
Electrical, Computer, Software and Systems
Engineering - Daytona Beach College of Engineering

2013

Development of a Master of Software Assurance Reference Development of a Master of Software Assurance Reference

Curriculum Curriculum

Andrew J. Kornecki
Embry-Riddle Aeronautical University, kornecka@erau.edu

James McDonald

Julia H. Allen

Mark Ardis

Nancy Mead

See next page for additional authors

Follow this and additional works at: https://commons.erau.edu/db-electrical-computer-engineering

 Part of the Management and Operations Commons, and the Multi-Vehicle Systems and Air Traffic

Control Commons

Scholarly Commons Citation Scholarly Commons Citation
Kornecki, A. J., McDonald, J., Allen, J. H., Ardis, M., Mead, N., Linger, R., & Hilburn, T. B. (2013).
Development of a Master of Software Assurance Reference Curriculum. , 2(1). https://doi.org/10.3390/
electronics2010041

This Article is brought to you for free and open access by the College of Engineering at Scholarly Commons. It has
been accepted for inclusion in Electrical, Computer, Software and Systems Engineering - Daytona Beach by an
authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Embry-Riddle Aeronautical University

https://core.ac.uk/display/217158115?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/db-electrical-computer-engineering
https://commons.erau.edu/db-electrical-computer-engineering
https://commons.erau.edu/db-engineering
https://commons.erau.edu/db-electrical-computer-engineering?utm_source=commons.erau.edu%2Fdb-electrical-computer-engineering%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1311?utm_source=commons.erau.edu%2Fdb-electrical-computer-engineering%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/227?utm_source=commons.erau.edu%2Fdb-electrical-computer-engineering%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/227?utm_source=commons.erau.edu%2Fdb-electrical-computer-engineering%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.3390/electronics2010041
https://doi.org/10.3390/electronics2010041
mailto:commons@erau.edu

Authors Authors
Andrew J. Kornecki, James McDonald, Julia H. Allen, Mark Ardis, Nancy Mead, Richard Linger, and
Thomas B. Hilburn

This article is available at Scholarly Commons: https://commons.erau.edu/db-electrical-computer-engineering/5

https://commons.erau.edu/db-electrical-computer-engineering/5

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-2612

Phone: 412-268-5800
Toll-free: 1-888-201-4479

www.sei.cmu.edu

Development of a Master of
Software Assurance Reference
Curriculum

ABSTRACT: Modern society is deeply and irreversibly dependent on software
systems of remarkable scope and complexity in areas that are essential for pre-
serving our way of life. The security and correct functioning of these systems are
vital. Recognizing these realities, the U. S. Department of Homeland Security
(DHS) National Cyber Security Division (NCSD) enlisted the resources of the
Software Engineering Institute at Carnegie Mellon University to develop a cur-
riculum for a Master of Software Assurance degree program and define transi-
tion strategies for implementation. In this article, we present an overview of the
Master of Software Assurance curriculum project, including its history, student
prerequisites and outcomes, a core body of knowledge, and a curriculum archi-
tecture from which to create such a degree program. We also provide suggestions
for implementing a Master of Software Assurance program.

DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE
REFERENCE CURRICULUM
Software has become the core component of modern products and services. It
has enabled functionality, business operations, and control systems critical to our
way of life. However, software’s race to ubiquity has outpaced security advances
commensurate with software’s vital role in our society. Consequently, as our
dependence on software and software-intensive systems grows, we find our-
selves exposed to an increasing number of risks.

The complexity of software and software-intensive systems, for instance, poses
inherent risk. It obscures the essential intent of the software, masks potentially
harmful uses, precludes exhaustive testing, and introduces problems in the opera-
tion and maintenance of the software. This complexity, combined with the inter-
dependence of the systems we rely on, also creates a weakest link syndrome:
attackers need only take down the most vulnerable component to have far-
reaching and damaging effects on the larger system. What’s more, anywhere-to-
anywhere interconnectivity makes the proliferation of malware easy and the
identification of its source hard.

Andrew J. Kornecki

James McDonald

Julia H. Allen

Mark Ardis

Nancy Mead

Richard Linger

Thomas B. Hilburn

February 2011

The rising number of vulnerabilities compounds risk and—gives attackers even
more targets of opportunity—as shown by the rising number of incidents target-
ing software vulnerabilities [Bosworth, 2002].

In this environment, the threats are large and diverse, ranging from independent,
unsophisticated, opportunistic hackers to the very technically competent intrud-
ers backed by organized crime [Anderson, 2008]. Malicious actors are increas-
ingly acquiring information technology skills that allow them to launch attacks
designed to steal information for financial gain, and to disrupt, deny access to,
degrade, or destroy critical information and infrastructure systems. Technical
sophistication is no longer a necessary requirement: increasingly sophisticated
attack methods, thanks to the growing underground trade in productized attack
tools, no longer require great technical savvy to execute.

Recognizing these realities, the U. S. Department of Homeland Security (DHS)
National Cyber Security Division (NCSD) enlisted the resources of the Software
Engineering Institute (SEI) at Carnegie Mellon University to develop a curricu-
lum for a Master of Software Assurance degree program and define transition
strategies for future implementation. For the purposes of this curriculum, the
discipline of software assurance is targeted specifically to the security and cor-
rect functioning of software systems, whatever their origins, application domain,
or operational environments.

As noted in our curriculum report, the need for a master’s level program in this
discipline has been growing for years [Mead, 2010a].

