A Fast Björck-Pereyra-type algorithm for solving Complex-Vandermonde Systems

INTRODUCTION

Modeling phenomenon of the interpolation problems can be seen in propagation of waves, weather conditions, real-time traffic patterns, etc. There are different interpolation techniques like polynomial interpolation, spline interpolation, rational interpolation, exponential interpolation, trigonometric interpolation, etc. One can see a polynomial interpolation problem as a system of equations problem. In here, we derive a fast $O(n^2)$ Björck-Pereyra-type algorithm to solve the system of equations.

Paper
Bjorck-Pereyra (1970)
Higham (1988)
Rachel-Opfer (1991)
Bella et al. (2007)
Bella et al. (2009)
????

METHODOLOGY

We present the most general trigonometric interpolation problems to solve complex-Vandermonde system. We derive a fast $O(n^2)$ algorithm for solving a system of equations $W\vec{a} = \vec{f}$ where the coefficient-matrix is a complex Vandermonde matrix $W = [\omega_i^k]_{i,k=0}^{n-1}$ having $\omega = e^{-ix}$ and $i^2 = -1$. This method is much more favorable than Gaussian elimination which requires $O(n^3)$ complexity. This result generalizes the classical Björck-Pereyra algorithm from monomials to complex system $\{1, \omega, \omega^2, \dots, \omega^{n-1}\}$, where nodes are taken along the unit circle. The new algorithm applies to a fairly general class to solve trigonometric interpolation problems. We present numerical experiments together with the better forward error bound than the Gaussian elimination.

Our Problem is to construct a complex polynomial

$$P(\omega) = \beta_0 + \beta_1 \omega + \beta_2 \omega^2 + \dots + \beta_{n-1} \omega$$

where, $\omega^k = e^{-ix_k}$, $x_k = \frac{2\pi k}{n}$, and $i^2 = -1$, using the goints (ω_k, f_k) for $k = 0, 1, 2, \dots, n-1$.

One can convert the corresponding system of equations into the matrix-vector form as follows;

Austin Ogle and Jacky Qi Huang Faculty Advisor; Sirani M. Perera Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL.

RESULTS

To solve the system of equations, two factorizations were found; Type 1 & Type 2. Type 1 solves the system iteratively. This is a generalization of the original 1970 Bjork-Pereyra algorithm to the complex plane. Type 2 solves the system recursively. The factorization of Type 2 holds the subtraction to a single value for the calculation of lower triangular matrices. This reduces the point floating point error in the sequent calculations and even leads to more accurate algorithm. **Sparse Factorization: Type 1**

Algorithms for Type 1 and Type 2

Input : n, f_k , $x_k = \frac{-2\pi(k-1)}{n}$, for k = 1,2,,n	Input:
Recursion:	Recurs
for k = 1,2,,n	for t = .
$\beta_k = f_k$	1
end	Ĵ
for k = 1.2n-1	(
for $j = n, n-1,, 1$	l
$\beta_{i} = \frac{\beta_{j} - \beta_{j-1}}{\beta_{j-1}}$	C
$P_{j} - e^{ix_{j}} - e^{ix_{j}} - k$	for j
ena	ć
ena famba a 1 a 2 1	
Jor K = n-1, n-2,,1	end
for j = k, k+1,,n-1	1
$\beta_j = \beta_j - \beta_j e^{ix_k}$	
end	
end	end
Output : β_k , for k = 1,2,,n	$\beta = U$
	Outpu

$$n^{-1}$$

given data

$$\begin{array}{c}
f_0\\
f_1\\
f_2\\
\vdots\\
f_{n-1}
\end{array}$$

: $n, f_k, x_k = \frac{-2\pi(k-1)}{n}$, for k = 1, 2, ..., nsion: 1, 2, ..., n-1 $u = I_n$ for j = t, t+1, ..., n-1 $u_{(n+1)j} = -e^{ix_t}$ end $U_t = u$ $d = I_n$ j = t+1, t+2, ..., n $d_{n(j-1)+j} = \frac{1}{e^{ix_j} - e^{ix_t}}$ $D_t = d$ $l = I_n$ $l_{t+1:end,t} = -1$ $L_t = l$

 $U_1 U_2 \dots U_{n-1} D_{n-1} L_{n-1} D_{n-2} L_{n-2} \dots D_1 L_1 f$ **tput**: $\beta = \beta_k$, for k = 1, 2, ..., n

RESULTS

Forward Error Bound for Both Algorithms

$\left\ \beta - \hat{\beta} \right\ _2$	_	(1	r)1−n
$\ \beta\ _2$	_	(1 -	Su)

