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An inverse POD-RBF network approach to parameter 
estimation in mechanics

Craig A. Rogers1, Alain Kassab1, Eduardo Divo1,2, Ziemowit Ostrowski3, and 
Ryszard Bialecki3

1Department of Mechanical, Materials and Aerospace, University of Central Florida, Orlando, USA
2School of Engineering Technology, Daytona State College, Daytona Beach, USA
3Institute of Thermal Technology, Faculty of Power and Environmental Protection, Silesian University of 
Technology, Gliwice, Poland

Abstract: An inverse approach is formulated using proper orthogonal decomposition (POD) integrated with a 
trained radial basis function (RBF) network to estimate various physical parameters of a specimen with little prior 
knowledge of the system. To generate the truncated POD-RBF network utilized in the inverse problem, a series of 
direct solutions based on FEM, BEM or exact analytical solutions are used to generate a data set of temperatures or 
deformations within the system or body, each produced for a unique set of physical parameters. The data set is then 
transformed via POD to generate an orthonormal basis to accurately solve for the desired material characteristics 
using the Levenberg-Marquardt (LM) algorithm to minimize the objective least squares functional. While the POD-
RBF inverse approach outlined in this paper focuses primarily in application to conduction heat transfer, elasticity, 
and fracture mechanics, this technique is designed to be directly applicable to other realistic conditions and/or 
relevant industrial problems. 
Keywords:  Proper orthogonal decomposition, inverse problem, parameter estimation, heat conduction, elasticity, 
fracture mechanics.

1. Introduction

The concept of proper orthogonal decomposition (POD) began over a century ago as a statistical 
tool developed by Pearson [1]. Since that time, this method has been redeveloped under various 
names and in vastly different applications. Depending on how the input data is utilized POD 
is also similarly known as Karhunen-Loéve decomposition (KLD), principal component 
analysis (PCA) or singular value decomposition (SVD) [2-8]. Furthermore, this technique has 
been implemented in various applications from signal processing and control theory, human 
face recognition, data compression, fluid mechanics, parameter estimation and many others. 
However, to the knowledge of the authors POD has never been extended into the field of inverse 
problems in fracture mechanics and additionally has little evidence of its application to inverse 
problems in elasticity. 

The integration of POD into inverse methods arose due to the demanding task of repeatedly 
solving forward problems while varying certain parameters in the process of seeking the solution 
of an ill-posed inverse problem. Inverse methods have been studied for decades, and different 
techniques  have been proposed by many authors  to retrieve the best approximate solution [9-
12] often relying on the concepts of regularization; however, other methods such as  model 
reduction that decrease the degrees of freedom in the problem and/or filtering excess error also 
benefit the inverse problem solution. The method of POD capitalizes on the correlation between 
the known direct problem and the sought-after solution [13-16]. The POD can be used to produce 
a low-order, but high quality, approximation of the solution field. More specifically POD is 



often capable of capturing dominant components (called principal components) of the data with 
typically only a few modes. This is due to the ability of POD to offer the best basis for least-
squares approximation defining a set of vectors using a rotated coordinate frame, where the 
angles of rotation are denoted as the POD basis [13,17,18]. Of course, the primary reason POD is 
a favorable in solving inverse problems, is that it provides many features of the desired methods 
for solving inverse problems, such as model reduction, error filtration and regularization.

Specifically in this paper, we develop a method of RBF-trained POD that can be interpreted as 
a numerical variation of parameters method for the forward problem and we apply this to three 
different inverse engineering problems. First, a basic two dimensional heat conduction problem 
is modeled to estimate a spatially dependent thermal conductivity. This problem will be used to 
illustrate that the POD can have a direct correlation to the analytical eigenfunctions governing 
the system. The next example deals with a linear elastic bar in tension in order to estimate 
the isotropic material coefficients within a steel sample. Finally, a compact tension specimen, 
relevant in fracture mechanics, is used to estimate the crack length of a sample under a constant 
Mode 1 loading [20,21]. 