• At the Knowledge Transfer Network Workshop in Paris in March 2009, cy-
bersecurity education was recognized as part of the information security,
privacy, and assurance roadmap vision. Cybersecurity education was also
identified as one of the workshop’s lines of development [LSEC, 2009].

• A study by the nonpartisan Partnership for Public Service points out that
“[President Obama’s] success in combating these threats [to cybersecurity]
and the safety of the nation will depend on implementing a comprehensive
and coordinated strategy—a goal that must include building a vibrant, highly
trained and dedicated cybersecurity workforce in this country.” The report
found that “The pipeline of new talent [with the skills to ensure the security
of software systems] is inadequate. . . . only 40 percent of CIOs [chief in-
formation officers], CISOs [chief information security officers] and IT [in-
formation technology] hiring managers are satisfied or very satisfied with
the quality of applicants applying for federal cybersecurity jobs, and only 30
percent are satisfied or very satisfied with the number of qualified candidates
who are applying [PPS, 2009].

1 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

• The need for cybersecurity education was emphasized by The New York
Times in quoting Dr. Nasir Memon, a professor at the Polytechnic Institute
on New York University: “There is a huge demand, and a lot more schools
have created programs, but to be honest, we’re still not producing enough
students” [Drew, 2009].

• Carnegie Mellon University and CERT have been active in this area for
years, particularly in the Survivability and Information Assurance (SIA)
Curriculum and the Scholarship for Service program [CERT, 2007]. The
SIA Curriculum has been provided to thousands of faculty members and
other interested parties. The Federal Cyber Service Scholarship for Service
program offers scholarships to applicants who attend an approved institution
of higher learning and agree to work for several years in the cybersecurity
area at U.S. government organizations after graduation. The popularity and
growth of this program is an indicator of the pressing need for cybersecurity
expertise [U.S. Office of Personnel Management, 2010].

• In discussions with industry and government representatives, we have found
that the need for more capacity in cybersecurity continues to grow. Anecdo-
tal feedback from the authors’ own students indicates that even a single
course with a cybersecurity focus enhances their positioning in the job mar-
ket. They felt they were made job offers they would not have received oth-
erwise.

• Another aspect of the need for cybersecurity education occurs in educational
institutions. Based on our collective experience in software engineering edu-
cation, we know that it can be very difficult to start a new program or track
from scratch, and we want to assist those organizations and faculty members
that wish to undertake such an endeavor. Our objective is to support their
needs, while recognizing that there are a variety of implementation strate-
gies.

In this article, we will present an overview of the Master of Software Assurance
curriculum project [MSwA2010], and highlight the Master of Software Assur-
ance Reference Curriculum report and its history [Mead, et al., 2010a]. We de-
fine student prerequisites and outcomes, a core body of knowledge, and a curric-
ulum architecture from which to create such a degree program, either as a
standalone offering or as a track within existing software engineering and com-
puter science master’s degree programs. We also provide suggestions for imple-
menting a Master of Software Assurance program.

2 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

BACKGROUND
As is typical in a project of this nature, a good bit of time is spent deciding how
to tackle the project. The team members all had expertise in software engineer-
ing. In addition, some had experience in curriculum design, software assurance,
or both. However, many decisions had to be made at the outset to get the project
off the ground. One of our challenges was to decide how we would operate as a
team with members in geographically dispersed locations. Not all of the team
members had worked together before, but we quickly coalesced into an effective
unit. For the most part, we held weekly telecoms, and occasional face-to-face
work sessions when we needed a concentrated block of time. This worked re-
markably well.

At the outset, we needed to define software assurance, examine recent curricu-
lum and body of knowledge efforts to see which ones would apply, identify the
audience for our work, and highlight ways in which our work was unique.

One of our first tasks was to examine existing definitions of software assurance,
select a candidate definition from the literature, and assess whether it met our
needs. Initially we selected the definition of the Committee on National Security
Systems, as this definition was in wide use and used by our Department of
Homeland Security sponsor:

Software assurance (SwA) is the level of confidence that software is free
from vulnerabilities, either intentionally designed into the software or acci-
dentally inserted at any time during its life cycle, and that the software
functions in the intended manner. [Committee on National Security Sys-
tems, 2009]

As we got further into the project, we found that the definition needed to be ex-
tended slightly for our purposes:

Software assurance (SwA) is the application of technologies and processes
to achieve a required level of confidence that software systems and services
function in the intended manner, are free from accidental or intentional vul-
nerabilities, provide security capabilities appropriate to the threat environ-
ment, and recover from intrusions and failures [Mead et al., 2010a].

The extended definition emphasizes the importance of both technologies and
processes in software assurance, notes that computing capabilities may be ac-
quired through services as well as new development, acknowledges the need for
correct functionality, recognizes that security capabilities must be appropriate to
the threat environment, and identifies recovery from intrusions and failures as an
important capability for organizational continuity and survival.

3 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

After examining the earlier Master of Software Engineering curriculum docu-
ments [Ardis & Ford, 1989; Ford, 1991], we concluded that the Graduate Soft-
ware Engineering 2009 [GSwE2009] Curriculum Guidelines for Graduate De-
gree Programs in Software Engineering [Pyster, 2009] was the most relevant
recent curriculum work to build on. We also drew on work done by Carnegie
Mellon University’s Software Engineering Institute in support of the U.S. De-
partment of Homeland Security Build Security In website [DHS, 2010a]. We
found that both the Software Assurance Curriculum Body of Knowledge
(SwACBK) [DHS, 2010b] and the SWEBOK [IEEE-CS, 2004] were relevant as
well.

