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ABSTRACT 

 

The area under crack for various structures can be effectively repaired by the use 

of composite materials. Low velocity impact can cause barely visible damage to the 

interior structure of laminated composite. These impacts can cause delamination in 

composite materials. In this study, a Finite Element Analysis was conducted using 

Abaqus/Explicit and the results of the analysis were compared to the experimental data 

from literature. E-glass/epoxy composite laminate was subjected to a low velocity impact 

test. To study the effect of patch repair, a composite patch was applied on a cracked 

laminate and a low velocity impact was then conducted on this model. The FEA results 

were validated with the experimental data and an approach to model an ideal composite 

patch shape was conducted. Different patch shapes like square, rectangle, circle and 

ellipse were designed and analyzed on the crack by keeping the surface area of the patch 

common. All these patches were compared and an ideal patch shape was found for the 

model on the basis of stress concentration on the patch. Finally a parametric study was 

performed considering the change in impactor speed and impactor material on the impact 

damage. Thus, this research work readily demonstrates the effectiveness of finite element 

analysis of low velocity impact. 
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1. Introduction 

1.1. Background and Motivation 

High strength and high stiffness fiber-reinforced materials like glass/epoxy and 

carbon/epoxy are significantly used in the aerospace industry and material industry. They 

are highly flexible and have low elastic modulus. Due to low weight and low coefficient 

of thermal expansion these composite materials are used substantially. However, one of 

the biggest concern is that such structures are prone to impact loading while handling 

loads or when the loads are dropped. Serious damages may be caused by failure as a 

result of impact in composite structures in a variety of ways. It may cause delamination, 

matrix cracking or fiber breakage of the material. Low to moderate energies caused 

typically by impact forms delamination, cracking and fiber breakage. Penetration and 

shear damage at an excessive amount is caused by high impact energies (Abrate, 1998). 

The strength and stiffness of the damaged object, the stress state on the damage and the 

response of the damaged structure makes the problem complex. 

It is a known fact that composite structures after impact can endure a major 

decrease in tensile strength and compressive strength (Sierakowski & Robert, 1997). To 

study and analyze the damage on a composite structure, several experiments have been 

conducted. Such experiments are conducted by replicating the real life situations in 

controlled environment. For instance, drop weight test is conducted to simulate the 

dropping of hard tools on composites. This test is generally low-velocity impact test. 

Damage because of low velocity impact on fiber reinforced composites is thought to be 

very risky for the most part, in light of the fact that the damage is not detectable to the 
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exposed eye; this kind of damage is called as Barely Visible Impact Damage. A 

composite’s compressive strength can undergo a loss of about 60% with this type of 

damage. 

All in all, there are numerous parameters which characterize the way of the 

damage in composite structures, for example, delamination in composite structure, 

caused due to pressure loads. Different parameters which characterize the morphology of 

the impact incorporates impactor speed, geometric imperatives connected to the 

framework, impactor shape, and design of the affected structure. In this manner 

investigations of these parameters are critical in comprehension to the effect procedure 

and the damage brought on by them in the composite structures.  

The damage caused by low velocity impact is inevitable. Hence, a repair or 

fortification of the damaged portion of the structure to restore the basic structural strength 

and efficiency is required. Applying composite patch repair is one of the latest solutions. 

Little research into the combined low-velocity impact damage resistance of the patch is 

available in published literature. The potential for an outwardly unnoticeable mix of the 

composite damage with likely adhesive damage recommends that low-velocity effect 

damage in composite repair is ought to be studied about and considered amid design 

configuration. It is costly and quite complex to conduct and perform physical 

experiments to evaluate impact damage on composite patches considering the quantity of 

distinctive parameters to be viewed and internal damages to be examined. Finite Element 

Analysis (FEA) gives a more financially savvy approach to foresee and survey damage in 

composite patches, and also giving a road to investigate numerous material mixes and 

designs. FEA can then show the areas where constrained trial testing may be important 
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for acceptance of the damage behavior (Goodmiller, 2013) 

Patch shape, properties of materials; thickness, orientation, and number of plies in 

the composite structure; quality of the bond surface, and damage tolerance properties of 

materials are some of the parameters that are important to feed in for the impact 

performance of the structure. The mechanics of the damage of the patch is also 

imperative to study the analysis of the patch performance. To have an appropriate and 

optimized patch design, it is important to understand the effects of input parameters, 

damage mechanics, and their interactions. 

The aim of this research was to conduct a FEA which studied the damage 

mechanisms related to a composite patch performance on E-glass/epoxy material under 

low-velocity impact loading. The results from this analysis and simulation was compared 

to available experimental data in quantitative terms of stress, energy, displacement and 

contact force. Abaqus 6.13 was used for this research, which provided modules for 

composite structures and adhesive properties. Composite patch performance has limited 

availability of experimental data. Due to that and also because of a few obscure 

properties of materials needed for damage models, several assumptions were made. 

