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ABSTRACT 

This paper compares the extracted feature data from a sample set of hard drive images in an effort to 
relate the features to the physical location of the drive.  A list of probable zip codes, phone numbers, 
place names, and IP addresses are extracted from raw drive images and compared to manually 
identified geolocation data.  The results of the individual extractions are then analyzed to determine 
the feasibility in using automated extraction and analysis techniques for geolocating hard drives.  
Keywords:  hard disk forensics, geocoding, geolocation 
 

1. INTRODUCTION 
This paper compares extracted feature information to manually identified physical drive location from 
a series of hard drive images to evaluate the ability of different features to predict the physical location 
of that drive.  The determination of the geographic locations of interest on a hard drive can be used to 
track the travel of a drive, identify locations associated with the drive's primary users, and find 
locations of interest to the users of the drive.  Through the extraction of key location features in an 
automated fashion from hard drive images, we are able to provide a probable primary location for the 
computer in which the drive was located with varying degrees of accuracy.  
Initially, each drive image is manually reviewed to identify its primary location, followed by an 
automated analysis of each drive.  The first automated step is the use of feature extraction to pull out 
information of interest, followed by the geocoding of that information.  The geocoded information is 
then analyzed for patterns that would uniquely identify drive location.  A comparison is then made 
between the extracted features to determine the feasibility of using each feature type for geolocation. 

2. RELATED WORK 
Forensic feature extraction was used by Garfinkel to extract large amounts of string data from drives 
using regular expressions.  Garfinkel’s work focused on privacy-based data and financial information, 
but the concept of reduction through string pre-processing is useful and not specific to the featured he 
extracted(Garfinkel 2006). 
Exploitation of IP address (and hostname information) was done successfully by Buyukokkten and 
McCurley on a local level.  They utilized whois lookups to build a database of IP address location 
information which they then applied to a set of web pages(McCurley 2001; Buyukokkten et al. 1999) 
Relation of the geodata through contextual parsing was shown as effective by Li, who successfully 
used context data to perform disambiguation, e.g. Springfield MO v. Springfield, NJ(Li et al. 2002). 
Mapping of key place names has been successfully done using the geolocation lists from the 
extractions of US Census Data in the 2000 Gazetteer as performed by US Government(US Census 
Bureau 2000).  Place name, area code, zip code, and latitude/longitude have been correlated in the 
GeoLite database(MaxMind 2006). 
IP address information has been successfully mapped by IP2Location(IP2Location 2006) as well as 
GeoLite(MaxMind 2006).  Additionally, information on network address translation was presented in 
the original proposal for removal of non-public IP addressing(Tsuchiya 1993). 



Conference on Digital Forensics, Security and Law, 2007 
 

160 

3. DATASET 
A set of thirty six hard drive images was used as the initial dataset for the research.  The drives were 
all purchased on eBay and contain varying amounts of user data which is used for geographic feature 
extraction.  Each drive has been manually verified to have at least one partition with data present to 
eliminate “wiped” drives.  The drive partitions each have at least one FAT or NTFS partition. 
The drives images used range in size from 300MB to 40GB.  The drives are converted into raw disk 
images using dd, and stored as image files on a drive array.  Searching the drives is done at a physical 
level (as opposed to logical) using command-line tools in a Windows XP environment.  All of the 
drives were parallel ATA (PATA) technology, 3.5” drives.  The majority appeared to have come from 
home computers, though a few were clearly used for business storage. 

4. METHODOLOGY 

4.1 Overview 
Each of the drive images obtained was imaged and then a series of feature extractions and validations 
was performed in an automated fashion.  Simultaneously, a manual review of each image file was 
performed to provide a check value for the extracted geographic information.  The overall 
methodology is shown in Figure 1. 

  
 

Fig 1.  Methodology for drive image geolocation extraction 
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For the automated analysis, an initial feature extraction first extracts raw strings then uses grep-based 
regular expressions to parse out values of interest.  Then a validation routine is run on each extracted 
feature to remove unwanted artifacts and compare the data with known-valid geographic values.  
Finally, the individual values for each image file are examined to find patterns indicative of 
geographic location. 
For the manual review, each image file is loaded into a forensic tool and reviewed manually for 
indicators of its original physical location.  Physical location names, email origination points, and IP 
addresses are used to identify a likely origin for comparison with the automated results. 

