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In order to become more competitive and aggressive in the market place it is
imperative for manufacturers to reduce cycle time, limit work-in-process, and improve
productivity, responsiveness, capacities, and quality. One manner in which supply chains can be
improved is via the use of kanbans in a pull production system. Kanbans refer to a card or
signal for productions scheduling within just-in-time (JIT) production systems to signal
where and what to produce, when to produce it, and how much. A Kanban based JIT
production system has been shown to be beneficial to supply chains for they reduce work-
in-process, provide real time status of the system, and enhance communication both up and
down stream.

While many studies exist in regards to determining optimal number of kanbans,
types of kanban systems, and other factors related to kanban system performance, no
comprehensive model has been developed to determine kanban size in a manufacturing
system with variable workforce production rate and variable demand pattern. This study
used Stewart-Marchman-Act, a Daytona Beach rehabilitation center for those with mental
disabilities or recovering from addiction that has several manufacturing processes, as a test

bed using mathematical programming and discrete event simulation models to determine



the Kanban size empirically. Results from the validated simulation model indicated that
there would be a significant reduction in cycle time with a kanban system; on average,
there would be a decrease in cycle time of nine days (almost two weeks). Results were

discussed and limitations of the study were presented in the end.



Introduction
Manufacturing Systems

Due to increasing customer demand for manufacturing responsiveness and reduced
lead-times, manufacturing environments are reevaluating the design of their processes to
meet both customers’ quality and delivery expectations and reduce inventory in order to
remain competitive. Manufacturers are able to remain aggressive in the market place by
increasing and maintaining their responsiveness to customers, increasing facilities’
capacities, quality, and productivity, while reducing lead-times and inventory (Mathaisel,
2005). To achieve optimal process flow, with reduced cycle time and waste, many
manufacturers are adopting the lean manufacturing architecture model. Lean
manufacturing is more than a production technique; it is also a revolutionary way of
thinking. The lean manufacturing philosophy is to shorten time between the customer
order and delivery by making the product(s) flow through the system without waste or
interruption (Liker & Womack, 2004). To realize this philosophy, the lean manufacturing
model is focused on the following principles: specify value, identify value stream and
eliminate waste, make the value flow, let the customer pull the process, and continuously
improve the process (Haque, 2003).

Traditional push manufacturing systems. Traditional manufacturing has a
history of utilizing the “Push” method of manufacturing, consisting of a central planning
system that starts or “pushes” the initiation of work based on prior forecasts of future
demands for orders from the beginning of the manufacturing process to each consecutive
stage within the manufacturing system (Ip, Yung, Huang, & Wang, 2002). This method is

focused on “batch-and-queue,” task-oriented, functionally isolated production, which



typically results in excess inventory requirements, parts travel time, and variable process
flow (Sharma & Moody, 2001). The push method erroneously schedules what work should
be released based on projected demand; nonetheless, the original production schedule is
not modified based on the actual conditions of the production. Because push production is
dependent on projected demand and forecasts, and said forecasts are hardly ever as
accurate as one would like, this reliance degrades the overall system performance. Great
risk of a congested line, loss of flexibility to integrate design or engineering changes or
specify priority changes, and inaccurate number of customer orders are potential
hindrances of push production systems. For example, work can continuously be released in
a push system, whether or not the system is congested, only to have to work get stuck
somewhere mid-process (Hopp & Spearman, 2001).

Material Requirements Planning. The most popular planning system for push,
batch manufacturing environments is Material Requirements Planning (MRP). MRP utilizes
the system’s bill of materials, inventory records, and company-wide information to
calculate the system components and material required to fulfill customer demand
(Deleersnyder, Hodgson, Muller-Malek, & O’Grady, 1989; Taylor, 2002; Wong & Kleiner,
2001). Because MRP computes schedules of what should be started, it is a push system
(Hopp & Spearman, 2001). MRP makes an effort to drive excess work in process (WIP)
levels to zero, by striving to produce and manufacture on an as-needed basis (Taylor,
2002). Furthermore, it enables management to identify the products that were going to be
produced (Wong & Kleiner, 2001).

While MRP was originally developed to have promising results for manufacturers to

reduce WIP, such results were not delivered. Because managing and adhering to a master



schedule is very challenging due to inaccurate or invalid data, manufacturing results are
often less than satisfactory. Inventory levels, lead times, and WIP are overestimated, the
overall feasibility of the master schedule is not verified, and the system’s capacity is
ignorant of actual volume (Deleersnyder et al., 1989; Taylor, 2002; Wong & Kleiner, 2001).
Also, production often varies and engineering changes are made throughout production,
that are not originally accounted for in MRP, affecting production rate and end item
quantities and dates (Hastings, Marshall, & Willis, 1982). Whiteside and Arbose (1984)
reported that critics believe the implementation of MRP has resulted in a $100 billion
mistake across manufacturing environments. Due to MRP’s inability to handle variable
demands, manufacturers started to look at the schedules from a different perspective. A
new method of production, called the pull method, became manufacturers’ focus.

Pull manufacturing systems. In contrast to the push method that releases work
based on an erroneous schedule, the pull method authorizes the release of the work based
on a signal generated by the completion of a job in the system (Spearman, Woodruff, &
Hopp, 1990). Release of work is triggered by an outside, (typically) inaccurate schedule in
a push system, while the release of work in a pull system is triggered by an internal signal
based off the systems’ current demand. Essentially, work is “pulled” through the system
based on the actual system’s demand from the end of production. Figure 1 depicts these
release triggers in push and pull production systems. The figure displays the different
release of work triggers work between the push and pull production systems. While the
push manufacturing method work is released based on a schedule’s forecasts, orders,

arrivals, and/or upstream information, pull manufacturing method work is released based



off the system’s status within the process and/or other downstream information (Hopp &

Spearman, 2001).

Schedule: orders, PUSH PULL Status: of process or

forecasts, arrivals, | e other downstream

or other upstream R stations
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\
' Seeooo- *o —> Process
N  } ——> | Process

Job

Figure 1. Comparison of release triggers in push and pull production systems. Adapted
from Factory Physics by Hopp & Spearman, 2001.

The pull method is focused on the concept of just-in-time (JIT) production with the
objective to produce what is needed when it is needed (Di Mascolo, Frein, & Dallery, 1996).
The pull manufacturing system has shown to greatly enhance quality control, responsibility
of personal performance, create an atmosphere of parsimony and frugality and is one of the
five principles of lean manufacturing (Hopp & Spearman, 2001; Wood, 1990).

Just-in-Time Production. As a fundamental philosophy of the pull system, JIT
production’s aim is to have each workstation receive the required materials from
preceding workstations precisely as needed, which requires very smoothly operating
systems (Hopp & Spearman, 2001; Correia, 2003). The notion of JIT production is
straightforward: produce and deliver finished goods just-in-time to be sold, sub-assemblies
just-in-time to be assembled into finished goods, fabricated parts just-in-time to enter sub-
assemblies, and purchase material just-in-time to become fabricated parts (Presutti, 1988).
With this notion, JIT production is heavily dependent on the preceding stage within the

production line.



JIT benefits can be attributed to the fact that the line’s WIP is controlled. By
controlling the system’s WIP, the amount of material that needs to be scrapped or
reworked is diminished, cutting financial losses. According to Little’s Law, the number of
items in a system, or WIP, over some time interval, is equal to the arrival rate () times the
cycle time (Little, 1961). Symbolically this can be represented as:

WIP=CT *2A (1)
Based on Little’s Law, by limiting the WIP there is a reduction in variability in cycle time,
while still allowing the system to achieve the same throughput (Marek, Elkins, & Smith,
2001). Little’s Law applies to all production line systems, including: single station, a line,
and the entire plant (Hopp & Spearman, 2001).

Various techniques have been applied to achieve the philosophy of JIT. For example,
inventory is ordered in small quantities, thus removing the buffer stock; preventative
maintenance, as opposed to reactive maintenance, occurs on all machines to prevent
breakdowns; employees are given greater responsibility to make decisions and correct
problems as they occur in each stage; the plant layout is redesigned and excess space
reduced for multi-skilled employees to adequately manage a number of machines and
processes, to diminish set-up time, and to standardize manufacturing products and
processes (Correia, 2003; Ramaswamy, Selladurai, & Gunasekaran, 2002).

