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a b s t r a c t

The way in which service firms transform inputs into outputs is typically uncertain or unknown.

Consequently decision makers, at best, can only make estimates of the underlying production function.

The purpose of this study is to offer policy recommendations to service providers and to examine

experimentally the sensitivity of estimates of production functions. The primary result of this study is a

foundation for modeling manpower planning decisions for co-produced services when production

functions are mis-estimated and/or mis-specified.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Managing resources is a challenge in service operations plan-
ning for two reasons. First, having the client as a resource
introduces additional variation into the service process. Client
variability is in the forms of knowledge, abilities, and motivation
(Frei, 2006). Second, complex services must be flexible enough to
deal with resource requirement changes. In complex services,
there is a high-degree of customer contact and therefore require-
ment changes are common. These changes can range from the
number of resources required, to the desired capability of each
resource (Dietrich, 2006). Therefore, practical resource planning
models must account for client variability and must be capable of
handling resource requirement changes.

A production function is the mathematical function that finds
the maximum output possible from a given level of input. In
service organizations, production functions are difficult to esti-
mate because the conversion process is unclear. Lack of clarity
results in inaccurate production function estimates that can
greatly affect resource planning decisions. In manufacturing, the
model of the conversion of inputs to outputs is typically known.
The production function must be well defined in manufacturing
capacity planning decisions. In contrast, there exist many sources
of uncertainty in the transformation process for services, see
Dietrich (2006). Inherit variability in the transformation process is
a source of uncertainty.

The goal of this study is to offer policy recommendations to
service providers regarding how to best allocate resources when the

mathematical function that maps inputs to outputs is unclear. We
measure sensitivity of a resource planning model to uncontrollable
inputs, mis-estimation of function parameters, and mis-specification
of the function form that defines the transformation process. When
a service provider is unsure of the structure of the function (mis-
specification) or unsure of the parameter values of the function
(mis-estimation) or the uncontrollable inputs the resource plan may
be inefficient.

The author develops a deterministic linear model for the pur-
poses of determining benchmark service inputs levels for given
target output quantities and a stochastic model for resource plan-
ning. This paper provides experimental results based trade-offs
between inefficiencies, risk, and costs versus resource allocations.
Badinelli (2010) provides a theoretical base for a similar model.
Using a theoretical-based approach to service resource planning is
limited because it does not thoroughly account for the dynamic
nature of services. Service system modeling should investigate the
decision problem through what-if scenarios. The model presented in
this paper builds upon Badinelli (2010) using experimental analysis
to illuminate model performance under varying conditions.

The contributions of this study are as follows:

� This research uses a stochastic production function for resource
planning. Some service-based models use Chance-Constrained
DEA, see Land et al. (1993), to incorporate stochastic considera-
tions in inputs and output measures, but these models are not
used for resource allocation. Mula et al. (2006) give a review of
stochastic production planning models, but not all of them are
specific to service systems.
� We have a foundation for modeling resource allocation deci-

sions for high-value adding service systems when production
functions are mis-estimated and/or mis-specified. The field of
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service science is still in its infancy, therefore any policy
recommendations that can be generated regarding resource-
planning for service systems is greatly needed.
� This model that behaves intuitively. This is a well-constructed

model that accurately captures the effect of resource alloca-
tions on service output levels.

In the next section, we discuss a few pieces of work relevant to
the study at hand, followed by a discussion of the motivating
decision problem. Then we present our model for resource
allocation followed by the results of the experimental analysis.
The final section discusses the contribution of the research and
future research directions.

2. Discussion of related work

There are many service-based planning models in the literature.
In this section, we will only discuss those resource-planning models
that define explicit production functions. Many of these models use
a Data Envelopment Analysis (DEA)-based approach. DEA, by its
design, was not intended for resource allocation but for measuring
relative efficiency of service units. In DEA no assumptions are made
about the underlying transformation process. However, there are a
few papers that define an explicit production function. Golany
and Tamir (1995) use DEA to build a resource allocation model.
The authors use an empirical, multiplicative production function.
Athanassopoulos (1998) develops a model for resource allocation
and target setting using DEA and goal programming. The author
uses the principal-agent paradigm and a nonlinear production
function to achieve resource allocation. Lastly, Golany et al. (2006)
develop a DEA based model where the efficiency of the subsystems
and the aggregate system is determined. The authors develop a
deterministic linear acquisition model for the purposes of resource
allocation among subsystems and a deterministic linear model for
measuring efficiency of an aggregate system. This paper used a
Cobb–Douglas production function.