We then considered the audience, and quickly concluded that the primary audi-
ence for the MSwA2010 curriculum is faculty who are responsible for designing,
developing, and maintaining graduate programs that have a focus on software
assurance knowledge and practices. However, we expect that the document will
be read by other educators and trainers with an interest in this area, as well as
industry and government executives and practitioners.

Finally, we identified what was different about this curriculum compared to tra-
ditional software engineering and computer science programs. Areas of special
emphasis and unique properties that distinguish this curriculum (shown in italics)
from others are the following:

• software and services
• development and acquisition
• security and correct functionality
• software analytics
• system operations
• auditable evidence
• organizational continuity

We developed the curriculum intending that it would be for practitioners, not for
researchers. We also documented some initial thoughts on undergraduate
coursework in software assurance in a separate document [Mead et al., 2010b].

We envision that the MSwA2010 curriculum can be offered as an independent
master’s degree program in software assurance or as a track in a Master of Soft-
ware Engineering (MSE) or a Master of Computer Science degree program. This
article describes how it can be incorporated as a track in an MSE degree program
if the software engineering program is based on the GSwE2009 recommenda-

4 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

tions. The independent master’s degree program in software assurance assumes a
student enters the program with an undergraduate degree in computer science
[ACM & IEEE-CS, 2008], computer engineering [IEEE-CS & ACM, 2004], or
software engineering [IEEE-CS & ACM, 2004] and supplements the content of
those degrees with appropriate prerequisite materials. For students with other
backgrounds, the program incorporates the necessary preparation in computer
science and software engineering to allow them to study software assurance.

PROCESS USED TO DEVELOP MSWA2010 CURRICULUM
CONTENT
We started out with a schedule for the MSwA curriculum work and a set of ac-
tivities to be performed to arrive at the curriculum. Once we decided that the
GSwE2009 document would be a primary source, we reviewed it to see what
elements could be carried over or modified for the MSwA2010 curriculum, and
where we would have to tackle unique aspects. As we proceeded with the work,
we realized that we had touched on many different areas that were seemingly
unrelated. We therefore decided that it was worthwhile to document the process
we had used not only for our own benefit, but also for our readers and others
undertaking a similar activity.

We used the following seven-step process to develop the software assurance cur-
riculum topics, practices, knowledge units, outcomes, and core body of
knowledge, with course descriptions as an eighth activity (see Table 1).

Table 1. Software assurance curriculum development

1. Develop project guide-
lines

We modified guidelines from the GSwE2009 report for the MSwA2010
curriculum, which significantly influenced the development of out-
comes (step 6).

2. Identify and review
sources

We reviewed 29 credible and reputable sources of software security
practices in industry, government, and academia (at the graduate and
undergraduate levels).

3. Define topics We used the guide in [Allen, 2008] as the organizing structure for our
review of sources in Step 2 and supplemented it with our experience.
This activity resulted in nine topics.

4. Define SDLC practices
and categories

We evaluated sources for the topics listed above to identify practices,
which we grouped into four high level categories.

5 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

https://buildsecurityin.us-cert.gov/articles/knowledge/software-assurance-education/development-of-a-master-of-software-assurance-reference-curriculum%23Allen08

5. Solicit external feed-
back

We sought input, through a 3-page questionnaire, from representa-
tives of our target audience—managers, practitioners, and educators.

6. Develop outcomes and
core Body of Knowledge
(BoK)

We identified curriculum outcomes, influenced by GSwE2009 and
questionnaire responses. Each outcome is a knowledge area in the
BoK.

7. Compare knowledge
areas to practices

We performed a cursory gap analysis by comparing the BoK
knowledge areas to the SDLC practices and categories

8. Develop course descrip-
tions

We developed course descriptions for the 9 core courses in an MSwA
program and the 7 courses that would be added to a GSwE degree
program for a software assurance specialization.

PROPOSED OUTCOMES WHEN A STUDENT GRADUATES
We needed to focus on the proposed outcomes in order to drive the program con-
tent. The outcomes specify the knowledge, skills, and capabilities that graduates
of an MSwA program can expect to have; correspondingly, they represent the
minimum capabilities that should be expected of a software assurance profes-
sional when they complete a master’s degree program. Our process was not se-
quential; rather, we iterated on the outcomes, knowledge areas, and lifecycle
practices over the course of the project.

When we solicited external feedback (step 5 in our process), we found that the
MSwA2010 curriculum was not necessarily a match for all software assurance
positions. Some organizations were more concerned with the qualifications of
entry-level programmers who had not completed a master’s degree program.
Others were concerned with hands-on systems administrators. This curriculum is
not a panacea, but it should help to grow the pool of leadership talent in software
assurance, in much the same way that graduates of a master of software engi-
neering program can be expected to become leaders in software engineering.

The primary audience for the MSwA2010 project, graduate faculty, should be
prepared to teach courses that achieve these outcomes, listed below. Software
development and acquisition employers responsible for staffing technical leader-
ship positions in software assurance and developing increased software assur-
ance capabilities of their current employees should expect graduates of an
MSwA program to be proficient in capabilities described in these outcomes. The
seven outcomes are grouped into two main areas—assurance process and man-

6 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

agement and assurance product and technology. Their brief descriptions follow
[Mead et al., 2010a].

Assurance Process and Management

Assurance across life cycles:
Graduates will have the ability to incorporate assurance technologies and meth-
ods into life-cycle processes and development models for new or evolutionary
system development, and for system or service acquisition.