4.2 Initial Feature Extraction 
For each drive in the experimental corpus, a feature extractor is run.  The feature extraction uses the 
same approach as that used by Garfinkel(Garfinkel 2006), but with a different set of extraction 
expressions: 

1.  Initially, text strings of size four or greater are extracted and stored as intermediary text 
files to speed the actual processing.  The average ratio of image size to extracted text was 9.24 
to 1, allowing for an almost tenfold increase in followup query speed. 

2.  A series of regular expressions are used to extract text which matches the following feature 
profiles: 

A. Zip Codes.  Any 5 digit number which is not embedded in a longer string of 
numbers and/or letters is extracted. 

B. Phone Numbers.  Numbers fitting the format (xxx)xxx-xxxx, with or without 
parentheses and dashes are extracted. 

C. IP Addresses.  Any series of numbers w,x,y,z between 0 and 255 that fits in the 
pattern w.x.y.z is extracted. 

3.  A set of proper nouns is extracted from the text files for geographic lookups.  These are 
extracted by finding strings which begin with a capital letter and contain at least four 
characters (to reduce the noise created by smaller, randomly occurring strings.)  Strings which 
start a sentence are then removed.  This has the potential to remove actual place names, as in 
the sentence “Springfield is the greatest town on earth,” but their removal greatly reduces the 
number of false positives (proper nouns that don’t relate to place names.) 

4.3 Feature Validation 
Following the initial feature extraction, secondary validation on the remaining values is performed and 
the validated values are loaded into a database.  The following individual validations were performed: 

1. Zip Codes.  No feature validation was performed on zip codes.  The zip codes were linked 
to specific location codes from (MaxMind 2006). 

2. Phone Numbers.  The individual area codes associated with the phone numbers were 
extracted for geographic region information.  These area codes were compared to valid area 
codes from (Madison 2006) and those were linked to specific location codes from (MaxMind 
2006). 

3. IP Addresses.  Each IP address was validated to remove any quads with leading zeros (e.g. 
02.03.04.05) and any reserved use addresses(IANA 2002) were discarded.  IP address 
geolocation was obtained from (MaxMind 2006) to find location codes for each IP address. 

4. Proper Nouns.  All of the proper nouns were processed for stopword removal (Fox 1989) 
and any very long words (greater than twenty characters) were removed.  The remaining 
words were compared to (US Census Bureau 2000) to obtain location information. 
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After validating each of the features, histograms of each feature on a per-image basis were made and a 
cross-image analysis of each was performed to identify commonalities (which would likely be 
unsuitable for drive location identification if used.) 

4.4 Manual Location Identification 
Simultaneous with the feature extraction, each of the images was loaded into the AccessData Forensic 
Toolkit (FTK), an analysis tool used in digital investigations.  For each of the drive images, the files 
present were indexed and the following information used to make a likely determination of the 
computer location using a manual analysis: 

1. Time zone/clock settings. 

2. IP address settings (if it did not use Network Address Translation) 

3. Email message origination locations. 

4. Locations mentioned in resumes, address books, and other logical documents. 
The most likely value from the above analysis is stored and compared to the automated analyses to 
determine a distance deviation. 

5. RESULTS 
The initial results appear promising for area code and IP address extraction, but zip code and proper 
noun extraction show excessive noise.  Additional techniques for improving each of the four 
extraction types are presented in the Future Work section which follows. 
The raw results and analysis for the four data types used are detailed below. 

5.1 Manual Review 
A manual review of the drives was performed using AccessData’s Forensic Toolkit.  The imaged 
drives were originally analyzed for time zone/clock settings, IP address settings, email message 
origins, and addresses listed in text.   
Of the drives analyzed manually, 36%, or 13 drives, could not be accurately geolocated with a simple 
manual analysis.  Of these drives, the following were determed to be the reasons for not being able to 
accurately geolocate the drives manually: 

 • 2 drives were found to be storage drives for business data on internal servers (and were not 
“personal” drives).  