The models presented in this study differ from the aforemen-
tioned models using stochastic production functions for resource
planning and by the usage of controllable and uncontrollable inputs
in the models.

3. Motivating resource planning decision

The service process has inputs from both the service provider
and the client. The service provider and the client must determine
the values of the decision variables of this resource-planning
problem, which are the quantities of inputs to allocate to each
service process. Managers want to allocate resources in order to
improve their day-to-day operations and ultimately to better
position themselves in the market place.

This study focuses on resource planning for a particular service
type within a particular service firm. A service type is a well-
defined, value-adding experience that is offered by the provider
to the client, such as processing a mortgage loan application,
admitting a patient to a hospital, or teaching a class.

A set of different process types is needed to deliver a service
type. For example, the service type of processing a mortgage loan
application includes the process types of interviewing the appli-
cant, gathering required documents, and submitting the applica-
tion for underwriting. Each process type uses multiple inputs to
generate multiple outputs. A service engagement represents an
instance of a service type. An example of the service system is
depicted in Fig. 1. The outputs should reflect all useful outcomes
on which we wish to assess the service engagement.

In this model, the degree of client involvement is discretionary.
Client involvement becomes discretionary when the service provi-
der has the ability to limit or increase the amount of client contact in
some way. For example, consultants can decide how many times of
day they want to meet with a particular client. In mathematical
modeling, when the degree of client involvement is discretionary its
identifier changes from a parameter to a decision variable.

Utility theory assumes that every decision maker has preferences
towards risks and return and that the decision maker will choose
the alternative that maximizes his/her utility. Based on the decision
makers’ preferences, there are different weights placed on the loss
functions and the weights reflect the relative value of each loss
function. Service providers and clients want to ensure that they are
allocating resources in the most efficient manner based on what
they do know about the production function in an effort to minimize
the costs of underproduction and over allocation.

4. The model

Two optimization models are developed in order to determine
the optimal resource allocation plan. We take a two-tiered approach
in order to avoid arbitrarily setting benchmark levels of resources
needed to maximize output. Our goal is to find the most efficient
production function mapping of inputs to outputs. Therefore, results
from the first model are passed to the second model.

The first optimization model is a deterministic optimization
model. The results from the first model are benchmark levels of
input resources from the service provider and client. The bench-
mark production function, which is comprised of given usage and
yield rates, is what the service provider believes to be the most
efficient function mapping inputs to outputs.

The second optimization model is a stochastic, resource-
planning model. This model takes the benchmark input levels
from the first model and develops the resource allocation plan for
the service engagement. The stochastic element of this model is
represented by a probability density function that captures
the deviation from the benchmark output levels reflecting both
inefficiencies and uncertainties.

4.1. Model assumptions

We measure the output level of each process independently.
We assume each process has its own production function. There
are no setup costs associated with re-allocating resources to a
service engagement. It is assumed that the provider and the client
each have fixed capacities per input to be allocated to all service
processes. There is a linear cost for each input.

Fig. 1. Service system.
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The benchmark usage and yield rates are estimated using
historical data. Target output levels for each process are provided
by the client to each optimization model.

We assume there is a density function of each output level. The
input levels are parameters of this density function. As resource
allocations change the shape of this density function will change.
We assume that the density function represents a service engage-
ment’s deviation from the benchmark output level. This deviation
reflects both inefficiency and uncertainty in the production
function form and parameters.

We assume that the service provider delivers a service through
a service system consisting of linked processes—each process
delivering one type of service component. We also assume that
the precedence constraints among the processes that are required
for a particular service define a network of these processes—a
service supply chain. Hence, for each service, there is a known
network of processes. Each process of the network requires a
certain number of ‘‘cycles’’ per unit of the service component that
is delivered to the client.