The absolute ideals of JIT production in terms of the “seven zeros,” which are
required to achieve zero inventories, are described in Table 1 below. According to Hall
(1983), zero inventories imply a level of perfection that may not be possible to fully realize

in the production process. However, the notion of high level excellence is vital because it



simulates a mission for continuous improvement through imaginative attention to both the
overall task and the minute details.
Table 1

JIT in terms of the seven zeros with description. Adapted from “Factory Physics,” by Hopp and
Spearmam, (2001).

Seven Zero Ideal Logic Behind Ideal

Zero defects Every part should be made correctly the first time to
avoid production disturbances

Zero (excess) lot Maximum responsiveness is maintained when each

size workstation is capable of replacing parts one at a time.
Goal is to achieve lot size of one

Zero setups Precondition to achieve lot size of one.

Zero breakdowns Breakdowns and machine failure will bring production
to a halt throughout the line.

Zero handling No extra moves to and from storage to avoid
intermediate pauses.

Zero lead time Eliminate queue time and processing time per part.

Zero surging Sudden changes (surges) in quantities or product plan
without excess WIP to level changes cause disruptions
and delays.

To achieve the seven zeros, which would translate into instantaneous production, is
physically impossible; however, the purpose of setting these ideals as goal is to promote an
environment of continuous improvement (Hopp & Spearman, 2001).

Kanban Systems. One of the most commonly used methods to implement pull
systems and to realize JIT production is achieved via the practice of kanbans (meaning
“marker” or “card” in Japanese). The kanban system, which was developed by Toyota
production systems, is a multi-stage production system used to manage scheduling and
inventory control (Bitran & Chang, 1987; Hopp & Spearman, 2001). While kanbans are
utilized to pull work through the system, they are also used to visualize and control in-

process inventories (Akturk & Erhun, 1999).



Figure 2 below represents the flow of items and kanbans between a three-stage
production system. Process P; produces items to fill a container, that full container is stored
in inventory point /; with a kanban attached to it, and process P;.; will take the container
from inventory point /;and continue production for process Pi;;. When the first piece of a
full container in I.; is used in the production process P; the kanban is detached, set aside,
and triggers a signal to begin the process in the preceding stage, Pi.;. The kanban process
typically follows the first-in-first-out (FIFO) rule. So, once the process P; produces a full
container, the kanban that ordered the full container is attached and the container is sent

to I,
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Figure 2. Flow of items and kanbans in a production system. Adapted from “A mathematical
programming approach to a deterministic kanban system,” by Bitran & Chang, 1987.

In the system seen in Figure 2, there are four important observations to note. First,
the total number of kanbans circulating between inventory points and processes is
unchanged over time, unless management intervenes. The maximum inventory buildup—
WIP—in each inventory point is limited by the number of kanbans circulating between the
inventory points and processes. By controlling the number of circulating kanbans and

requiring that every full container has an attached kanban, management can be assured
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that excess inventory buildup will not exceed a certain level. The movement of kanbans
between I; and P; is triggered by inventory withdrawn from I;.;. In particular, Pi.; will
produce what is needed to replenish what has been withdrawn from I;.;. Lastly, by
circulating kanbans within every stage, all the stages within a production system are linked
together. As a result, the production schedule of the final stage is sent back to all preceding
stages, because the detached kanban automatically becomes a new order, management
does not need additional triggers to order in a preceding stage; these preceding stages can
become self-operated (Bitran & Chang, 1987).

Within any production system, there are stages which consist of certain processes,
and together the stages produce an output. In pull systems that utilize a fixed number of
kanbans, the cards signal movement of a stage’s finished parts that are put into containers
and authorize the production of new parts, until an order is complete, which stops the
signal of kanbans (Di Mascolo, Frein, & Dallery, 1996). The production activities are
connected in such a manner that the stages are linked like a chain to the preceding stage
which materialize JIT production (Sugimori, Kusunoki, Cho, & Uchikawa, 1977). This
assembly-like fashion of kanban production creates a manual method of harmoniously
controlling production and inventory within the manufacturing plant (Akturk & Erhun,
1999). The ultimate goal kanban systems is the conversion of raw materials into finished
products, with lead time equal to processing time (Younies, Barhem, & Hsu, 2007).

Benefits of implementing kanban systems. There are many benefits to the
implementation of kanban systems. First, it is a relatively simple means to implement
communication across multiple stages of the production process (Di Mascolo et al., 1996).

Through kanban implementation, production systems can realize the JIT production

11



philosophy with a reduction of inventory and lot sizes, reduction of setup costs, elimination
of queues, effective maintenance programs to eliminate production defects entirely,
reduction of lead times, collaboration with vendors in terms of planning needs and
delivery times, and minimized employee turnover through harmonious management
(Younies, Barhem, & Hsu, 2007). Kanban systems limit the amount of WIP, thus reducing
cycle time as stated by Little’s Law—WIP is equal to the arrival rate times cycle time,
creating a direct relationship between the two variables (Marek et al., 2001). The amount
of multi-tasking typically required by traditional manufacturing is greatly reduced, which
enables work to get done, quicker, with higher quality, and delivered to the customer when
necessary (Anderson & Roock, 2011). Paperwork and overhead to run and control the
process and inventory is greatly reduced because the kanban automatically triggers a
signal to all preceding stages (Bitran & Chang, 1987). The kanban system is robust in the
sense that it flexible enough to absorb and adapt to unexpected situations, which would
typically require continuous managerial oversight. For instance, if there is a machine
breakdown, kanbans are no longer being sent to predecessors, hence preventing the
buildup of inventory between stages (Bitran & Chang, 1987). According to Sugimori et al.
(1977) kanbans provide a rapid acquisition of facts regarding the continuously changing
status of production capacity, operating rate, and manpower of production, and according
to Bitran and Chang (1987), a full container, with an attached kanban shall provide the
following facts: item name, item number, description of the item, container type, container
capacity, kanban identification number, preceding stage, and succeeding stage. These facts

enhance managerial knowledge of the continuously changing system status.

12



An electronic manufacturer transformed their manufacturing process from push to
pull via integration of kanbans because they were experiencing excessive waste of
materials, unnecessary cost, and long lead times. After six months the company reduced
lead times from 180 hr to 60 hr and WIP was reduced by 70%. Additionally, the company
reduced overproduction, inventory, and experienced fewer and more quickly resolved
stoppages within the process, all of which enhance process efficiency, keep cost to a
minimum, and increase production (Lee-Mortimer, 2008). Ramnath, Elanchezhian, and
Kesavan (2009) conducted a case study of multiple manufacturers to identify the results of
implementing kanbans and found similar results: inventory levels were reduced and
material flow was standardized.

Supply chain systems, which is comprised of a series of manufacturing organizations
and companies to provide a service to that supply chain, can also benefit from kanban
implementation; however, on a much larger scale. One supply chain was experiencing
excess inventory due to poor planning, poor purchasing behavior, poor communication,
inadequate quality levels, wastage of materials, and uneconomical use of resources and
funds. To increase the production efficiency, effectiveness and competency, reduce the
amount of wasted materials, time, and effort involved in production processes, a kanban
system was implemented. Because the manufacturing facilities were in different locations,
there was a significantly greater material flow compared to that at manufacturing plants,
and kanban containers were considered as an automated guide vehicle (AGV), car, truck,
ship, or train. Using a fixed number of kanbans to transfer materials to subsequent
organization in the supply chain and to demand information flows to the preceding

organization, the supply chain was able to minimize the total cost of the supply chain

13



system, inventory, wasted labor, and customer service in a supply chain (Wang & Sarker,
2004).

Challenges of implementing kanban systems. While there are many benefits of
implementing kanban systems, there are also several challenges. Logistically, the
identification of flow lines is one problem area; streamlining the production requires the
simultaneous consideration of products (processing requirements and demand pattern)
and resources (machines, personnel, and transport) to achieve flow lines that operate
around product families with good levels of utilization. To achieve optimal flow lines with
minimal extra investment requires special planning and the collaboration of various
stakeholders within the process. Problems with flow line loading can occur. Identifying the
appropriate amount of work for each stage, also known as the kanban size, for the purpose
of avoiding bottlenecks is difficult. Determining the number of kanbans to use in a
production system to control the interaction between production and inventory levels also
takes extensive planning and coordination (Deleersnyder et al., 1989).