These includes assumptions of material strength, adhesive thickness and its properties. In 

addition to analysis of the patch, the parameters were studied to obtain an optimum 

composite patch shape for impact damage resistance based upon the stress carrying 

capacity. Other potential factors such as number of plies and its orientation, patch size, 

adhesive type, and thermal expansion mismatch were not examined in this study, but 

should be investigated in future work.  
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1.2. Overview 

The significance of glass fiber reinforced polymer fiber (GFRP) has been, by and 

large perceived both in space and common flying commercial aircrafts and GFRP 

composite laminates are broadly utilized in many areas. Unfortunately, GFRP plies are 

excessively fragile when it undergoes dynamic loading, especially impact loading. In this 

way, the impact issues of composites have gotten to be critical. A dropped tool, bird 

strike or debris on the runway can produce delaminated zones due of foreign object 

damage (FOD), by impacts that are every now and again hard to distinguish with naked 

eye. Despite the fact that this damage may appear to be harmless to the composite 

structure, it may bring about untimely disastrous consequences by decreasing the strength 

of the material caused by the impact loading (Abrate, 1998). Due to distinctive types of 

damage it is quite evident that composite materials are very much prone to low-energy 

impacts. Delamination, for instance, is ordinarily seen between laminates of the 

composite material and, that under unique conditions, may be in a roundabout way 

capable for the last damage failure of a composite. The most extreme reason for 

composite delamination is low energy impact. The effects of such impact may result in 

significant reductions in strength and characteristics of damage tolerances. A complex 

distribution is followed by stress and deformation in the structure due to impact damage. 

For instance, matrix cracking is caused due to impact damage of low energies (where the 

velocity of impactor is less that 30m/s). Sometimes crack occur in the bottom of the 

structure because the laminate is flexible and it undergoes tensile flexural stress. A tensile 

crack is when a matrix crack in a structure is perpendicular to the laminate plane. Contact 

stresses causes the crack on the top of a structure for thick laminates. Such kind of cracks 
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are known as shear cracks. The delamination between the adjacent plies occurs due to the 

matrix cracks. In this way there is an initiation of damage in the structure. So, in 

conclusion, when an impact takes place on a structure, it causes high stresses in the 

impacted area which in turn initiates cracks, propagates delamination and finally has a 

damage. Similarly damage start can be predicated by the presence of the first breaking of 

matrix, using a three dimensional stress analysis of the impact zone and proper damage 

failure criteria. At that point, delamination zones are determined and the proliferation of 

this delamination is concentrated on. The contact pressure causes stresses due to low 

velocity impact on these laminates. On the contact area when the contact force is 

integrated these stresses can be easily found. The impactor on the material has complex 

state of stress under it. Principal stresses (1, 2) and maximum shear stress (max) can 

be determined at each point to predict the failure in a laminate structure. 

There are still no universally accepted analytical models where impact damage 

can be precisely predicted in the laminated composite due to their complex failure 

mechanism. There has been numerous studies on low energy impact damage. Hosur et al. 

(1998) studied the impact damage on composite laminates by analyzing the ultrasonic 

images. Luo et al. (1999) modeled and tested carbon/epoxy composite plates with a new 

method. Three different failure modes were considered in their research: matrix failure, 

interlaminar delamination and fiber breakage; conducted a simulation using the finite 

element software of Abaqus. However progressive failure of the structure were not 

considered in their studies. By considering the improved failure criterion Hosur et al. 

(1998) studied the impact damages in laminated composites. The strength and energy 

concept on the cross-ply laminate confirmed the failure mode. The relationship between 
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transverse crack spacing and laminate strain were shown by these studies. To detect 

impact damage, experimental methods have also been suggested (Sierakowski & Robert, 

1997). This involves the use of impact force as the principal parameter and defining the 

threshold for damage. Delamination is the major mode of failure for low velocity impact 

because there is a significant reduction in the compressive strength after impact and the 

level of energy needed to initiate delamination is low. Therefore a mathematical model is 

needed to simulate the change in material properties and also it is necessary to integrate 

the failure models provided into the load step/time step regime of a dynamic analysis. 

The nonlinear behavior of composite models can be precisely described by the integration 

of failure models. 

1.3. Scope of thesis 

The scope of this thesis consists of analytical study of low velocity impact 

analysis on a composite patch repair applied to a damaged composite plate using finite 

element method software Abaqus. The simulation results were verified with published 

results. Also, an investigation of the repair patch shape was conducted in order to obtain 

the ideal shape of the patch considering the stress carrying capacity. The simulation 

results of various parameters were compared with the published results in the literature. 

The damage analysis of the composite plate was performed using Hashin damage 

initiation criteria. The composite structure was modeled using eight-node quadrilateral 

elements. 
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2. Literature Review 

2.1. Repair Patch Application 

The technique of repairing a damaged structure with a fiber reinforced composite 

patch is turning out to be more far reaching among different engineering disciplines. 

Patches are as of now being utilized and researched for use as a part of application that 

ranges from airplanes and maritime vessels to bridges and building structures. 

Composite repair solution is an alternative to conventional methods. Composite patch 

repair is a recent approach to repairing damage plates or any material structures. A composite 

laminate acts as a patch which is used to bond adhesively over a defected area in order to restore 

the load carrying capacity of the structure. The way it works is like a patch transfers loads around 

the defect and stops the defect from growing. The best part of it is that the composite patch can be 

applied directly on the cracked material without the use of hot work. This largely eliminates the 

fear of explosion hazard. In oil and gas industry this method is very much favorable. Here cold 

joining processes minimizes the impact of maintenance work or modifications due to the reduced 

danger of explosions. Some of the repairs may be used as a temporary solution until scheduled 

maintenance may be performed. 

 

 

Figure 2. 1 Composite patch repair of a damaged area 
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2.1.1.  Aerospace Industry Application 

The aerospace industry spearheaded the utilization of reinforced composite 

patches for repair of metallic and other composite structures. Military aircrafts have been 

effectively repaired with composite patches for a considerable period of time, and the 

commercial airplane industry is starting to fuse the innovation too. Breakage in air ship 

structure commonly happen because of recurring fatigue loading at areas of stress 

concentration, for example, bolt gaps, regions of stress-corrosion, and material 

imperfections. The development of these breaks can have extreme effects on the lifespan 

of an air ship. Initially, secondary and tertiary structures were repaired using composite 

patch but lately primary structures are also being repaired. Residual stresses are 

considered very important when aerospace composite patches are concerned (Baker, 

2003). 