4.2. Descriptive models

Indices (general to both models)

p process type index
i input index
j output index
r number of process types; p¼1,y,r
mw number of inputs from the service provider; i¼1,y,mw

mc number of inputs from the client; i¼1,y,mc

n number of outputs; j¼1,y,n

Optimization Model #1

The first optimization model applies a benchmark production
function to obtain benchmark input levels for given target output
quantities. The model minimizes the input levels from the service
provider and the client across all processes. Constraints (M1.1)
ensure that the number of process cycles that can be generated by
each service provider resource is greater than or equal to the
number of completed process cycles. Constraints (M1.2) ensure that
the number process cycles that can be generated by each client
resource is greater than or equal to the number of completed
process cycles. Constraints (M1.3) ensure that the number process
cycles needed to generate a particular given output target is less
than or equal to the number of completed process cycles. Con-
straints ((M1.1)–(M1.3)) balance the resources received by each
service process with that process’ number of generated cycles, (i.e.,
inflow¼outflow). Constraint (M1.4) and (M1.5) are the service
provider and client capacity constraints, respectively.

Decision variables

x̂
w
ip benchmark quantity of resource i allocated to process p

by the service provider
x̂

c
ip benchmark quantity of resource i allocated to process p

by the client
vp the number of benchmark process cycles of process p,

which are completed

Parameters

ŷjp target quantity of output j by process p

aw
i available service provider capacity of resource i

ac
i available client capacity of resource i

bpi benchmark generation rate of process p that is sup-
ported by resource i (cycles/unit of resource)

apj benchmark generation rate of process p that is required
by output j (cycles/unit of resource)

mpi ¼ 1=bpi benchmark usage rate of resource i per cycle of
process p (units of resource/cycle)

gpj ¼ 1=apj benchmark generation rate of output j per cycle of
process p (units of resource/cycle)

Minimize
X
i,p

x̂
w
ipþ

X
i,p

x̂
c
ip

Subjected to

x̂
w
ip

mpi

Znp for all i¼ 1,. . .,mw, p¼ 1,. . .,r ðM1:1Þ

x̂
c
ip

mpi

Znp for all i¼ 1,. . .,mc , p¼ 1,. . .,r ðM1:2Þ

ŷjp

gpj

rnp for all j¼ 1,:::,n, p¼ 1,:::,r ðM1:3Þ

aw
i �
X

p

x̂
w
ipZ0 for all i¼ 1,:::,mw,p¼ 1,:::,r ðM1:4Þ

ac
i�
X

p

x̂
c
ipZ0 for all i¼ 1,. . .,mc , p¼ 1,. . .,r ðM1:5Þ

all variables are nonnegative.
Production Function

For the production functions applied in the model, the resources
must be procured according to usage rates of a process cycle and
outputs are generated according to yield rates of a process cycle. The
way in which we represent a production function is a special case of
the linear constant returns-to-scale (CRS) production function used
by Athanassopoulos (1998). Therefore, the input–output correspon-
dence per process cycle forces all outputs and inputs to be in fixed
proportions with respect to one another.

The linear CRS production function can be written as

T x
,

p ¼ y
,

p ð1Þ

where, T¼btjipcnxm. We define the component of the production
matrix for row j and column i as, tjip¼yjp/xip.

tjip ¼

yjp

xip
¼

bpi

apj
¼

gpj

mpi

¼ gpjbpi ð2Þ

Optimization Model #2

Optimization Model #2 is a stochastic, resource-planning model.
The first part of the objective function, the integral, is similar to the
stock-out loss function in a newsboy model. This integral captures
the effect of a service engagement not generating output at the
target output levels. There are penalties/weights placed on under-
production. The weights on underproduction and the target output
levels are determined by the service provider and the client. The
second part of the objective function captures the costs of allocating
more than the benchmark input quantities of service provider and
client resources to a service engagement. The constraints (M2.1) and
(M2.2) are service provider and client capacity constraints, respec-
tively. Optimization can be done via standard search routines.

