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Abstract

Limit cycle oscillations (LCO), also known as flutter, cause significant challenges
in flight control of unmanned aerial vehicles (UAVs), and could potentially lead to
structural damage and catastrophic failures. LCO can be described as vibrational
motions in the pitching and plunging displacements of an aircraft wing. Even in low
Reynolds number (low-Re) flight regimes, LCO can exceed the limiting boundary for
safe UAV flight. Further, as practical considerations motivate the design of smaller,
lighter weight UAVs, there is a growing need for UAV systems that do not require
heavy mechanical actuators (e.g., ailerons). To address this, the use of synthetic jet
actuators (SJAs) in UAV flight control systems is becoming popular as a practical
alternative to mechanical deflection surfaces. SJAs are promising tools for LCO sup-
pression systems in small UAVs due to their small size, ease of operation, and low
cost. Uncertainties inherent in the dynamics of SJAs present significant challenges
in SJA-based control design. Specifically, the input-output characteristic of SJAs
is nonlinear and contains parametric uncertainty. Further control design challenges
exist in situations where multiple actuators lose effectiveness. In the event of loss
of effectiveness in multiple actuators, control challenges arise due to the fact that
the resulting system contains fewer actuators than degrees of freedom (DOF) to be
controlled (i.e., an underactuated system). Still further difficulties exist in control
design for dual parallel underatuated systems, where standard backstepping-based
control approaches cannot be applied. In this thesis, three nonlinear SJA-based con-

trol methods are presented, which are capable of complete (i.e., asymptotic) suppres-



sion of LCO in UAV systems containing uncertainty. An adaptive control method is
presented first, which is shown to achieve asymptotic regulation of LCO for UAVs in
the presence of model uncertainty and unmodelled external disturbances. Motivated
by the desire to reduce the computational complexity of the closed-loop system, a
structurally simplistic robust (single feedback loop) control design is presented next,
which is shown to achieve asymptotic LCO regulation without the need for adaptive
parameter estimation. Finally, to address the control challenges encountered in the
event of actuator faults, a robust control method is presented, which achieves simul-
taneous suppression of the pitching and plunging displacements using only a single
scalar control input. The control design presented for this underactuated scenario is
also proven to completely compensate for the inherent SJA nonlinearity. Rigourous
Lyapunov-based stability analyses are provided to prove the theoretical results, and

numerical simulation results are provided to complement the theoretical development.
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Chapter 1

Introduction

In this section, brief introductions to the concepts relevant to this thesis are presented.
Specifically, this section will provide explanations related to LCO in aircaft wings,
the engineering of SJA and philosophical motivation for their use in LCO suppression
and aircraft tracking control applications, and summaries of the nonlinear control
methods presented in this thesis.

LCO (Khalil, 2002; O’Donnell, Marzocca, & Milanese, 2007) result from nonlin-
earities (i.e nonlinear stiffness properties) inherent in the aeroelastic dynamics of a
UAV system (Satak, Hernandez, & Hurtado, 2012). Suppression of LCO, or also
known as flutter, is an important concern in UAV flight control applications.

Limit cycle oscillations are described as periodic motion of the pitching and plung-
ing displacements in the UAV wing. Limit cycle oscillations can result when the state
trajectories of a nonlinear ordinary differential equation exhibit stable periodic orbits
in the neighborhood of an equilibrium point. Figure 1.1 shows where the location of

the pitching and plunging motions would be in a standard airfoil (Beran, Pettit, &



h
o F_xa“l

K

Figure 1.1: Illustration of pitch and plunge on an airfoil .

Millman, 2006). Due to these behaviors, the LCO could exceed the limiting safe flight
boundaries of an aircraft (Rubillo, Bollt, & Marzocca, 2005) and could potentially
lead to structural damages and catastrophes. Control applications for LCO suppres-
sion are often developed (Frampton & Clark, 2000; Strganac, K., & Thompson, 2000;
Platanitis & Strganac, 2004) using mechanical deflection surfaces (e.g. flaps, ailerons,
rudders, and elevators). To address this, the use of SJAs in UAV flight control systems
is becoming popular as a practical alternative to mechanical deflection surfaces.
SJAs are promising tools for LCO suppression systems in UAVs due to their
small size, ease of operation, and low cost. SJAs transfer linear momentum to a flow
system by using a vibrating diaphragm, which creates trains of vortices through the
alternating ejection and suction of fluid through a small orifice (see Figure 1.2. Since
these vortices (i.e., jets) are formed entirely from the fluid (i.e., air) of the flow system,
a key benefit of SJAs is that they achieve this transfer of momentum with zero net
mass injection across the flow boundary. Thus, SJAs do not require space for a fuel
supply. SJAs can be utilized to modify the boundary layer flow field near the surface of
a UAV wing, and this capability can be applied to achieve LCO suppression for UAVs.
Uncertainties inherent in the dynamics of SJAs present significant challenges in SJA-

