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HFACS categories are also referred to as causal categories or causal 
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HFACS Tiers Four overarching levels of the HFACS taxonomy as described by 

James Reason. Included within these four levels are (1) 

organizational influences, (2) unsafe supervision, (3) preconditions 

for unsafe acts (4) unsafe acts 

Latent Failure Background elements which may eventually lead to an adverse event 

or unsafe act. These failures act as contributory factors that often 

occur “behind the scenes”.  
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The percentage of events in which at least two raters agreed 

(majority) on the appropriate HFACS code 

Pairwise 

Agreement 

Agreement between all possible coder dyads (i.e. rater 1 vs rater 2, 

rater 1 vs rater 3, and rater 2 vs rater 3). 

Reconciled 

Method 

A subsequent analysis of majority agreement that includes those 

events that were originally disagreed upon, and later reconciled 

using consensus coding (i.e. discussion between the three coders to 

determine the appropriate allocation of the event into the HFACS 

framework) 

SHEL Model Software, Hardware, Environment, Liveware Model 

Unanimous 

Agreement 

The percentage of events in which all three coders concurred on the 

HFACS classification of the event 
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ABSTRACT 

INTRODUCTION: The purpose of the current research was to assess the utility of the 

Human Factors Analysis and Classification System (HFACS), a tool that has historically 

been used reactively to look at accidents and incidents, for classifying observational data 

from various healthcare venues.  

METHOD: Three studies are presented to investigate the reliability of HFACS for 

classifying observational data. In Study I, HFACS was applied to observational human 

factors data collected from the cardiovascular operating room (CVOR) at an academic 

medical university. Three trained analysts categorized the data using HFACS and several 

approaches were used to evaluate its reliability during the categorization task. The same 

method was repeated for Study II, which utilized CVOR data collected from a non-

academic hospital. To investigate the ability of HFACS for differentiating between 

hospitals, the data from the academic and non-academic hospitals were compared. Finally, 

to explore the utility of HFACS in another venue, Study III employed the same approach 

as Study I and II however, observational data from a trauma center was utilized. 

RESULTS: Results of the three studies revealed that the framework was substantially 

reliable (k=0.635 (95% CI, .611-.659), p = 0.000; k =0.642 (95% CI, .633-.652), p = 

0.000; k=0.680 (95% CI, .662 to .698), p = 0.000) for classifying observational 

healthcare data.  In all three data sets, preconditions for unsafe acts were the most 

common area of systemic weakness. However, differences in the distributions of these 

categories did exist when data-sets were compared.  

CONCLUSION: This study is a first step in establishing the reliability of the HFACS 

framework as a tool for classifying observational human factors data. As HFACS appears 
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to be a reliable observation tool, findings associated with its use could help to identify 

where errors and adverse events are likely to occur. Therefore, the proactive 

identification of human factors issues associated with patient harm represents the next 

step in the evolution of patient safety. Predictably, hospital administrators could put in 

place targeted interventions to help mitigate human factors issues before they manifest 

and become harmful events in the future.   
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A Human Factors Approach to Identifying Latent Failures in Healthcare Settings 

CHAPTER 1: INTRODUCTION 

While humans are arguably the most intelligent beings in the world, capable of 

adapting to our environment, using creative thought, and being cognitively aware, none 

of us are immune to the several ways in which our bodies can weaken or fail. It is 

incredibly rare that any of us will live well into old age without experiencing any health 

detriments.  As such, the healthcare industry is important to all of us.  

The Center for Disease Control (CDC) has reported that chronic diseases are the 

leading cause of death and disability in the United States, causing 70% of deaths each 

year (Center for Disease Control, 2013). To put this in perspective, in 2008, 107 million 

Americans (nearly 50% of adults age 18 or older) had at least one the following chronic 

illnesses: cardiovascular disease, arthritis, diabetes, asthma, cancer, and/or chronic 

obstructive pulmonary disease (Heron et al., 2009). Of these, the leading cause of death 

in the United States is cardiovascular disease, as over 19,000,000 individuals have 

succumbed to this disease in 2013 (CDC, 2013). 

Although our bodies are built to adapt to most chronic illness, without more 

invasive treatment, many individuals may still die from these diseases. In 2010, the total 

number of inpatient surgical procedures performed was 51.4 million, the most common 

being cardiac procedures (CDC, 2015).  

While healthcare in the U.S. is among the best in the world, the delivery of that 

care is an overwhelming task. Medical professionals are faced with a number of elements 

while trying to provide optimal care. To name just a few, surgical teams: (1) are 

constantly faced with the integration of progressively complicated technological devices, 
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(2) need to communicate and coordinate among various team members within the 

surgical suite, (3) have to problem solve on the spot for complex cases where there are 

unforeseen patient challenges, and (4) manage cost and time limitations mandated by 

various organizations.  

While surgery is often the last resort for most patients due to pain, cost and time 

required for healing, we would like to believe that the surgery itself would not necessarily 

contribute to complications downstream. Unfortunately, that may not be the case, as the 

landmark report, To Err is Human, conducted by the Institute of Medicine 15 years ago, 

reported that as many as 98,000 people die in hospitals each year due to preventable 

medical errors (IOM, 2000). Indeed, experts now say that even that Figure may be too 

low. More recently, James (2013) has revised the IOM estimate and predicts that the 

number of deaths resulting from preventable harm in hospitals may be greater than 

400,000 per year. 

In the healthcare industry, patient safety has been assessed largely by medical 

outcomes. In other words, many healthcare professionals focus on a single question: did 

the patient recover or did the patient suffer from complications (perhaps even death) after 

a given procedure? Unfortunately, this simplistic approach fails to take into account the 

process itself and does not necessarily shed light on any system-induced failures that may 

have occurred throughout the procedure. 

In his book Safer Complex Industrial Environments: A Human Factors Approach, 

Hollnagel (2010) explains that most safety investigations use either a single- or a 

multiple- cause philosophy when searching for the genesis of accidents. In the single 

cause model, individuals focus on root cause analysis and believe that there is a single 
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cause for any outcome. This philosophy purports that if one acts upon the single cause, 

the outcome can be prevented from occurring again. While this method is tempting, it is 

certainly over-simplified. The second approach, multiple-cause philosophy, focuses on 

the belief that an outcome may be the result of a combination of factors and a “root cause” 

can exist for each.  While this approach is much more comprehensive, it can be unwieldy, 

given the combination of factors that influence behavior.  

While arguments regarding the veracity of the two philosophies continue to be 

debated, what is common between both approaches is this idea of a “root cause”. Not 

surprisingly, most of the accident prevention programs in healthcare tend to focus on 

investigating these “root” causes associated with so-called “sentinel events”, or events 

that reach a patient and result in either death, permanent harm, or severe temporary harm 

where intervention is required to sustain life (The Joint Commission, 2016).  

Though sentinel events are arguably the largest threat to patient safety and the 

reputation of the healthcare industry, some would argue that this is not where the focus 

should be. For example, in Herbert Heinrich’s (1931) book, Industrial Accident 

Prevention, A Scientific Approach, he reported that “it is estimated that in a unit group of 

330 accidents of the same kind and involving the same person, 300 result in no injuries, 

29 in minor injuries, and 1 in a major lost-time injury” (Heinrich, p.26). In other words, if 

one simply focuses on a major injury or sentinel event, they are probably missing several 

minor events and even more “no-injury” events that may have occurred. This is important 

because many of the cause factors seen in these less serious events are the same cause 

factors identified in sentinel events (Wiegmann & Shappell, 2003). These Figures and 

ratios have come to be known as Heinrich’s Triangle or Heinrich’s Law, which became 
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the foundation upon which many of today’s industrial accident prevention programs were 

built (see Figure 1). 

Because of the high profile nature of sentinel events, most healthcare 

organizations still prefer to focus on them. However, Heinrich’s law would suggest that 

greater effort should be placed on more common minor/no injury events where the “roots” 

of many underlying threats to patient safety may exist. Furthermore, by employing more 

effort to understand non-injury events, organizations would be utilizing a more proactive 

approach that may broaden our understanding of the genesis of more catastrophic sentinel 

events and yield novel approaches to their prevention/mitigation.  

To illustrate this, consider a patient who was just diagnosed with skin cancer.  In 

terms of Heinrich’s triangle, the “Major Injury or Single accident” would be a patient 

death due to stage 4 skin cancer. Here, treatment would have been difficult, as the cancer 

cells have spread beyond the skin and regional lymph nodes to distant organs. The 

“Minor Injury” would be an individual with stage 0 skin cancer where the cancer cells are 

confined to the epidermis and have not spread, making the cancer more easily treated 

using surgery or potentially non-invasive techniques. The “No-Injury” cases would be 

those individuals who have yet to present with skin cancer but may have risk factors that 

make them predisposed to this disease. For example, these individuals may be older in 

age, have weakened immune systems, fair skin, a family history of skin cancer, or are 

1
Major Injury

29 
Minor Injuries

300 
No Injury Accidents

Figure 1. Heinrich's Triangle (adapted from Heinrich, 1931) 
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smokers. Unlike the major or minor injury levels, at the “No-Injury” level, skin cancer 

prevention techniques can be used to decrease the risk for developing melanoma. Here, 

individuals can decrease their exposure to UV light by avoiding direct sunlight and 

tanning beds, they can be sure to wear sunscreen, hats and protective clothing when they 

do go out in the sun, and have regular thorough skin examinations.  

If we could choose between the three areas outlined above, most of us would elect 

to be in the “No-Injury” group, where we can take preventative measures to avoid the risk 

of developing cancer (Minor-Injury), or having it manifest to be a disease that we die 

from (Major-Injury). Arguably, patients would prefer to seek preventative treatment for 

an illness rather than affording the disease the opportunity to spread throughout their 

bodies to the point where drastic interventions are required.  

We can use the example above as a means to understanding the broader problem 

facing the healthcare industry today. Despite our best efforts in patient safety, medical 

errors continue to be made in hospitals across the country and in some cases may result in 

death. In an effort to better understand the genesis of these errors, most investigations 

have focused on sentinel events. For instance, academic venues like morbidity and 

mortality (M&M) conferences allow individuals to learn from previous experiences and 

modify behavior. However, this does little for the people who have already lost their lives 

or suffered from serious injuries. As Heinrich and others would say, it may make more 

sense for the healthcare industry to focus its attention on the minor injury/no injury 

incidents, in the hope to prevent these larger, catastrophic events.  

Within healthcare and surgery in particular, one way to investigate the minor 

injury/no injury events, is to use an observational approach to identify human factors 
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issues that may lead to patient harm. Many observational studies in healthcare focus on a 

specific area such as communication (Coiera & Tombs, 1998; Reever & Lyon, 2002; 

Gurses, et al., 2009) teamwork (Schraagen, et al., 2010; Steinemann, 2011;) technology 

and equipment issues (Courdier, et al., 2009; Pennathur, et al., 2013), errors (Bracco, et 

al., 2001; Catchpole, et al., 2008;), and interruptions (Chisholm, et al., 2000;). Other 

observational studies have documented the myriad of work system factors that disrupt 

workflow and team performance overall (Mackenzie & Ziao, 2003; Wiegmann, et al., 

2006; Sevdalis, et al., 2008; Henrickson-Parker, et al., 2010; Henrickson-Parker, et al., 

2010; Wiegmann, et al., 2010; Palmer et al., 2013).  

One area that has received considerable attention for observational research is the 

cardiovascular operating room (CVOR). This is not surprising given that cardiac surgery 

is the most common of inpatient surgical procedures performed (CDC, 2015). Further, 

despite being a fairly structured, planned and organized care setting, cardiac surgery 

continues to be considered a high-risk procedure (Gurses, et al., 2012). While the CVOR 

has been researched by many, there is limited research on the differences between 

CVORs located at different types of facilities (i.e.an academic university medical center 

vs. a non-academic hospital). Although the differences between these types of venues 

may be self-evident, the types and frequency of events observed may vary. 

Understanding these observational differences may prove helpful in designing and 

implementing targeted interventions to protect against threats to patient safety in the 

future.  

While observations in the CVOR are certainly of interest to the healthcare industry 

because of its frequent use, several other medical venues have been observed and would 
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benefit from the investigation of human factors related issues. While certain domains 

may be similar to that of cardiac surgery because of their high risk and well organized 

structure (e.g., spinal surgery, neuro surgery) others vary drastically. One area for 

example, involves care for the traumatically injured patient. Unlike cardiac cases, trauma 

cases are unexpected, unpredictable and particularly time sensitive. Although the 

differences between the CVOR and a trauma center may be conspicuous to experts in the 

field, the differences in observations and the types of interventions that may be put in 

place are certainly worth investigating. 

Unfortunately, while observational studies such as these are helpful in identifying 

process inefficiencies that threaten the optimal delivery of patient care, they often involve 

several hours of observations that produce hundreds of data points or instances of 

potential human factors problems. Without use of a framework or classification system, 

the analysis of observational data can be arduous, leading to challenges for identification 

of targeted interventions to reduce specific threats to patient safety.  

Perhaps a more systematic, theory-driven approach could be applied to 

observational healthcare data as a means to classify and analyze the types of human 

factors issues identified in medical settings. Rather than focusing on errors and adverse 

events, which is no different than treating a patient who is already sick, the healthcare 

industry would be better served to address errors by proactively identifying underlying 

symptoms before they manifest themselves. A method such as this has an advantage in 

that healthcare professionals are now able to address these threats proactively, rather than 

continuing to utilize a reactive approach that investigates patient safety by exploring error 

and preventable death in medicine.  
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Traditionally, the healthcare industry has focused on developing sophisticated 

techniques for examining the causes associated with sentinel events (the highest part of 

Heinrich’s triangle). However, little effort has been expended within healthcare to 

identify potential threats to patient safety (below the peak of Heinrich’s triangle) when an 

adverse outcome did not occur. The purpose of this dissertation is to explore the base of 

Heinrich’s triangle by investigating a tool that has already been established in other 

domains (e.g., aviation, mining, maritime, defense) and its utility in proactively assessing 

patient safety.  
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CHAPTER 2: LITERATURE REVIEW 

While there are several different approaches to accident investigation in the 

literature, there are few tools that specifically apply human factors, and even less that can 

be modified for use within healthcare or are currently used in this setting. This chapter 

describes one such tool, the Human Factors Analysis and Classification System (HFACS), 

as well as the models that have served as its foundation.   

Reason’s Swiss cheese model of accident causation 

 While several frameworks have been proposed for identifying human error, 

perhaps one of the most well-known is James Reason’s Swiss cheese model of accident 

causation (Wiegmann and Shappell, 2003).  In fact, in a review of his work, Larouzee 

and colleagues (2014) identified several areas where this model has been applied since 

the early 1990s.  These areas include aviation (Maurino, 1993; Shappell 2000), maritime 

(Ren et al., 2008), healthcare (Vincent et al., 1998; Carthey et al., 2001; Lederman & 

Parkes, 2005), defense (Jennings, 2008), nuclear (Reason et al., 2006), oil and gas 

(Hudson et al., 1994), and railroad (Reason et al., 2006; Baysari et al., 2008). In 

developing his model, Reason integrated ideas from several human error perspectives in 

the literature. Perhaps most influential to the development of Reason’s Swiss cheese 

model were Edward’s (1972) SHEL model and Heinrich’s (1931) Domino theory.  

The SHEL model (a name derived from the initial letters of its factors: Software, 

Hardware, Environment and Liveware) was developed in 1972 by Elwyn Edwards, a 

notable ergonomist and aviation psychologist. Edwards maintained that productive 

processes were systemic in nature, and performed based on a combination of software, 

hardware, environmental and liveware elements. With respect to this model, software 



  22 

refers to the rules, guidelines, and other written documents that are part of the standard 

operating procedures of a system. Hardware on the other hand, refers to any material tool 

used within the system (i.e., equipment). The environment is the situation in which the 

other three components must function and it specifically encompasses the social and 

economic climate, as well as the physical space involved. Finally, liveware represents the 

human beings that operate within the system (i.e., in a hospital, this may be doctors, 

maintenance workers, administrators or technicians).  

Edwards’ model places the human component (liveware) as the focus of interest. 

However, humans are not independent and unrelated factors of a system, rather, they 

interact with other elements such as hardware, software and the environment. It is within 

the interactions of these components (i.e., liveware-hardware, liveware-software, 

liveware-environment, hardware-software, hardware-environment, software-

environment) that problems can occur. Captain Frank Hawkins later modified the model 

into a building block structure and expanded it to include a second “liveware” element 

(now called SHELL model, see Figure 2) in order to represent group processes between 

humans, or the liveware-liveware interaction (Hawkins and Orlady, 1993).  

In terms of accident investigation, this model supports a systems perspective that 

maintains that the human is rarely the solitary cause of an accident. Rather, this 

perspective focuses on a variety of contextual and task-related factors that interact with 

the human which may in turn affect their performance. 
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Figure 2. SHELL Model (adapted from Hawkins, 1993) 

 

 Another theory that played a key role in the development of Reason’s Swiss 

cheese model was Heinrich’s domino theory. This theory is based upon a sequential 

accident model in which accidents transpire as a result of a chain of events that occur in a 

particular chronological order. In accordance with the domino theory, there are five 

factors (i.e., dominos) in a given accident sequence: (1) ancestry and social environment, 

(2) fault of the person, (3) unsafe acts and/or mechanical or physical hazards, (4) the 

accident and (5) subsequent injuries (see Figure 3).  

 

Figure 3. Domino Theory (adapted from Heinrich, 1931) 
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Heinrich maintains that a resulting injury is always caused by an accident, and the 

accident in turn is the consequence of the factor that immediately precedes it. Each of the 

five factors described by Heinrich occur in a chronological order and are explained below. 

The first factor, ancestry and social environment can be explained by undesirable 

character traits (e.g., stubbornness, recklessness, or greediness) either passed along 

through inheritance or influenced by the environment.  Both inheritance and environment 

can cause the second accident factor, fault of a person. Fault of a person represents 

acquired faults of an individual (e.g., violent temper, inconsiderateness, or 

overconfidence) that may constitute reasons for committing the next accident factor.  

In essence, the first two dominos engage what is commonly known as the nature 

vs. nurture argument. Here, the ancestral/social environmental traits can be thought of as 

“nature”, representing those qualities that we inherit. While faults of a person can be 

described as “nurture” and embodies learned and/or acquired behaviors throughout one’s 

development.  

The third accident factor, Unsafe act and/or mechanical or physical hazard, is the 

unsafe performance of individuals (e.g., not wearing personal protective equipment, or 

failing to wash hands before visiting a patient) and mechanical or physical hazards (e.g., 

slippery surfaces or wires and tubing tangled across the floor) that result directly in an 

accident. The fourth domino, the accident itself represents specific events like tripping on 

tangled wires, slipping on a wet floor, or running into another person that can ultimately 

lead to the final domino, injury. Injury occurs as the direct result of an accident and can 

include anything from minor injuries like bruising, fractures, and lacerations to major 

injuries like closed head injuries or even death.   



