
Annual ADFSL Conference on Digital Forensics, Security and Law 2015
Proceedings

May 19th, 3:30 PM

A Survey of Software-based String Matching Algorithms for A Survey of Software-based String Matching Algorithms for

Forensic Analysis Forensic Analysis

Yi-Ching Liao
Norwegian Information Security Laboratory, Gjøvik University College, yi-ching.liao@hig.no

(c)ADFSL

Follow this and additional works at: https://commons.erau.edu/adfsl

 Part of the Aviation Safety and Security Commons, Computer Law Commons, Defense and Security

Studies Commons, Forensic Science and Technology Commons, Information Security Commons,

National Security Law Commons, OS and Networks Commons, Other Computer Sciences Commons, and

the Social Control, Law, Crime, and Deviance Commons

Scholarly Commons Citation Scholarly Commons Citation
Liao, Yi-Ching, "A Survey of Software-based String Matching Algorithms for Forensic Analysis" (2015).
Annual ADFSL Conference on Digital Forensics, Security and Law. 2.
https://commons.erau.edu/adfsl/2015/tuesday/2

This Peer Reviewed Paper is brought to you for free and
open access by the Conferences at Scholarly Commons.
It has been accepted for inclusion in Annual ADFSL
Conference on Digital Forensics, Security and Law by an
authorized administrator of Scholarly Commons. For
more information, please contact commons@erau.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Embry-Riddle Aeronautical University

https://core.ac.uk/display/217154847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/adfsl
https://commons.erau.edu/adfsl/2015
https://commons.erau.edu/adfsl/2015
https://commons.erau.edu/adfsl?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1320?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/394?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/394?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1277?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1114?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/429?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/adfsl/2015/tuesday/2?utm_source=commons.erau.edu%2Fadfsl%2F2015%2Ftuesday%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

A SURVEY OF SOFTWARE-BASED STRING MATCHING

ALGORITHMS FOR FORENSIC ANALYSIS

Yi-Ching Liao

Norwegian Information Security Laboratory

Gjøvik University College, Norway

yi-ching.liao@hig.no

ABSTRACT

Employing a fast string matching algorithm is essential for minimizing the overhead of extracting

structured files from a raw disk image. In this paper, we summarize the concept, implementation, and

main features of ten software-based string matching algorithms, and evaluate their applicability for

forensic analysis. We provide comparisons between the selected software-based string matching

algorithms from the perspective of forensic analysis by conducting their performance evaluation for file

carving. According to the experimental results, the Shift-Or algorithm (R. Baeza-Yates & Gonnet, 1992)

and the Karp-Rabin algorithm (Karp & Rabin, 1987) have the minimized search time for identifying the

locations of specified headers and footers in the target disk.

Keywords: string matching algorithm, forensic analysis, file carving, Scalpel, data recovery

1. INTRODUCTION

File carving is the process of extracting structured

files from a raw disk image without the knowledge

of file-system metadata, which is an essential

technique for digital forensics investigations and

data recovery. There is no guarantee that metadata

exists to provide the location of each file within a

file system, and file headers can be anywhere in a

raw disk image. Therefore, it is inevitable for file

carving applications to search every byte of a raw

disk image, at the physical level, to locate specific

file headers and footers of interest to the

investigation. To minimize the overhead of

searching for file headers and footers, it is

important to employ a fast string matching

algorithm for reducing the search time (Richard III

& Roussev, 2005). In this paper, we summarize

the concept, implementation, and main features of

several software-based string matching algorithms,

and provide comparisons between them from the

perspective of forensic analysis.

The rest of this paper is organized as follows.

Section 2 describes the state of the art, and

summarizes other research on the survey of string

matching algorithms. Section 3 illustrates the

importance of file carving, and introduces the

implementation of one of the most popular open

source file carving application, Scalpel (Richard

III & Roussev, 2005). Section 4 summarizes the

concept, implementation, and main features of ten

software-based string matching algorithms.