T density function of actual output is a function of inputs. As
resource allocations change, the shape of the density function of yjp

will change. This is because the resource levels are incorporated into
the parameters of the distribution; see Eqs. (10) and (11) below.

Decision Variables

xw
ip quantity of input i allocated to process p provided by the

service provider

S.W. White / Int. J. Production Economics 141 (2013) 478–484480



xc
ip quantity of input i allocated to process p provided by

the client

Performance Measures

yjp actual quantity of output j achieved by process p

Parameters

ŷjp target quantity of output j by process p

f yjp
ðyjp; xipÞ the probability density function of output j for process p

x̂
w
ip benchmark quantity of input i allocated to process p

provided by the service provider; this quantity is
obtained from the solution of Optimization Model #1

x̂
c
ip quantity of input i allocated to process p provided by the

client; this quantity is obtained from the solution of
Optimization Model #1

cu
jp weight applied to under-production of output j from

process p

co
ip cost of over allocation of service provider input i for

process p

co
ip cost of over allocation of client input i for process p

aw
i available service provider capacity of input i

ac
i available client capacity of input i

Minimize
fxw

ip
g,fxc

ip
g

Xr

p ¼ 1

Xn

j ¼ 1

cu
jp

Zŷjp

0

ðŷjp�yjpÞ f yjp
ðyjp; xipÞdyjp

þ
X
iA Sw

co
ipðx

w
ip�x̂

w
ipÞþ

X
iASc

co
ipðx

c
ip�x̂

c
ipÞ

subjected to

aw
i �
X

p

xw
ipZ0 for all i,p ðM2:1Þ

ac
i�
X

p

xc
ipZ0 for all i,p ðM2:2Þ

all variables are nonnegative. There exists a unique solution
to Optimization Model #2; see Badinelli (2010). Consider

random variation in the elements of the matrix g,pb
T
p

,

. Define

g
,

p ¼ g
,

p�z
,

gp ð5Þ

b
,

p ¼ b
,

p�z
,

bp ð6Þ

where z
,

gp, z
,

bp are non-negative random variables. Approximation:

ðz
,

gpb
T
p

,

þg,pzT
bp

,

þz
,

gpzT
bp

,

Þ � ½tjipþejip� ð7Þ

where tjip¼constant, ejip�N(0,sji) and (tjip/sjip)43. tjipþejip is an
nxm matrix of normal random variates with positive mean values and
negligible probabilities of negatives values. The constant tjip repre-
sents the overall level of inefficiency of the process type. We
considered deviations from the benchmark recipe as inefficiencies.
Therefore

y
,

p ¼
g
,

pb
,

T

p

m
x
,

p� tjipþEjip

� �
x
,

p ð8Þ

or

y
,

p ¼ T x
,

p�½tjipþEjip�x
,

p ð9Þ

which implies, yjp�N(myjp,syjp), where

myjp ¼
Xm
i ¼ 1

ðTjip�tjipÞxip ð10Þ

s2
yjp
¼
Xm
i ¼ 1

x2
ips

2
jip ð11Þ

5. Experimental results

A series of cases were run via Microsoft Excel Solvers. The
experiments show plots of optimal solutions for different parameter
settings, such as capacities, benchmark output levels, risk levels,
inefficiency levels, and penalty costs. For illustrative purposes we
chose eight input types (four from the service provider and four
from the client), two output types, and three process types. The base
case is specified in Table 1 and the benchmark provider and client
resource quantities are specified in Table 2. The output targets are
specified in Table 3. The parameter values for the base case were
chosen based on reasonable assumptions. We acknowledge that an
empirical study or case study needs to be performed in order to
have more accurate estimates of the parameter values.

Each case/experiment was designed to illuminate model beha-
vior under specific conditions. We want to highlight the elements of
the model that distinguish this study from others in literature and
gain managerial insights. For example, we designed cases to show
the behavior of the loss function under certain conditions. We also
designed cases highlighting production function uncertainties. Other
cases show the effects of the two-tiered modeling approach by
examining how parameters of the first optimization model effect
resource allocations in the second optimization (e.g., changes in
benchmark output rates). Note: we averaged the service provider
and client resource quantities when displaying the results.