  25 

The five accident factors are depicted in a domino fashion, such that the collapse 

of the first domino (ancestry/social environment) will result in the collapse of the 

remaining dominos. In this theory, an undesirable or unexpected event initiates a 

sequence of events which leads to an accident. This theory implies that the accident is the 

result of a sequence of events who’s “root” cause resides higher in the system at the 

ancestry/social environment level. Theoretically, if one were to eliminate that root cause, 

the accident would not occur.   

The theories proposed by Edwards and Heinrich suggest that adverse events 

rarely occur in isolation. Rather they are the result of a combination of factors that 

influence the system as a whole. Reason expanded on these theories by describing four 

layers of interaction: unsafe acts, preconditions for unsafe acts, unsafe supervision and 

organizational influences.  

Much like Heinrich’s domino theory, each layer of Reason’s model is positioned 

one behind the other, acting as barriers to protect the system as a whole (see Figure 4). 

Typically, each layer or barrier has been depicted as a slice of Swiss cheese, within which 

failures (i.e., the holes in the cheese) exist. These holes in the cheese can take the form of 

either active or latent failures.  
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Figure 4. Reason's Swiss cheese model of accident causation (adapted from Reason, 1990) 

 

Active failures, can be thought of as faults that are directly linked to an accident. 

For example, failing to stop at a stop sign can directly lead to an adverse event. 

Conversely, latent failures can be thought of as background elements which may 

eventually lead to an unsafe act. For example, things like inappropriate attitudes, failures 

in attention and poor communication may not directly cause an accident, but can certainly 

act as contributory elements in the system. The difference between active and latent 

failures is that active failures have immediate consequences while latent failures may lie 

dormant for days, months, or even years, before they contribute to an accident.  

Reason expands upon this concept of active and latent failures as he describes his 

four layers of Swiss cheese, the first of which is the unsafe acts of operators. These active 

failures are easy to identify as they tend to be events that directly result in an accident. 

For example, consider a floor nurse with 20 years of experience, who one day forgot to 

administer life sustaining medication to one of her seven patients.  In this situation, the 

inadvertent neglect by the nurse represents an unsafe act.  
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During the course of the investigation, hospital administrators may ask her how 

long she has been doing her job, or if she has ever made a mistake like this before. 

Because she is so experienced and has never made such a devastating error, asking these 

questions may not necessarily aid the hospital in understanding how or why this event 

took place.  

If instead, the administrator asked the nurse, what was different about this day, 

then any routine day on the job, he would have learned that she was very fatigued and 

distracted, which is out of the norm for her. The nurse would have explained that she did 

not sleep the night before because she had to take her daughter to the emergency room, 

and although she arrived on time for her shift, she was mentally unfocused, as she was 

concerned for her daughter.  

With this in mind, Reason developed a second layer that could address these 

underlying factors that may have played a role in how an individual performs on a given 

day. The second layer, preconditions for unsafe acts, involves conditions that can directly 

affect human performance. Operator factors such as mental or physical fatigue, illness, 

ineffective communication, and poor coordination practices represent failures at this level. 

For example, a nurse who is not getting enough sleep or is taking over-the-counter 

medications may not be able to perform at her best. Likewise, when individuals have 

difficulty with communicating and coordinating effectively, the likelihood of an unsafe 

act occurring increases.   

While it is certainly important to understand how the preconditions impact 

humans, Reason took this methodology even further by moving beyond the individual, to 

investigate the possible latent failures associated with supervisors involved at the third 



  28 

layer, Unsafe Supervision. It is at this level that investigators can begin to understand 

exactly why failures at the preconditions for unsafe acts level took place. In many cases a 

breakdown in appropriate communication and coordination practices may be traced up 

the chain of command to an issue at the supervisory level.  

Consider the nurse medication error example. While an investigation at the 

preconditions for unsafe acts level revealed that she was distracted and fatigued, had we 

stopped there, we would have missed other failures involved with unsafe supervision. For 

instance, what we did not know before is that during her shift, the nurse was scheduled to 

work with a nurse-in-training, who did not have all of the experience necessary to care 

for her own patients. Traditionally, nurses-in-training are accompanied by other, more 

experienced nurses with whom they shadow and learn from. However, on this day, the 

supervisor scheduled the nurse-in-training to work without her mentor who was on 

vacation. Because of this, the remaining, experienced nurses had to pick up the slack for 

the nurse-in-training, as well as assist her when she had questions.  

However, beyond an issue at the supervisory level, the organization itself can 

contribute to an accident in ways that are often unnoticed by investigators. It is at 

Reason’s fourth level that important decisions are made by the high-level managers of the 

system. Here, decision-makers use input from the outside world to establish goals for the 

organization as a whole and determine how these goals should be met. While the overall 

aim at this level is to maximize productivity and safety, considerable effort is placed on 

the allocation of finite resources such as money, equipment, people and time.  

Why exactly did the supervisor knowingly schedule a nurse-in-training to work a 

shift on her own, without supervision? Further investigation up the chain of command 
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may conclude that the hospital was facing a time of fiscal austerity. Because of this, the 

allocation of resources for hiring was severely cut, and the organization could not afford 

to hire additional staff. Unfortunately, due to this nursing shortage, the supervisor was 

left with no choice but to schedule the nurse-in-training to cover a shift on her own.   

In sum, by utilizing Reason’s Swiss cheese model of accident causation, we have 

a better understanding of the genesis of the accident. As a result of economic deficits, 

decision makers at the organizational level of the hospital could not hire new staff 

members, creating a lack of staff, particularly nurses. Because of this shortage, the 

supervisor in charge of the weekly scheduling of floor nurses, had no choice but to 

schedule all of the available nurses during the busiest shift. While the supervisor was 

aware that nurses-in-training are among the selection of available nurses for the week, he 

usually only schedules these trainees when they can work alongside an experienced nurse 

mentor. However, the experienced nurse who traditionally works with the trainees was on 

vacation, forcing the supervisor to schedule the inexperienced trainee without a mentor.  

As a result, the nurse who committed the medication error was overworked, 

having to manage not only her seven patients but needing to assist the nurse-in-training 

with her patients as well. On top of her high workload, the nurse was physically and 

mentally fatigued from spending the night in the Emergency Room with her daughter. As 

much as she tried to remain focused on the several tasks ahead, she was distracted by 

concern for her daughter who was still in the Emergency Room, and frustrated that 

should could not be with her.  

Using Reason’s Swiss cheese model of accident causation, it is much easier to see 

how a simple memory lapse could occur during such a complex series of events. 
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Unfortunately, while this model serves as a good assimilation of different human error 

perspectives, it is primarily descriptive and does not operationalize the “holes” or failures 

in the system. In other words, while Reason describes the four layers of accident 

causation, he fails to explain what the failures in the defenses actually are, instead leaving 

the identification of the holes to the user. Consequently, the model in its present form, 

may be impractical for use in healthcare for incident and accident investigation.  

The Human Factors Analysis and Classification System (HFACS) 

In an effort to further define Reason’s Swiss cheese model of accident causation, 

Shappell and Wiegmann (1998) utilized accident data from the U.S. Navy and Marine 

Corps to develop The Human Factors Analysis and Classification System (HFACS). 

HFACS describes failures (i.e., holes in the cheese) at each of the four levels described 

by Reason (Wiegmann & Shappell, 2003). Included within these four levels (also called 

tiers), are 19 causal categories. Each of these causal categories, as they appear at each 

level are summarized in Table 1, depicted in Figure 5 (white boxes), and described below.  

 

Table 1. Description of the HFACS Categories 

Organizational Influences 

Organizational climate: Prevailing atmosphere/vision within the organization including such things as policies, 

command structure, and culture  

Operational process: Formal process by which the vision of an organization is carried out including operations, 

procedures, and oversight among others  

Resource management: Management of necessary human, monetary, and equipment resources  

Unsafe Supervision 

Inadequate supervision: Oversight and management of personnel and resources including training, professional 

guidance, and operational leadership among other aspects.  
Planned inappropriate operations: Management and assignment of work including aspects of risk management, crew 

pairing, operational tempo, etc.  
Failed to correct known problems: Those instances when deficiencies among individuals, equipment, training, or 

other related safety areas are ‘‘known” to the supervisor, yet are allowed to continue uncorrected  
Supervisory violations: The willful disregard for existing rules, regulations, instructions, or standard operating 

procedures by management during the course of their duties  

Preconditions for Unsafe Acts 
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Environmental Factors 

Technological Environment: This category encompasses a variety of issues including the design of equipment 

and controls, display/interface characteristics, checklist layouts, task factors and automation  
Physical Environment: Included are both the operational setting (e.g., weather, altitude, terrain) and the ambient 

environment, such as heat, vibration, lighting and toxins  

Conditions of the Operator 

Adverse mental states: Acute psychological and/or mental conditions that negatively affect performance such as 

mental fatigue, pernicious attitudes, and misplaced motivation  
Adverse physiological states: Acute medical and/or physiological conditions that preclude safe operations such 

as illness, intoxication, and the myriad of pharmacological and medical abnormalities known to affect 

performance  

Physical/mental limitations: Permanent physical/mental disabilities that may adversely impact performance such 

as poor vision, lack of physical strength, mental aptitude, general knowledge, and a variety of other chronic 

mental illnesses  

Personnel Factors 

Communication, coordination and planning: Includes a variety of communication, coordination, and teamwork 

issues that impact performance  

Fitness for duty: Off-duty activities required to perform optimally on the job such as adhering to crew rest 

requirements, alcohol restrictions, and other off-duty mandates 

Unsafe Acts 

Errors 

Decision errors: These ‘‘thinking” errors represent conscious, goal-intended behavior that proceeds as designed, 

yet the plan proves inadequate or inappropriate for the situation. These errors typically manifest as poorly 

executed procedures, improper choices, or the misinterpretation and/or misuse of relevant information  

Skill-based errors: Highly practiced behavior that occurs with little or no conscious thought. These ‘‘doing” 

errors frequently appear as breakdown in visual scan patterns, inadvertent activation/deactivation of switches, 

forgotten intentions, and omitted items in checklists often appear. Even the manner or technique with which one 

performs a task is included  
Perceptual errors: These errors arise when sensory input is degraded, as is often the case when flying at night, in 

poor weather, or in otherwise visually impoverished environments. Faced with acting on imperfect or incomplete 

information, aircrew run the risk of misjudging distances, altitude, and decent rates, as well as responding 

incorrectly to a variety of visual/vestibular illusions  

Violations 

Routine violations: Often referred to as ‘‘bending the rules” this type of violation tends to be habitual by nature 

and is often enabled by supervision/management that tolerates such departures from the rules.  
Exceptional violations: Isolated departures from authority, neither typical of the individual nor condoned by 

management  
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Figure 5. The Human Factors Analysis and Classification System (HFACS) 

 

 

Description of the Categories 

Unsafe Acts: The first tier of HFACS, “unsafe acts”, describes the active failures 

of operators that may ultimately lead to an unintended outcome, and in some cases an 

accident.  There are two major types of unsafe acts: errors and violations.  

Errors. Errors can be best described as mental or physical actions that proceed as 

intended yet do not achieve their desired outcome. Wiegmann and Shappell describe 

three error types in their taxonomy: (1) decision errors, (2) skill-based errors and (3) 

perceptual errors.  

Decision errors. This subdivision of unsafe acts can best be described as products 

of conscious, volitional behavior that proceeds according to plan but proves inadequate 

for the situation. These errors can be thought of as “honest mistakes” that typically result 

due to poor information, a lack of knowledge, or issues associated with experience. The 



  33 

latter of which could be due to too much or not enough experience with respect to a given 

task.  

Cases of poor information refer to instances in which an individual may lack 

important material or data related to a situation that could help them make an appropriate 

decision. Consider for example an unconscious patient who arrives at a trauma center 

after a motor vehicle collision. Upon arrival, the resident notes that the patient has several 

lacerations and fractures and calls for the administration of morphine to minimize pain. 

Because the trauma team could not find the patient’s wallet, and the patient was 

unconscious, no one could inform the resident that the patient was in fact allergic to 

morphine. As a result, upon administration, the patients throat began to close and his 

respiratory rate dropped drastically. Assuming that the attending physician sees this in 

time, it may turn out to be benign; however, if this is missed, the patient may not survive.  

Decision errors can also occur because of a lack of knowledge. As an example, 

consider the case of a patient who died because his healthcare provider did not recognize 

the symptoms of his illness. Dr. Wachter, who at the time was a second-year medical 

student, started rounds on his 71-year-old patient who had just had a hip operation. Upon 

seeing that the man was sweating profusely and panting, Dr. Wachter checked his chart 

and noted that his respiration and heart rate had been climbing, but his temperature was 

steady. After listening to his lungs (which sounded clear), Dr. Wachter concluded that the 

problem did not seem like heart failure or pneumonia, and he attributed his patient’s 

condition to the stuffy room. He told his patient to rest until the other members of the 

medical team could return later to check on him.  
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Later that morning, a Code Blue was called to the patient’s room, and when Dr. 

Wachter arrived, he found that his patient had died (i.e., the patient was in cardiac arrest). 

The autopsy revealed that the patient suffered a massive pulmonary embolism. Despite 

having good information from the symptoms expressed by his patient, which indicated a 

blood clot, Dr. Wachter did not know this, as he had yet to read that chapter in his 

medical textbook (Kita, 2012).   

Poor decisions may also be a result either too much, or too little experience on a 

given task. As an example of someone lacking experience, consider the following case. A 

28-year-old woman who recently had a bilateral lung transplant, was admitted to the 

hospital when she presented with sudden onset of severe shortness of breath. Diagnostic 

studies revealed that she was producing donor-specific antibodies, and as a result she was 

treated for humeral rejection. This treatment included placing a large bore central line 

(similar to a hemodialysis catheter) on the right side of her chest and daily bedside 

plasmapheresis therapy. A registered nurse received orders to draw the patient's morning 

labs. Although she had worked with many other types of catheters, the nurse asked the 

charge nurse for specific instructions for this type of catheter, as she had never used one 

before. The charge nurse provided her with the following basic verbal instructions: 

“waste 3 cc, draw labs, flush with saline, HEP-LOCK.” The nurse felt confident that the 

verbal instructions were sufficient and she went to the patient’s room to complete the task.  

When the nurse entered the room to draw the labs, the patient was awake and in 

no apparent distress. However, after all the tubes had been filled, the patient sat upright 

and said, "something isn't right." The nurse reached around the bedside Table to grab the 

saline flush, and the patient began to convulse. She called for help as the patient lost 
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consciousness and fell to the floor and bled from her catheter. The patient spent the next 

3 days in the intensive care unit (ICU) and testing revealed a cerebral air embolism. The 

nurse manager conducted an immediate and thorough incident review, which revealed 

that the nurse had failed to clamp the catheter prior to removing the syringe, allowing air 

to enter the catheter and obstruct the patient's circulatory system. The devastated nurse 

requested a temporary leave of absence, but never returned to work. The hospital enacted 

a policy requiring all nurses receive education on catheter placement and allowed only 

trained nurses to access the catheters (Swayze & James, 2013) 

Skill-based errors. This category of errors arises during automatized behavior that 

requires little conscious thought, and are often attributable to memory, attention or 

technique failures. Failures in memory can manifest as omitted items on a checklist, place 

losing or forgotten intentions. For example, forgetting to roll a patient with a penetrating 

wound to examine his back during a trauma resuscitation effort may be the result of a 

memory failure. As a result, the patient bled out due to a puncture wound to the back side 

of the left lung.  

As another example, consider 17-year-old Jesica Santillan who received the heart 

and lungs of a patient whose blood type did not match hers. Unfortunately, doctors at the 

medical center had forgotten to check the compatibility of the transplant organs before 

the surgery began. As a result, Ms. Santillan died two weeks later (Kopp, 2013). 

In a similar situation, medical resident Dr. Danielle Ofri was already juggling 

patients with acute heart failure and rampant infections when she was assigned to a 

nursing home patient with dementia.  This patient was a perfect candidate for the 

intermediate unit, and by transferring her there, the workload would be reduced for Dr. 
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Ofri. However, before she could transition the patient, she had to rule out any treatable 

medical conditions by getting the labs, reviewing the head CT scan and chest X-ray. 

Because it was 4:45pm and the doctors at the intermediate unit left by 5:00pm, Dr. 

Ofri scanned through the labs, called the ward’s doctor and ran through the case. The 

doctor on the phone verified that “the labs and everything [were] normal” and Dr. Ofri 

agreed. Within a few minutes the patient was sent to the intermediate ward.  

The next afternoon the intermediate ward doctor found Dr. Ofri and told her that 

she was called overnight by the radiologist because the patient’s head CT showed an 

intracranial bleed. The patient had been rushed into neurosurgery to get the blood drained 

from inside her skull. In an effort to decrease her patient load, Dr. Ofri completely forgot 

to check the head CT. Luckily, someone else caught this mistake, and the patient 

survived (Ofri, 2013).  

Skill-based errors that appear as attentional failures typically involve incorrect or 

omitted actions, distractions, or task overload. As an example, consider an overloaded ED 

nurse working the night shift. During her shift she is managing several patients, one of 

which is a baby boy who needs a heparin injection. While she is pulling the vial of 

heparin from the automated dispensing cabinet, she hears an overhead page that a trauma 

alert patient is about to arrive. Because she is on the trauma team, the nurse quickly 

checks the label on the medication, prepares it, and administers it intravenously to the 

boy. She runs out of the room towards the trauma bay not realizing that instead of 

administering the heparin in a concentration of 10 units/mL, the infant receives heparin in 

a concentration of 10,000 units/mL and dies. 
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Finally, regardless of training, experience, and educational background, specific 

differences in techniques can also set up individuals for specific failure modes. Two 

surgeons with identical training and skill may differ significantly in the techniques they 

use to operate on a patient and manage their operating room. One may be slow and 

methodical, requiring that no one speaks during the procedure, while the other may be 

fast and efficient, allowing music and background chatter.  

In and of itself, one technique may not be better than the other; however, each 

demonstrates potential opportunities for failure. For example, a surgeon who demands a 

quiet OR, may create a fearful atmosphere where team members are frightened to speak 

up or even communicate aloud to one another. This environment could lead to issues in 

miscommunication and poor coordination.  

While the setting may be vastly different in another room where a different 

surgeon tolerates chatter and music, team members may be equally susceptible to failures. 

For instance, individuals in the “noisy” operating room may be more easily distracted and 

less likely to pay attention to events in the room.  

Perceptual errors. Finally, perceptual errors involve improper actions based on 

the misinterpretation of sensory input. These errors tend to occur when sensory input is 

degraded or “unusual” as is the case with visual illusions and spatial disorientation. 

Because of context cues and our past experiences, our brains often fill in “missing” 

information without us knowing. For example, if a word is missing on a page of a book, 

most individuals won’t even realize this because our brains fill in this information based 

on the context provided. Perceptual errors occur when individuals inadequately respond 

to information that they may or may not have actually perceived.  
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For example, take a few seconds to look at Figure 6, an X-ray computed 

tomography (CT) scan of a human lung.  