Risk management:
Graduates will have the ability to perform risk analysis, trade-off assessment,
and prioritization of security measures.

Assurance assessment:
Graduates will have the ability to analyze and validate the effectiveness of assur-
ance operations and create auditable evidence of security measures.

Assurance management:
Graduates will have the ability to make a business case for software assurance,
lead assurance efforts, understand standards, comply with regulations, plan for
business continuity, and keep current in security technologies.

Assurance Product and Technology

System security assurance:
Graduates will have the ability to incorporate effective security technologies and
methods into new and existing systems.

System functionality assurance:
Graduates will have the ability to verify new and existing system functionality
for conformance to requirements and absence of malicious content.

System operational assurance:
Graduates will have the ability to monitor and assess system operational security
and respond to new threats.

7 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

CORE BODY OF KNOWLEDGE
The MSwA2010 core body of knowledge (BoK) is characterized by the set of
software assurance practices that are required to support the MSwA2010 out-
comes. All software assurance professionals must know these practices to per-
form their jobs effectively. The MSwA2010 BoK is structured into seven
knowledge areas (corresponding to the seven outcomes), with each knowledge
area subdivided into a set of knowledge units, as shown in Table 2. The infor-
mation in the table is expanded on in the MSwA2010 document [Mead, et al.,
2010a].

The knowledge areas are defined in terms of the Bloom cognitive levels [Bloom,
1956]. This taxonomy is often used by educators to set the level of educational
and learning objectives required for students engaged in an education unit,
course, or program. Bloom’s levels used are

• Knowledge (K)
• Comprehension (C)
• Application (AP)
• Analysis (AN)
• Synthesis (S)

Since we were developing a curriculum for a master’s degree program, the
Bloom’s levels ranged from C through AN.