2. Method

The first step in the implementation of POD is the creation of the snapshot which is the 
collection of N sampled values of u - the field under consideration. In heat conduction problems 
the vector u stores the discrete temperature field while in elasticity the snapshot is a sampled 
deformation field. Next, a collection of M snapshots denoted as uj (for j = 1, 2 … M) are 
generated by altering the parameter(s) upon which the field depends on. In the current scope, the 
altered parameters refer to the parameters describing the spatial distribution of the conductivity, 
Young modulus and Poisson ratio as well as the crack length. Generally the altered parameters 
can be any selection of material properties and/or boundary conditions. Each uj is then stored 
inside rectangular N x M matrix U denoted as the snapshot matrix. The snapshot field may be 
created by numerical modeling of the system, say FEM or BEM, sampling an analytical solution 
or from actual empirical data. The goal of POD is to establish a set of orthonormal vectors 
Φ j (for j = 1, 2 … M) resembling the snapshot matrix U in an optimal way. The matrix Φ is 
commonly referred to as the POD basis and can be seen in (1)(1) . 

1()

V represents the eigenvectors of the covariance matrix C and can easily be derived using the 
nontrivial solution of the general eigenvalue problem denoted in (2)(2).

2()

Λ represents a diagonal matrix that stores the eigenvalues λ of the covariance matrix C, which is 
defined in (3)(3). 

3()



It may also serve to note that C is symmetric and positive definite and λ is always real and 
positive. Typically λ is sorted in a descending order and can often be attributed to the energy of 
the POD mode (base vector). This energy decreases rapidly with the increasing mode number. 
Since higher modes hold little energy (or data) of the system they can be discarded without 
influencing the accuracy of representation (1). This is known as the truncation of the POD basis 
and is accomplished by deciding which fraction of the energy of the system can be neglected in 
later calculations. The resulting POD basis , referred to as the truncated POD basis consists of 
K < M vectors and is shown in (4)(4).

4()

This also corresponds to the truncation of the eigenvector matrix, denoted as , which stores 
the first Kth eigenvectors of C. The truncated POD basis (4)(4) is also known to be orthogonal 

IΦΦT =⋅ and presents optimal approximation properties. Once  is known, the snapshot 
matrix U can be regenerated and approximated as (5)(5).

5()

A stands for the amplitudes associated with uj. Now referring to the orthogonality of , the 
amplitudes can be determined from (6)(6).

6()

At this time, data may begin to be extrapolated for information on the current problem. To 
do this, consider a vector p which stores the parameters on which the solution depends. The 
transient derivation is not further described in this paper, for more information refer to [4,5]. 

Next, the amplitudes A are defined as a nonlinear function of the parameter vector p. The 
unknown constant coefficients of the current combination are gathered in a matrix B, shown as 
(7)(7).

7()

F is defined as the matrix of interpolation functions, where the set of interpolation functions fi(p) 
can be chosen arbitrarily. However, some choices of interpolation functions may lead to an ill-
conditioned system of equations for the coefficient matrix B. In this paper, radial basis functions 
(RBF’s) have been used as the interpolating function of choice due to their nice approximation 
and smoothing properties. Here the Hardy inverse multi-quadric radial basis function [22,23] has 
been employed.

8()



Where c is defined as the RBF smoothing factor and pi corresponds to the same parameter p used 
to generate ui (for i = 1, 2 … M). The smoothing parameter, c, is chosen to push the conditioning 
number of the RBF interpolation matrix F, defined below, as high as numerically possible in 
order to obtain the highest order interpolation from the RBF [24-26].  It should be seen that the 
argument of the ith RBF is the distance | p - pi | between its current parameter p and the reference 
parameter pi. 

To use (7)(7), the matrix of coefficients B needs to be evaluated. This can be done by simple 
inversion 

9()

As stated previously, F is the matrix of interpolation functions defined as set of M identical 

vectors f(p) defined as . Requiring that (9) is exact for all vectors used to 
generate the snapshots, leads to a definition of the F matrix. 

10()

With pi and pj vectors of parameters used to generate ith or jth snapshot respectively. 

At this point it should be stressed that the matrix of amplitudes A and the matrix of coefficients 
B are known using the above relations. Now equating (6)(6) and (7)(7) yields the following. 

11()

Using the orthogonality of , it can easily be seen that the snapshot matrix U can be 
approximated as (12)(12).

12()

Such that after the coefficient matrix B is evaluated, a low dimensional model of (5)(5), now 
defined as (12)(12), can be set in vector form as (13)(13).

13()

This model will now be referred to as the trained POD-RBF network and is completely capable 
of reproducing the unknown field that corresponds to any arbitrary set of parameters p. This 



can be thought of as a numerical eingenfunction expansion of the solution reminiscent of the 
variation of parameters (or integral transform) method for the analytical solution of partial 
differential equations.  It must be noted, that extrapolation outside the range of p used to generate 
the initial snapshots ui can lead to poor accuracy of the model.

