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3.2 Block diagram illustrating ḣ-q control logic for the takeoff mode . . . . 68

3.3 Ω - inceptor normalized input vs. desired rate of turn . . . . . . . . . . 71

3.4 Top-level diagram illustrating carefree control of horizontal flight path for
the takeoff mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5 Block diagram illustrating rate-of-climb/descent logic for the climb and
descend modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6 Top-level diagram illustrating carefree control of horizontal flight path for
all modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.7 Block diagram illustrating the altitude hold function for the cruise modes. 81

3.8 Block diagram illustrating the throttle control functionality coupled with
the altitude hold law (cruise modes only). . . . . . . . . . . . . . . . . 82

3.9 Simulink block diagram of the throttle/MAP control logic. . . . . . . . 82

3.10 3D view of Google Earth rendering of the KSFO - KSQL and KSFO -
KOAK scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.11 Top view of Google Earth rendering of the KSFO - KSQL and KSFO -
KOAK scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1 Tracking performance across scenarios . . . . . . . . . . . . . . . . . . 94

4.2 Lateral tracking performance across scenarios . . . . . . . . . . . . . . 95



x

Figure Page

4.3 Control activity across scenarios . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Pilot XP-7 - Tracking performance in Scenario 1 . . . . . . . . . . . . . 96

4.5 Pilot XP-7 - Tracking performance in Scenario 2 . . . . . . . . . . . . . 97

4.6 Pilot XP-7 - Tracking performance in Scenario 3 . . . . . . . . . . . . . 97

4.7 Pilot NP-9 - Tracking performance in Scenario 1 . . . . . . . . . . . . . 98

4.8 Pilot NP-9 - Tracking performance in Scenario 2 . . . . . . . . . . . . . 98

4.9 Pilot NP-9 - Tracking performance in Scenario 3 . . . . . . . . . . . . . 99

4.10 Average input frequency from maneuver cuts . . . . . . . . . . . . . . . 100

4.11 Mean RMS of Ω - inceptor from maneuver cuts . . . . . . . . . . . . . 100

4.12 Pilot XP-7 - Lateral control activity for Scenario 1 maneuver . . . . . . 103

4.13 Pilot XP-7 - Lateral control activity for Scenario 2 maneuver . . . . . . 104

4.14 Pilot XP-7 - Lateral control activity for Scenario 3 maneuver . . . . . . 104

4.15 Non-pilot NP-9 - Lateral control activity for Scenario 1 maneuver . . . 105

4.16 Non-pilot NP-9 - Lateral control activity for Scenario 2 maneuver . . . 106

4.17 Non-pilot NP-9 - Lateral control activity for Scenario 3 maneuver . . . 106

A.1 Participant XP-1 Performance - Scenario 1 . . . . . . . . . . . . . . . . 112

A.2 Participant XP-2 Performance - Scenario 1 . . . . . . . . . . . . . . . . 113

A.3 Participant XP-3 Performance - Scenario 1 . . . . . . . . . . . . . . . . 114

A.4 Participant XP-4 Performance - Scenario 1 . . . . . . . . . . . . . . . . 115

A.5 Participant XP-5 Performance - Scenario 1 . . . . . . . . . . . . . . . . 116

A.6 Participant XP-6 Performance - Scenario 1 . . . . . . . . . . . . . . . . 117

A.7 Participant XP-7 Performance - Scenario 1 . . . . . . . . . . . . . . . . 118

A.8 Participant XP-8 Performance - Scenario 1 . . . . . . . . . . . . . . . . 119

A.9 Participant XP-9 Performance - Scenario 1 . . . . . . . . . . . . . . . . 120

A.10 Participant NP-1 Performance - Scenario 1 . . . . . . . . . . . . . . . . 121

A.11 Participant NP-2 Performance - Scenario 1 . . . . . . . . . . . . . . . . 122

A.12 Participant NP-3 Performance - Scenario 1 . . . . . . . . . . . . . . . . 123

A.13 Participant NP-4 Performance - Scenario 1 . . . . . . . . . . . . . . . . 124



xi

Figure Page

A.14 Participant NP-5 Performance - Scenario 1 . . . . . . . . . . . . . . . . 125

A.15 Participant NP-6 Performance - Scenario 1 . . . . . . . . . . . . . . . . 126

A.16 Participant NP-7 Performance - Scenario 1 . . . . . . . . . . . . . . . . 127

A.17 Participant NP-8 Performance - Scenario 1 . . . . . . . . . . . . . . . . 128

A.18 Participant NP-9 Performance - Scenario 1 . . . . . . . . . . . . . . . . 129

A.19 Participant XP-1 Performance - Scenario 2 . . . . . . . . . . . . . . . . 130

A.20 Participant XP-2 Performance - Scenario 2 . . . . . . . . . . . . . . . . 131

A.21 Participant XP-3 Performance - Scenario 2 . . . . . . . . . . . . . . . . 132

A.22 Participant XP-4 Performance - Scenario 2 . . . . . . . . . . . . . . . . 133

A.23 Participant XP-5 Performance - Scenario 2 . . . . . . . . . . . . . . . . 134

A.24 Participant XP-6 Performance - Scenario 2 . . . . . . . . . . . . . . . . 135

A.25 Participant XP-7 Performance - Scenario 2 . . . . . . . . . . . . . . . . 136

A.26 Participant XP-8 Performance - Scenario 2 . . . . . . . . . . . . . . . . 137

A.27 Participant XP-9 Performance - Scenario 2 . . . . . . . . . . . . . . . . 138

A.28 Participant NP-2 Performance - Scenario 2 . . . . . . . . . . . . . . . . 139

A.29 Participant NP-3 Performance - Scenario 2 . . . . . . . . . . . . . . . . 140

A.30 Participant NP-4 Performance - Scenario 2 . . . . . . . . . . . . . . . . 141

A.31 Participant NP-5 Performance - Scenario 2 . . . . . . . . . . . . . . . . 142

A.32 Participant NP-6 Performance - Scenario 2 . . . . . . . . . . . . . . . . 143

A.33 Participant NP-7 Performance - Scenario 2 . . . . . . . . . . . . . . . . 144

A.34 Participant NP-8 Performance - Scenario 2 . . . . . . . . . . . . . . . . 145

A.35 Participant NP-9 Performance - Scenario 2 . . . . . . . . . . . . . . . . 146

A.36 Participant XP-2 Performance - Scenario 3 . . . . . . . . . . . . . . . . 147

A.37 Participant XP-3 Performance - Scenario 3 . . . . . . . . . . . . . . . . 148

A.38 Participant XP-5 Performance - Scenario 3 . . . . . . . . . . . . . . . . 149

A.39 Participant XP-6 Performance - Scenario 3 . . . . . . . . . . . . . . . . 150

A.40 Participant XP-7 Performance - Scenario 3 . . . . . . . . . . . . . . . . 151

A.41 Participant XP-8 Performance - Scenario 3 . . . . . . . . . . . . . . . . 152



xii

Figure Page

A.42 Participant XP-9 Performance - Scenario 3 . . . . . . . . . . . . . . . . 153

A.43 Participant NP-1 Performance - Scenario 3 . . . . . . . . . . . . . . . . 154

A.44 Participant NP-2 Performance - Scenario 3 . . . . . . . . . . . . . . . . 155

A.45 Participant NP-3 Performance - Scenario 3 . . . . . . . . . . . . . . . . 156

A.46 Participant NP-4 Performance - Scenario 3 . . . . . . . . . . . . . . . . 157

A.47 Participant NP-5 Performance - Scenario 3 . . . . . . . . . . . . . . . . 158

A.48 Participant NP-6 Performance - Scenario 3 . . . . . . . . . . . . . . . . 159

A.49 Participant NP-7 Performance - Scenario 3 . . . . . . . . . . . . . . . . 160

A.50 Participant NP-8 Performance - Scenario 3 . . . . . . . . . . . . . . . . 161

A.51 Participant NP-9 Performance - Scenario 3 . . . . . . . . . . . . . . . . 162

B.1 Ground roll to T-O in mode 1 . . . . . . . . . . . . . . . . . . . . . . . 164

B.2 Ground roll to T-O in mode 1 . . . . . . . . . . . . . . . . . . . . . . . 165

B.3 Ground roll to T-O in mode 1 . . . . . . . . . . . . . . . . . . . . . . . 166

B.4 Ground roll to T-O in mode 1 . . . . . . . . . . . . . . . . . . . . . . . 167

B.5 Ground roll to T-O in mode 1 . . . . . . . . . . . . . . . . . . . . . . . 168

B.6 Minimum RoT maneuver in mode 1 . . . . . . . . . . . . . . . . . . . . 170

B.7 Minimum RoT maneuver in mode 1 . . . . . . . . . . . . . . . . . . . . 171

B.8 Minimum RoT maneuver in mode 1 . . . . . . . . . . . . . . . . . . . . 172

B.9 Minimum RoT maneuver in mode 1 . . . . . . . . . . . . . . . . . . . . 173

B.10 Minimum RoT maneuver in mode 1 . . . . . . . . . . . . . . . . . . . . 174

B.11 Climbing to T-O in mode 1 . . . . . . . . . . . . . . . . . . . . . . . . 176

B.12 Climbing to T-O in mode 1 . . . . . . . . . . . . . . . . . . . . . . . . 177

B.13 Climbing to T-O in mode 1 . . . . . . . . . . . . . . . . . . . . . . . . 178

B.14 Climbing to T-O in mode 1 . . . . . . . . . . . . . . . . . . . . . . . . 179

B.15 Climbing to T-O in mode 1 . . . . . . . . . . . . . . . . . . . . . . . . 180

B.16 Climbing to T-O in mode 1 . . . . . . . . . . . . . . . . . . . . . . . . 182

B.17 Climbing to T-O in mode 1 . . . . . . . . . . . . . . . . . . . . . . . . 183

B.18 Climbing to T-O in mode 1 . . . . . . . . . . . . . . . . . . . . . . . . 184



xiii

Figure Page

B.19 Climbing to T-O in mode 1 . . . . . . . . . . . . . . . . . . . . . . . . 185

B.20 Climbing to T-O in mode 1 . . . . . . . . . . . . . . . . . . . . . . . . 186

B.21 Climbing in mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

B.22 Climbing in mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

B.23 Climbing in mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B.24 Climbing in mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

B.25 Climbing in mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

B.26 Climbing in mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

B.27 Climbing in mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

B.28 Climbing in mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

B.29 Climbing in mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

B.30 Climbing in mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

B.31 Climbing in mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

B.32 Climbing in mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

B.33 Climbing in mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

B.34 Climbing in mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

B.35 Climbing in mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

B.36 Maneuvering in mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 208

B.37 Maneuvering in mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 209

B.38 Maneuvering in mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 210

B.39 Maneuvering in mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 211

B.40 Maneuvering in mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 212

B.41 Maneuvering in mode 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 214

B.42 Maneuvering in mode 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 215

B.43 Maneuvering in mode 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 216

B.44 Maneuvering in mode 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 217

B.45 Maneuvering in mode 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 218

B.46 Descending in mode 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 220



xiv

Figure Page

B.47 Descending in mode 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

B.48 Descending in mode 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

B.49 Descending in mode 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

B.50 Descending in mode 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

B.51 Glide slope capture in mode 6 . . . . . . . . . . . . . . . . . . . . . . . 226

B.52 Glide slope capture in mode 6 . . . . . . . . . . . . . . . . . . . . . . . 227

B.53 Glide slope capture in mode 6 . . . . . . . . . . . . . . . . . . . . . . . 228

B.54 Glide slope capture in mode 6 . . . . . . . . . . . . . . . . . . . . . . . 229

B.55 Glide slope capture in mode 6 . . . . . . . . . . . . . . . . . . . . . . . 230



xv

SYMBOLS

A coefficient matrix
az vertical load factor in the body-axis
B input weighting matrix
C state variable weighting matrix
CD Coefficient of drag
CDα coefficient of drag with respect to angle-of-attack
CL Coefficient of lift
CLα lift-curve slope
CLα̇ coefficient of lift with respect to the rate of change of angle-of-

attack
CLβ coefficient of rolling moment with respect to angle-of-sideslip (di-

hedral effect derivative)
CLδa

coefficient of rolling moment with respect to aileron deflection
(aileron control power derivative)

CLδe
coefficient of lift with respect to elevator deflection

CLδr
coefficient of rolling moment with respect to rudder deflection

CLmax coefficient of maximum lift
CLp coefficient of rolling moment with respect to roll rate (rolling

damping derivative)
CLq coefficient of lift with respect to pitch rate
CLr coefficient of rolling moment with respect to yaw rate
CMα coefficient of static longitudinal stability
CMα̇

coefficient of pitching moment with respect to the rate of change
of angle-of-attack

CMδe
coefficient of pitching moment with respect to elevator deflection
(elevator control power derivative)

CMq coefficient of pitching moment with respect to pitch rate (pitch-
damping derivative)

CNβ coefficient of yawing moment with respect to angle-of-sideslip
(weather-vane stability derivative)

CNδa
coefficient of yawing moment with respect to aileron deflection
(adverse yaw derivative)

CNδr
coefficient of yawing moment with respect to rudder deflection
(rudder control power)

CNp coefficient of yawing moment with respect to roll rate
CNr coefficient of yawing moment with respect to yaw rate (yaw damp-

ing derivative)



xvi

CYβ coefficient of side force with respect to angle-of-sideslip
CYδr

coefficient of side force with respect to rudder deflection
g gravity
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ABSTRACT

Ali, Kashif MSAE, Embry-Riddle Aeronautical University, November 2016. Automotive-

Inspired Inceptors and Control Laws Designed for Simplified Piloted Flight.

This thesis details the development of a simulator-based experiment in automotive-
inspired controls for aircraft. The goal is to fuse the ease of drivability of a car with
the flight of an aircraft. A standard automotive control hardware setup coupled with
fly-by-wire control laws will allow non-pilots to fly a plane using their familiarity with
driving a car. A mathematical description of the control law logic and controller
implementation is presented and the human subjects’ performance is measured from
data collected during experimental testing of the simulator. Preliminary results in-
dicate that non-pilots improve their path-tracking performance and reduce control
activity within a short span of time achieving results comparable to those achieved
by trained pilots.
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1. Introduction

This thesis details the development of a flight simulation model and control interface

for the purpose of testing a new concept in the area of flight controls and the associated

human-machine interface. It is a follow-up publication to my colleague Christopher

Carvalho’s thesis topic (Carvalho, 2013) on the same concept.

The concept submits a possible solution for certain obstacles that lie in the path

of proliferating general aviation (GA) as an alternative means of transport to that

afforded by the national highway system, or commercial hub-and-spoke airline oper-

ations.

In this chapter, a brief background is provided to illustrate the motivation behind

this endeavor. A problem statement is defined which outlines a subset of challenges

the proposed concept intends to address. A method is identified which lays the

foundation for the mathematical description and results presented in Chapters 3 and

4, respectively.

A review of the literature on flight controls and the solutions proposed for simpli-

fying pilot control tasks for GA aircraft is presented in Chapter 2.