based control design, however. Specifically, the input-output characteristic of SJAs



is nonlinear and contains parametric uncertainty. Further control design challenges
exist in situations where multiple actuators lose effectiveness. Such underactuated
scenarios create significant control design challenges, since there are fewer control
actuators than degrees of freedom to be controlled.

Over the last few years, several SJA-based nonlinear control methods have been
presented, which utilize neural networks and/or complex fluid dynamics computa-
tions in the feedback loop (e.g., see (Tchieu, Kutay, Muse, Calise, & Leonard, 2008;
Mondschein, Tao, & Burkholder, 2011; Deb, Tao, Burkholder, & Smith, 2005a, 2005b;
Deb, Burkholder, & Smith, 2006; Deb, Tao, Burkholder, & Smith, 2007, 2008; Liu
et al., 2006; Singhal, Tao, & Burkholder, 2009; Tao, 1996; Jee et al., 2009; Milanese,
De Breuker, Marzocca, & Abdalla, 2008)). While these approaches have been shown
to perform well in their respective control tasks, function approximation methods
and complex calculations in the control loop can require increased computational re-
sources, which might not be available in small UAV applications. Adaptive control
approaches have been applied to linear time invariant (LTT) dynamic models to com-
pensate for SJA nonlinearities and external disturbances (Mondschein et al., 2011).
Adaptive inverse control schemes are another popularly utilized method to compen-
sate for the actuator nonlinearity inherent in SJAs (Deb et al., 2005a, 2005b, 2006,
2007, 2008). Motivated by the desire to compensate for the SJA nonlinearity with a
more simplified structure, a robust inverse control method is presented in (Mackunis
et al., 2013), which is proven to achieve asymptotic SJA-based flight tracking without
the use of adaptive update laws or function approximation.

Control design for underactuated systems presents further control challenges.

While backstepping-based approaches can be utilized for underactuated system in a



cascade or normal form (Oland, Schlanbush, & Kristiansen, 2013; Yoshimura, Watan-
abe, & Maeyama, 2013; Gao et al., 2012), additional challenges exist for systems in a
parallel underactuated form, where backstepping techniques cannot be applied. There
remains a need for computationally minimal robust nonlinear control methods, which
can achieve asymptotic regulation for dual parallel systems, where a single scalar

control input simultaneously affects two states.

A Vortex Rings
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Figure 1.2: Schematic layout of a Synthetic Jet Actuator.

This thesis will investigate and compare different types of nonlinear control meth-
ods for LCO suppression, including robust control techniques and an adaptive control
approach. In addition, a robust sliding mode control (SMC) design will be investi-
gated, which compensates for SJA nonlinearities while achieving simultaneous pitch-
ing and plunging suppression using a single scalar control input, (i.e., a dual parallel
system).

The chapters in this thesis are organized as follows: Chapter 2 introduces the
relevant mathematical methods, including state space systems, stability definitions,

Lyapunov’s first and second stability theorems, nonlinear damping, adaptive control,



and sliding mode control. Chapter 3 deals with SJA-based LCO suppression using an
adaptive control method. Chapter 4 presents a structurally simplistic robust (single
feedback loop) control design. Chapter 5 extends the previous results by developing
a robust control method to compensate for the SJA nonlinearity in a single input-
two output system. Chapter 6 presents and summarizes the results and discusses

directions for future work.



Chapter 2

Mathematical Methods

This chapter provides descriptions of the key mathematical methods used in this
thesis. It includes definitions of Lyapunov’s first and second stability theorems and
details on the basic control design methods of nonlinear damping, adaptive control,

and sliding mode control.

2.1 System Stability

In control engineering, stability properties are an important concept in understanding
the characteristics of a dynamical system. An equilibrium point, z*, is considered
stable if all solutions starting at nearby points stay nearby. The equilibrium point
would be unstable if it is not stable. An equilibrium point is asymptotically stable if all
solutions starting in the vicinity of the equilibrium point converge to the equilibrium

point as time approaches infinity.