Finally, the trained POD-RBF network in (13)(13) is used to retrieve the values of the unknown 
parameter vector p. This is done in a least squares sense by taking the sum of the squares of 
the data obtained from (13)(13) and subtracting it from the actual experimental data y. To 
avoid additional interpolation, the sampling points of the field should coincide with the sensor 
locations. Finally, a least-squares functional is augmented with the aid of a regularization term 

14()

and minimized with respect to the variable p using the Levenberg-Marquardt algorithm. First 
order regularization is performed with respect to the mean of the data , a variation of the 
approach in [27,28] where the regularization is carried out with respect to deviation from the 
running least squares fit of the data. The regularization parameter is obtained by means of the L-
curve method of Hansen [29,30].

3. Results

Three numerical examples are outlined which cover the estimation of various material 
characteristics or properties within each sample. The first example illustrates the estimation of 
a spatially dependent thermal conductivity within a two dimensional heat conduction domain. 
In the next example, the isotropic material constants are found using a three dimensional bar in 
tension modeled using FEM. Lastly, a linear elastic fracture mechanics (LEFM) example is used 
to accurately estimate the crack length of a compact tension specimen under a constant Mode 1 
loading. We do not use results from physical measurements, instead, virtual measurements are 
generated by solving a reference forward problem. The obtained values at selected points are 
then laden by a randomly generated error and used as simulated measurements in the inverse 
algorithm. In the next step, a sequence of forward problems is solved using selected values of 
the parameters to be retrieved to produce the snapshots that are processed using the POD-RBF 
technique. In the last step the least square fit of POD-RBF and virtual measurements is carried 
out producing the required material parameters. In order to avoid the so-called inverse crime 
[31], a different mesh and/or modified elements are used when solving the reference forward 
problem and generating the snapshots. 

3.1. Heat Conduction – Square Region

In the first example, the POD-RBF network is utilized to approximate the temperature 
distribution at points within a square block shown in Figure 1Figure 1Figure 1, as well as 
estimate the spatially dependent thermal conductivity. 
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Figure 1 - Illustration of square domain for heat conduction case with nodal location numbering. 

The thermal conductivity is assumed to be a linear function of the x (horizontal) direction 

15()

where k(x) denotes the thermal conductivity at some point x within the domain. Hardy inverse 
RBF interpolation equation can be seen as

16()

where

17()

which is then used to approximate the temperature distributions u within the body.

18()

The temperature distributions (or the snapshot vector u) are then used to estimate the constants 
of the spatially dependent thermal conductivity shown in (15)(15), using the least squares 
objective function utilized by LM.

In this example, p collects the thermal conductivity constants to be determined

19()



For the initial validation case, the thermal conductivity constants are set as a = 1.234 and b = 
3.456. It can readily be checked that the direct heat conduction problem has the following exact 
solution

20()

where the values of the arbitrary constants C, D and E were chosen as C=100, D=10 and E = 
0. The snapshot matrix U is then set up using 16 equally spaced nodes N throughout the square 
region. A total of 100 snapshots M were created using various values of a and b arising in the 
definition of the thermal conductivity field k(x), 

The first five eigenvalues of the covariance matrix associated with subsequent POD modes are 
shown in Table 1Table 1Table 1. Only five POD modes were used in further analysis. 

Table 1 - Table of truncated eigenvalues of square region heat conduction case
λ1 λ2 λ3 λ4 λ5

λ 9.61E+06 1.72E+04 1.35E+03 2.39E+01 2.60E-02

It is important to note that at this point that the standard inverse analysis (without regularization) 
may produce inaccurate and unstable results. Proper selection of the regularization parameter 

 cures this situation. The question of an optimal selection of the regularization constant is 
outside the context of this paper and will not be discussed further, suffice it to say that the L-
curve method of Hansen was utilized and for more information regarding the selection of the 
regularization constant refer to [18]. Once the regularization parameter is selected, the POD-RBF 
inverse approach can be fully implemented to estimate the temperature distribution and thermal 
conductivity constants within the system. 

The POD-RBF estimation of the temperature distribution and its corresponding error are shown 
in Figure 2Figure 2Figure 2. More importantly, the approximation of the thermal conductivity 
constants and its distribution through the domain is shown in Figure 3Figure 3Figure 3 and 
Table 2Table 2Table 2. The results were produced without adding random error to the virtual 
measurements. 
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Figure 2 - Comparison of exact solution against POD estimation of temperature distribution for square 
region as well as percent error. 