 • 3 drives had no “fresh” installations of an OS and had their drives wiped clean.  The “fresh” 
installations were of older operating systems with no location data provided. 

 • 5 of the drives had no local network or Internet connectivity and contained no personal 
correspondence. 

 • 3 drives had multiple phone books but no discernable patterns in them to identify location. 
The origin of purchase for the drives was originally thought to be a good indicator of geolocation, but 
further review showed inconsistent correlation between the purchase location and the actual location 
of use for the drives that could be identified. 
As an outcome of the automated analysis, one of the best determinants for manual drive location 
identification turned out to be the phone number settings for dial-up service providers (like America 
Online), which are set to local numbers for cost reasons.  In addition to Windows dial-up settings, 
error logs and dialing logs were good sources for this data.  Time zone settings were too vague to be of 
direct use.   
IP address settings were useful in drives that did not use private IP addresses, but due to the age of the drives 
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(the average age was 5 years old) many of them came from systems that pre-dated the home networking 
explosion that arrived with inexpensive broadband.  The same lack of connectivity effected the manual 
identification using email message originations (when no email messages were present).   
Finally, the use of locations mentioned in logical documents turned out to be a double-edged sword.  The 
proliferation of large address lists obscured the ability to identify unique locations in three cases, and the 
presence of computer-generated phone books altered the results for some of the automated techniques below.  
The results of the manual review are shown in Figure 2. 

 

 
Fig 2.  Manual review results 

 
5.2 Zip Code 

The zip code extraction was performed by searching for strings of numbers as noted above.  Each of these 
numbers was initially assumed to be a zip code for analysis purposes.  Assuming evenly distributed, random 
data (and an ASCII character set), approximately four percent of characters would be numeric.  Given that, a 
five digit string of numbers such as a zip code should appear approximately 91 times per gigabyte.  Constrain 
the same string by the rules used above - the preceding character is a space, comma or period and the 
following character is a space, period, or dash – and the rate goes down to approximately one occurrence per 
100 gigabytes. 
The drive data showed a significantly greater rate of occurrence for zip code-like strings than random data.  
Specifically, a mean occurrence rate of 14,515 per gigabyte with a standard deviation of 10,864 was found.  
This rate appeared to be promising for the extraction of data, but significant signal to noise ratio problems 
were identified.  The normalized frequencies for the top fifty occurring zip codes are shown in Figure 3.  As 
seen, there is an exponential decay in the rates of occurrence.  To eliminate the influence of the highest ranked 
value, new frequencies are calculated for the remaining values and an exponential decay is still evident as 
seen in Figure 4. 
The top occurring strings meeting the zip code criteria are likely not zip codes.  Table 1 shows the top 10 zip 
code values and their number of occurrences.  As seen, the highest ranked zip code is the number 00000, 
which does not map to an actual map address.  Similarly, the remainder of the top ten zip code matches 
contain other false positives.  The number 65537 is a frequent stop number used by programmers (216 + 1), 
and the remaining numbers are all modem frequency pre-sets.   
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Fig 3.  Zip code occurrence frequency by rank 

 
Even if the top n zip codes are removed, the remaining zip code data is filled with noise.  For the sample set of 
drives used, over thirty three thousand distinct zip code number matches were identified with no clustering in 
the distribution – without discernable clusters even after noise reduction their value for geolocation is poor. 