Table 2. MSwA2010 core body of knowledge

Knowledge Area Bloom
Level

1. Assurance Across Life Cy-
cles

1.1. Software Life-Cycle Processes

1.1.1. New development C

1.1.2. Integration, assembly, and deployment C

1.1.3. Operation and evolution C

1.1.4. Acquisition, supply, and service C

1.2. Software Assurance Processes and Practices

1.2.1. Process and practice assessment AP

8 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

1.2.2. Software assurance integration into SDLC phases AP

2. Risk Management 2.1. Risk Management Concepts

2.1.1. Types and classification C

2.1.2. Probability, impact, severity C

2.1.3. Models, processes, metrics C

2.2. Risk Management Process

2.2.1. Identification AP

2.2.2. Analysis AP

2.2.3. Planning AP

2.2.4. Monitoring and management AP

2.3. Software Assurance Risk Management

2.3.1. Vulnerability and threat identification AP

2.3.2. Analysis of software assurance risks AP

2.3.3. Software assurance risk mitigation AP

2.3.4. Assessment of Software Assurance Processes and Practices AP

3. Assurance Assessment 3.1. Assurance Assessment Concepts

3.1.1. Baseline level of assurance; allowable tolerances, if quantitative AP

3.1.2. Assessment methods C

3.2. Measurement for Assessing Assurance

3.2.1. Product and process measures by life-cycle phase AP

9 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

3.2.2. Other performance indicators that test for the baseline, by life-cycle phase AP

3.2.3. Measurement processes and frameworks C

3.2.4. Business survivability and operational continuity AP

3.3. Assurance Assessment Process (collect and report measures that demonstrate
the baseline)

3.3.1. Comparison of selected measurements to the established baseline AP

3.3.2. Identification of out-of-tolerance variances AP

4. Assurance Management 4.1. Making the Business Case for Assurance

4.1.1. Valuation and cost/benefit models, cost and loss avoidance, return on invest-
ment

AP

4.1.2. Risk analysis C

4.1.3. Compliance justification C

4.1.4. Business impact/needs analysis C

4.2. Managing Assurance

4.2.1. Project management across the life cycle C

4.2.2. Integration of other knowledge units AN

4.3. Compliance Considerations for Assurance

4.3.1. Laws and regulations C

4.3.2. Standards C

4.3.3. Policies C

5. System Security Assurance 5.1. For Newly Developed and Acquired Software for Diverse Applications

5.1.1. Security and safety aspect of computer-intensive critical infrastructure K

10 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

5.1.2. Potential attack methods C

5.1.3. Analysis of threats to software AP

5.1.4. Methods of defense AP

5.2. For Diverse Operational (Existing) Systems

5.2.1. Historic and potential operational attack methods C

5.2.2. Analysis of threats to operational environments AN

5.2.3. Designing of and plan for access control, privileges, and authentication AP

5.2.4. Security methods for physical and personnel environments AP

5.3. Ethics and Integrity in Creation, Acquisition, and Operation of Software Systems

5.3.1. Overview of ethics, code of ethics, and legal constraints C

5.3.2. Computer attack case studies C

6. System Functionality Assur-
ance

6.1. Assurance Technology

6.1.1. Technology evaluation AN

6.1.2. Technology improvement AP

6.2. Assured Software Development

6.2.1. Development methods AP

6.2.2. Quality attributes C

6.2.3. Maintenance methods AP

6.3. Assured Software Analytics

6.3.1. Systems analysis AP

11 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

6.3.2. Structural analysis AP

6.3.3. Functional analysis AP

6.3.4. Analysis of methods and tools C

6.3.5. Testing for assurance AN

6.3.6. Assurance evidence AP

6.4. Assurance in Acquisition

6.4.1. Assurance of acquired software AP

6.4.2. Assurance of software services AP

7. System Operational Assur-
ance

7.1. Operational Procedures

7.1.1. Business objectives C

7.1.2. Assurance procedures AP

7.1.3. Assurance training C

7.2. Operational Monitoring

7.2.1. Monitoring technology C

7.2.2. Operational evaluation AP

7.2.3. Operational maintenance AP

7.2.4. Malware analysis AP

7.3. System Control

7.3.1. Responses to adverse events AN

7.3.2. Business survivability AP

12 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

MSWA2010 CURRICULUM ARCHITECTURE
The MSwA2010 specifies an architectural description that provides a framework
for organizing and structuring master’s programs that focus on software assur-
ance. The curriculum architecture, which was influenced by GSwE2009, con-
tains the following components: preparatory material, core materials, elective
materials, and a capstone experience.

Figure 1 depicts the architecture for an MSwA curriculum. The preparatory ma-
terials represent the material which students should master before entering the
program. Individual programs will determine how to prepare students whose
background falls short. The MSwA2010 outcomes and BoK identify the funda-
mental skills and knowledge that all graduates of a master’s program in software
assurance must possess. This is captured in the Figure 1 row labeled MSwA
Core. Where appropriate, the core curriculum will emphasize the guidelines used
to define the MSwA2010 BoK, including its dependencies on related disciplines
such as software engineering, testing, and project management. Courses that
cover core content should be part of all programs.

Figure 1

Electives accommodate individual students’ interests and may cover unique re-

13 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

quirements of a program or institution. Students may take electives to gain more
depth in a core area (e.g., assurance assessment) or to extend and broaden their
knowledge in a particular application domain (e.g., financial systems).

We recommend that students demonstrate their accumulated skills and
knowledge in a capstone experience, which engages students in a realistic team
project emphasizing software assurance concepts and practices. A capstone pro-
ject is ideally a practical software assurance undertaking with a real customer,
possessing actual software assurance objectives, and using best software assur-
ance practices and tools. Students completing the curriculum must be able to
understand and appreciate the skills needed to produce assured software in a typ-
ical software development environment. These topics should be integrated into
the core materials and perhaps could be reinforced in the elective materials.
However, the presence of a capstone project is important, as it offers students the
opportunity to tackle a major project that is likely to be more comprehensive in
realistic software assurance experience than their prior course projects.

This architecture is not intended to specify course titles, course content, or
course sequencing, but rather to indicate the overall content in aggregate. Indi-
vidual programs may choose the arrangement of courses, topics, and learning
activities that best suit the needs and capabilities of their institutions.

Figure 2 illustrates a Master of Software Engineering program with a specializa-
tion in Software Assurance. As indicated in the figure, the core BoK includes
knowledge areas from both the GSwE core and the MSwA core. Since there is
overlap between the two BoKs (e.g., Software Engineering Management and
Assurance Management), the required core content would be somewhat less than
the sum of the two; however, the program would still be tight and would leave
little or no room for electives.

14 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

Figure 2

COURSE DESCRIPTIONS
Once we had the curriculum architecture and the body of knowledge, we were
able to develop a sample set of course descriptions for MSwA as a standalone
program, as well as courses that could be added to an MSwE program for a soft-
ware assurance specialization. The knowledge units that each course should cov-
er appear in parentheses by the course name.

MSwA Standalone Program (nine courses)
Assurance Management (2.1, 2.2, 2.3, 4.1, 4.2, 4.3)
Assurance Assessment (3.1, 3.2, 3.3, 6.4)1
System Operational Assurance (7.1, 7.2, 7.3)

1 This course is not present in the MSwA Courses Added to the MSwE program.

15 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

__

System Security Assurance (5.1, 5.2, 5.3)
Assured Software Analytics (6.3)
Assured Software Development 1 (1.1, 1.2, 6.1, 6.2 [requirements])2
Assured Software Development 2 (6.1, 6.2 [specification, design])
Assured Software Development 3 (6.2 [code, test, verification, validation])
Software Assurance Capstone Experience

MSwA Courses Added to MSwE Program (seven courses)
Assurance Management (1.2, 2.1, 2.2, 2.3, 4.1, 4.2, 4.3)
System Operational Assurance (3.1, 3.2, 3.3, 6.4, 7.1, 7.2, 7.3)3
System Security Assurance (5.1, 5.2, 5.3)
Assured Software Analytics (6.3)
Assured Software Development 1 (1.1, 6.1, 6.2 [requirements, specifica-
tion, design])
Assured Software Development 2 (6.2 [code, test, verification, validation])4
Software Assurance Capstone Experience

It is necessary but not sufficient to have a defined set of student prerequisites,
established outcomes, a core body of knowledge, a curriculum architecture, and
course descriptions. Often the most challenging part of putting a new program or
a new track in place is implementation. The next section provides several guide-
lines and recommendations for faculty members to consider when contemplating
such a program.

IMPLEMENTATION GUIDELINES

2 The 1.2 knowledge unit, italicized, is different in Assured Development 1 in the standalone program
and Assurance Management in the MSwA Courses Added to MSwE program.

