we see that under unstable/neutral conditions
(Fig. 16a) the reflectivity distributions generally slowly
dropped off toward lower values of reflectivity and re-
mained relatively unchanged as the air moved inland.
However, under stable conditions, the shape of the dis-
tribution changed as the air moved inland, from a broad
fairly uniform distribution with somewhat of a peak at
lower reflectivities over the ocean to a distribution that
was sharply peaked at higher reflectivities (30–35 dBZ)
over land. The orographic enhancement over land thus

FIG. 15. As in Fig. 14, except showing the reflectivity anomaly from the horizontal mean when the 900–800-hPa moist Brunt–Väisälä
frequency during west-southwesterly events (225°–270°) was (a) imaginary or zero and (c) greater than zero. (b) and (d) Vertical cross
sections respective to (a) and (c). Range ring spacing is 20 km with azimuth lines drawn every 45°.
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favored increasing the intensity as well as the frequency
of precipitation over the mountains in the stable cases.
This behavior over the mountains is consistent with the
generally upward-sloping contours over the terrain in
Fig. 14d. Recalling that the stable cases were also more
humid at midlevels (Fig. 5c), we suggest that the in-
creased intensity of the precipitation over the moun-
tains in the subset of stable cases may be another indi-
cation that the orographic enhancement in the un-
blocked flow above the 1-km level results in a more
robust enhancement of the frontal rainfall when the
midlevel cloud layer of the frontal systems is well de-
veloped.

Another possible indication of the sensitivity of the
orographic precipitation processes to stability and/or
humidity appears in the diurnal variability of the echo
intensity, which was similar to the diurnal patterns ob-
served during MAP (HJM). Figure 17 depicts the av-
erage rainfall observed per hour at 2-km altitude during
the 61 heavy-rain days, estimated using the reflectivity
rain-rate relationship of Marshall and Palmer (1948). A
maximum was observed between 3 and 9 A.M. Pacific
standard time (PST), with up to 60% more rainfall in

the morning than other hours of the day. We suspect
that higher stability combined with higher relative hu-
midity several hours before and after dawn generates
this diurnal response, which occurred 2–3 h earlier than
the diurnal peak observed during MAP (HJM).

8. Conclusions

Radar reflectivity and Doppler velocity archives ob-
tained for 61 days with major rainfall along the coast of
northern California during 1 October 1995–31 March
1998 by the WSR-88D at Eureka, California, reveal the
three-dimensional radar reflectivity and radial velocity
fields during these events. These fields provide insight
into the processes by which the interaction of the air-
flow with the topography modifies the precipitation
processes in landfalling baroclinic storms. The major
rain events occurred during southwesterly flow charac-
terized by a low-level jet (LLJ) and a high influx of
tropical moisture as described by Ralph et al. (2004).
The average speed of the LLJ (observed by Doppler
radar) was �20 m s�1. South of Eureka the southwest-
erly LLJ was perpendicular to a series of two-
dimensional mountain ridges. Orographic enhance-
ment of the precipitation occurred both over the coastal
mountain ranges and upstream over the ocean. On av-
erage, the upstream enhancement occurred within
about 150 km of the crest of the Coastal Range (about
60 km upstream from the coast), roughly consistent
with geostrophic adjustment theory.

The flow impinging on the coastal mountains above
the 1-km level was strong enough to be unblocked by
the terrain. Directly over the mountains, the broad pat-
tern of the mean reflectivity field on the scale of the

FIG. 16. Percentage of hourly radar volumes vs mean reflectivity
at 1.5 km MSL within bins A–C shown in Fig. 14 when the moist
Brunt–Väisälä frequency was (a) imaginary or zero and (b)
greater than zero. Bin locations were chosen as follows: A is up-
stream from King Range, B is over King Range, and C is down-
wind from King Range over the Eel River.

FIG. 17. Total estimated hourly rainfall from the Eureka WSR-
88D at 2-km altitude (MSL) as a function of time of day during
heavy-rain events.
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overall region of coastal mountains showed upward
sloping echo contours indicative of a general upslope
orographic enhancement, consistent with the un-
blocked flow above the 1-km level. Vertical cross sec-
tions through the climatological echo pattern of the
heavy-rain events showed the precipitation to be gen-
erally stratiform in character from over the ocean to
inland over the mountains. Embedded in the broad-
scale stratiform echo pattern over the mountains was an
embedded core of maximum mean reflectivity over the
first major peak of terrain encountered by the un-
blocked flow. This core was the strongest feature of the
orographic precipitation pattern. A secondary echo
core occurred over the second major peak of the coastal
mountain terrain. It was similar to the core over the
first peak of terrain, but not as intense. Under strong
wind conditions, these cores were advected slightly
downwind of the first peak. This mean embedded echo
core had a maximum intensity at low levels (below the
0°C level) but extended as an upward protrusion of the
reflectivity contours to high levels, to near the top of
the layer of echo. The mean echo core observed at the
first major peak of terrain, embedded in the broader
stratiform echo structure, is similar to radar echoes ob-
served in unblocked flows over the European Alps
(HJM; Medina and Houze 2003). The precipitation
growth processes contributing to the echo core over the
first major peak of terrain in the Alps were determined
to be coalescing below the 0°C level and riming just
above the 0°C level (Medina and Houze 2003; Yuter
and Houze 2003). Similar processes probably were ac-
tive in the heavy-rain events over the California Coastal
Range. White et al. (2003) concluded that low-level
growth by coalescence was important in precipitation
over the California Coastal Range. We suggest that ice
processes, especially riming, are also important.

In addition to radar echoes of the type associated
with unblocked flow, both on the broad scale of the
entire coastal mountain region and on the scale of the
local large peaks of terrain, considerable upstream echo
enhancement also occurred. The offshore enhancement
of radar echo could be the result of enhanced fronto-
genesis in the coastal zone (Yu and Smull 2000; Colle et
al. 2002; Olson and Colle 2004). It is also possible that
a shallow layer of cool air upstream of the coast was
dammed, blocked, or pooled against the coastal moun-
tains (Neiman et al. 2002), and a deep layer of air rap-
idly moving shoreward rose over this layer of cool air
and thus produced upstream enhancement. Additional
observational data (not available to this study) are
needed to determine which of these processes is most
responsible for the offshore precipitation enhancement.

The features of the orographically enhanced precipi-

tation described above were present to some degree in
all the landfalling baroclinic storms with a strong cross-
barrier-directed LLJ. They indicated a strong effect of
unblocked flow above 1 km crossing the coastal moun-
tains relatively unimpeded and producing enhancement
both locally and on the scale of the entire barrier. How-
ever, the degree to which each feature of the enhance-
ment process occurred varied according to large-scale
synoptic conditions. All the features were more pro-
nounced when the 500–700-hPa flow was strong (indi-
cating stronger baroclinic forcing), when the midlevel
humidity was maximum (indicating a better-developed
cloud layer in the landfalling storm), and when the low-
level cross-barrier wind component was maximum
(stronger LLJ). When the stability was greater, the off-
shore enhancement of precipitation was proportionate-
ly increased, and the general broadscale upslope en-
hancement inland was reduced. These results indicate a
high degree of consistency in the way that orography
modifies the precipitation processes in storms crossing
the northern California coast.
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