Case 1. Resource Allocation vs. Output Target

In this experiment we varied the output target of Output 1,

while keeping fixed the output target of Output 2 at the base

case value.

Table 1
Base case parameters.

aw
i and ac

i co
ip cu

jp bpi apj gpj tjip sjip

150 20 50 10 1 1 3 1

Table 2
Benchmark resource quantities.

Process 1 Process 2 Process 3

x̂
w
ip

Resource 1 40 50 40

Resource 2 40 35 35

Resource 3 80 75 70

Resource 4 10 10 10

x̂
c
ip

Resource 1 40 40 30

Resource 2 10 20 12

Resource 3 30 30 20

Resource 4 50 25 53

Table 3
Benchmark output targets.

ŷjp Process 1 Process 2 Process 3

Output target 1 2000 2000 2000

Output target 2 2000 2000 2000
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The results of this experiment show as the output target

increased for Output 1, the average allocation of service provider

and client resources increased in order to meet the output target;

see Fig. 2. The resource quantities leveled off once all capacities

had been used. Since there is no hiring included in this model,

managers should understand that they will incur penalty costs if

the workforce level is not sufficient to meet changes to output

targets.

There are other interesting results of this experiment. If we

compare the two loss functions, we see that, as the output target

level increases, the penalty of the loss function for Output 1 also

increases; see Fig. 3. The loss function for Output 1 is increasing

despite the increase in resources. The loss function representing

Output 2 decreases because resource quantities are increasing

and it is easier to meet targets with more resources. We only

show output targets up to 2600 in Fig. 3, so that we can highlight

the difference between the two loss functions.

Case 2. Resource Allocation vs. Worker Capacities

In this experiment we varied the service provider capacities

across all inputs and held fixed the client capacities at the base-

case value.

The results of this experiment show that when service provider

capacities are low there is a need to use more client resources in

order to meet output target levels; see Fig. 4. As service provider

capacities are increased, fewer client resources were needed. This

behavior levels off after output target levels are achieved.

Service capacity constraints are not like those in manufacturing.

When service provider capacity constraints are binding, client

resources are allocated in order to keep the costs of missing the

output targets low. As service provider capacities are increased,

there is no longer a need to allocate more client resources because

the cost of adding more resources outweighs the costs of missing the

output targets. This is a behavior that is not typical in manufacturing.

There is more flexibility in services. The production function matrix

allows for the exchange between service provider and client

resources. There are variations in the ‘‘recipe’’—more than one way

to achieve the output.

In Fig. 5, the values of loss function for both output types are

equal. When the service provider’s capacity level increases from

110 to 120 there in an increase in provider resources and as a

result there is a decrease in both loss function penalties. It is

easier to meet output targets with more resources. The penalties

of missing output targets level off as provider and client resource

allocations level off.

Case 3. Resource Allocation vs. Underproduction Penalty

In this experiment we varied the weight on the loss function for

Output 1, while keeping fixed the weight on the loss function of

Output 2 fixed at the base case value.

The results of this experiment show that as the weight on the

first loss functions is increased, more service provider and client

resources are allocated in order to meet the target output levels

and keep costs low.

The concavity seen in Fig. 6 is due to the nonlinearity in the

objective function. When the plot of the average resource quan-

tities is concave, it exhibits diminishing marginal investment as

the loss function weights increase. The resource costs and the loss

make up the objective function. At optimality, there is a trade-off

between resource costs and loss. The decision model finds an
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optimal solution that is a compromise between the increasing

resource costs versus the increase in loss.

A plot of the two loss functions for this experiment is shown in

Fig. 7. As we increased the weights on Output 1 for missing

output targets, the costs for Output 1 of the missing output

targets also increased. Due to the increase in resource allocations

as seen in Fig. 6, output targets for Output 2 are easily met. Hence

the decrease in the costs of loss function 2.