3 The bolded knowledge units are not covered at the same Bloom’s level as in the standalone program.

4 Condensed versions of Assured Software Development 1, 2, and 3 from the standalone program are
in the MSwE program.

16 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

__

We realized that schools choosing to adopt our suggested curriculum would face
several challenges besides deciding which topics to teach. In particular, schools
would need to address

• planning and launching a new program
• recruiting and preparing students
• finding and training faculty
• acquiring resources
• capstone courses

For each of these issues, we offer some discussion of the problems and some
advice for addressing those problems, drawing on our experience in starting sim-
ilar programs. In addition, we found several good suggestions in the Frequently
Asked Questions report published with GSwE2009 [Ardis, Lasfer, & Michael,
2009].

Planning and Launching a New Program
A prerequisite for starting any successful program is a champion who will lead
the effort. This might be a faculty member, a department head, a dean, or another
member of the academic community dedicated to starting the program. In addi-
tion, it helps to have other champions from industry and government who will
support the program, perhaps by voicing support to others, hiring graduates,
providing resources, and offering projects for the capstone experience. If possi-
ble, it is advisable to form an industry advisory board (IAB) early on to help
support and shape the program.

The academic champion needs to make a convincing case for the program by
preparing a business plan, including a market study. The plan should be used to
convince university colleagues and administrators that there will be sufficient
interest in the program, and that graduates will be successful in their career
plans. Competing programs should be identified, some of which may be on the
same campus.

New programs need to be sold at several levels of campus administration, and
even at regional levels in some cases. For example, some states require extensive
proposals for new academic programs, including details about courses, faculty,
and dedicated resources. It is often much easier to get approval to create a new
track within an existing program than it is to create a new program.

There are U.S. federal government assistance programs, such as the Scholarship
for Service program that may help [U.S. Office of Personnel Management,
2010]. These programs provide some financial assistance to students and help

17 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

justify the need for new academic programs. There are also U.S. federal agencies
(for example, the National Science Foundation and the Department of Educa-
tion) that provide start-up funds for innovative educational programs.

Recruiting and Preparing Students
If you build it, they may not come. Recruitment of students needs to be a contin-
ual process. A good market study should identify the likely areas from which to
draw students. An IAB can help keep the study up to date and provide some ad-
ditional help in recruiting.

Since some of the potential students are already in the workforce, it is helpful to
establish relationships with the human resources (HR) departments of likely em-
ployers, including those that regularly recruit students from your institution. HR
departments administer benefits, such as reimbursement for tuition, and often
provide information to employees about educational opportunities. It may be
possible to give in-house presentations to local companies, arranged through
their HR departments or a member of your IAB.

Local professional organizations may provide opportunities for student recruit-
ment. Trade organizations provide networking for local professionals and many
of them have social events sponsored by local companies. There often are oppor-
tunities to give a short presentation or set up a booth at some of these meetings.

Most universities have professionals who help recruit students, but these indi-
viduals need to be informed about any new program and the types of students
who best fit. Developing brochures and a web presence help to inform both in-
ternal staff and prospective students.

Some students may need help preparing for graduate study in software assur-
ance. There are usually two kinds of deficiencies to be addressed: knowledge
deficiencies and experience deficiencies. Knowledge deficiencies can be ad-
dressed by preparatory leveling courses, such as an overview course on software
and systems engineering, a survey course in current topics in software engineer-
ing, or a survey course on security. Experience deficiencies can be partially
overcome by internships in industry and assistantships within the school. Special
team projects in various aspects of industrial practice can be offered for cohorts
of students who lack sufficient experience (such as a project course on the use of
software tools for software development and maintenance, or a project course on
procurement, integration, and testing of open source software packages).

18 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

Finding and Training Faculty
There are two sources of faculty to teach in new programs of this type: (1) facul-
ty from related areas who have knowledge and interest in teaching software as-
surance and (2) experienced practitioners from industry who are interested in
teaching. The former often work in computer science academic units, but they
may be found in almost any discipline that uses computing. Although they may
have good teaching skills, they may need some help adjusting to the professional
nature of the program. Some of their students will already have considerable ex-
perience and expect to learn about the latest methods and tools. It is important
for faculty to stay current in the field. Consulting is one good way to do this.

The second type of faculty candidate (from industry) may need some help mak-
ing the transition to teaching. If they work part time as adjunct faculty, they will
need to balance the demands of two jobs. If they become full-time faculty, there
may be some discomfort in taking a salary cut. In either case, it is important to
ensure they appreciate the benefits of an academic position.

It is prudent to ramp up faculty at a pace consistent with the growth of the pro-
gram. This means that some part-time faculty will be needed early on before
there is enough demand to justify hiring full-time faculty. Adjunct faculty from
industry are often used for this, but also consider faculty from other academic
units at your institution.

Acquiring Resources
Hardware and software may be provided by local companies or members of the
IAB. In addition, some vendors have academic alliance programs that provide
hardware or software at deep discounts. However, there should be an annual
budget allocated to acquiring and maintaining computing systems. A small pro-
gram should be able to share support staff with other programs.

Capstone Courses
Capstone courses in software assurance provide their own challenges. Fortunate-
ly, there are several models from which to choose. One issue to resolve early on
is whether the capstone course(s) will be integrated with other courses in the cur-
riculum. Integrated capstones provide connections to several other courses in the
curriculum, offering opportunities for students to practice skills they learn in
those courses. Standalone capstones are easier to implement because they do not
have to be synchronized with the content of other courses.

To provide a realistic setting for a capstone course, it is helpful to have real cli-
ents. Finding clients is another recruiting activity to plan and implement each
year. Another alternative is to pursue open source projects. The community of

19 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

open source developers can play the role of clients, but they usually do not have
the same level of commitment as a real client.