 
 

Figure 6. X-ray CT (from Drew, Vo & Wolfe, 2013) 

 

Do you notice anything strange about this image? If not, keep looking. Did you spot the 

gorilla? The image comes from a study published in Psychological Science where Trafton 

Drew and colleagues (2013) working at the Brigham and Women’s Hospital found that 

when people focus on searching these images for bright white cancer nodules, they never 

notice the gorilla. Perhaps more shocking is that radiologists – individuals who are 

specifically trained to read CT scans, usually miss the gorilla as well.  

As an example of an auditory perceptual error, consider a cardiovascular 

procedure that requires the patient to go on cardiopulmonary bypass. This procedure 

involves a surgeon, perfusionist and anesthesiologist. During the case, the surgeon may 

ask the perfusionist, who manages the heart-lung machine, to “go up” or “go down” on 

pump. This changes the rate at which blood flows in and out of the patient. On the other 

hand, the surgeon may also ask the anesthesiologist, who is in charge of keeping the 

patient asleep, as well as managing the patients position on the operating Table, to “go up” 

or “go down” in terms of the patient’s positioning.  
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During one of these cases, the surgeon declared “up on pump” just after he had 

been speaking to the anesthesiologist. Because the anesthesiologist assumed the surgeon 

was still communicating with him, as soon as he heard the word “up” the anesthesiologist 

started to reposition the patient on the operating Table. Immediately, the surgeon declared 

“up on pump! I wasn’t talking to you.” The surgeon was requesting that the perfusionist 

increased the flow of cardiopulmonary bypass, and the anesthesiologist misheard the 

request, because of the context and the routine nature of his brain to fill in the missing 

information. 

Violations. While errors are often referred to as “honest mistakes” that occur 

within the safety norms of an organization, violations involve an operator’s willful 

departure from the rules or regulations of safety. In other words, the individual knew 

what the rule or regulation was but elected not to adhere to it. While there are many ways 

to differentiate between types of violations, the HFACS methodology makes the 

distinction between those that are routine in nature and those that are exceptional to an 

individual’s normal behavior.   

Routine violations. Routine violations, often referred to as “bending of the rules”, 

tend to be habitual in nature and are often tolerated by supervisory authority. Individuals 

who commit this kind of violation have the ability to work within the rules when they 

want to, however, in these situations they chose not to. For example, consider an 

interstate with a speed limit of 65 mph. Many drivers will consistently drive five mph 

above this limit, often without reprimand. However, in a school zone, individuals rarely 

speed because they choose not to violate the rules in a situation where someone (e.g., a 

child) could get hurt. Similarly, while the rules and regulations of a given hospital may 
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dictate that employees must wash their hands before and after they see each patient, an 

Emergency Department (ED) physician who elects not to wash his hands is not likely to 

get reprimanded. Further, the supervisor at the hospital may not only allow for this rule to 

be broken, but they themselves may violate said rule, which makes matters more difficult. 

Exceptional violations. Unlike routine violations, exceptional violations appear as 

isolated withdrawals from authority. These violations are not condoned by management 

and are not usually indicative of an individual’s typical behavioral patterns. These types 

of violations are not considered “exceptional” because of their extreme nature. Rather, 

they are considered exceptional because they are outside of the individual’s typical 

behavior. An isolated event of driving 105 mph in a 65 mph zone would be representative 

of an exceptional violation, as it is highly unlikely that the individual behaves in this way 

on a regular basis.  

Consider Dr. Sulieman Al Hourani who was dismissed from his position after 

removing the entire right testicle of a patient who was only supposed to have a cyst 

removed. As soon as the assisting nurse turned away to get a transfixion stitch, the 

incident occurred and the testicle was “mistakenly” removed. Upon further investigation, 

examiners found that Dr. Al Hourani not only stole supplies from the hospital (two boxes 

of dihydrocodeine) but also injected himself with medication that was meant for a patient. 

Specifically, Dr. Al Hourani had consulted a colleague and was advised to inject a patient 

with 10 milligrams of midazolam. He gave the patient 8mg and injected himself with the 

remaining 2mg (Surgeon cut, 2010).  

Preconditions for Unsafe Acts: Very few unsafe acts are isolated events; rather 

they are often the end result of latent failures intrinsic to the system. The second tier, 
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preconditions for unsafe acts, captures those latent failures associated with the individual 

and the general working environment. This level includes three over-arching categories 

(i.e., environmental factors, conditions of the operator, and personnel factors), which can 

further be broken down into seven distinct causal categories.  

Environmental factors. Within HFACS environmental factors have been 

separated into two causal categories: physical environment and technological 

environment. The first, physical environment, refers to both the operational environment 

(e.g., weather, terrain and altitude), as well as the ambient environment (e.g., heat, 

vibration, lighting and toxins). Certain aspects of the physical environment can make it 

difficult for the individual to complete their tasks. For example, the high temperature of a 

room can cause dehydration, reducing the operator’s concentration level. This is 

particularly true in a trauma resuscitation bay, where the room temperature must be kept 

high to reduce the risk of hypothermia. Trauma team members are often dripping with 

sweat while trying to resuscitate patients as they must wear personal protective 

equipment and lead vests for protection during x-ray imaging.  

The second environmental factors category, technological environment, includes 

traditional usability issues associated with equipment, software, and several forms of 

documentation including checklists and procedures. As an example, consider the case of 

79-year-old Richard Smith who was receiving dialysis for kidney disease. During 

treatment, he started to experience shortness of breath and was admitted to the ICU. The 

next day, Mr. Smith complained of a stomach ache and was prescribed an antacid, or so 

he thought. Rather than metoclopramide (an antacid), Smith was given pancuronium, a 

paralytic and muscle relaxant that is used for intubation in small doses, and for lethal 
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injection in larger doses. Unfortunately, the pancuronium had put Mr. Smith into 

respiratory arrest (Gora, 2016).  

How were two such different medications so severely mixed up? Take a look at 

Figure 7 below from a Medication Safety Alert (1999). On the left is pancuronium, (the 

incorrect medication issued to Mr. Smith), while metoclopramide (the medication he 

should have received) is on the right.  

 

Condition of the operator. The conditions of the individuals within a system can, 

and usually do, influence their performance on the job. Wiegmann and Shappell use three 

categories to address the issues involving individuals: (1) adverse mental states, (2) 

adverse physiological states and (3) physical/mental limitations.  

Adverse mental states refer to the mental conditions of operators that may affect 

performance. Mental conditions include cognitive states such as distraction, inattention 

and mental fatigue, as well as personality traits and attitudes such as anger, 

overconfidence, and frustration. Predictably, if an individual is mentally tired, frustrated, 

has a loss of situational awareness or task fixation, there is an increased chance of an 

error occurring. Similarly, overconfidence and other hazardous attitudes such as egotism 

may increase the likelihood that a violation will be committed. 

Figure 7. Left to right - Pancuronium (paralytic), Metoclopramide (antacid) 
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As an example, consider a patient who came to the hospital for glaucoma surgery 

but lost his vision as a result. The nurse on the case was confident that she knew what 

preoperative medications were required for the surgery, so when the physician did not 

provide preoperative eye drop orders, she was convinced he had made a mistake. Rather 

than discussing this with the physician, the nurse created an order sheet listing the 

medications she was certain the doctor would have ordered, and then administered them 

to the patient. Unfortunately, the prescription eye drops were contraindicated for the 

specific type of glaucoma this patient had. Once the surgeon became aware of the nurse’s 

mistake, he tried to reverse the effects of the medication. Unfortunately, the patient had a 

poor outcome and lost vision as a result of the nurse’s overconfidence (Overconfidence, 

2012).  

Consider another case where a doctor administered a lethal dose of diamorphine, 

killing his patient within hours. Dr. Ubani, who had been recruited by an agency to 

provide out-of-hours cover in Cabridgeshire, arrived in the United Kingdom one day 

before the incident. The doctor explained that he was extremely tired and couldn’t 

concentrate, leading him to use the wrong drug, resulting in the death of his patient (Tired 

German doctor, 2009).  

The second type of operator condition involves adverse physiological states. This 

category refers to those medical or physiological conditions that may preclude safe 

operations. Issues involving operator illness, physical fatigue, and several 

pharmacological and medical abnormalities that affect performance are considered 

adverse physiological states. While many individuals continue to go to work when they 

have a head cold, working in this state typically results in degraded performance, 



  44 

increasing the risk of an error. Consider for example an anesthesiologist who is suffering 

from a bad cold. Determined to come to work he stocks up on over-the-counter 

antihistamines, acetaminophen, and other non-prescription pharmaceuticals. However, 

taking this myriad of medications makes him extremely drowsy and less alert to the 

patient monitors, increasing the chance of missing the decline of the patient’s status.   

The third and final category involves an individual’s physical/mental limitations. 

While adverse mental and physiological states tend to be acute, physical/mental 

limitations tend to be longer lasting and include such things as hearing loss, visual acuity 

changes and traditional anthropometric issues such as height and weight. Specifically, 

this category includes those instances when operational requirements exceed the 

capabilities of the individual. For example, some tasks require that individuals be a 

certain height (e.g., adjusting a headlamp in an operating room) or have a given amount 

of strength (e.g., lifting a patient’s legs for sterile scrubbing). Unfortunately, when the 

requirements are outside of the scope of an individual’s abilities, errors may occur.   

Consider a floor nurse who needs to reposition her patient to check for bed sores. 

She is quite small, but because she does not want to ask the other nurses for help, the 

nurse tries to role the patient herself. Unfortunately, she loses her balance and falls onto 

the patient, pulling on his stiches from his earlier procedure, requiring that the doctor 

come back and re-stitch the patient.  

Personnel factors. Some preconditions for unsafe acts can may also be considered 

personnel factors.  While there are a number of ways that an individual’s condition can 

lead to the commission of unsafe acts, there are also several things that an individual may 

do to themselves to create these preconditions for unsafe acts. Wiegmann and Shappell 



  45 

describe personnel factors based on two categories: (1) communication, coordination and 

planning and (2) fitness for duty.  

The first, communication, coordination and planning, accounts for occurrences of 

poor communication or coordination among personnel. Many industries and 

organizations have noted the importance of good communication and coordination skills 

in maintaining a well-functioning system. There have been several instances in which the 

lack of team coordination or improper communication has led to confusion and poor 

decision making. One of the most famous examples was the crash of a civilian airliner in 

the Florida Everglades. Here, the entire crew was vigorously trying to troubleshoot what 

turned out to be nothing more than a burnt out indicator light, while the autopilot was 

inadvertently disconnected. Because no one in the cockpit was monitoring the aircraft’s 

altitude, or “flying” the aircraft, the plane entered a slow, unrecognized descent that 

ended in numerous fatalities.  

 Issues of poor communication, coordination and planning can also take place in a 

medical setting. Consider the case of Sarah Fudacz, a 24-year-old patient with end-stage 

renal failure. Ms. Fudacz was under anesthesia and ready to receive a perfect-match 

kidney donated by her brother when the operation was suddenly stopped. A part-time 

nurse accidently threw away the donor kidney when she discarded the contents of the 

slush machine before the kidney was relocated to Ms. Fudacz’s operating room. The 

nurse who was cleaning up, had just returned from a lunch break and thought the kidney 

was already in Ms. Fudacz’s room when she discarded the machine’s contents. 

Unfortunately, despite best efforts by the doctors to resuscitate the kidney, it was 

rendered unusable and Ms. Fudacz was forced to find another donor (James, 2013).  
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The second category of personnel factors, fitness for duty, sometimes referred to 

as fitness for duty, typically includes activities performed off the job that influence a 

person’s ability to perform when they come to work. Breakdowns in personnel readiness 

can occur when individuals fail to adequately prepare physically or mentally for their 

obligations.  Failing to get proper rest, self-medicating, and drinking alcohol before work, 

can all lead to adverse mental states, which may ultimately lead to errors and accidents 

down the road.  

As an example consider a Northern Kentucky family who was awarded 2.55 

million dollars in compensatory and punitive damages against Dr. Gregory Duma, who 

was intoxicated when he assisted in the delivery of their son in 2005. Nurses testified that 

Dr. Duma had fallen asleep during the procedure and the baby boy had a damaged right 

arm and broken humorous after delivery (Family wins, 2009).  

Unsafe Supervision: Unsafe supervision, the third tier of the HFACS 

methodology, focuses on actions and decisions at the supervisory level of an organization 

that can adversely affect operator performance and/or the overall safety and efficiency of 

a system. There are four causal categories of unsafe supervision: (1) inadequate 

supervision, (2) planned inappropriate operations, (3) failure to correct a known problem, 

and (4) supervisory violations.  

 Inadequate supervision. The role of any supervisor, regardless of the industry, is 

to provide their personnel with whatever it takes to ensure the job is done safely and 

efficiently. Because supervisors must provide guidance, training, leadership and oversight 

amongst other resources, adequate supervision is not easy, and it is not always done.   

Inadequate supervision describes factors related to flawed oversight and management of 
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an organization’s personnel and resources. Examples of issues that fall into this category 

include the lack of professional guidance, poor leadership and insufficient training. When 

a supervisory system lacks guidance and oversight, the likelihood that violations are 

committed increases. As such, it is important that accident investigators consider the role 

that supervision plays (i.e., the supervision was inappropriate vs. the supervision did not 

occur at all).   

Consider the case of Emily Jerry, a two-year-old girl who lost her life due to a 

preventable medical error. Emily was diagnosed with a yolk sac tumor at one-and-half-

years-old. After many successful surgeries and treatments, the tumor had completely 

vanished, and her doctors said it was as if she had never had cancer in the first place. 

Regardless, Emily was still scheduled to receive her last chemotherapy session on her 

second birthday. On the third day of this treatment, Emily was administered a fatal dose 

of sodium chloride solution that left her brain dead. A pharmacy technician that had been 

working for the hospital very several years decided not to use a standard prepared bag of 

sodium chloride solution (with less than 1% of sodium chloride). Instead, she filled a 

plastic bag with a concentrated sodium chloride solution of 23.4%, of which she had 

compounded herself. Eric Cropp, the pharmacist in charge, failed to detect the mixing 

error. Cropp was called to dispense the chemotherapy and after the technician mixed the 

solution, he felt rushed to check the chemotherapy, which was among many other 

solutions, vials and syringes. He reported seeing an empty 250 mL bag of 0.9% sodium 

chloride near the bag of mixed chemotherapy and assumed the technician had used it to 

prepare the base. Because of this inadequate assumption, Cropp served a 6-month jail 
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sentence, 6 months of home confinement, 3 years of probation, 400 hours of community 

service, and a $5,000 fine (Eric Cropp weighs in, 2009).  

Planned inappropriate operations. The second category, planned inappropriate 

operations, involve situations where supervisors engage in actions that have a direct 

negative impact on the operator’s performance. Examples include improper staffing, 

failure to evaluate risk associated with a task, or having goals that are in opposition of the 

organization’s rules. Occasionally, the operational tempo and/or scheduling of the 

operators is such that the individuals are put at unacceptable risk, or they cannot get 

appropriate rest, performance is adversely affected 

During one winter near the end of her training as a third-year medical student, Dr. 

Pauline Chen came down with a terrible cold. The constant coughing and runny nose 

made her miserable and tired during her shifts, she even had to wear two masks every 

time she scrubbed in for a surgical case. Other doctors and nurses on her team were 

becoming ill, and after weeks of coming into work, she finally asked her senior doctor-in-

training if she could go home because of an upset stomach. Rather than telling Pauline 

“yes”, the senior doctor made her feel bad for wanting to go home, and told her “just 

remember that I’ve never missed a day at the hospital in my life. They’ll have to put me 

in the hospital to keep me from my patients” (Chen, 2013).  

Failure to correct a known problem. A third category of unsafe supervision 

involves cases where a supervisor failed to correct a known problem. This category refers 

to situations in which deficits in some aspect of the organization are recognized by the 

supervisor, yet continue unabated.  These deficiencies can include issues among 

individuals, equipment, training, or other related safety areas. The failure to consistently 
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correct issues or discipline inappropriate behavior can foster an unsafe environment that 

promotes violations to the rules.  

 Dr. Christopher Dunstch, conducted a delicate spinal surgery on Barry Morguloff, 

a patient suffering from back pain. However, after his surgery, Mr. Morguloff continued 

to feel pain, and in fact felt worse than he did before his operation. Another doctor 

examined Mr. Morguloff and found that no only had bone fragments had been left on the 

nerves, but the hardware in his spine was installed incorrectly. After further investigation, 

Dr. Dunstsch was not only found to be “completely incompetent”, but he was using drugs 

while working. A bottle of vodka was in his desk, he was using painkillers, and a bag of 

white powder was found in his private bathroom. Dr. Dunstsch left one patient in the 

operating room so he could go to Las Vegas, and skipped five drug tests during his time 

at the hospital. He was allowed to operate despite these problems because the hospital 

had advanced him $600,000 to move from Tennessee to Dallas, and they wanted to earn 

their investment regardless of the consequences (Gora, 2016).  

Supervisory violations. The last causal category of unsafe supervision, 

supervisory violations, is similar to violations at the unsafe acts tier, and describe a 

supervisor’s willful disregard for the rules and regulations of personnel safety. While 

these violations don’t occur often, some supervisors have been known to violate the rules 

mandated by their organization when managing their resources.  For example, allowing 

an unqualified individual to engage in a certain task that is outside of their allowed 

privileges would qualify as a supervisory violation.   Consider a trauma team manager 

who is short staffed and assigns one of the un-trained nurses to retrieve a patient from the 

helipad. Here, trauma team members are required to go through a helicopter safety 



  50 

training class to be qualified for patient retrieval from the helipad. Because the nurse was 

un-trained, she approached the helicopter before she received permission from the pilot, 

causing chaos on the helipad.    

Organizational Influences. Supervisory practices and the conditions and actions 

of operators are directly impacted by the decisions made by upper-level management. As 

such, the fourth and final tier of the HFACS taxonomy examines the impact of 

organizational influences on failures in a system. Organizational influences are further 

broken down into three causal categories: (1) resource management, (2) organizational 

climate, and (3) operational process.  

Resource Management. How an organization manages the allocation and 

maintenance of organizational assets such as human resources, monetary resources, 

equipment and facilities is critical to maintaining the organization’s goals. A breakdown 

in any of these areas is captured within the category of resource management. 

Traditionally, decisions based on the management of these resources is based upon two, 

sometimes conflicting, objectives: (1) safety and (2) on-time, cost-effective operations. 

While both goals are usually satisfied during times of prosperity, times of fiscal austerity 

often lead to a give-and-take between both goals. In these situations, excessive cost-

cutting can lead to a decreased focus on safety and training, and reduced funding for 

equipment. As a result, low-cost, less effective alternatives are often utilized. 

Unfortunately, these alternatives may fail or cause problems for the users, resulting in 

poor performance.   

