
Journal of Digital Forensics, Journal of Digital Forensics,

Security and Law Security and Law

Volume 11 Number 4 Article 5

12-31-2016

Bloom Filters Optimized Wu-Manber for Intrusion Detection Bloom Filters Optimized Wu-Manber for Intrusion Detection

Monther Aldwairi
Network Engineering and Security Department, Jordan University of Science and Technology

Koloud Al-Khamaiseh
cDepartment of Electrical Engineering, Tafila Technical University

Fatima Alharbi
College of Technological Innovation, Zayed University

Babar Shah
College of Technological Innovation, Zayed University

Follow this and additional works at: https://commons.erau.edu/jdfsl

 Part of the Computer Engineering Commons, Computer Law Commons, Electrical and Computer

Engineering Commons, Forensic Science and Technology Commons, and the Information Security

Commons

Recommended Citation Recommended Citation
Aldwairi, Monther; Al-Khamaiseh, Koloud; Alharbi, Fatima; and Shah, Babar (2016) "Bloom Filters
Optimized Wu-Manber for Intrusion Detection," Journal of Digital Forensics, Security and Law: Vol. 11 : No.
4 , Article 5.
DOI: https://doi.org/10.15394/jdfsl.2016.1427
Available at: https://commons.erau.edu/jdfsl/vol11/iss4/5

This Article is brought to you for free and open access by
the Journals at Scholarly Commons. It has been
accepted for inclusion in Journal of Digital Forensics,
Security and Law by an authorized administrator of
Scholarly Commons. For more information, please
contact commons@erau.edu.

(c)ADFSL

http://commons.erau.edu/jdfsl
http://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl/vol11
https://commons.erau.edu/jdfsl/vol11/iss4
https://commons.erau.edu/jdfsl/vol11/iss4/5
https://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.15394/jdfsl.2016.1427
https://commons.erau.edu/jdfsl/vol11/iss4/5?utm_source=commons.erau.edu%2Fjdfsl%2Fvol11%2Fiss4%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

Bloom Fi

© 2016 A

B

bCol
cD

With inc
becoming
and searc
the most
signature
of runnin
in real-ti
speed up
quickly q
10.6% of
speedup

Keywor
filters

Internet
a basic r
More app
to install
addition,
Internet
data at r
number o
and comp
at an al
governme
vulnerab

1 Proceeding
and Network

ilters Optim

ADFSL

BLOOM
F

Monther A
aNetwork E

lege of Tech
Department o

creasing num
g essential e
ching netwo
t widely us
es in intercep
ng time and
ime. We pro
p intrusion d
queried to e
f the time. T
of 33% over

rds: network

INTRO
connectivity
requirement
plications re
l, update, ru
 cloud comp
of things ha
risk of being
of high skill
plexity of at
arming rate
ents and
ilities, exp

s of the 2nd Wor
king (WSWAN’2

mized Wu-Ma

M FILT
FOR IN

Aldwairia,b,*,
Engineering

hnological In
of Electrical

*Corres

mber and sev
everyday tas
rk traffic for
ed, and the
pted network
memory us

opose a Bloo
detection. T
exclude unn
The propose
Wu-Manber

k security, in

ODUCT
y has becom

for any kin
quire Intern

un or functio
puting, socia
ave placed a
g exposed to
led attackers
ttacks have b
e against ba

other com
ploits and

rld Symposium o
2015) (2015), IEE

anber for Int

TERS O
NTRUS

 Koloud Al-
and Security
Technology
novation, Za
Engineering

sponding aut

A
verity of att
sk. Intrusion
r potential h
ey simply u
k traffic. Pat
sage, leaving
om filters o
he Bloom fi

necessary sea
ed algorithm
r at the cost

ntrusion dete

TION1

me essential a
nd of busine
net connectiv
on correctly.
al networks a
a lot of priv
o the increas
s. The num
been increas
anks, hospita
mpanies. N

attacks

on Web Applicat
EE.

trusion Dete

OPTIM
SION D

Khamaisehc

y Departmen
y, Irbid 2211
ayed Univers
g, Tafila Tec
thor. E-mail

ABSTRAC
tacks, monit
n detection
harm. Signat
use a patter
ttern match

g intrusion d
ptimized W
ilter program
arches. On

m achieves a
t of 0.33% m

ection system

and
ess.
vity
 In
and
vate
sing
ber

sing
als,

New
are

ions

annou
2000)

In
widel
traffi
attac
deplo
host-
detec
egres
gener
appli
system
softw
moni
event

ection

MIZED
DETEC

, Fatima Alh
nt, Jordan U
0, Jordan
sity, Abu Dh
chnical Univ
: munzer@ju

CT
oring ingres
systems are
ture-based i
rn matching
ing algorithm

detection sys
Wu-Manber p

ms the hash
average has
best-case sp

memory usag

ms, pattern

unced daily
).

ntrusion det
ly-used contr
c in order t

cks. IDSs
oyment into
based syste

ction system
s traffic lo
rally seen in
ance. While
ms (HIDS)

ware agent ru
tors all ac
ts. Hardw

WU-M
CTION
harbib and B
University of

habi, P.O. B
versity, Tafil
ust.edu.jo

ss and egress
e the main t
ntrusion det
g algorithms
ms are very
stems unable
pattern matc
h table into
sh table sea
peedup of 6

ge increase.

matching, W

at an alarm

tection syst
rol measure
to detect an

are class
two main t

ems. Netwo
ms (NIDS) sc
ooking for
n the form
host-based
 on the o
unning on a
ctivity look

ware IDS

JDFSL

MANBE
N

Babar Shahb

f Science and

Box 144534,
a 66110, Jor

s network tr
tools for cap
tection syste
s to locate
expensive in
e to detect
ching algori
a vector, w

arches are a
6% and wor

Wu-Manber,

ming rate (R

tems (IDS)
to inspect n

nd sometime
sified base
types: netwo
rk-based in
can all ingre
attacks an
of dedicate

intrusion de
ther hand,
a specific ho
king for ma

appliances

V11N4

Page 5

ER

b

d

U.A.E
rdan

raffic is
pturing
ems are
attack

n terms
attacks
thm to

which is
avoided
rst-case

Bloom

Roberts,

are a
network
s block
ed on
ork and
ntrusion
ess and
nd are
ed IDS
etection

are a
ost that
alicious

cost

JDFSL V11N4 Bloom Filters Optimized Wu-Manber for Intrusion Detection

Page 6 © 2016 ADFSL

hundreds of thousands of dollars, that is why
software-based IDS running on PC
workstations remain widely deployed.
However, software-based systems are unable to
keep up with the ever-increasing Internet speed
(Zheng, Cai, Zhang, Wang, & Yang, 2015).
Unlike IDSs, Intrusion prevention systems
(IPS) are a new breed of proactive IDS that
are deployed inline to detect malicious activity
in real-time and take corrective action. IPSs
can log the activities, alarm administrators, or
drop connections. They have not been widely
adopted due to users not favoring automatic
dropping of sessions or packets.