Other challenges that can occur in kanban system implementation deal with getting
people to change their mindset on how production systems should run. Systems are very
focused on efficiency, which makes people want to contribute work across the statement of
work (SOW) to deliver results. Instead kanban systems have individuals focus on the end
result and the team, affecting what work the team does first and what work the team puts
the most effort into; modifying individuals’ behavior from a personal efficiency mindset to
a collaborative mindset takes time (Verweij & Maassen, 2011).

Implementing kanban systems in environments with mixed and changing demand,

poor quality production, or with a wide variety of products can cause problems. An
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environment that continuously increases or decreases the parts and processes increases
the complexity of the kanban system, which could lead to system breakdowns. System
breakdowns and unexpected situations can lead to the process being shut down
(Jarupathiru, Cigane, Chotiwankaewmanee, & Kerdpita, 2009).

Types of Kanban Systems. The type of kanban system that is implemented depends
of the dynamics and characteristics of the manufacturing environment. While movement of
production is authorized by way of kanban cards, these kanban cards can be physical or
electronic. Traditionally, kanban cards thought to be a physical, card-stock system that
detaches the card to transfer an authorization signal to the preceding stage. Yet, kanbans
can also be automated, computer-based systems that rely on a coding and scanning
infrastructure. Electronic signals are automatically conveyed across stages via digital
kanban display boards, which allow each stage to visualize exactly what they should be
working on and the status of surrounding stages (Lee-Mortimer, 2008).

Another variance across types of kanban systems is the count of cards used within
each stage. The most commonly used kanban system is the dual-card system (Esparrago,
1988). This type of system uses one card to authorize the movement of one full container of
a part at a stage, while a second card authorizes the transfer of one full container of raw
material for a part from one stage to the next (Yang, 2000). Also, dual card configurations
can control the facility and the transportation out of the facility (Karmarkar & Kekre,
1989). On the other hand, single-card kanban systems combines both push and pull
mechanics; parts are made or assembled according to schedule, but replenishments are
authorized by signals. In other words, parts are pushed through the system, while work

centers pull their supplies (Esparrago, 1988). These cards communicate the need to
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produce and transfer a container of raw material for a specific part from an upstage stage
to the next stage in the process (Yang, 2000).

Kanban systems can also be composed of a single or multiple stages. Single-stage
kanbans are characterized by an arrival and departure process. Each batch corresponds to
a single kanban. Batches may not begin until the preceding batch has been completed, and
a kanban signal has been released (Krishnamurthy & Suri, 2006). CONWIP (CONstant Work
in Process), discussed in further detail below, is a specific example of single-stage kanbans.
Kanban systems with multiple stages consist of multiple stages in a system that draws
upon one another (Karmarkar & Kekre, 1989). The kanban systems discussed thus far have
contained multiple stages.

CONWIP. The CONWIP approach is a generalized form of a single-stage kanban
system. Like kanban systems, CONWIP relies on signals or cards to authorize the
movement of materials through the system based on the system’s demand. In contrast to
kanban systems, CONWIP systems use a signal set of production cards to pull work at the
beginning of the system and traverse the entire production line, whereas kanban systems
pull work between every pair of workstations, everywhere in the system, which is depicted
in Figure 3 below. CONWIP system cards are assigned to the production line, not a specific
part of the line. Material enters the CONWIP system only based on demand, and the raw
material receives a card to authorize entrance; the same card used to authorize entrance
moves the material through the system and completes production (Spearman et al., 1990;

Marek et al., 2001).
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Figure 3. Comparison of kanban and CONWIP system signals. Adapted from “Factory
Physics,” by Hopp & Spearmann, 2001; “Understanding the Fundamentals of Kanban and
CONWIP Pull Systems using Simulation,” by Marek et al., 2001.

Previous kanban system studies. Though there are challenges in adopting the kanban
system processes, many organizations have greatly benefited from this newer
manufacturing culture. While discussing previous kanban studies, it is important to discuss
the automobile manufacturer Toyota. Toyota was the first company to conceptualize and
integrate kanbans into their production system. Kanbans were used by Toyota to convey
signals from one process to the preceding process and to order production of the inventory
withdrawn from the subsequent process; the kanbans are always attached to containers
with parts. A model of Toyota’s flow of parts and kanbans is seen in Figure 4 below. The
production is connected in a chain-like manner between processes. Utilizing the chain-like
kanban system, Toyota no longer had to rely on a computerized system, for the kanbans
reduced the cost of implementing a system to provide production schedule for the
processes and suppliers that considered adjustments and alterations because the kanban
provided real time control. Like a computerized system, kanbans contained the necessary

rapid and precise data for management. Additionally, Toyota saw labor productivity was at
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its highest among automotive competitors, and workers positively participated in future
improvements (Sugimori et al.,, 1977). For these reasons, other manufacturers look to

Toyota as a model for their manufacturing system when implementing kanbans and other

lean manufacturing initiatives.
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Figure 4. Flow of parts and kanbans in Toyota Production System. Adopted from “Toyota
production system and kanban system materialization of just-in-time and respect-for-
human system,” by Sugimori et al., 1977.

A made-to-order clothing manufacturer, with plants across the world, utilized a
push controlled production system for years, which often led to bottlenecks, high work-in-
process (WIP), and highly variable lead times—time from product was ordered to delivery.
However, upon kanban system implementation, WIP levels dropped greatly, inventory was
cut by $1.5 million, and lead times were much more consistent compared to pre-

implementation (Billiesbach, 1994).
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Mathematical Models

Process designs can be further explained and facilitated through the use of various
analogical and mathematical models, which are simplified representations of the real world
system relative to assess the likely consequences and outcomes of the various alternative
courses of action within the process. Through the use of mathematical models,
relationships between various aspects of the system can be uncovered that may have not
been apparent before, comparison of multiple solutions can be rapidly and efficiently made
to aid in the selection of the best solution, unexplained situations can be explained by
indicating cause-and-effect relationships, the type of data to be collected to deal with the
system is indicated, future events—such as effectiveness factors, reliability, and
maintainability—can be predicted, and risks and uncertainty can be identified. However, it
is important to note that the mathematical model shall not be the decision maker but
should be utilized as a tool to provide necessary data to support the decision making
process (Blanchard & Fabrycky, 2006).

To create and develop a successful mathematical model there are several factors to
consider while building it. The model shall properly represent the dynamics of the given
system in a way that is simple enough to comprehend and manipulate, yet
still adequately yield successful results to the problem at hand. The model itself shall be
simplified enough to allow for timely implementation in the system's problem solving.
Factors that are most relevant to the problem shall be highlighted, while those factors that
are not as important shall be suppressed, with discretion. All relevant factors shall be

comprehensive and reliable in terms of results (Blanchard & Fabrycky, 2006).
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Mathematical programming. Mathematical programming is one of the most
widely used tools in management sciences. The focus is to plan or program the optimized
allocation of limited resources among competing activities, under constraints imposed by
the nature of the environment. These constraints include: financial, technological,
marketing, or organizational considerations. The mathematical models provide guidelines
to management in making effective decisions within the state of current information or in
seeking additional information if current state is inadequate to reach an appropriate
decision (Bradley, Hax, & Magnanti, 1977).

Mathematical programming is the process of formulization and the solution of the
constrained optimization problem—where fis a value function of variables xj, xz,..., x,and
Q is the subset of the domain f—of the basic form:

Minimize (or maximize) f(xs,.., x») subject to (xs,.., x») € Q) (2)
The function f{x;,.. ,xn)is known as the objective function, while Q is often known as the set
of feasible solutions and is a subset of the domain of function f defined by equations, called
constraints (Jeter, 1986; Snyman, 2005).

Mathematical programming and kanban systems. Because mathematical
programming is focused on optimizing processes, while taking system limitations into
consideration, there have been many studies on mathematical programming approaches to
optimize kanban systems. Previous studies utilize kanban (or container) size, number of
kanbans, and safety stock level as the decision variable, while layout, number of time
periods, number of items, number of stages, and capacity are system constraint variables

(Akturk & Erhun, 1999). These models can be utilized to select the optimal system design,
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to increase the overall effectiveness of kanban systems, and draw conclusions regarding
system dynamics and relationships.