As an example of the negative effects of poor resource management, consider 

Wesley Medical Center in Kansas, a facility that has faced a number of medical 
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malpractice lawsuits. In one case, Ms. Holt checked in to the hospital for an elective 

induction of labor. However, her baby girl who was born limp, pale, and without 

spontaneous respirations now suffers from permanent brain damage. Ms. Holt’s condition 

mandated a one-on-one nursing ratio throughout her entire hospital stay, however 

because of staffing shortages she did not receive this care.  

In another case at the same hospital, Becky Hartman’s mother died during heart 

failure because the hospital was too understaffed to properly assist her. Hartman brought 

her 61-year-old mother, Shirley Keck to the hospital when she had difficulty breathing. 

For seven hours, Hartman watched as her mother’s condition deteriorated and tried to get 

help from the nurses. However, because the primary nurse was overburdened with 20 

patients (several more than the hospital’s own guidelines) she did not have time to 

observe Keck until she was being resuscitated after a heart attack. Unfortunately, as a 

result, Keck suffered brain damage and was paralyzed (Stampalia, 2006).  

  Organizational climate.  The category of organizational climate refers to the 

working atmosphere within the organization and allows investigators to consider how the 

vision of the organization may have adverse effects on operators. The structure, culture 

and policies of an organization are all important variables related to its climate. The 

structure of an organization is reflected in the chain-of-command, designation of 

authority, communication networks, and accountability of actions. An organization’s 

culture refers to the unofficial or unspoken values, beliefs, attitudes, rules, and customs 

within an organization. Policies can be described as official standards that guide 

management’s decisions for issues such as hiring and firing, promotion, sick leave, and 

other issues important to the day-to-day business of the organization.  
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One of the most dangerous hospital cultures is one that encourages the hiding or 

ignoring of errors. For example, a physician may make an error, that results in an 

accident, perhaps even the loss of a patient life. However, if the hospital they work within 

involves the discounting of errors or worse, a blame culture, the physician is likely to feel 

ashamed when he makes a mistake and may even try to cover it up. Instead, the ideal 

environment involves a strong safety culture that promotes the idea that errors are more 

often the result of poor systems rather than bad caregivers. Here, physicians and nurses 

may be more likely to report errors, allowing others to learn from, and hopefully reduce 

the likelihood of committing another in the future.  

Operational process. The last category of organizational influences involves the 

operational process. This category is reserved for issues surrounding the formal practice 

by which the vision of an organization is carried out. Issues associated with the 

operational process involve the formation and use of standard operating procedures, 

formal methods for maintaining oversight between the workforce and management, 

organizational tempo, time pressures, and work schedules. Any of these factors have the 

ability to adversely impact safety in an organization. While most organizations have 

formal procedures in place to address these factors, some do not. Further, not all 

organizations utilize anonymous reporting systems and safety audits as a means to 

actively monitor issues.  Because of this supervisors and managers are often unaware that 

any problem exists before the accident occurs.  

Consider for example, a new CEO who is hired at a large medical center. He 

recently heard of a new technological system that will help to keep track of lost 

equipment. Because the hospital has historically been known to lose track of expensive 
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equipment, he finds it absolutely imperative that the new system is integrated hospital-

wide. Because of his rules to use the new system, employees immediately start 

interacting with it. However, within a short period of time, the nurses, doctors and 

technicians are confused with how the system works, they are making errors because they 

did not receive proper training, nor do they have experience using the system. Further, 

managing these issues distracts them from their time with their patients. While the 

intentions of the CEO were not malicious, he did not consider the results of his actions, 

which in turn may have caused patient harm.  

 Framework background. It is important to note that the HFACS framework was 

not originally created as a method for identifying latent failures. The framework was 

specifically developed to define both the latent and active failures implicated in Reason’s 

“Swiss cheese” model so it could be used as an accident investigation and analysis tool. 

Since its development in 2003, HFACS has received considerable attention and has been 

employed in a variety of industrial settings such as aviation (Li & Harris, 2006), mining 

(Patterson & Shappell, 2010), maritime (Chen et al., 2013), rail (Reinach & Viale, 2006), 

and medicine (ElBardissi et al., 2007). A handful of studies involving HFACS have 

included reliability measures during its use (Li & Harris, 2006; Wiegmann & Shappell, 

2001; Olsen, 2011; Olsen & Shorrock, 2010) however there has been disagreement upon 

its reliability.  

One of the fundamental applications of HFACS involves the classification of 

incident/accident causal factors into the HFACS causal categories. This classification or 

coding process is often performed on pre-existing causal factors associated with events 

that were not originally investigated using HFACS. Rather, the HFACS framework is 
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applied post hoc in attempt to identify meaningful trends in the human causal factors that 

were not apparent in the original data structure. The reliability of this HFACS coding 

process impacts the subsequent validity and utility of the HFACS output. If more than 

one person codes the same causal factors differently, or if the coding results vary for the 

same person over time, the final results become suspect. Decisions based on such 

analyses may therefore lead to onerous comparisons across industries and produce 

ineffective mitigation/prevention plans that have little meaningful impact on reducing 

risk or improving system safety.  

Two recent studies (Cohen et al., 2015; Ergai et al., 2015) specifically 

investigated HFACS reliability and found that overall it is a reliable system. These 

studies and their findings will be discussed in more detail below.   

Examining HFACS Reliability. (adapted from Cohen et al., 2015 and Ergai et 

al., 2016 see Appendix B and C). The use of HFACS involves the identification and 

subsequent classification of causal factors into categories based on their presumed 

underlying etiology. Although the methodology has been widely implemented, the results 

of research investigating the reliability of the taxonomy are mixed, with some studies 

showing very high levels of reliability (Li & Harris, 2006; Wiegmann & Shappell, 2001), 

while others have shown moderate or lower levels (Olsen, 2011; Olsen & Shorrock, 

2010).  

 Reliability, in the present context, involves the degree to which results from an 

instrument, such as a framework for classifying accident causal factors like HFACS, are 

consistent or replicable (Carmines & Zeller, 1989). Reliability is crucial for ensuring 

consensus and consistency and is a vital foundation for establishing the validity of such 
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analyses (Wallace & Ross, 2006). The purpose of this section therefore, is to review the 

literature regarding HFACS to summarize previous findings and identify factors that 

either enhance or detract from the system’s reliability. Implications for ensuring the 

reliability of HFACS as an accident analysis tool will also be discussed.  

 The description above (see Table 1) represents the HFACS methodology in its 

most common and fundamental form as described by Wiegmann & Shappell (2003). 

Over the last decade, individuals have modified the existing approach to make it more 

applicable to particular industries and/or domains (Chen, all, Davies, Yang, Wang & 

Chou, 2013; O’Connor, 2008; Olsen & Shorrock, 2010). Some derivatives of the HFACS 

framework include small changes (e.g. changing a category name) whereas others 

involve more significant changes (e.g. the addition of a new tier to the framework). 

Examples of derivatives include Department of Defense HFACS (DoD-HFACS), 

HFACS for maritime accidents (HFACS-MA), HFACS for mining (HFACS-MI), and 

HFACS for the Australian Defense Force (HFACS-ADF).  

Some derivatives of the approach, such as DoD-HFACS, contain additional sub-

levels of classification that further define the causal factor (O’Connor, 2008). This deeper 

level of analysis represents classifications at the exemplar or “nanocode” level. These 

nanocodes represent specific forms of the overarching causal category observed within a 

particular industry. For example, within the causal category of skill-based errors, DOD-

HFACS includes the following nanocodes: inadvertent operation, checklist error, 

procedural error, over control/under control, breakdown in visual scan, and inadequate 

anti-G training maneuver. Note however, that nanocodes are specific to an industry and 
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typically created by individual organizations. They are not part of the original HFACS 

methodology.  

Inter-rater and Intra-rater reliability: Practitioners use the HFACS framework to 

systematically examine the underlying causal factors of an adverse event; the 

classification of these causal factors is referred to as “coding.” Consistency of the 

classifications is measured to determine reliability, and this is typically done in two ways: 

assessing consistency “between” raters or “within” raters. Inter-rater reliability is 

examined when consistency is measured between different raters during the same time 

period. In contrast, intra-rater reliability is assessed when consistency is measured within 

the same rater during different time periods.  

There are a variety of methods for measuring these two types of reliability (see 

Table 2). Arguably the most common measurement is percent agreement (PA) amongst 

raters. Other, more stringent, measures of reliability that account for chance agreement 

probabilities are Krippendorff’s Alpha (α), Cohen’s Kappa (K), Fleiss’ Kappa (KF) and 

Free-marginal Multirater Kappa (Kfree). Krippendorff’s Alpha is used to assess both inter-

rater and intra-rater reliability, as it can be used for multiple coders; nominal, ordinal, 

interval and ratio data; and small sample sizes (Hayes & Krippendorff, 2007). Values of 

(α) range between 0.0 and 1.0 where values of 0.80 and above indicate excellent 

reliability, and values greater than 0.60 indicate substantial agreement (Landis & Koch, 

1977). Some measurements are reserved for inter-rater analysis only. For example, 

Cohen’s Kappa (K) is used to examine inter-rater reliability in nominal data and ranges 

from -1.0 to 1.0, Fleiss’ Kappa (KF), like K tests for inter-rater reliability and measures 

nominal data on a scale of 0.0-1.0, and free-marginal Multi-Rater Kappa K[Free] is an 
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alternative to KF and is used in situations where the rater is unaware of the number of 

cases to be distributed into each category.  

Table 2. Measures of reliability and associated values 

 

Factors that Impact Reliability: There are a number of factors that could impact 

the reliability of classification and coding tasks. For example, the conceptual 

distinctiveness, definition clarity, and number of categories are all variables that can 

impact reliability. In general, reliability becomes degraded as the conceptual similarity 

and number of categories increases and/or the clarity of category definition decreases 

(Wallce & Ross, 2006). The number of items to be classified can also influence reliability, 

with a tendency towards improved reliability with a larger number of items due to a 

reduction in the impact of random error (Button & Ioannidis, Mokrysz, Nosek, Flint et al., 

2013). Finally, intra-rater and inter-rater reliability are also contingent upon adequate 

coder training as well as task standardization (Rousson, Gasser & Siefert, 2002).  

Task standardization is particularly of concern with the classification of 

accident/incident data. For instance, in some cases, raters are provided with causal factors 

relating to an incident or accident and are asked to classify them using HFACS. However, 

in other cases the casual factors are not provided, rather participants are given a number 

of accident/incident reports and are asked to first derive the causal factors from narratives. 

Percent Agreement 

(PA) 

Cohen’s Kappa (K)/ 

Fliess’ Kappa (KF) 

Krippendorff’s Alpha 

(α) 

Free-marginal 

Multirater Kappa 

(K[free]) 

Value Conclusion Value Conclusion Value Conclusion Value Conclusion 

70% - 

100% 
Reliable > 0.80 Reliable 

0.80-

1.0 
Reliable > 0.80 Reliable 

60%-

70% 

Moderately 

Reliable 

0.60-

0.80 

Substantially 

Reliable 

0.667-

0.80 

Tentatively 

Reliable 

0.60-

0.80 

Substantially 

Reliability 

0-60% Unreliable 
0.40-

0.60 

Moderately 

Reliable 
0-0.667 Unreliable 

0.40-

0.60 

Moderately 

Reliable 
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The derived causal factors are then classified using the categories provided by HFACS. 

This latter, two-stage approach may also yield a higher variability and reduces the 

reliability among raters. 

Cohen and colleagues (2015) did a major review on the topic, identifying 111 

studies conducting involving the use of HFACS since it was first published in the open 

literature in 2001. In this study, inclusion criteria for further analysis required that all 

manuscripts be published in peer-reviewed published journals. This criterion resulted in 

the exclusion of 73 papers, which in most cases were similar or earlier versions of the 

peer-reviewed manuscripts that were in the form of laboratory technical reports or 

conference proceedings. The search was further restricted to include only articles that 

reported a reliability measure associated with the data coding process; thereby, 

eliminating an additional 58 papers. Consequently, 14 studies were included in the 

current analysis.  

The 14 published HFACS reliability studies are presented in Table 3. The Table 

presents those studies that reported reliability measures for the prototypical HFACS 

framework and those of its derivatives, such as the Department of Defense HFACS 

(DOD-HFACS), HFACS for the Australian Defense Force (HFACS-ADF) and HFACS 

maintenance extension (HFACS-ME).  

Table 3. Articles that reported reliability indicies of HFACS 

Authors/Year Domain 
HFACS 

version 

# 

Raters 

Training 

Involved 

Data set utilized 

for coding 

# Events 

Coded 

Inter- Rater 

Reliability 

Wiegmann & 

Shappell, 2001 

Aviation- 

Commercial 

HFACS, 

2001 
2  Not reported 

Retrospective 

accident reports 
319 Reliable 

Gaur, 2005 
Aviation- 

Civil 

HFACS, 

2003 
2  Not reported 

Retrospective 

accident reports 
153 Reliable 

Li & Harris, 

2006 

Aviation- 

Military 

HFACS, 

2003 
2 10 didactic hours 

Retrospective 
accident 

descriptions 

1762 
Reliable/ 
Moderately 

reliable 

Shappell et al., 
2006  

Aviation - 
General 

HFACS, 
2003 

6 16 didactic hours 

 

Retrospective 

accident reports 

 2210 Reliable 
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Baysari, 

McIntosh & 

Wilson, 2008 

Other 

Transport -

Railroad 

HFACS, 
2003 

3 

“brief overview” 

by author & self-

paced training 

Retrospective 

incident and 

accident reports 

360 
Moderately 
Reliable 

Lenne, Ashby 
& Fitzharis, 

2008 

Aviation-

General 

HFACS, 

2003 
3 training package1 

Retrospective 
GA insurance 

claims 

Not 

reported 
Reliable 

O'Connor, 2008 
Aviation- 
Military 

DoD-
HFACS 

123 2 didactic hours 

 

Retrospective US 

Navy mishaps  

47 Reliable 

Li, Harris & 
Yu, 2008 

Aviation-
Civil 

HFACS, 
2003 

2 
3 didactic half-
day modules  

 

Retrospective 
civil aviation 

accidents 

330 

Substantially 

Reliable/ 

Reliable 

Baysari, et al., 

2009 

Other 

Transport - 
Railroad 

HFACS, 

2003 
6 

“brief overview” 

by author & self-
paced training 

 
Retrospective 

incident and 

accident reports 

144 Reliable  

Rashid, Place & 

Braithwaite, 

2010 

Aviation- 

Civil 

HFACS-

ME 
2 Not reported 

 

Retrospective 

accident and 
incident reports 

197 

Reliable/ 

Substantially 

Reliable 

O'Connor, 

Walliser & 

Philips, 2010 

Aviation- 
Military 

DoD-
HFACS 

22 4 didactic hours 

 

Retrospective 
aviation incident 

report 

147 Reliable 

Olsen & 

Shorrock, 
2010*  

Aviation- 

ATC 

HFACS-

ADF 

#1:11,  

#2: 1,  
#3: 4 

Not reported 

 

Retrospective 
incident report 

 Not 

reported 

Unreliable 

**Unreliable 

O'Connor & 
Walker, 2011 

Aviation - 
Military 

DoD-
HFACS 

204 2 didactic hours 
Retrospective 
mishap reports 

 Not 
reported 

Substantially 
Reliable 

Olsen, 2011 
Aviation-
ATC 

HFACS, 
2003 

7 

Self-paced 

training 

workbook 

Retrospective 
incident reports 

 Not 
reported 

Moderately 

reliable / 

Unreliable 

*These studies also reported intra-rater reliability, **Intra-rater reliability reported 

 

As seen in Table 3, a majority of the studies reported acceptable values of 

reliability per the standards outlined above. The studies vary considerably based on the 

HFACS version used (nine utilized the original HFACS framework, while five utilized 

HFACS derivatives), domain the framework was applied to, the training involved (most 

had two hours or more of didactic training on HFACS), and causal factors coded (range: 

47-2,210 causal factors). Although each of the studies reported the overall observed 

reliability, examining the reliability was often secondary to the main objective. In other 

words, many of the studies reported reliability for quality purposes prior to subsequent 

analyses, whereas others specifically assessed reliability as the primary purpose of the 

research. 
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Of the 14 studies reviewed, only six were dedicated to specifically examining the 

reliability of the framework (see Table 4). The studies varied considerably in terms of the 

specific reliability measure used to analyze the data. The most commonly used measure 

was percent agreement (PA) however each of the more stringent measures represented in 

Table II were used in at least one of the above studies. In general, the majority of the 

studies reported adequate levels of reliability ranging from substantially reliable to 

reliable reports (Li & Harris, 2008; O’Connor, 2008; O’Connor & Walker; 2011).  

 

Table 4. Comparison of HFACS reliability-specific studies reported in the literature 

*This study reported reliability at the “nanocode” level 

 Two of the six studies (Olsen & Shorrock, 2010; Olsen, 2011) found the HFACS 

framework to be unreliable. Olsen & Shorrock (2010) examined both inter-rater and 

Authors/Year 

 
HFACS 

version 

# 

Raters 

Data set utilized 

for coding 

# Causal 

Factors 

Reliability 

Measure 

Used 

Inter-rater 

Reliability 

Intra-Rater 

Reliability 

Li & Harris, 

2006  

HFACS, 

2003 
2 

Retrospective 
accident 

descriptions 

1762 

Percent 
Agreement 

(PA), Cohen's 
Kappa (K) 

Avg PA: 
88.8 %       

Avg K: 0.67 

- 

O'Connor, 

2008  

DoD-

HFACS 
123 

Retrospective US 

Navy mishaps 
47 

Percent 
Agreement 

(PA) 

Fixed Wing 

Avg PA: 
77.8%,        

Rotary Wing 

Avg PA: 78.8% 

- 

O'Connor, 
Walliser & 

Philips, 2010 * 

DoD-

HFACS 
22 

Retrospective 
aviation incident 

report 

147 
Multi-rater 
Kappa Free 

(Kfree) 

 

Avg Kfree 

(nanocodes): 
0.76 

- 

Olsen & 

Shorrock, 

2010  

HFACS-
ADF 

#1: 11, 

#2: 1, 

#3: 4 

Retrospective 
incident report 

Not 
reported 

Percent 

Agreement 

(PA) 

#1 PA: 40% 
#2 PA: 40.1% 

#3 PA: 44.6% 

O'Connor & 

Walker, 2011  

DoD-

HFACS 
204 

Retrospective 

mishap reports 

Not 

reported 

Multi-rater 
Kappa Free 

(Kfree) 

 

Helicopter  
Avg. Kfree: 

0.58                    
Tacair avg. 

Kfree: 0.69 

- 

Olsen, 2011  
HFACS, 
2003 

7 
Retrospective 
incident reports 

Not 
reported 

Percent 

Agreement 

(PA) 

ATCO group  
PA: 36.1%                          

HF specialist 

group PA: 
34.5% 

- 
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intra-rater reliability at the category level and reported unreliable levels of reliability in 

terms of percent agreement (inter-rater reliability PA: 40%; intra-rater reliability PA: 

44.6%). Olsen (Olsen, 2011) examined inter-rater reliability at the category level using 

two groups of participants (ATCO group and HF Specialist group) and also reported 

unreliable levels of reliability with respect to percent agreement (ATCO PA: 36.1%, HF 

Specialist PA: 34.5%).  