Figure 3 - Comparison of POD-RBF estimate of thermal conductivity against measured data for square 
region

Table 2 – Table of POD-RBF estimated spatially dependent thermal conductivity constants and their errors
Actual Estimate Error

a 1.234 1.169 5.27%
b 3.456 3.668 6.13%

It can be seen that the error produced in the POD-RBF approximation of the temperature field 
is never larger the 6% for this example. Accordingly, the POD-RBF inverse method produces 
an accurate approximation of the thermal conductivity parameters. In an experimental sense, 
instrumentation error would create noise in the data reading which may skew the POD-RBF 
approximation. 

In order to accommodate this, a random normal distribution error is added to the analytical 
solution to represent instrumentation noise from data collection. Noise at an amplitude of ± 0.5o 
is added to the solution and the POD-RBF inverse approach is then reapplied to the system. 
The corresponding results are shown in Figure 4Figure 4Figure 4, Figure 5Figure 5Figure 5 and 
Table 3Table 3Table 3.



Figure 4 - Comparison of measured noisy (± 0.5o) data against POD estimation of temperature distribution 
for square region.

Figure 5 - Comparison of POD-RBF estimate of thermal conductivity against measured noisy (± 0.5o) data for 
square region

Table 3 – Table of spatially dependent thermal conductivity constants and their corresponding errors with 
noise added to represent empirical data collection.

Actual Estimate Error
a 1.234 1.157 6.24%
b 3.456 3.645 5.47%

As in the previous case, the accuracy of the procedure is good showing that the POD-RBF solver 
is not sensitive to the random measurement error. 

The solution of the heat conduction problem in finite domains produced by separation of 
variables has a form of an infinite series of eigenfunctions. Thus, the eignefunctions play an 
important role in the theory of Fourier series. An important fact that should be further noted is 
similarity of the POD basis vectors to the analytical eigenfunctions of the problem. 

21()

Where x and y are physical locations throughout the domain and n = 1, 2, 3… and m = 0, 1, 2… 
Applying the analytical eigenfunction to the current square domain yields the following in Figure 
6Figure 6Figure 6. It should be noted that eigenfunctions are typically two dimensional plots 
when displayed. However, to show direct comparison of the analytical eigenfunctions to the 
POD basis vectors; these vectors are plotted point-wise at each node for easier visualization and 
direct comparison. 



Figure 6 - Comparison of selected analytical eigenfunctions to POD basis vectors with the corresponding 
indices shown below each figure. 

Accordingly, this realization helps to show that the POD transformation has some physical 
interpretation and is closely associated with the Fourier expansion of the solution of the 
direct problem. In a more complex sense, the POD basis vectors may be used to represent the 
eigenfunctions, when an analytical solution is hard and/or laborious to derive effectively.  

3.2. Heat Conduction – L Region

Now a variation of the previous heat conduction example will be studied using a more complex 
“L” shaped domain as illustrated in Figure 7Figure 7Figure 7. 
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Figure 7 - Illustration of L shaped region for heat conduction case.

Since the only changes to the previous heat conduction example will be to the domain, the same 
POD-RBF derivations can therefore be applied from above, except that the exact solution was 
now solved using highly accurate in-house BEM software. Accordingly, the main objective 
of this subsequent section is to study how the change in domain will effect the POD-RBF 
approximation, if any.  

The temperature field is now set up using 12 nodes spaced throughout the domain using 100 
snapshots to create the snapshot matrix U. Likewise, the first five eigenvalues of the covariance 
matrix associated with subsequent POD modes are shown in Table 4Table 4Table 4. These 
modes were truncated after the fifth term of a possible 100 for comparison to the previous 
example. 

Table 4 - Table of truncated eigenvalues of L region heat conduction case
λ1 λ2 λ3 λ4 λ5

λ 6.56E+06 9.62E+04 1.03E+03 1.82E+01 1.50E-02

For initial verification, the first case will incorporate a no noise solution with the results outlined 
in Figure 8Figure 8Figure 8 - Figure 9Figure 9Figure 9.
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Figure 8 - Comparison of measured data against POD estimation of temperature distribution for L region.

Figure 9 - Comparison of POD-RBF estimate of thermal conductivity against measured data for L region

Again the temperature distribution and thermal conductivity are estimated accurately using the 
POD-RBF technique, despite the shape of the domain. With a maximum error slightly above 
10%, the POD technique is still extremely accurate considering only 5 POD modes were used 
to estimate the system. The new spatially dependent thermal conductivity constants for the 
renovated (“L”) region can be observed in Table 5Table 5Table 5 below.

