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INTRODUCTION

Modeling phenomenon of the interpolation problems can be seen in
propagation of waves, weather conditions, real-time traffic patterns,
etc. There are different interpolation techniques like polynomial
interpolation, spline interpolation, rational interpolation, exponential
interpolation, trigonometric interpolation, etc. One can see a
polynomial interpolation problem as a system of equations problem. In
here, we derive a fast 𝑂𝑂 𝑛𝑛2 Björck-Pereyra-type algorithm to solve the
system of equations.

METHODOLOGY
We present the most general trigonometric interpolation problems to
solve complex-Vandermonde system. We derive a fast 𝑂𝑂(𝑛𝑛2) algorithm
for solving a system of equations 𝑊𝑊𝑎⃗𝑎 = 𝑓𝑓 where the coefficient-matrix
is a complex Vandermonde matrix W = [𝜔𝜔𝑗𝑗𝑘𝑘]𝑗𝑗,𝑘𝑘=0

𝑛𝑛−1 having 𝜔𝜔 = 𝑒𝑒−𝑖𝑖𝑖𝑖 and
𝑖𝑖2 = −1 . This method is much more favorable than Gaussian
elimination which requires 𝑂𝑂(𝑛𝑛3) complexity. This result generalizes
the classical Bj𝑜̈𝑜rck-Pereyra algorithm from monomials to complex
system 1,𝜔𝜔,𝜔𝜔2,⋯ ,𝜔𝜔𝑛𝑛−1 , where nodes are taken along the unit
circle. The new algorithm applies to a fairly general class to solve
trigonometric interpolation problems. We present numerical
experiments together with the better forward error bound than the
Gaussian elimination.
Our Problem is to construct a complex polynomial

𝑃𝑃 𝜔𝜔 = 𝛽𝛽0 + 𝛽𝛽1𝜔𝜔 + 𝛽𝛽2𝜔𝜔2 + ⋯+ 𝛽𝛽𝑛𝑛−1𝜔𝜔𝑛𝑛−1

where,𝜔𝜔𝑘𝑘 = 𝑒𝑒−𝑖𝑖𝑥𝑥𝑘𝑘 , 𝑥𝑥𝑘𝑘 = 2𝜋𝜋𝜋𝜋
𝑛𝑛

, and 𝑖𝑖2 = −1, using the given data 
points (𝜔𝜔𝑘𝑘 ,𝑓𝑓𝑘𝑘) for 𝑘𝑘 = 0,1,2, … ,𝑛𝑛 − 1.
One can convert the corresponding system of equations into the 
matrix-vector form as follows;

RESULTS
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RESULTS

To solve the system of equations, two factorizations were found; Type 1
& Type 2. Type 1 solves the system iteratively. This is a generalization of
the original 1970 Bjork-Pereyra algorithm to the complex plane. Type 2
solves the system recursively. The factorization of Type 2 holds the
subtraction to a single value for the calculation of lower triangular
matrices. This reduces the point floating point error in the sequent
calculations and even leads to more accurate algorithm.

CONCLUSION
Results on polynomial interpolation from real to complex plane leads to:

Fast 𝑂𝑂(𝑛𝑛2) Algorithms 

Sparse Factorizations

Iterative Algorithms

Stable Algorithms with Leja Ordering

Accurate Algorithms beyond Gaussian Elimination for 𝑛𝑛 > 100

Sparse Factorization: Type 1 Size BP-Type 1 BP-Type 2 Gaussian
Elimination

BP-Type 1 
Leja
Ordered

BP-Type 2 
Leja
Ordered

10×10 1.491E-06 1.843E-08 2.645E-08 1.648E-07 1.894E-08
20×20 3.876E-04 1.619E-08 2.391E-08 4.228E-07 2.445E-08
30×30 8.302E-02 7.940E-09 2.517E-08 5.560E-07 1.955E-08
35×35 3.425E+00 2.266E-08 1.733E-08 5.657E-07 2.933E-08
40×40 2.443E+02 1.338E-07 3.334E-08 1.098E-06 1.262E-08
50×50 7.089E+06 3.193E-05 1.123E-05 1.316E-06 4.034E-08
60×60 1.657E+12 1.389E-02 3.916E-04 1.708E-06 1.433E-08
70×70 9.646E+16 3.948E+00 6.277E-03 1.863E-06 2.476E-08
80×80 1.898E+21 3.533E+04 3.991E-02 3.741E-06 2.226E-08
90×90 6.079E+26 6.264E+09 1.168E-01 3.155E-06 4.361E-08
100×100 7.919E+31 9.359E+14 2.844E-01 2.604E-06 1.474E-08
105×105 6.272E+34 1.781E+17 2.624E+00 3.422E-06 1.467E-08
150×150 8.979E+00 6.321E-06 1.558E-08
200×200 3.171E+01 9.046E-06 1.840E-08
250×250 1.953E+02 1.138E-05 4.871E-08
300×300 1.087E+02 1.841E-05 2.596E-08

Sparse Factorization: Type 2

Algorithms for Type 1 and  Type 2

Forward Error Bound for Both Algorithms

Numerical Results
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