Philipoom, Rees, Taylor, and Huang (1990) developed two integer mathematical
models to determine optimal container sizes to signal in multi-item, multi-stage systems to
be used in conjunction with kanban signals. The models assumed no system backorders,
eliminating stage interdependencies. Minimizing inventory was an objective functions. To
develop the model three constraints were identified. First, the cycle time for each
maintenance must be greater than or equal to the production time including setups, which
is formulated mathematically into the following

t; = X7 1(qi;)PT; + Y8, (3)
where g;;is the container size in the containers for item j processed to machine i, ¢;is the
production cycle time for the ith machine at the signal kanban work center, PT; is the

processing time for containers of item j, S is the setup time, and

1, if q;; >0
ij ={ o = (4)
0, ifq;=0

The second constraint states each item produced at a work center to be produced on one
machine, which is written mathematically as follows
Yz, Y =1,forj =1tonitems (5)
q;j < MYj; foralliand;j (6)
The final constraint states that for each machine, demand for each item produced on that
machine during the production cycle must equal the container size for that item, which is
mathematically expressed as a pair for each item and machine:

Q; < djt; + (1 - Y;)M (7)
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Qj=dit; — (1-Y;)M (8)
where
Q; = Xit14ij (9)
And, Q) is the sum of container sizes for item j. Based on these constraints, the following
integer mathematical programming model was developed to minimize inventory
minimize Z = Y5, Q; (10)
A second mathematical model was developed to consider cost minimization, which

is as follows
. - Rj L C Qj I \PT
min Z?:l [ ] Qj H] 2] (1 j) ] (11)

where (Cjis the setup cost of item j, R;is the annual demand for item j, and Cg; is the is the
waiting cost for item j. While the results of the models do not provide guidelines on means
to implement kanban systems, they provide prudent implications for management to
consider: inventory and setup costs, as opposed to simply seeking to reduce the inventory
at a minimal level, should be considered, and under certain conditions, a kanban signal
system—which triggers the production of larger than normal container sizes with large
setup times within a JIT production framework—may be more cost effective than a
standard kanban system—which concurrently triggers production of containers.

A similar mathematical model was developed to identify whether kanban systems
can operate effectively in unstable manufacturing environments. Moeeni, Sanchez, and
Vakharia (1997) proposed a model to implement kanban systems in such environments.
Mathematical programming, more specifically the Taguchi function adapted to build quality

into the design of products, modeled effects of inherent environmental variations, such as
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demand, lead times, setup times, processing times, time between breakdowns, and repair
times on overall kanban system performance. The design simultaneously considered the
number of kanbans, kanban review periods, and container size. The container size was
found to be the most vital factor in kanban system performance in an uncertain
manufacturing environment.

Karmarkar & Kekre (1989) conducted an analysis to investigate the parametric
behavior of kanban systems by using parameters to develop analytical conclusions
regarding the behavior. Using a Markovian model, five major results were found. First,
container size associated with each kanban card does have a large effect on the kanban
system performance. Second, a varying number of cards, with a fixed container size, are
analogous to varying the level of base-stock. Next, there is an interaction between the
number of cards and the size of containers. Also, in a multistage kanban system, changes in
one stage affect the performance of all other stages; for example, increasing the number of
kanban cards in one stage increases inventory at subsequent stages, while decreasing them
at preceding stages. Lastly, by controlling parameters of a kanban system can optimize the
overall behavior of the system.

Limitations of mathematical programming. While mathematical programming is
an excellent tool used to optimize processes, there are also several limitations to this
method. For example, the mathematical model can greatly increase in complexity when
dynamic, stochastic, or nonlinear factors are added (Chandra & Grabis, 2007). Another
limitation of mathematical programming is the assumptions that the input data is

completely accurate; however, the data are seldom entirely exact. Because the input data
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are used to verify the accuracy of the model, the model will only be as accurate as the data
provided (Chinneck, 2001).
Simulation

Simulation is a general term that refers to the applications and methods that echo
the behavior of a real system in order to measure performance, improve operation, or
design a system if nonexistent. In situations where direct experimentation is not feasible,
simulation is widely used to evaluate the likely outcome of a given decision without
changing the operational system itself (Blanchard & Fabrycky, 2006).

Simulation has been around since the 16 century as people originally modeled
systems by hand. Today simulation is typically done by computers and software, which
over the years has graduated from being very error prone and tedious to being quick,
powerful, and flexible. There is a clear improvement in performance/ price ratio of
simulation programs than from just a few years prior (Kelton, Sadowski, & Sturrock, 2010).
Computer-based simulation is utilized to enhance the understanding of system behavior
and logistics when a system is modified and can be fully integrated into complex
manufacturing systems and run in real-time (Manuj, Mentzer, & Bowers, 2009; Tavakoli,
Mousavi, & Komashie, 2008).

There are different types of simulation models, which can be classified among three
dimensions. The first dimension is static versus dynamic. In static models, time does not
play a natural role, whereas it plays a role in dynamic; most operational models are
dynamic. Another dimension is continuous versus discrete. In continuous models, the
system state continuously changes over time, while discrete models change occurs at

separate points in time. The third dimension is deterministic versus stochastic.
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Deterministic models have no random input, while stochastic models operate with some
inputs being random (Kelton et al., 2010).

Discrete event simulation. Discrete event simulation (DES) is a specific type of
simulation in which one or more phenomena changes state at discrete events in time,
rather than continuously with time. DES offers techniques that can approximate the values
of system performance with remarkably small error. These approximations come from
data observed on sample paths or sequences generated during simulation that is
corresponding to the model of interest. Industries such as engineering, health care,
management, military, mathematical, transportation sciences, and manufacturing utilize
DES to model and study the behavior of complex systems (Fishman, 2001).

Every discrete event system embodies at least seven characteristics: work,
resources, routing, buffers, scheduling, sequencing, and performance. Further explanation
of these characteristics is described in Table 2 below.

Table 2

DES Characteristics and Descriptions. Adapted from “Discrete-Event Simulation: Modeling,
Programming, and Analysis,” by Fishman, 2001.

DES Characteristic  Characteristic Description

Work [tems, jobs, and customers that enter system seeking
service

Resources Equipment, conveyances, and manpower that can provide
the service

Routing Collection of required services, the resources that provide
them, and the order in which services are provided

Buffers Waiting rooms that hold work awaiting service; they may
have infinite or finite capacity

Scheduling Pattern of resource availability, including service times
and maintenance

Sequencing Order in which resources provide service to waiting work
(sometimes called queuing discipline)

Performance Amount of work accomplished by system
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Benefits of DES. According to Manuj et al. (2009), over the last several decades,
simulation has been ranked as the most popular operations research tool over more
traditional tools like queuing theory and mathematical programming. Computer simulation
models are able to replicate very complex systems, with high fidelity, and produce
comprehensive data analysis. In systems engineering, simulation is primarily used to
explore the effects of alternative system characteristics on system performance without
physically producing and testing each contending system (Blanchard & Fabrycky, 2006).
Simulation is utilized as a decision-making tool in rapid improvement events or “kaizens.”
Rapid improvement events, or kaizens, consist of examining the current conditions,
identifying potential areas of improvement, and implementing proposed changes, and
simulation can be crucial in investigating alternative designs (Treadwell & Herrmann,
2005). Simulation is also beneficial when striving to identify and improve system
performance, obtain an understanding of cost-service trade off, validate managerial
decisions, and evaluate methods to manage supply chains (Bowersox & Closs, 1989; Allen &
Emmelhainz, 1984; Min & Zhou, 2002; Manuj et al, 2009).

Limitations of DES. While DES is a useful tool to replicate and modify systems
without risk, there are several limitations. First, collecting, analyzing, and preparing the
data to be used in a DES model can take extensive time. The data collected or available may
not be appropriate for the simulation. Data input is heavily dependent on historical data;
yet as the data ages, the results of the model become less accurate. In certain cases, by the
time the model is complete, the collected data may be obsolete and cause doubt in the

results. Simulation is often used to predict future events. However, because simulation is
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dependent on historical data, the model is not necessarily reliable. While DES is a cost
effective solution to understand system behavior, expertise and time is required to build a
reliable model and to keep the model updated (Tavakoli et al., 2008). Also, when building a
simulation model, it is necessary to make assumptions based off the collected data and the
desired level of detail within the model. Although it is imperative to make assumptions, the
more assumptions that are made, thus increasing the simplicity of the model, the farther
from the actual system the model behaves (Law, 2006).