Numerical Results

Size	BP-Type 1	BP-Type 2	Gaussian	BP-Type 1	BP-Type 2
			Elimination	Leja	Leja
				Ordered	Ordered
10×10	1.491E-06	1.843E-08	2.645E-08	1.648E-07	1.894E-08
20×20	3.876E-04	1.619E-08	2.391E-08	4.228E-07	2.445E-08
30×30	8.302E-02	7.940E-09	2.517E-08	5.560E-07	1.955E-08
35×35	3.425E+00	2.266E-08	1.733E-08	5.657E-07	2.933E-08
40×40	2.443E+02	1.338E-07	3.334E-08	1.098E-06	1.262E-08
50×50	7.089E+06	3.193E-05	1.123E-05	1.316E-06	4.034E-08
60×60	1.657E+12	1.389E-02	3.916E-04	1.708E-06	1.433E-08
70×70	9.646E+16	3.948E+00	6.277E-03	1.863E-06	2.476E-08
80×80	1.898E+21	3.533E+04	3.991E-02	3.741E-06	2.226E-08
90×90	6.079E+26	6.264E+09	1.168E-01	3.155E-06	4.361E-08
100×100	7.919E+31	9.359E+14	2.844E-01	2.604E-06	1.474E-08
105×105	6.272E+34	1.781E+17	2.624E+00	3.422E-06	1.467E-08
150×150			8.979E+00	6.321E-06	1.558E-08
200×200			3.171E+01	9.046E-06	1.840E-08
250×250			1.953E+02	1.138E-05	4.871E-08
300×300			1.087E+02	1.841E-05	2.596E-08

Size	BP-Type 1	BP-Type 2	Gaussian	BP-Type 1	BP-Type 2
			Elimination	Leja	Leja
				Ordered	Ordered
10×10	1.491E-06	1.843E-08	2.645E-08	1.648E-07	1.894E-08
20×20	3.876E-04	1.619E-08	2.391E-08	4.228E-07	2.445E-08
30×30	8.302E-02	7.940E-09	2.517E-08	5.560E-07	1.955E-08
35×35	3.425E+00	2.266E-08	1.733E-08	5.657E-07	2.933E-08
40×40	2.443E+02	1.338E-07	3.334E-08	1.098E-06	1.262E-08
50×50	7.089E+06	3.193E-05	1.123E-05	1.316E-06	4.034E-08
60×60	1.657E+12	1.389E-02	3.916E-04	1.708E-06	1.433E-08
70×70	9.646E+16	3.948E+00	6.277E-03	1.863E-06	2.476E-08
80×80	1.898E+21	3.533E+04	3.991E-02	3.741E-06	2.226E-08
90×90	6.079E+26	6.264E+09	1.168E-01	3.155E-06	4.361E-08
100×100	7.919E+31	9.359E+14	2.844E-01	2.604E-06	1.474E-08
105×105	6.272E+34	1.781E+17	2.624E+00	3.422E-06	1.467E-08
150×150			8.979E+00	6.321E-06	1.558E-08
200×200			3.171E+01	9.046E-06	1.840E-08
250×250			1.953E+02	1.138E-05	4.871E-08
300×300			1.087E+02	1.841E-05	2.596E-08

CONCLUSION

- Results on polynomial interpolation from real to complex plane leads to: Fast $O(n^2)$ Algorithms
 - Sparse Factorizations
 - ► Iterative Algorithms
 - Stable Algorithms with Leja Ordering

REFERENCES

- [1] A. Bjork and V. Pereyra, Solution of Vandermonde Systems of Equations, Mathematics of Computation (American Mathematical Society) 24 (112), (1970)
- [2] N. J. higham, Fast Solution of Vandermonde-Like Systems Involving Orthogonal Polynomials, IMA Journal of Numerical Analysis 8 (4):473-486(1988)
- [3] I. Gohberg and V. Olshevsky, Fast inversion of Chebyshev-Vandermonde matrices, Numerische Mathematik 61 (1), 71-92, (1994).
- [4] T.Bella, Y.Eidelman, I. Gohberg, I. Koltracht and V.Olshevsky, A Bjork-Pereyra –type algorithm for Szego-Vandermonde matrices based on the properties of unitary Hessenberg matrices, Linear Algebra and Applications 420(2-3):634-647, (2007)
- [5] T.Bella, Y.Eidelman, I.Gohberg, I Koltracht and V.Olshevsky, A fast Bjork-Pereyra-type algorithm for solving Hessenberg-quasieparable-Vandermonde systems, SIAM, J. Matrix Anal. And Appl. 31(2):790-815, (2009).

 $n \geq 4$, $u \coloneqq \text{unit roundoff}$

For $\beta = V^{-1}f$

$||U_1||_2 \cdots ||U_{n-1}||_2 ||D_{n-1}||_2 ||L_{n-1}||_2 \cdots ||D_1||_2 ||L_1||_2$

 \blacktriangleright Accurate Algorithms beyond Gaussian Elimination for n > 100