For more information about implementation considerations, consult the
GSwE2009 FAQ Discussion Forum.5 The Implementation/Execution forum6
specifically addresses important issues for faculty members and institutions in-
volved in implementing and executing a graduate program in software engineer-
ing. Many of these issues are the same for implementing an MSwA2010 degree
program.

Ways in Which Industry Can Support Software Assurance Education
There are many ways that industry can provide support, from monetary assis-
tance to participation in capstone projects. We describe several of these ideas as
suggestions to readers from industry, and as advice to help new programs begin
to make connections with potential industry sponsors.

For degree programs targeted toward professionals, such as the MSwA2010,
industry support is essential. In addition to participating in industry advisory
boards, making donations, or providing discounts on equipment and software,
there are a number of other ways in which industry can contribute towards ad-
vancing this new discipline. These include

• encouraging employees to work with universities as adjunct faculty or guest
lecturers—This can enrich both the industry organization and the university
program.

• sponsoring and speaking at faculty development workshops—It’s important
to provide faculty development workshops for those who wish to teach a
new discipline. However, the cost of such workshops can be significant. In-
dustry could assist with the cost, help to shape the material, and provide
guest speakers.

• providing grants to help develop new degree programs—Implementing new
degree programs is very expensive, and assistance with some of the devel-
opment costs could help get a new program off the ground.

• providing scholarships and summer internships to students in these pro-
grams—This is a good way to ensure that graduates can hit the ground run-
ning once they complete their degree program.

5 http://www.gswe2009.org/faq/#cat5

6 http://www.gswe2009.org/faq/?tx_mmforum_pi1[action]=list_topic&tx_mmforum_pi1[fid]=8

20 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

__

• providing support for realistic capstone projects—Industry could provide
valuable support by proposing capstone problems, acting as a client, review-
ing deliverables, and/or furnishing advice about project management, devel-
opment methods, and technology.

• modifying and updating employee position descriptions to raise the bar—
Many industry position descriptions focus on low-level skills, such as ability
to code in C or Java and do not highlight the more advanced skills needed to
produce assured software, such as background in risk analysis, attack pat-
terns, threat modeling, and secure programming and testing.

• creating an endowed chair position in software assurance—An endowed
position would ensure longevity for the program.

CONCLUSION AND FUTURE PLANS
The work described in this article can serve as a solid foundation for developing
a master’s degree program in software assurance. But developing the curriculum
is just the first step in the set of activities needed to support Master of Software
Assurance degree programs and tracks. To be successful, the curriculum model
must be available, understood by the targeted academic and industrial communi-
ties, viewed as a key reference for software assurance curriculum development,
and used to develop and modify software-assurance-focused curricula.

The process that we used worked well, in part because many of us had worked
together in previous professional activities. However, there are certainly im-
provements that could be made. We did not plan as well as we could have for
external review of the work. At times we had multiple authors making updates to
the material, and coordination was sometimes a challenge. We spent a good bit
of time on scope issues because we had not foreseen the need to clearly define
the scope at the outset. On the plus side, we found that the diverse backgrounds
among the authors allowed us to see different perspectives. We also found that
there was benefit to starting outreach activities prior to the publication of the
curriculum and presented it at several conferences and workshops.

During the coming year we will be involved in outreach activities. We plan to
conduct faculty workshops and work with universities that may wish to adopt
aspects of this curriculum. We will also extend our work to include considera-
tions of software assurance specializations within other master’s degree pro-
grams, such as Information Systems, and will further consider software assur-
ance education needs at undergraduate levels and also in community colleges.
We hope that this curriculum will be another step along the path of improving

21 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

software assurance education and ultimately result in improvements in software
systems assurance.

REFERENCES

[ACM & IEEE-CS, 2008]
ACM & IEEE-CS. (2008. Computer Science Curriculum 2008: An Interim Revision
of CS 2001. Computing Curriculum Series. Retrieved August 30, 2010 from
http://www.acm.org//education/curricula/ComputerScience2008.pdf

[Allen, 2008]
Allen, J. H., et al. (2008). Software security engineering: A guide for project manag-
ers. Upper Saddle, NJ: Addison-Wesley Professional.

[Anderson, 2008]
Anderson, R. J. (2008).Security Engineering: A Guide to Building Dependable Dis-
tributed Systems, 2nd Edition. New York, N.Y. : John Wiley,

[Ardis & Ford, 1989]
Ardis, M., Ford, G. (1989). 1989 SEI Report on Graduate Software Engineering Ed-
ucation (CMU/SEI-89-TR-21). Pittsburgh, PA: Software Engineering Institute, Car-
negie Mellon University.

[Ardis, Lasfer, & Michael, 2009]
Ardis, M., Lasfer, K. & Michael, B. (Eds.). (2009). Frequently asked questions on
implementing GSwE2009. Stevens Institute of Technology. Hoboken, N.J. Retrieved
August 30, 2010 from http://www.gswe2009.org/faq/

[Bloom, 1956]
Bloom, B. S. (Ed.). (1956). Taxonomy of educational objectives: The classification
of educational goals: Handbook I, cognitive domain. New York, N.Y. : Longman.

[Bosworth, 2002]
Bosworth, S. & Kabay, M.E. (Eds.). (2002). Computer Security Handbook. New
York, N.Y.: John Wiley.