DES in JIT manufacturing systems. Because manufacturing environments are
continuously focused on delivering results, they do not have the ability to cease production
to modify a system in hopes it will provide desired results. To capitalize on the benefits of
utilizing DES to model a non-existent system, many manufacturing environments use the
method prior to implementing or modifying a system. DES models can be developed for
manufacturers to visualize and identify results when lean manufacturing principles are
integrated into their existing set up.

In a simulation study conducted by Carlson and Yao (1992), a highly technical
production system looked into implementing a JIT production to reduce WIP, rework,
space, lead time for product enhancements and improve quality, customer service, and
responsive to customer needs. Using DES to determine whether JIT production could
achieve these results, the company simulated the existing system, multiple floor layouts,
and a JIT assembly system and found JIT production was the best approach for their
company.

Gupta and Gupta (1989) developed a simulation model for a multi-stage, multi-line,

dual-card kanban system to identify the impact of adjusting the number of kanbans and the
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size of kanbans on the system'’s performance. The performance measures of the model
were WIP inventory, capacity utilization, and final product shortages. Based on the model,
there were several conclusions. First, in order for kanban systems to operate effectively, it
is imperative that the timing and quality of suppliers are reliable. To maintain smooth
operation, all production stages shall be balanced. Increasing demand variably degrades
system performance. Finally, while the number of kanbans is essential to performance of
the system, simply by increasing the number of kanbans does not increase the production
rate when all other system parameters are held constant.

In another simulation study, conducted by Ardalan (1997), which was purposed to
examine the effects of two kanban variables—length of withdraw cycle and type of priority
rule— in a dual-card system, on the average customer wait time and total inventory.
Withdrawal cycle refers to the time between two consecutive trips to a material handler at
a stage to replenish the raw material at the subsequence stage. Priority rules that were
studied include: first-in, first-out (FIFO) and shortest processing time (SPT). Through the
conduction of the simulation, a number of relationships between variables were identified.
First, the FIFO priority rule results in less waiting time compared to SPT, however the
effect of priority rule on inventory is minimal. Also, it is possible to reduce the number of
kanbans while reducing the total WIP, without drastically increasing customer waiting
time. Increasing the number of kanbans in the system, while holding other system factors
constant, results in an increase in input and output stock inventories. Yet, the effects of
withdrawal cycle on input and output stock inventories were much less than that of the
number of kanbans, which implies it may be more appropriate for management to increase

the withdrawal cycle rather than decrease the number of kanbans to reduce inventory
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levels. By reducing inventories, less production related issues occur at one time, which will
be easier to solve.

In a similar study, DES revealed the major advantages of implementing a pull
system, via kanbans, into an existing system. Arrival rate, rate and location of bottlenecks,
and workstation utilization were used to construct the model of the existing system. To
model the kanban system, the number and control of kanbans had to be determined. The
results were reduced cycle time variability, flexibility to make engineering and design
changes, and tighter control of WIP (Marek et al., 2001).

Building a successful model. As previously stated, simulation can be used as a
substitute for experimentation of a real-world system design. However, if the model lacks
rationale and reliability, any conclusions derived from the model become erroneous and
could result in costly decisions. Having a definitive approach to conduct a simulation study
is vital to the validation of the model and overall success of the study. Law (2006) has

developed such an approach to enhance a simulation’s success, seen in Figure 5 below.

29



1. Formulate
the Problem

v
2. Collect Data
and Construct
Conceptual |[&——

Model
—
3.1s
Conceptual No
Model Valid?
¥ Yes
4. Program |<¢—
the Model
—
5.1s the
Program —

Model Valid? | No
* Yes

6. Design,
Construct, and
Analyze
Experiments

v

7. Document

and Present

Simulation
Results

Figure 5. Seven-Step approach for conducting a successful simulation study. Adapted from
“How to build valid and credible simulation models,” by Law, 2006.

Based on this approach, the initial step is to formulate the problem of interest by
identifying the overall objective and scope of the study. Also within this step, the specific
question to be answered is identified, system configuration is laid out, and performance
measures to be used to evaluate the efficacy of the system configuration are determined
(Law, 2006).

Next, all necessary data and information on system layout and operating procedures

are to be collected. The data will be utilized to specify system parameters and probability
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distribution. A conceptual model will be developed with the following details: project
objectives, performance measures of interest, data availability, credibility concerns,
computer constraints, subject matter expert (SME) opinions, and time and money
constraints. Additionally, all model assumptions, algorithms, and data summaries will be
documented in the conceptual model. However, a one-to-one correspondence shall not
exist between the model and actual system (Law, 2006).

Once the conceptual model is constructed, it shall be validated. A structured walk-
through of the model shall be completed before SMEs, analysts, and project managers. Any
errors or omissions that are uncovered must be addressed and corrected prior to
proceeding to the next stage. With approval of a valid conceptual model, the model is to be
programmed into the simulation software, such as Arena version 12 (Law, 2006).

Once the system is modeled, it shall undergo a validation and verification before the
experiment begins. If the system is already in existence, the model performance measures
are to be compared to the performance measures collected from the actual system, during
Step 2; this is called results validation. SMEs and analysts also should review the simulation
model’s results for rationality. If the results are consistent with how they perceive the
system should operate, the model is said to have face validity. During this stage, a
sensitivity analysis shall be performed to determine which model features have the
greatest effect on performance measures (Law, 2006).

The final two steps in constructing a valid simulation model are to design, make, and
analyze the simulation, then document and present the results. The experimentation is
performed by adjusting the variables of interest and monitoring the changes in the

dependent measures. The conceptual model, detailed description of the computer program,
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and the results are to be documented. Discussion of the model building and validation
process shall be discussed to promote the simulation model’s credibility (Law, 2006).
Summary

From the literature review, it can be noted that while manufacturers may have
issues in regards to variable lead times, unstable WIP, and system status uncertainty,
implementation of JIT production systems, namely a kanbans system, can diminish such
issues. Kanbans are able to enhance the overall system performance. However, there are no
previous, comprehensive studies that have developed a model to determine the optimal
size of a kanban, while simultaneously decreasing the number of kanbans, specifically in a
manufacturing environment with a variable workforce. Most studies have focused on
optimizing kanban system logistics at a stable manufacturer and by using either DES or
mathematical programming. To determine the optimal size of a kanban in a variable
manufacturing environment, mathematical models and discrete event simulation will be
used. The methods to formulate and validate the model are discussed in further detail

below.
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Method

Problem Statement

According to Law (2006), in order to build a successful simulation, it is important to
first identify the purpose of the study. For manufacturers to remain competitive in their
field, meeting customer demands on time is critical. Due to the importance of
manufacturers’ responsiveness, limiting WIP—jobs that have not arrived at an inventory
point—is of great focus (Hopp & Spearman, 2001). The number of kanbans depends on the
size of the kanban (i.e., the number of items within the kanban), and together these
parameters affect system performance and level of WIP. Also, by minimizing the number of
kanbans circulating through the system, the level of inventory is also minimized (Bitran &
Chang, 1987). However, very few studies exist that consider kanban size explicitly,
specifically in environments with large production and demand variability (Akturk &
Erhun, 1999). According to Deleersnyder et al. (1989), identifying the appropriate kanban
size for each stage to avoid bottlenecks and reduce WIP is difficult. The aim of this study is
to determine the appropriate kanban size for a small manufacturer with a large variability
using mathematical programming and DES, which can be utilized as a predictive tool in
other manufacturing environment with large production variability for the purpose of
reducing the number of kanbans circulating through the system. Determining the
appropriate kanban size is dependent upon the time within each production stage.
Stewart-Marchman Production

Data that was utilized to conduct this study was obtained from the small
manufacturer Stewart-Marchman Act (SMA) Behavioral Healthcare in Florida. SMA is a

non-profit behavioral healthcare rehabilitation center where addiction and mental illnesses
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are treated. Individuals with mental illnesses or who are recovering from an addiction, who
will be referred to as clients from this point forward, are able to maintain a steady job and
learn life skills to apply at future jobs. Work that is completed at SMA is contracted from
various businesses that generally involve basic assembly of products (Stewart-Marchman-
Act Behavioral Healthcare, N.D.).