Finally, in Chapter 5, impressions based on quantitative and qualitative results

are submitted along with footnotes from the design process, and concluding remarks

on future areas of investigation.
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1.1 Background

Since the birth of aviation, people have sought to improve flight, permitting us

faster travel and longer distances in increasingly safer and reliable vehicles. As a

result, the aircraft of today are a testament to the spirit of innovation and progress

in aeronautics. Looking ahead, the hope of many, including NASA, is to realize the

dream of personal air vehicles. These aircraft will enable future commuters to travel

distances greater than those within the reach of a three hour car ride and shorter

than those that are currently serviced by the airline industry, introducing a paradigm

shift in the nation’s transportation infrastructure.

An affordable safe personal aircraft would offer an attractive alternative to the

commuter requiring regular travel between distances of about 150 to 700 miles, and

reignite an industry that suffered a sharp decline in the 1980s (“Affordable Alterna-

tive Transportation AGATE – Revitalizing General Aviation”, 1996). Furthermore,

in 1993, GA production numbers experienced an all-time low of 954 units versus

the 18,000 units made in 1978 (“Affordable Alternative Transportation AGATE –

Revitalizing General Aviation”, 1996).

The vision of an expanded transportation system driven by a new generation of

advanced general aviation (GA) aircraft is by no means a recent idea. Programs

as early as the Advanced General Aviation Transport Experiments (AGATE) from

the mid-90s (“Affordable Alternative Transportation AGATE – Revitalizing General

Aviation”, 1996) and the Small Aircraft Transportation System (SATS) beginning in
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2001 were instituted to explore the expansion of the technological capabilities of GA

aircraft. In doing so, this enabled them to become part of a new transportation sys-

tem designed to alleviate the existing burden on conventional ground transportation

networks.

The AGATE Consortium

If the goal of a new transportation system was to be realized, a multifaceted push

forward, implementing lighter composite airframes, efficient powerplants, advanced

flight decks and control systems, and other available technology was deemed neces-

sary to pull the small GA industry out from the past. Under the leadership of Bruce

Holmes of the NASA Langley Research Center (LaRC), the AGATE consortium suc-

cessfully created a platform for the advancement of GA technology. The research

activities supported by the program resulted in superior avionics, engines, airframes

and flight training methods (Chambers, 2005).

The SATS Program

Similarly, in 2005, the follow-up SATS program demonstrated various retro-fitted

integrated technologies to prove the safe operation of a personal-owner aircraft from

small uncontrolled airports. Technologies such as the Global Positioning System

(GPS) were an indispensable feature in making the SATS concept work (Chambers,

2005). The recently developed Automatic Dependent Surveillance-Broadcast (ADS-

B) provided three-dimensional information regarding air traffic and the Highway-in-

the-Sky concept was integrated with sensor information to provide enhanced single-

pilot performance (Chambers, 2005). The SATS program met its objectives of demon-
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strating that greater utility could be extracted from the nation’s 5,000 or so small,

public-use airports by equipping GA aircraft with appropriate flight deck and flight

path technologies, whilst lifting the burden off of larger hub-and-spoke operations

(Chambers, 2005).

Personal Air Vehicle (PAV) Research

Following the success of the SATS program, LaRC researchers took to explor-

ing emerging technologies in order to develop long-term solutions to the PAV con-

cept. The concept was to revolutionize the personal-owner aircraft - vehicles designed

from the ground up to be safe, cost-effective ($100,000 in 2004 to acquire), fuel effi-

cient, easy to operate and perhaps offer some degree of roadability, à la ‘flying car’

(Chambers, 2005). Perhaps the most ambitious goal was to develop an aircraft re-

quiring only a tenth of the training time and cost; in about a week and a $1,000

(Chambers, 2005).

Central to the PAV concept achieving its Ease-of-Use (EoU) goals was the emer-

gence of a new flight control system (FCS) termed the ‘H-Mode’ for Haptic-Mode,

developed by Flemisch and Goodrich (Hahn, 2006). This full authority system of-

fers the pilot full engagement and does not interfere until workload levels increase

beyond his/her capability, or mistakes are made. The FCS is coupled with a Nat-

uralistic Flight Deck (NFD) providing a one-stop avionics suite designed to present

relevant information in an easy-to-assimilate fashion (Hahn, 2006). However, NASA

has identified that such an advanced system could be prohibitively expensive to de-

velop and the unit cost for a commuter-class aircraft equipped with such an FCS could
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very well discourage production unless considerable transportation value is identified

(Hahn, 2006).

A New ‘Development Space’

Between NASA’s initial and sophomoric contributions through the AGATE and

SATS programs, and the futuristic, but distant H-Mode, lies the possibility of near-

term solutions which combine the functionality afforded by AGATE and SATS with

the control augmentation made possible via fly-by-wire (FBW) flight control laws

(CLAW). In this ‘development space’ exists the opportunity to rethink the pilot-

vehicle interface. The following section will expand this notion into a problem state-

ment that defines the scope of the work presented.

1.2 Defining the Problem

The process of delineating the problem-space and finding a question to answer is

structured as follows,

• What problems currently exist in the realm of the personal-owner aircraft and

its operation?

• What has been done in the past to simplify flight? (from a flight controls

standpoint)

• And, finally, define a problem that when solved, will contribute in closing the

gap between where technology is and where technology needs to be.
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The following sub-sections seek to answer these questions, and ultimately provide a

problem statement.

1.2.1 Extant Problems

Several problems and challenges currently restrict the personal-owner aircraft from

gaining popularity as a candidate to base an alternative transportation system.

At the forefront of GA’s problems lie long-standing flight safety issues, with statis-

tics suffering from controlled-flight-into-terrain (CFIT) scenarios - a situational aware-

ness problem (FAA, 2003). Other types of incidents can be partially, or exclusively,

a result of poor handling and adverse weather conditions.

The typical single-engine propeller aircraft of today has seen avionics upgrades in

an additive manner, with instrument panels becoming increasingly cluttered. Such

incremental-ism in cockpit design cannot fully accommodate human factors solutions

which aim to unify the information display systems and navigation equipment. Fur-

thermore, a niche industry supplying electronic flight bag type solutions and equipping

the average pilot with tablet devices to serve as drop-in flight displays continues to

grow and simplify flight. That said, new synergistic designs do exist with redesigned

cockpits and unified systems such as that of the Cessna TTx and the Pipestrel Pan-

thera. However, such aircraft still lack the implementation of full authority FBW

systems commonly found in military and transport category aircraft (Martin, 1990).
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Finally, the cost of obtaining a private pilot’s license is high, requiring a consider-

able investment of time and money (Chambers, 2005; Hahn, 2006). As a result, the

proliferation of personal-owner aircraft as a means of commuting is prohibited.

Although the problems described above are significant, they do not account for all

the hurdles in realizing the SATS style transport infrastructure. However, for the sake

of defining our problem, the issues mentioned thus far do help in defining a problem.

1.2.2 Past Attempts at Simplifying Flight

The philosophy of augmenting aircraft controllability and safety dates back to the

1920s where innovators pursued the familiar goal of simplifying flight by envisioning

it as something best compared by the ease of driving a car (Sixteenth Annual Report

of the National Advisory Committee for Aeronautics , 1930). This pursuit took shape

in the form of several National Advisory Committee for Aeronautics (NACA) inves-

tigations in the first half of the 20th century (Campbell et al., 1952; W. H. Phillips

et al., 1956) whereby existing personal-owner aircraft were retro-fitted with center-

ing springs on their lateral control to prevent unintentional roll-off and reduce pilot

workload.

Subsequent studies conducted by NASA in the mid-70s investigated control system

and flight information display designs for small GA aircraft in an effort to further

reduce pilot workload especially in turbulent conditions and bad weather. The studies

comprised a survey of seven aircraft and their handling qualities with and without

these improved systems. Pilot feedback indicated improvements in handling and EoU



8

with the inclusion of an attitude-command control system and flight director (Loschke

et al., 1974).

With the AGATE consortium striving to reignite GA in the 90s, the University

of Kansas Center for Research investigated the benefits of replacing the traditional

yolk with a sidestick. With a reduced moment arm, stick forces went up and a

geared tab was proposed to reduce forces to within Federal Aviation Regulations

(FAR), enabling the pilots of the single-engine high wing GA aircraft to benefit from

improved trajectory control and reduced fatigue (Martin, 1990).

Continuing in this vein, in 2002, the FAA’s Office of Aerospace Medicine conducted

simulation trials of a Piper Malibu using a four-axis side-arm controller implementing

a fuzzy-logic controller (FLC) to allow the pilot to ’command higher-level performance

goals (for example, rate of turn/bank; rate of climb/descent)’ (Beringer, 2002). Test

subjects also had a highway-in-the-sky visual representation available to guide them-

selves to their destination. The motivation behind this experiment was to explore the

benefits of finding a compromise between automated maneuvering (as that afforded

by a typical GA autopilot) and the inherent authority of manually guided maneuver-

ing. Barring the cost of development and implementation, results demonstrated that

the FLC system was a successful endeavor and the significant reduction in tracking

error meant it could be a potential candidate for controlling the next-generation of

GA aircraft (Beringer, 2002).

In 2010, the Small Aircraft Future Avionics Architecture (SAFAR) program set

about to develop a low-cost FBW Diamond DA-42 to demonstrate the readiness of
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technology to facilitate full-authority digital control systems in small GA aircraft

(Falkena, 2012). The DA-42 control system was designed to operate without the

need for a mechanical backup and ensuring a 10−9 failure probability. This technol-

ogy platform delivered on its promises of improved handling, enhanced situational

awareness, and envelope protection. However, the system was complex and required

extensive training and experience (Falkena & Borst, 2010).

The cross-section of historical data presented above lends itself to posing a problem

as will be seen in the following section.

1.2.3 Problem Statement

This brief survey of improving aircraft EoU over the past 90 years or so indicates

the persistence of the goal to simplify flight and increase its accessibility in society.

Some ideas, of course, are too antiquated to be of any real value but others, along

with the H-Mode introduced under the LaRC’s PAV studies, provide a foundation on

which to pose a new problem -

To exploit the familiarity most people have with driving a car. To design

automotive inspired inceptors which aim to fuse the ease of driving a car

with the simplified control of flying an aircraft. To create a new pilot-

vehicle interface wrapped around a desirable level of envelope protection.

Furthermore, to decrease the required time to train a pilot such that the

time spent driving a typical automobile may contribute to overall currency

in the aircraft.
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Broadly speaking, the introduction of fly-by-wire technology holds the potential to

drastically alter the personal aircraft. Combining said FBW technology with a cock-

pit control layout similar to a typical automobile may introduce the right mix of

autonomy and manual control.

1.3 Method

To set about solving the defined problem, a flight simulation model was developed

which included automotive inceptors as the primary control input devices. A set of

six control modes was designed to cover the takeoff (Mode 1), climb (Mode 2), cruise

(Mode 3 and dountfull, descend (Mode 5) and approach (Mode 6) legs of a given

flight profile.

1.3.1 Experiment Design

Eighteen subjects, a mix of experienced pilots and student pilots, along with non-

pilots, were tasked to fly three separate courses starting with takeoff and ending with

a final-approach-to-land at another airport. All subjects were given the opportunity

to study a 10-minute tutorial presentation on how to fly the simulator using the

provided controls. Upon completion of the three scenarios, they were requested to

complete a survey based on the system usability scale (SUS) (Bangor, Kortum, &

Miller, 2009).
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1.3.2 Equipment

The flight simulation model was developed in MATLAB R© and Simulink R©, and

output to FlightGear (an open source flight simulation environment), to provide an

out-the-window (OTW) view of the aircraft in flight. The out-the-window (OTW)

visualization was modified to introduce a virtual highway-in-the-sky (HITS) graphical

representation of the path all pilots were meant to fly through. A consumer-grade

automotive control set served as the primary flight inceptors for piloted flight by the

subjects.

The proposed control inceptors, a steering wheel, shifter module and two foot-

pedals, are the only controls made available to the pilot to maneuver the aircraft.

The desired aim is to provide the non-pilot safer and faster access to flight and its

benefits as a viable mode of point-to-point transportation.

1.3.3 Control Hardware

The primary flight control inceptor hardware comprise of a steering wheel, a 7-

position shifter module, and an accelerator and brake pedal (see Figures 1.1, 1.2

and 1.3, and 1.4). The third pedal (clutch pedal) was not used. Additionally, all

other buttons and controls were programmed to be inoperative to constrain the final

simulator with only typical automotive controls.

The controls were designated based on their function to the names listed in Table

1.1.
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Figure 1.1: Logitech G27 automotive steering wheel

Figure 1.2: Logitech G27 automotive pedals

Figure 1.3: Logitech G27 manual shifter
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Figure 1.4: Pilot control hardware

Table 1.1: Reassignment of control hardware to new functions.

Device New Designation Inceptor Function

Steering wheel Rate-of-turn (Ω) inceptor control of horizontal flight path

at a commanded RoT

Accelerator pedal Right pedal inceptor ↑ RoC/RoD for modes 2 & 5

↑ MAP in cruise modes 3 & 4

Brake pedal Left pedal inceptor ↓ RoC/RoD for modes 2 & 5

↓ MAP in cruise modes 3 & 4
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1.3.4 Operation

Figure 1.5: Modes developed for the shifter module

The steering wheel enables control of horizontal flight path while the shifter mod-

ule was used to switch between six available flight modes (See Figure 1.5). Finally,

depending on the selected mode, the two pedals allow the pilot to adjust rate of climb

(or descent), cruising airspeed, or flight path angle.

The typical sequence of events would follow as the pilot attempted to fly within

the confines of the highway-in-the-sky:
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• Each subject was setup to begin a flight from takeoff. The aircraft’s position

was initialized at one end of the runway with the mode selector in ’takeoff’

mode.

• The subject would then hold down the right pedal inceptor opening the throttle

and speeding up to takeoff speed, at which point the aircraft would initiate

rotation without pilot input.

• The subject would then switch to a climb mode and have the ability to increase

or decrease the rate of climb (RoC) as needed. However, even without input

the aircraft would maintain a baseline rate (applicable while in descend mode

as well).

• Approaching the desired flight level, while still in climb mode, the pilot would

be able to reduce the RoC to a minimum of 0 feet-per-minute by completely

holding down the left pedal inceptor.

• At this point, one of two cruise modes (low or high speed) may be engaged and

the left pedal inceptor can be released. The aircraft would now hold altitude.

• In cruise mode, the right and left pedal inceptors serve to increase or decrease

power (while maintaining altitude), respectively.

• A descent or another climb could be initiated from the cruise mode by preemp-

tively holding down the left pedal inceptor and switching modes. The action of

holding down the inceptor ensures that the climb or descent mode is entered at
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0 feet-per-minute. Relaxing pressure on the left pedal inceptor will allow the

climb/descend mode to track to the desired rate.

• Throughout all flight modes the Ω-inceptor would allow the pilot to change hor-

izontal flight path without any additional compensation to remain coordinated.

• Finally, upon rendezvousing and centering with the portion of the ‘highway-

in-the-sky’ lined up with the destination runway, the pilot could engage the

landing approach mode. The aircraft would maintain a 3 degree flight path

angle, γ. The right and left pedal inceptors would allow the subject to increase

or decrease flight path if overshooting or undershooting the runway.

The final setup had subjects tasked with flying three separate courses starting

with takeoff, and ending with a final approach to land at another airport.

Figure 1.6 shows the projected display of the FlightGear environment with a

virtual ‘highway-in-the-sky’.

The following chapters shall detail the resulting flight model design, control algo-

rithms, their performance and areas of further research.