Following are a few instances of composite patch repairs in aerospace industry. 

Strain in the Royal Australian Airforce F-111 wing pivot was reduced by 30% with a 

boron/epoxy composite fitting as described by Chester (Chester, 2003). The acoustic 

failure of a composite bonded repair to the F/A-18 was investigated by Callinan and 

Galea, and they suggested that if a damping material was added it would significantly 

reduce the crack growth when compared to undamped or unpatched panels (Callinan & 

Galea, 2003). To restore the damaged airplane’s airworthiness during wars, 

Bartholomeusz et al. developed a fast repair technique with carbon/vinyl ester patches. It 

was proved by the experimental work that bonded composite damage repair were better 

than traditional fastened repairs considering all kinds of loading conditions 

(Bartholomeusz, Pearce & Vodicka, 2003).  



9  

2.1.2.  Civil Engineering application 

Civil engineers are starting to look at the utilization of composite repair patches 

for restoring failed and damaged structures. It was shown by Yollaway and Cadei (2002) 

that the primary area for the use of repair patches is bridges; corrosion caused by 

increasing use of de-icing salt and fatigue from traffic deteriorates the bridge structure. 

For such type of damaged structure, repairing and restoring is a viable alternative as 

compared to demolishing the structure. Yollaway and Cadei (2002) also provided the 

summary of all pertinent properties of the patch repairs for the bridges. Various works 

like I-704 Bridge, Newark, Delaware and the Bow Road Bridge in London were also 

mentioned by them.  

There have been many researches on steel reinforcement in composite patches. To 

prepare cracked steel section, Colombi et al (2003) studied the use of pre-stressed 

composite patches. For strengthening of steel bridge girders with composite patches a set 

of guidelines were provided by Shaat et Al (2004).  Durability, fatigue behavior, bond 

force and transfer mechanism, and galvanic corrosion of hybrid composite structures 

were also mentioned by Shaat in his research. Zhao et al (2007) researched about FRP 

and steel bonding and fatigue-crack propagation. Bocciarelli et al. and Colombi et al. 

both these researchers examined and studied fatigue performance of unconditioned, 

double-sided reinforcement under tension, which focused on stiffness degradation 

because of adhesive disbonding (Bocciarelli, 2009; Colombi & Fava, 2012). The current 

literature on strengthening steel structure with FRP composites was reviewed and studied 

by Teng et al (2012). 
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2.1.3. Naval application 

Composite patches have their applications in naval and marine industry. On a 

Royal Australian Navy frigate a carbon fiber patch was installed. This installation was 

described by Grabovac and Whitetaker (2009). In order to restore the strength of the 

damaged structure these patches proved to be very important and effective. The patches 

were long lasting for about 15 years on a weather-deck.  

Turton et al (2005) had done a lot of research on many marine structures for patch 

repair. He showed that in the case of Type 21 frigates, offshore drilling platforms, Type 

42 destroyers and many more marine structures. For instance, composite patches were 

used on Type 21 frigates in the year 1981 in order to repair cracks. On testing it was 

found to be successful and so patch repairs were applied to all the other seven Type 21 

frigates regardless if there were cracks or not. It was found that there were no other 

cracks in the ships after that and they were still at work as of last reported in the year 

2005. 

An offshore oil platform was repaired by composite patches due to the leaking of 

oil from the oil tank in Norway. Since the content being volatile, a welded repair was not 

an option because that would mean taking off all the oil and emptying it from all tanks of 

two bulkheads. The composite patch has low curing temperature, so only the oil from the 

affected tank had to be emptied to apply composite patch repair to it; this saved a lot of 

money and time (Turton & Dalzel, 2005). 

A research on repair of underwater steel pipes was done by Shamsuddoha et al 

(2013). The research showed that composite patches can be used successfully on 

corroded pipes but it still requires more research before implementing it on a large scale 
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basis. 

2.2. Impact damage in composites 

It is hard to predict the behavior of the impact damage of a material because it 

fails in multiple modes simultaneously.  Matrix cracking, fiber-matrix crack, 

delamination and fiber fracture are some of the failure modes that are captured after 

cracking (Chandekar, Thatte & Kelkar, 2010). It is the properties of the composites that 

affect the impact behavior of the composite. Number of plies, thickness of the plies, 

material properties of the fiber and matrix and orientation of the ply are some of the 

properties of the composites that affect the impact behavior.  

A sensitivity study was performed by Malik et al. (2013) on unstitched 

unidirectional composite materials. It showed that thickness and ply orientation had the 

largest effect on resisting damage by low-velocity impact. He also showed that 

longitudinal tensile strength was critical part of material properties. The size, mass, 

material and shape of the impactor also affects the damage (Hyung, Hong Sheng, & 

Chang, 1992) 

The damage initiation and progress have been noted through many experiments 

and researches under low-velocity impact testing. The behavior of the impactor was 

noted by Belingardi and Vadori (2002). It was stated in his research that there are three 

outcomes of the impactor on impact, rebound, partial penetration and complete piercing. 