Section 5 presents the experimental results of

comparisons between different string matching

algorithms from the perspective of forensic

analysis. Finally, section 6 concludes this paper

and provides recommendations for future work.

2. RELATED WORK

Baeza-Yates (R. A. Baeza-Yates, 1989) surveys

several important string matching algorithms, and

presents empirical results of the execution time for

searching 1,000 random patterns in random texts

and an English text. The evaluated algorithms

include the brute force algorithm, the Knuth-

Morris-Pratt algorithm (Knuth, Morris, & Pratt,

1977), the Boyer-Moore algorithm (Boyer &

Moore, 1977) and its variants, the Shift-Or

algorithm (R. Baeza-Yates & Gonnet, 1992), and

the Karp-Rabin algorithm (Karp & Rabin, 1987).

The empirical results show that the Horspool

algorithm (Horspool, 1980), a simplification of the

Boyer-Moore algorithm (Boyer & Moore, 1977),

is the best known algorithm for almost all pattern

lengths and alphabet sizes.

Navarro (Navarro, 2001) presents an overview of

the state of the art in approximate string matching,

which tolerates a limited number of errors during

string matching. The most important application

areas of approximate string matching include

computational biology (e.g. DNA and protein

sequences), signal processing (e.g. speech

recognition), and text retrieval (e.g. correction of

misspellings and information retrieval). Navarro

states that information retrieval is among the most

demanding areas of approximate string matching,

because it is about extracting relevant information

from a large text collection. Navarro also

demonstrates empirical comparisons among the

most efficient algorithms by running them on three

kinds of texts: DNA, natural language, and speech.

Tuck et al. (Tuck, Sherwood, Calder, & Varghese,

2004) regard the string matching algorithm as the

essential component of modem intrusion detection

systems, since intrusion detection systems depend

heavily on the content identified in the packets by

string matching algorithms. In addition to

modifying the Aho-Corasick algorithm (Aho &

Corasick, 1975) to reduce the resource overhead,

Tuck et al. also explain some core string matching

algorithms, such as the SFKSearch algorithm

utilized for low memory situations in Snort and the

Wu-Manber algorithm (Wu & Manber, 1994).

Even though the average case performance of the

modified Wu-Manber algorithm (Wu & Manber,

1994) is among the best of all multi-pattern string

matching algorithms, its worst case performance is

not better than the brute force algorithm.

AbuHmed et al. (AbuHmed, Mohaisen, & Nyang,

2007) introduce a survey on the deep packet

inspection algorithms and their usage for intrusion

detection systems. They regard the string matching

algorithm complexity as one of the challenges for

deep packet inspection, since the resource-

consuming pattern matching will significantly

decrease the throughput of intrusion detection

systems. In their opinions, the string matching

algorithms suffer from two factors: the

computation operations during comparisons and

the number of patterns to be compared. AbuHmed

et al. list the Knuth-Morris-Pratt algorithm (Knuth

et al., 1977), the Boyer-Moore algorithm (Boyer &

Moore, 1977), the Aho-Corasick algorithm (Aho

& Corasick, 1975), the AC BM algorithm (Coit,

Staniford, & McAlerney, 2001), the Wu-Manber

algorithm (Wu & Manber, 1994), and the

Commentz Walter algorithm (Commentz-Walter,

1979) as the most famous software-based string

matching algorithms, and present a throughput

comparison between existing intrusion detection

systems with their algorithms and hardware

implementations.

3. FILE CARVING

File carving is the process of recovering files

without the file-system metadata describing the

actual file system, which is vitally important for

digital forensics investigations and data recovery.

File carving is essential for digital forensics

investigations, because it is able to provide

human-readable information, instead of low level

details, for forensic investigators (Richard III &

Roussev, 2005). File carving is also a topic of

great interest to an enterprise, because raw file

recovery can minimize the impact of data loss

when the file system of a disk is damaged

(Pungila, 2012).