Intrusion detection systems are categorized
based on the technique into: signature and
anomaly-based (Aldwairi, 2006). Signature-
based intrusion detection systems detect
known attacks by searching network traffic for
attack signatures. They generally use
traditional pattern matching algorithms and
yield better speed and accuracy compared to
anomaly detection. The signatures are
manually written after security analysts study
the captured attack or malware code looking
for invariant parts. The manually developed
signatures are a big disadvantage in terms of
signatures accuracy and the fact that it takes a
considerable amount of time to provide a
signature after a new attack is detected
(Jirachan, & Piromsopa, 2015). On the other
hand, anomaly detection builds a profile of the
normal system behavior during the training
phase. It uses common machine learning
classifiers to extract features from new traffic
and classify them into benign or malicious. The
profiles are based on statistical analysis to
capture specific behavior patterns such as
system calls. Proprietary rule based languages
are used to capture those profiles in isolated
setup. It is true that anomaly-based IDSs
detect new attacks, however they are
considerably slow and generate more false
positives and negatives as opposed to

signature-based (Aldwairi, Khamayseh, & Al-
Masri, 2015).

Signature-based IDSs continue to dominate
the market, with Snort being one of the most
commonly deployed systems (Roesch, 1999).
Snort (2016) has been the target of numerous
studies and became the de facto among
researchers working to speed up pattern
matching algorithms for IDS. Simply, Snort
inspects network traffic trying to match
packets against predefined rules. It has many
other capabilities such as packet capture and
reassembly (Lam, Mitzenmacher, & Varghese,
2010). However, this work is concerned only
with pattern matching, which dominates
Snorts performance. Antonatos, Anagnostakis,
and Markatos (2004) found that pattern
matching algorithms consume up to 70% of
Snort running time. To make matters worse, as
new attacks arise, the number of signatures
grows exacerbating the performance issue.
Snort rules examine the packets header and
search the packets payload for attack
signatures (Aldwairi, & Alansari, 2011).
However, the majority of the rules contain one
or more signatures. Almost 87% of Snort rules
contain signatures to match against (Aldwairi,
Conte, & Franzon, 2004). Therefore, there is
still a need to speedup pattern matching for
intrusion detection (Gharaee, Seifi, &
Monsefan, 2014).

 There is surge of studies to improve
pattern matching for intrusion detection
whether in hardware or software.
Dharmaprikar, Krishnamurthy, Sproull, &
Lockwood, (2004) proposed hardware parallel
Bloom filters to exclude benign packets. But
because Bloom filters only work with fixed
length signatures, they were forced to use
many parallel Bloom filters. Bearing in mind
that Snort signatures lengths can be over 1000
characters, this solution ends up being very
expensive in terms of memory. We will show
later that each Bloom vector can grow up to

Bloom Filters Optimized Wu-Manber for Intrusion Detection JDFSL V11N4

© 2016 ADFSL Page 7

1MB in size, having thousands of those is not
quite efficient. It is worth pointing out that
Bloom filters are used in a more efficient way
in this paper. We program only the B
character prefixes of the sparse hash table to
avoid unnecessary expensive hash table
searches. Consequently, one Bloom filter is
used as opposed to one for each signature’s
length in case of Dharmaprikar et al. (2004).

Yang, Xu, & Cui (2006) improved Wu-
Manber (QWM) using Quick Search (QS)
algorithm (Sunday, 1990) and mismatch
information, to increase the shift values. Quick
Search is basically used to find if a packet
contains a prefix of an attack signature. If a
prefix is found QWM then uses Wu-Manber
(WM) to verify the match. To achieve that a
fourth table is added, the HEAD table. The
table decides if the first two characters of a
matching window are the prefix of a pattern.
QWM was designed to outperform WM for
Chinese texts with large alphabets as opposed
to network traffic with limited character set. In
addition, a considerable memory overhead is
added due to the additional HEAD table.

WM+ by Xunxun, Binxing, Lei, and Yu
(2005) merged Aho-Corasick (AC) and Wu-
Manber algorithms to improve the shift table.
WM+ algorithm derived a prefix automata
scanning from AC instead of the ordinary hash
table based pattern matching. In addition, a
filtering algorithm was used along with the
finite automata to skip the bad characters in
order to speed up the search. Unfortunately,
for longer patterns lengths the memory
consumption of WM+ is significantly larger
than WM. On top of that, the finite automata
construction adds a considerable overhead.

Older Snort versions implemented Aho-
Corasick, and a lot of researches were
performed on optimizing AC automata. Liu,
Chen, Wu, and Wu (2011) proposed a finite
automata with extended character set to
reduce the number of states, which is the main

disadvantage of AC. They used auxiliary
variables to compress the number of states
while maintaining one memory access per byte.

Newer versions of Snort opted out to
implement a modified Wu-Manber (MWM)
(Beale, Baker, Esler, & Northcutt, 2007). WM
is more attractive because of the smaller
memory requirements and better performance
for longer strings. That is possible because
WM is conservative in that the maximum shift
possible is m–B+1, which depends on the
minimum string length. MWM examines the
suffixes of the block in order to change the
default shift value. The modified WM can have
a larger shift equivalent to the block size if the
no pattern contains any block suffixes.

To overcome the degrading performance as
the number of signatures increases, Peng,
Wang, and Xue (2014) proposed a new
enhanced Wu-Manber. They optimized WM by
minimizing number of candidate patterns in
the HASH table and using binary search to
look for candidate patterns in the index table
to cut the searching time. Experimental results
showed that in case of large pattern sets (>
3×105), the enhanced algorithm is more
efficient than the classical WM, MWM, and
TFD algorithms. This is due to the fact that in
the enhanced algorithm, the hash table was
well balanced and the binary search helped
reduce the search time.

Zhang (2016) modified WM to suit
matching short bit streams for wireless
communication protocols. The algorithm added
a new GSSHIFT table to determine the shift
distance when the SHIFT table returns zero.
They achieved speedup, over WM, of 1.6 times
for 5 bit patterns. However, the algorithm
scaled very poorly with string’s length, with no
improvement for strings longer than 64 bits.

Finally, Lee, Woo, and An (2016) modified
WM using multiple sub-patterns on multi-core
CPU. However, the modified algorithm had

JDFSL V11N4 Bloom Filters Optimized Wu-Manber for Intrusion Detection

Page 8 © 2016 ADFSL

poor performance for large number of
signatures and did not improve time
proportional to the number of cores used.