Lopes et al. (2009) in his research explained the process of impacting. He stated that 

when the impactor strikes the composite plate, its kinetic energy is initially transformed 

as elastic strain energy to the composite plate. There will be a point in the plate when an 

ultimate material strength is reached. When this takes place, permanent damage occurs as 
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elastic strain energy is dissipated. When the velocity of the impactor reaches zero, all its 

kinetic energy by that time either gets converted to elastic strain energy or it is dissipated 

through damage. If the elastic strain energy is remaining, then the deformation of the 

plate and the impactor gets reversed and it gets accelerated in the opposite direction. This 

causes the strain energy converting back to kinetic energy which in turn causes the 

impactor to rebound after the strike. The plate gives out more energy after that as it 

continues to vibrate. If the elastic strain energy does not remain in the plate and is 

entirely dissipated by damage or vibration then the impactor gets penetrated in the plate. 

It will either remain in the same position in the plate or it will get pierced through the 

plate if there is any amount of kinetic energy left in it (Lopes et al., 2009). 

A qualitative damage initiation and progress of the damage is described for 

Eglass/Epoxy composite with various configuration under low-velocity impact loading 

by Evci and Gulgec (2012). The first sudden drop of the load on the load-time curve 

causes beginning of impact damage. This occurs during the beginning of first 

delamination and it is called as Hertzian failure. The stiffness of the composite is 

significantly reduced after Hertzian failure. The magnitude of the force is depended on 

laminate thickness at the Hertzian failure point. This was observed by Shyr and Pan 

(2003).  Maximum force is the second important point on the load-time curve which 

corresponds to the first intra-laminar failure. The force swing back and forth at this point 

until the maximum impact energy is reached (Evci & Gulgec, 2012). 

The initial kinetic energy of the impactor is more than the energy dissipated by 

the impact, when low impact energies are concerned. This leads to rebound of the 

impactor. The compression in the top surface cause minor cracks in the matrix, while the 
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fibers are strained at the bottom this also causes delamination in the bottom surface. 

Delamination also occurs in the interfaces between various plies inside the matrix. The 

delamination size is greater on the top and decreases as it goes to the bottom (Evci & 

Gulgec, 2012). The interlaminar stresses are highest between the layers with greatest ply 

orientation angle difference. This causes large delamination between the plies with 

greatest orientation difference between them (Lopes et al., 2009). The ply fiber 

orientation gives the direction and shape of delamination. Rebound of the impactor is 

caused by delamination (Siller & Bazant, 1983). 

If the initial impact energy of the impactor is high then it may penetrate partially 

through the composite structure. If the penetration occurs, then the damaged area is 

approximately the size of the impactor diameter. The high stress by the impactor here 

causes matrix and fiber crushing and breakage of the area under the impactor (Evci & 

Gulgec, 2012). This can also cause a permanent scratch or indentation. A 1 mm size of 

indentation is considered as the limit for the damage to be called as “barely visible 

damage” (Lopes et al., 2009). When there is a matrix cracking, it goes downwards to 45, 

which makes an undamaged cone shaped area under the impactor. Fiber breakage is 

formed under the undamaged cone area in the bottom (Siller & Bazant, 1983). The 

delamination is more in the case of penetration when compared to the case of rebound 

(Evci & Gulgec, 2012). 

The impact energy is greater than the total possible dissipation energy and elastic 

energy both combined in the case of impact causing complete piercing of the impactor in 

the composite. When the impactor goes through the composite plate it gives out some 

energy through fragmentation of materials and its kinetic energy is maintained 
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(Belingardi & Vadori, 2002).  In this fiber breakage takes place during the damage. The 

size of delamination is smaller as compared to the cases of rebound or partial penetration 

of the impactor (Evci & Gulgec, 2012). When it comes to complete piercing of the 

impactor it is more than the low-velocity impact, and so it is beyond the scope of this 

thesis research. 

2.3. Theories and properties 

2.3.1. Impact Dynamics 

Considering the life of a structure impact from foreign objects is quite evident 

every now and then. It is more evident in manufacturing, service and maintenance 

operations. For instance, impacts occurs during take-off and landing of an aircraft. 

Workers drop their tools on the structure during maintenance services. Impact damage is 

small in this case. Most laminated composites undergo impact damage throughout their 

life. As read in the first Chapter such impact damages cannot be easily detected through 

naked eyes. Such damages cause decrease in strength, hence, appropriate care and 

measures should be taken in the process of designing. Therefore it is necessary to learn 

and understand the impact of damage by the foreign objects on composites. 

2.3.2.  Structures and Properties 

Composite materials are generally made by combining a matrix and reinforcement 

structures which has all the required and desirable properties and they are better than the 

constituent individual materials. Fiber reinforced polymer matrix composites are hugely 

used composites. For polymer composites, epoxy material are very highly used. Epoxy 

has extremely good properties. It acts as a very good adhesive, it has high strength, low 



15  

shrinkage and it is a very fine anti-corrosive material. Reinforcement is the second part of 

the composite material. Fiber reinforcement is exclusively used most of the times. Fiber 

material gives the maximum strength to the composite that is the reinforcement part of 

the composite. The tensile strength of the fiber is very high so the matrix contributes 

towards the strength of the composite in longitudinal and compressive direction. 

Reinforcements can be of various types; short fibers, long fiber and particles are some of 

the examples. 

When composites are compared to monolithic materials, their strength and 

stiffness may be either less or equal to them like for instance when compared to metals. 

But when specific stiffness (stiffness to weight ratio) or specific strength (strength to 

weight ratio) are taken into consideration, composites are far better than metals. 

 

2.3.3. Classification of Composites 

Since the properties of the composites vary a lot in different directions and the 

reinforcements are distributed in a variety of ways, so composite material shows 

anisotropy in them. The channel between the fiber and the matrix is very critical since the 

load is transferred through this channel. This channel plays a very crucial role in 

determining the composite properties. When composite materials are classified according 

to their matrix they are; metal matrix composites, polymer matrix composites and 

ceramic matrix composites. 