1.3.5 Flight Data Model

Given the low Technology Readiness Level (TRL) of this investigation, it was

deemed unnecessary to develop a non-linear aerodynamic database for high-fidelity

representation of a specific aircraft. Instead, typical point values for the stability and

control derivatives of a North American Aviation Navion were used in a six degree-



17

Figure 1.6: Test candidate flying simulator through a virtual ’highway’

of-freedom model. The Navion was a 4-seat single-engine GA aircraft designed in

the 1940s and produced up to the mid-70s. Takeoff scenarios were facilitated by

implementing a three-point ground reaction model.

With data readily available, a propulsion model of the Lycoming IO-360 recip-

rocating engine with an MTV-6-A-C-F/CF187-129 constant-speed propeller was in-

corporated to provide values for thrust based on appropriate revolutions per minute

(RPM) and manifold air pressure (MAP) settings. It should be noted that the Navion

does not use this specific engine or propeller; however, for the purposes of simulation,

this change can be treated as negligible in affecting the overall validity of the model.
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Table 1.2: Navion stability and control derivatives (per radian)

CL CD CLα CDα CMα CLα̇ CMα̇
CLq

0.41 0.05 4.44 0.33 -0.683 0.0 -4.36 3.8

CMq CLδe
CMδe

CYβ CLβ CNβ CLp CNp

-9.96 0.355 -0.923 -0.564 -0.074 0.071 -0.410 -0.0575

CLr CNr CLδa
CNδa

CYδr
CLδr

CNδr
-

0.107 -0.125 -0.134 -0.0035 0.157 0.107 -0.072 -

1.3.6 Visual Interface

To enable piloted flight of the simulation model, the FlightGear platform was

modified to provide a virtual ‘highway-in-the-sky’. A set of red glide slope tunnel-

style boxes were generated to create a course for the test subjects to fly through.

The aircraft state variables along with additional flight and engine parameters

computed in simulation, were sent via User Datagram Protocol (UDP) to a remote

PC running the FlightGear environment. Table 1.3 lists the output variables sent to

the remote PC.

This chapter identified the motivation, challenges and possible solutions associated

with simplifying piloted flight for the personal-owner aircraft. It also presented the

problem statement of this thesis, introducing a new concept with regard to the pilot-

vehicle interface, and subsequently provided a top-level description of a solution that
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Table 1.3: Required input parameters sent from model to FlightGear

Parameter Description Units

Latitude/longitude - radians (rad)

Altitude - meters (m)

φ,θ,ψ Euler angles radians (rad)

CAS Calibrated airspeed knots (kts)

was designed and tested. The following chapter revisits attempts in aeronautical

history to simplify flight. This will enable the reader to appreciate the solution

presented in Chapter 3 of this paper.
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2. Literature Review

Given the close relationship between advances in technology and progress in flight

control systems, this chapter is divided into two parts which chronologically review

solutions proposed to augment and simplify flight. The first part provides a historical

account of early attempts prior to digital flight control technology, whilst the second

part introduces relevant research conducted from the late 1980s to present day.

2.1 Simplifying Flight Prior to Digital Control

Although primitive, the solutions presented in this section were motivated by a

desire that is still relevant to the advancement of aviation today; that is, to simplify

piloted flight for the purpose of safer aircraft operation in inclement weather, and to

reduce pilot workload.

As a result, the inspiration for much of the work in this thesis on FBW-type flight

controls can be found from Upson’s words in 1942 on the topic of developing safe

personal aircraft (Abzug & Larrabee, 2005),

“Outstanding in vision, incapable of spinning, comparable with an au-

tomobile in simplicity of control, yet with unquestioned superiority of

cross-country performance”.
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2.1.1 Safe Personal Airplanes from the 1920s to 1960s

The idea of fusing the simplicity and safety of automotive control to aircraft

dates back to the mid-1920s when philanthropist Harry Guggenheim sponsored the

Guggenheim Safe Aircraft Competition (SAC) from 1926 to 1929. An open invitation

to aircraft manufacturers around the world resulted in twenty five entries of which

only ten managed to demonstrate their designs (Abzug & Larrabee, 2005). The

competition set forth the following requirements (Sellon, 2004):

• Maintain controlled, level flight at 35mph without stalling;

• Demonstrate hands-off stability for five minutes at any airspeed between 45 and

100mph in gusty air;

• Glide power-off at less than 38mph;

• Land over a 35-foot obstacle with a maximum 300-foot roll;

• Take-off over the above-mentioned 35-foot obstacle within 500 feet from a stand-

ing start.

Two entrants in particular, the Handley Page H-29 and the Curtiss Tanager (See

Figure 2.1) demonstrated exceptional short-field landing capabilities by implementing

full-span flaps, and leading-edge slats designed to deploy automatically, upon being

adequately loaded at high angles of attack. Both aircraft also greatly improved lateral

controllability with the use of floating ailerons.

Winning by a small margin, the Curtiss Tanager, achieved, “a minimum gliding speed
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Figure 2.1: The Curtiss Tanager - Winner of the Guggenheim Safe Aircraft Compe-

tition

of 37 miles per hour, excellent lateral control, and a total distance from a 35-foot

obstacle to a full stop of less than 300 feet” (Abzug & Larrabee, 2005).

Within a span of three years the Guggenheim SAC generated significant engineer-

ing solutions paving the way for further intellectual investment in the idea of a safe

personal aircraft.

2.1.2 1929 - Study of Spiral Tendency in Blind Flying

The tendency of pilots to assume a spiral path when provided no visual reference

was investigated in 1929 by the NACA at the Langley Memorial Aeronautical Lab-

oratory in Virginia (Carroll & McAvoy, 1929). The investigation was motivated by

findings in a paper published in the Journal of Morphology and Physiology (1928)
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which presented experimental results indicating the tendency of blind-folded persons

to follow a spiral path whether walking, driving, rowing a boat or swimming.

Unsurprisingly, the results from the NACA investigation illustrated how blind-

folded pilots, when asked to maintain straight and level flight, would introduce the

aircraft into a spiral dive within ninety seconds of assuming control.

The simple experiment demonstrated the significance of visual reference and the

need for an artificial horizon in what we now call Instrument Flight Rules (IFR)

conditions.

2.1.3 1952 - NACA’s Investigation of the Effect of Control Centering

Springs

The NACA technical report entitled, ‘Flight Investigation of the Effect of Control

Centering Springs on the Apparent Spiral Stability of a Personal-Owner Airplane’

details the design, testing and results of a control system focused on improving the

safety of ‘hands-off’ flight (Campbell et al., 1952).

The goal of this effort was to enable the pilot to, “devote adequate time to nav-

igation problems” without worrying about large changes in heading. In addition, if

caught in ‘blind-flying’ conditions, the pilot should be able to release the controls to

ensure the aircraft remains in a safe attitude. As a result, the pilot would no longer

need to rely on his or her sense of orientation; the reliability of which was illustrated

by (Carroll & McAvoy, 1929).
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Figure 2.2: Diagram illustrating preloaded control system (Campbell et al., 1952)

The report, borrowing findings from a prior investigation, reiterated that many

light airplanes with inherent spiral stability still demonstrated unstable spiral ten-

dencies in flight due to the lack of trimming options, or as a result of the friction

typically present in the control systems of light aircraft (Campbell et al., 1952).

The solution proposed and tested by (Campbell et al., 1952) comprised preloaded

centering springs used in both the rudder and aileron control systems. In addition to

providing a control centering mechanism, the system also facilitated trimming of the

aircraft.

Flight tests were conducted with the system engaged and disengaged. According

to (Campbell et al., 1952), “Records were obtained of the uncontrolled lateral motions
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of the airplane starting from straight and level flight and from turns and also allowing

abrupt rudder kicks” (p. 2).

The report concluded that with both centering springs engaged to hold trim, “the

airplane would fly ‘hands-off’ for indefinite periods of time without getting into a

dangerous attitude, at least, in the smooth and moderately rough air in which all the

tests were made” (Campbell et al., 1952). This was not the case with both systems

disengaged. Following a rudder step input the aircraft would diverge in the direction

of the rudder step and fail to center due to the inherent friction in the control system.

The authors noted that even with the additional breakout force of 3.5 lbf con-

tributed by the aileron centering system, the control forces were reasonable as reported

by the test pilots. Excessive friction in the rudder system however, required a greater

spring preload which resulted in a breakout force of approximately 22 lbf; a value

that was objectionable to all pilots.

Additionally, it was observed that when airspeed was not held constant (elevator

free) in a banked attitude, an airspeed increase tended to bank the aircraft to the right

creating large divergences, once the controls were released. Finally, it was suggested

by (Campbell et al., 1952) that minimization of lateral-directional trim changes due

to variation in airspeed, power setting or fuel loading would be required in addition

to improving the aircraft’s intrinsic spiral stability to arrive at a better solution.
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2.1.4 1956 - NACA’s Investigation of an Auto Aileron Trim Device to

Augment Spiral Stability

Building on the control augmentation solution proposed by (Campbell et al.,

1952), the NACA developed and tested an automatic aileron trim device to alleviate

the out-of-trim spiral divergence tendencies mentioned in Section 1.1.3.

Phillips, Kuehnel, & Whitten (1956) employed a device “designed to deflect the

ailerons by shifting the trim position of preloaded control centering springs in order to

maintain zero yawing velocity”. Trim position was adjusted by means of an electric

motor which in turn was driven in the appropriate direction based on a yaw-rate

sensitive gyroscope.1

It was also determined that use of the device on the rudder was unnecessary as

the aileron control deflection and force required to correct for an out-of-trim state

were typically smaller than that of the rudder system.

Unlike an autopilot servomotor, the power requirements of the on-off electric motor

were “reduced both because the total travel provided by the motor which operates the

ailerons should be enough to offset only possible out-of-trim moments on the airplane,

and because rate of motion can be relatively low” (W. H. Phillips et al., 1956).

To ensure effective damping of the long-period oscillation, aileron reversal was

designed to occur before the yaw rate was zero, allowing the aircraft to be in a zero

roll attitude when the ailerons were centered to neutral. To implement the aileron

1During a steady turn, a yaw rate gyro can serve as a roll attitude gyro, as the roll angle is propor-
tional to yaw rate (W. H. Phillips et al., 1956).
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Figure 2.3: Illustration of automatic aileron trim control system (W. H. Phillips et

al., 1956)

reversal, the yaw rate gyro’s spin axis was tilted as shown in Figure 2.3. The contacts

on the gyro would reverse the motor direction, “when the resultant of the components

of yawing and rolling velocities about the sensitive axis equal zero” (W. H. Phillips

et al., 1956), when

r cos δg + p sin δg = 0 (2.1)
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where, ‘r’ and ‘p’ are the yaw and roll rate, respectively, and δg was the angle sub-

tended between the gyro spin axis and the flight path. Figure 2.3 provides a gyro tilt

angle of 35 degrees to the airplane axis.

Flight testing was conducted by first trimming the aircraft and then powering

the automatic trim system. No lateral trimming was performed after this point. A

reasonable inclination angle was also determined for the gyroscope to achieve the

desired damping. All subsequent testing was carried out at that setting.

Figure 2.4: Strip chart from flight test for basic aircraft (W. H. Phillips et al., 1956)

A comparison between the basic (trimming device disabled) and augmented air-

craft is illustrated in Figures 2.4 and 2.5, respectively. The particular test shown

began with the pilot performing a 45 degree heading change to the right after which

the controls were released from a 20 degree roll angle. From Figure 2.4 the heading
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angle can be seen to diverge rapidly as the aircraft continues to bank as a result of

the out-of-trim state brought on by the increase in airspeed.

Conversely, Figure 2.5 demonstrates how the automatic aileron trimming device

rolled the aircraft back to wings level within 10 seconds of the controls being freed,

with little overshoot.

Figure 2.5: Strip chart from flight test for augmented aircraft (W. H. Phillips et al.,

1956)

The investigation concluded that all four test pilots recognized the system as a use-

ful tool in preventing divergence and enabling safe hands-free control “independent of

airspeed and load changes that would cause directional trim changes” (W. H. Phillips

et al., 1956).
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Furthermore, the system also prevented divergence in gusty conditions and mit-

igated unwanted gyrations “resulting in a more comfortable ride with reduced pilot

effort”.

Pilots however, did object to the aileron force characteristics during takeoff and

landing legs, as the preloaded spring force was objectionable when large corrective

deflections were needed, especially in gusty conditions. As a result, an option to

disengage the system was recommended.

Overall, the system was considered a suitable addition to improve the hands-free

safety and augment the apparent spiral mode of a personal aircraft.

2.1.5 1966 - NASA’s Evaluation of the Handling Qualities of Seven Gen-

eral Aviation Aircraft

To review the status of GA aircraft development, the NASA Flight Research

Center (FRC) conducted an investigation into the handling qualities of seven late-

model designs. A similar study evaluating personal-owner aircraft was carried out in

1948 (Hunter, 1948), and the almost 20 year gap since then had seen this class of

aircraft undergo both physical and operational changes. Increased engine power, the

replacement of the standard landing gear arrangement with a tricycle type, and the

inclusion of control-system devices, contributed in justifying a fresh evaluation of the

class. Furthermore, such aircraft saw increased use in adverse weather conditions as

compared to those in the 1940s (Barber, Jones, Sisk, & Haise, 1966).
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The quantitative evaluation of the aircraft indicated, “...satisfactory stability and

control characteristics. However, these characteristics are degraded with decreasing

airspeed, increasing aft center of gravity, increasing power, and extension of gear and

flaps.”

A summary of the investigation’s flight test trials revealed that

“...the handling qualities are generally satisfactory during visual flight and dur-

ing instrument flight in smooth air. Atmospheric turbulence degrades these handling

qualities, with the greatest degradation noted during instrument landing system ap-

proaches. Such factors as excessive control-system friction, low levels of static sta-

bility, high adverse yaw, poor Dutch roll characteristics, and control-surface float

combine to make precise instrument tracking tasks, in the presence of turbulence,

difficult even for experienced instrument pilots.” (Barber et al., 1966).

The report concludes with a note indicating a sharp increase in workload between

the satisfactory and unsatisfactory aircraft, and specifies a need for further investiga-

tion into pilot workload in order to define superior design criteria.

2.1.6 1974 - NASA’s Evaluation of Control System Modes and Displays

in General Aviation Aircraft

Building on their investigation into the handling qualities of GA aircraft, NASA

developed and tested a research flight control system (FCS) to mitigate the handling

quality issues raised in (Barber et al., 1966).
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In addition to the change in control systems, the program was divided into phases,

the first of which maintained the aircraft’s basic cockpit instruments, and a second

phase where the cockpit was enhanced with a flight-director display (Loschke et al.,

1974).

Control System Description

The FCS was comprised of hydraulic servo-actuators, rate and attitude gyros,

control force sensors, and control surface position transducers. The left side controls

were mechanically disconnected from the existing cable and pulley system. Fail-

safe control transfer was implemented to allow for the safety pilot (right side) to

take control using the aircraft’s conventional control system in the event of a failure

(Loschke et al., 1974).

Figure 2.6: Control system mechanization in pitch axis (Loschke et al., 1974)

Control Modes
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The FCS implemented three modes; (a) Basic mode, (b) Rate-command mode,

and (c) Attitude-command mode.