This paper presents Exhaust: a modified
version of Wu-Manber with negligible
overhead. Exhaust is designed specifically to
speed up pattern matching for intrusion
detection systems to match higher network
speeds. The main contribution is to insert only
one Bloom filter to wither out unnecessary
hash table searches (Aldwairi, & Al-
Khamaiseh, 2015). It results in a considerable
improvement on the overall performance with
minimal overhead. The rest of the paper is
organized as follows. Section 2 explains the
basic knowledge required to understand the
problem. It explains Snort rules in full details,
pattern matching algorithms, Wu-Manber and
Bloom filters theory. Section 3 describes
Exhaust inner workings and details the
initialization and search phases. Section 4
brings forward a complete formal and
experimental validation of the proposed
algorithm using actual traffic traces and attack
signatures.

2. BACKGROUND
This section explains Snort and its rules
format. An example of actual Snort rules and
attack signatures is presented. Subsection 2
presents a pattern matching algorithms
overview and provides a thorough WM
explanation with preprocessing and search
examples using real Snort signatures. Finally, a
brief introduction to Bloom filters is set
forwards.

2.1 Snort

Snort is a popular open source IDS from
Sourcefire which has recently been acquired by
CISCO. We’re mostly concerned with Snorts’
rules that contain attack signatures. The rules
are in plaintext and describe set of conditions
for the packet’s header/payload to match. The

rules’ headers field specifies the action to be
taken and provides values for the protocol
type, source and destination IP addresses and
port numbers. The options field contains more
than twenty-four keyword and value pairs,
such as: msg for the alert message, sid for
signature identification number, priority gives
rules’ severity level, and class-type to
categorize rules. The rules options also contain
several content, uricontent and pcre keywords
that specify attack signatures (Beale, Baker,
Esler, & Northcutt, 2007).

Figure 1 shows a redacted Snort v2.8 rule
from ddos.rules rule set. You can easily extract
the attack signature, “gOrave”, from the
content keyword. The rule is very easy to read:
fire an alert if any external TCP packet going
to any local machine on port 27665 while
containing the string “gOrave”. This rule
detects a well-known old DDoS attack called,
Trin00 (Dittrich, 2015).

(Kharbutli, Aldwairi, & Mughrabi (2012)
identified pattern matching to locate the
attack signatures in the packet payload, as the
main bottleneck. Despite Snort using the
fastest pattern matching available, it still lags
behind increasing network access speeds.

2.2 Pattern matching for IDS

Snort relies on exact pattern matching
algorithms and does not use regular
expressions for encoding signatures. Pattern
matching is classified into either single or
multiple pattern matching. Single pattern
matching must scan the packet once for each
signature in the dataset, which makes it
counterproductive. They are not used in IDS,
but it is a good introductory example to

alert tcp $EXTERNAL_NET any ->
$HOME_NET 27665 (msg:"DDOS Trin00

Attacker to Master default
password"; content:"gOrave";

classtype:attempted-dos; sid:234)

Figure 1. A sample Snort rule

Bloom Filters Optimized Wu-Manber for Intrusion Detection JDFSL V11N4

© 2016 ADFSL Page 9

pattern matching. Boyer-Moore (BM) is one of
the most common single pattern matching
algorithms. In an effort to locate a match, it
places the pattern and packet side by side and
shifts the pattern by one position in the case of
mismatch. In the event of a match it moves to
match the next character from the pattern
with subsequent character from the packet.
The algorithm is fairly simple and inefficient,
because the search time grows linearly with the
packets’ and patterns’ lengths. Several
improvements over BM exist such as good and
bad character heuristics as well as Boyer-
Moore-Horspool (Boyer, & Moore, 1977).

On the other hand, multiple pattern
matching algorithms preprogram all patterns
into a table or tree and match all patterns at
the same time. The additional preprocessing
stage is the obvious drawback, but this pales in
comparison to the savings attained from
traversing the packet once. Aho-Corasick and
Wu-Manber are two of the fastest multiple
pattern algorithms to date.

In the preprocessing phase, AC builds a
trie based state machine from the set of
patterns to be matched (Aho, & Corasick,
1975). AC search time is linearly proportional
to the searched packet length and is not
affected by the number of characters in the
signatures. However, AC preprocessing time
and complexity increases exponentially with
the number of characters, which makes it ideal
only for short signatures. Moreover, the state
machine needs to be rebuilt every time a new
pattern is added to the signatures database.
Unfortunately, AC memory requirements scale
exponentially with increasing number of
signatures. Wu-Manber algorithm on the other
hand, is based on hash tables, which makes it
more attractive option compared to AC for
longer signatures (Wu, & Manber, 1994).

2.3. Wu-Manber algorithm

Wu-Manber relies on the same principles
used in Boyer-Moore algorithm (Boyer, &
Moore, 1977), but adds a block of B characters
and new data structure for more efficient
matching. Like all multiple pattern matching
algorithms, WM has two stages: preprocessing
and search. The preprocessing stage of the
algorithm starts by computing the minimum
length m of all patterns that are available
beforehand. Then it defines a block of B
characters used for matching window shifts.
The block size is recommended to be either
two or three. Then the algorithm builds three
tables during pattern preprocessing: shift,
hash, and prefix

The shift table is constructed by
computing the shift value for each substring of
size B taken from the first m characters of the
pattern. The shift table is a hash table where
the key is the signature substring and its value
is computed using the equation shift [key]=m-
q, where q denotes the right most location in
the pattern substring. The default value of this
table is defined by the equation shift [key] =
m-B+1. The shift value represents the number
of maximum characters to skip forward when a
mismatch occurs. The character blocks that
have a shift value of zero indicate a probable
match. All patterns that share those zero shifts
probable matches are programmed into the
hash table. The main purpose of the prefix
table is to make finding probable matches in
the hash table faster by hashing the prefixes of
those patterns. Additionally, it is used to
distinguish between the patterns that have the
same suffix but differ in the prefix.

The search starts by dividing the network
traffic traces into sliding window of size B.
Each time the search string of size B returns a
zero shift value when traversing the shift table,
the algorithm accesses the hash table and
searches the list of patterns associated with the
key to find the match.

JDFSL V11N4 Bloom Filters Optimized Wu-Manber for Intrusion Detection

Page 10 © 2016 ADFSL

An example with actual signatures is
presented to better understand the algorithm.
Table 1 shows the shift table for the following
patterns extracted from the Snort FTP rule set
{RMD, XMKD, MDTM, MKD} for block size
of two characters, B=2. The minimum pattern
length is three characters, m=3 and the default
shift value is m–B +1, which equals 3–2+1 =
2. Take the block “DT”, which exists in pattern
“MDTM”. The shift value is m – q, where q is

the rightmost occurrence of DT in any pattern,
hence, shift [DT] is 3–2=1. On the other hand,
take block “MD”, which can be found in two
patterns “RMD” and “MDTM”. The shift [MD]
is 3–3=0 taken from pattern “RMD” and not
3–2=1 as in pattern “MDTM”. Figure 2 (a)
shows the hash table, which holds pointers to
the patterns that contain the probable
matching signatures.