The studies were diverse on several other factors listed (see Table 6). Three 

different versions of HFACS were used between the six papers: two used the original 

HFACS framework from Shappell & Wiegmann (27), three used DoD-HFACS and one 

used HFACS-ADF. The amount of training involved ranged from no training to two days 

of hands on instruction. However, none of the studies reported the experience level of 

those providing the training. There was also substantial variation regarding the number of 

causal factors coded (range: 47-1,762 causal factors).   

Overall, a majority of the peer reviewed articles reported acceptable levels of 

reliability for HFACS, even when the most stringent metrics were used. Nevertheless, 

there was considerable variability across studies and two studies reported less than 

favorable reliability. An examination of those studies whose primary purpose was to 

assess reliability, revealed several factors known to affect the reliability of classification 

tasks including training, sample size, and category variability; each are discussed in turn 

below.   

The amount of time dedicated to HFACS training varied considerably across the 

studies identified in this review. Participants in some studies received no formal training 

(e.g. see Olson & Shorrock, 2010); whereas, others received elaborate training over 
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multiple days (e.g. see Li & Harris, 2006). Moreover, only a few of the studies 

sufficiently explained the specifics of the training provided to participants, raising 

questions surrounding the quality of training as well as the proficiency of the instructors.  

Not surprising, the studies that reported lower values of HFACS reliability (Olsen 

& Shorrock, 2010; Olsen, 2011) also reported the least amount of training. These findings 

are similar to those of studies that investigate rater variability and tool consistency 

(Barrett, 2001; Congdon & McQueen, 2000; Bayzari McIntosh &Wilson; 2008). For 

example, Weigle (1998) found that training was a substantial element affecting reliability, 

where levels were higher for trained, experienced coders than for untrained, 

inexperienced coders. Further, Baysari et al., (2001) explained that hands-on training 

with repeated practice problems is more likely to result in higher levels of reliability than 

a study that does not use the same methodology. 

 In general, studies reporting lower levels of reliability provided fewer causal 

factors for raters to categorize using the HFACS framework. Unfortunately, only three of 

the six reliability-specific studies reported the number of causal factors used for 

classification. Notably however, the study with the largest number of reported 

categorized causal factors found the methodology to be reliable. The raters in the Li and 

Harris’ (2006) study, coded 1,762 causal factors and reported an average percent 

agreement of 88.8% and a Cohen’s K of 0.67. The larger number of coded causal factors 

provides for practice over time and can reduce the impact that random coding error has 

on reliability. This is not to say that larger numbers will always ensure high levels of 

reliability, since systematic error can degrade reliability as numbers increase. Likewise, 

small numbers may not always compromise reliability. O’Connor (2008) reported 
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generally high levels of HFACS reliability despite using a small sample. It should be 

noted, however, that O’Connor (2008) did provide participants with two hours of hands 

on HFACS training.  

There are several adaptations of the HFACS methodology used across industries, 

including the Department of Defense HFACS (DOD-HFACS), HFACS for the Australian 

Defense Force (HFACS-ADF), HFACS for air traffic control (HFACS-ATC), HFACS 

for aircraft maintenance (HFACS-ME), and HFACS for mining (HFACS-MI). 

Classifying cases of human error using a derivative of HFACS rather than then the 

original framework, is not only more challenging for the coder but can result in lower 

levels of reliability. Research conducted by O’Connor specifically examined the 

reliability of DOD-HFACS for classifying incident data using nanocodes (O’Connor, 

2008; O’Connor, Walliser & Philips, 2010; O’Connor & Walker, 2011). He explains, 

“The main difference between HFACS and DOD-HFACS is the inclusion of an 

additional level of fine-grain classification. Each DOD-HFACS category has between 1 

and 16 associated nanocodes” (O’Connor, 2008, p. 599).  

It is important to recognize that the O’Connor studies examined the reliability of a 

framework that has a total of 147 potential causal factor classifications when the 

nanocodes are included, rather than the 19 causal categories associated with the original 

HFACS framework. The additional number of possible categories potentially increases 

the level of ambiguity among subclass or nanocodes and places higher cognitive demands 

on coders during the classification task. Consequently, modest reliability values for the 

HFACS-DOD generally occur at the nanocode level, particularly when combined with 

limited participant training (O’Connor, Walliser, Philips; 2010).  
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Overall, the authors found The Human Factors Analysis and Classification 

System to be a reliable approach for classifying accident causal factors. Based on the data 

presented here, the majority of the 14 peer-reviewed journal articles identified in this 

paper reported acceptable levels of inter-rater and intra-rater reliability even when the 

most stringent metrics were used. Reliability levels were generally highest when training 

was provided, a large number of causal factors were coded, and deviations from the core 

components of the original framework were minimized.   

Unfortunately, many of these conclusions are speculative given that many of the 

articles reviewed by the authors lacked sufficient detail to discern the exact nature of the 

conditions under which the coding was conducted. To further address these issues, Ergai 

and colleagues (2016) assessed the reliability of the HFACS framework as a general 

accident analysis tool using a large number of trained coders and multiple real-world 

accident causal factors from a variety of industries. 

In this study, one hundred and twenty-five safety professionals from a variety of 

industries (e.g. aviation, mining, medicine and manufacturing) were recruited from a 

series of two-day training workshops designed and provided by the developers of HFACS 

(S.S. & D.W.). Trainers with expertise in both human factors and the HFACS 

methodology provided participants two days of intensive HFACS training (see Ergai, et 

al., 2016 for details).  

Five causal factors associated with each of the 19 HFACS causal categories (n = 

95) were extracted from actual accident reports from the National Transportation Safety 

Board (NTSB), Occupational Safety and Health Administration (OSHA), and other 

HFACS accident databases such as aviation, maintenance, food service, healthcare, 
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mining and lodging. Each causal factor was selected for clarity and was presented to 

participants in the format in which it was reported in the accident database. Some causal 

factors were modified for grammatical purposes only, and in a manner that did not affect 

the content of the statements. This approach was adopted to enhance content and external 

validity of the causal factor statements. Given the original accident reports were not 

coded using HFACS, a scoring key of correct answers was created for each of the 95 

causal statements. Correct answers were determined a priori by consensus among the 

HFACS expert research team.  

The study required participants to fill out two assessments: the first given at the 

conclusion of the second day of training, the second given 14 days later. During the first 

session, the 95 causal statements were presented via the Internet and participants 

completed the coding on their own personal laptop computer or Tablet. Two weeks later, 

participants were emailed a link to the online form and the same 95 casual factors were 

randomly presented again for coding. There was no time limit for completing this coding 

process and participants were allowed to use notes and reference materials to help 

complete the task. This process was used to ensure that the assessment was not simply a 

memory test but rather mimicked the coding process commonly utilized in the real-world.  

Data from 125 participants who completed the first coding activity, were collected 

and used for the inter-rater reliability analysis. Of these 125 participants, 59 (47%) 

completed the activity two weeks following the training. Therefore, data from these 59 

participants were included in the intra-rater reliability analysis. Krippendorff’s Alpha was 

used to analyze the data.  
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The overall inter-rater reliability for both the HFACS tier and the causal category 

levels were computed and are presented in Table 5. When calculated across the four tier 

levels (unsafe acts, preconditions for unsafe acts, unsafe supervision and organizational 

influences), a value of α = 0.79 was obtained for Krippendorff’s Alpha. When calculated 

across the 19 categories, the Krippendorff’s Alpha value was somewhat lower (α = 0.67) 

indicating that coders were less likely to agree on the particular category a specific causal 

factor belonged within each level. 

Table 5. Overall α for each HFACS Tier and Category; Inter-rater Reliability 

HFACS Tier HFACS Category Average α 

Unsafe Acts  0.82 

 Skill Based Error  0.56 

 Decision Error  0.46 

 Perceptual Error  0.72 

 Routine Violation  0.76 

 Exceptional Violation  0.63 

Preconditions for Unsafe Acts  0.80 

 Physical Environment  0.82 

 Technological Environment  0.65 

 Adverse Mental State  0.68 

 Adverse Physiological State  0.63 

 Physical / Mental Limitations  0.73 

 Communication Coordination & Planning  0.78 

 Fitness for Duty  0.73 

Unsafe Supervision  0.73 

 Inadequate Supervision  0.51 

 Planned Inappropriate Operations  0.49 

 Failed To Correct a Known Problem 0.82 

 Supervisory Violation 0.53 

Organizational Influences  0.80 

 Resource Management  0.62 

 Organizational Climate  0.80 

 Organizational Process  0.69 

 

Krippendorff’s Alpha values at the causal category level were lower than at the 

tier level (tier: α = 0.73 to 0.82; category: α = 0.46 to 0.82). The highest reliabilities were 

physical environment (α = 0.82) and organizational climate (α = 0.80). Skill based error 
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(a = 0.56), decision error (a = 0.46), inadequate supervision (a = 0.51), planned 

inappropriate operations (a = 0.49) and supervisory violation (a = 0.53) resulted in the 

lowest reliability levels. 

Upon closer inspection of the 95 causal factors the analysis identified six in which 

less than 50% of the coders properly identified the causal category. Many of these cases 

included compound causal factors, which could explain why inter-rater reliability was 

particularly low for certain categories. Causal factor 92, for example was: “The electrical 

operator got distracted by an external noise and forgot to take readings on the main 

transformers”. Most participants classified the code as skill based error; however, many 

coders selected physical environment because of the term “external noise” or adverse 

mental state because of the word “distracted”. Because factors like these were included, a 

number of people classified them differently, which could explain why there were such 

low levels of reliability for some of the categories.  

Of the original 125 participants who took the survey on the first day, 59 (47%) 

participants returned the survey two weeks later. Intra-rater reliability was determined by 

calculating Krippendorff’s Alpha individually for each of the 59 participants who 

participated in both sessions. The intra-rater agreement results of these measures were 

tabulated for each participant. Krippendorff’s Alpha calculated across all 59 participants 

at the HFACS tier level and at the HFACS category level and are presented in Table 6.  

Table 6. Average α for each HFACS Tier and Category; Intra-rater reliability 

HFACS Tier HFACS Category Average α 

Unsafe Acts  0.88 

 Skill Based Error 0.66 

 Decision Error 0.57 

 Perceptual Error 0.82 

 Routine Violation 0.82 

 Exceptional Violation 0.75 



  68 

Preconditions for Unsafe Acts  0.87 

 Physical Environment 0.87 

 Technological Environment 0.75 

 Adverse Mental State 0.78 

 Adverse Physiological State 0.68 

 Physical / Mental Limitations 0.82 

 Communication Coordination and Planning 0.83 

 Fitness for Duty 0.73 

Unsafe Supervision  0.83 

 Inadequate Supervision 0.66 

 Planned Inappropriate Operations 0.64 

 Failed to Correct a Known Problem 0.85 

 Supervisory Violation 0.62 

Organizational Influences  0.87 

 Resource Management 0.75 

 Organizational Climate 0.89 

 Organizational Process 0.80 

 

The overall average intra-rater agreement values were slightly yet consistently 

higher than those observed for inter-rater reliability. However, a similar pattern emerged; 

Krippendorff’s Alpha values were generally higher at the tier level in comparison with 

the HFACS category levels (tiers range a = 0.83 - 0.88; category range a = 0.57 - 0.89).  

With the exception of decision error (a = 0.57) intra-rater reliability was found to be 

above α= 0.62. Note also that because the same causal factors were used in both sessions, 

those six causal factors that had low reliability in the first session subsequently had low 

reliability in the second session, and may account for the lower intra-rater reliability seen 

among decision errors and supervisory violations.  

In this study, HFACS was found to be generally reliable at both the tier and 

category levels. That is, the coders generally agreed upon which level of the HFACS 

hierarchy a causal factor belonged and were consistent upon retesting. Albeit, they had a 

slightly more difficult time agreeing upon the particular category a specific causal factor 

belonged within each level. The general reduction of reliability levels within HFACS 
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from the tier level to the category level is not uncommon (e.g. Olsen, 2011). Research in 

other domains has shown that as the number of categories increases, reliability decreases. 

For example, Gwent (2010) demonstrated through a Monte-Carlo experiment, reliability 

decreases as the number of categories increases, while the number of causal factors is 

kept constant.  

Although the data presented here suggest that HFACS is a reliable framework for 

classifying human factors associated with accidents and incidents, inter- and intra-rater 

reliability was not maximized. Clearly there are opportunities for improving the 

reliability of the HFACS coding process including: improving training quality, further 

clarifying causal factors, and coder selection to name a few. Nonetheless, HFACS 

remains one of the most actively used frameworks for accident and incident investigation.  

Research Questions 

Despite the established reliability of HFACS for investigating retrospective 

accident reports, explorations of HFACS reliability for coding data other than accident 

causal factors have been limited. More specifically, HFACS has never been used to 

identify threats to safety from observational healthcare data.  Unlike accident 

investigations that are reactive, other approaches to safety can be proactive, attempting to 

identify threats to safety before accidents happen. Sources of such proactive data often 

include the direct observation of work-related activities and the identification of 

conditions that potentially threaten safe performance. As such, the first research question 

seeks to investigate the following:  

Q1: Can HFACS, a tool developed originally for investigation of accident 

and incident data, be reliably applied to observational data within 
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healthcare? Here, observational data is used to describe human factors 

issues that are observed in various healthcare domains. 

Perhaps one of the most highly observed areas in clinical medicine is the 

cardiovascular operating room (CVOR). This environment is arguably one of the most 

demanding, challenging, and complex environments in the healthcare domain. In this 

setting, the medical team must work together and interact with a number of 

technologically advanced tools while coordinating care for the patient in the room.  

While medical teams are composed of highly trained and uniquely qualified 

healthcare professionals, threats to patient safety can and still do occur. It has been noted 

that cardiac surgery is particularly predisposed to pitfalls because it features multiple 

specialties, close coupling of concurrent tasks, changing plans, and high workload 

(Carthey, et al., 2001). It is not surprising then, that direct observation analysis in cardiac 

surgery has provided evidence that small errors have the potential to influence the 

outcome of a given patient (de Leval, et al., 2000).  

Observational studies in the CVOR have identified several factors that may 

represent threats to patient safety. Palmer and colleagues (2013) found that observations 

associated with the physical layout were most prominent, followed by general 

interruptions, usability concerns and communication issues. Similarly, Wiegmann and 

colleagues (2006) identified 341 events during 31 cardiac operations. Of these 

disruptions, teamwork/communication problems accounted for the most events followed 

by interruptions. A more recent investigation of the CVOR found most issues to involve 

interruptions, layout, communication and coordination (Cohen et al., 2016).  
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With respect to HFACS, the categories that most closely align to the issues 

identified above involve adverse mental states (e.g., distractions, interruptions), physical 

environment (e.g., physical layout, layout) and communication, coordination and 

planning (e.g., communication, coordination, teamwork), which all exist at the 

preconditions for unsafe act level.  

While several studies have investigated HFACS in medicine, none have applied it 

to certain medical specialties at different facilities (i.e., a CVOR in an academic hospital 

vs. a CVOR in a non-academic hospital) to investigate differences in populated 

categories. This information would be valuable to medical practioners and administrators 

as it could help them to understand if specific investigations are needed for certain types 

of facilities (i.e. teaching vs non-teaching) or if the findings are generalizable regardless 

of facility. Understanding the differences in populated categories can help the healthcare 

industry to put targeted barriers in place that may protect against specific threats to 

patient safety.  

Although the types of preconditions for unsafe acts populated in any given CVOR 

are likely to involve adverse mental states, communication, coordination and planning 

issues, and problems with the physical environment, the distribution of workflow events 

would be expected to vary based on the facility investigated. For example, in a private 

academic university hospital, there are often medical students, interns and residents not 

only observing in the room but also participating. This situation lends itself to 

overpopulated operating rooms, which can lead to issues involving the physical layout. 

With this in mind, this dissertation seeks to also answer a second research question:  

 



  72 

 

Q2: Given the answer to Q1 is yes, Q2 will investigate if the utilization of 

HFACS in two different CVOR environments will result in the population 

of primarily adverse mental states, physical environment issues and 

communication, coordination and planning problems. More specifically, 

will there be a greater number of physical environment issues identified in 

a private academic hospital compared to a non-academic hospital setting?   

 Given that the answer to the second research question is “yes”, this research will 

represent a starting point for establishing the utility of HFACS as a tool for identifying 

human factors issues in observational healthcare data. However, it is important to note 

that the first two research questions are examined through similar observation of 

individual team roles in the CVOR. Several other diverse areas of observation exist 

within the healthcare realm, and the data collection processes expectedly vary between 

the types of healthcare domains observed.    

While cardiovascular surgery is predisposed to pitfalls due to its complexity 

(Carthey et al., 2001) it is typically predictable, well planned and conducted in a 

controlled environment. Although the individuals who work in the CVOR must 

communicate effectively and work together to accomplish their tasks, they are often 

separated based on their role-type and responsibilities. Because of its predictability and 

structured nature, observation in the CVOR allows for data collection based on certain 

team member areas or specific role-groups. In the following studies, the CVOR team was 

observed based on role: anesthesiologist, circulating nurse, perfusionist, and surgeon.  
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Unlike cardiovascular surgery, providers in other treatment domains such as 

trauma care may not have the luxury of a foreseeable procedure.  Specifically, Sarcavic 

(2009) explains that trauma resuscitation is unpredictable in nature and occurs in a fast-

paced, dynamic environment where healthcare professionals must quickly and accurately 

evaluate and diagnose potentially life-threatening injuries to the patient. This process is 

information laden and team dependent, relying heavily not only clinical skill but also on 

the efficiency of the system.  

A trauma resuscitation team is generally made up of physicians, nurses, and allied 

health personnel. The American College of Surgeons Committee on Trauma (2014) 

explain that a high-level response to a patient who is severely injured would typically 

include the following individuals or groups of individuals: (1) a general surgeon; (2) an 

emergency physician; (3) surgical and emergency residents; (4) emergency department 

nurses; (5) a laboratory technician; (6) a radiology technologist; (7) a critical care nurse; 

(8) an anesthesiologist or certified registered nurse anesthetist; (9) an operating room 

nurse; (10) security officers; (11) a chaplain or social worker; and (12) a scribe.  

When caring for the traumatically injured trauma patient, time is of the essence 

and cases are almost always unpredictable, making teamwork that much more important. 

Harkins (2009) explains that although each of the team members in trauma have 

individual purpose and responsibility, they must work in concert to pursue the goal of 

saving the patient. She explains that the whole team is greater than the sum of its parts 

and if one individual member “drops the ball, it may be a matter of life or death despite 

the extraordinary efforts of all the other players” (p. 61).  As a result, data collection in 
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trauma care facilities generally involves the observation of the entire team rather than 

individual roles.  