2.2. STABILITY DEFINITIONS

2.2 Stability Definitions

Consider a dynamic system in the form

i = f(x,t) (2.1)

where

x—[:cl Ty ... xn]T- (2.2)

In (2.2), 2(t) denotes the state vector, and f : [0,00) X D — R™ is piecewise contin-
uous in ¢ and locally uniformly continuous in x(¢) on D, where D C R" is a domain
that contains the origin x(t) = 0. Without loss of generality, it will be assumed in the
following discussion that the equilibrium point under consideration is at the origin
x(t) = 0. This choice is arbitrary however, because a simple coordinate transforma-
tion can be utilized such that the equilibrium point could be any value of x(t) on D.

Consider the isolated equilibrium point, * = 0, which satisfies
fl@*t)=0 Vt>0 (2.3)

e The equilibrium point is stable if for every € > 0, there exists a positive, § =

d(€,tp) > 0 such that

|lz(to)]| <0 = |lx(t)| <e€, Vt>tr>0 (2.4)



2.2. STABILITY DEFINITIONS

where || - || denotes the Euclidean norm of a vector, which is defined as
|z|| = VaTz. (2.5)

If, in addition, ¢ does not depend on %g, then the equilibrium point is uniformly

stable.

e The equilibrium point, x*, is locally asymptotically stable (LAS) if is stable (2.4)

and

*

|lz(to) —z*|| <6 = z(t) = 2", t— 0 (2.6)

e The equilibrium point is globally asymptotically stable (GAS) if it is stable and

z(t) = 2" t— o0 Vza(ty). (2.7)

e The equilibrium point is unstable, if it is not stable.

2.2.1 Stability Analysis for Linear and Nonlinear Systems

Consider a dynamic system in the form

i = f(z,1) (2.8)

where z(t) € D C R™, and f : [0,00) X D — R" is locally Lipschitz and piecewise

continuous. A function f : R x R — R™ is considered Lipschitz (Khalil, 2002) if it



2.2. STABILITY DEFINITIONS

satisfies the inequality

1 (2, 8) = fy, DIl < Lz =yl V(z,t) and V(y,?) (2.9)

in some neighborhood of (z¢,%y), where L is the positive Lipschitz constant. The

domain D contains the origin. Using the following transformation

z=x—2" (2.10)

where z(t) is a small perturbation from the equilibrium point, z*, the following equa-

tion can be obtained:

T=2=f(x"+ 2,t) (2.11)

The expression in (2.11) can be linearized at z* and expressed in the form

i = Az (2.12)

where A is the following constant Jacobian matrix evaluated at z*

s 90f
AL (2.13)

The origin of the linearized system (2.12), z = 0, is asymptotically stable if all the
eigenvalues of the Jacobian matrix, A, have negative real parts. It is stable if the
eigenvalues do not have any positive real parts and if there are no repeated eigenvalues

on the imaginary axis.



2.2. STABILITY DEFINITIONS

2.2.2 Lyapunov Stability

In this thesis, Lyapunov analyses were used to determine the stability properties of
the closed-loop systems. Lyapunov analysis is a well-accepted tool for determining
the stability properties of nonlinear differential equations, without explicitly solving

the equations.

2.2.2.1 Lyapunov’s First Stability Theorem

Lyapunov’s first stability theorem linearizes a nonlinear system near the equilibrium
point, x*, and can be utilized to analyze the local stability properties of the nonlinear

system in the neighborhood of the equilibrium point.

e If the origin z = 0 of the linearized system is asymptotically stable, then the

equilibrium point, z* of the nonlinear system is locally asymptotically stable.

e If the origin z = 0 of the linearized system is unstable, then the equilibrium

point, x* of the nonlinear system is unstable.
e Nothing can be said about the equilibrium point, z*, of the nonlinear system,
if the origin z = 0 of the linearized system is stable.
2.2.2.2 Lyapunov’s Second Stability Theorem

Lyapunov’s second stability theorem uses a positive definite potential function, called
a Lyapunov function, V' (z), which helps evaluate the stability of a nonlinear system

without solving or linearizing the nonlinear system.