Figure 2 (b) shows the step-by-step search

stage over the following hypothetical packet
“RTDTMXMKDDTS” with a matching
window of three characters. In step one, WM
examines the first search window: “RTD”. The
two-character suffix for the search windows
“TD” is hashed to find the index to access the
shift table. The shift value for {TD} is two;
WM then shifts the search window by two to
become “DTM”. In step two, the hash value for
the block “TM” is zero, which means a
probable match. Therefore, WM searches the
hash table with the same index from hashing
“TM”. No match is found and that was a false
alarm. The default shift of two is applied
which makes the next search window “MXM”.
In step three the shift for “XM” is two making
the next search window “MKD”. In step four,
the shift value is zero for “KD”, the hash table
is searched and two matches are found
{XMKD} and {MKD}. A shift of two is
applied and the shift for “DT” is one. Step six,

ends the search with the window reaching the
end of packet.

WM search time does not surge
significantly as the number and size of
signatures increase. On the contrary, the
average case performance beats all competing
algorithms for longer signatures. However,
while the overhead introduced by preprocessing
scales linearly with size and numbers of
signatures, it is still negligible compared to the
search time.
Table 1.
WM-Manber Shift Table

2.4. Theory of Bloom filters

Bloom filters rely on a long binary vector
where a set of patterns can be programmed
and reprogrammed efficiently. The filter runs a
few hash functions on a set of patterns and

Figure 2 (a). Wu-Manber hash table; (b) Wu-Manber search phase

BC MD KD MK TM DT Others
Shift 0 0 1 0 1 2

Bloom Filters Optimized Wu-Manber for Intrusion Detection JDFSL V11N4

© 2016 ADFSL Page 11

sets the corresponding bits to the resulting
hash values. This vector represents
membership information on the programmed
patterns and consumes a lot less space as
opposed to the original dataset. The Bloom
vector can easily be probed to verify
membership. Simply run the same hash
functions on the new pattern and check the
corresponding bits. If they are not set then the
Bloom filters provides a 100% assurance that
the pattern is not a member of the original
patterns dataset programmed into the vector.
However, if the bits are set this means that
there is a chance the pattern is a member of
the original set (Bloom, 1970). That is, false
negatives are zero, which is exactly what we
need to verify a packet is clean without
performing expensive hash table search. On the
other hand, Bloom filters false positives rate, f,
is given by Eq. (1). = 1 − (1)

Where, n is the number of strings
programmed into the Bloom filter, s represents
the vector size and k is the hash functions
number. The false positives rate can be
reduced by increasing the values of s and k to
be appropriate for the strings number n. In
addition, the value of s has to be larger than
the given size of the string set, n.

 It is possible to have multiple strings
result in setting overlapping bits. Therefore,
deleting a string would be an issue, because it
resets the corresponding bits, which might
happen to be set by another string. Counting
Bloom filters (Fan, Cao, Almeida, & Broder,
2000) maintain a counter for each bit in the
bitmap corresponding to the number of
patterns that cumulatively set that bit.
Consequently, when a new pattern is inserted
or an old pattern is deleted the counter
corresponding to its hash values is incremented
or decremented. When the counter reaches
zero, the bit is cleared.

3. METHODOLOGY
We propose Exhaust: EXclude HAsh table
Unnecessary Search Time. We use the
counting Bloom filters 100% exclusion property
to eliminate unnecessary hash table searches.
Remember that most of network traffic is
benign and naturally it does not contain any
malicious signatures. Therefore, if we program
the Bloom filter with substrings, of size B,
from the pattern prefixes from the hash table
entries, then we can query the filter before we
search the hash table. Querying the Bloom
filter is a lot faster than searching the table.
This means we can save the time to search the
hash table for all clean traffic and we incur the
cost of running two hash functions. Remember
that a zero shift value from the shift table does
not necessarily mean a definite match. On the
contrary, quite often zero shifts are false
alarms caused by the small WM block size of
two or three. This small block size makes it
more coincidental that the search window and
the signature end up with the same suffix.
Those false alarms can be handled faster if a
Bloom filter is used to exclude those blocks
that are not in the hash table, cutting the time
to perform unnecessary searches for the large
hash table.

Therefore, the Bloom filter provides a more
accurate mechanism to determine probable
matches and help skip the majority of zero
shifts caused by benign traffic. We will prove
later that this significantly improves the WM
algorithm’s performance while adding a very
small memory overhead for the Bloom filter
and a negligible preprocessing time.

Algorithm 1 presents Exhaust
preprocessing pseudo code, which is similar to
WM algorithm except for the additional Bloom
filter programming steps. First, the algorithm
starts by determining the minimum pattern
length, m. Then Exhaust populates the shift
table with the default shift value, of m – B +

JDFSL V11N4 Bloom Filters Optimized Wu-Manber for Intrusion Detection

Page 12 © 2016 ADFSL

1. Both the shift and hash tables are accessed
by the same hash function index calculated on
the character block. Next, it computes the shift
values for all block substrings (x) of size B
used to fill the shift table. If the shift value is
zero, the corresponding entries in the hash and
prefix tables are entered. Additionally,
Exhaust programs the last B characters of
pattern into the Bloom filter. The
programming is simply running the selected
hash functions on substring of size B and
setting the corresponding bits in the Bloom
vector.

Algorithm 2 present Exhaust’s search
stage, where a sliding a window of size (w) is
passed over the packet. For each sliding
window the index (i) for shift table is
calculated by running a hash function on the
suffix of B characters. If the shift[i] value is
not zero then slide the window by the shift
amount.

On the other hand, if the shift [i] value is
zero then we must search the hash and prefix
tables to verify and find the match. The Bloom
filter reduces the search time, by computing
two hash functions on the B character suffix
and examining the corresponding bits in the
Bloom vector. If the Bloom vector membership
is negative, then we skip the hash table search
and move to the next sliding window. If the
Bloom filter membership is positive then we
must search the hash and prefix tables to
verify the match.