Teams are fundamentally different than individuals or groups. Salas and 

colleagues (2008) explain that because teamwork involves multiple individuals’ taskwork 

as well as their coordinated efforts, teamwork is more complex than individual 

performance.  This can play into the notion that the observation of teams is different than 

the observation of individuals. Unlike individual research, the complexity of team’s 

research involves different levels of attention and skill in order to evaluate or diagnose 

performance (Salas, et al., 2008).  

Boquet and colleagues (2016) investigated observations at a level II trauma center 

and identified communication issues to occur most frequently (28%) followed by 

interruptions and coordination issues (24% each). Similarly, in another study on 

disruptions in trauma, Blocker and colleagues (2012) found that unfavorable coordination 

issues made up 28% of the events and was followed by communication issues at 24%. 

Likewise, Bergs and colleagues (2005) noted that knowledge transferal during trauma 

resuscitations was sub optimal. In terms of HFACS categories, the findings noted above 

would likely translate as communication, coordination and planning issues.  

If HFACS can function as a tool for identifying human factors issues in 

observational healthcare data, it should theoretically be able to classify observations from 

domains outside of the the CVOR regardless of the collection method or technique used. 

Therefore, research question three addresses this:  

Q3: This research question investigates if the utilization of HFACS to 

classify data collected in a different setting, using a different data 



  75 

collection technique would yield expected results. Specifically, this 

question investigates if HFACS can be used reliably to classify data 

collected in a trauma care setting, where events were recorded based on 

how they impacted the entire trauma team rather than by individual team 

members and if a majority of the issues would be classified as 

communication, coordination and planning.   
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CHAPTER 3: STUDY I (CVOR - ACADEMIC HOSPITAL) 

Introduction 

Whether HFACS can be reliably applied to observational healthcare data is 

entirely unknown. Therefore, the purpose of chapters three and four was to explore this 

issue.  Data was collected from two hospitals; a academic hospital and a non-academic 

hospital, producing two different data sets. Three trained analysts then independently 

classified the data using HFACS and agreements between the analysts were computed. It 

is important to note that while the data comes from similar operating theatres, involving 

similar team members, the methodology for collecting each data set was different.  

The Cardiovascular Operating Room (CVOR). While the architectural layout of 

each CVOR can vary between hospitals, most have similar layout features. In Study I, 

data was collected from a large, metropolitan medical school with over 700 hospital beds 

and two state of the art surgical suites (see Palmer et al., 2015 for a full description). Each 

cardiac suite is connected to a sterile CORE. This area is outside of the physical cardiac 

operating room but houses several important pieces of equipment and different supplies 

(i.e. ice, surgical wire, replacement aortas, saline, etc.) that the team members (usually 

circulating nurses) must retrieve during the case. While there are certainly pieces of 

equipment and supplies within the room, contained in locked pixus’, these machines 

cannot house all of the equipment and supplies needed for every case. This may be 

because of a thermal requirement for saline, because the different rooms share equipment 

that must be housed in a shared space, or equipment is too large to fit into the individual 

room.  
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The layout of the CVOR is usually quite standardized and will be described from a 

“birds-eye-view” perspective (see Figure 8). The patient is placed on the examination 

Table in the center of the room. The anesthesia team (see number 1) is found at the top of 

the bed (near the patient’s head) next to the transthoracic echocardiography instrument 

(TEE). The circulating nurses typically reside in the half of the room near the patient’s 

feet. When they are not gathering equipment and supplies for the team, they are typically 

sitting/standing at a computer/phone completing charting and other room-managing tasks 

(see number 2). The Perfusion team (see number 3) sits to the right of the patient with 

their extracorporeal equipment (namely the heart/lung machine). The surgeon (depending 

on the procedure) stands to the left of the patient (see number 4). Being a academic 

hospital, observers often saw students in the room either participating or watching. 

1 

2 

3 

4 

Sterile Core 

Figure 8. Layout of the Cardiovascular Operating Room (CVOR) 
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Method 

Data Collection 

The data-set used for this study was originally collected to identify and analyze 

workflow disruptions that occurred during cardiac surgery at a medical university (see 

Cohen et al., 2016). The data was collected from a academic hospital over 4 months 

(11/21/13 – 2/27/14), across 15 surgical cases, totaling 73.08 hours of observations. 

Observers were trained but did not use any structured format for documenting workflow 

disruptions. Each observer was embedded within one of three cardiac team areas 

(anesthesiology, circulating nursing, and perfusion). Results produced 878 events or 

workflow disruptions to be coded and classified using HFACS in this study.  See Cohen 

and colleagues (2016) for a detailed description of the data collection procedures. 

Coder Training 

An expert in human factors and the HFACS methodology provided three coders 

with two days of general HFACS training. This training included an overview of human 

error and human factors, an overall description of the HFACS framework, extensive 

discussion of each causal category including examples of each. The raters participated in 

hands-on exercises that allowed them to practice classifying generic causal factors within 

the framework. Following HFACS training, the author provided raters with more detailed 

instruction on specific cardiovascular OR topics including general CVOR terminology, 

surgical team member titles, roles and responsibilities, and common procedures and 

equipment/supplies in the OR (one-hour session).  

Data Coding / Classification 
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In an effort to calibrate the coding process, all three raters classified 100 randomly 

selected events from the observational dataset into the HFACS framework as a group 

(one-hour session). After this period, each rater independently classified 50 additional 

events. The author and the three raters then discussed any disagreements (one-hour 

session). Following, the raters individually coded the remainder of the data, and later 

returned to independently code the practice data. Coders individually completed the 

coding between 10/7/15 and 10/27/15 (20 days) for a data set consisting of 878 workflow 

disruptions.    

Reliability 

While percent agreement is arguably the most common method for examining 

reliability, it does not correct for chance agreement among raters. Another more stringent 

measure of reliability is Fleiss’ Kappa.  Fleiss’ Kappa tests for inter-rater reliability, and 

measures nominal data on a scale of 0.0-1.0. Here, values between 0.40 and 0.60 are 

considered moderately reliable, values between 0.60 and 0.80 are considered 

substantially reliable and values above 0.80 are reliable (Cohen et al., 2015).  

 

Results 

Data Inclusion 

The analysis was primarily focused on evaluating coder agreement across the 

various aspects of the coding process. This was done using three methods. The first 

method is based on unanimous agreement in which results were considered only from 

those events in which all three raters had complete agreement on the appropriate code. 

The second method focuses on majority agreement and considers any event in which at 
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least two raters agreed (majority) on the appropriate code. Reliability was also evaluated 

based on pairwise comparison (i.e. rater 1 vs. rater 2, rater 1 vs. rater 3, and rater 2 vs. 

rater 3) as a quality control measure. This methodology was used as a means to 

investigate whether any single rater was influencing the reliability.  

In all three methodologies, percent agreement was used to analyze the data. 

Percent agreement can range from 0 to 100%, with agreement of 70% or higher being 

considered reliable, 60% to 69% being moderately reliable and below 60% being 

unreliable (Cohen et al., 2015).  

In the unanimous method, first, agreement amongst coders as to whether any 

given event could be coded using HFACS (i.e., inclusion vs. exclusion) was examined. In 

this case, of the 878 original observations, all three coders agreed that 867 events could 

be coded using HFACS. Of the 867 “codable” events, all three coders agreed on the 

allocation of 847 events at the tier level of HFACS. Based on this, there was unanimous 

agreement that one event was considered an unsafe act, while the remaining 846 events 

were preconditions for unsafe acts. Of the 847 total agreed upon tier level events, 567 

(67%) were unanimously agreed upon at the category level (see Figure 9). 
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Figure 9. Data-set I line diagram (unanimous method) 

  

Similar to the unanimous method, the first step of the majority method involved 

investigating how many events were considered “codable” by at least 2 of the 3 coders. 

Here, coders came to majority that all 878 of the events could be coded using the HFACS 

framework. Of the “codable” events, coders came to majority regarding their appropriate 

tier allocation for all 878 events. At this point, coders determined that the majority of the 

events (875) could be classified as preconditions for unsafe acts, followed by unsafe acts 

(3). Of the 3 unsafe acts identified, 2/3 coders agreed on the appropriate category for two 

of the events and disagreed on one event. Of the 875 preconditions for unsafe acts, coders 

came to majority on 820 of the events and disagreed on 55. Overall majority agreement 

was 93.6 % (see Figure 10). Following the majority method, coders and researchers met 

to reconcile those issues in which there was no agreement in the reconciled method (see 

Figure 11). 
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Figure 10. Data-set I line diagram (majority method) 

 

 

Figure 11. Data-set I line diagram (reconciled method) 

 

Percent agreement was also explored between each possible dyad of the three 

coders (i.e. 1 vs. 2, 1 vs. 3, and 2 vs. 3). Reliability at the pairwise level was calculated 
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based on the total number of agreements between raters divided by 878 possible events 

(see Table 7).  

Table 7. Data-set I methodology comparisons at the tier and category level    

  

 
Unanimous 

(3/3 agree) 

Majority 

(2/3 agree) 

Reconciled Majority 

(2/3 + consensus) 

Pairwise Comparisons 

1vs2 1vs3 2vs3 

Tier  98% 100% 100% 97% 98% 97% 

Category  67% 94% 94% +  77% 73% 73% 

Inclusion  

 

567 total 

566 preconditions 

824 total 

822 preconditions 

864 total 

862 preconditions 

   

 

           

Reliability 

Fleiss’ Kappa was also used to investigate inter-rater where two Kappa values were 

calculated depending on the amount of data included. First, an overall Kappa was 

calculated to investigate inter-rater reliability for all potential events (n =878). This first 

method investigates how well the three raters agreed on the allocation of a particular 

event into any of the 19 causal categories represented in HFACS. Here, Fleiss’ Kappa 

showed substantial agreement (k=0.635 (95% CI, .611-.659), p = 0.000). 

Because an overwhelming majority of the data was considered preconditions for 

unsafe acts in both studies, Kappa was also calculated based on those events that all raters 

unanimously agreed were “codable” at the preconditions for unsafe acts tier (n = 846). 

This second method investigates how well the three raters agreed on the allocation of a 

particular event into the seven preconditions for unsafe acts categories represented in 

HFACS. In this case, Fleiss’ Kappa also showed substantial reliability again (k =0.660 

(95% CI, .635-.685), p = 0.000). 

Findings: 

As nearly all of the data (99.8% and 99.7% for unanimous and majority methods 

respectively) was coded as a precondition for unsafe acts, a more fine-grained analysis to 
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indicate the types of preconditions was conducted. For comparison, Figure 13 depicts 

results from the unanimous method, the majority method and a reconciled version of the 

majority method which includes an additional 42 reconciled preconditions events. There 

were originally 55 events that a majority agreed were preconditions for unsafe acts, 

however there was no agreement on the particular category it belonged. Of these 55, 42 

were reconciled as preconditions, four were reconciled as unsafe acts and nine were 

determined “uncodable” (See Figure 12). 

 

 Because all three methods produced such similar results, only the reconciled data 

(n = 862) are discussed below. Most failures resulted from adverse mental states that 

involved being distracted or interrupted (38.28%) followed by issues in the physical 

environment (31.44%) and problems with communication, coordination and planning 

(23.32%). Other preconditions involved problems with the technological environment 

(4.64%) and physical/mental limitations (2.09%) 
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CHAPTER 4: STUDY II (CVOR-NON-ACADEMIC HOSPITAL) 

 The findings of the prior study indicate that HFACS can be used to classify 

retrospective observational data in a cardiac operating room. The data set utilized for the 

aforementioned study was collected from a medical teaching university. While a 

considerable amount of data was collected and nearly all of it could be analyzed using 

HFACS, the findings from that study may not be generalizable to all CVORs.  In an 

effort to investigate this, Study II utilized HFACS to classify retrospective observational 

data from a different data set from another hospital. In this case, a much larger sample of 

data was used, and was collected from a community hospital located in Orlando, Florida.   

The Cardiovascular Operating Room: The description of a general CVOR was 

discussed during chapter three (see Figure 8). The operating room layout was very similar 

for Study II; however, it is important to note some differences about the hospital overall. 

This community hospital houses over 2000 beds and over 16,000 employees serving 

seven county areas throughout Orlando and central Florida and stands as the second 

largest hospital in the state (Florida Hospital, 2012). As such, there are a greater number 

of CVOR suites and more CORE areas than the hospital in Study I. Further, being a non-

academic hospital, this environment saw little to no students, unlike that of Study I.   

Method 

Data Collection: The data-set used for the second study was also collected to 

identify and analyze disruptions that occurred in a CVOR. However, this data was 

collected from a non-academic hospital over four months (1/26/15 – 4/30/15), across 25 

surgeries totaling 145.04 hours of observation. Observers were experienced with 

collecting data in the cardiac operating theatre, but again utilized no specific tool or 
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method for data collection. While similar to the first study in which only two observers 

could observe a procedure at a given time, here each observer collected workflow 

disruptions that impacted two cardiac team areas. In other words, in each surgery one 

observer collected data involving the anesthesiologist and surgeon, and the other 

collected data involving the Perfusionist and circulating nurse.  Results produced 4233 

observations that were to be coded using HFACS. 

Coder Training: The same individuals who coded the data for Study I also coded 

the data for Study II. (Refer to coder training under “Study I” for a complete description) 

Data Coding / Classification: Because the data in data-set II was very similar to 

data-set I, a brief training period took place but a calibration process did not. Each rater 

individually coded all 4233 observations. Raters completed the coding within three 

months (11/5/15 – 1/10/16).  

Reliability: Fleiss’ Kappa was used again to investigate inter-rater reliability 

overall, as well as inter-rater reliability in terms of agreement only at the preconditions 

for unsafe acts level.  

Results 

Data Inclusion 

The same methods from Study I were used to analyze the reliability of the data. 

With the unanimous method, of the 4233 original observations, all three coders agreed 

that 3416 events could be coded using HFACS. Of the 3416 “codable” events, all three 

coders agreed on the allocation of 3308 events at the tier level of HFACS. Based on this, 

there was unanimous agreement that 10 events were considered unsafe acts, while the 

remaining 3298 events were preconditions for unsafe acts. Of the 3288 preconditions, 
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2411 (73.1%) were unanimously agreed upon at the category level (see Figure 13).  

 

  

 

In the majority method, 2/3 coders came to agreement that 3789 of the 4233 

events could be coded using HFACS. Of the “codable” events, coders came to majority 

regarding their appropriate tier allocation for 3775 events. At this point, coders 

determined that the majority (3729) could be classified as preconditions for unsafe acts, 

followed by unsafe acts (41) and organizational influences (5). Of the 3729 

preconditions, coders came to majority as to which category 3499 events belonged 

(93.8%) (see Figure 14); the remaining 230 events were agreed upon during the 

reconciliation process (see Figure 15). 

 

Figure 13. Data-set II line diagram (unanimous method) 
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Figure 14. Data-set II line diagram (majority method) 

 

Figure 15. Data-set II line diagram (reconciled method) 

 

 

Similar to data-set I, we also calculated pairwise comparisons along with the other 

two methodologies for investigating reliability (see Table 8).  
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Table 8. Data-set II methodology comparisons at the tier and category levels 

 
Unanimous 

(3/3 agree) 

Majority 

(2/3 agree) 

Reconciled Majority 

(2/3 + consensus) 

Pairwise Comparisons 

1vs2 1vs3 2vs3 

Tier  97% 99.6% 99.6% + 89% 88% 89% 

Category  73% 96% 96% + 76% 71% 73% 

Inclusion  

 

2419 total 

2411 preconditions 

3539 total 

3499 preconditions 

3709 total 

3655 preconditions 

   

 

 

Reliability 

 Again, Fleiss’ Kappa was calculated in two ways to represent a more stringent 

measure of inter-rater reliability. First an overall Kappa was calculated to investigate 

inter-rater reliability for all potential events (n = 4233). Here, Fleiss’ Kappa showed 

substantial reliability (k =0.642 (95% CI, .633-.652), p = 0.000). Because an 

overwhelming majority of the data was again considered preconditions for unsafe acts, 

Kappa was also calculated based on those events that all raters unanimously agreed were 

“codable” at the preconditions for unsafe acts categories represented in HFACS. Here, 

Fleiss’ Kappa showed an increase in reliability (k = 0.726 (95% CI, .713-.738), p = 

0.000).  

Findings 

Again, nearly all the data fell into the preconditions for unsafe acts category (99.7% 

and 98.7% for the unanimous and majority methods respectively). Because of similarity 

in results, data is discussed based on reconciled findings. Here, most failures resulted 

from adverse mental states (41.50%) followed by issues with communication, 

coordination and planning (31.44%) and problems in the physical environment (20.49%) 

Other preconditions involved problems with the technological environment (4.13%) and 

physical/mental limitations (2.35%) (See Figure 17). 
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Figure 16. Data-set II unanimous vs. majority vs. reconciled preconditions for unsafe acts 

 

Comparison of Data-set I and Data-set II 

Data Comparison  

 The retrospective data-sets utilized for addressing the second research question 

were not only different in terms of the hospitals in which they were collected but also in 

the methodology used for collecting the data. Study I utilized data from an academic 

hospital where each researcher (two in the room) observed workflow disruptions while 

embeddded within one of three specialities (circulating nurse, perfusionist and 

anesthesiologist). Study II utilized data from both the academic hospital in which each 

researcher (two in the room) observed work flow disruptions while observing two of four 

specialties (circulating nurse and perfusionist or anesthesiolgist and surgeon).  
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Because both sets of data, while inherently different, came from observations of 

worflow disruptions in the cardiac operating room, it was also of interest to compare the 

two data sets with respect to the preconditions for unsafe acts findings (see Figure 17).  

 

Figure 17. CVOR academic and non-academic comparison of reconciled findings for preconditions for 

unsafe acts 

 

Chi-square tests (X2) were used to evaluate differences in the frequency of 

preconditions for unsafe acts events relative to the two hospital types (academic hospital 

(Study I) and non-academic hospital (Study II)). Although the overall distribution of 

events appears similar, individual differences emerged by hospital. For example, the 

academic hospital experienced an average of 31.4% of physical environment issues as 

compared with 20.5% for the non-academic hospital; X2 (1, N = 4515) = 47.357, p = 

0.000). In contrast, with respect to communication, coordination and planning issues, the 

academic hospital experienced less, an average of 23.3% while the non-academic hospital 

experienced more, an average of 31.4%; X2 (1, N = 4515) = 22.238, p = 0.000). 
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 Overall, the findings from both studies indicate that HFACS can be used to 

identify latent failures in retrospective observational data collected from a CVOR. 