10



2.2. STABILITY DEFINITIONS

Consider a dynamic system in the following form

t = f(z,t) f(z",t)=0 (2.14)

where z* is the equilibrium point of the system. In some finite region D containing z*,

assume there exists a positive definite continuously differentiable Lyapunov function

V:D—=R.

e The equilibrium point is stable if
V(z)>0 in D—{0} and V(0)=0 VWVt (2.15)

and its time derivative along trajectories of the system is negative semi-definite

in the sense that

V(z) <0 (2.16)

e The equilibrium point is locally asymptotically stable if (2.15) is satisfied and

V(x) is negative definite in the sense that

V(r) <0 in D—{0} and V(0)=0 V¢ (2.17)

e The equilibrium point is globally asymptotically stable, if (2.15) is satisfied for
any initial state x(ty), the time derivative of the Lyapunov candidate function

is negative definite, and the function V' (z) is radially unbounded in the sense

11



2.3. BARBALAT’S LEMMA

that

|z(t)|] = 00 = V(z) = o0 (2.18)

e The equilibrium point is unstable if

Vi) > 0 Yz #0 (2.19)

V() = 0 Wt (2.20)

2.3 Barbalat’s lemma

In addition to basic stability definitions and methods for determining the stability
properties of equilibrium points, there are some basic mathematical definitions that
prove useful in analyzing the dynamic properties of dynamical systems. The following
definition of uniform continuity is an important definition, which is utilized in the

subsequently defined lemma. (Stewart, 2012)

Definition 1. Let S be a subset of R. A function f : S — R is uniformly continuous
on S if, for each € > 0, there ezists a real number 6 > 0 such that |f(z) — f(y)| < e

for all x, y € S with |x — y| < J, where § depends on e.

Lemma 1. Barbalat’s lemma (Khalil, 2002). Let z : R — R be a uniformly continu-

ous function on [0,00). Presume that the following exist and is finite

t

lim [ z(7)dr (2.21)

t—o0 0

12



2.4. NONLINEAR STATE CONTROL

Then

z(t) >0 as t— o0 (2.22)

2.4 Nonlinear State Control

In this section, the robust and adaptive nonlinear state control methods used in this
thesis are explained. In the robust control section, the methods of nonlinear damping

and sliding mode control will both be described.

2.4.1 Adaptive Control

The adaptive control method provides a technique to stabilize a nonlinear system
by using a time-varying control element to compensate for constant or slowly time-
varying parametric uncertainty in the dynamic model (Landau, Lozano, M’Saad, &
Karimi, 2011). Figure 2.1 illustrates a general adaptive control system. Consider a

first-order nonlinear system described by the model

i = fz,t) +u, (2.23)

where z(t) € R", and u(t) € R", and f(x,t) € R". Assume that the term f(z,)

contains parametric uncertainty, which is linearly parameterizable in the sense that

flz,t) = Y0, (2.24)

13



2.4. NONLINEAR STATE CONTROL

where Y (z) € R™*? denotes a measurable regression matrix, and 6 € RP is a vector
containing the unknown constant system parameters. Thus, the dynamics can be

rewritten as
t=Y0+u (2.25)

Since the elements of the vector 6 are completely unknown, 6 cannot be used in
the feedback control law. In this case, the control law wu(t) can be designed using
an estimate é(t) of the uncertain vector . The adaptive control law can then be

designed as
u=—ka—Y0 (2.26)
After substituting the control input u(t), the closed-loop system can be expressed as
i=Y0— ke (2.27)

where 0(t) = 6 — 0(t) denotes the parameter estimate mismatch, and k, > 0 is a
positive constant control gain. The parameter estimate 0 is generated online using

the adaptive update law

h— proj (Y7'z) (2.28)

14



2.4. NONLINEAR STATE CONTROL

Desired Adaptation
Performance Scheme
Controller
Parameters
Reference
Adjustable u Y

Controller 'L Plant J >

/

Figure 2.1: An adaptive control system

where proj (+) is a normal projection algorithm that ensures the following inequalities

are satisfied (Dixon, 2007)

5=
INA
>
(VAN
)

(2.29)

where 6, 6 denote known lower and upper bounds on é(t)
To analyze the stability of the closed-loop system, consider the positive definite

Lyapunov function

AN iy 1o
V(:z:,&) = 5070+ 5a"x. (2.30)

After taking the time derivative of (2.30) and substituting (2.27), V'(¢) is obtained as

V= aT(Y0— ko) — 670 (2.31)

15



2.4. NONLINEAR STATE CONTROL

After substituting (2.28) into (2.31) the Lyapunov derivative can be found to satisfy
V(t) = —ka® <0 (2.32)

Thus, since V(t) is negative semi-definite, the system is stable in the sense of Lya-
punov. However, Since V() < 0, V(t) can never increase, so it remains bounded V.