Another method of classifying composites is based upon the type of 

reinforcement pattern. They are; (a) Particulate random, (b) Discontinuous aligned, (c) 

Discontinuous random, and (d) Continuous aligned 
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(a)                       (b)                         (c)                         (d) 

Figure 2. 2 Arrangement and types of reinforcements 

 

The most common form of reinforcement used is fiber. Generally most of the 

materials are stronger and stiffer in fibrous form as compared to any other form. Fibers 

have high stiffness and low density. Glass fiber, carbon fiber and boron fiber are the most 

common types of fiber materials used in composites. Comparison of various fibers is 

shown in figure 2.2.  

Metals, polymer and ceramics are generally the matrix materials.  However, 

polymer matrix are used on a wide scale for variety of purposes as compared to other 

matrix materials.  Polymer matrix can be categorized into thermoplastics and thermosets. 

Also epoxies are of two kinds, ones that can be cured at low temperature and the others 

that can be cured at high temperatures. 
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Figure 2. 3 Mechanical properties of different fiber 

 

Since, composite materials have various constituents, they have various 

characteristics. Specific strength and specific modulus of a composite affects the quality 

of performance of the composite. Glass/epoxy has its highest specific modulus and 

strength when it is in its unidirectional form. The fiber in the composite affects the 

unidirectional composite’s behavior in the fiber direction, which is generally the stiffness. 

The matrix controls the behavior in transverse direction which is mostly the strength. 

Since there is no contribution of fibers towards the strength in transverse 

direction, also considering that the strength of the matrix is low, it becomes essential to 

place the fibers in different directions in order to undergo the loads of any amount. The 

preferable angle of orientations of lamina are 0, 45, -45, and 90. The axial load is 

carried by the lamina with 0 degree angle, 45 and -45 angled plies carry shear loads 

and the lamina with 90 carry the load in transverse direction. 
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Figure 2. 4 Lamination sequence 

 

Table 2. 1 Constitutive properties of composite materials   

Property Carbon/Epoxy 

(AS4/3501-6) 

Graphite/Epoxy 

(GY-70/934) 

EGlass/Epoxy 

Fiber Volume ratio, Vf 0.63 0.57 0.55 

Density () g/cm3 1.58 1.59 2.1 

Longitudinal modulus (E1) 

GPa 

142 294 39 

Transverse tensile strength 

(F2t) GPa 

10.3 6.4 8.6 

In-pane shear modulus (G12) 

GPa 

7.2 4.9 3.8 

Longitudinal tensile strength 2280 589 1080 
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Property Carbon/Epoxy 

(AS4/3501-6) 

Graphite/Epoxy 

(GY-70/934) 

EGlass/Epoxy 

(F1t) GPa 

Transverse tensile strength 

(F2t) GPa 

57 29.4 39 

In-plane shear strength (F6) 

MPa 

71 49.1 89 

Longitudinal compressive 
strength 
(F1e) GPa 

1440 491 620 

Transverse compressive 
strength (F2c) GPa 

228 98.1 128 

 

2.4. Properties of Composites based on Micromechanics 

Micromechanics helps to predict a few basic properties of a composite material. 

These properties of the composite structure are based upon the amount of matrix and 

reinforcement. The amount of reinforcement and matrix are calculated by its weight 

fraction (w) or volume fraction (v). The equation of weight fraction and volume fraction 

is given as: 

                      wf + wm = 1                                                         (2.1) 

                        vf + vm = 1                                                          (2.2) 

Where f and m are denoted by fiber and matrix respectively. 
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2.5. Analytical Work 

Park et al. conducted a study on impact damage analysis and test of composite 

laminate for aircraft repairable design. This study focused on low velocity impact damage 

evaluation and patch repair of carbon/epoxy unidirectional and fabric laminate. Both 

these tests were simulated using drop weight test equipment. The damaged part was 

repaired using external patch repair method by removing the damaged area. This was also 

simulated by finite element analysis and the results were compared. 

A composite panel of 100 mm x 150 mm was used in this test. The layup 

sequence for unidirectional laminate was [45/0/-45/90]4s. The layup sequence for 

fabric laminate was [(45/-45)/ (0/90)]5s. The dimension of the patch was 23 mm x 23 

mm having 4 plies in it. The finite element analysis was performed using MSC Nastran 

solver and the results were obtained in the form of stresses. Total number of elements for 

FEM mesh generation were 3677. The following figure shows the comparison of FEM 

analysis and test results. 

Table 2. 2  Comparison of Results 

  UD Laminate Fabric Laminate 

Stress 

(MPa) 

Test FEM Analysis Test FEM Analysis 

84.7 97.8 131.8 139 

 

Geoffrey (2013) conducted an investigation of composite performance under low-

velocity impact loading. Here the experimental setup consisted of a 60 mm x 60 mm 

hybrid plate, struck by a 20 mm DIA, 1.91 kg hemispherical impactor at 3.5 m/s. Four 
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plies, arranged quasi-axially as [0/-45/90/45] with a fiber volume fraction of 30%, 

composed the 2.3 mm thick E-glass/polyester composite layer. This was attached to a 0.5 

mm thick SUS304 stainless steel sheet. The finite element analysis was performed in 

Abaqus and the FEA results were compared to the experimental results. 

The following table compares the percent differences between the FEA results 

and the experimental data. Good agreement was found between the FEA results and 

experimental test data. 