Scalpel (Richard III & Roussev, 2005) is one of

the most popular open source file carving

application that runs on Linux and Windows. To

reassemble files from fragments, Scalpel first

reads the entire disk image with a buffer of size 10

MB, and searches for the locations of file headers

and footers. Since the configuration file

“scalpel.conf” includes the known header and

footer patterns of different file formats, forensic

investigators can customize the configuration file

to specify their target file formats. After the initial

pass over the disk image, Scalpel matches each

file header with an appropriate footer. The newest

public release of Scalpel utilizes a modified

Boyer-Moore algorithm (Boyer & Moore, 1977)

as the default string matching algorithm. Since this

paper is to investigate the applicability of the

software-based string matching algorithms for

forensic analysis, we concentrate on the first phase

of Scalpel, in which the locations of specified

headers and footers are identified in the target

disk.

4. STRING MATCHING ALGORITHMS

Since there is no guarantee that file-system

metadata exists to provide the location of each file

within a file system, searching every byte of a raw

disk image is unavoidable for file carving

applications to identify the locations of structured

files. Therefore, employing a fast string matching

algorithm is indispensable for minimizing the

overhead of file carving applications. The

objective of string matching algorithms is to find

one or more occurrences of pattern in a text

through the sliding window mechanism. In this

paper, we denote the pattern length as m, the text

length as n, and the alphabet size of pattern and

text as σ. We summarize the concept,

implementation, and main features of ten

software-based string matching algorithms as

follows:

4.1 The Brute Force Algorithm

The brute force algorithm checks for the pattern by

shifting the window by exactly one position with

the time complexity O(m×n). The algorithm can

perform the string matching in any order without a

preprocessing phase. During the searching phase,

it performs 2n text character comparisons (Aoe,

1994). The worst case scenario of the brute force

algorithm is searching for repetitive text and

pattern. Moreover, the brute force algorithm

requires constant extra space to back up the text

stream.

4.2 The Boyer-Moore Algorithm

The Boyer-Moore algorithm (Boyer & Moore,

1977) and the Knuth-Morris-Pratt algorithm

(Knuth et al., 1977) are among the most widely

used single pattern matching algorithms, in which

each pattern is searched within a given text

separately. The Boyer-Moore algorithm is

considered as the most efficient string searching

algorithm in both theory and practice, and it has

become the standard for practical string searching.

To improve the performance of searching, it

performs the string matching from right to left,

and it requires a preprocessing phase to determine

the possibility of large shifts in the window with

the time complexity O(m+σ). The pre-computed

functions for shifts in the window are “good-suffix

shift” and “bad-character shift”. During the

searching phase, it performs with the time

complexity O(m×n) and at most 3n character

comparisons (Aoe, 1994). The best performance of

the Boyer-Moore algorithm is O(n/m), which

improves as the length of pattern m increases.

4.3 The Knuth-Morris-Pratt Algorithm

Knuth et al. (Knuth et al., 1977) present the

Knuth-Morris-Pratt algorithm with the time

complexity proportional to the sum of the lengths

of pattern and text, O(m+n), which is independent

of the alphabet size. The algorithm performs the

string matching from left to right, and it needs a

preprocessing phase to construct a partial-match

table with the time complexity O(m). The table

determines how many characters to slide the

pattern when a mismatch occurs. During the

searching phase, it performs at most 2n-1 character

comparisons (Aoe, 1994). The Knuth-Morris-Pratt

algorithm is a practical algorithm for on-line

search, and it can be modified for searching

multiple patterns in one single search.

4.4 The Karp-Rabin Algorithm

Since hashing is able to provide a simple method

to avoid a quadratic number of character

comparisons, Karp and Rabin (Karp & Rabin,

1987) propose an efficient randomized pattern

matching algorithm that only checks if the window

of text similar to the pattern through the hashing

function. Therefore, the algorithm can examine the

resemblance without checking whether the pattern

occurs at each position of the text. The algorithm

demands a preprocessing phase to compute hash

values with the time complexity O(m), and it

performs with the time complexity O(m×n) during

the searching phase (Charras & Lecroq, 2004).