 

 
Fig 4.  Zip code occurrence frequency by rank with largest removed 
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Zip Code Match Number 

00000 209941 

65537 16806 

14400 16144 

28800 10751 

99999 8911 

19200 6697 

12000 6575 

33600 5972 

21600 5804 

16800 5726 
 

Table 1.  Common Zip Code matches 

 
5.3 Phone Numbers 

The use of phone number formatted strings is highly unlikely for non-phone number use, and the 
odds of random occurrence are negligible given the size of the drives in the dataset.  Because this, 
the string match for a phone number is more precise than that of a zip code.  As such, phone 
numbers provide a more likely candidate for geolocation of hard drives. 
The occurrence rate of phone numbers on the drive images in the test set was 534 per gigabyte.  
This provides a large enough sample set for geolocation.  Additionally, the non-valid area codes 
are easy to eliminate – a simple listing of valid area codes can be used.  Doing area code 
validation removed 32 percent of the initial area code values identified, a significantly lower 
percentage than found with zip codes.  Additionally, most of the removed area codes appeared to 
be part of sample phone numbers, with (000)000-0000 and similar numbers appearing frequently 
in the removed numbers. 
An analysis of area code distribution showed the potential for easy post-processing.  Specifically, 
area code 800 (which has no geolocation value) appeared in all of the drives examined, and area 
code 206, which is the area code for Seattle, Washington appeared in all of the drives examined 
with Windows installed.  By removing the non-location area code phone numbers such as 800, 
888, and 877, and removing those with no discrimination ability, which are only area code 206 
numbers in this case – all others have document frequencies below .75 – the remaining numbers 
can be used to geolocate the drives.  
After the area code cleansing above, 61% of the drives were able to be identified by the primary 
area code extracted – confirmed as those that were directly related to the area code determined by 
manual analysis (or a same-location geographic overlay area code).  The percentage identified is 
much greater than random, and with enhancement provides a good candidate for geolocation of 
hard drives.  The drives which could not be manually geolocated were not included in the above, 
but are shown in Figure 5.  



Conference on Digital Forensics, Security and Law, 2007 
 

166 

 

 
Fig 5.  Results of Area Code Automatic Geolocation 

 
For the drives which were not identifiable directly by area code, there were no “near miss” numbers.  
A near miss would be defined as an adjacent area code or one with a nearby geographic proximity, an 
example would be 212 and 973 – a New York City area code and a northern New Jersey area code.  
All of the drives which were misidentified were due to non-geographic reasons. 
The most common reason for drive misidentification was the presence of a large number of phone 
numbers in a single file.  The files included dial-up number lists for large Internet Service Providers in 
two of the cases (one for MSN and one for IOHK), two electronic phone books, and one file which 
contained a large amount of sample data that had a different area code.  These problems could be 
eliminated by application of a weighting function based on area codes identified and the files in which 
they are present.  A simple alteration in the calculations to apply a weight based on the total number of 
phone numbers in the file would have eliminated the non-sample data.  The sample file could have 
been eliminated through the removal of positive hash hits using the NIST National Software Reference 
Library (NSRL) hashes or a similar hash set(NIST 2006). 
Other failures in area code-based geolocation were identified that can easily be handled in future work.  Two 
images had a single file duplicated multiple times (and in both cases it was a known-hash file as above).  One 
drive had a file that contained a large number of sample phone numbers in the XXX-555-XXXX format.  
Removing invalid “555” numbers would eliminate this situation.  Finally, one drive had too few phone 
numbers to form an accurate identification profile (twenty total phone numbers were found). 

5.4 IP Addresses 
IP addresses were identified using a two-step process.  The initial regular expression used identified four 
strings of one, two, or three numbers separated by periods.  A post-processing step using PERL confirmed the 
values in the strings were valid for IP addresses and further sorted the IP’s into public and private addresses.  
The two-step process was implemented to avoid using an overly-complex regular expression.  Less than 2% 
of the numbers identified using the simple regular expression were found to be invalid IP addresses, and those 
that were identified tended to be version numbers for application, for example 1.0.0.601. 
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Using IP addresses to geolocate a drive relies on two factors – users accessing local IP addresses more 
frequently (DNS servers, dial-up addresses, routing information) than distant IP’s, and users having 
access to public IP addresses.  The separation in the initial identification process above concluded that 
48% of the valid IP addresses extracted were private and/or reserved IP addresses and thus not suited 
for geolocation.  With the large number of systems still using dial-up from the sample set, this implies 
many dial-up providers made use of a private address space for their modem pools. 
Of the images examined, only 9% of those drives manually identified were able to be matched via IP 
address.  While greater than random, the identification percentages were still low.  An analysis of the 
misses showed no geographic correlation. 
The miss analysis identified 28% of all IP address matches resolved to Microsoft, skewing the results 
for Washington-located area codes.  Removing the Microsoft IP addresses, the number of matches 
rises to 28%.  Of those that did not match, the most common reason appears to be drives with little or 
no connectivity.  Without a network connection, the only IP addresses present are those hardcoded 
into the operating system.  A listing of the IP addresses found on more than 75% of the drives is 
shown in Table 2 below.   
The second most common reason for failure was a large number of IP address hits on the same address 
space not being grouped (as they were different IP’s) – a more effective algorithm would find the most 
common area code, weighted by the number of occurring IP’s on a per-block basis.  A listing of the 
uncorrected reasons for failure is shown in Figure 6 below. 
The results of IP address geolocation are less promising than that of the area code analysis, but further 
work with a more broadband-centric sample set may yield more useful results.   

