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The United States spends a significant portion of gross 
domestic product on health care (1). Occupying a large 
portion of this are ICU expenditures, which account 

for approximately 90 billion annually (2). This comes at a time 
when debt to gross domestic product ratio approaches unsus-
tainability and health care costs must be contained. Although 
our aging population increases the need for critical care re-
sources (3), the total number of ICU beds is decreasing (4) re-
sulting in overcrowding. The average occupancy in a hospital 
ICU now ranges 77% to 90% (2). As hospital margins decrease, 
there will be increased pressure to use ICUs efficiently.

These issues are particularly important for cardiothoracic 
surgical patients. The ICU is a bottleneck to the cardiac op-
erating room (OR), limiting the number of cases the system 
accommodates (3). When the ICU is poorly managed, there 
is high ICU occupancy, increased length of stay (LOS), and 
case cancellation, all of which harm cardiothoracic surgical 
programs (4–7).

Objective: To develop queuing and simulation-based models to 
understand the relationship between ICU bed availability and oper-
ating room schedule to maximize the use of critical care resources 
and minimize case cancellation while providing equity to patients 
and surgeons.
Design: Retrospective analysis of 6-month unit admission data from 
a cohort of cardiothoracic surgical patients, to create queuing and 
simulation-based models of ICU bed flow. Three different admis-
sion policies (current admission policy, shortest-processing-time 
policy, and a dynamic policy) were then analyzed using simulation 
models, representing 10 yr worth of potential admissions. Important 
output data consisted of the “average waiting time,” a proxy for unit 
efficiency, and the “maximum waiting time,” a surrogate for patient 
equity.
Setting:  A cardiothoracic surgical ICU in a tertiary center in New 
York, NY.
Patients: Six hundred thirty consecutive cardiothoracic surgical 
patients admitted to the cardiothoracic surgical ICU.
Interventions: None.

Measurements and Main Results: Although the shortest-processing-
time admission policy performs best in terms of unit efficiency (0.4612 
days), it did so at expense of patient equity prolonging surgical wait-
ing time by as much as 21 days. The current policy gives the great-
est equity but causes inefficiency in unit bed-flow (0.5033 days). The 
dynamic policy performs at a level (0.4997 days) 8.3% below that of 
the shortest-processing-time in average waiting time; however, it bal-
ances this with greater patient equity (maximum waiting time could be 
shortened by 4 days compared to the current policy).
Conclusions: Queuing theory and computer simulation can be 
used to model case flow through a cardiothoracic operating room 
and ICU. A dynamic admission policy that looks at current wait-
ing time and expected ICU length of stay allows for increased 
equity between patients with only minimum losses of efficiency. 
This dynamic admission policy would seem to be a superior in 
maximizing case-flow. These results may be generalized to other 
surgical ICUs. (Crit Care Med 2013; 41:414–422)
Key Words: bed flow; cardiothoracic surgery; critical care; health 
care reform; modeling; queuing theory
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Case cancellation has multiple negative downstream 
effects (8). Foremost, cancellation delays necessary treatment for 
patients (9–13). There are also direct and indirect costs to the 
hospital associated with cancellation (14). Direct costs are 
reimbursement losses from cancellation and costs of poor 
resource utilization (15, 16). Additionally, cancellation results 
in increased LOS, reducing margin (7, 17). Cancellation also 
results in frustration of staff and poor morale that result in 
absenteeism and turnover, combining to damage the fiscal 
health of the hospital (8, 18–21).

Because even the best-managed ICUs cannot always 
smoothly meet demands of the surgical schedules, alternative 
modalities should be explored (22, 23). Examples include bet-
ter management of OR scheduling or increasing ICU capacity 
(24, 25). Accurate modeling of perioperative systems is an at-
tractive option as it saves time and money over trial-and-error 
approaches (26, 27).

Queuing theory and computer simulation have been widely 
used during the past century to study complex systems (28, 
29). Queuing models are regularly used in manufacturing, 
the airline industry, traffic engineering, and telecommunica-
tions to provide insight into performance improvement and 
resource allocation (30, 31). Computer simulation models are 
often used to model complex systems. Computer simulations 
mimic real-world behaviors and include stochastic effects such 
as the uncertainty in patient arrivals, LOS, and other events 
common to queuing models (29). Computer simulation and 
queuing theory are often used in conjunction to model com-
plex operational problems (18).