(a) The basic mode allowed for direct control of the surface positions via the

servo-actuators. This mode was intended to mimic the aircraft’s existing cable-pulley

system. As a result, control gains were selected to mirror the gearing ratios for wheel-

to-surface and pedal-to-surface of the mechanical system (Loschke et al., 1974).

(b) The second available mode, the rate-command mode, allowed for direct pitch

and roll-rate command through the control wheel. Coordinated flight was permitted

by the implementation of a yaw rate damper and an aileron-to-rudder interconnect

to combat adverse yaw. A washout network prevented undesired actuator responses

due to a steady-state yaw rate during constant rate turns (Loschke et al., 1974).

(c) The attitude-command mode provided a direct pitch and roll attitude com-

mand signal using the wheel. Figure 2.7 illustrates the use of the shaping network to

integrate the error between the actual and commanded pitch angle. Similarly, Figure

2.8 shows the roll attitude command logic.

Roll rate was used as the feedback parameter which resulted in increased loop

sensitivity and smaller control gains for the axis. A heading-hold mode was used to

maintain constant heading in level flight. A roll angle greater than or equal to ±3

degrees permitted the heading-hold loop to be opened to permit turns (Loschke et

al., 1974). Additionally, the loop would also open when yaw trim was activated by

the pilot to correct for sideslip following a heading change.

Control System Characteristics
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Figure 2.7: Pitch-attitude control system (Loschke et al., 1974)

Figure 2.8: Roll-attitude control system (Loschke et al., 1974)



35

The investigation provides results from step inputs injected into the three modes

to illustrate each of their longitudinal and lateral responses.

(a) Longitudinal Response

Figure 2.9 provides the longitudinal response characteristics.

The basic-mode response to a step input resulted in a near constant angle-of-attack

(AoA), and varying pitch angle, pitch rate and normal acceleration. The control

surface deflection followed control input as would be expected from the conventional

mechanical system.

The rate-command mode response was in the form of a constant pitch-rate with

a constant rate of control deflection while the command was present. Figure 2.9

also shows an increasing AoA which would result in the aircraft stalling unless the

command was removed via the control wheel.

Finally, the attitude-command mode responded with a constant pitch attitude

with all other longitudinal parameters varying to meet the desired signal. The pilot

could enjoy almost direct flight-path control with the need to manually adjust the

throttle setting, of course.

(b) Lateral Response

Figure 2.10 provides the lateral response characteristics.

The basic mode can be seen demonstrating an almost flat but increasing roll rate

with the Dutch-roll and adverse yaw response clearly illustrated in the yaw rate and

sideslip time traces. Roll rate divergence was indicative of the negative spiral stability

of the aircraft.



36

Figure 2.9: Long Response (Loschke et al., 1974)

The rate-command mode delivered a constant roll rate as expected, while the yaw

damper and interconnected rudder and aileron mechanism ensured coordinated flight.
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Figure 2.10: Lateral Response (Loschke et al., 1974)

Similarly, the attitude-command mode quickly met the desired roll angle com-

manded, and the yaw damper and heading-hold system performed well, maintaining

zero sideslip more effectively than the rate-command mode.

Pilot Evaluation of Handling Qualities

To determine the real world benefits of the research FCS over the conventional

control system, two experienced test pilots along with other instrument-rated pilots
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with varying backgrounds were used to evaluate the aircraft. Around 20 instrument

landing (ILS) approaches were flown per control system, and every pilot was made to

fly “...each control system and display configuration at least once.” (Loschke et al.,

1974). Cooper-Harper handling qualities results for the basic mode can be seen in

Figure 2.11.

With increasing turbulence during the ILS approaches, the ratings moved from,

“...somewhat less than satisfactory” to ‘8’, which is defined as unacceptable handling

characteristics requiring significant pilot skill to maintain control.

Figure 2.11: Cooper-Harper ratings for all modes (Loschke et al., 1974)
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With the rate-command mode, pilots continued to rate aircraft handling as un-

satisfactory, as they felt no appreciable improvement when flying in calm conditions.

However, a noticeable improvement was reported in turbulence owing to the mode’s

ability to provide gust alleviation and limit trim changes due to throttle adjustment

and flap and gear deflection. Overall trim was difficult to establish though, with pilots

reporting constant pitch and roll rates drifting them off-course from the ILS beam.

Figure 2.12: IFR mission - attitude-command vs. basic mode (Loschke et al., 1974)

Finally, the attitude-command mode received a satisfactory rating, with pilots

acknowledging its performance in maintaining sufficient controllability even in high

levels of turbulence. The mode managed to provide considerable stability as well, per-

mitting the pilots to engage in navigation tasks without concern for attitude changes

during the ILS approaches.
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Flight testing of the attitude-command mode was extended to include 3 non-

instrument rated pilots (with approximately 200 hours of flight time) to gauge the

benefit of the system in the event that such pilots met with ILS conditions.

Figure 2.12 illustrates the performance of one such pilot who managed to complete

the IFR mission when using the attitude-command mode, but failed to fly upright

for more than 3 nautical miles whilst using the basic mode.

The findings of this investigation pointed strongly in favor of augmentation in gen-

eral aviation aircraft to bolster the ease-of-use of the vehicle especially in unfavorable

flying conditions.

2.2 Modern Digital FBW Controls and Displays - Investigation and So-

lutions, and the ‘Irony of Automation’

A cross-section of research studies in FBW control system design is presented

in this section. With the proliferation of such systems in military and transport

category aircraft, organizations such as NASA have, and still are, exploring cost-

effective techniques to simplify piloted flight in GA. Current research has focused on

finding a balance between high levels of automation and manual flight control. The

final products result in systems capable of limiting ‘pilot error’ and fatigue, whilst

preserving continuous engagement with the act of flying.
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2.2.1 1970s - 1980s - Boeing/NASA Development of the Velocity - Vector

Control Wheel Steering System

The first series of investigations in this chronology of FBW solutions was targeted

at addressing pilot workload, and flight safety of commercial transports operating in

congested terminal areas, under the sponsorship of the Terminal Configured Vehicle

Program (TCVP). One of these studies, described below, focused on flight operations

requiring manual pilot control in complex environments. The objective of the study

was the development of a system capable of providing (Lambregts & Cannon, 1979):

• automatic tracking of the established flight path to eliminate the

need for pilot attention to control the effects of trim changes due to

speed, configuration changes, turbulence and windshear;

• direct control over the inertial flight path using column/wheel and

suitable displays, thereby reducing the need for attitude inner loop

control;

• anticipatory flight path information display, to allow early assessment

of the required pilot control input to achieve longer term airplane

position objectives.

The solution comprised of: (a) development of a Velocity Control Wheel Steering

system, and (b) the development of displays which provide anticipatory flight path

information.
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Central to manually flying the Velocity CWS system was the expectation that,

“The pilots maneuvering task will further be simplified if the control augmenta-

tion/display system allows the pilot to make each path change with a single well-

planned control input.” (Lambregts & Cannon, 1979)

The initial implementation of the Velocity CWS was comprised of a longitudinal

and lateral control law.

The longitudinal control law was designed to track the established vertical flight

path. Pilot column input would introduce a γcmd input, initiating a synchronization to

the actual flight path angle. This action would effectively open the automatic control

loop. Upon returning the column to detent, γcmd would become the new reference

for the automatic control loop. Pilot input was guided by the presence of a gamma

indication on a display instrument (Lambregts & Cannon, 1979).

The control law was also scheduled with airspeed to maintain satisfactory stick

force per ‘g’ sensitivity and aircraft damping response.

The lateral control law consisted “of a ground track hold mode, a roll maneuvering

and a bank angle hold submode.” (Lambregts & Cannon, 1979). Ground track hold

engagement was a function of bank angle control wheel position. Setting a bank angle

below 5 degrees and centering the control wheel would engage the mode. Commanding

the wheel out of its detent would engage the roll maneuver mode, permitting the pilot

to roll the aircraft freely. If the wheel were to be released at a bank angle greater

than 5 degrees, the roll attitude hold mode would take over.
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Several deficiencies related to handling qualities and mode confusion identified

during simulation trials and flight test resulted in redesigns for the both control laws

and their corresponding display symbology.

The replacement of the gamma feedback signal with a computed ˙γcmd signal helped

increase system damping while decreasing gamma response overshoot in response to

a column input.

The lateral control law’s mode confusion issues “were experienced when transi-

tioning between the bank hold and track hold and when making small track angle

adjustments.” (Lambregts & Cannon, 1979). The threshold of 5 degrees was diffi-

cult to perceive given the inherent sluggishness of the system, and test pilots found

themselves applying a trial and error method to engage the desired track hold mode.

Thus, it was determined that submodes should not be activated “by a logical

function based on an imperceptible combination of control states.” (Lambregts &

Cannon, 1979). Instead, activation was only made possible by discrete pilot control

action. Pilot displays were also updated to replace instantaneous bank angle with the

commanded bank angle for the predicted track display. This alleviated the unsteady

behavior of the track display in turbulence.

Another improvement added the ability for the pilot to maintain a constant radius

ground track in crosswind conditions, eliminating the need for bank angle adjustments

during a turn to line up with the desired track.
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Lastly, a decrab enhancement was added to simplify touchdowns. The feature

permitted the pilot to only make a rudder pedal input to decrab without having to

correct for the aircraft’s roll attitude.

The study indicated that the Velocity CWS concept could substantially reduce

workload during manual control; however no formal simulation studies or flight test

data were available at the time of publication.2

2.2.2 1980s - 1994 - NASA’s Development and Evaluation of the E-Z Fly

Control System in Simulation

Since the mid-80s, the LaRC was engaged in developing technologies to improve

the efficiency and safety of general aviation. A study comparable to the one associated

with this thesis was conducted by the LaRC in the early 1990s. The motivation was

also to enable simplified flight for the non-or-novice pilot, reducing training time, and

limiting ‘recurring proficiency requirements’ by implementing a digital FBW control

system in a piloted simulator (Stewart, 1994).

The complete system was comprised of two parts; (a) a decoupled fly-by-wire

control system named the ‘E-Z Fly’ (Easy-to-Fly) control system, and, (b) a pictorial

display called the Highway-in-the-Sky (HITS) display (See Figure 2.13). As it happens

this name has since been used for a variety of display systems attempting to guide

the pilot through some kind of virtual path in the sky.

2A subsequent study tested the longitudinal improvements in isolation and the results were published
in NASA TP-1664.
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Figure 2.13: Highway-in-the-Sky display system used in the Langley GA Simulator

(Stewart, 1994)

The collective system, E-Z Fly and HITS, was assembled in a simulation cock-

pit mounted on a limited full-motion base with a hydraulic control loading system

(Stewart, 1994).

The E-Z Fly system provided three cockpit controls: the longitudinal wheel, the

lateral wheel, and the throttle. Rudder pedals were only required during crosswind

landings to control the sideslip angle. The three main cockpit controls were intended

to “individually and uniquely determine the three primary response parameters (ver-

tical speed, airspeed, and heading rate).” (Stewart, 1994).

Control laws for the E-Z Fly system provided direct control over the vertical

speed, airspeed, roll angle, and the sideslip angle (See Figure 2.14). The longitudinal

wheel provided vertical speed control using “proportional plus integral (PI) forward
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paths” with, “Gain scheduling as [a] function of airspeed and dynamic pressure...”

to deliver pitch damping (Stewart, 1994). The throttle was a direct airspeed (PI)

controller, and implemented a feed-forward path to limit engine transients brought

on by large commanded changes in airspeed. Roll angle control was afforded by the

lateral wheel through a “...gain with roll rate used to provide damping.” (Stewart,

1994). As mentioned above, the rudder pedals simply controlled the sideslip angle,

and the yaw rate was fed back to deliver damping about the vertical axis. Trimming

of control forces was provided by two separate automatic trimming functions for both

longitudinal and lateral motion. The system was designed to alleviate increased wheel

forces when it was held in a deflected position for a few seconds. Finally, the control

law authority was limited by flight envelope protection (FEP) to prevent stalls and

other situations brought on by unreasonable commanded inputs (Stewart, 1994).

The test program recruited three test pilots with some flight training, and thirteen

subjects with no experience of piloting an aircraft. A racetrack pattern, including “...a

takeoff, straight climbs, a climbing run, a level downwind section, a descending turn,

and a two-segment straight-in approach to a flare and landing” was flown with a 200

ft ceiling. All participants were required to fly three different configurations; (a) with

both the E-Z Fly system and HITS engaged, (b) with the E-Z Fly disengaged (con-

ventional control system) but the HITS engaged; and (c) with the E-Z Fly engaged

but the HITS disabled. Other runs with specific features turned off, were also flown

to separate evaluation variables (Stewart, 1994).
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Figure 2.14: Mapping of pilot inputs to aircraft response for the decoupled control

vs. the conventional system (Stewart, 1994)

Results from the trials with the E-Z Fly and HITS systems being engaged showed

that all non-pilots successfully completed the assigned piloting tasks without prior

training. Other pertinent observations made were as follows:

• Poor-performing pilots performed poorly in all the runs

• Non-pilots took their first turns with some difficultly, flying ‘out of the highway’.

Pilots did not have this problem.
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• Non-pilots managed to track the glideslope well (to within ±0.35 deg) even

when presented with virtual cloud cover, thereby having to rely solely on the

HITS display.

• Non-pilots showed significant improvement from their first attempt with the

E-Z Fly system, correcting for overshoots in turns and generating less control

activity with experience.

• With the E-Z Fly system off, only 2 out of 7 runs were successfully flown by

the non-pilots.

• As expected, trained pilots completed all the different configuration runs suc-

cessfully.

Figure 2.15 presents the performance of one non-pilot using the E-Z Fly system,

and Figure 2.16 provides results for the same pilot attempting to fly with the con-

ventional control system.

The findings of this investigation indicate dramatic benefits in the implementation

of FBW in GA aircraft.

2.2.3 2002 - FAA Civil Aerospace Medical Institute: Applying Performance-

Controlled Systems, Fuzzy Logic, and Fly-By-Wire Controls to GA

The goals set out by the AGATE consortium in the 90s motivated the develop-

ment of a fuzzy-logic control system (FLC) by a doctoral candidate at Wichita State

University. The idea was to develop a system capable of being fitted in “different
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Figure 2.15: Performance of a non-pilot particpant using the E-Z control system

(Stewart, 1994)

airframes without the usual individual ‘tuning’ associated with autopilot systems...”

The FLC would also provide some form of FEP to prevent stalls or excessive airspeeds

(Beringer, 2002).

Code developed in this dissertation by Duerksen was implemented by the FAA’s

Civil Aerospace Medical Institute in the Advanced General Aviation Research Simu-

lator (AGARS) for purposes of piloted evaluations (Beringer, 2002).

The simulator, as in the previous study mentioned above, was equipped with both

conventional controls and the experimental FLC hardware which was comprised of a

“spring-centered and damped 4-axis side-arm controller, with those axes representing
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Figure 2.16: Performance of a non-pilot particpant using the conventional control

system (Stewart, 1994)

turn rate (wrist rotation), climb or descent rate (vertical wrist flexion), and airspeed

(fore-aft slide axis).” (Beringer, 2002). See Figure 2.17.

Driving the simulation was a math model of the Piper Malibu (a single piston

engine, 6 person GA aircraft). The display was configured to be a HITS system with

a “3-D courseline”, and guidance vector (Beringer, 2002).