Then, by integrating both sides of (2.32), the following is obtained

/ Vindr < —k /0 (7|2 (2.33)
(0)

/OH:C(T)WT < kis(v V() < % (2.34)

By taking the limit of £ — oo and because V' (t) is a constant and/or decreasing from

V(0), the following equation is obtained
t
lim / le(D)Pdr < lim — (V(0) = V(#)) < oo (2.35)
t—o00 0 t—00

Based on the assumption that V(0) € L, the inequalities (2.35) are used to prove
that z(t) € Lo N Lo. Since x(t) € Lo, the expression in (2.27) can be used to prove
that &(t) € L, thus z(t) is uniformly continuous. Hence, Barbalat’s lemma that is

explained in Section 2.3 can now be used to prove that ||z(¢)|| — 0 as t — oo.

2.4.2 Robust Control

Using robust control methods, the effects of any uncertainty and disturbances in
the nonlinear system are assumed to be bounded, and high-frequency or high-gain

feedback is utilize to suppress or eliminate their detrimental effects. The following

16



2.4. NONLINEAR STATE CONTROL

sections describe the nonlinear damping and sliding mode control approaches for

reducing these disturbances and stabilizing the closed-loop system.

2.4.2.1 Nonlinear Damping

In nonlinear control reducing the disturbance effects is important and helps to elim-
inate state-state error. By using the nonlinear damping method, these disturbances
can be reduced to an arbitrarily small residual set (i.e., an ultimately bounded er-
ror). The resulting solution converges to a finite bounded set of the origin, which can
be rendered arbitrarily small, but the tracking error cannot be driven to zero using

nonlinear damping. Consider the scalar system

&= f(x,t) +u(t) (2.36)

where z(t) € R" is the state space vector, u(t) € R™ is the control input vector, and
f(z,t) € R is an unknown disturbance that is bounded and sufficiently smooth in the

sense that

[fla )] < ¢ fa )] < G (2.37)

where (, {; € R" are known constants. A control design , u(t), is incorporated to

minimize x(t) as

u=—(ks+ 1)z (2.38)

17



2.4. NONLINEAR STATE CONTROL

where ks € R is the nonlinear damping gain (ks could also be defined as a positive
definite diagonal gain matrix). The closed loop dynamics are obtained when (2.38)

is substituted into (2.36) as
= f(z,t) — (ks + 1)z (2.39)

To analyze the stability of (2.39), consider the following positive definite Lyapunov

function and its derivative

Vo= %xz (2.40)

V o= i (2.41)
Substituting (2.39) into (2.41) results in
V =af(x,t) — (ks + 1)z> (2.42)

After completing the squares, the Lyapunov derivative can be expressed as

Vo< a2k (|x|2—k£|x|> (2.43)
- s, ¢ S ¢?

< — = < — 2.44
VvV < m+4ks_ 2V+4k‘5 (2.44)

Based on the expression in (2.44), x(t) is bounded and converges to the compact set

described as

S = {x | 2] < 25/?} (2.45)
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2.4. NONLINEAR STATE CONTROL

Note that the size of the ultimate bound on the tracking error can be made arbitrarily

small by increasing the control gain k.

2.4.2.2 Sliding Mode Control

A sliding mode control method (SMC) forces state trajectories to reach a sliding
manifold in finite time and to remain on the manifold for all future time (Utkin,
1992). Standard SMC uses a discontinuous control signal that causes the state to
asymptotically converge to the desired state or to the origin. Consider a second order

system given by

.’151 = T2 (246)

Ty = h(z)+ g(x)u (2.47)

where h(z) and g(z) are unknown nonlinear functions, and g(z) > go > 0 for all .