There is a rich body of literature using operations research 
tools to study patient flow and capacity management in health 
care, including the ICU (19, 22, 32). Swenson (24) suggested 
the concept of “justice” to distribute ICU beds based on prog-
nostic data. Other authors have suggested reserving beds ex-
clusively for elective surgery patients under quota systems, al-
locating different numbers of beds to elective cases daily (8). 
De Bruin et al (25) used queuing theory to model flow of the 
emergency cardiac care chain (emergency room to coronary 
care unit to ward) and found the majority of rejections were 
from lack of beds downstream.

The methodology used in this study was queuing theory 
and computer simulation. The goal was to develop a queuing 
model to understand the relationship between ICU bed avail-
ability and OR schedule to maximize utilization of intensive 
care resources. Because the underlying queuing model is ex-
tremely complex, computer simulation was used to model the 
system.

For the purpose of this study, we sought to understand how 
intensivists, with no control over OR scheduling, could best 
use the ICU given a specified number of cases any given day. 
We created a model using queuing theory to create equitable 
and efficient uses of ICU resources for cardiothoracic surgeons 
performing varying procedures. We then tested three different 
admission policies in our model to find the best balance be-
tween equity and efficiency.

MATERIALS AND METHODS
We studied all admissions to the cardiothoracic surgi-
cal ICU (CTICU) of a large tertiary care center during 
a 6-month period. This is a 12-bed ICU that admits ap-
proximately 1,200–1,600 cardiothoracic surgical cases an-
nually. These cases are scheduled on weekdays, based on 
surgical block time designated by the cardiothoracic sur-
gical department. Only occasionally are emergency cases 
done on weekends. For this study, emergency cases and  
readmissions were not considered as they represent an insig-
nificant source of admissions and that data were not available. 
During this time period, there was no closure of ICU beds for 
any purpose (i.e., staffing, maintenance).

A typical day in this CTICU begins with the intensivist 
rounding on patients, determining which ones are discharge-
able from the CTICU. The intensivist is given a list of surgi-
cal cases for a particular weekday the night before to have a 
sense of case volume the next day. When daily surgical volume 
exceeds the number of available beds in the CTICU, case can-
cellation occurs. This decision as to which cases are cancelled 
is complex and remains the discretion of the cardiac surgical 
team with no specified criteria or protocols. For the purpose of 
this study, we describe this process as highly complex provider 
determined and beyond the scope of this study.

Data were collected retrospectively as part of the unit’s regular 
review of throughput. Percent occupancy was collected monthly 
as part of the hospitals monthly census data. The LOS was calcu-
lated as (discharge date) − (admission date). In addition, we col-
lected the number of each type of surgeries and grouped them 
into categories based on expert opinion of expected ICU LOS at 
this institution (Appendix 1). This research is exempted from 
Institutional Review Board approval because all data were col-
lected in a manner that subjects could not be identified.

Understanding Queuing Theory
Queuing models depend on precise measurements of three 
variables: arrival rate, service time, and number of servers in 
the system. For simple queuing systems, the arrival rate is mod-
eled through a probability distribution of time between arriv-
als of two separate jobs. However, in this setting, arrivals rep-
resent surgical requests that arrive to intensivists each weekday 
as batch assortments of cardiothoracic surgery requests. The 
number of requests and mix of requests among cardiothoracic 
surgery types are uncertain. Thus, we have a queuing system 
with stochastically sized batch arrivals where one batch arrives 
on each weekday.

In our model, we formulated the problem as a general deci-
sion process with the ICU beds as finite number of servers (12 
beds) fed by the OR. The processing time (LOS for each sur-
gery type) was allowed to follow different distributions based 
on our retrospectively collected data, and each distribution 
had a 1-day minimum. On days where too few beds were avail-
able to satisfy all requests, some requests were rejected from the 
system (i.e., case cancellation). The cancelled cases were then 
placed on the next day’s OR schedule, as is the typical process 
in our institution. In the real world, occasionally patients are 
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cancelled and go to another hospital, leaving the system. For 
the purpose of this model, we ignored that event as it is rare.

In queuing terminology, this model is denoted as a G/G/s-
queuing model with batch arrivals and multiple customer class-
es. This means that we allow a general arrival rate distribution, 
a general service time distribution (LOS), and multiple servers. 
We also assumed that any ICU bed could be allocated to any sur-
gery type. For the purpose of this study, we ignored emergency 
cases as they are rare and readmissions as they go to another 
ICU.