 

Figure 2. 5 Comparison of FEA results and experimental data 

 

3. Experimental Setup 

Geofrey et al. (2010) conducted low velocity impact experimentally. 

Experimental data from this study was used as reference for FEA analysis in this 

research. Geofrey et al. conducted a drop weight test to simulate low velocity impact on 

an E-glass/epoxy composite laminate. The experimental setup had nine layers of E-

glass/epoxy laminates with alternating 0 and 90 plies. The dimension of the laminate 

was 100 mm x 100 mm and its total thickness was 4.04 mm. This plate was subjected to 

an impact of 20 J under the velocity of 4.472 m/s. E glass fabric, type C of IS: 11273 

were used to fabricate composite laminates. An epoxy matrix based on Lapox L-12 resin 



22  

and K-5 hardener was selected for making composite panels. 

In the next step of the experiment, a cracked laminate was applied a composite 

patch upon it. The crack was deep up to the third layer of the composite ply while the 

crack dimensions were varied. The crack dimension for the first case was 5 mm x 5 mm 

and for the second case it was 5 mm x 7.5 mm. This composite patch had an orientation 

of 90. The dimension of the patch used was 10 mm x 10 mm and the thickness of the 

patch was 1 mm. 

4. Modelling and Analysis 

4.1. Development of Finite Element Model 

Finite element method is a numerical technique that is used to find solutions to a 

large level and variety of engineering problems which includes stress analysis in dynamic 

conditions. The three basic steps to perform finite element analysis are, pre-processing, 

solving and post-processing. In pre-processing, geometric models are made as per the 

requirement. The modeled geometry is then applied with appropriate meshing. Material 

properties are assigned to the elements and boundary constraints are applied to the nodes 

of the element. The next step involves, solving which is the processing of geometric data. 

After the data is processed the output file is generated. The third step is post-processing 

which involves studying the obtained data in the form of stress, strain and force graphs. 

In this research Abaqus serves as both, pre-processor and post-processor. Abaqus is an 

interactive 3D modeling software that can be used to model many complex and simple 

components in engineering. Since, it has very user friendly tool interface and extensive 

customizing capacity, it is used on a large scale for modeling. Solving and post-

processing both the jobs are done in this software. Abaqus software has explicit and 
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implicit finite element program that is used to analyze the responses that are non-linear 

and dynamic.  It has a fully automatic definition of contact areas and a large library of 

constitutive material models and failure models. 

A finite element model of a symmetric, cross ply, laminated composite and 

impactor were modeled in Abaqus design module. The finite element model consisted of 

nine separate layers with each layer being 0.44 mm thick and 100 mm x 100 mm in 

dimension. The orientation of these layers was [0/90/0/90/0/90/0/90/0]. Every layer were 

attached to each other with a cohesive layer between them having a thickness of 0.1 mm. 

The total thickness of the composite structure was 4.04 mm. These plies were modeled 

with SC8R: 8 node, quadrilateral, reduced integration, continuum shell element. It had 

enhanced hourglass control with Hashin damage viscous stabilization factor of 1 x 10-7.  

The material that was modelled was E-glass/epoxy. The material properties of the 

E-glass/epoxy used in this test is shown in the figure 4.1.  

 

Table 4. 1  Material properties of E-glass/epoxy lamina 

Property  Units Value 

 g/cc 1.8 

E1 GPa 45.6 

E2 GPa 16.2 

E3 GPa 16.2 

 - 0.278 

 - 0.278 

 - 0.4 

G12 GPa 5.83 

G13 GPa 5.83 

G23 GPa 4.5 

Xt Mpa 1280 



24  

Property Units  Value 

Xc Mpa 800 

Yt Mpa 40 

Yc Mpa 145 

SL Mpa 73 

ST Mpa 54.8 

1t % 2.807 

1c % 1.754 

2t % 0.246 

2c % 1.2 

Gf
t N/mm 17.965 

Gf
c N/mm 7.016 

Gm
t N/mm 0.049 

Gm
c N/mm 0.87 

 

Elements are 0.5 mm x 0.5 mm in the center of the mesh and their size increases 

with the distance from the impact zone. The adhesive layer between every ply is of 0.1 

mm thick and it properties are given in the figure 4.2. 

Table 4. 2 Material properties of adhesive 

Property  Units Value 

 g/cc 1.9 

E1 GPa 1.85 

 - 0.33 

G12 GPa 0.487 

tf = To MPa 21.63 

f % 4.77 

f = So Mpa 17.9 

f % 43.9 

G1c N/mm 0.43 

G11c N/mm 2.1 
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Maximum degradation for these elements was set at 99% and linear bulk viscosity 

was set at 0 as suggested in the Abaqus user manual. Using surface to surface tie tool in 

Abaqus, these layers are tied together.  

An impactor was modeled, providing impact energy of 20 J and velocity of 4.472 

m/s. A friction penalty of 0.5 was provided for the contact between the impactor and the 

composite layer. 

The impact simulation was run in Abaqus/Explicit, with a time span of 0.001 

seconds. The linear bulk viscosity parameter was set at the recommended value of 0.06, 

and the quadratic bulk viscosity parameter was the recommended value of 1.2. 

 

 

Figure 4. 1 Modeling of the composite laminate 

The second part of the test involved creating crack in the composite layer and a 

patch for the crack. This involved two tests with crack of thickness 1.34 mm and varying 
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thickness. The first composite was modeled with 5 mm x 5 mm crack dimension and the 

second composite was modeled with 7.5 mm x 5 mm crack dimension. A patch was 

modeled for both the conditions. This patch was made of the same E-glass/epoxy element 

with a single layer having orientation of 90. The thickness of this patch was modeled to 

1 mm and other dimensions were 10 mm x 10 mm. The patch was attached to the 

composite using the cohesive layer.  