The Bloom filters do not have false
negatives, which make them perfect to exclude
strings from the hash table. However, they
have false positives, which need to be reduced
to maximize the number of times Exhaust
skips the hash table. Therefore, we use two
distinct and pairwise independent hash
functions: SDBM and SAX. SDBM (Partow,
2015) hash is an algorithm used in the open
source SDBM project. It has a good
distribution for different datasets and when

there is a high variance in the dataset
members. For a character c, the hash value is
calculated as shown by Eq. (2). SAX, on the
other hand, is simple hash function proposed
by Ramakrishna and Zobel (Ramakrishna, &
Zobel, 1997). It is very fast because of the use
of the common operations of shift, ADD and
XOR as shown by Eq. (3). = + ℎ ℎ ≪ 6 + ℎ ℎ ≪ 16 − ℎ ℎ (2) ℎ ℎ = + ℎ ℎ ≪ 5 + ℎ ℎ ≫ 2 (3)

4. RESULTS AND
ANALYSIS

We evaluate Exhaust’s performance through
simulations using actual Snort rules and
extremely malicious traffic traces representing
worst-case scenario. Subsection 1 presents the
details of the testing process and environment.
Subsection 2 lays out the metrics to be

Algorithm 1 Exhaust Initialization
1: procedure Initialize
2: for each pattern (P) in signatures set
3: if B < len(P) < m
4: m len(P)
5: end for
6: fill SHIFT [i] m – B + 1
7: for every substring (x) of size B
8: for each pattern (P)
9: if x ϵ any P with last occurrence of q

10: SHIFT[i] m – q
11: if SHIFT[i] = 0
12: fill(HASH)
13: fill(PREFIX)
14: Bloom vector hashFcns(x)
15: end for
16: end for
17: end procedure
18: procedure Initialize
19: for each pattern (P) in signatures set

Algorithm 2 Exhaust Search
1: procedure Search
2: for each sliding w until the end of packet
3: if HASH(hashFcns(last block of w)) != 0
4: shift w by HASH(hashFcns(last block of w))
5: else if w !ϵ Bloom vector
6: shift w by 1
7: else
8: search HASH and PREFIX tables for exact match
9: end for

10: end procedure

Bloom Filters Optimized Wu-Manber for Intrusion Detection JDFSL V11N4

© 2016 ADFSL Page 13

measured. Subsection 3 explains how Snort
attack signatures are extracted and cleansed,
while Section 4 analyzes the traffic traces.
Subsection 5 measures the number of times the
hash table search is skipped and compares the
Exhaust runtime to WM. Subsection 6
measures the overhead in terms of
preprocessing time and memory usage.
Subsection 7 suggests solutions to reduce the
Bloom filters false positives to further improve
Exhaust’s performance. Finally, Subsection 8
analyzes the algorithm complexity and
provides formal proof.

4.1. Test methodology and
environment

We perform the experiments on a PC
workstation with Intel Core 2 duo processor,
running at 1.83 GHz, with a L1 cache of 32
KB, L2 cache of 2 MB, and 1 GB of main
memory. We use Microsoft Visual Studio 2008
running on 32-bit Microsoft Windows 7
Professional.

To evaluate the algorithm’s performance,
we use actual network traffic traces and Snort
rules. The signatures and packets are stored
and read offline from files. Each experiment is
repeated five times and the average is
reported. Certain experiments require varying
the number of signatures or characters. To be
able to achieve that, signatures from different
Snort rules classes are combined together to
form eight sets of patterns. The first set
contains 500 patterns from Specific-Threats
class. The second set includes 1000 signatures
composed of the previous 500 in addition to
another 500 from Backdoor class and other
classes. We incrementally pile signatures to
end up with eight sets containing signatures
ranging between 500 and 4000.

4.2. Evaluation metrics

The best metrics to evaluate the performance
enhancement is the run time and speedup over

WM algorithm. We exert every effort to
accurately measure time by averaging five
readings. However, since time measurements
are not bullet proof we believe that counting
the number of times we skip the hash table is a
better metric. Therefore, we define the HAC
and HSC metrics to measure the number of
times Exhaust skips the hash table search.
Where, HAC is the hash table access count
and HSC is the hash table skips count. An
access means that the Bloom filter gives a
probable match, that is, it fails to avoid hash
table search. A skip happens when the Bloom
filter successfully skips the hash table search.
Naturally, the higher the HSC the better
because of the savings from skipping the hash
table search as opposed to just computing two
hash functions.

In addition, to better understand the
performance improvements we calculate the
hash table access ratio (HAR), and the hash
table skip ratio (HSR). The normalized ratios
are calculated according to Eq. (4) and Eq.
(5). Moreover, to measure the Bloom filter
overhead we report the added preprocessing
time and memory. Finally, we analyze the false
positives resulting from adding the Bloom
filter. = (4) = (5)

4.3. Signatures extraction

We develop a script to extract the values of
content keywords from Snort 2.8.4.1 rules
database released in July 2009 (Snort rules,
n.d.). We elected to use this version because it
contains more attack signatures (9,945 rules)
as opposed to the 2017 Snort v2.9 community
rules. The latter includes only 3518 rules,
because of the cleansing performed after
Cisco's Talos participated in authoring Snort
rules. We believe release 2.8.4.1 serves as a
worst-case test dataset for Exhaust.

JDFSL V11N4 Bloom Filters Optimized Wu-Manber for Intrusion Detection

Page 14 © 2016 ADFSL

We only extract signatures from content
and uricontent keywords as the pcre keyword
contains regular expressions and not an exact
match. If a rule contains more than one
content keyword, the script merges those
patterns with space character as a delimiter.
All signatures are subsequently converted into
hexadecimal equivalent to the ASCII codes.
This way Exhaust is able to handle all 256
possibilities including nonprintable characters.

4.4. Traffic analysis

We use DEFCON17 Capture the Flag (CTF)
game packet traces from 2009 (DEFCON
Organization, n.d.). Capture the Flag is a
hacker game where teams compete to capture
computers of other teams while defending their
own computers. The traces from the game are
collected and made available to the public. We
use those traces to gauge the worst-case
performance of the new algorithm.

Our analysis shows that 51.62% of all
packets in the 78 CTF traces have payload. Of
those traces, we pick the ten that contains the
highest percentage of packets with payload to
represent the worst case. Table 2 shows the
most malicious traces with total number of
packets, number of packets with payload, and
the percentage. The percentage of malicious
content for the picked traces averages 57%
which will result in a lot of signature matches.
The numbers in Table 2 exclude fragmented
packets.

Table 2. Most Malicious Traffic

4.5. Speedup

First, we measure the HAC and HSC. That is
the number of times the hash table is accessed
and skipped. Figure 3 (a) shows the hash table
access and skip counts for increasing number of
signatures for trace number 8. Obviously, as
the as the number of attack signatures
increases, there will be more matches within
the trace. Therefore, the number of hash tables
accesses and skips increases. There is
noticeable increase in savings as the number of
number of signatures increases.

A more accurate picture is provided by
Figure 3 (b), which presents the HAR and
HSR for the same traffic trace. That is, the
normalized hash table access and skip ratios.
On average the hash table is skipped between
2.6% and 13.7% of the time with an average
savings of 10.6%. The most important
conclusion to draw from the figure is that the
skip percentage is not correlated to the number
of signatures. In other words, Exhaust
performance remains fixed regardless of the
number of attacks it searches for.