Such G/G/s-queuing models including batch arrivals and 
multiple customer classes are exceptionally difficult to solve 
in closed form (17). Therefore, to provide realistic represen-
tations of ICU workflow, a computer simulation model was 
constructed using Rockwell Arena 13.5 (Rockwell Automation, 
Wexford, PA). The decision of interest in our model is which 
cases should be approved for surgery and which should be can-
celed.

Performance Metrics Unique to the Model
Our model is unique in that it seeks to balance “equity” and “ef-
ficiency” in determining optimal ICU admission policy. For pa-
tients, equity means the system should not repeatedly reject the 
same type of patient (i.e., same type of surgery). For surgeons, 
equity means each surgeon should be able to perform surgeries 
based on their specialty without repeated cancellation; as a by-
product of this, the patients also receive equity. In our institu-
tion, surgeons typically perform one to two types of procedures 
exclusively. Our article, therefore, focuses on developing an op-
timal admission control policy for the ICU to minimize case 
cancellation (i.e., maximize efficiency) while still giving con-
sideration to equity, given stochastic admission requests, batch 
arrivals, and a fixed capacity ICU.

For the purpose of evaluating our proposed admission policies, 
we introduce two important measures of waiting time, the average 
waiting time (Wj

-
) and the maximum observed waiting time (W j

� )  
for each patient type j = 1,...,J (equivalently, the surgery types 
performed by a given surgeon). These waiting time measures 
form the basis of our performance metrics for efficiency and 
equity.

Waiting time is incurred when cases are canceled because 
patients must wait at least 24 hrs to return for surgery before 
entering the ICU. We calculate a “grand average” (W

=

) of the 
waiting time across all patient types. The value W

=

 represents 
an aggregate measure; thus, W

=

 is a proxy for overall efficiency 
of the ICU.

In many cases, average values disguise the true performance 
of systems, particularly when equity is considered (33, 34). 
Therefore, we introduce a second waiting time measure, W j

� , 
corresponding to maximum observed waiting time for a type-
j patient. As cases are repetitively cancelled, maximum wait-
ing time increases and inequity in admission to the ICU rises. 
Thus, W j

�  provides a metric related to inequity being faced by 
individual patients. This gives us an indication of “worst-case” 
performance experienced by patients attempting to enter the 

CTICU. Similar to W
=

, we define W��  as maximum observed 
waiting time across all patient types.

Differing Admission Policies
In creating the model, we tested three different admission poli-
cies: the current admission policy, a shortest-processing-time 
(SPT) policy, and a dynamic admission policy, defined later. 
Because the current admission policy has no specified criteria 
or protocols, we mimic the current policy by using a modi-
fied random policy with patient prioritization after repeated 
cancelations. Under this policy, patients postponed repeat-
edly (four times in our analysis) are given priority admission 
for the first available ICU bed. Note that patients may still be 
postponed additionally if no beds are available, which matches 
current practice. Patients who have not been postponed re-
peatedly are selected arbitrarily. This policy is equivalent to the 
current policy in place where intensivists must deal with many 
competing concerns in assigning ICU beds, and no direct pro-
tocol is in place.

The second policy tested is based on the SPT rule. This rule, 
popular in manufacturing environments (35), gives jobs with 
the shortest processing time (i.e., short LOS) highest prior-
ity. The SPT rule has been proven to maximize throughput in 
deterministic environments and performs well in stochastic 
environments. However, it is optimal in only very limited real-
world settings (36). The downside of the SPT rule is that it 
consistently rejects patients with long expected LOS. This poli-
cy could be considered as emphasizing efficiency at expense of 
surgeon and patient equity.

Finally, we created a dynamic policy that adjusts priority of 
surgery requests each day based on current waiting time for 
surgical requests, the type of surgery request, and a user-de-
fined parameter, denoted as α j  for patient type j. Formally, the 
dynamic policy assigns a priority value(P )i  for each arriving 
surgical request i according to the formula:

P
i
 = αj(t − τ),j = 1,...,J

where t denotes the current day, and τ  is initial arrival day for 
surgical request i. The surgical request with the largest Pi  value 
receives the first available ICU bed, and beds continue to be as-
signed in order of decreasing Pi  values until no more ICU beds 
are available. The dynamic policy has been shown to minimize 
average waiting time for jobs in simple queuing systems (37). 
However, theoretical results have not been proven for scenarios 
as complicated as considered here with batch arrivals and non-
Poisson arrival processes.