Evaluations were conducted by 24 participants, broken into 4 groups: high-time

pilots, low-time pilots, student pilots, and non-pilots. A short pre-flight briefing

without hands-on training was provided. Participants were tasked with taking-off,

climbing, and executing a base-leg turn before descending on approach to land at the
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Figure 2.17: 4-axis side arm controller used in the FLC-system (Beringer, 2002)

starting airport. Throughout the extended pattern, the visual system provided a vir-

tual pathway to follow. The 15-17 minute flights ended with a post-test questionnaire.

Quantitative data was recorded as well.

As previous studies have shown, augmented control systems have received favor-

able responses from evaluating participants. This study was no different, with both

pilots and non-pilots expressing their preference for the FLC system. Non-pilots also

indicated that the FLC system was easier to learn. Quantitative data, as is presented

for one non-pilot in Figures 2.18 and 2.19, shows the marked improvement over the

conventional yoke in both vertical and lateral tracking when using the FLC system.
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Figure 2.18: Vertical error of a non-pilot particpant (Beringer, 2002)

Figure 2.19: Lateral error of a non-pilot particpant (Beringer, 2002)

An expected yet noteworthy outcome of the evaluations was that of reduced con-

trol input frequency with the FLC system engaged. A reduction ratio of almost 3:1

was achieved across the sample, signifying considerable workload alleviation for the
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participant. A complaint against the FLC system was that of having to hold the

side-stick in position to maintain a desired climb or descent rate. This was straining

for the wrist, and was subsequently rectified with ‘lock-in and release’ functionality

which could be disabled once the desired end-state was achieved.

2.2.4 2003 - Raytheon’s GA Research Aircraft

Under the direction of the SATS program, Duerksen’s research in advanced flight

controls for GA continued at the Raytheon Aircraft Company. A 1978 Beech F33C

Aerobatic Bonanza was retrofitted with a programmable FBW control system and

two 10 inch Avidyne LCDs (Duerksen, 2003).

Echoing similar motivation, the goal was to enable “people with little or no piloting

experience” to successfully fly instrument approaches to minimums after about 15

minutes of instruction.

The F33C’s flight control system was designed as a ‘velocity vector command

system’. The pilot is provided a joystick to command the vertical flight path angle,

γ and desired turn rate. The second inceptor is a speed command lever to set the

desired airspeed. Sideslip related functions are automatic to ensure yaw damping,

coordinated flight and compensation for engine torque and p-factor (Duerksen, 2003).

To accomplish the command tasks, the FBW system controlled throttle, elevator,

aileron and rudder positions.

FEP was built into the system as well, protecting against stalls, over-g, over-bank

and over-speed.



54

With regard to lateral flight path control, Duerksen claims the design philosophy

behind turn-rate command rather than the more direct heading command was driven

by the

“vast wealth of experience in the target population that correlates

control effector position with turn rate (e.g. steering wheel in a car).

Using this convention would allow for positive transfer of learning from

other vehicle types” (Duerksen, 2003).

As a result, a steep turn in instrument conditions was demonstrated to be an

easy task for an inexperienced pilot. The maximum turn rate would be achievable

by fully deflecting the stick to either side and holding it there. With appropriate

airspeed, the aircraft could attain a maximum 55 degree bank angle and with the

stick centered longitudinally, the airplane would maintain altitude and commanded

airspeed. With the stick spring loaded to the center, the airplane would hold current

altitude, heading and speed until manipulated by the pilot. Of course, adjusting the

speed lever would affect a change from the steady-state condition as well.

This idea of lateral flight path control in this, and the preceding section, is echoed

in the methodology adopted for this thesis. See Section 3.2.1 for details on the Ω-

inceptor as a direct horizontal flight path inceptor.

Evaluation flights flown by low- and no-time pilots demonstrated a high level of

confidence in flying the aircraft after “a few minutes”. Furthermore, it was noted that

if autopilot-type tracking was allowed, the pilots felt completely disengaged from the
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task of flying. Instead, a primary display providing a moving map with “weather,

traffic, terrain and other hazards along the flight path” granted situation awareness

under low workload conditions. However, pilots did complain that the constant stick

displacement required in a long climb or descent was “annoying” (Duerksen, 2003).

A rigorous flight test program was planned but no results have been found in the

literature.

At this stage in the presentation of literature, a summary of control laws covered

through Sections 2.2.1-3 would be useful before proceeding to detail the motivation

and design behind the path-oriented control and display augmentation system devel-

oped at Delft University. The table below lists the primary control parameters for

the decoupled FBW systems from each section.

Table 2.1: FBW sytems summary

Long. Lat-Dir Speed control

E-Z Fly ḣ ψ̇ CMD & Pilot δr Pilot δt

FLC ḣ ψ̇ CMD & β control Airspeed CMD

Raytheon γ ψ̇ CMD &β control Airspeed CMD

Delft FBW+ γ curvature-rate CMD Fixed Speed 150kts
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2.2.5 2006 Delft University of Technology’s Path-Orientated Augmenta-

tion Concept

In 2006, Borst et al. published a comparative study of flight-path predictor display

and flight-path vector control augmentation concepts (Borst et al., 2006). The study

sought to demonstrate the relative efficacy of a curvature-command based, display

and control augmentation system designed by the authors.

The investigators based their design on Boeing’s Velocity CWS system described

in Section 2.2.1.

The goal of the design was to enable the pilot to fly “circular curved ground-

referenced trajectories, irrespective of crosswinds...”, much like Boeing’s system (see

Section 2.2.1) and “relieve the pilot from holding the side stick deflected during turns.”

The latter requirement was met by allowing the pilot to command a “curvature-rate

of the future aircraft trajectory” (Borst et al., 2006). Pilot inputs were interpreted

by a fast-time simulation (FTS) to determine the curvature-rate and climb-angle rate

commands which in turn were output as real-time reference signals for the control

augmentation system to track.

Figure 2.20: Block diagram from a ’velocity error’ in a curve (Borst et al., 2006)
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The pilot interface included an augmented command tunnel display “representing

a 3D analog of the future trajectory that will be flown” (Borst et al., 2006). The

command and reference tunnels were designed to be of equal dimensions to permit

easy detection of path deviation.

The resulting pilot control task was a, “pursuit-tracking task with preview” (Borst

et al., 2006). To remain on-course, the pilot would have to align the command tunnel

(future trajectory) to the reference tunnel. Longitudinal stick deflection would result

in a climb-angle-rate/climb-angle hold command, while lateral deflection would ini-

tiate a curvature-rate/curvature hold command. As expected, a zero-stick deflection

would hold the current climb angle and or curvature.

Figure 2.21: Lag effects from a ‘velocity error’ in a curve (Borst et al., 2006)
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The longitudinal control law tracks the aerodynamic flight-path angle and in doing

so effectively controls the climb or descent rate of the aircraft. The inner loop employs

a pitch-attitude hold controller and turn compensation assists with steady-state turns.

The lateral control law is a heading-hold (HH) controller with yaw-damping and

turn coordination. The inner loop of the HH control law tracks yaw-rate.

For the sake of simplicity, the experiment was conducted using an auto-throttle

which regulated the airspeed to a constant 150 ± 5 kts. An experiment was conducted

with six professional pilots. The experiment used a factorial within-subjects design

to expose each subject to four different augmentation concepts, including the one

detailed in this paper, and two weather conditions. Each pilot flew four blocks of

sixteen runs, where each block had “sixteen randomly ordered runs”. The subjects

also completed a questionnaire on the usability of each augmentation concept in

assisting with tracking a trajectory (Borst et al., 2006).

Results indicated that the path-oriented augmentation concept yielded the best

performance in path-following and ride comfort. However, what was not hypothe-

sized was that the new concept would increase pilot control activity and workload.

It was inferred that the increase in activity owed much to the availability of precise

tracking information with the display system. This could have resulted in pilots at-

tempting to correct errors imperceptible in other augmentation and display concepts.

Subjective responses from the pilots confirmed this idea, with none of them prefer-

ring the newer concept, as it demanded far too much attention to minimizing errors

between the command and reference tunnels. Additionally, the prediction time of the
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command tunnel resulted in pilots focusing on capturing longer-term tracking goals

whilst ‘corner-cutting’ in the interim (Borst et al., 2006).

The research team concluded that their concept had not significantly improved

upon other solutions.

2.2.6 2003-2012 NASA’s H-Mode (Horse Metaphor) and Haptic Flight

Control System

An extensive study in vehicle automation, control augmentation and interaction

was initiated by NASA at the Langley Research Center. The literature, almost span-

ning a decade (2003-2012), established a new design metaphor for tackling the realm

of highly automated vehicles and their interactions with human users.

With aviation, the concern was that highly automated aircraft had not only “led

to a reduction of physical workload, but also to severe problems like mode confusion,

human-out-of-the-loop, and many more.” (Flemisch et al., 2003). This was echoed

in the words of Bainbridge who coined the term ‘irony of automation’ to describe a

situation where “by taking away the easy parts of his tasks, automation can make

the difficult parts...more difficult” (Bainbridge, 1983).

Furthermore, criticism was also directed at the additive nature of cockpit design,

where the highly automated cockpit of a typical passenger jet had become a collection

of incremental advances in systems with little regard for the overall cockpit concept.

The proposed design metaphor, named the Horse-metaphor (H-metaphor), high-

lighted the fact that a distracted (or out-of-loop) horse rider could rely on the animal
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to maintain a safe path, without colliding into obstacles. Conversely, direct control

could be asserted by tightening the reigns (Flemisch et al., 2003).

The application of the metaphor to flying was summarized as the ability to focus on

other tasks while knowing the aircraft would sense and avoid any perceived obstacle.

Equally important to the development of the concept was the elimination of activity

spikes seen when transitioning from purely automated flight to manual flight. Instead

it was desired that the pilot would regularly interact with the vehicle via the inceptor

to make periodic tracking commands. The underlying system would provide control

augmentation and inner-loop closure on the relevant states to simplify the task of

manual control, and automation would not be an exclusive state of control; rather

the physical loop would include both the pilot and the automation simultaneously

(Goodrich, Schutte, & Williams, 2011).

Subsequent publications introduced the design of a Haptic-Multimodal Flight

Control System (HFCS). Central to the design of the HFCS was the idea that it

combined three command ‘languages’ (Schutte, Goodrich, & Williams, 2012). The

command languages were introduced as the mainstay of highly automated aircraft of

the day.

The first language was the manipulation of the control surfaces and propulsion

via three inceptors (stick/yolk, rudder pedals, and throttle).

The second language addressed speed and direction whereby the pilot would in-

teract with an autopilot guidance panel of some sort to set desired heading, airspeed

and altitude commands.
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The third and final language brought “earth-referenced locations and clock time”

into the scenario. This of course required interacting with an FMS display and abiding

by its unique set of rules to configure it for navigation to specific locations (Schutte

et al., 2012).

The HFCS aimed to combine these languages and their unique inceptors into a

simpler paradigm where tasks related to manual flight as well as navigation to a

specific location could all be accomplished using the stick, throttle and a pair of

displays (Schutte et al., 2012).

Also of note was the intent to create a system that could “serve as a bridge between

today’s state of the art aircraft that are highly automated but have little autonomy

and can only be operated by highly trained experts (i.e., pilots) to a future in which

non-experts (e.g., drivers) can safely and reliably use autonomous aircraft to perform

a variety of missions.” (Goodrich et al., 2011). With a focus on the Personal Air

Vehicle (PAV), the design requirements stated that the intended training time would

ideally decrease to a level comparable with driver education, especially if FBW were

leveraged to limit the need for conventional flight skills. A follow-up demand was

to simplify piloting the vehicle to the point where maintaining proficiency could be

accomplished by flying once a month.

Evaluations of the HFCS alongside a manual control system, and a fully automated

system resulted in a response in favor of the HFCS reducing pilot workload, and

improved situational awareness (Schutte et al., 2012).
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This chapter has introduced the reader to a brief history of control augmentation

for the purpose of simplifying flight. More importantly, research presented from the

last 25 years has demonstrated, via simulator evaluations that FBW control systems

can substantially increase the EoU of a typical GA aircraft making it more accessible

to an audience unable to acquire extensive flight training and fulfill regular recurrency

requirements.

The following chapter will present a unique implementation of automotive-like

inceptors in a FBW-type control system which attempts to integrate the familiarity

of driving a car with simplified piloted flight.
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3. Methodology

This chapter is divided into three sections. The first presents a basic definition of the

Ω-inceptor or steering wheel, the second details the functional design of each control

mode, employing the stick shifter and pedals to change and manipulate each mode,

respectively, and the third section describes the experiment design for the piloted

trials.

3.1 Mathematical Basis for the Ω - Inceptor and Envelope Protection

From basic flight mechanics, a relationship exists between the rate-of-turn, Ω,

bank angle, φ, and the aircraft’s true airspeed, VTAS. This relationship determines

Ω to be a required output from the inceptor (steering) in order to manipulate the

horizontal flight path of the aircraft.

The relationship is given in Mechanics of Flight (W. F. Phillips, 2009) as

φ = arctan
ΩV

g
(3.1)

where Ω is the output received from deflection of the Ω - inceptor.

In Section 3.2.1, details on how the resulting bank angle, φ, will be used to com-

mand a roll rate to achieve the desired rate-of-turn requested by the pilot will be

provided.
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3.1.1 Load/Stall Limited Rate-of-Turn

To determine an upper limit for the commanded turn rate allowed by the Ω -

inceptor, the maximum attainable rate-of-turn based on stall and load limitation can

be expressed as,

Ωmax =

√
CLmax

2
(
npllWmax

W
− W

npllWmax

)g

√
ρ

W/Sw

(3.2)

where npll is the positive load limit (W. F. Phillips, 2009). The maximum rate-of-turn

for the Navion model and IO-360 combination at VTAS = 110kts and W = 2150lbs is

estimated to be,

Ωmax ≈ 41deg/s (3.3)

well above the design maximum Ω of 15 deg/s for the Ω - inceptor (5 times faster

than a standard rate turn).

3.2 Flight Modes & Control Law Design

As introduced in Chapter 1, the pilot can manipulate the mode selector between

six modes to cover the typical flight profile - from takeoff (mode 1) through climb

(mode 2) and into low-speed cruise (mode 3) and high-speed cruise (mode 4), followed

by descent (mode 5), and finally approach (mode 6), at a 3 degree glide scope.
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3.2.1 Takeoff Mode (Mode 1)

Engaged at the start of the simulation, Mode 1 enables the pilot to increase throttle

from idle. Takeoff roll is initiated by pressing down on the right pedal inceptor. Upon

reaching a predefined ground speed, the aircraft rotates to climb out. Once off the

ground, horizontal flight path can be changed using the Ω−inceptor or steering wheel.

The pilot is free to switch to Mode 2, or if desired can remain in Mode 1 without

causing the aircraft to become unsafe.

The control logic defining this mode is expanded below. For brevity, deflections

of the right and left pedal inceptors will be abbreviated as δ+R and δ−R, respectively.

Right Pedal Inceptor as Direct Throttle Control

Exclusive to the takeoff mode, this simple logic serves to link the deflection of

the right pedal inceptor to direct throttle control. A simple first-order relationship

between deflection of the right pedal inceptor and commanded throttle, δthcmd , as

manifold air pressure (MAP) can be represented by,

δthcmd = 8δ+R (inHg of MAP) (3.4)

where δ+R ranges from 0 to 1 (full deflection).