Next, we fix the number of signatures at
3500 and plot the HAR and HSR in Figure 4

Trace
No

Number of
Packets

Packets with
Payload Percentage

8 671143 383233 57%
13 683770 398615 58%
14 676657 389705 58%
46 494466 280123 57%
49 331508 188722 57%
50 326101 190173 58%
51 299746 168660 56%
52 277840 159299 57%
53 275483 155846 57%
54 311546 178480 57%

Average 57%

Bloom Fi

© 2016 A

(a). It is
dependen
significan
for trace
the natu
trace. To
traces 46
savings,
access an
number
that the
number o
the earli
Furtherm
plot the
of charac
increases
character

Befor
runtime
readers t
that th

Figure 3
signature

0

500

1000

1500

2000

2500

3000

H
A

C
 a

nd
 H

SC

ilters Optim

ADFSL

s evident th
nt on the tra
ntly from 0.

52. This is
re of packet
o better und
6 and 52, wi
respectively

nd skip coun
of character
HAC and H
of characters
er finding r

more, we zo
HAC and H
cters in Figu

exponenti
rs in the pac

re shifting o
and speedu

to comprehen
e preproce

(a). HAC and
es for trace 08

500 1000 1

N

mized Wu-Ma

at the skip
aces’ conten
6% for trac
s completely
ts and attac
derstand thi
ith the lowe

y. Figure 4
nts for trace
rs. It can b
HSC counts
s increases, w
reported by
om in to o

HSC versus v
ure 5 (a). T
ally as th
cket payload

our attention
up, which
nd, it is wor
ssing overh

HSC for varyi

1500 2000 2500

Number of Signat

HAC HSC

anber for Int

ratio is hig
nts. HSR var
ce 46 to 39.
y dependent
cks within ea
is, we focus
est and high
(b) shows
52 for vary

be clearly se
increase as
which confir
Figure 3 (

ne packet a
varying num
The skip cou
he number
 increases.

n to measur
are easier
rth mention
head time

ing number of s

0 3000 3500 40

tures

trusion Dete

ghly
ries
1%
on

ach
on

hest
the

ying
een
the
rms
(a).
and
ber
unt

of

ring
for

ning
is

incur
progr
query
to m
overh
time
memo
numb
worst
comp
all S
each
avera
than
comp

F
findin
varyi
AC
figure
differ
consi

signatures for t

000

H
A

R
 a

nd
 H

SR

ection

rred only
ramming. Th
y of Bloom f

measure. We
head in the
might be af
ory size and
ber of sign
t-case imp
pares Exhaus
nort signatu
of the ten

age for all t
WM, wit

pared to 8.91

Finally, Fig
ngs that E
ing number
where runt
e plots runt
rent number
stent with e

trace 08; (b) HA

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

500 1000

once durin
he overhead
filter search
will discuss
next subse

ffected by: th
d cache hier
natures used
provements,
st search tim
ures and pr
n most ma
traces, Exha
th reported
12s for WM.

gure 6 con
Exhaust is

of signatur
time increa
time for tra
 of signature

earlier findin

AR and HSR f

0 1500 2000 25
Number of Sign

HAR

JDFSL

 P

ng Bloom
resulting fr
is too insign

s the prepro
ection. The
he processor
rarchy as w
d. To asse

Figure
me to WM. W
resent colum
licious trac
aust is 33%
d 5.972s r

nfirms the
not affect

res as oppo
ases linearly
aces 14 and
es. The savi
gs.

for varying num

500 3000 3500
natures

HSR

V11N4

Page 15

vector
rom the
nificant
ocessing

search
r speed,
well the
ess the
5 (b)
We use

mns for
es. On

% faster
runtime

earlier
ted by
osed to
y. The
52 for

ngs are

mber of

4000

JDFSL V1

Page 16

Figure 4 (a
for trace 52

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

8

H
A

R
 a

nd
 H

SR
 R

at
io

s

Figure 5 (a
traces

0
5

10
15
20
25
30
35
40
45
50

250

1N4

a). HAR and H
2

8 13 14 46

a). HAC and H

500 750

Numb

HAC

HSR for differen

49 50 51

Traces

HAR HS

HSC vs. number

0 1000 12

ber of Character

C HSC

Bloom F

nt traces using

52 53 54

SR

r of characters

250 1448

s

Filters Optim

3500 signature

0
500

1000
1500
2000
2500
3000
3500

25

H
A

C
 a

nd
 H

SC

for a single pac

0

2

4

6

8

10

8

R
un

Ti
m

e
(s

)

mized Wu-Ma

es; (b) HAC and

500 5000 7500

Nu

H

cket; (b) Exhau

13 14 46

Tr

WM

anber for Int

d HSC vs. num

10000 12500 150

umber of Charac

HAC HSC

ust runtime an

49 50 51

races

M Exhaust

trusion Dete

 © 2016 AD

mber of charact

000 17500 20000

cters

nd WM for diffe

52 53 54

ection

DFSL

ters

erent

Bloom Fi

© 2016 A

4.6.

The Bloo
in both
During p
the afore
the bits
compares
and WM
The large
is equiv
average
equivalen
the two c
of signat
that Ex
affected b

 To m
introduce
Windows
memory
numbers
Manager
clear idea
(b) comp
in MB f
The mem
and WM

ilters Optim

ADFSL

Preproce

om filter int
the preproc

preprocessing
ementioned h

in the Blo
s the prepr

M for increas
est measured

valent to o
the overh

nt to 0.8% i
curves slight
ures increase

xhaust over
by increasing

measure the
ed by the
s Task M
consumed b
are bloate

’s own over
a about the
pares Exhaus
for increasin
mory scaling
M with lin

mized Wu-Ma

Figure 6. Run

essing ove

troduces min
cessing and
g, there is th
hash functio
oom vector.
ocessing tim
sing number
d overhead
only 1.08%
ead is 50m
increase. Th
tly increases
es. We can
rhead time
g number of

e memory u
Bloom filte
anager to
by Exhaust.
d due to W
head but th
memory inc
st and WM
ng number
g is the sam
near increas

0

2

4

6

8

10

14

R
un

 T
im

e
(s

)

anber for Int

ntime of Exhau

erhead

nimal overhe
search stag

he time to r
ons and sett
 Figure 7

me of Exha
r of signatur
is 62ms, wh
increase.

ms, which
he gap betwe

as the num
safely conclu

is minima
f signatures.

usage overhe
er we use M

estimate
 Although
Windows T
hey still give
crease. Figur
memory usa
of signatur

me for Exha
se with m

(Exhaust) 14

trusion Dete

ust and WM for

ead
ges.
run
ing
(a)

aust
res.

hich
On
is

een
ber
ude
ally

ead
MS
the
the
ask
e a
re 7
age
res.

aust
more

signa
1,308
overh

T
memo
good
usage
Coras
signa
Coras
result
increa
super
scalin

4

The
negat
positi
simpl
It is
Bloom
WM.
save
FPs p
numb
the F
maxim

4 (WM) 52 (Ex

Traces

ection

r traces 14 and

atures. The w
8KB equiva
head is 1,285

To further p
ory usage w
trend, Fig

e in MB f
sick again

atures. The
sick as the n
ts in a s
ase as can
rior to AC
ng.