The values α j are user-defined parameters that effectively 
determine “weighting” of patient wait times for each case type 
j. These weightings can be chosen to reflect relative expense or 
relative negative consequences for having patients of different 
case types waiting for surgery. In our setting, we are concerned 
with providing equity among different case types. Therefore, 
we choose α j , j J= 1,...,  to minimize average maximum wait-
ing time, W

-

max , across case types. By minimizing W
-

max , we 
decrease the difference between case types with the longest 
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average waiting time and case types with shortest average wait-
ing time. Such a metric is a common measure of inequity in 
the literature (38). In general, no analytical procedure exists to 
guarantee correct choice of minimizing α j , j = 1,...,J  values. We 
used a local search procedure to find values of α j  that mini-
mize W

-

max  (39). Note that the value of α j  is determined by 
the input data. Different ICU settings would require different 
α j  estimates based on historical data. However, the underlying 
model remains unchanged and the relative performance of the 
policies would be similar.

Statistical Analysis
The historical data indicated that the distributions of surgical 
requests in our arrival batches were non-Poisson and random; 
therefore, we used empirical distributions from our data on 
batch size composition for the purposes of our model. In ad-
dition, the data showed that our service time (ICU LOS) was 
nonexponential. For the LOS data, we used mixed empirical 
distributions to capture the tail of LOS distribution (40). For 
each surgery type, we ordered all LOS data points in ascending 
order and used the first 75% of the data to construct the em-
pirical distribution. For the remaining 25% of data points, we 
used an exponential distribution to fit the data. This allowed us 
to model patients with extremely long LOS that may have been 
underrepresented in our empirical data.

Simulations to Determine Best Admission Policy. In our 
simulation experiment, we tested the simulation model for 100 
replications for each admission policy. Each replication repre-
sented 3650 days or 10 yr of admissions into the CTICU. We 
then observed W

-

j  and W j
�  for each patient type j across all 

three admission policies during each replication of simulation.
To validate our queuing models, we performed several 

tests discussed here and in the Results section. We collected 
6 months of LOS data for patients arriving in the CTICU. 
We then conducted simulation experiments to compare our 
simulation-generated outputs to output measures collected 
in practice such as ICU bed occupancy and rejection rates. 
Our simulation-generated outputs matched values collected 
in practice.

RESULTS

Input Data
There were 630 admissions to the ICU during the study pe-
riod (Appendix 2 summarizing patient admission data). Table 
1 gives the number of admissions per month as well as clas-
sifying the admissions per surgical category. Monthly average 
admission requests ranged 3.95 to 5.77 per weekday. The aver-
age monthly LOS ranged 2.26 to 2.63 days (Table 2). Individual 
LOS ranged 1 to 39 days. There were ten patients with an ICU 
LOS greater than 12 days. Of these five (50%) were in the car-
diac other category, four (40%) in the aortic valve category, 

and one (10%) in the mitral valve category.

Efficiency Performance Metrics
Figure 1 denotes average waiting time for the three different ad-
mission policies with corresponding 95% confidence intervals 
for each admission policy. As mentioned, this corresponds to  
efficiency of the ICU and it reasons that the SPT policy would 
perform best. The results show our dynamic policy performs  
second best on this metric (0.4997 days), resulting in mean 
waiting times 8.3% below the SPT policy (0.4612 days) and 
0.7% above the current policy (0.5033 days). The performance 

TAbLE 1. Admissions Per Month by Surgical Category

Monthly Admissions by Surgical Category

Month
Total  

Admissions
Mitral Valve 
Admissions

Aortic Valve 
Admissions

Coronary 
Artery bypass 

Grafting  
Admissions

Ascending 
Aortic Surgery 

Admissions

Major  
Thoracic  

Admissions
Cardiac Other  
Admissions

1 90 15 27 28 6 5 9

2 101 30 18 22 11 4 16

3 131 37 18 45 6 10 15

4 109 34 19 28 4 6 18

5 95 28 28 26 6 4 3

6 104 34 21 26 4 14 5

TAbLE 2. Average bed Occupancies, Length 
of Stay, and Admissions by Month

Month
Percent 

 Occupancy

Average 
Length of 

Stay (Days)

Average  
Admissions Per 

Weekday

1 92 2.63 3.95

2 85 2.47 4.52

3 81 2.58 5.77

4 93 2.33 4.91

5 82 2.26 4.48

6 77 2.28 4.68
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loss relative to the SPT policy represents the price the dynamic 
policy pays for equity. The efficiency loss of 8.3% represents a 
delay on average of 2 hrs. Because the minimum unit of time in 
our model represents 1 day, this increase is judged acceptable.