Through the use of what would conventionally be the accelerator pedal in an

automobile, the pilot can increase the engine power setting, above the default setpoint,

demanding the throttle setting, δthdem , from the engine,
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δthdem = δthcmd + Pbase (inHg of MAP) (3.5)

where Pbase is the base power setting of 20 inHg of MAP and δthdem is 28 inHg of MAP

with full deflection of δ+R. This outputs a maximum of 177.5 bhp at 2,700 RPM for

takeoff.

Ω - Inceptor for Direct Ground Steering

Again, control logic only found in mode 1 permits the use of the Ω - inceptor as

a conventional steering wheel linked directly to the rudder while the aircraft is on

the ground. The following illustrates the relationship between the controller and the

control surface,

Figure 3.1: Rudder surface deflection vs. Ω - inceptor deflection

Once a δthcmd results in a true airspeed (TAS) value greater than the 62 KIAS,

a second control law is triggered to initiate takeoff rotation. The following section

provides a detailed description. Additionally, the direct Ω - inceptor to rudder link
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is replaced with the control law described under Ω - inceptor for Direct Horizontal

Flight Path Control.

ḣ-q Control Law and the Right and Left Pedal Inceptors

The activation of the takeoff mode enables the aircraft to maintain a predefined

climb angle of 2 degrees without pilot input. The active control law demands a rate-

of-climb based on ground speed, Vgnd, appropriate to maintain the climb angle, γ, as

shown below,

ḣcmd = Vgnd tan γ (ft/s) (3.6)

Note: Small α approximation in use.

The activation of this logic depends on a minimum airspeed, Vrot, requirement

being met to prevent a stall during the takeoff rotation.

ḣcmd(ft/s) =


Vgnd tan γ forVgnd > Vrot

0 forVgnd < Vrot

The right pedal inceptor manipulates the throttle setting as shown in 3.4, while

maintaining the predefined climb angle. This control logic will be referred to as the

ḣ-q control law. Figure 3.2 illustrates the top-level logic of the ḣ-q control law as

implemented for the takeoff mode.
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Figure 3.2: Block diagram illustrating ḣ-q control logic for the takeoff mode

With this relationship in hand, the piecewise function shown below relates the

desired rate-of-climb to a commanded pitch rate, qcmd,

qcmd(deg/s) =


Kq(ḣcmd − ḣ) for 0 < |ḣcmd − ḣ| ≤ 1.25ft/s

10◦/s for|ḣcmd − ḣ| > 1.25ft/s

The ḣ-q control law relates a commanded ḣ to a proportional pitch rate, qcmd.

Driving the error between the current aircraft pitch rate, q, and qcmd to zero poses

itself as a tracker problem, warranting the implementation of a linear quadratic reg-

ulator (LQR) with output feedback manipulating the elevator.

The tracker/regulator problem for an aircraft is described by the following linear

time-invariant (LTI) system of the form

ẋ = Ax+Bδ (3.7)

y = Cx (3.8)
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is addressed through use of the standard quadratic performance index shown below,

J =
1

2

∫ ∞
0

(xTQx+ δTRδ)dt (3.9)

where

x(t) =



ḣ

u

w

θ

qe



& u(t) =

{
δe

}

and Q and R are the state and control penalizing weighting matrices, respectively.

The performance index of Equation 3.9 is minimized by the control gain, K, computed

by solving the algebraic Riccati equation for P ,

−ATP − PA+ PBR−1BTP −Q = 0 (3.10)

using the chosen Q and R matrices. The final Q matrix was selected after several trial-

and-error tuning attempts to capture the commanded rate-of-climb at a reasonable

rate while limiting sharp changes in load factor during mode transition and pedal

input. The design for the state penalizing, Q, and control penalizing, R, matrices are

shown below,
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Q =



3.73x10−7 0 0 0 0

0 0.0037 0 0 0

0 0 2.611x10−4 0 0

0 0 0 3.73x10−7 0

0 0 0 0 66021


(3.11)

where, the state order is u, w, θ, qe, and ḣ. The control order for R matrix below is

δe,

R =

[
7.479x109

]
(3.12)

A positive definite solution of the Ricatti equation yields the control command,

δ = −Kx (3.13)

or,

δ =

{
δe

}
= −K



ḣ

u

w

θ

qe



(3.14)

where ḣ, u and w (VGND), and qe are the feedback terms shown in Figure 3.2. The

control gain matrix, K, for the elevator is

K = R−1BTP =

[
−0.1982 −0.0099 0.0648 −31.2569 −3.7572

]
(3.15)
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Ω - Inceptor for Direct Horizontal Flight Path Control

Once airborne, the Ω-inceptor enables the pilot to command a rate-of-turn with-

out requiring additional control input to remain in coordinated flight. The result is

carefree manipulation of the aircraft’s horizontal flight path.

The simulator receives pilot input from the Ω-inceptor as a normalized value of

deflection to translate it to a desired rate-of-turn via the piecewise function for a 1-D

lookup table shown below:

Ωcmd(deg/s) = f(δs) =


∓15 for ± 1.0 ≤ δs ≤ ±0.6(normalized)

−30δs − 3 for ± 0.6 < δs ≤ ±0.2(normalized)

−15δs for − 0.2 < δs ≤ +0.2(normalized)

Figure 3.3: Ω - inceptor normalized input vs. desired rate of turn

The relationship between the inceptor input and Ωcmd, shown in Figure 3.3, en-

ables smaller heading adjustments limiting the tendency for a pilot to over-correct.
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Figure 3.4: Top-level diagram illustrating carefree control of horizontal flight path for

the takeoff mode

Larger deflections of the inceptor result in increasing rate-of-turn (RoT) commands

up to the 15 deg/s limit.

The commanded rate-of-turn, Ωcmd, is then used to determine the necessary roll

angle, φcmd, based on the aircraft’s true airspeed using the equation below,

φcmd = cos−1

(
1√

Ω2
cmdV

2
TAS/g

2 + cos2 γ

)
= tan−1

(
ΩcmdVTAS

g

)
(3.16)

The difference between φcmd and the current roll angle, φ, determines the commanded

roll rate, pcmd, as shown below:

pcmd(deg/s) =


Kroll(φcmd − φ) for 0 < |φcmd − φ| ≤ 5◦

7◦/s for |φcmd − φ| > 5◦

0 for Wheels on Ground

A pcmd of zero is demanded while the aircraft wheels are in contact with the

ground.
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The problem of tracking the commanded roll rate here is identical in nature to the

regulator problem posed for ḣ-q control. Therefore, to drive the error between the

current roll rate, p, and the commanded value, pcmd, the following state and control

vectors are formed,

x(t) =



u

v

w

φ

θ

pe

q

r



& δ(t) =

{
δa

}
(3.17)

where pe is the error between pcmd and p.

The design input diagonal Q matrix to penalize the states is shown below. Heavier

penalties on θ and φ ensured coordinated flight and a benign system response to sharp

or aggressive Ω - inceptor inputs.
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Q =



1.7 0 0 0 0 0 0 0 0

0 1.7 0 0 0 0 0 0 0

0 0 1.7 0 0 0 0 0 0

0 0 0 13.26 0 0 0 0 0

0 0 0 0 13.09 0 0 0 0

0 0 0 0 0 1.7 0 0 0

0 0 0 0 0 0 1.7 0 0

0 0 0 0 0 0 0 1.7 0

0 0 0 0 0 0 0 0 28.475



(3.18)

The control weighting matrix, R, is only a function of aileron control,

R =

[
52620

]
(3.19)

The final control gain matrix, K, is

K =

[
6.7982x10−4 −0.0015 −0.0019 −0.0799 0.6378 −2.7828 0.0818 −0.0198

]
The rudder was separated from the LQR implementation and instead, was driven

by a Proportional-Integral controller (PI) to maintain a zero sideslip angle, β. The

controller can be represented in the Laplacian domain as

P + I
1

s
=
P

s
(s+

I

P
) (3.20)

where the Simulink PID tuning utility was used to limit overshoot such that the final

gains were determined to be P = −5.7 and I = −0.532.
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3.2.2 Climb/Descend Modes (Modes 2 & 5)

Logic almost identical to Mode 1 drives the climb and descend modes affording the

pilot to maintain a fixed rate-of-climb (or descent), ḣbase, once engaged. If required the

pilot can increase or decrease that fixed rate through manipulation of the right pedal

inceptor and left pedal inceptor, respectively. Turning flight, to change horizontal

flight path, can also be performed in these modes without adding to pilot workload

beyond the steering of the Ω− inceptor.

Figure 3.5 provides a top-level description of the longitudinal climb/descend con-

trol portion of modes 2 and 5.

Figure 3.5: Block diagram illustrating rate-of-climb/descent logic for the climb and

descend modes
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ḣ-q Control Law and the Positive/Negative Rate Inceptors (for Modes 2 & 5)

Unlike the takeoff mode described previously, which implemented direct throttle

control through the right pedal inceptor, deflection of the δ+R or δ−R inceptor by the

pilot manipulates the rate-of-climb/descent via the following relationship,

ḣcmd = ḣbase + k1δ+R − (k2δ−R + k2)ft/s (3.21)

where k1 and k2 are scaling terms to translate the normalized pedal input values to ḣ

terms. The expression within parentheses represents the left pedal inceptor’s lookup

table. The constant bias term allows for the lookup table to output zero when δ−R is

zero.

With this relationship in hand, the piecewise function shown below relates the

desired rate-of-climb to a commanded pitch rate, qcmd,

qcmd(deg/s) =


Kq|ḣcmd − ḣ| for 0 < |ḣcmd − ḣ| ≤ 1.25ft/s

10◦/s for|ḣcmd − ḣ| > 1.25ft/s

As is described in the previous section, the ḣ-q control law relates a commanded

ḣ to a proportional pitch rate, qcmd. The LQR controller implemented contains δth as

an additional control term. As a result, the control vector is now,

δ(t) =


δe

δth


with the chosen Q and R matrices (see below),
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Q =



3.73x10−7 0 0 0 0

0 0.0037 0 0 0

0 0 2.611x10−4 0 0

0 0 0 3.73x10−7 0

0 0 0 0 66021


(3.22)

where the state order is x =

[
u w θ qe ḣ

]T
. The control order for the R matrix

below is δ =

[
δe δth

]
,

R =

7.479x109 0

0 193.9

 (3.23)

and the positive definite solution of the Ricatti equation yields the same control

command as shown in the previous section,

δ = −Kx (3.24)

or,

δ =


δe

δt

 = −K



ḣ

u

w

θ

qe



(3.25)

where, K, the control gain matrix for the elevator and throttle is,
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K =

−0.1982 −0.0099 0.0648 −31.2569 −3.7572

0.0191 0.1317 −0.0089 1.9085 0.0336

 (3.26)

Ω - Inceptor for Direct Horizontal Flight Path Control

With the climb or descend modes being enabled in-flight, the control logic no

longer requires the presence of the ’weight on wheels’ condition and can be removed.

As a result, the Ω − inceptor simply continues to provide the pilot the ability to

change the aircraft’s horizontal flight path. Carefree flight is again made possible in

these modes. Figure 3.6 reiterates the top-level structure of this control law.

Figure 3.6: Top-level diagram illustrating carefree control of horizontal flight path for

all modes.

In contrast to the takeoff mode, the commanded bank angle is limited to 20◦ after

a predefined ḣ of 300 ft/min is exceeded. Below this climb rate, bank angles of up to

30◦ are permitted allowing for smaller radius turns.
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φcmd =


20◦ for ḣ > 300ft/min (Climb Mode only)

30◦ for ḣ < 300ft/min (Climb Mode only)

45◦ for ∀ḣ (Descend Mode only)

As before, the difference between φcmd and the current roll angle, φ, determines

the commanded roll rate, pcmd, as shown below,

pcmd =


Kroll(φcmd − φ)π for 0 < |φcmd − φ| ≤ 5◦

7◦/s for |φcmd − φ| > 5◦

The problem of tracking the commanded roll rate here is identical to the regulator

problem described in Section 3.2.1 and the same LQR and PI controllers have been

implemented. Therefore, the P and I gains remain the same and no further discussion

is required regarding these modes.

3.2.3 Low/High-Speed Cruise Modes (Modes 3 & 4)

Once engaged, the two cruise modes are designed to maintain altitude by ensuring

a zero rate of climb while automatically commanding a baseline MAP of 22.4 inHg

or 65% power (75% power in the case of Mode 4) and an engine speed of 2400 RPM

without the need for pilot input. The pilot is free to change the aircraft’s horizontal

flight path via the Ω-inceptor without compensating for variation in altitude. Further

control augmentation is achieved via a simple sideslip-to-rudder feedback which pre-

vents undesirable flight characteristics such as adverse yaw and Dutch roll by ensuring

coordinated flight.
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Altitude Hold

The control logic of the altitude hold function serves two scenarios, valid only when

the Cruise modes are engaged.

1. The aircraft transitions to either of the two cruise modes from the takeoff or

climb modes. If the absolute difference between the actual altitude, h, and the

commanded altitude, hcmd,

∆h = |h− hcmd| (3.27)

is smaller than an upper threshold, ∆hmax, and greater than zero, then the

following rate of descent is commanded:

ḣcmd = −Kḣ∆h (3.28)

For the scenario where the value of ∆h is greater than ∆hmax, the following rate

of descent is commanded:

ḣcmd = −300 ft/min (3.29)

In short, the bounds for the altitude hold control logic are summarized as the

piece-wise function shown below,

ḣcmd =


−Kḣ∆h for 0 < ∆h ≤ ∆hmax

−300ft/min for ∆h > ∆hmax
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Figure 3.7: Block diagram illustrating the altitude hold function for the cruise modes.

2. The aircraft transitions to a cruise mode from either the descend or approach

modes. This scenario of course, is the inverse of the control problem described

in item 1. and can be summarized as follows,

ḣcmd =


−Kḣ(−∆h) for 0 < ∆h ≤ ∆hmax

300ft/min for ∆h > ∆hmax

Throttle Control

Working in conjunction with the altitude hold control law described in the previous

section, the throttle control law enables the pilot to use the right or left pedal inceptors

(δ+R, δ−R) to increase or decrease the aircraft’s manifold air pressure from a nominal

predefined power setting, Pbase. As a result, the pilot has the ability to increase or

decrease airspeed without compensating for a change in altitude.

δthcmd = Pbase + 1.6δ+R − (2δ−R + 2) inHg of MAP (3.30)



82

Figure 3.8: Block diagram illustrating the throttle control functionality coupled with

the altitude hold law (cruise modes only).

Figure 3.9: Simulink block diagram of the throttle/MAP control logic.

The equation above provides a total commanded throttle (MAP value) with a

baseline power setting, Pbase, of 65% (MAP of 22.4 inHg) for Mode 3. Figure 3.9

illustrates the implemented throttle control in Simulink. Both the positive and neg-

ative rate controllers allow the pilot to regulate the power above and below the 65%

nominal setting. See Table 3.1 below.
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Table 3.1: Throttle control in cruise mode.