SMA clients work Monday-Friday on one shift that runs from 9 AM until 1:30PM;
thus production runs four and a half hours a day. However, because SMA is a rehabilitation
center, clients are not required to show up at 9 AM, and they are able to leave before
1:30PM. Clients are also permitted to take two breaks throughout their shift: one 15 min
break in the morning and a 45 min break at lunch (C. Collins, personal communication,
January 25, 2012).

Operations flow. One such product assembled at SMA is weight bags that are
produced for Sparton Corporation. Work orders are placed by Sparton, while SMA gathers
necessary material, assembles the product, and delivers the finished product. The bags are
constructed out of cloth bags, string, glue, metal pellets, and zip ties. Weight bag assembly
is a five-stage push production consisting of: weigh steel pellets in cup, pour pellets into
cloth bag, tie bag, glue bag’s knot, and zip tie bag around middle. Two quality control
stations are integrated into the process to ensure top quality is achieved: after steel pellets
are poured into a cup and after the knot is glued (C. Collins, personal communication,
January 25, 2012). As seen in Figure 6 below, each stage in the assembly process is
dependent upon one another. The figure depicts the process at a high level from the time

the Sparton work order is received to weight bag delivery.
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Figure 6. High level functional flow block diagram of weight bag assembly from work order

to delivery.

However, the production in SMA has a high degree of variability, including: clients

do not show up to work every day, there is a large variation in monthly product demand,

and client skill level varies dramatically. For example, where one client may complete 30

units in an hour, another client may only complete two. During an SMA client’s shift they

are assigned to a work station based on their skill level and the day’s attendance. Yet,

because SMA clients have a wide variety of skill levels, where one client may complete a

task quickly, another client may perform very slowly, there is great risk of high WIP and

bottlenecks. Also, SMA receives variable demand from Sparton. For example, one month

they may have as little as 700 desired quantities while another month may have up to

3,000 desired quantities. Due to the high production variability, SMA is an appropriate set

of data collection for the purpose of this study.

Data collection. The data that was utilized for the study was provided by SMA in an

Excel Spreadsheet and based off four and a half years (2007-2012) of weight bag data
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production metrics. These metrics were utilized to construct a simulation model, validate

the models, and experiment the JIT system. Table 3 outlines the input data utilized to

construct the model. The input data that has been collected that is valuable for the purpose

of the study includes: number of productions completed in each stage (i.e. number of times

bag was tied), time to complete given number of weight bags in each stage, number of

clients, demand from Sparton, number delivered to Sparton, and time between arrivals.

Table 3

Input data and description

Input Data

Description

Production Stage

Number Completed in
Stage
Hours Worked in Stage

Production Rate

Number of Clients
Delivery Rate

Time Between Arrivals

Stage (weight steel pellets, pour pellets into bag, tie bag, zip tie
bag around middle, and glue bag’s knot) in production

Number of items completed in each stage per day

Time client worked in one stage per day

Number of items completed per hours worked in stage
(Number Completed in Stage/Hours Worked in Stage)
Average number of clients in each stage per order
Number delivered to Sparton

Time between Sparton orders in days

Assumptions. In order to develop a credible, verifiable, and valid model and also to

simplify the problem, ignoring irrelevant factors, it is essential to make assumptions.

Assumptions shall be made based off the collected data and the desired level of detail
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within each model. According to Law (2006) and Kelton et al. (2010), models shall be only

as detailed as they need to be to examine the variable(s) of focus and accurately echo the

real-world system of interest. Model assumptions allow for simpler logic and flow. The

following assumptions were made to the simulation model to enhance simplicity, while still

maintaining a certain level of detail to accurately represent the system of interest for the

study:

Weight bag production will be the only assembly focus of this study. Other
productions occur at SMA, however there are few stages within the
production and would therefore not provide adequate data for the purpose
of the study. Due to the few number of stages in weight bag production, there
are limited interactions with other production; therefore any interaction
between weight bag production and other SMA productions are irrelevant
and will be ignored.

The model will incorporate two breaks in SMA clients’ schedule because
clients do have two scheduled breaks throughout their shift. The first break
is 15 min and the second is 45 min. These breaks will be factored into the
model. If additional breaks are taken, the time is factored into the time to
complete a given number of products in each production stage.

Production at SMA is between the hours of 9 AM and 1:30 PM. Clients are not
permitted to work before 9 AM or after 1:30 PM. However, due to the two
breaks which total one hour, the model will calculate production from 10 AM

to 1:30 PM, for a total of three and a half hours of production per day.
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* The number of clients in each stage is based on SMA historical data, where
the stage capacity is adjusted based on order size.

* All stages within the production will be modeled as first-in first-out (FIFO)
rule.

* While a client is permitted to work at multiple stages within weight bag
production, the frequency of such situation is negligible.

* Set-up time and quality control points are carried out by management. Time

spend in these stages will be ignored.

Determining Kanban Size using DES and Mathematical Programming

To properly construct a mathematical model to determine kanban size using DES
and mathematical programming, the data collected from SMA was utilized in a variety of
methods. First is data analysis, then the existing system was modeled using fitted SMA data
and constructed in the DES software, ARENA. This model underwent both a validation and
verification test. Using the data that was used to construct the model, two Arena add-on
programs—Input Analyzer and OptQuest—were used to define parameters and optimize
the system’s configuration. Based on the output provided by Input Analyzer and OptQuest,
a second Arena model with kanbans was constructed to simulate the process with kanbans
and to calculate the cycle time with optimal kanbans size.

Arena Simulation. To model and analyze the existing system and the system with
kanbans, Arena version 13.90 was utilized. Arena was developed by Rockwell Automation
and is a Graphical User Interface (GUI)-based DES tool that enables the user the flexibility

to model their system. The software provides an in-depth analysis of simulation results of
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the current and/or future system(s) modeled without modifying or disturbing the system
of interest operational flow (Kelton et al., 2010).

Arena software is based on and includes SIMAN simulation language, which
maintains Arena’s modeling flexibility and intuitive nature. The software is intuitive in the
sense that it allows users to visualize their system by inputting different modules, entities,
and resources, with specified parameters, that represent the logical process flow. Also,
simulation within Arena provides users with a visual representation of the actual process,
which aids in the comprehension of the model’s operational flow for those not familiar with
computer simulation (Kelton et al., 2010).

Data Analysis, verification and validation of the model. The verification and
validation process of a model is critical; otherwise any decisions made with the model may
be erroneous (Law & McComas, 2001). The simulation underwent both a validation and
verification test, which is described in further detail below.

Data analysis with Input Analyzer. Arena comes with an add-on program, Input
Analyzer, which is designed to analyze real-world data, using a goodness-of-fit test, to
estimate appropriate parameters and build an expression to be utilized in the Arena model.
By analyzing the data and determining the distribution, Input Analyzer allows the user to
make the simulation more realistic, and to explore simulations that were not actually
observed (Kelton et al., 2010).

This add-on program utilizes a goodness-of-fit test to determine how close the fitted
distribution is to the empirical distribution, which is defined by the real-world data (Kelton

et al.,, 2010). Goodness-of-fit tests ask whether the deviations from what would be expected
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by chance are large enough to lead us to conclude responses are not random (Howell,
2010).

Input Analyzer uses two primary good-of-fit tests: the chi-square test and the
Kolmogorov-Smirnov (KS) test. These two standard good-of-fit tests are used to assess if a
theoretical fitted distribution is a good match for the data. Chi-square test is best suited for
large sample sizes. With this test, a range of the observed data is divided into a discrete
number of intervals, and the number of data points under each interval is compared to the
fitted distribution’s predicted value (Panneerselvam, 2004; Howell, 2010). With observed
data denoted as “0O” and expected values denoted as “E,” the formula for chi square is as

follows

. (0—E)?
X _Z—E (12)

The KS test is similar to the chi-square test; however it better suited for small samples. The
formula is to calculate the KS statistic, D, written as follows
D = max|OF; — EF;| (13)

where OF;jis the observed probability of the ith value and EF;is the expected probability of
the ith value (Panneerselvam, 2004). With the sample size for this study, a chi-square test
was used.