Both these models were validated comparing with the experimental results and 

the shape of the patch was changed as per the stress concentration so as to provide with 

an ideal shape.  

 

Figure 4. 2 Modeling of the composite patch and impactor 

4.2. Sensitivity Study 

In order to have a proper approach for analysis, it is required to have an 

appropriate mesh. So, a sensitivity study was performed to obtain a good mesh. Meshes 

that are good enough are ones that produce results with an acceptable level of accuracy, 

assuming that all other inputs to the model are accurate.  Mesh density is a significant 
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metric used to control accuracy (element type and shape also affect accuracy).  Assuming 

no singularities are present, a high-density mesh will produce results with high 

accuracy.  However, if a mesh is too dense, it will require a large amount of computer 

memory and long run times, especially for multiple-iteration runs that are typical of 

nonlinear and transient analysis. One of the ways to evaluate the quality of the mesh (and 

a model overall) is to compare results to test data or to theoretical values. Another way is 

to refine the mesh until a critical result, of a parameter converges (i.e. it doesn’t change 

significantly with each refinement). 

 

 

Figure 4. 3 Displacement for 44149-elements model 
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Figure 4. 4 Displacement for 49284-elements model 

The above figures show the comparison of displacement based on fine mesh and 

coarse mesh size.  

 

Figure 4. 5 Displacement sensitivity plot 
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Figure 4. 6 Von-Mises stress sensitivity plot 

Figure 4.7 is the plot between displacement and number of elements and figure 

4.8 is a plot between Von-Mises stress and number of elements. It can be observed from 

the plots that the graph of displacement and Von-Mises stress converges when the 

number of elements are 49284.  

 

4.3. Validation Results 

A comparison of experimental results and finite element analysis was done. Both 

the results showed a good agreement in between the two. 

Following table shows a comparison of stress, contact force and displacement 

obtained in both the analysis. 
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Table 4. 3 Comparison of result for composite laminate 

Parameter Contact Force Maximum 

Displacement 

Von Mises Stress 

Experimental 5170.4 N 6.283 mm 54.98 MPa 

FEA 5468 N 4.472 mm 55.88 MPa 

% Difference 5.44 28.82 5.43 

 

 

The above results were a comparison for nine layer composite laminate without 

the patch. The experimental tests conducted with the patch also showed good accordance 

with the finite element test results. 

Following is the comparison of both the approaches for 5 mm x 5 mm crack on 

the composite. 

 

Table 4. 4 Comparison of result for the first patch 

Parameter Contact Force Maximum 

Displacement 

Von Mises Stress 

Experimental 1097 N 1.42 mm 78.53 MPa 

FEA 1579 N 1.20 mm 75.95 MPa 

% Difference 30.52 15.49 3.28 

 

Other laminate had a crack of 5 mm x 7.5 mm. The results of these laminates are 

as shown below. 
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Table 4. 5 Comparison of result for the second patch 

Parameter Contact Force Maximum 

Displacement 

Von Mises Stress 

Experimental 3732 N 0.79 mm 38.42 MPa 

FEA 4294 N 0.689 mm 37.75 MPa 

% Difference 13.08 12.78 1.74 

 

 

5. Towards Ideal Repair Patch Shape  

After the validation of models used in the experimental tests were completed, a 

need for an ideal repair patch was required. Though the finite element analysis results 

were very much in agreement with the experimental results, it is still not certain that the 

shape of the patch used is the ideal one. The patch shape matters a lot when it comes to 

repairing of the material. The amount of stress concentration changes with the change of 

shape of any material. For instance, a shape with more cornered edges may have higher 

stress concentration when compared to the ones with lesser or no edges. This is good 

enough to know that the patch shape used in the experimental test may not be an ideal 

one. 

To have a better patch shape for the crack, different shapes of nearly same areas 

were modeled and analyzed. The experimental test which was taken into consideration 
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was the one with the crack length of 5 mm x 7.5 mm. As shown above the square patch 

of 10 mm x 10 mm with a thickness of 1 mm was already conducted, this research 

modeled and analyzed the patch having rectangle, circle and ellipse shapes. In order to 

have a fair comparison between the shapes, all the shapes were designed such that each of 

these had more or less the same surface area. 

The rectangular patch that was used had dimensions 15 mm x 6.7 mm. The 

thickness of this patch was kept the same as 1 mm.  

 

                        Figure 5. 1 Rectangular patch model 

 

The next repair patch model that was designed was the circular shape. For the 

circular patch shape the dimension was taken as 5.65 mm radius. This dimension was 
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taken into consideration, in order to maintain the uniformity in the surface area of the 

patch. The surface area of the circular patch was approximately 100 sq.mm. 

 

                             Figure 5. 2 Circular patch model 

 

The shape of the next patch that was considered was ellipse. Since, the area of the 

ellipse should be the same as that of the other composite patches, to define this similarity, 

the dimension of the ellipse was taken carefully into consideration. The major axis of the 

ellipse was taken as 15 mm and the minor axis was taken as 8.5 mm. In this manner when 

it’s surface area was calculated it gave the value approximately around 100 sq.mm. 
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                           Figure 5. 3 Elliptical patch model  

Table 5. 1 Areas of different patch shapes approximately equal to 100 sq mm 

Shapes Area Formula Area (sq mm) 

Square Length x Breadth 100 

Rectangle Length x Breath 100.5 

Circle  x (Radius) 2 100.1 

Ellipse 
 x 

𝑀𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠

2
 x 

𝑀𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠

2
 

100.2 
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6. Results and Discussion 

6.1. Rectangle Patch 

Around the crack tip, a rectangular mesh pattern was created. Around the 

rectangular pattern another rectangular area was created. The displacement on the 

rectangular patch shape after analysis was found to be 0.448 mm. Fig 6.1 shows the Von 

Mises stress from the analysis. 

