A Fast Björck-Pereyra-type algorithm for solving ComplexVandermonde Systems

INTRODUCTION

Modeling phenomenon of the interpolation problems can be seen in propagation of waves, weather conditions, real-time traffic patterns, etc. There are different interpolation techniques like polynomial interpolation, spline interpolation, rational interpolation, exponential interpolation, trigonometric interpolation, etc. One can see a polynomial interpolation problem as a system of equations problem. In here, we derive a fast $O\left(n^{2}\right)$ Björck-Pereyra-type algorithm to solve the system of equations.

Polynomials	Paper
Monomials	Bjorck-Pereyra (1970)
Real Orthogonal	Higham (1988)
Chebyshev	Rachel-Opfer (1991)
Szego	Bella et al. (2007)
Quasiseparable	Bella et al. (2009)
Complex	????

METHODOLOGY

We present the most general trigonometric interpolation problems to solve complex-Vandermonde system. We derive a fast $O\left(n^{2}\right)$ algorithm for solving a system of equations $W \vec{a}=\vec{f}$ where the coefficient-matrix is a complex Vandermonde matrix $\mathrm{W}=\left[\omega_{j}^{k}\right]_{j, k=0}^{n-1}$ having $\omega=e^{-i x}$ and $i^{2}=-1$. This method is much more favorable than Gaussian elimination which requires $O\left(n^{3}\right)$ complexity. This result generalizes the classical Björck-Pereyra algorithm from monomials to complex system $\left\{1, \omega, \omega^{2}, \cdots, \omega^{n-1}\right\}$, where nodes are taken along the unit circle. The new algorithm applies to a fairly general class to solve trigonometric interpolation problems. We present numerical experiments together with the better forward error bound than the Gaussian elimination.
Our Problem is to construct a complex polynomial

$$
P(\omega)=\beta_{0}+\beta_{1} \omega+\beta_{2} \omega^{2}+\cdots+\beta_{n-1} \omega^{n-1}
$$

where, $\omega^{k}=e^{-i x_{k}}, x_{k}=\frac{2 \pi k}{n}$, and $i^{2}=-1$, using the given data points (ω_{k}, f_{k}) for $k=0,1,2, \ldots, n-1$.
One can convert the corresponding system of equations into the matrix-vector form as follows;
$\left[\begin{array}{ccccc}1 & e^{-i x_{0}} & e^{-2 i x_{0}} & \cdots & e^{-(n-1) i x_{0}} \\ 1 & e^{-i x_{1}} & e^{-2 i x_{1}} & \cdots & e^{-(n-1) i x_{1}} \\ 1 & e^{-i x_{2}} & e^{-2 i x_{2}} & \cdots & e^{-(n-1) i x_{2}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & e^{-i x_{n-1}} & e^{-2 i x_{n-1}} & \cdots & e^{-(n-1) i x_{n-1}}\end{array}\right]\left[\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n-1}\end{array}\right]=\left[\begin{array}{c}f_{0} \\ f_{1} \\ f_{2} \\ \vdots \\ f_{n-1}\end{array}\right]$

RESULTS

To solve the system of equations, two factorizations were found; Type 1 \& Type 2. Type 1 solves the system iteratively. This is a generalization of the original 1970 Bjork-Pereyra algorithm to the complex plane. Type 2 solves the system recursively. The factorization of Type 2 holds the subtraction to a single value for the calculation of lower triangular matrices. This reduces the point floating point error in the sequen calculations and even leads to more accurate algorithm.
Sparse Factorization: Type 1

Sparse Factorization: Type 2

Algorithms for Type 1 and Type 2

RESULTS

CONCLUSION

Results on polynomial interpolation from real to complex plane leads to:

$$
>\text { Fast } O\left(n^{2}\right) \text { Algorithms }
$$

$>$ Sparse Factorizations
>Iterative Algorithms
$>$ Stable Algorithms with Leja Ordering
$>$ Accurate Algorithms beyond Gaussian Elimination for $n>100$

REFERENCES

[1] A. Bjork and V. Pereyra, Solution of Vandermonde Systems of Equations, Mathematics of
[1] A. Bjork and V. Pereyra, Solution of Vandermonde S
Computation (American Mathematical Society) 24 (112), (1970)
[2] N. J. higham, Fast Solution of Vandermonde-Like Systems Involving Orthogonal Polynomials, IM Journal of Numerical Analysis 8 (4):473-486(1988)
[3] I. Gohberg and V. Olshevsky, Fast inversion of Chebyshev-Vandermonde matrices, Numerische Mathematik 61 (1), $71-92$, (1994).
[4] T.Bella, Y.Eidelman, I. Gohberg, II. Koltracht and V.OIshevsky, A Bjork-Pereyra -type algorithm for Szego-Vandermonde matrices based on the properties of unitary Hessenberg matrices, Linear Algebra and Applications 420(2-3):634-647, (2007)
[5] T.Bella, Y.Eidelman, I.Gohberg, I Koltracht and V.OIshevsky, A fast Bjork-Pereyra-type algorithm for solving Hessenberg-quasieparable-Vandermonde systems, SIAM, J. Matrii Anal. And Appl. $31(2): 790-815$,
(2009).