The chi-square test was conducted to test the following the null hypothesis (Ho):

Ho: The random variable data conforms to the distributional assumptions by the
given parameter estimations.

Ha: The random variable data does not conform to the distributional assumptions.

If the null hypothesis is not rejected, with a p-value of 5%, it is said to be a

theoretical distribution. However, if the null hypothesis is rejected, an empirical

40



distribution is used to represents the data instead. The following equation was used in
order to specify the continuous, piecewise-linear cumulative distribution function F by first
sorting the X(;)‘s into increasing order, letting X(; denote the it smallest of the data set so

that X1y < X() <+ < Xn) (Kelton etal,, 2010). Fis given by:

0 ifx < X(l)
Flx) = i—1 + X — X(i) ifX(i) <x< X(i+1) (14)
n—1 (n - 1)(X(l+1) - X(l)) fori = 1,2,..,.n—1
1 le(n) <x

Verification of the model. Verification of a model refers to the accuracy and
correctness in which the model was transformed from the actual system to the model. It is
focused on building the model right (Balci, 1997). To test the verification of the model,
Kelton et al. (2010) suggests running the test using a variety of scenarios in an attempt to
cause an error, otherwise known as debugging. The purpose is to ensure the simulation is
accurate with respect to the entity paths and logic. Arena is built with a model verification
and debugging tool, which examines in detail the movement of entities through the system;
this tool was utilized to verify the simulations’ accuracy.

Validation of the model. The validation process determines whether the model is an
accurate representation of the system for the particular objectives of the study. If the model
is valid, then it can be used to make decisions regarding the system. To determine the
model’s validity, the most definitive test is to establish that the model’s output data closely
resembles the output data of the actual system (Law, 2006).

Identifying how “close” the simulation system’s output was to the actual system’s
output can be done by examining the face validity and by using statistical validation. Using

face validity, analysts and SMEs review the simulation’s output for accuracy and
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reasonableness; if the simulation’s results are perceived to accurately represent the actual
system, the simulation is said to have face validity. Statistical validity is conducted to test
whether the simulation represents the actual system through statistical validation. This is
completed by statistically comparing the results of the simulation’s output to the actual
system’s output. The output compared was the average number of produced weight bags
and cycle time. For the models’ output to be considered valid, a t-test was used to
statistically compare both systems’ results. This comparison yielded a p value. A statistical
p value greater than a 0.05 alpha level indicates that there is no significant difference
between the two outputs; thus, the simulation model is valid (Law & McComas, 2001).
Experimentation

The purpose of this study was to optimize the production of weight bags by
minimizing the number of kanbans to determine the appropriate size of kanbans for SMA
weight bag production. The performance measure, or dependent variable, of this study was
cycle time. To conduct the study, the original model was constructed in Arena using the
data obtained from SMA and parameters specified by Input Analyzer. Upon verification and
validation of the Arena model, mathematical programming was employed to determine the
optimal size of kanbans in a manufacturing environment with production variability based
on the following constraints:

Objective:

5
Min Z[l + I6
i=1

Subject to:

Percent orders fulfilled within 20 days = 90%
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Where:
I is the size of the kanbans

The objective this model is to minimize the sum of the kanban sizes and level of
safety stock, while fulfilling 90% of the orders in 20 days or less, to determine the optimal
size of kanban. By minimizing the size of the kanban, the level of WIP is reduced; also,
based on Little’s Law (WIP= CT * 1), by reducing the level of WIP, cycle time is also reduced.
The two constraints of the model were implemented to provide an attainable, yet
impressive, solution for the model. The mean cycle time of weight bag production at SMA is
26 days. By constraining the cycle time to 20 days or less is a reasonable cycle time goal.
While the majority of orders can be completed in 20 days or less, there are order sizes that
would not be able to be completed in less than 20 days. For example, some orders sizes are
greater than 4000; completing such an order size in less than 20 days would not be
feasible. These large order sizes had to be taken into consideration.

OptQuest. Arena is built with an additional add-on program, OptQuest; OptQuest
works in sequence when running an ARENA model in quest for an arrangement of input
controls that optimize (minimize or maximize) a selected output response. It provides
empirical approximation solution to mathematical programming when an analytical
solution can’t be obtained. OptQuest uses a tabu search and scatter search algorithm, which
utilizes a search-based method to find an empirical solution, based on input controls and
specified criterion. These search heuristics intelligently move around in the input control
space to reliably determine which scenarios to consider in a repeated manner that would

lead to an optimal combination of input control variables. With OptQuest, Arena Controls
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and decision variables are manipulated to seek the optimized solution for the objective
specified by the user (Kelton et al., 2010).

With the valid ARENA model and optimized solution for kanban size and level of
safety stock determined, a second Arena model was constructed to integrate a kanbans
system into the design. The cycle time outputs of the new Arena model were compared
with the current system using a single independent sample t-test. The t-test will test for
significant differences between the two models. It is hypothesized that there will be a
significant reduction of cycle time from the current system to the system with integrated
kanbans. In the following section, the results for the model structure, data analysis, model
validation and experimentation are presented.

Results
Model Structure

An Arena simulation model was constructed to replicate the operations flow logic of
weight bag production at SMA. First, the weight bag order arrives, and based on that
orders size, the capacity (e.g. number of clients) for each stage is determined. The number
of clients in each stage is based upon historical data of order size and average number of
clients. Table 4 below displays the number of clients per stage based on the order size.
Then the order is processed, the weight bags are pushed from the beginning of the system,
and go through each of the five stages—fill pellets in cup, pour pellets in bag, tie bag, glue
bag, and zip tie middle of bag; once a unit of a weight bag is completed, it proceeds to the
following production stage. One unit refers to one completed stage action (i.e. one cup
weighted, one cup poured in bag, one knot, one zip tie, or one glue). Then, once the order is

complete, the weight bags are then gathered and are shipped to Sparton. The Arena model
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calculates the cycle time to complete a specified number of orders. The number of weight
bags in an order was determined by historical data, from 2007-2012, obtained by SMA. The
number of resources (i.e. clients) was determined based on the average number of clients
in that stage, depending on the orders’ size, from SMA data, as shown in Table 4. Figure 7
illustrates the operations flow of weight bag production.

Table 4

Number of Clients per Stage based on Order Size

Order Size Stage Number of Clients
<2000 Fill Pellets in Cup 2
Pour Pellets in Bag 3
Tie Bag 3
Glue Bag Knot 2
Zip Tie Bag 2
2000-4000 Fill Pellets in Cup 3
Pour Pellets in Bag 4
Tie Bag 4
Glue Bag Knot 3
Zip Tie Bag 3
4000+ Fill Pellets in Cup 3
Pour Pellets in Bag 6
Tie Bag 5
Glue Bag Knot 3
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Figure 7. Arena model of current weight bag production process.

Data and Input Analyzer Results
Prior to simulation model construction, verification and validation, the data

provided by SMA was analyzed and organized to work within the simulation. First, in each
of the five stages, the time—in hours—to complete a unit (number of items completed/
time in stage) was computed and analyzed. Figure 8 depicts the time to complete a part in
each of the stages in 2011, where the X-axis represents the days of the year. As seen in this
figure, whereas it many take one client to complete one unit in less than three minutes (.05

of an hour), another client, completing the same task, may take up to 30 minutes (.5 of an

hour), thus leading to high production variability.
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Figure 8. Time (in hours) to complete unit in each stage for weight bag production in 2011.