Figure 1 also displays maximum waiting times (and cor-
responding 95% confidence intervals) for the three different 
admission policies. This performance metric is a proxy for eq-
uity. On this metric, the dynamic policy performs 79% better 
than SPT policy and 38% better than the current policy. Our 
results suggest the dynamic policy could shorten the longest 
delay a patient would experience by 4 days compared with the 
current policy, and by almost 4 wk of waiting time compared 
to the SPT policy where patients are never reprioritized. This 
represents significant benefit to patients and providers.

Performance Metrics by Surgical Category
Figure 2 represents average waiting times for the different ad-
mission policies across six surgical categories. From Figure 2, 
the current policy results in average waiting times for surgery 
types between 0.4376 and 0.5215 days (range of approximately 
2 hrs). Under the dynamic policy, average waiting times by case 
type have values between 0.3483 and 0.6204 days (range of ap-
proximately 6.5 hrs). Finally, under SPT policy, average waiting 
times vary by case type between 0.0400 to 1.5404 days (range 
of about 36 hrs). This is not unexpected; under SPT policy, the 

system repeatedly rejects surgeries with longest expected LOS. 
Because of this, it is not surprising that patients in the cardiac 
other group (i.e., ventricular assist devices) wait the longest.

This inequity becomes more profound when examining 
maximum observed waiting time for different surgery types 
(Fig. 3). The range of maximum observed waiting times are 
approximately 1.1 days, 3.0 days, and 28.6 days under the dy-
namic policy, current policy, and SPT policy, respectively. The 
SPT policy increases system efficiency at the cost of increasing 
inequity (particularly for surgery type cardiac other). The cur-
rent policy increases equity by prolonging every surgery type 
at expense of efficiency. It is only the dynamic policy that ef-
fectively balances efficiency and equity.

In a clinical setting, the dynamic rule can be easily imple-
mented using existing information technology systems or 
simple software (e.g., within Microsoft Excel) and inputting 
patient arrivals, departures, and surgical requests.

DISCUSSION
In the coming years, ICUs will become more heavily used 
and overcrowded as an aging population and fiscal deficits 
put increasing strain on our health care system. As hospitals 
face decreasing margins, there will be increased emphasis 
on proper uses of critical care resources and maximizing ef-
ficiency. Recently, unplanned surgical volume variation was 

Figure 1. The chart on the left shows the average waiting time for the three different admission policies with corresponding 95% confidence intervals for 
each admission policy in our model. The chart on the right shows the maximum waiting time for the three different admission policies.
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shown to add to OR inefficiency (41). Because cardiotho-
racic ICU throughput is contiguous with the OR, it would 
reason that poor planning in the ICU could also increase 
surgical volume variation and lead to inefficiency. Compli-
cating matters are that both surgeons and patients demand 
equity in any allocation process. This article focused on an 
admission policy for a cardiothoracic ICU with the goal of  
balancing efficiency and equity. It was taken from the point of 
view of intensivists faced with a set OR schedule attempting to 
make bed decisions, but could also be used by OR administra-
tors at institutions lacking intensivists.

This 6-month experience illustrates that queuing theory 
and computer simulation can be used to model case flow 
through a cardiothoracic OR and ICU. To our knowledge, this 
is the only experience using a queuing model to look at dif-
ferent admission policies for an ICU contiguous with an OR 
based on functional ICU data that includes concerns related 
to equity. Consistent with findings from other applications in 
the literature, we find that equity is greatly increased with only 
small amounts of efficiency loss simply by explicitly consid-
ering equity concerns in policy decisions (42). These findings 
may be generalized to other surgical ICUs in which bed flow 
is directly related to OR scheduling. It may not be generalized 
to ICUs that function well below capacity or ICUs not down-
stream from the OR.

This article may have important practical implications. We 
found that a dynamic policy that effectively reprioritizes pa-

tients based on their current waiting times significantly outper-
forms static policies. However, we admit that our model setting 
is limited in that it used predominantly cardiac surgical patients 
with an arrival pattern based on case cancellation decisions at a 
single institution.