Controller Output

No control input Pbase, Baseline 22.4 inHg

Right pedal inceptor,δ+R Increase MAP from 22.4 to 24 inHg

Left pedal inceptor,δ−R Decrease MAP from 22.4 to 18.4 inHg

3.2.4 Landing Approach Mode (Mode 6)

When the pilot has lined up for final approach and is flying through the center of

the highway-in-the-sky visual projection, enabling Mode 6 guarantees a 3 degree glide

slope down to the runway. If the pilot visualizes being short of this mark, i.e. has

fallen below the HITS projection; then pressing the left pedal inceptor will ‘lift’ the

aircraft trajectory to assist the pilot in maneuvering back into the virtual highway.

Upon re-entry into the glide slope tunnel, the pilot can release the inceptor. The

opposite effect can be achieved by the right pedal inceptor if the pilot will overshoot

the target.

ḣ-q Control Law for Glide Slope Control

A simple modification of the same ḣ-q control law implemented in modes 1, 2 and

5 allows the aircraft to demand a rate-of-climb and in turn an appropriate pitch rate,

q, to track a glide slope. The right and left pedal inceptors can directly adjust the
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aircraft flight path angle to be centered within the glide slope. Equation (3.31) below

relates the commanded rate-of-climb to the glide slope.

ḣcmd = Vgnd tanγ (ft/s) (3.31)

where

γ = γref + (k3δ−R + k3)− k4δ+R (degrees) (3.32)

and, γref = −3 (predefined flight path angle).k3 and k4 are scaling terms to

translate the normalized pedal input values to γ terms.

As can be seen above, both inceptors play the role of manipulating the glide slope

to realize a new rate of climb and as a result, a new commanded pitch rate. The same

LQR controller and gains implemented for modes 1,2, and 5 can be used.

3.3 Experiment

The goal of the experiment was to determine if the control concept assisted non-

pilots in achieving performance comparable to trained pilots. Eighteen subjects par-

ticipated in the experiment - 9 pilots (XP) and 9 non-pilots (NP). See Tables 3.2 and

3.3 for subject specifics.
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Table 3.2: Pilot participants

Subject Age Hours

Pilot#1 27 100

Pilot#2 34 232

Pilot#3 18 22

Pilot#4 21 260

Pilot#5 20 20

Pilot#6 22 420

Pilot#7 23 500

Pilot#8 25 270

Pilot#9 36 165
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Table 3.3: Non-pilot participants

Subject Age

Non-Pilot#1 24

Non-Pilot#2 50

Non-Pilot#3 22

Non-Pilot#4 51

Non-Pilot#5 15

Non-Pilot#6 40

Non-Pilot#7 69

Non-Pilot#8 51

Non-Pilot#9 47
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3.3.1 Procedure

After a 10-minute presentation, each subject flew the same set of three unique

scenarios with the goal of using the available controls to remain centered in the HITS

boxes.

The scenarios were designed as follows:

1. A 10 min ‘pattern’ flight which originated and ended at KSFO. The flight

required the subject to climb to a reference altitude, complete the pattern which

comprised of four 90 degree legs, and descend for the final approach to land.

2. A 15 min flight from KSFO to KSQL. The subject was guided to two target

altitudes; an initial climb to 1,000 ft followed by a climb to 1,500 ft. Major head-

ing changes were only required during the cruise phase-of-flight. The scenario

concluded with a final approach into KSQL.

3. A 20 min flight from KSFO to KOAK. This last scenario guided the subject

to climb and maintain 1,500 and 2,000 ft. On descent, the subject was guided

to four target altitudes, 1,700, 1,500, 1,100, and 600 ft, respectively, before

having to initiate the final approach into KOAK. This scenario required 10

major heading changes during the climb, cruise and descent phases-of-flight.

The flight concluded with a final approach into KOAK.
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Figure 3.10: 3D view of Google Earth rendering of the KSFO - KSQL and KSFO -

KOAK scenarios

Figure 3.11: Top view of Google Earth rendering of the KSFO - KSQL and KSFO -

KOAK scenarios
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3.3.2 Dependent Measures

The dependent measures were:

1. Path-tracking performance - subject path-tracking compared against the refer-

ence trajectory, and expressed as a normalized value.

2. Lateral control activity - the RMS of the subject’s control input via the Ω-

inceptor.

3. Lateral control activity - RMS and frequency input for maneuver slices taken

from each scenario.

3.3.3 Data Reduction

Path-Tracking Performance : the k-nearest neighbors (k-NN) algorithm has

been used to compute a normalized value for both lateral and 3D path-tracking per-

formance of each participant.

The thresholds used for the Euclidean distance to determine whether the aircraft

is in or out of a HITS box are,

• Threshold for lateral exit from HITS box = 25 m (82 ft) left or right of center.

• Threshold for vertical exit from HITS box = 12.5 m (41 ft) above or below

center.

where each HITS box is 50 x 50 m (164 x 164 ft) in size.
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RMS of Lateral Control Activity : The RMS, Eq.3.33 below, of lateral control

activity, i.e. the Ω-inceptor input, provides a simple statistical measure of the average

input magnitude during each scenario.

δRMS = (
1

N

N∑
n=1

|δn|2)
1

2 (3.33)

where δn is the n-th sample value.

Additionally, the standard deviation is computed to provide a measure of data

consistency across each group.

Magnitude Spectrum of Lateral Control Activity : Applying the Fast

Fourier Transform (FFT) to the control activity quantifies participant control in-

put magnitude as a function of frequency. The results from this are compared to a

typical handling qualities metric. See Table 3.4.
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Table 3.4: Typical control input frequency ranges (Field & Giese, 2005)

Frequency Range Description

0.25 - 0.8 rad/s Typical open-loop control associated with trimming and flight

path modulation.

0.80 - 2.0 rad/s Typical closed-loop control associated with transport aircraft

maneuvering.

2.0 - 4.0 rad/s Higher-gain closed-loop control associated with increased task

urgency or handling issues with the aircraft, such as a PIO.

4.0 - 10.0 rad/s Very high-gain closed-loop control, almost certainly associ-

ated with control difficulties.
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This chapter has detailed the control law logic and its functional modes. Further-

more, the design of the experiment has been described along with the methods used

to analyze data retrieved from participant flights.

The following chapter presents the results and analysis from experimental data.
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4. Results and Analysis

This chapter presents results from the experiment and provides a qualitative assess-

ment of participant performance.

4.1 Averaged Results from Scenarios

The following plots show tracking performance and the RMS of control input for

the average pilot and non-pilot across all three scenarios.

Plots in Figures 4.1 and 4.2 both indicate a trend of improving path-tracking

performance for the non-pilot group.

Unexpectedly, the pilot group’s performance decreases with the non-pilots outper-

forming them (on average) in scenarios 2 and 3. However, with the standard deviation

being considerably high in both groups, an explanation isn’t readily available. A pos-

sible cause for degraded pilot performance could be attributed to boredom with the

assigned tasks.

Control activity presented in Figure 4.3 shows small control input activity across

the pilot group with relatively high consistency.

Non-pilot control activity values suggest the participants are gaining familiarity

with the Ω-inceptor as their average input drops 10-20% across the scenarios. Here
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too, a significant standard deviation limits the scope of drawing any meaningful con-

clusions.

Furthermore, the comparison of control activity across scenarios can not be precise

simply because each scenario is different. Although the difficulty of the tracking task

is intended to increase as the participant progresses from one scenario to the next, the

increasing flight duration can add significant periods of limited activity which would

drive down the mean RMS value.

Figure 4.1: Tracking performance across scenarios
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Figure 4.2: Lateral tracking performance across scenarios

Figure 4.3: Control activity across scenarios
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Observing a sample individual pilot across each scenario raises a question about

pilot attention and or boredom. The following pilot was chosen based on an average

performance in the first scenario within the pilot group. The pilot’s performance

in the subsequent scenarios is shown in Figures 4.5 and 4.6. The pilot’s tracking

performance increasingly dips below the group average from Scenario 2 to 3. This

pilot starts out as an average performer but ends the experiment performing 25-27%

below the pilot group average.

Figure 4.4: Pilot XP-7 - Tracking performance in Scenario 1
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Figure 4.5: Pilot XP-7 - Tracking performance in Scenario 2

Figure 4.6: Pilot XP-7 - Tracking performance in Scenario 3
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Applying the same selection criteria used to sample a pilot, a sample non-pilot

has been selected. The performance across scenarios is presented in Figures 4.7, 4.8

and 4.9 below.

Figure 4.7: Pilot NP-9 - Tracking performance in Scenario 1

Figure 4.8: Pilot NP-9 - Tracking performance in Scenario 2



99

Figure 4.9: Pilot NP-9 - Tracking performance in Scenario 3

The non-pilot’s performance remains average to above average in Scenario 2 for

both lateral and 3D tracking. Scenario 3 sees the subject maintaining above average

lateral tracking performance however, performance suffers in 3D tracking.

4.2 Averaged Results from Maneuver Cuts

Analyzing entire scenario flights can hide details associated with the entry into

maneuvers required by a flight path change in the course.

To address this limitation, a turning maneuver, between 30-60 seconds, was se-

lected from each scenario in an attempt to better understand control activity between

both groups.

Figures 4.10 and 4.11 below provide the Ω-inceptor mean RMS, and the dominant

frequency for each maneuver, respectively.
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Figure 4.10: Average input frequency from maneuver cuts

Figure 4.11: Mean RMS of Ω - inceptor from maneuver cuts

The first maneuver, from Scenario 1, happens to be the first major heading change

of the experiment. The pilot group inputs smaller control deflections than the non-

pilot group; however, a significant standard deviation value could imply differing

control strategies employed by each pilot as they execute the turn. The dominant

input frequency, however, doesn’t vary among the pilots, possibly indicating their

familiarity with typical aircraft response to control inputs.



101

The non-pilots make larger control inputs at a higher average frequency. However,

the input frequencies are well within typical open-loop maneuvering per Table 3.4.

The second maneuver (Scenario 2) has the pilot group making consistent inceptor

deflections yet differing greatly as far input frequency is concerned. This too could be

indicative of control strategy differences as some pilots may opt to correct continuously

while others make delayed corrections at higher rates.

The non-pilots show significant reduction in inceptor deflection. This could be

attributable to their increased familiarity with the system.

The third and final maneuver sees the pilots maintaining consistent inceptor de-

flections and input frequencies. This maneuver presents the participant with a sharper

turn that straightens out relatively quickly. The pilot group acts consistently, almost

identically, in anticipating and executing the turn.

Although more challenging than the previous two maneuvers, the non-pilots man-

age a smaller inceptor deflection on average but show considerable variation when

modulating the Ω-inceptor.

Table 4.1 provides a summary of pilot and non-pilot input frequencies during

maneuvers across all three scenarios.
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Table 4.1: Pilot and non-pilot control input frequency summary

Frequency (Hz) Frequency (rad/s)

Scenario 1 Pilots 0.0225 0.1420

Non-Pilots 0.0574 0.3608

Scenario 2 Pilots 0.0943 0.5925

Non-Pilots 0.1002 0.6299

Scenario 3 Pilots 0.0240 0.1510

Non-Pilots 0.0779 0.4893
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The decreasing trend in inceptor deflection by the non-pilots indicates their in-

creased familiarity with the aircraft’s response to their inputs. It can be observed

that they limit turning the Ω-inceptor beyond 8-9 deg/s commanded RoT.

Sample pilot data from the previous section is presented in Figures 4.12, 4.13

and 4.14 below. The subject’s control activity is half of the average for the group in

Scenario 1. See Figure 4.11. The low control activity continues to be below the average

value for the pilot group in both Scenarios 2 and 3. The low control activity combined

with decreasing path tracking performance probably points to pilot boredom or an

acceptable level of deviation decided upon by the subject.

Figure 4.12: Pilot XP-7 - Lateral control activity for Scenario 1 maneuver
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Figure 4.13: Pilot XP-7 - Lateral control activity for Scenario 2 maneuver

Figure 4.14: Pilot XP-7 - Lateral control activity for Scenario 3 maneuver
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Sample non-pilot data from the previous section is presented in Figures 4.15,

4.16 and 4.17 below. Although demonstrating average path tracking performance in

Scenario 1, the subject makes above average inputs to the Ω-inceptor with several

maximum deflection inputs when negotiating the first 90 degree leg. Control activity

across the remaining scenarios continues to decrease. By Scenario 3, the subject’s

control activity is average for the non-pilot group whereas the control input frequency

value, although commensurate with the flying task, is above average when compared

to the non-pilot group.

Figure 4.15: Non-pilot NP-9 - Lateral control activity for Scenario 1 maneuver
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Figure 4.16: Non-pilot NP-9 - Lateral control activity for Scenario 2 maneuver

Figure 4.17: Non-pilot NP-9 - Lateral control activity for Scenario 3 maneuver
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This chapter presented the results and observations from the experiment. The

next chapter highlights the limits of this project and proposes improvements for future

efforts.
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5. Conclusion

This project set out to develop a simulator-based experiment to determine the poten-

tial in having automotive-inspired inceptors as a means to closing the gap between

the non-pilot and the pilot. It was hypothesized that the non-pilot’s familiarity with

automotive controls could be leveraged to develop an interface which could enable

the user to perform at a level comparable to a conventionally trained pilot. It should

be noted that the level of performance desired for the non-pilot was limited to basic

maneuvering tasks.

Both quantitative and qualitative data from the experiment suggest that non-

pilots found the system challenging at first, mainly due to the Ω-inceptor’s sensitivity.

With continued exposure to the simulation, their performance tended to improve

whilst their mean control activity decreased.

However, the evidence in support of the hypothesis is not without its limitations.

• The high values of the standard deviations for path-tracking performance and

control activity suggest that the sample did not have adequate statistical power.

• That said, the computation of tracking performance depended on a fixed thresh-

old for lateral and vertical deviation. Loosening up the threshold might have a

significant impact on the spread of the standard deviation.



109

• Non-pilots flew the concept without flying the same aircraft model with conven-

tional controls. Therefore, any potential improvement facilitated by the control

concept goes untested against conventional controls and aircraft response - for

the given simulator setup.

• Participants flew three different scenarios which complicates the task of deter-

mining performance changes for a given participant. Though care was taken

to increase the number of tasks and their complexity with each scenario, large

portions of the second and third path did involve straight and level flight.

• Any input lag to the OTW system was not characterized before the experiment

was conducted. This could result in over-correcting the vertical or horizontal

flight path.



110

6. Recommendations

6.1 Future Work

The experiment provided insight into how the control concept affected basic non-

pilot performance. Several improvements, to the inceptors, control law logic, and

experiment could be of value to the future development of this, or any other concept

attempting to simplify flight.

• A larger sample of participants would be useful in providing greater statistical

power.

• A more scientific approach to scenario creation for the experiment.

• The concept can be refined by using a formal control design methodology to

develop the control law implementation.

• The display of a HITS is only one way of representing the flight path in simu-

lation. Other, more subtle visual cues may reduce pilot workload.

• A more obvious difference between modes 3 and 4.

• Wavelet based technique to generate power vs. frequency vs. time plots. Such

plots are a valuable bridge between the time and frequency domains.
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• The presence of a control group using conventional aircraft controls. This would

provide a baseline for comparative analysis.