4.7. Reduc

filter provid
tives), which
ives (TP) ar
ly means we
important t

m filter doe
 False posit
on execution
probability g
ber of signat
FPs probab
mum of 1-5.

Exhaust) 52 (W

d 52

worst-case m
alent to 0.3
5KB equivale

prove that
with increasi
gure 8 (a)
for both E
nst increas
e state ex
number of s
sharper exp

be clearly
when it c

cing false

des 100% c
h saves exe
re not impo
e had to sear
to stress th
es not affec
tives simply
n time. Figu
given by Eq
tures. For s
bility is ins

WM)

500
1000
1500
2000
2500
3000
3500
4000

JDFSL

 P

memory over
33%. The a
ent to 0.32%

linear incre
ing signatur
plots the m

Exhaust and
sing numb
xplosion in
signatures in
ponential m

seen. Exha
comes to m

positives

certainty (i.
ecution time
ortant becau
rch the hash

hat introduci
ct the accur
y mean we
ure 8 (b) sho
q. (1) for inc
such a large
significant w

V11N4

Page 17

rhead is
average

%.

ease in
res is a
memory
d Aho-
ber of

Aho-
ncrease,
memory
aust is

memory

e. true
e. True
use that
h table.
ing the
racy of
do not

ows the
creasing

vector
with a

JDFSL V11N4 Bloom Filters Optimized Wu-Manber for Intrusion Detection

Page 18 © 2016 ADFSL

4.8. Complexity Analysis

To illustrate the added complexity of Exhaust
algorithm, we must consider both the original
WM algorithm and the extra cost for adding
the Bloom filter. Let N be the size of the text,
P the number of patterns, m the size of one
pattern, k the number of hash functions used
in the Bloom filter, and assume that M=mP is
the total size of all patterns.

The size of a substring block B that is used
to address the shift table is defined as
B=logc2M, where c is the size of the alphabet.
In the preprocessing phase the shift table
construction time is O(M), since that each B

block of any pattern is considered once and it
consumes constant time on average. On the
other hand, the Bloom filter programming time
is O(k) because each hash function is used to
address every programmed pattern. The search
phase time for WM in either the case of
nonzero shift value or the case of zero shift
value is O(BN/m), due to the suggested lemma
proofed by Wu and Manber which says, “The
probability that a random string of size B
leads to a shift value of i, 0≤ i ≤ m-B+1, is ≤ ½
m”, and the benefit from prefix table extra
filtering that makes the probability of false
positives extremely small. The complexity

Figure 7 (a). Preprocessing time of Exhaust and WM for varying number of signatures; (b) Memory usage for
Exhaust and WM for varying number of signatures

5.70
5.72
5.74
5.76
5.78
5.80
5.82
5.84
5.86
5.88

500 1000 1500 2000 2500 3000 3500 4000

Pr
ep

ro
ce

ss
in

g
Ti

m
e

(s
)

Number of Signatures

WM Exhaust

39.5

39.6

39.7

39.8

39.9

40.0

40.1

500 1000 1500 2000 2500 3000 3500 4000

M
em

or
y

C
on

su
m

pt
io

n
(M

B)

Number of Signatures

WM Exhaust

Figure 8 (a). Memory usage for Exhaust compared to AC for varying number of signatures; (b) False positives
probability versus the number of signatures

30

40

50

60

70

80

90

100

500 1000 1500 2000 2500 3000 3500 4000

M
em

or
y

C
on

su
m

pt
io

n
(M

B)

Number of Signatures

AC Exhaust

0.0E+00

2.0E-06

4.0E-06

6.0E-06

8.0E-06

1.0E-05

1.2E-05

500 1000 1500 2000 2500 3000 3500 4000

Fa
lse

 P
os

iti
ve

 P
ro

ba
bi

lit
y

Number of Signatures

Bloom Filters Optimized Wu-Manber for Intrusion Detection JDFSL V11N4

© 2016 ADFSL Page 19

incurred from the Bloom filter querying is O(k)
(Wu, & Manber, 1994).

5. CONCLUSIONS
There exists a need to speed up intrusion
detection systems. The main bottleneck is the
pattern matching part of the problem. There
has been a lot of research into new pattern
matching algorithms and architectures for
speeding up intrusion detection. Hardware
architectures are fast, but they suffer from
high cost and power requirements as well as
configurability issues. Software based IDSs
remain more popular and dominate the IDSs
market, but increasing signatures requires
faster pattern matching. Wu-Manber is one of
the fastest multiple pattern matching
algorithms used for intrusion detection but
falls short of achieving the required speed.

We proposed Exhaust, a new modified Wu-
Manber based pattern matching algorithm for
intrusion detection systems. The new
algorithm benefits from Bloom filters exclusion
property to reduce the number of expensive
hash table searches. The hash table can grow
extremely large as the number of patterns
grows.

The metrics we use to evaluate the speedup
are the hash table skips ratio and execution
time. We evaluate the algorithm with worst
case traffic and find that Exhaust greatly
improves the speed of WM at minimal cost. At
best the hash table is skipped 39.1% of the
time and 10.6 % on average. Exhaust reduces
the running time by 33% on average for worst
case traffic. The worst-case preprocessing time
overhead is 1.1% and the memory overhead is
0.33%. We also show that the new algorithm
has insignificant false positives probability and
minor added complexity.

ACKNOWLEDGMENTS
This work was supported in part by a grant
from Jordan University of Science and

Technology School of Graduate Studies and in
part by Zayed University Research Office,
Research Incentive Fund grant # R17060.

JDFSL V11N4 Bloom Filters Optimized Wu-Manber for Intrusion Detection

Page 20 © 2016 ADFSL

REFERENCES
Roberts, L. (2000). Internet growth trends.

IEEE Computer Magazine Internet watch
column 2000.

Zheng, K., Cai, Z., Zhang, X., Wang, Z., Yang,
B. (2015). Algorithms to speedup pattern
matching for network intrusion detection
systems, Computer Communications, 62,
47-58.

Aldwairi, M. (2006). Hardware-efficient
pattern matching algorithm and
architectures for fast intrusion detection.
Available from NCSU Theses and
Dissertations Institutional Repository (id
1840.16/3558).