Table 5 - Comparison of Measured and POD-RBF estimation of thermal conductivity of L region
Actual Estimate Error

a 1.234 1.182 4.21%
b 3.456 3.486 0.87%

Of course instrumentation error would create noise in the data reading which may skew the 
POD-RBF approximation. In order to accommodate instrumentation errors, a random normal 
distribution error is added to the solution to represent noise during data collection. Noise at 
amplitudes of ± 0.5o is added to the solution to act as empirical data and the POD-RBF inverse 
approach is reapplied to the system. The corresponding results are shown below in Figure 
10Figure 10Figure 10 - Figure 11Figure 11Figure 11.
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Figure 10 - Comparison of measured noisy (± 0.5o) data against POD estimation of temperature distribution 
for L region.

Figure 11 - Comparison of POD-RBF estimate of thermal conductivity against measured noisy (± 0.5o) data 
for L region

Despite the noise present within the data, the POD-RBF network is still able to estimate the 
temperature field and thermal conductivity constants quickly and efficiently. The estimated 
thermal conductivity constants from the corresponding noisy data are shown in Table 6Table 
6Table 6.

Table 6 - Comparison of Measured and POD-RBF estimation of thermal conductivity of L region
Actual Estimate Error

a 1.234 1.177 4.62%
b 3.456 3.504 1.39%

In comparison to the previous heat transfer section, the POD-RBF inverse method still produces 
highly accurate results despite the shape of the domain being used. This is a great find as it can 
allow the POD-RBF technique to take on more complicated domains and still maintain ideal 
approximation capabilities.

Furthermore, the POD basis vectors can be shown to once again have a direct correlation to the 
analytical eigenfunctions derived from Fourier analysis. However, the eigenfunctions for the L 



shaped domain cannot be derived, rather, the POD basis for the L-shaped domain are compared 
to the analytical eigenfuctions of the embedding square region domain of the previous problem.  
This comparison is provided in Figure 12 which shows that this is indeed the case.  

Figure 12 - Comparison of analytical eigenfunctions to POD basis vectors in L shaped domain.

3.3. Elasticity

This next application uses the POD-RBF inverse technique to estimate the isotropic material 
parameters of a three dimensional bar in tension. The isotropic constants are denoted as for the 
modul. Using basic relations from linear elasticity, the three material parameters are related 
using

22() 

This relation will be used to establish the initial parameter matrix which will be referred to 
during RBF extrapolation for the inverse approximation. The deflections are calculated using 
FEM and are set up to be extracted at several simulated strain gage locations on the beam. In 
order to avoid the irrefutable inverse crime, a new mesh is generated in order to obtain the 
measured or experimental deflections.

Figure 13 - 3D bar in tension.



The snapshot matrix U was created using only six nodes on three surfaces of the beam, taking 
a total 36 snapshots at various elastic parameters p. POD was then performed to produce the 
eigenvalues shown in Table 7Table 7Table 7 which were truncated after the 6th term of a 
possible 36.

Table 7 - Table of truncated eigenvalues for 3D elasticity case
λ1 λ2 λ3 λ4 λ5 λ6

λ 5.12E+06 8.73E+01 4.78E-01 4.25E-01 2.93E-01 2.56E-01

 .

                 

Figure 14 - Comparison of FEM solution against the POD-RBF approximation of the deflection in for an 
elastic bean under tension and the accompanying % nodal error.
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Table 8 - Comparison of Actual and POD-RBF estimation of material parameters for 3D elasticity
Actual Estimate Error

Modulus of Elasticity, E 206.85 GPa 209.99 GPa 1.52%
Shear Modulus, G 80.8 GPa 82.43 GPa 2.02%
Poisson’s ratio, 0.28 0.274 2.14%

This first example is used only as a verification of the POD-RBF inverse technique in elasticity. 
That is because this example does not incorporate any so-called “experimental noise” to the FEM 
solution other than the addition of standard interpolation or numerical error generated from the 
presence of a new mesh. 

 In order to reproduce experimental data collection, noise is added to the FEM solution. 
The amplitude of noise was taken as ± 10% of the measured FEM solution. Reapplying the 
POD-RBF inverse technique then produced the following results shown in Figure 15Figure 
1516Figure 16 and Table 9Table 9Table 9.