By selecting the sliding manifold as

s=a1ry + 9 =0, (2.48)

then 1 = —aj;xy, and the control gain a; > 0 can be selected to yield the desired
rate of convergence of the state z1(t) to zero. The motion on the manifold s = 0 is
independent of h and g. Taking the time derivative of (2.48) and using (2.46) and

(2.47), $ is obtained as

s = al.ﬁﬂ'l—i-il'fg (249)

$ = ajxe + h(z) + g(x)u (2.50)
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2.4. NONLINEAR STATE CONTROL

It is assumed that h(z) and g(z) satisfy the inequality

a2 + h(x)

(D) <o(x), VreR (2.51)

for some known function g(z). Consider a positive definite Lyapunov candidate func-

tion, V' (z), as

V = =s (2.52)

After taking the time derivative of (2.52) and using (2.50) and (2.51), the following

upper bound is obtained:

V = s5=slaizs + h(z)] + g(z)su < g(x)|s|o(x) + g(z)su (2.53)

A sliding mode control law can be designed as

u = —f(x)sign(s) (2.54)

where B(z) > o(x) + Bo, Bo > 0, and where the sgn(s) denotes the discontinuous

signum function, which is defined as

1 s>0
sign(s) = 0 s= (2.55)
-1 s<0
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2.4. NONLINEAR STATE CONTROL

Note that this is a simplification of the signum function, which is being used here
to simplify the Lyapunov-based stability analysis. The signum function is actually
defined such that the value at zero (i.e., the sgn(0)) is included in the set (—1, +1)
(Filippov, 1964). To analyze the stability properties of the system using the actual
definition of the signum function, differential inclusions would be required, and this
analysis is not included in this thesis.

The Lyapunov derivative can be expressed as

Vo = g(@)lslo(z) — g(x) [o(x) + fo] ssgn(s) (2.56)

= —g(@)bols| < —gobols| (2.57)
It can be shown that W = 2V = |s| satisfies the differential inequality
DTW < g0 (2.58)

where DT denotes the upper right-hand derivative (also known as the Dini derivative)

Remark 1. The upper Dini derivative of a continuous function f : R — R is denoted

as fjr and 1s defined as

fit+h) — ()

! A .
fL(t) = hlg(r)lJr sup h (2.59)
The comparison lemma (Khalil, 2002) can then be used to show that
W(s(t)) < W(s(0)) = gofot (2.60)
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This shows that the trajectory reaches the manifold s(x) = 0 in finite time, where it

will remain. Thus, x4(t) — 0 as t — oc.

2.5 Summary of Mathematical Methods

This chapter described the different mathematical methods that are going to be used
throughout this thesis to investigate methods to suppress LCO in a nonlinear system.
These oscillations can be suppressed by using the different nonlinear control methods

described in Section 2.4.1 and 2.4.2.
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Chapter 3

LCO suppression using adaptive

control

3.1 Introduction

In this chapter, a SJA-based nonlinear adaptive controller to suppress limit cycle os-
cillations is developed in systems with uncertain actuator dynamics. This work was
published in IFAC 2014 World Conference with the title Lyapunov-Based Adaptive
Regulation of Limit Cycle Oscillations in Aircraft Wings Using Synthetic Jet Actua-
tors by (Ramos Pedroza, MacKunis, Guenthoer, Golubev, & Curtis, 2014).

A Lyapunov-based stability analysis was used to prove asymptotic plunging reg-
ulation which includes a detailed dynamic model for the pitching and plunging dy-
namics. Numerical simulation results are provided to demonstrate that simultaneous
pitching and plunging suppression is achieved using the control law that only uses

the plunging terms.
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3.2. DYNAMIC MODEL

3.2 Dynamic Model

The equation describing limit cycle oscillations in an airfoil approximated as a 2-
dimensional thin plate can be expressed as
—Lift

Mgp+Csp+ F(p)p = (3.1)
Moment

where the coefficients M, Cy € R?*? denote the structural mass and damping ma-
trices, F(p) € R?*? is a nonlinear stiffness matrix, and p () € R? denotes the state

vector. In (3.1), p(t) is explicitly defined as
p= (3.2)

where h (t), a(t) € R denote the plunging [meters| and pitching [radians| displace-
ments describing the LCO effects. Also in (3.1), the structural linear mass matrix M;

is defined as (Theodorsen, 1935)
m
M, = (3.3)

where the parameters S,, I, € R are the static moment and moment of inertia in

[kg - m], respectively. The structural linear damping matrix is described as

o, =g |V 0 (3.4)

0 CaVkala
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3.2. DYNAMIC MODEL

where the parameters (j, (, € R are the damping logarithmic decrements for plunging
and pitching, and m € R is the mass of the wing in [kg], or in this case, a flat plate.