Jirachan, T., & Piromsopa, K. (2015).
Applying KSE-test and K-means clustering
towards scalable unsupervised intrusion
detection. Proceedings of the 12th
International Joint Conference on
Computer Science and Software
Engineering (JCSSE), (82–87). IEEE.

Aldwairi, M., Khamayseh, Y., & Al-Masri, M.
(2015). Application of artificial bee colony
for intrusion detection systems. Security
and Communication Networks, 8(16), 2730-
2740. doi:10.1002/sec.588.

Roesch, M. (1999). Snort – lightweight
intrusion detection for networks.
Proceedings of the 13th USENIX Systems
Administration Conference (LISA ’99).
Seattle, WA.

Snort. (2016). Network Intrusion Detection &
Prevention System. Retrieved from
https://www.snort.org/.

Lam, V.T., Mitzenmacher, M., & Varghese, G.
(2010). Carousel: scalable logging for
intrusion prevention systems. Proceedings
of the 7th USENIX conference on

Networked systems design and
implementation (NSDI'10) (pp. 24–39).
Berkeley, CA, USA: USENIX Association.

Antonatos, S., Anagnostakis, K. & Markatos,
E. (2004). Generating realistic workloads
for network intrusion detection systems.
SIGSOFT Software Engineering Notes.
29(1), 207–215.

Aldwairi, M., & Alansari, D. (2011). Exscind:
fast pattern matching for intrusion
detection using exclusion and inclusion
filters. Proceedings of the Next Generation
Web Services Practices (NWeSP) (24-30).
Salamnca, Spain: IEEE.
doi:10.1109/NWeSP.2011.6088148

Aldwairi, M., Conte, T., & Franzon P. (2004).
Configurable String Matching Hardware for
Speeding up Intrusion Detection.
Proceedings of the Workshop on
architectural support for security and anti-
virus (WASSA), in conjunction with
ASPLOS XI. Boston, MA.

Gharaee, H., Seifi, S. & Monsefan, N. (2014).
A survey of pattern matching algorithm in
intrusion detection system. Proceedings of
the 7th International Symposium on
Telecommunications (IST) (946-953), Iran.

Dharmaprikar, S., Krishnamurthy, P., Sproull,
T. S., & Lockwood, J. W. (2004). Deep
packet inspection using parallel bloom
filters. IEEE Micro, 24(1), 52–61.

Yang, D., Xu, K. & Cui, Y. (2006). An
improved Wu-Manber multiple patterns
matching algorithm. Proceedings of the
25th IEEE International Performance,
Computing, and Communications
Conference (IPCCC), (680–686).

Bloom Filters Optimized Wu-Manber for Intrusion Detection JDFSL V11N4

© 2016 ADFSL Page 21

Sunday, D. (1990). A very fast substring
search algorithm. Communications of the
ACM, 33(8), 132–142.

Xunxun, C., Binxing, F., Lei, L., & Yu, J.
(2005). WM+: An optimal multi-pattern
string matching algorithm based on the
WM algorithm. Proceedings of the 6th
International Workshop on Advanced
Parallel Processing Technologies (APPT)
(515–523). Hong Kong, China.

Liu, C., Chen, A., Wu, D., & Wu, J. (2011). A
DFA with extended character-set for fast
deep packet inspection. Proceedings of the
2011 International Conference on Parallel
Processing (ICPP)(1-10).

Beale, J., Baker, A., Esler, J. & Northcutt, S.
(2007). Snort: IDS and IPS toolkit.
Burlington, MA: Syngress Publishing,
Elsevier.

Peng, Z., Wang, Y. & Xue, J. (2014). An
Improved Multi-pattern Matching
Algorithm for Large-Scale Pattern Sets.
Proceedings of the Tenth International
Conference on Computational Intelligence
and Security (CIS) (197–200).

Zhang, W. (2016). An Improved Wu-Manber
Multiple Patterns Matching Algorithm.
Proceedings of the 2016 IEEE International
Conference on Electronic Information and
Communication Technology (ICEICT
2016)(286-289).

Lee, J. K. Woo, J., & An, J. H. (2016).
Improved Pattern Matching Method for
Intrusion Detection Systems under DDoS
Attack. Indian Journal of Science and
Technology, 8(25), 1-4.

Aldwairi, M., & Al-Khamaiseh, K. (2015).
Exhaust: Optimizing Wu-Manber Pattern
Matching for Intrusion Detection using
Bloom Filters. Proceedings of the 2nd
World Symposium on Web Applications
and Networking (WSWAN’2015)(1-6).

Sousse, Tunisia: IEEE.
doi:10.1109/WSWAN.2015.7209081

Dittrich, D. (2015, May 15). The DoS Project's
trinoo distributed denial of service attack
tool analysis. University of Washington.
Retrieved from
http://staff.washington.edu/dittrich/misc/
trinoo.analysis.

Kharbutli, M., Aldwairi, M., & Mughrabi, A.
(2012). Function and Data Parallelization
of Wu-Manber Pattern Matching for
Intrusion Detection Systems. Network
Protocols and Algorithms, 4(3), 46–61.

Boyer, R. S. & Moore, J. S. (1977). A fast
string searching algorithm.
Communications of the ACM, 20(10), 762–
772.

Aho, A. & Corasick, M. (1975). Efficient string
matching: an aid to bibliographic search.
Communications of the ACM, 18, 333–340.

Wu, S., & Manber, U. (1994). Fast algorithm
for multi-pattern searching. Technical
Report TR94-17. University of Arizona at
Tuscon. Retrieved from
http://webglimpse.net/pubs/TR94-17.pdf.

Bloom, B. H. (1970). Space/time trade-offs in
hash coding with allowable errors.
Communications of the ACM, 13(7), 422–
426.

Fan, L., Cao, P., Almeida, J. & Broder, A.
(2000). Summary cache: a scalable wide-
area web cache sharing protocol.
IEEE/ACM Transactions on Networking,
8(3), 281–293.

Partow, A. (2015, May 15). General purpose
hash function algorithms. Retrieved from
http://www.partow.net/programming/hash
functions/.

Ramakrishna, M., & Zobel, J. (1997).
Performance in practice of string hashing
functions. Proceedings of the 5th

JDFSL V11N4 Bloom Filters Optimized Wu-Manber for Intrusion Detection

Page 22 © 2016 ADFSL

International Conference on Database
Systems for Advanced Applications
(215−223).

Snort rules. (n.d.). Retrieved, May 15, 2015,
from Snort website, http://www.snort.org/.

DEFCON Organization. (n.d.). Retrieved, May
15, 2015, from DEFCON website,
http://www.defcon.org.

	Bloom Filters Optimized Wu-Manber for Intrusion Detection
	Recommended Citation

	Bloom Filters Optimized Wu-Manber for Intrusion Detection

