

SCHOLARLY COMMONS

Mechanical Engineering - Daytona Beach

College of Engineering

12-17-1996

Method for Producing Conductive or Insulating Feedthroughs in a Substrate

Janet K. Lumpp

Susan D. Allen University of Iowa, allens17@erau.edu

Follow this and additional works at: https://commons.erau.edu/db-mechanical-engineering

Part of the Mechanical Engineering Commons

Scholarly Commons Citation

Lumpp, J. K., & Allen, S. D. (1996). Method for Producing Conductive or Insulating Feedthroughs in a Substrate., (). Retrieved from https://commons.erau.edu/db-mechanical-engineering/9

This Patent is brought to you for free and open access by the College of Engineering at Scholarly Commons. It has been accepted for inclusion in Mechanical Engineering - Daytona Beach by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.

US005584956A

United States Patent [19]

Lumpp et al.

[11] Patent Number:

ij ratent Number.

5,584,956

[45] Date of Patent:

Dec. 17, 1996

[54] METHOD FOR PRODUCING CONDUCTIVE OR INSULATING FEEDTHROUGHS IN A SUBSTRATE

[75] Inventors: Janet K. Lumpp, Coralville, Iowa;

Susan D. Allen, New Orleans, La.

[73] Assignee: University of Iowa Research

Foundation, Iowa City, Iowa

[21] Appl. No.: 240,206

[22] Filed: May 9, 1994

Related U.S. Application Data

[6	53]	Continuation of Ser. No. 987,783, Dec.	9, 1992, abandoned.
[5	51]	Int. Cl. ⁶ B32B 3	1/28 ; H01K 3/10;
			B05D 5/12
[5	52]	U.S. Cl 156/272.8; 1	
		29/846; 29/850; 29/852;	; 427/97; 427/124
F 4	(2)	Field of Secret	1561621 644

219/121.7, 121.71, 121.22

[56] References Cited

U.S. PATENT DOCUMENTS

2/1971	Cranston et al 219/121.71 X
9/1972	Smith 156/632 X
3/1975	Gall et al 427/97 X
10/1976	Sarazin et al 156/272.2 X
	9/1972 3/1975

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

0176931	10/1983	Japan 437/173
2-66954	3/1990	Japan 156/272.8
4-28490	1/1992	Japan 219/121.7
5-200574	8/1993	Japan 219/121.7
9001374	2/1990	WIPO 156/644

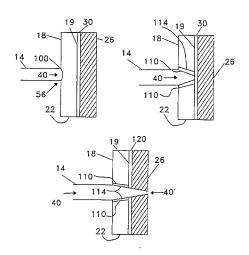
OTHER PUBLICATIONS

"Laser drilled holes in fired ceramics," F. F. Fugardi et al. IBM Technical Disclosure Bulletin, vol. 14, Mar. 1972.

"Machining of Advanced Ceramics", Laurel M. Sheppard, pp. 40–43; 46–48; Advanced Materials and Processes Inc. Metal Progress, Dec. 1987.

"A Study of Pulsed Laser Planarization of Aluminum for VLSI Metallization", pp. 329–335; R. Liu, et al., Jun. 12–13m 1989 VMIC Conference.

"Feature size and temperature sensitive process windows for excimer laser planarization of aluminum", R. Baseman pp. 84–90; J.Vac.Sci. Technol.B8 (1), Jan./Feb. 1990.


(List continued on next page.)

Primary Examiner—David A. Simmons
Assistant Examiner—M. Curtis Mayes
Attorney, Agent, or Firm—Fleshner & McConathy PLLC

[57] ABSTRACT

A method for producing feedthroughs in a substrate having a front and back surface, wherein the substrate either has a hole or absorbs radiation at a given wavelength. The method includes selecting and intimately bonding a sheet to the back surface of the substrate with an adhesive which is absorptive at the given wavelength. If the substrate has a hole, an exposed area of the sheet is illuminated with laser radiation at the given wavelength and at a power level sufficient to ablate a portion of the sheet behind the exposed area, thereby creating the feedthrough in the substrate. If the substrate has no hole, an area on the front surface of the substrate is illuminated with laser radiation at the given wavelength and at a power level sufficient to ablate a portion of the substrate and a portion of the sheet behind the area, thereby creating the feedthrough in the substrate. The sheet can then be removed from the substrate. Alternatively, if the sheet is conductive, the sheet can remain bonded to the substrate and can serve as a ground plane for the substrate. If the sheet is an insulator, the feedthrough is an insulated feedthrough and if the sheet is conductive, the feedthrough is a conductive feedthrough. This procedure can be extended to produce a two conductor feedthrough.

12 Claims, 10 Drawing Sheets