• The completion of the auto-flare and touchdown control law functionality to

provide an end-to-end simulator experience.
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A. Experimental Results

A.1 Scenario 1 - Pattern (Pilots)

Figure A.1: Participant XP-1 Performance - Scenario 1
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Figure A.7: Participant XP-7 Performance - Scenario 1
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Figure A.8: Participant XP-8 Performance - Scenario 1
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Figure A.9: Participant XP-9 Performance - Scenario 1
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A.2 Scenario 1 - Pattern (Non-Pilots)

Figure A.10: Participant NP-1 Performance - Scenario 1
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Figure A.11: Participant NP-2 Performance - Scenario 1
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Figure A.12: Participant NP-3 Performance - Scenario 1
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Figure A.13: Participant NP-4 Performance - Scenario 1
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Figure A.14: Participant NP-5 Performance - Scenario 1
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Figure A.15: Participant NP-6 Performance - Scenario 1
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Figure A.16: Participant NP-7 Performance - Scenario 1
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Figure A.17: Participant NP-8 Performance - Scenario 1
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Figure A.18: Participant NP-9 Performance - Scenario 1
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A.3 Scenario 2 - San Carlos (Pilots)

Figure A.19: Participant XP-1 Performance - Scenario 2
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Figure A.20: Participant XP-2 Performance - Scenario 2
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Figure A.21: Participant XP-3 Performance - Scenario 2
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Figure A.22: Participant XP-4 Performance - Scenario 2
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Figure A.23: Participant XP-5 Performance - Scenario 2
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Figure A.24: Participant XP-6 Performance - Scenario 2
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Figure A.25: Participant XP-7 Performance - Scenario 2
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Figure A.26: Participant XP-8 Performance - Scenario 2
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Figure A.27: Participant XP-9 Performance - Scenario 2
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A.4 Scenario 2 - San Carlos (Non-Pilots)

Figure A.28: Participant NP-2 Performance - Scenario 2
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Figure A.29: Participant NP-3 Performance - Scenario 2
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Figure A.30: Participant NP-4 Performance - Scenario 2
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Figure A.31: Participant NP-5 Performance - Scenario 2
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Figure A.32: Participant NP-6 Performance - Scenario 2
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Figure A.33: Participant NP-7 Performance - Scenario 2
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Figure A.34: Participant NP-8 Performance - Scenario 2
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Figure A.35: Participant NP-9 Performance - Scenario 2
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A.5 Scenario 3 - Oakland (Pilots)

Figure A.36: Participant XP-2 Performance - Scenario 3
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Figure A.37: Participant XP-3 Performance - Scenario 3
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Figure A.38: Participant XP-5 Performance - Scenario 3
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Figure A.39: Participant XP-6 Performance - Scenario 3
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Figure A.40: Participant XP-7 Performance - Scenario 3
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Figure A.41: Participant XP-8 Performance - Scenario 3
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Figure A.42: Participant XP-9 Performance - Scenario 3
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Scenario 3 - Oakland (Non-Pilots)

Figure A.43: Participant NP-1 Performance - Scenario 3
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Figure A.44: Participant NP-2 Performance - Scenario 3
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Figure A.45: Participant NP-3 Performance - Scenario 3
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Figure A.46: Participant NP-4 Performance - Scenario 3
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Figure A.47: Participant NP-5 Performance - Scenario 3
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Figure A.48: Participant NP-6 Performance - Scenario 3
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Figure A.49: Participant NP-7 Performance - Scenario 3



161

Time(s)
0 20 40 60 80

+
-c

on
tr

ol
le

r 
de

fl.

-1

-0.5

0

0.5

1
Lateral Control Activity

Frequency (Hz)
0 5 10

M
ag

ni
tu

de

10

20

30

40

50

60

70

80

Single-sided Magnitude Spectrum

Position East (ft) #104
0 2 4 6 8 10

P
os

iti
on

 N
or

th
 (

ft)

#104

-2

-1

0

1

2

3

4
Scenario#3 - Oakland

Reference Path
Tracking Attempt

RMS = 
0.11931

Pri. Freq (Hz) = 
0.014019

Lat-Alt Tracking= 
0.97692

Lateral Tracking= 
0.98691

Figure A.50: Participant NP-8 Performance - Scenario 3
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Figure A.51: Participant NP-9 Performance - Scenario 3
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B. Time Histories of Control Law Modes

A series of simulation flights were captured to highlight each control mode. The

following sections present observations for the relevant parameters recorded during

each flight mode’s operation.

B.1 Takeoff Mode Simulation Data

This section provides data from a takeoff run. The aircraft begins its ground roll

and takes off remaining in Takeoff Mode throughout the flight. The data has been

divided into four segments.

B.1.1 Takeoff Mode Flight - 1st Segment

A full power takeoff at 28 inHg of MAP is performed with the aircraft auto-rotating

at t=26s. The aircraft tracks a 2 degree climb angle at t≈32s with no appreciable Ω

- controller input. This results in a fairly benign rate of climb of approximately 300

ft/s. Inaccuracies from the ground reaction model introduce high frequency noise in

the angular rates, accelerations, and, as a result, in the control surface deflections.

This noise disappears once ground contact is ’false’.
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B.1.2 Takeoff Mode Flight - 2nd Segment

Following climb-out a minimum RoT ( 44% of a standard rate turn) to the right

is commanded while in Takeoff Mode while maintaining the 2 degree climb angle.
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Figure B.9: Minimum RoT maneuver in mode 1
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Figure B.10: Minimum RoT maneuver in mode 1
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B.1.3 Takeoff Mode Flight - 3rd Segment

A second right turn is performed with the Ω-controller commanding a 600 deg/min

RoT. However, due to a 25 degree bank angle limit imposed in Takeoff Mode the

effective RoT is reduced to 360 deg/min as shown in the RoT or ψ trace. The climb

angle remains at 2 degrees.
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Figure B.11: Climbing to T-O in mode 1
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Figure B.12: Climbing to T-O in mode 1
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Figure B.13: Climbing to T-O in mode 1
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Figure B.14: Climbing to T-O in mode 1
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Figure B.15: Climbing to T-O in mode 1
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B.1.4 Takeoff Mode Flight - 4th Segment

The final maneuver was a left turn performed at standard rate. Again, the aircraft

maintained the commanded 2 degree climb angle. Figure 4.20 provides a ground track

for all three turning maneuvers performed in the Takeoff Mode.
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Figure B.16: Climbing to T-O in mode 1
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Figure B.17: Climbing to T-O in mode 1
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Figure B.18: Climbing to T-O in mode 1
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Figure B.19: Climbing to T-O in mode 1
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Figure B.20: Climbing to T-O in mode 1
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B.2 Climb Mode Simulation Data

Similar to the Takeoff Mode data, the Climb Mode results have been divided into

segments as well. Sections 4.2.1-4.2.3 illustrate a steady heading climb, variable RoT

climbs with no δ+R or δ−R inceptor deflections, and variable RoT climbs with full δ+R

input.

B.2.1 Climb Mode Flight - 1st Segment

The data begins with the aircraft in Mode 2 (Climb Mode) maintaining a baseline

RoC of 300 ft/min. Around the 20 second mark, a full deflection of the δ+R inceptor

commands a 480 ft/min RoC. This is followed by an increase in MAP which subsides

with the increase in pitch angle, θ, and reduced airspeed. Figures B.22 and B.24

indicate a failure to capture the commanded RoC and pitch rate, q. The result is a

470 ft/s maximum climb rate.

Past the 160 second mark, the δ−R inceptor is fully deflected to command level flight

(RoC = 0 ft/s). Within 9 seconds the aircraft decreases its RoC from the 300 ft/min

baseline value, to ≈ 3 ft/min. See Figure B.22.

Since the Simulink code did not include actuator models representative of a typical

mechanical system for any given control surface, the elevator response can be seen in

Figure B.24 as a high frequency signal driven purely by the LQR control gains.
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Figure B.21: Climbing in mode 2
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Figure B.22: Climbing in mode 2
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Figure B.23: Climbing in mode 2
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Figure B.25: Climbing in mode 2
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B.2.2 Climb Mode Flight 2nd Segment

A second segment is presented below illustrating turning performance while climb-

ing. Four complete 360 degree turns are attempted with varying δRoT inputs. The

aircraft attempts to maintain the baseline 300 ft/min RoC without any δ+R and δ+R

pilot input.

The first input (≈ 33% deflection) at t = 557s to the Ω-controller commands a 420

deg/min right turn which results in a 27 degree bank allowing the aircraft to complete

a full circle in ≈ 53 seconds. The turning maneuver reduces the effective RoC to 268

ft/min. With the Ω-controller centered, the aircraft reestablishes its baseline RoC

and new bank angle in ≈ 3 seconds and 4.5 seconds, respectively. See Figures B.27

and B.28.

At t = 640s, a second, left-hand turn is performed. The Ω-controller is deflected

≈ 17% of its maximum range resulting in a 152 deg/min RoT with a 10 degree bank

angle. This shallower turn results in the aircraft maintaining a ≈ 292 ft/min climb

rate. The full turn takes ≈ 147 seconds.

With a maximum deflection of the Ω-controller, a 900 deg/min RoT is commanded

(5x standard rate turn). As the RoT approaches 500 deg/min the aircraft enters an

aggressive longitudinal oscillation. The oscillation grows into a constant frequency

response seen in the RoC, RoT, q, and δe data traces in Figures B.27 and B.29. This

particular oscillation was not observed during human factors testing as pilots avoided
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sustained maximum deflections of the Ω-controller. Releasing the controller mitigated

the issue with the aircraft returning to wings-level climbing flight.

The last turn is a ≈ 25% deflection of the Ω-controller resulting in a 315 deg/min

RoT with a 21 degree bank angle. As expected, the RoC drops to 280 ft/min; a value

between that observed for RoC in the first and second turns. The complete turn takes

74 seconds.
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Figure B.26: Climbing in mode 2



196

550 600 650 700 750 800 850 900 950
Foot−off    

            

Full Deflec.

Time (s)

δ +
R
 , 

δ −
R
 (

0 
to

 1
)

 

 

(+) Rate Inceptor
(−) Rate Inceptor

550 600 650 700 750 800 850 900 950
−1

−0.5

0

0.5

1

Time (s)

δ R
oT

 (
−

1 
to

 1
)

550 600 650 700 750 800 850 900 950
0

100

200

300

400

500

Time (s)

R
at

e 
of

 C
lim

b 
(f

t/m
in

)

 

 

Actual
Commanded

550 600 650 700 750 800 850 900 950
−1000

−500

0

500

1000

Time (s)

R
oT

 (
de

g/
m

in
)

 

 

Actual
Commanded

Figure B.27: Climbing in mode 2
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Figure B.28: Climbing in mode 2
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Figure B.29: Climbing in mode 2
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Figure B.30: Climbing in mode 2
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B.2.3 Climb Mode Flight 3rd Segment

The last segment of flight data for the Climb Mode illustrates turning performance

while demanding a maximum RoC (480 ft/min); a maximum δ+R deflection.

The first turn is initiated at t=1100 s

A second segment is presented below illustrating turning performance while climb-

ing. Four complete 360 degree turns are attempted with varying δRoT inputs. The

aircraft attempts to maintain the baseline 300 ft/min RoC without any δ+R and δ+R

pilot input.

The first input (≈ 33% deflection) at t = 557s to the Ω-controller commands a 420

deg/min right turn which results in a 27 degree bank allowing the aircraft to complete

a full circle in ≈ 53 seconds. The turning maneuver reduces the effective RoC to 268

ft/min. With the Ω-controller centered, the aircraft reestablishes its baseline RoC

and new bank angle in ≈ 3 seconds and 4.5 seconds, respectively. See Figures B.27

and B.28.

At t = 640s, a second, left-hand turn is performed. The Ω-controller is deflected

≈ 17% of its maximum range resulting in a 152 deg/min RoT with a 10 degree bank

angle. This shallower turn results in the aircraft maintaining a ≈ 292 ft/min climb

rate. The full turn takes ≈ 147 seconds.

With a maximum deflection of the Ω-controller, a 900 deg/min RoT is commanded

(5x standard rate turn). As the RoT approaches 500 deg/min the aircraft enters an

aggressive longitudinal oscillation. The oscillation grows into a constant frequency
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response seen in the RoC, RoT, q, and δe data traces in Figures B.27 and B.29. This

particular oscillation was not observed during human factors testing as pilots avoided

sustained maximum deflections of the Ω-controller. Releasing the controller mitigated

the issue with the aircraft returning to wings-level climbing flight.

The last turn is a ≈ 25% deflection of the Ω-controller resulting in a 315 deg/min

RoT with a 21 degree bank angle. As expected, the RoC drops to 280 ft/min; a value

between that observed for RoC in the first and second turns. The complete turn takes

74 seconds.
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Figure B.31: Climbing in mode 2
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Figure B.32: Climbing in mode 2
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Figure B.33: Climbing in mode 2
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Figure B.34: Climbing in mode 2
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Figure B.35: Climbing in mode 2
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B.3 Low-Speed Cruise Mode Simulation Data

This section provides data from the low-speed cruise portion of the run. The

following plots show the aircraft transitioning from Climb to Low-Speed Cruise, pilot

Ω - inceptor inputs to execute level turns and pedal inceptor inputs to modulate

airspeed.

When Mode 3 is engaged the Altitude Hold function sets the current altitude as

the capture target. The altitude strip chart shows a small overshoot as the control

law begins to track the command.

The remainder of the data shows aircraft response to increasing Ω-inceptor inputs

and pedal modulation. Deviations in altitude during higher RoT maneuvers are

within 10-15 ft but the control law returns the aircraft to the original set point soon

after rolling back to wings level.
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Figure B.36: Maneuvering in mode 3
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Figure B.37: Maneuvering in mode 3
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Figure B.38: Maneuvering in mode 3
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Figure B.39: Maneuvering in mode 3
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Figure B.40: Maneuvering in mode 3
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B.4 High-Speed Cruise Mode Simulation Data

This section provides data from the high-speed cruise portion of the run. The

following plots show the aircraft transitioning from Low-Speed Cruise to High-Speed

Cruise. Since this mode is functionally equivalent to Mode 3, barring a small airspeed

difference, further details are not necessary.
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Figure B.41: Maneuvering in mode 4
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Figure B.42: Maneuvering in mode 4
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Figure B.43: Maneuvering in mode 4
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Figure B.44: Maneuvering in mode 4
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Figure B.45: Maneuvering in mode 4
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B.5 Descend Mode Simulation Data

The functional description of the Climb Mode serves as a satisfactory description

of the Descend Mode.
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Figure B.46: Descending in mode 5
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Figure B.47: Descending in mode 5
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Figure B.48: Descending in mode 5
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Figure B.49: Descending in mode 5
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Figure B.50: Descending in mode 5
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B.6 Approach Mode Simulation Data

This section provides data from the approach phase of the run. The following

plots show the aircraft transitioning from Mode 1 to 3 and finally to Mode 6 or the

Approach Mode.

At approximately t=30s, Mode 6 is engaged and the ḣ − q control law starts

capturing the 3 degree glide slope. Pedal inceptor input enables the modulation of

the aircraft flight path angle in order to provide a means to take corrective action if

the pilot is above or below the glideslope. Subsequent inputs demonstrate the ability

of the aircraft to maintain the desired flight path angle.
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Figure B.51: Glide slope capture in mode 6
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Figure B.52: Glide slope capture in mode 6
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Figure B.53: Glide slope capture in mode 6
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Figure B.54: Glide slope capture in mode 6
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Figure B.55: Glide slope capture in mode 6
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