Despite that the two data sets were collected without HFACS, under different 

methodologies and included very different sample sizes, results were very similar. In 

other words, when the HFACS framework was utilized to classify data in two different 

cardiac operating rooms, similar precondition categories were populated.  However, 

differences were identified between the populated preconditions for unsafe acts 

categories at the academic hospital vs. the non-academic hospital.   
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CHAPTER 5: STUDY III (TRAUMA CENTER) 

Introduction 

Chapters three and four (Cohen et al., 2016) explored the utilization and reliability 

of HFACS for the classification of observational data in the cardiovascular operating 

room (CVOR). HFACS was applied to two different data-sets collected from CVORs and 

found that HFACS was not only reliable for both data sets (especially when using 

majority coding) but it could be used to detect subtle differences in types of latent failures 

identified within one domain. In other words, raters were successful in using HFACS to 

classify observations from both hospitals, and results were able to show differentiation 

between the two venues.   

In an effort to better understand the types of threats facing providers in a different 

medical setting, researchers from Embry-Riddle Aeronautical University investigated 

flow disruptions at a trauma center located at an East Central Florida community hospital 

(see Boquet et al., 2016 for more detail).  

 The Trauma Domain: The trauma patient has a very different experience than the 

cardiac patient. In most cases trauma patients arrive to the hospital either via helicopter or 

ambulance (on rare occasions they arrive by personal vehicle). Upon arrival, the 

emergency medical technicians (EMTs) bring them to a resuscitation room or area, where 

the trauma team attempts to stabilize the patient. The trauma resuscitation team is made 

up of physicians, nurses and other allied health professionals. The American College of 

Surgeons, in their resources for optimal care of the injured patient (2014), explain that the 

general size and composition of the team may vary based upon the hospital size, severity 

of injury, and the corresponding level of trauma team activation. Traditionally, a high 
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level response to a severely injured patient includes a general surgeon, an emergency 

physician, surgical and emergency residents, emergency department nurses, a laboratory 

technician, a radiology technician, a critical care nurse, an anesthesiologist or nurse 

anesthetist, an operating room nurse, security officers, a chaplain or social worker and a 

scribe. However, a low level response to a less critically ill patient usually consists of 

only an emergency physician and the emergency department nurses until the general 

surgeon arrives (American college of Surgeons, 2014).  

 While most trauma cases occur in a series of steps as outlined above, there are 

also specific differences inherent to different hospital structures. As such, Figure 18 can 

be used as a diagram for the flow of a typical trauma patient at the hospital where data 

was collected for Study III. The dashed lines show the pathway for the patient to enter the 

trauma resuscitation area, and the solid line shows how the patient is transferred from this 

area to imaging. In most cases, patients arrive to the hospital either via helicopter (see 

number 1) or ambulance (see number 2). After they arrive the EMTs transfer the patient 

to the resuscitation area, which consists of three resuscitation bays (see number 3). Once 

here, the trauma resuscitation team treats the patient (as quickly as possible) to be sure 

that they are hemodynamically stable and ready for transfer. If needed, the patient is then 

transferred to the imaging suite. In this hospital, the patients are wheeled directly into a 

CT scan room (see number 4) which is out the doors of the trauma area, down a hallway 

and on the left side (see solid arrow). Here, some members of the trauma team go into the 

CT Scan Room and position the patient onto the scanner, and supply with contrast if 

needed, while other members of the team (namely the trauma surgeon, emergency 

department physician, nurses and scribe) go to the imaging observation area (see number 
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5) to look at the patient scans and wait for further assessment. This room is very small, 

and also serves as the observation area for two other CT Scan rooms. Once images are 

taken, a decision can be made as to whether the patient should be sent to surgery, sent to 

the ICU for recovery, or back to the trauma resuscitation room for further care (see 

Figure 18).  

 

 

Figure 18. Level II trauma center (Study III) 

Method 

Data Collection: The data-set for this study includes workflow disruption events 

collected during trauma cases observed at a Level II trauma center (see Boquet et al., 

2016 for a complete description). While Level I trauma centers (where a vast majority of 

research has taken place) have a dedicated team of specially trained staff on site 24 hours 

a day, 7 days a week, a level II trauma center requires the mobilization of a non-

dedicated, multidisciplinary team of individuals who must respond quickly to the arrival 

of a trauma (American Trauma Society, 2016).  
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Sixty-five cases (yielding 1137 events) were collected from an East Central 

Florida community hospital over 23 months (4/29/14 - 3/12/16) and approved by the 

hospital’s Institutional Review Board. During each case, researchers observed the team 

for workflow disruptions from the time the patient arrived in the resuscitation bay and 

continued through imaging (if needed), until disposition to surgery, the medical floor 

unit, or the emergency department for further assessment. 

Specifically, case observation occurred in two parts: (1) observation of the team 

in the resuscitation bay (the area used to stabilize patients) and (2) observation of the 

team in imaging (CT-scan room where patients are brought following resuscitation, for in 

depth images to help providers gain a better understanding of the patient’s medical 

status). Researchers observed and recorded workflow disruptions during both phases (if 

applicable), as well as the amount of time the patient and team spent in each observation 

area.  

Coder Training: The same three raters who coded the CVOR data (from chapters 

three and four) will code the trauma data. Coder training will be the same as that 

discussed in studies one and two with the addition of more detailed instruction on specific 

trauma care topics including general emergency medicine terminology, trauma team 

member titles, roles and responsibilities, and common procedures and equipment/supplies 

in both the resuscitation bay and imaging. During this session, coders will be shown 

images of both the trauma resuscitation bays, and the imaging room.  

Data Coding / Classification: All three raters classified a group of randomly 

selected events (n =50) into the HFACS framework with the author during a subsequent 

one-hour training session.  After this period, each rater independently classified 100 
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additional events to practice coding on their own. The author and the three raters then 

discussed any disagreements (one hour). Following, the raters individually coded the 

remainder of the data (n = 987), and returned later to recode the original 150 data points.  

Overall, the training period consisted of three hours (initial trauma-specific 

detailed lesson (1hr) followed by a group coding session (1hr) and finally a period of 

discussion for the first 100 items (1hr)).  

 

Results 

Reliability 

The same methods from Study I and II were used to analyze the reliability of the 

data in Study III. With the unanimous method, of the 1137 original observations, all three 

coders agreed that 993 events could be coded using HFACS. Of the 993 “codable” 

events, all three coders agreed on the allocation of 929 events at the tier level of HFACS. 

Based on this, there was unanimous agreement that one event was related to 

organizational influences, 52 were unsafe acts, and the remaining 876 events were 

preconditions for unsafe acts. Of the 929 total agreed upon tier level events, 743 (74.8%) 

were unanimously agreed upon at the category level (see Figure 19).  
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Figure 19. Data-set III line diagram (unanimous method) 

 

In the majority method, 2/3 coders came to agreement that 1068 of the 1137 

events could be coded using HFACS. Of the “codable” events, coders came to majority 

regarding their appropriate tier allocation for 1057 events. At this point, coders 

determined that the majority (976) could be classified as preconditions for unsafe acts, 

followed by unsafe acts (78) and organizational influences (2) (see Figure 20); Following 

the majority agreement method, coders and researchers met to reconcile those issues in 

which there was no agreement. Subsequently, 45 events that were originally disagreed 

upon were included in the reconciled data set. Of these, 33 were reconciled as 

preconditions for unsafe acts (see Figure 21). See Table 9 for a comparison of methods 

used and the inclusion data.  
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Figure 20. Data-set III line diagram (reconciled method) 

Figure 21. Data-set III line diagram (majority method) 
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Table 9. Data-set III methodology comparisons at the tier and category level 

 
Unanimous 

(3/3 agree) 

Majority 

(2/3 agree) 

Reconciled Majority 

(2/3 + consensus) 

Pairwise Comparisons 

1vs2 1vs3 2vs3 

Tier  90% 99% 99% + 90% 89% 90% 

Category  73% 94% 94% +  79% 77% 76% 

Inclusion  

 

742 total 

697 preconditions 

1010 total 

939 preconditions 

1054 total 

972 preconditions 
   

 

 Again, Fleiss’ Kappa was calculated in two ways to represent a more stringent 

measure of inter-rater reliability for Study III. The overall Kappa was calculated to 

investigate inter-rater reliability for all potential events (n = 1137). Here, Fleiss’ Kappa 

showed substantial reliability (k=0.680 (95% CI, .662 to .698), p = 0.000). Because an 

overwhelming majority of the data was again considered preconditions for unsafe acts, 

Kappa was also calculated based on those events that all raters unanimously agreed were 

“codable” at the preconditions for unsafe acts categories represented in HFACS. Here, 

Fleiss’ Kappa showed an increase in reliability (k =0.757 (95% CI, .731 - .784), p = 

0.000).   

Findings  

 Similar to data-set I and II a great majority of the data fell into the preconditions 

for unsafe acts category (93.8% and 92.7% for the unanimous and majority methods 

respectively). Because of similarity in results, data is discussed based on reconciled 

findings as an effort to include as much data as possible. Unlike that of the CVOR, in 

trauma most failures resulted from communication, coordination and planning issues 

(59.8%), followed by adverse mental states (24.3%) and issues in the physical 

environment (10.9%) (see Figure 22).  
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Figure 22. Data-set III unanimous vs. majority vs. reconciled preconditions for unsafe acts 
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CHAPTER 6: EXPLORATORY ANALYSES 

While it is possible that the data collected in the CVOR studies (I and II) is 

inherently different from the data collected in the trauma center (study III) because of the 

differences in data collection, it can certainly be value added to explore the differences of 

each of these data sets with respect to the preconditions for unsafe acts findings. 

Although different methods were applied to collect the data in the trauma center than 

what was used in the CVOR, that does not necissarly limit this study from investigating 

differences in the populated HFACS preconditions between these hospitals.  

Chi-square tests (X2) were used to evaluate differences in the frequency of 

preconditions for unsafe acts events relative to the three hospitals utilized in the three 

studies (academic hospital CVOR, non-academic hospital CVOR, and trauma care 

facility). An assumption for Chi-square tests is that no more than 20% of the expected 

counts are less than five (Yates, Moore & McCabe, 1999, p. 734). As a result, two 

preconditions for unsafe act categories were not included in the analysis (i.e., adverse 

physiological state and fitness for duty).  

Three of the precondition for unsafe acts categories were found to be different 

between the hospital types.  These included physical environment; X2 (2, N = 5487) = 

117.532, p = 0.000), adverse mental state; X2 (2, N = 5487) = 96.790, p = 0.000), and 

communication, coordination and planning; X2 (2, N = 5487) = 333.926, p = 0.000).  

Sharpe (2015) explains that one approach available to further investigate a 

statistically significant omnibus chi-square test result is to use a Bonferroni adjustment to 

control the family wise error rate. Therefore, post hoc analyses were conducted using 
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pairwise Chi-square tests with Bonferroni adjustments to investigate the statistically 

significant differences discussed above.  

With respect to issues involving physical environment, differences existed 

between the academic CVOR and the non-academic CVOR; X2 (1, N = 4515) = 47.357, p 

= 0.000), the academic CVOR and the trauma center; X2 (1, N = 1832) = 117.442, p = 

0.000), and the non-academic CVOR and the trauma center; X2 (1, N = 4627) = 48.848, p 

= 0.000).  Specifically, physical environment issues were most prominent for the 

academic CVOR, making up 31.4% of the overall preconditions for unsafe acts followed 

by the non-academic CVOR at 20.5% and the trauma center at 10.9% (see Figure 23).  

In terms of adverse mental state, differences existed between those studies 

conducted in the CVOR, and that which was conducted in the trauma care facility. 

Specifically, differences were highlighted between the academic CVOR and the trauma 

center; X2 (1, N = 1832) = 117.442, p = 0.000), and non-academic CVOR and the trauma 

center; X2 (1, N = 4627) = 96.806, p = 0.000). While the academic CVOR and non-

academic CVOR did not differ from each other (38.3% and 41.5% respectively), both 

experienced significantly more adverse mental state issues than the trauma center 

(24.3%) (see Figure 23). 

Finally, with respect to issues involving communication, coordination and 

planning, differences existed between the academic CVOR and non-academic CVOR; X2 

(1, N = 4515) = 22.238, p = 0.000), the academic CVOR and the trauma center; X2 (1, N 

= 1832) = 148/798, p = 0.000), and non-academic CVOR and trauma center; X2 (1, N = 

4627) = 263.375, p = 0.000).  Communication, coordination and planning issues were 

most prominent in the trauma center, making up 59.8% of the overall preconditions for 
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unsafe acts followed by the non-academic CVOR at 31.4% and the academic CVOR at 

23.3% (see Figure 23). 

   

 

 

 

Figure 23. Comparison of preconditions for unsafe acts categories by hospital  
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CHAPTER 7: DISCUSSION 

This dissertation investigated the utility of HFACS, a system originally designed 

for use in accident and incident investigation, for proactively classifying observational 

human factors data collected in various healthcare domains. Specifically, this project 

investigated three research questions:  

Q1: Can HFACS, a tool developed originally for investigation of accident and 

incident data be reliably applied to observational data within healthcare? Here, 

observational data is used to describe human factors issues, that are observed in 

various healthcare domains. 

Q2: Given the answer to Q1 is yes, Q2 will investigate if the utilization of 

HFACS in two different CVOR environments will result in the population of 

primarily adverse mental states, physical environment issues and communication, 

coordination and planning problems. More specifically, will there be a greater 

number of physical environment  issues identified in a private academic hospital 

compared to a non-academic hospital setting?   

Q3: Given that HFACS can be used on retrospective observational healthcare data 

collected in CVORs, can it be used in an entirely different domain (i.e., trauma 

care), where a different method was used for collecting the observations (i.e., 

observation of the entire team vs. observation of individuals).  

Each research question was addressed and answered throughout the manuscript and will 

be described in more detail below. 
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Study I 

Study I (chapter three) addressed RQ1, by investigating the reliability of HFACS 

as a tool for classifying retrospective observational healthcare data. In Study I, three 

human factors graduate students classified data from a CVOR at an academic university 

medical center using HFACS. Reliability was evaluated using percent agreement and 

Fleiss’ Kappa. When using percent agreement as a method to investigate inter-rater 

reliability, values were calculated in terms of unanimous agreement (all three raters 

agree) and majority agreement (at least two raters agree). Based on unanimous agreement, 

reliability was low (67%). However, when majority agreement was considered, reliability 

was very high (94%).  When reliability was calculated using a more stringent measure, 

Fleiss’ Kappa, substantial reliability was reported (0.635).  

Overall, HFACS was found to be reliable at the tier level and less reliable at the 

category level. This means that more often than not, the three raters agreed upon which 

level of the HFACS hierarchy each observation belonged.  It is not uncommon for inter-

rater reliability to decrease when raters are asked to code observations at the category 

level (Olsen, 2011; Ergai et al., 2015).  It has been noted in the literature that as the 

number of possible categories for coding increases, the reliability generally decreases 

(Gwent et al., 2010).  

It is important to note here that the data used in this study was not originally 

collected using the HFACS framework. The data set consisted of observations that were 

collected with the intent of analyzing flow-disruptions. While it is apparent that nearly all 

of the events could be classified using HFACS, this statement is not absolute. The data 

was not collected using HFACS, nor were the raters involved with its collection. While 
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the raters were trained in HFACS and in general terminology and procedures involved in 

the CVOR, they were not fully exposed to the environment in which the data was 

collected, therefore it is not surprising that there may have been some disagreement 

among raters.  

Study II 

In Study II (chapter four), the second research question was addressed by 

applying HFACS to observational healthcare data from another CVOR at a non-academic 

hospital. As expected, while the identified preconditions for unsafe acts were very similar 

between hospitals, there were differences in the distribution of these categories. For 

example, the academic hospital experienced more physical environment issues than the 

non-academic hospital. In contrast, the academic hospital experienced less 

communication, coordination and planning issues than the non-academic hospital. The 

findings of the second study highlight the ability of HFACS to differentiate between 

observational data collected in the CVOR in two very different hospitals.    

While further research is needed to describe these findings perfectly, a number of 

factors may contribute to the differences identified. First, an increased number of 

individuals in the operating room may cause issues relating to the physical environment. 

Being that an academic hospital was utilized for the first data-set there were often several 

individuals observing, leading to overpopulated operating rooms. When more individuals 

were in an operating room, many issues involving the physical layout of the room were 

observed. Specifically, there were numerous instances where individuals did not have 

enough space to move past one another and several occasions where equipment and 

furniture had to be repositioned in a way not to negatively impact personnel.  
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With respect to the increase in communication, coordination and planning issues 

at the non-academic hospital, one factor to consider is the level of expertise of those in 

the room. At the non-academic hospital, rather than having anesthesiologists in each 

CVOR, a certified registered nurse anesthetist (CRNA) will often fulfil this position.  

According to the American Association of Nurse Anesthetists (AANA, 2016), A CRNA 

is an advanced practice registered nurse who has acquired graduate-level education and 

board certification in anesthesia.   The American Society of Anesthesiologists (2016) 

explains that in the state of Florida (as well as 45 other states) physician supervision, 

collaboration, direction consultation, agreement, accountability, or discretion over nurse 

anesthetists providing anesthesia services is required. These rules and regulations may 

explain some of the disparity in coordination issues involving personnel being 

unavailable.  

At the non-academic hospital, there were many events involving the CRNA 

waiting on or looking for assistance from the anesthesiologist who was oftentimes out of 

the room or assisting in another surgery. This may be related to the number of cardiac 

procedures occurring simultaneously on a given day. Essentially, the more cases 

occurring, the more difficult it may be to obtain the immediate assistance of an 

anesthesiologist.  The academic hospital conducts an average of 600 cardiac procedures 

each year, while the non-academic hospital conducts an average of 2000 cardiac 

procedures each year (Blalock, 2016; Florida Hospital – Cardiovascular Institute, 2012). 

With the elimination of weekends and public holidays there are about 250 work days in a 

given year. This means that there was an average of 2.4 cardiac procedures occurring 

each day at the academic hospital, while there was an average of 8 procedures each day at 
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the non-academic hospital. While the increase in communication, coordination and 

planning issues observed at the non-academic hospital, was not originally hypothesized, 

the disparities in the number of procedures performed per day may partially explain these 

differences. Conceivably, a hospital with several ongoing procedures, with limited 

supervisory staff (i.e., anesthesiologist overseeing CRNAs), would likely have more 

issues involving coordination and planning (i.e., CRNAs waiting on anesthesiologist for 

guidance) than a hospital with one or two procedures per day.  

The increase in procedures occurring at the non-academic hospital may also speak 

to an increased level of workload required for anesthesiologists who must shift their 

attention from case to case. Kleinman and Serfaty (1989) found that workload could be 

related to communication. Specifically, the authors imposed different workload levels on 

two person teams and found that teams exposed to high workload communicated 

significantly less than did teams with low or moderate workload.  While this was not 

studied directly, it would be interesting to explore if the anesthesiologist and CRNA 

teams did communicate less often when more cases were occurring simultaneously. 

Perhaps this could be a focus of future research.  