The Karp-Rabin algorithm can be easily extended

to find multiple patterns; however, the arithmetic

operations can be slower than character

comparisons.

4.5 The Horspool Algorithm

The Horspool algorithm (Horspool, 1980) is a

simplified version of the Boyer-Moore algorithm

(Boyer & Moore, 1977), which only utilizes the

precomputed “bad-character shift” function for

shifts in the window. Even though utilizing the

“bad-character shift” is inefficient for small

alphabets, it can be effective when the alphabet

size is large enough compared to the pattern

length. The Horspool algorithm requires a

preprocessing phase with the time complexity

O(m+σ), and it performs in any order with the

time complexity O(m×n) during the searching

phase (Charras & Lecroq, 2004). Baeza-Yates (R.

A. Baeza-Yates, 1989) conducts a survey on

several important string matching algorithms, and

the empirical results show that the Horspool

algorithm is the best known algorithm for almost

all pattern lengths and alphabet sizes.

4.6 The Quick Search Algorithm

Similar to the Horspool algorithm (Horspool,

1980), the Quick Search algorithm (Sunday, 1990)

is also a simplified version of the Boyer-Moore

algorithm (Boyer & Moore, 1977), which only

utilizes the precomputed “bad-character shift”

function for shifts in the window. Likewise, the

Quick Search algorithm needs a preprocessing

phase with the time complexity O(m+σ), and it

performs in any order with the time complexity

O(m×n) during the searching phase. However, the

Quick Search algorithm has a quadratic worst case

time complexity in the searching phase.

4.7 The Shift-Or Algorithm

The main idea of the Shift-Or algorithm (R.

Baeza-Yates & Gonnet, 1992) is to represent the

search state as a number, and each search attempt

performs a small number of arithmetic and logical

operations. By utilizing the bitwise techniques, the

Shift-Or algorithm can be efficient if the pattern

length is smaller than the memory-word size of the

machine. The Shift-Or algorithm demands a

preprocessing phase with the time complexity

O(m+σ), and the time complexity of its searching

phase is O(n), which is independent of the

alphabet size and the pattern length (Charras &

Lecroq, 2004).

4.8 The Smith Algorithm

Different from the Quick Search algorithm

(Sunday, 1990) depending on the statistics of the

language to determine the order of comparisons,

the Smith algorithm (Smith, 1991) is able to

perform the string matching language

independently. It utilizes the precomputed “bad-

character shift” function for shifts in the window

from the Horspool algorithm (Horspool, 1980) and

the Quick Search algorithm (Sunday, 1990). The

Smith algorithm requires a preprocessing phase

with the time complexity O(m+σ), and it performs

with the time complexity O(m×n) during the

searching phase (Charras & Lecroq, 2004). Since

the Smith algorithm is a language-independent

algorithm with competitive performance, it can

perform the string matching efficiently without the

knowledge of the text type.

4.9 The Raita Algorithm

Since neither the pattern nor the text is random in

practice, Raita (Raita, 1992) proposes a new

implementation that makes use of the

dependencies between successive symbols. The

Raita algorithm can perform 21 to 27 percent

faster than the Horspool algorithm (Horspool,

1980) with all pattern lengths. After comparing the

last character of the pattern with the rightmost

character of the text, it compares the first and then

the middle character before comparing the rest of

characters. The Raita algorithm needs a

preprocessing phase with the time complexity

O(m+σ), and it performs with the time complexity

O(m×n) during the searching phase (Charras &

Lecroq, 2004).

4.10 The Berry-Ravindran Algorithm

Berry and Ravindran (Berry & Ravindran, 1999)

introduce a new string matching algorithm that is

more efficient than the existing algorithms through

over 1,500,000 separate experiments. The Berry-

Ravindran algorithm is a composite of the Quick

Search algorithm (Sunday, 1990) and another

variant of the Boyer-Moore algorithm (Boyer &

Moore, 1977), the Zhu-Takaoka algorithms. It

performs the window shifts by considering the

“bad-character shift” for the two consecutive text

Table 1 Time Complexity of String Matching Algorithms

characters to the right of the window. The Berry-

Ravindran algorithm demands a preprocessing

phase with the time complexity O(m+σ²), and it

performs with the time complexity O(m×n) during

the searching phase (Charras & Lecroq, 2004).