 

IP Address Occurrence Frequency 

102.54.94.97 1.00 

38.25.63.10 1.00 

102.54.94.102 0.97 

102.54.94.123 0.97 

11.11.12.13 0.97 

102.54.94.117 0.97 

101.2.1.1 0.90 

157.54.23.41 0.87 

198.105.232.1 0.84 

198.105.232.6 0.77 
 

Table 2.  IP Addresses Appearing in Multiple Drives 
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Figure 6.  IP Address Geolocation Analysis 

 
5.5 Proper Nouns 

The use of a commercial geotagger like MetaCarta’s product(MetaCarta 2006) to extract geographic 
place names was not feasible given the large size of the dataset (and would be computationally 
infeasible even on a modest array of a few terabytes.)  Instead, a simpler extraction of proper nouns 
was used to determine the feasibility of a more advanced approach. 
The secondary extraction of proper nouns from the string data yielded too many results.  To reduce the 
resultant data, any proper nouns found at the beginning of sentences, which were not likely to be 
geographic place names, were eliminated.  The remaining proper nouns were extracted and further 
reduction performed. 
A tertiary reduction was performed on the proper nouns extracted to further reduce the size of the data.  
Smaller words, those that were three characters or less, were removed.  Additionally, words larger than 
twenty characters were removed.  Twenty six percent of the proper nouns extracted were under four 
characters in size, but a negligible amount (less than a tenth of a percent) was over twenty characters.  
After reduction, approximately eighty one million words remained. 
Of the proper nouns identified, approximately two million unique words were found.  There were a 
large number of common words identified – as shown in Table 3, the most common words appear to 
be programming related.  The distribution of proper nouns appears to be Zipfian as shown in Figure 7.  
An additional complication with proper nouns is their discrimination power – over nine hundred 
individual proper nouns appeared in every disk image. 
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Proper Noun Match Number 
Responses 1680807 
Name 1224924 
File 1185960 
Microsoft 959698 
Stub 805560 
String 798901 
Type 585145 
Object 577144 
Windows 563196 
System 520506 

 
Table 3.  Common Proper Noun matches 

 

 
Figure 7.  Proper Noun Occurrences 

 
Of the proper nouns initially identified, the majority did not appear to have geographic place 
information.  Once the non-geographic names were removed through comparison to a geographic 
dictionary, the remaining terms were evaluated for their geolocation value.  As can be seen in Table 4 
below, none of the top ten matches yield significant place information and are false positives.  The 
majority of the names correlate with coding terms too strongly to be accurate place names, and none 
match the manual analysis place name findings. 
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Given the large number of occurrences of false-positive place name nouns, the expected signal-to-
noise ratio would be too low to be useful.  If the number of place nouns were of the same magnitude as 
that found in phone numbers, the expected ratio would be below .01, and direct mapping would not be 
possible.  In addition to the false positives based on unusual place names, there were many false 
positives based on creative naming within Windows.  Names like Verdana and Vista exist as operating 
system names as well as place names, and other names like Redmond appear too frequently based on 
their inclusion in file comments. 