 

Figure 6. 1 Von Mises stress for rectangular patch   
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6.2. Circular Patch 

A circular patch was placed on the crack surface. The displacement in the patch 

was found to be 0.42 mm. The Von Mises stress on the circular patch is as shown in 

figure 6.2. The displacement in this patch was found to be 0.4472 mm.  

 

 

                  Figure 6. 2 Von Mises stress for circular patch   
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6.3. Elliptical Patch 

Elliptical patch was the last patch that was modelled in the test.  

 

               Figure 6. 3 Von Mises stress for elliptical patch  

 

The maximum displacement obtained after analysis in these patches is given in 

Table 6.1. 

Table 6. 1 Maximum displacement comparison 

Patch Shape Maximum Displacement (mm) 

Square 0.689 

Rectangle 0.448 

Circle 0.447 

Ellipse 0.447 
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It is shown in Table 6.1 that the maximum displacement is more in the square 

patch. The maximum displacement decreases for the remaining patches. The maximum 

displacement is more or less equal for rectangle, circle an elliptical patches. 

 

Figure 6. 4 Stress comparison 

 

Figure 6.4 shows the Von Mises stress concentrated on various patch shapes.  

The Square patch has the highest stress concentrated which comes to 37.75 MPa. The 

rectangular patch has stress lower than square patch which is 37.03 MPa. The circular 

and elliptical patch has stress far lower than the quadrilateral. The circular patch has 

stress concentration of 13.92 MPa. Elliptical patch shape has the lowest stress of all the 

patch shapes which is 13.54 MPa.  
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7. Parametric Study 

Once the Finite element analysis was completed a parametric study was done to 

understand the effect of uncertain inputs with existing boundary conditions and geometry. 

Impactor material and impactor velocity are the two topics included in this parametric 

study. For all the simulations the thickness of the composite was kept constant throughout 

the process. 

Steel and aluminum projectile were used for parametric study of impactor 

material. The impactor diameter and velocity were kept the same as that used in the tests. 

This study was specifically to see the effect of changing material of the impactor on the 

impact damage. There were differences observed in the impact force with the change in 

materials. Having the same impact velocity, aluminum and steel had the kinetic energy in 

a similar ratio. The maximum impact force of steel was found to be 1000.5 N and that of 

aluminum was 912 N. Figure 7.1 shows a plot of impact force vs time for both aluminum 

and steel impactor materials. 

 

Figure 7. 1 Steel and aluminum impact comparison 
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The next parametric study was conducted for the change in velocity of the 

impactor. The impactor given in the experimental setup is used the way it is. The velocity 

is given as 5 m/s and 6 m/s. The maximum damage is high as compared to that of the 

velocity used in the experiment. Since the velocity is more, the impact damage would be 

greater too. Following is the table comparing the impact force vs time for velocities 5 m/s 

and 6 m/s. 

 

Figure 7. 2 Comparison of impact force of different velocities 
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8. Conclusion and Future Work 

8.1. Conclusion 

In order to simulate low velocity impact scenario on a composite material Finite 

element method can be effectively used. A Finite Element Analysis model of E-

glass/epoxy and impactor were successfully modeled and developed to analyze their 

behavior during low-velocity impact analysis. The results from the FEM simulations 

matches and are in good accordance with the experimental data. 

The ideal patch shape analysis was done. Keeping the surface area of all the 

patches as constant. All the different patch shape geometries were compared to each other 

on the basis of stress concentration. Elliptical patch shape had stress value of 13.54 MPa 

and displacement 0.447 mm. It was evident from the results that elliptical patch shape is 

the ideal patch for the model. The stress concentration on the elliptical patch shape was 

the least as compared to the other patch shape geometries. Also, it is proved that square 

patch is not the ideal one. 

After the analysis of the patch, the model was subjected to parametric studies. In 

order to understand the difference obtained by change in the material nature of the 

impactor on the impact damage, two different type materials were used. Aluminum and 

steel were used as the impact material on the composite for the parametric study. It was 

found that the impact energy due to aluminum as well as steel impactor increases with 

time at a similar constant ratio.  The impact force was highest for the steel impactor 

giving 1000.5 N while that for the aluminum impactor was 912 N. The change in velocity 

of the impactor was also checked in the parametric study. The experimental tests had 

velocity of the impactor as 4.472 m/s. The increase in velocity of the impactor for the 
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parametric study gave high values for the maximum impact force. The damage caused by 

both these velocities gave excessive distortion for the laminate. 

8.2. Future Work  

Composite materials are orthotropic i.e. material properties are depended on 

directions. So, it is recommended that in order to achieve more accurate results of the 

finite element analysis with the experimental results, it is necessary to have defined all 

the constitutive properties and the failure parameter. 

The ideal patch shape analysis that is simulated by FEM can be conducted 

experimentally. This can be further made to optimize for even better shape of the patch 

using optimization software. CFRP is also a composite material that is used on a large 

scale for composite patch repair. Same experimental and FEA tests can be conducted 

using this material. Later the results of CFRP and E-glass/epoxy can be compared to each 

other in order to get the optimized composite patch shape for low velocity impact testing. 
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