Note the current policy used in our simulation reprioritized 
patients after multiple cancellations. This is based on current 
practice, but it is not a codified procedure at this institution. 
Similar to many other ICU settings, workaround policies have 
been developed to respond to short-term capacity issues. If 
we were to remove this nonstandard reprioritization, the dy-
namic policy would provide even more significant savings. The 
dynamic policy has the additional benefit that it can be eas-
ily standardized and implemented using simple tools (e.g., a 
spreadsheet).

The strength of our argument comes from the large gain 
in preventable hospital days (i.e., the balance of equity and  
efficiency) seen when using a dynamic policy vs. competing  
policies. Together, Figures 1–3 show the dynamic rule results 
in large equity gains among patients and providers with lim-
ited losses in efficiency. Given the complexity of the cancella-
tion process we studied and that our model has not been ex-
ternally validated, our dynamic policy could be implemented 
only as a supplementary decision support tool for practitio-
ners and administrators in other settings. As has been shown 
in other studies, overreliance on automated procedures can 
cause negative outcomes when input conditions change (43). 

Figure 2. This clustered bar chart presents the average waiting time by case type under different admission policies. Under the shortest-processing-time 
policy, coronary artery bypass grafting (CABG), major thoracic (MT), and mitral valve (MV) patients receive higher priority while cardiac other (CO) and 
aortic valve (AV) patients wait due to their longer expected length of stay in ICU. AA = ascending aortic surgery.
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The introduction of automated decision-support systems in 
this setting can cause other challenges in terms of system de-
sign and garnering acceptance from users. A full discussion of 
this issue is outside the scope of this work, but related work is 
contained in (44) and (45). We must urge caution in extrapo-
lating our exact results to other ICU settings, but we think 
this study demonstrates potential savings from tools such as 
queueing models and simulation in managing ICUs.

Finally, because ICU resources are limited, it is important 
to consider our arrival patterns. We found that our arrival pat-
terns were non-Poisson, but highly random with large vari-
ability in the composition on batches day-to-day and week-
to-week. Yet, for the most part, we were studying an elective 
OR schedule that was designated by the cardiothoracic surgery 
department. Certainly, creating a predictable and nonrandom 
OR schedule could greatly improve the capacity and bed flow 
of this ICU, potentially generating significant cost savings.
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APPENDIX 2. PATIENT PROFILE by SURGICAL CASE CATEGORy 

APPENDIX 1. SURGICAL CASE CLASSIFICATIONS

  

Surgical Category

Aortic  
Valve  

Ascending 
Aorta  

Coronary  
Artery  

bypass 
Grafting  

Major  
Thoracic

Mitral  
Valve

Cardiac 
Other

Average age 68 59 65 69 58 57

Maximum age 92 82 91 86 85 85

Minimum age 24 20 35 20 21 18

Mortality rate 3.97% 3.23% 1.67% 0.00% 1.16% 7.14%

Day of surgery request

% Monday 13.45% 35.71% 21.89% 19.35% 27.17% 29.85%

% Tuesday 25.21% 10.71% 18.34% 25.81% 30.06% 13.43%

% Wednesday 29.41% 14.29% 21.89% 38.71% 5.78% 11.94%

% Thursday 12.61% 10.71% 15.38% 6.45% 23.70% 26.87%

% Friday 19.33% 28.57% 22.49% 9.68% 13.29% 17.91%

Surgery Groups Procedures

MV 1. MV repair/replacement

2. MV repair/replacement with CABG

AV 1. AV replacement

2. AV replacement w/CABG

3.  AV replacement/MV replacement/tricuspid valve 
replacement

CABG 1. CABG

Ascending aortic surgery 1. Bentall procedure

2. Aortic arch aneurysm surgery

3. Ascending aortic aneurysm surgery

4. Elephant trunk stage I

Major thoracic 1. Pneumonectomy

2. Esophagectomy

3. Thymectomy

4. Complex lobectomy

Cardiac other 1. Atrial myxoma resection

2. Myocardial resections

3. Pulmonary embolectomy

4. Atrial septal defect resection

5. Orthotopic heart transplants

6. Insertion of ventricular assist devices

7. Admissions from outside institutions for computer 
tomography surgery

MV = mitral valve; AV = aortic valve; CABG = coronary artery bypass grafting.
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