1 2 3 4 5 6
5 .10 5

4 .10 5

3 .10 5

2 .10 5

1 .10 5

0

1 .10 5

Measured Deflection   
POD Estimate
Measured Deflection   
POD Estimate

1 2 3 4 5 6
0

0.02

0.04

0.06
Error   Error   

Figure 151516 - Comparison of the POD-RBF approximation against the noisy data (± 10 %) in each 
Cartesian direction for 3D elasticity



Table 9 - Comparison of Actual and POD-RBF estimation of material parameters for noisy data (± 10 %) 
measurements in 3D elasticity

Actual Estimate Error
Modulus of Elasticity, E 206.85 GPa 209.79 GPa 1.42%

Shear Modulus, G 80.8 GPa 81.64 GPa 1.04%
Poisson’s ratio, 0.28 0.285 1.79%

For the error-laden problem at hand, the POD-RBF inverse technique was still able to reproduce 
accurate estimations of the material parameters even in the presence of larger amounts of noise. 
In fact POD is extremely robust to the deleterious effects of measurement noise [13-16]. This 
is essentially due to the regularization within POD which tries to achieve the same mean value 
within the POD approximated data and the measured data.

As denoted in the previous section, the POD basis vectors have the ability to retain some 
physical aspects of the governing system. In terms of heat transfer, these aspects were the 
analytical eigenfunctions. In reference [6], the authors show that the POD basis vectors can be 
physically correlated in elasticity with the eigenmodes or mode shapes of the domain. This is the 
practical reasoning behind other names often used to refer to POD such as Proper Orthogonal 
Modes or Empirical Eigenfunctions. 

3.4. Fracture Mechanics

The final application is in fracture mechanic where a compact tension C(T) specimen is modeled 
using FEM software and the above POD-RBF inverse approach is applied to determine the 
unknown crack length for a standard C(T) specimen. The C(T) specimen was modeled following 
ASTM E399 standards for plain strain fracture toughness and can be seen in Figure 16Figure 
16Figure 18. 

Figure 161618 - Model of compact tension specimen.

The snapshots were generated by measuring the deformations at the notch opening of the C(T) 
specimen as to replicate a standard fracture experiment with a clip gage. Various crack length 
sizes were then implemented via FEM that ranged from 0.35 - 0.55 in. to create the snapshot 



matrix U, with a total of 21 snapshots M. Next, the eigenvalues of the covariance matrix C were 
calculated and truncated after the 5th eigenvalue of a possible 21, as shown in Table 10Table 
10Table 10. In this example, the inverse crime was avoided by calculating the initial snapshot 
deformations using linear elements within the FEM software. Likewise, the experimental 
measurements were estimated using parabolic tetrahedral elements for higher experimental 
accuracy; this will also allow for a more conservative estimate of the crack length.

Table 10 - Table of truncated eigenvalues of fracture mechanics application
λ1 λ2 λ3 λ4 λ5

λ 2.17E+08 1.81E+01 3.23E+00 3.21E+00 1.25E+00

The experimental data was then obtained by adding a noise of ± 10 % of the mean value to the 
FEM solution. A plot of the deformation and error can be seen in Figure 17Figure 17Figure 19 
and Table 11Table 11Table 11.
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Figure 171719 - Deformation (left) and error (right) for ± 10% noise solution under Mode 1 loading.

Table 11 - Table of POD-RBF estimated crack lengths at various amounts of added noise
Actual (in.) No Noise ± 5 % Noise ± 10 % Noise

Crack Length 0.416 0.43749 0.43760 0.43766

By observing the deformations, it is easy to see the least squares fit goes provides a good 
estimate of the mean of data, despite the noisy solutions. This allows the POD-RBF inverse 
routine to optimally estimate the crack length with minimal error in regard to the initial snapshot 
matrix developed. 

4. Conclusions

The POD-RBF inverse technique is successfully applied to the parameter estimation problem 
in a variety of examples. The numerical investigations provided herein illustrate that the POD 
based inverse technique is robust to measurement errors, even in the presence of relatively large 
error. Moreover, the POD-RBF inverse approach provides an efficient means of reducing the 
size and degrees of freedom of the problem while also optimizing accuracy of the solution to be 
determined. With the addition of a regularization parameter presented inside the least squares 



objective function(s), the solution converges quickly. We also show that POD basis can be 
indentified with some of the analytical eigenfunctions of a heat conduction problem in a square 
and with these same eigenfunctions in an L-shaped domain constructed from an imbedding 
square region. The POD-RBF inverse method described in this paper 

provides a computationally efficient framework for nondestructive estimation a unknown system 
parameters. 
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