Table 1 summarizes the time complexity,

including the preprocessing and searching phases,

of the string matching algorithms described in this

section. However, the theoretical analysis can only

show how the algorithm is likely to perform,

instead of the actual performance. Therefore, it is

necessary to conduct true experiments in order to

evaluate the performance of algorithms in practice.

5. EVALUATION RESULTS

To provide comparisons between multiple string

matching algorithms described in section 4 from

the perspective of forensic analysis, we deploy an

experimental testbed implemented with VMware

Workstation and Ubuntu 12.04.3 based on the

AMD64 architecture. The virtual machine utilizes

a single CPU core with 1GB of memory. To

evaluate the performance of each string matching

algorithm, we utilize two test images for Scalpel

2.0 to extract various file formats. The first image

”11-carve-fat.dd” (Nick Mikus, 2005a) is a raw

partition image of a 65 MB FAT32 file system,

and the second image ”12-carve-ext2.dd” (Nick

Mikus, 2005b) is a raw partition image of a 129.4

MB EXT2 file system. Since the file formats

within the two images include doc, gif, jpg, mov,

pdf, wav, and wmv, to specify the target file

formats, we include 12 known header and footer

patterns in the configuration file ”scalpel.conf”,

which is shown in Table 2.

Since this paper aims to evaluate the applicability

of the software-based string matching algorithms

for forensic analysis, we concentrate on the

performance of each algorithm during the first

phase of Scalpel, in which the locations of

specified headers and footers are identified in the

target disk. In order to get more accurate results,

we revert to the same snapshot when we evaluate

each algorithm, and all evaluation results reported

in this paper are the average from repeating the

experiments for 30 times. Moreover, to find out

the algorithm performance for different file

formats, we separate each file format in the

configuration file ”scalpel.conf”, which is shown

in Table 2. Table 3 presents the experimental

results of the search time and the number of files

carved for different file formats between ten string

matching algorithms for the image ”11-

carvefat.dd”.

Table 2: Header and Footer Patterns in the “scalpel.conf” Configuration File

*We distinguish the file extension with different headers and footers by adding numbers to the file extension.

Table 3: Search Time (in secs) and Number of Files Carved for Image “11-carve-fat.dd”

¹The modified Boyer-Moore algorithm that Scalpel utilizes

According to the experimental results from Table

3, some carved files are missed when utilizing the

Karp-Rabin algorithm (Karp & Rabin, 1987), the

Horspool algorithm (Horspool, 1980), the Quick

Search algorithm (Sunday, 1990), the Shift-Or

algorithm (R. Baeza-Yates & Gonnet, 1992), the

Smith algorithm (Smith, 1991), the Raita

algorithm (Raita, 1992), and the Berry-Ravindran

algorithm (Berry & Ravindran, 1999). The Karp-

Rabin algorithm (Karp & Rabin, 1987), the Shift-

Or algorithm (R. Baeza-Yates & Gonnet, 1992),

and the Raita algorithm (Raita, 1992) are unable to

discover mov and wav file formats. The Horspool

algorithm (Horspool, 1980), the Quick Search

algorithm (Sunday, 1990), and the Smith

algorithm (Smith, 1991) cannot locate the mov2

file format. In addition to mov2 file format, the

Horspool algorithm (Horspool, 1980) also has

problems finding wav file format. The Berry-

Ravindran algorithm (Berry & Ravindran, 1999) is

unable to discover wav file format either.

However, it is able to locate one mov2 file. It

appears that the types missed are those with the

“?” character in the header pattern and with no

footer pattern, which we regard as an open

problem for future work.