Case 4. Resource Allocation vs. Benchmark Generation rate

In this experiment we varied the benchmark generation rate for

Process 1, while keeping fixed the benchmark generation rates of

Processes 2 and 3. By increasing the benchmark generation rate

for Process 1, we made the process more efficient. The process is

more efficient because the number of process cycles generated

per unit of service provider and client resource increased.

The results of this experiment show that as the number of

process cycles per unit input increases the service firm received

more ‘‘bang for the buck’’, because fewer resources are needed to

meet target output levels. Fig. 8 also shows when the benchmark

generation rate¼6, we are stealing from Processes 2 and 3

because we have hit our provider and client capacity constraints.

Case 5. Resource Allocation vs. Inefficiency Level

In this experiment we increased the inefficiency level, tjip, of

Process 2 while the inefficiency level of other processes was held

fixed at the base case value.

The results of this experiment show that as Process 2 becomes

more inefficient, more resources are allocated to that process; see

Fig. 9. When the inefficiency levelr3, Process 2 is more efficient

than Processes 1 and 3 and when the inefficiency level43 Process

2 is less efficient. As Process 2 becomes more inefficient, more

resources are allocated to that process in order to minimize

penalty costs.

In Fig. 10 we see that as Process 2 becomes more inefficient the

penalty cost of not meeting output targets increases because it is

harder for Process 2 to meet its target output level. Processes 1 and

3 penalty costs of not meeting output targets are equal and constant.

The convexity seen in Figs. 9 and 10 is due to the nonlinearity in

the objective function. There is an increasing marginal investment

in resource costs and loss as processes become more inefficient.

The significance of an increasing marginal investment of average

resource quantities and loss is that the service provider and the

client should ensure processes are as efficient as possible in order

to keep resource costs and loss low.

Case 6. Resource Allocation vs. Risk Level

In this experiment we increased the randomness (risk) of Process

1, while keeping fixed the randomness’s of Processes 2 and 3.

The results of this experiment show that as the risk level of

Process 1 is increased, more service provider and client resources

were allocated to that process in order to keep penalty costs low.

The resource allocations for Processes 2 and 3 were evenly allocated.

In Fig. 12 we see that as the risk (randomness) of Process 1 is

increased, the penalty cost of not meeting output targets increases

because it is harder for Process 1 to meet its target output level.
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Fig. 9. Resource allocation vs. inefficiency level.
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Fig. 10. Under generation penalty vs. inefficiency level.
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Processes 2 and 3 penalty costs of not meeting output targets are

equal and constant.

The convexity seen in Figs. 11 and 12 is due to the nonlinearity in

the objective function. There is an increasing marginal investment

in average resource quantities and loss as process risk increases.

The significance of this experiment is that the service provider and

the client now have more insights into the effects of increased

process risk on resource costs and loss.

6. Conclusion and directions for future research

This paper has examined the effects of uncertainties of the
structure of the production function (mis-specification), uncer-
tainties of the parameter values of the production function (mis-

estimation), and the uncontrollable inputs on resource plans for a
service engagement.

Two resource-planning models were developed. The first model
is a deterministic, resource-planning model that applies a bench-
mark production function to obtain benchmark input levels for
given target output quantities. We apply linear production functions
in which the inputs must be procured according to usage rates of a
process cycle and outputs are generated according to yield rates of a
process cycle.

The second model is a stochastic, resource-planning model.
This model receives benchmark input levels and target output
levels as parameters from the first model and allocates resources
at a minimal cost. In the objective function of this model, we
incorporate a probability density function that captures the devia-
tion from the benchmark output levels reflecting both inefficiencies
and uncertainties.

We prove that in the presence of production function uncer-
tainties, service firms will compensate by allocating resources so
that penalty costs are minimized. The service provider and the
client should put forth every effort to minimize uncertainties.
Although there are uncontrollable inputs, efforts should be made
to improve production function parameter inaccuracies and
production function form specification.

In the future, we will examine the effects of production
function uncertainties on a multi-period service supply chain.
We will also extend this research using various distributions for
representing inefficiency randomness. Additionally, it would be
beneficial to the field of service research to perform a case study
to add further validity to our model.
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