The nonlinear stiffness matrix utilized in this study is

kp, 0
F(p) = (3.5)
0 ko+ ka3a2

where k,, ko3 € R denote structural resistances to pitching (linear and nonlinear) in
(2] and kj, € R is the structural resistance to plunging in [&]. The right hand side

of (3.1) is given by (Theodorsen, 1935)

—Lift —(L + L)
Moment (M + M,,)
= Myp+ Cop + Kop + Lyn + Brvj + Bov;
where Ly, (t), M,, (t) € R denote the control contributions due to the SJA, and L,
M € R are the aerodynamic lift and moment due to the 2 degrees-of-freedom motions
(Milanese et al., 2008). The n € R? are the aerodynamic state vectors that relates the
moment and lift to the modes. Terms v; (¢) € R and 9, (t) € R are the SJA control

input (air) velocity in [*] and acceleration in [%3], respectively. The constant vectors
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3.2. DYNAMIC MODEL

By, By € R?*2 are defined

—UpbI
B = P (3.7)
Upb*Iy + aU pb? I,
—pb?I.
B, = ’ (3.8)

1
—§pb3lg + apb®I,

where the constant p € R denotes the density of air in [%], and U € R is the mean

free-stream velocity in [Z]. The parameters a, b € R denote the relative location
of the rotational axis from the midchord and the semi-chord in [m], respectively.
The functions Iy, I, I3 € R (Milanese et al., 2008) are linked to the control force

distribution, and they are explicitly defined as

[SD}

©
L = sin(@)tan™! [ = | d© (3.9)
Joea (2
IQ = % [@2 — @1 + % sin(2@1) — %sm(2@2) (310)
Iy = % [sin®(0,) —sin®(©,)] . (3.11)

The parameters ©; and ©, are the optimal synthetic jet locations (Milanese et al.,

2008). The aerodynamic matrices M,, C,, K, € R**? and the aerodynamic state
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3.2. DYNAMIC MODEL

matrix L, € R**? are described as

M, = mpb® (3.12)

0 —U
C, = mpb® (3.13)
0 —Ub(L-a)
-1 ~b(t-a
+ 27pUbg(0) (z-9)
b(i+a) ©2(5+a)(3-a)
0 —U
K, = 2mpUbg(0) (3.14)
00 (% + a) U
a1b1 (lgbg
L77 = 27TpUb 1 1 (3.15)
—-b (5 + CL) a1b1 —b (5 + CL) ang

where ¢(0) is the Wagner solution function at 0, and the parameters ay, by, as, by € R
are the Wagner coeflicients.

The aerodynamic state variables are governed by (Theodorsen, 1935)

n=Cyp+ K,p+ Syn (3.16)

The aerodynamic state matrices in (3.16), C,, K, S, € R**?, are explicitly defined
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3.2. DYNAMIC MODEL

as

-1 —b(=z—a

U
-1 —bl=-—a

U0 =U
0 -U
—-b 0

S, = % ' (3.19)

0 —b

By rearranging (3.1) and (3.6) and solving for fi (¢), the equation becomes

. C. K L, B B
=y g 2Ly 22, 3.20
N N VL VAR VA R VA (3:20)

where C' = Cs — C,, K = F(p) — K,, and M = My — M,.

The dynamic equation in (3.20) can be expressed in state form as

where v; (t) denotes the control input, x (¢) € R® is the state vector, A(z) € R%*6 is
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3.2. DYNAMIC MODEL

the state matrix (nonlinear), and By, B, € RS*! are defined as

(3.22)

(3.23)

where By and By are the control input gain terms, which only directly affect h(t)

and @& (t). By making the definitions z1 = h, x5 = «, 3 = h, 14 = ¢, x5 = m, and

xg = m2; and defining & = x5, 9 = x4, T3 = h, T4 = &, T5 = 1, and &g = 1), the

state vector and its derivative can be expressed as

>

T= |21 Ty T3 Ty Ts

DAY
xr =

T T2 Ty T4 Ts

Te

T

, (3.24)

(3.25)

After expressing (3.20) in state space form similar to (3.21) and solving for the

corresponding coefficients, the A(x) state matrix can be explicitly obtained.
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3.3. CONTROL DEVELOPMENT