 
Location Noun Match Number 
Media 174724 
Port 117221 
Main 52709 
Post 47683 
Dial 34107 
Normal 24203 
Front 23845 
White 20730 
Trust 19790 
City 19627 

 
Table 4.  Location noun matches 

 
6. DISCUSSION 

The use of geoparsing and geocoding to obtain the geographic location of a hard drive is potentially 
feasible for both area codes and IP addresses with some refinement.  The use of IP addresses, while 
showing poorer performance on the older dataset, has a higher potential for systems with more 
frequent Internet connections.  The use of zip codes and proper nouns with geographic significance 
were unfruitful and unlikely to yield positive results, even with substantial refinement to the 
algorithms. 
As a side finding, the results indicate the value of using forensic-specific stopwords when indexing 
hard drives.  In addition to common stopwords (the, he, and, it, etc.) computer specific stopwords like 
name, file, Microsoft, and string are so prevalent that returning files containing these results are 
unlikely to be fruitful. 
In addition to the proper noun stopwords, similar stopword-like data can be gleamed from the other 
data types.  Removing common phone numbers (like those included in DLL’s) and common IP 
addresses (those hardcoded into sample files and private/reserved IP addresses) may reduce the 
amount of data a forensic examiner needs to analyze by a significant amount.  
One assumption made in the analysis was the computers would have a single geographic location 
associated with their use.  Because the initial dataset used desktop hard drive images this assumption 
is more valid than it would be if laptop drive images were used, but even desktop drives can be used in 
multiple locations.  People move to other cities, bring desktops to college, and sell machines to others 
in different locations, which can significantly confuse the analysis. 
Although the intent was to identify drives in an automated fashion, the automated extraction data 
provides a feedback mechanism that can be used in a manual analysis as well.  By identifying 
“interesting” phone numbers and IP addresses in an automated fashion, the forensic analyst can be 
provided with additional search terms for manual review. 
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7. FUTURE WORK 
The initial examinations used drives acquired in (and assumed to be used in) the United States.  
Generalizing the regular expressions to be international in nature would be needed for global use 
(though the IP address space used was global), as would the use of a global dataset that geolocated 
international phone numbers. 
The drives analyzed in this paper were parsed on a drive-level (as opposed to a file-level) of 
abstraction.  The parsing of individual files using their logical file structure would allow the targeting 
of specific file types, elimination of duplicate files, and a general improvement in data quality traded 
off for more complexity in the parsing algorithms.  The use of a file-based approach would 
additionally solve some of the problems associated with common sample files.  Known file filters like 
the Forensic Toolkit KFF and NIST NSRL hash sets could significantly reduce the number of false 
positive results. 
Another limitation of the initial analysis was the dataset – all of the drives used were desktop-size 
drives.  The use of laptop drives may present further difficulties associated with the multiple use 
locations expected.  The primary use location would still be expected to dominate, but unusual usage 
patterns may be present in certain circumstances like long distance commuting. 
The use of more advanced algorithms to identify patterns and cross-analysis of phone and IP address 
information may be useful as well.  Though beyond the scope of this paper, looking at each drive 
individually and applying outlier detection techniques may yield better overall results. 
The application of term frequency-inverse document frequency techniques to assist manual review 
could be useful as well.  Instead of treating individual files as documents, each individual drive image 
could be treated as a document and new evidence drives added to the corpus.  This would provide a 
benefit of identifying items of interest in the evidence drive that are not as prevalent in the corpus as a 
whole. 
Finally, if the data could be culled to a smaller sample size through representative sampling or similar 
techniques then geotagging may yield more valuable results that are generated from place names 
present. 

8. CONCLUSIONS 
The goal of this research was to test the feasibility of different techniques in accurately geolocating a 
computer.  The research was successful in identifying two techniques that would be appropriate for 
geolocation – phone number extraction and IP address extraction.  Additionally, the information 
gathered identified two other techniques as infeasible – the use of zip codes and the use of potential 
geographic place names. 
As an additional outcome of the research, stopword lists that can be used for future information 
visualization efforts were generated.  These will allow for more enhanced manual review efforts when 
applied to traditional techniques. 
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