Since there is no difference between the number of

files carved by string matching algorithms for the

image ”12-carve-ext2.dd” (3 doc1, 3 doc2, 1 gif, 3

jpg1, 1 pdf1, and 2 pdf2 files), Table 4 only shows

the experimental results of the search time for

different file formats between ten string matching

algorithms for the image ”12-carve-ext2.dd”.

Figure 1 and Figure 2 present the clear

comparisons of search time for different file

formats between different string matching

algorithms for the images ”11-carve-fat.dd” and

”12-carve-ext2.dd” accordingly.

Figure 1 Search Time Comparison for Image ”11-carve-fat.dd”

Table 4 Search Time (in secs) for Image “12-carve-fat.dd”

¹The modified Boyer-Moore algorithm that Scalpel utilizes

Figure 2 Search Time Comparison for Image ”12-carve-fat.dd”

According to Figure 1 and Figure 2, the

experimental results show the Shift-Or algorithm

(R. Baeza-Yates & Gonnet, 1992) and the Karp-

Rabin algorithm (Karp & Rabin, 1987) have the

minimized execution time during the first phase of

Scalpel, in which the locations of specified

headers and footers are identified in the target

disk. However, they both suffer from identifying

the mov and wav file formats, which can be

improved in the future.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we summarize the concept,

implementation, and main features of ten

software-based string matching algorithms, and

provide comparisons between them from the

perspective of forensic analysis. Since the

theoretical analysis can only show how the

algorithm is likely to perform, not the actual

performance, we conduct true experiments to

survey the performance of ten software-based

string matching algorithms through utilizing them

for file carving, which is an essential technique for

digital forensics investigations and data recovery.

Our experimental results show the Shift-Or

algorithm (R. Baeza-Yates & Gonnet, 1992) and

the Karp-Rabin algorithm (Karp & Rabin, 1987)

have the minimized search time for identifying the

locations of specified headers and footers in the

target disk.

Even though file carving is an essential technique

for digital forensics investigations and data

recovery, there are other application areas in

forensic analysis eager for better string matching

algorithms, such as information retrieval and

digital forensic text string searches. Moreover,

there are several more string matching algorithms

for future evaluation, including the AC BM

algorithm (Coit et al., 2001), the Wu-Manber

algorithm (Wu & Manber, 1994), the Commentz

Walter algorithm (Commentz-Walter, 1979), and

the Aho-Corasick algorithm (Aho & Corasick,

1975). Even though the evaluation method is

valid, the evaluation results can be more unbiased

if more test images are utilized. In addition to the

execution time, other evaluation criteria, such as

the storage overhead, CPU usage, and accuracy,

can also be considered as future work.

ACKNOWLEDGMENT

Yi-Ching Liao is supported by the COINS

Research School of Computer and Information

Security.

REFERENCES

[1] AbuHmed, T., Mohaisen, A., & Nyang, D.

(2007, November). A survey on deep packet

inspection for intrusion detection systems.

Magazine of Korea Telecommunication

Society, 24, 25–36. arXiv:0803.0037

[2] Aho, A. V., & Corasick, M. J. (1975, June).

Efficient string matching: an aid to

bibliographic search. Commun. ACM, 18(6),

333–340. doi: 10.1145/360825360855

[3] Aoe, J.-i. (1994). Computer algorithms:

string pattern matching strategies (Vol. 55).

Wiley. com.

[4] Baeza-Yates, R., & Gonnet, G. H. (1992,

October). A new approach to text searching.

Commun. ACM, 35(10), 74–82. doi:

101145/135239.135243

[5] Baeza-Yates, R. A. (1989, April).

Algorithms for string searching. SIGIR

Forum, 23(3-4), 34–58. doi:

10.1145/74697.74700

[6] Berry, T., & Ravindran, S. (1999). A fast

string matching algorithm and experimental

results. In Stringology (pp. 16–28).

[7] Boyer, R. S., & Moore, J. S. (1977, October).

A fast string searching algorithm. Commun.

ACM, 20(10), 762–772. doi:

10.1145/359842.359859

[8] Charras, C., & Lecroq, T. (2004). Handbook

of exact string matching algorithms. King’s

College Publications.