3.3 Control Development

The objective is to design the scalar control signal v, (t) to regulate the plunge dy-

namics (i.e., h(t)) to zero. The plunging dynamics can be expressed as

}'L — _Clh —_ ng — C3h — 4 + 05771 + 06771 (326)

+ blvj + bQUj )

where c1, co, 3, ¢4, c5, cg € R are the coefficients related to A(x). The coefficients b;
and by are unknown constant control input gain terms, which relate the SJA dynamics

to the plunging dynamics. The expression in (3.27) can be rewritten as
}'L = g(h, (% 77) + blvj + bg'l'}j (327)
where g(h, a, n) satisfies inequality

lg(h, e, m) || < pol|=]]

where py € RT is a known bounding constant, and z(t) € R?*" is defined as

o [e rr. (3.28)
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3.3. CONTROL DEVELOPMENT

To facilitate the subsequent control development and stability analysis, a tracking

error e (t) and an auxiliary tracking error variable r (t) are defined as

e = h—hy=h—0 (3.29)

ro= é+age=h+ash (3.30)

where a; > 0 € R is a user defined control gain, and the desired plunging state hy = 0
for the plunging suppression objective. To facilitate the following analysis, the time

derivative of (3.30) is calculated as
i = h+ agh. (3.31)
After substituting for A (t) in (3.27) and using (3.31) the following is obtained:

ro= g(h, Q, T]) + Y191 + QUJ + Oégh (332)

where Y;(v;) € R is measurable regressor, and 6; € R is an unknown constant defined

via the parameterization

Y101 £ blUj.

In (3.32), Q(b2) € R denotes an uncertain constant auxiliary term defined via the

parameterization

Qi; £ byv;. (3.33)
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3.3. CONTROL DEVELOPMENT

The expression in (3.33) can be reparameterized in terms of a known regressor Y (v;) €

R and an unknown constant 6, € R as
Q0; £ Yab,. (3.34)

To address the issue of the control input v; (¢) being multiplied by the uncertain term

Q as in (3.32), an estimate of the uncertainty () € R is defined via
Q0 2 Yy, (3.35)

where 6, (t) € R is a subsequently designed estimate of the parametric uncertainty in

Q(by). Based on (3.34) and (3.35), (3.32) can be expressed as
i = g(h, a,n) + agh + Y10, + Qi; + Yabs (3.36)
where the parameter estimate mismatch ég(t) € R is defined as
0 2 05 — 0,.
Based on the open-loop error dynamics in (3.36), the control input is designed as
0, = QL (— (ks +1)r — Y36, — h) (3.37)

Remark 2. Since the control input expression in (3.37) includes the internal dynam-
ics of the SJA (i.e., since v; depends on v;), it is assumed in the subsequent analysis

that the internal actuator dynamics are stable. The subsequent numerical simulation
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3.3. CONTROL DEVELOPMENT

results show that this is a mild assumption.

Using (3.37) and the open loop dynamics in (3.36), the closed loop system would
be
i =N+ Y10, 4 Yoby — (ks + 1) 7 — I, (3.38)

where the parameter estimate mismatch 6;(t) € R is defined as
51 £ 91 — él.

In (3.38), the unknown, unmeasurable auxiliary function N (t) € R is defined as

N = g(h,a,n) + agh.
The auxiliary term N () satisfies the inequality
1N < pellz]l-

where p, € R is a known bounding constant. Based on (3.38) and the following
stability analysis, the adaptive estimates él(t) and ég(t) are generated online according

to the following adaptive update laws:

él = Y1proj (YlTr) , 0y = —75proj (Y2Tr) (3.39)

where 71, 72 € R are positive constant adaptation gains.
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3.4 Stability Analysis

Theorem 1. The adaptive controller in (3.37) ensures asymptotic regulation of the

plunging displacement in the sense that
|h(t)] =0 as t— oo. (3.40)

Proof. Let V (r, h, 0, ég) denote the following radially unbounded positive definite

Lyapunov function:

1 1 - ol
V= Sh 4o+ 7179% + %93. (3.41)

After taking the time derivative (3.41) and substituting (3.38) and (3.30), V (¢) is

obtained as

Vo= r()ﬁél—l—Ygég—(ks—l—l)r—h—l—N) (3.42)

+ h(r—ayzh) — ’yflélél — ’yg_légég.

After using the adaptive laws in (3.39), the expression in (3.42) can be used to upper
bound V' (t) as
V< —ag|[hl]