Another element that may impact the communication, coordination and planning 

category may involve differences in personality types of the individuals at the different 

hospitals. Attri and colleagues (2015) explain that personality traits, differences in beliefs 

and values, and personal factors can all affect the working environment in an operating 

room. Traits such as perfectionism, compulsiveness, and aggressiveness have been 

identified in both surgeons and anesthesiologists, which can make it more difficult to 

acknowledge one another’s expertise, leading to challenges in terms of cohesive 
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teamwork. In the book “The Cultural Study of Work”, Wilson explains that every 

operating room is like no other operating room, and the personality of the surgeon can set 

the tone for the entire surgery. During interviews with nurses, Wilson reported that the 

operating room “is not a joking place if the surgeon does not make jokes, and not a 

talking place if the surgeon does not like to talk while operating” (p. 18). Further, he 

found that some surgeons are friendly and their rooms are filled with witty exchanges, 

while others are strict, allowing no talking whatsoever in their room (Harper & Lawson, 

2003). 

Currently, there is little to no literature exploring the differences between surgical 

personality types and styles and communication issues at academic vs. non-academic 

medical centers.  However, several have noted the benefits of each hospital type which 

may be related to this concept. For example, David Shahian, a professor of surgery at 

Harvard Medical School explains that academic hospitals are at the forefront of medical 

research as they encourage surgical attendings to be up to date on literature so that they 

may better interact with and engage residents (Webster, 2014).  While research is 

certainly needed to investigate this, it may be the case that surgeons at academic medical 

centers foster an environment with better communication because of the styles and 

personality types of individuals who are comfortable answering questions and working 

with residents and students. This is not to suggest that surgeons at non-academic 

universities promote operating rooms with poor communication; however, individuals in 

these settings may not need to take into consideration the learning style and personalities 

of students.  

Study III 
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Finally, in an effort to investigate the utility of HFACS in a vastly different 

domain, where data was collected in a very different manner, Study III (chapter five) 

addressed RQ3. Here, HFACS was applied to observational healthcare data collected in a 

level II trauma care facility. Overall, in terms of unanimous agreement, inter-rater 

reliability was acceptable at 73%. However, this number increased substantially when 

using majority agreement (94%). Regardless of the observational data type, as well as the 

method in which the data was collected, HFACS appears to be sufficient for investigating 

failures in healthcare settings.  

The findings from Study III were very much as expected, as the preconditions for 

unsafe acts made up a majority of the events (92.0% for the reconciled agreement). 

Further, a majority of the precondition events involved communication, coordination and 

planning issues. While these findings certainly appear different than those of the CVOR 

studies, they are not surprising given the nature of trauma care.  Perhaps of initial interest 

is the notion that while a majority of the events in trauma were considered preconditions 

for unsafe acts, there were certainly more unsafe acts identified than in either of the 

CVOR studies. The unsafe acts category captures active failures of operators that may, 

ultimately, lead to an unintended outcome. The slight increase in these failures at the 

trauma center (7.9% compared to 0.69% and 1.4% in data-set I and II respectively) is not 

surprising considering the need to work at a fast pace in order to resuscitate a given 

patient. This finding speaks to the concept of the speed-accuracy trade off that occurs 

during response execution, the notion that when an individual must speed up their 

processes, their accuracy declines potentially leading to unforgiving errors (Wickens, 

1998).  
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Another explanation for this increase in active failures involves the inherent 

differences in trauma care as opposed to cardiac care. Unlike cardiac cases which are 

scheduled and planned in advance, traumatic injury can happen at any point, resulting in 

the need for trauma care at all hours of the day and night. Barach and Weinger (2007) 

explain that sleep deprivation and fatigue are common among trauma team members who 

work regularly on recurring call or night shifts. The authors continue to note that “a sleep 

deprived or fatigued trauma team will make more errors, be less likely to recover from 

these errors, and provide lower quality care than a well-rested team” (p. 104). 

With respect to the preconditions for unsafe acts findings, as expected, the area 

with the most issues involved communication, coordination and planning, making up 

nearly 2/3 of the preconditions for unsafe acts data. The treatment and care for the 

traumatically injured patient is oftentimes unpredictable and must occur in a fast-paced 

environment. In a level II trauma center, such as the one utilized in this particular study, 

the trauma team is not an in-tact team that always works together under the same 

conditions. Manser (2009) explains that this is not unfamiliar as most trauma teams must 

work under conditions that change frequently, may be assembled ad hoc, have a 

dynamically changing team membership and often work together for short periods of 

time.  

Further, Roberts and colleagues (2014) explain that emergency medical teams 

have little time for deliberate planning and communication while providing care for the 

patient. However, effective performance is only ensured if the roles and tasks of the team 

members are clearly defined and communication and leadership aspects are regulated. 
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Because of the constraints placed on the trauma team because of the nature of trauma 

care, unfortunately proper communication and coordination is very difficult.  

Overall Reliability 

To reiterate the reliability findings, all three raters had substantial agreement 

across all three studies. For simplicity and ease of comparison, data will be discussed in 

terms of the Fleiss’ Kappa findings. In these studies, values ranged from 0.635 to 0.680 

when investigating overall Fleiss’ Kappa and were slightly increased when reliability was 

explored based on only the preconditions for unsafe acts events (range from 0.660 to 

0.757)  

These findings are quite similar to others who have investigated the reliability of 

the original HFACS framework. For example, Ergai and colleagues (2016) evaluated 

inter-rater reliability for 125 participants and reported Krippendorff’s alpha values of 

0.67 overall. Similarly, Li and Harris (2006) utilized two raters to investigate 1762 events 

and reported a Cohen’s Kappa value of 0.67 overall. These findings indicate that HFACS 

can be applied to retrospective observational healthcare data and yield similar reliability 

results as other studies investigating the reliability of HFACS.  

Exploratory Discussion 

While there were undoubtedly differences in the methods used to collect each data 

set, the comparison of the preconditions for unsafe acts findings from each data set is 

certainly of value. One of the underlying messages of this dissertation is the idea that 

hospital administrators can not apply a “one size fits all” generic approach when 

attempting to mitigate threats to patient safety.  
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The notion of comparing different types of data sets to gain a better understanding 

of the differences in domains is not dissimilar from applications of HFACS in aviation. 

For example, Wiegmann and Shappell (2001) analyzed human error data associated with 

aircrew-related commercial aviation accidents. The authors compared HFACS findings 

from both FAR Part 121 Schedule Carriers (major commercial airlines whose opperations 

are governed by the Federal Aviation Regulations (FAR), Part 121) and FAR Part 135 

(smaller commuter airlines or air services whose operations are governed by the Federal 

Aviation Regulations, Part 135). The authors found that the overall number of accidents 

associated with most error types was generally higher for FAR Part 135 scheduled 

carriers between the two groups were identified with respect to accident causal factor 

classification. Overall, the investigation provided valuable information about the 

differences between FAR Part 121 and 135 schedule carriers, highlighted the critical 

areas of human factors in need of further safety research and subsequently provided 

valuable insight aimed at the reduction of aviation accidents through data-driven 

strategies.  

Similarly, Shappell and colleagues (2007) compared findings of HFACS analyses 

from general aviation accidents in Alaska versus the rest of the United States. Alaskan 

aviation is very different from general aviation in that Alaska is known for its varied and 

unique landscape, temperamental weather, and seasonal lighting conditions, making it 

one of the most difficult flying environments in the world. The authors identified a 

number of differences between general aviation accidents in Alaska and the rest of the 

US, concluding that efforts to generate intervention solutions must be needs-based and 

data-driven.  
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The aforementioned studies both utilized HFACS to investigate two different 

areas in the same domain as well as compare the findings between the two. Because 

general aviation in Alaska is conceivably different than general aviation in the rest of the 

United States, it is not surprisng that there were also differences identified in the accident 

casual factors identified using HFACS. By comparing the two types of general aviation 

accidents, investigators and safety professionals are better able to understand the types of 

accidents occuring with respect to the specific area in which they are occuring. 

Subsquently, data-driven interventions can be put in place to reduce the risks to pilot 

safety, creating a more resilent aviation system overall.  

While these studies were conducted in a very different domain than healthcare, 

the logic is still applicable here. By comparing the findings between latent failures 

identfied across all three hospitals, healthcare administrators can gain a better 

understanding of the types of threats that face paitent safety and be better equiped to 

design targeted interventions directed at reducing risk to specific areas in healthcare.    

Overall, differences in preconditions for unsafe acts were identified when the 

three studies were compared. Perhaps most striking are the three areas with the highest 

frequency of events; physical environment, adverse mental state and communication, 

coordination and planning. There were significantly more physical environment issues at 

the academic hospital CVOR than the non-academic hospital CVOR as discussed earlier 

(refer to chapter 4) and at either CVOR compared to the trauma care facility. While the 

issues in physical environment were attributed to a larger number of personnel in Study I, 

this was not true in Study III. However, this may be related to the fact that the trauma bay 

is not heavily equipment laden like the CVOR. In other words, while there was still a 
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great deal of individuals in the room, because there was less equipment to interact with 

and navigate around, there were less issues identified with respect to the physical 

environment (see Figure 24 a/b).  

  

When looking at the differences in adverse mental state, it is clear that both 

CVORs, regardless of facility (academic vs. non-academic) experienced more of these 

issues than did trauma. This finding is not surprisng given the life-threatening condition 

of trauma care patients and the pace at which they must be cared for. When a patient 

arrives at a trauma center, they are in critical condition and personnel must quickly assess 

the severity of the patient’s injuries, while developing a plan for treating the patient. As 

such, there is little to no “down time” where team members can engage in non-essential 

communication, and they are rarely interrupted by any outside distractions such as non-

essential personnel, text messages, pages or phone calls.  

Finally, communication, coordination and planning issues differed between both 

CVOR types as previously explained (see Chapter 4), as well as between each CVOR and 

Figure 24. (a) image of a typical cardiovascular operating room (b) image of a typical trauma 

resuscitation room 

(a) (b) 
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the trauma facility. A few factors that could contribute to this finding are team stability 

(i.e., intact vs. ad hoc teams), time sensitivity involved in the case, and the ability to plan 

based on available information prior to a case. With respect to team stability, most CVOR 

teams are intact, in that they are made up of similar individuals who have worked 

together on a regular basis while the trauma teams (especially at level II trauma centers) 

are comprised of team members who may not have even met each other before. This 

could certainly cause issues for teams as they may not know who they are working with 

or how to communicate and coordinate with those individuals.  

The time sensitive nature of trauma care may also lend itself to more 

communication and coordination issues, as individuals must act as quickly as possible to 

resuscitate the patient. While time is still of value in cardiovascular surgeries as increased 

time on cardiovascular bypass is of concern, teams in these settings have much more time 

to communicate with one another during a case. One factor that may influence how much 

communication and coordination is needed during a case, is the ability to plan ahead of 

time. In the case of cardiovascular surgeries (unless there is an emergency case) the 

surgeon knows exactly what procedure he/she will be doing, the full history of the patient, 

the risks associated with the type of procedure, and much more. In contrast, the trauma 

team is given little to no information regarding the case they are about to work on. This 

only becomes even more complex when multiple trauma cases arise at the same time.  

General Discussion 

Other important findings can be drawn from the categories that were not largely 

populated across the three data-sets (i.e., technological environment, adverse 

physiological state, physical/mental limitations, and fitness for duty). Perhaps most 
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interesting is the absence of many technological environment issues in either of the three 

studies. Several hospitals and healthcare systems allocate a great deal of their resources to 

new and improved technology. While practioners have certainly reported usability 

problems associated with technology (new or old), this research suggests improving 

technology, at least in the CVOR and in trauma care, may not necessarily be the most 

important place to focus efforts when it comes to patient safety. Future research is needed 

to investigate if this holds true, not only in more CVORs and trauma care facilities but 

also in other healthcare domains.    

 Next, the lack of events for adverse physiological states, mental/physical 

limitations, and fitness for duty, speaks to the abilities of the team members at each of the 

facilities to perform their jobs as required. There were little to no events describing 

illness, physical fatigue, or other physiological states that would impair performance of 

team members. Similarly, observed practioners were both mentally and physically 

capable of completing their required or necessary tasks. Finally, the individuals were 

always fit to perform their duties at work. There was never an indication that individuals 

did not adhere to rest requirements, alcohol restrictions or other off-duty mandates.  

 While the findings from these studies may not be true for all CVORs and level II 

trauma care facilities, they certainly provide insight into the types of issues that may be or 

may not be occurring within each domain, and how those issues may differ. By 

understanding the types of failures that occur in different settings, we can better provide 

hospital administrators with information to proactively address patient safety. 
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Limitations 

While this dissertation was able to answer all three research questions proposed, 

each of the studies were certainly not without limitations. Perhaps the most recognizable 

being the differences between the samples of each of the studies. The sample size varied 

considerably between all three data-sets: (Data-set I: 15 cases yielding 878 events, Data-

set II: 25 cases yielding 4233 events, Data-set III: 65 cases yielding 1137 events). 

Likewise, the method used for the data collection of each data-set was different. For data-

set I, three positions were observed overall (anesthesiologist, circulating nurse, 

perfusionist) and only two positions were observed for disruptions during each case. In 

the second data-set, four positions were observed overall (anesthesiologist, circulating 

nurse, perfusionist and surgeon) and data from all four positions was collected during 

each case (each researcher observed two positions at a time). Finally, in data-set III, the 

trauma team was observed (rather than individual positions or specialty areas).  

  Another possible limitation involves the lower levels of reliability reported for 

unanimous agreement and Fleiss’ Kappa.  While reliability was generally high for the 

classifications at the tier level, agreement levels were typically lower at the specific 

causal factor level. However, this finding is consistent with other studies that have found 

that as the number of subcategories or coders increases, acceptable levels of reliability are 

generally more difficult to obtain.  
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One factor that may have influenced reliability is that the coders of the 

observational data were not involved in the data collection. While the coders were trained 

in HFACS and general terminology/procedures involved in the CVOR and trauma care, 

they were not fully exposed to the environment in which this data was collected.  

Another issue involves the use of observational data in general. Because these 

studies were conducted using retrospective observational healthcare data, only the 

failures that were observable to researchers during the time of data collection were 

recorded and thus classified into HFACS. For example, failures at the organizational and 

supervisory tiers of HFACS (i.e., organizational influences and supervisory factors) were 

rarely observed, as these failures would typically occur outside of the observation area. 

Similarly, while a few unsafe acts were observed, it is likely that many more occurred 

and were missed by observers. Although issues like slips, trips and falls (skill-based 

errors) are easily observable, because the observers were not clinicians themselves, it was 

difficult for them to pick up on any error or violation made by practioners unless directly 

told beforehand (i.e., improper scrub techniques used; a break in sterile protocol; 

improper vocabulary used for tools and equipment; inappropriate procedures, etc.).  

While studying and exploring the observable failures certainly provides a good 

start on the path for proactive patient safety, this method alone may not be adequate.  If 

hospital administrators are to truly get a full picture of the latent failures occurring within 

the hospital or care setting, other methods outside of observation may be necessary. For 

example, surveys could be used to investigate issues at the organizational and supervisory 

tiers. Along similar lines, perhaps a practitioner or an observer with innate knowledge of 

procedures is needed to observe cases to truly capture the unsafe acts that occur.   
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Contributions and Future Directions 

Historically, the medical community has focused most of its efforts on identifying 

and mitigating human error via the analysis of sentinel events. While this approach has 

been successful, the healthcare industry continues to face issues involving morbidity and 

mortality. As Woods and colleagues (2010) explain, focusing on a single root cause or 

sentinel event in the case of medicine, “retards” our ability to understand the role of 

multiple contributors or latent failures. A vital component to the proactive approach to 

patient safety involves understanding that these multiple contributors can create 

conditions that reduce the resilience of a system.  If we are able to capture and study 

these contributors, we can develop interventions that may be able to mitigate them before 

they reach the patient. 

The proactive identification of human factors issues associated with patient harm 

therefore represents the next step in the evolution of patient safety. This study is a first 

step in establishing the reliability of the HFACS framework as a tool for classifying 

observational human factors data in two different medical venues. As HFACS appears to 

be a reliable observation tool, findings associated with its use could help to identify 

where errors and adverse events are likely to occur.  

The studies in this dissertation further demonstrate that when applied to 

retrospective healthcare data, HFACS can be used to identify different areas of threat 

depending on the particular system. Predictably, hospital administrators could put in 

place targeted interventions to help mitigate human factors issues before they manifest 

and become errors in the future.  
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One way to develop targeted interventions as described above, would be to utilize 

the Human Factors Intervention Matrix (HFIX), a system developed based on human 

factors engineering principles that allows for the implementation of targeted, data-driven 

interventions with the ultimate goal of reducing human error (Shappell & Wiegmann, 

2006). The matrix is designed so that identified threats are positioned against five 

intervention approaches that capture the underlying casual mechanisms of human error. 

The five dimensions include: (1) human/crew, (2) technology/engineering, (3) 

technical/physical, (4) task/procedure and (5) organizational/supervisory. To employ the 

HFIX methodology, the organization must utilize subject matter experts (SMEs) to 

brainstorm intervention strategies that are aimed at addressing the specific threats.  

While several intervention prototypes may be generated while using HFIX, it is 

unlikely that all interventions can be implemented by the organization. Shappell and 

Wiegmann (2006) developed a method by which to evaluate each particular intervention 

that focuses on certain factors that should be considered before it is employed. These 

factors include: Feasibility, Acceptability, Cost, Effectiveness, and Sustainability 

(FACES). Each of these factors is rated on a 5-point Likert scale (1= “worst”, 5 = “best”) 

which can then be used to determine which interventions should be selected for 

implementation. The final product represents a cubed structure that can be used to 

visualize the threats identified against the intervention approaches and the subsequent 

evaluation criteria (see Figure 25).  
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Figure 25. The HFIX Cube (Adapted from Shappell & Wiegmann, 2006) 

 

While HFIX has certainly been employed successfully in several industries, it is 

important to note that it is not the only intervention implementation technique available. 

This is simply one example of how a hospital system could proactively use observational 

process inefficiency data to create targeted interventions that would be designed 

specifically for their needs.  

This concept of using proactive methods to reduce harm can be compared to 

physicians who inoculate patients. Inoculations are used as preventative measures that 

help to reduce the risk of death or suffering. While inoculations are widely used, 

physicians do not simply administer “omnibus” vaccinations that prevent the likelihood 

of any and all disease. Rather, they give a specific vaccination to prevent specific illness 

and disease. Similarly, this research allows us to investigate and identify the types of 

human factors issues in medicine that may lead to catastrophe in the future. Rather than 

waiting for catastrophe to happen and fixing the problem after the fact (a reactive 

approach), we may be able to use HFACS in a proactive way, much like preventative 
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medicine, to design targeted interventions that reduce adverse events and patient harm in 

the future.    

While this dissertation discusses the implications of HFACS as a proactive tool, 

that theory must be expanded into practice. In other words, further efforts should be 

placed on conducting observational studies using HFACS rather than applying HFACS to 

retrospective observational data sets. In order to do this effectively, efforts are also 

needed to design and evaluate a prospective HFACS-specific observational tool to help 

identify human factors failures, which would allow for targeted interventions to be 

deployed before harm occurs. 
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