[9] Coit, C., Staniford, S., & McAlerney, J.

(2001). Towards faster string matching for

intrusion detection or exceeding the speed of

snort. In DARPA information survivability

conference amp; exposition II, 2001. DISCEX

’01. proceedings (Vol. 1, pp. 367– 373 vol.1).

doi: 10.1109/DISCEX.2001.932231

[10] Commentz-Walter, B. (1979). A string

matching algorithm fast on the average.

Automata, Languages and Programming, 6th

Colloquium, 71, 118–132.

[11] Horspool, R. N. (1980). Practical fast

searching in strings. Software: Practice and

Experience, 10(6), 501– 506. doi:

10.1002/spe.4380100608

[12] Karp, R. M., & Rabin, M. (1987). Efficient

randomized pattern-matching algorithms.

IBM Journal of Research and Development,

31(2), 249–260. doi: 10.1147/ rd.312.0249

[13] Knuth, D. E., Morris, J., & Pratt, V. R.

(1977). Fast pattern matching in strings.

SIAM journal on computing, 6(2), 323–350.

doi:10.1137/0206024

[14] Navarro, G. (2001, March). A guided tour to

approximate string matching. ACM Comput.

Surv., 33(1), 31–88. doi: 10.1145/

375360.375365

[15] Nick Mikus. (2005a, March). Digital

forensics tool testing image, available at

http://dftt.sourceforge.net/test11/index.html.

[16] Nick Mikus. (2005b, March). Digital

forensics tool testing image, available at

http://dftt.sourceforge.net/test12/index.html.

[17] Pungila, C. (2012). Improved file-carving

through data-parallel pattern matching for

data forensics. In 2012 7th IEEE

international symposium on applied

computational intelligence and informatics

(SACI) (pp. 197–202). doi:

10.1109/SACI.2012.6250001

[18] Raita, T. (1992). Tuning the boyer-moore-

horspool string searching algorithm.

Software: Practice and Experience, 22(10),

879–884. doi: 10.1002/spe.4380221006

[19] Richard III, G. G., & Roussev, V. (2005).

Scalpel: A frugal, high performance file

carver. Refereed Proceedings of the 5th

Annual Digital Forensic Research

Workshop. Retrieved 2014-12-12, from

http://www.dfrws.org/2005/proceedings/rich

ard_scalpel.pdf

[20] Smith, P. D. (1991). Experiments with a very

fast substring search algorithm. Software:

Practice and Experience, 21(10), 1065–

1074. doi: 10.1002/spe.4380211006

[21] Sunday, D. M. (1990, August). A very fast

substring search algorithm. Commun. ACM,

33(8), 132–142. doi: 10.1145/79173.79184

[22] Tuck, N., Sherwood, T., Calder, B., &

Varghese, G. (2004). Deterministic memory

http://dftt.sourceforge.net/test11/index.html
http://dftt.sourceforge.net/test12/index.html
http://www.dfrws.org/2005/proceedings/richard_scalpel.pdf
http://www.dfrws.org/2005/proceedings/richard_scalpel.pdf

efficient string matching algorithms for

intrusion detection. In INFOCOM 2004.

twenty-third Annual Joint conference of the

IEEE computer and communications

societies (Vol. 4, pp. 2628–2639 vol.4). doi:

10.1109/INFCOM.2004.1354682

[23] Wu, S., & Manber, U. (1994). A fast

algorithm for multi-pattern searching (Tech.

Rep.). Technical Report TR-94-17,

University of Arizona. Retrieved 2014-12-

12, from http://webglimpse.net/pubs/TR94-

17.pdf

http://webglimpse.net/pubs/TR94-17.pdf
http://webglimpse.net/pubs/TR94-17.pdf

	A Survey of Software-based String Matching Algorithms for Forensic Analysis
	Scholarly Commons Citation

	A Survey of Software-based String Matching Algorithms for Forensic Analysis