[CERT, 2007]
CERT. (2007). Survivability and Information Assurance Curriculum. Software Engi-
neering Institute, Carnegie Mellon University, Retrieved October 4, 2007, from
http://www.cert.org/sia/

22 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

http://www.gswe2009.org/faq/
http://www.cert.org/sia/

[Committee on National Security Systems, 2009]
Committee on National Security Systems. (2009). Instruction No. 4009, National
Information Assurance Glossary. Revised June 2009.

[DHS, 2010a]
Department of Homeland Security (DHS) (2010a). Build Security In. Retrieved Au-
gust 30, 2010 from https://buildsecurityin.us-cert.gov/bsi/home.html

[DHS, 2010b]
Department of Homeland Security (DHS) (2010b). Software Assurance
(SwA)Workforce Education and Training Working Group. Software assurance
CBK/principles organization. Retrieved August 30, 2010 from
https://buildsecurityin.us-cert.gov/swa/wetwg.html

[Drew, 2009]
Drew, C. Wanted: ‘Cyber Ninjas.’ New York Times. Retrieved December 29, 2009
from
http://www.nytimes.com/2010/01/03/education/edlife/03cybersecurity.html?emc=eta
1

[Ford, 1991]
Ford, G. (1991). 1991 SEI Report on Graduate Software Engineering Education
(CMU/SEI-91-TR-002). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University.

[IEEE-CS, 2004]
IEEE-CS. (2004). IEEE Computer Society. Software Engineering Body of
Knowledge (SWEBOK). Retrieved August 30, 2010 from
http://www.computer.org/portal/web/swebok

[IEEE-CS & ACM, 2004]
IEEE-CS & ACM. (2004). Software engineering 2004: Curriculum guidelines for
undergraduate degree programs in software engineering. Computing curriculum se-
ries. Retrieved August 30, 2010 from
http://sites.computer.org/ccse/SE2004Volume.pdf

[LSEC, 2009]
Leaders in Security. (2009, March). Building In ... Information Security, Privacy And
Assurance. Paper presented at the Knowledge Transfer Network Paris Information
Security Workshop, Paris, France.

23 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

https://buildsecurityin.us-cert.gov/
https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fwww.nytimes.com%2F2010%2F01%2F03%2Feducation%2Fedlife%2F03cybersecurity.html%3Femc%3Deta1
https://buildsecurityin.us-cert.gov/redirect?url=http%3A%2F%2Fwww.nytimes.com%2F2010%2F01%2F03%2Feducation%2Fedlife%2F03cybersecurity.html%3Femc%3Deta1
http://www.computer.org/portal/web/swebok
http://sites.computer.org/ccse/SE2004Volume.pdf

[Mead, et al., 2010a]
Mead, N. R., et al. (2010a). Master of software assurance reference curriculum
(CMU/SEI-2010-TR-005/ESD-TR-2010-005). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University.

[Mead, et al., 2010b]
Mead, N. R., et al. (2010b). Software Assurance Curriculum Project Volume II: Un-
dergraduate Course Outlines (CMU/SEI-2010-TR-019, ESC-TR-2010-019). Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon University.

[Partnership for Public Service, 2009]
Partnership for Public Service & Booz Allen Hamilton. (2009). Cyber IN-Security:
Strengthening the Federal Cybersecurity Workforce. Partnership for Public Service.
Retrieved July, 2009, from
http://ourpublicservice.org/OPS/publications/viewcontentdetails.php?id=135

[Pyster, 2009]
Pyster, A. (Ed.). (2009). Graduate software engineering 2009 (GSwE2009) curricu-
lum guidelines for graduate degree programs in software engineering, version 1.0.
Hoboken, NJ: Stevens Institute of Technology.

[U.S. Office of Personnel Management, 2010]
U.S. Office of Personnel Management. (2010). Federal Cyber Service: Scholarship
For Service. Retrieved February 17, 2011, from https://www.sfs.opm.gov/

24 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

https://www.sfs.opm.gov/

Copyright © Carnegie Mellon University and IGI Global.

This material is based upon work funded and supported by Department of Homeland
Security under Contract No. FA8721-05-C-0003 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally funded research
and development center sponsored by the United States Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of Department
of Homeland Security or the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND
SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
“AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and unlimited distribution except
as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works
from this material for internal use is granted, provided the copyright and “No War-
ranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without requesting formal permis-
sion. Permission is required for any other external and/or commercial use. Requests
for permission should be directed to the Software Engineering Institute at permis-
sion@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM-0001120

25 | DEVELOPMENT OF A MASTER OF SOFTWARE ASSURANCE REFERENCE
CURRICULUM

	Development of a Master of Software Assurance Reference Curriculum
	Scholarly Commons Citation
	Authors

	Development of a Master of Software Assurance Reference Curriculum
	Development of a Master of Software Assurance Reference Curriculum
	Background
	Process Used to Develop MSwA2010 Curriculum Content
	Proposed Outcomes When a Student Graduates
	Assurance Process and Management
	Assurance across life cycles:
	Risk management:
	Assurance assessment:
	Assurance management:

	Assurance Product and Technology
	System security assurance:
	System functionality assurance:
	System operational assurance:

	Core Body of Knowledge
	MSwA2010 Curriculum Architecture
	Course Descriptions
	MSwA Standalone Program (nine courses)
	MSwA Courses Added to MSwE Program (seven courses)

	Implementation Guidelines
	Planning and Launching a New Program
	Recruiting and Preparing Students
	Finding and Training Faculty
	Acquiring Resources
	Capstone Courses
	Ways in Which Industry Can Support Software Assurance Education

	Conclusion and Future Plans
	References