Arena’s Input Analyzer uses a goodness-of-fit test to determine the best distribution
function to represent the real-world data to use in the simulation. The data input into
Input Analyzer used in the simulation included: time to complete unit in each of the five
stages, time between orders, and order size. A chi-square goodness-of-fit test based on an
alpha level (a) of 0.05 was performed on the data. A theoretical distribution is valid when
p > 0.05 because this indicates that the fit distribution data is from the same population as
the actual data. However, all data was unable to fit with a theoretical distribution (p <

0.05); therefore a continuous empirical distribution was used.
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The size of the weight bag order (i.e. number of weight bags) did not fit within a
theoretical distribution, p<.005. A continuous empirical distribution was used to fit the
data. The following formula was used to represent the data:

CONT(0.075,929.999,0.716, 1740.000,0.821, 2550.000,0.851, 3360.000,0.955,
4170.000,0.970, 4980.001,0.985, 5790.001,1.000, 6600.001) ()
The distribution of sizes of the weight bag order from Sparton, between 2007-2012, is
depicted in Figure 9 below. The cumulative distribution of order size is depicted in Figure

10 below. As seen in the figures below, there is a variable order sizes from Sparton—

ranging from less than 500 to greater than 6000.

Distribution of Weight Bag Order Size
35 T T T T T T T T T T

304

2501

Frequency
N
o
T

e
a
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Figure 9. Distribution of order size of weight bags from Sparton.
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Cumulative Distribution of Weight Bag Order Size
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Figure 10. Cumulative distribution of order size for weight bags from Sparton.

The time between weight bag orders (in days) did not fit within a theoretical
distribution, p=.026. A continuous empirical distribution was used to fit the data. The

following formula was used to represent the data:

CONT(0.016, 5.500,0.079, 6.500,0.095, 7.500,0.111, 8.500, 0.159, 9.500,0.175,
11.500,0.190, 12.500,0.206, 13.500, 0.238, 14.500,0.349, 15.500, 0.381,
16.500,0.397,17.500,0.429, 18.500,0.476, 19.500,0.492, 20.500,0.508,

21.500,0.571, 22.500,0.587, 25.500,0.603, 26.500, 0.667, 27.500,0.730, 28.500, (o)
0.746, 29.500,0.762, 31.500,0.778, 32.500,0.810, 33.500,0.825, 35.500,0.873,

39.500,0.889, 42.500,0.905, 48.500,0.952, 61.500,0.968, 78.500,1.000, 96.500)
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The distribution of time between orders (in days) from Sparton, between 2007-2012, is

depicted in Figure 11 below. The cumulative distribution of time between orders is

depicted in Figure 12 below.

Distribution of Weight Bag Time Between Arrivals
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Figure 11. Distribution of time between arrivals from Sparton.

50



Cumulative Distribution of Weight Bag Time Between Arrivals
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Figure 12. Cumulative distribution of time between arrivals from Sparton.

The time to complete one unit (in hours) for the first stage (pour pellets in cup) did
not fit within a theoretical distribution, p<.005. A continuous empirical distribution was

used to fit the data. The following formula was used to represent the data:

CONT(0.770, 0.022,0.929, 0.044,0.957, 0.066,0.972, 0.088,0.981, 0.110,0.988,
(17)
0.132,0.994, 0.154,0.997, 0.242,0.998, 0.484,1.000, 0.550)

The distribution of time (in hours) to complete one unit in the first stage, is depicted in
Figure 13 below. The cumulative distribution of time to complete one unit in the first stage

is depicted in Figure 14 below.
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Distribution of Time to Complete Unit in Stage 1
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Figure 13. Distribution for the time (in hours) to complete one unit in weigh cup stage.
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Figure 14. Cumulative distribution for the time (in hours) to complete one unit in weigh cup
stage.
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The time to complete one unit (in hours) for the second stage (pour pellets into bag)
did not fit within a theoretical distribution, p<.005. A continuous empirical distribution was

used to fit the data. The following formula was used to represent the data:

CONT(0.150, 0.016,0.521, 0.032,0.777, 0.049,0.899, 0.065,0.934, 0.081,0.955,
0.097,0.973, 0.113,0.986, 0.129,0.988, 0.146,0.992, 0.178,0.996, 0.194, 0.997, (18)

0.243,0.998, 0.372,0.999, 0.485,1.000, 0.550)

The distribution of time (in hours) to complete one unit in the second stage, is depicted in
Figure 15 below. The cumulative distribution of time to complete one unit in the second
stage is depicted in Figure 16 below.

Distribution of Time to Complete Unit in Stage 2
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Figure 15. Distribution for the time (in hours) to complete one unit in pour pellets in bag
stage.
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Cumulative Distribution of Time (in Hours)to Compelte Unit in Stage 2
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Figure 16. Cumulative distribution for the time (in hours) to complete one unit in pour
pellets in bag stage.

The time to complete one unit (in hours) for the third stage (knot the bag) did not fit
within a theoretical distribution, p<.005. A continuous empirical distribution was used to

fit the data. The following formula was used to represent the data:

CONT(0.289, 0.012,0.677, 0.025,0.861, 0.037,0.915, 0.049,0.948, 0.062,0.969,
0.074,0.974, 0.086,0.980, 0.099,0.984, 0.111,0.985, 0.124,0.991, 0.148,0.993, (19)

0.161,0.996, 0.247,0.997, 0.284, 0.998, 0.346,0.999, 0.371,1.000, 0.420)

The distribution of time (in hours) to complete one unit in the third stage, is depicted in
Figure 17 below. The cumulative distribution of time to complete one unit in the third stage

is depicted in Figure 18 below.
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Distribution of Time to Complete Unit in Stage 3
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Figure 17. Distribution for the time (in hours) to complete one unit in tie bag stage.

Cumulative Distribution of Time (in Hours)to Compelte Unit in Stage 3
1 : .
0.9 frr_"
0.8 (
o |
0.6 f

0.5

Frequency

0.4

0.3

0.2

0.1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Time to Compelte Unit in Stage 3

Figure 18. Cumulative distribution for the time (in hours) to complete one unit in tie bag
stage.
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The time to complete one unit (in hours) for the fourth stage (glue bag’s knot) did
not fit within a theoretical distribution, p<.005. A continuous empirical distribution was

used to fit the data. The following formula was used to represent the data:

CONT (0.406, 0.017,0.766, 0.033,0.859, 0.050,0.909, 0.067,0.945, 0.083,0.955,
0.100,0.968, 0.117,0.983, 0.133,0.985, 0.167,0.987, 0.183,0.989, 0.200,0.991,

(20)
0.217,0.993, 0.250,0.995, 0.267, 0.996, 0.300,0.997, 0.317,0.998, 0.367,0.999,

0.500,1.000, 0.550)

The distribution of time (in hours) to complete one unit in the fourth stage, is depicted in
Figure 19 below. The cumulative distribution of time to complete one unit in the fourth

stage is depicted in Figure 20 below.
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Figure 19. Distribution for the time (in hours) to complete one unit in glue knot stage.
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Figure 20. Cumulative distribution for the time (in hours) to complete one unit in glue knot
stage.

The time to complete one unit (in hours) for the fifth stage (zip tie middle) did not
fit within a theoretical distribution, p<.005. A continuous empirical distribution was used

to fit the data. The following formula was used to represent the data:

CONT(0.576, 0.014,0.880, 0.028,0.953, 0.042,0.961, 0.056,0.978, 0.070,0.989,
(21)
0.084,0.991, 0.098,0.994, 0.112,0.997, 0.196,0.998, 0.308,1.000, 0.350)

The distribution of time (in hours) to complete one unit in the fifth stage, is depicted in
Figure 21 below. The cumulative distribution of time to complete one unit in the fifth stage

is depicted in Figure 22 below.
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Distribution of Time to Complete Unit in Stage 5
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Figure 21. Distribution for the time (in hours) to complete one unit in zip tie middle stage.
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Figure 22. Cumulative distribution for the time (in hours) to complete one unit in zip tie
middle stage.
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As seen in Figures 13- 22, there is high production rate variability amongst clients.
While the majority of clients many be able to complete one unit in under three minutes,
there are outliers who require a longer time to complete the same act.

Once the empirical data was organized and formatted for the model, it was input
into their respective process locations. Next, the model went through a verification process,
which consisted of debugging to ensure simulation accurateness. The model was verified
by running the simulation through multiple scenarios and ensuring entity paths and logic
were correct. Once the model was verified, it was statistically validated using the system’s
cycle time.

Model Validation

Validation of the model was conducted by statistically comparing the average cycle
time—in days—from the simulation model to the cycle time from historical data at SMA.
Three actual orders, of different sizes, were modeled in the simulation to compare cycle
time. The average number of clients in each stage during that order was modeled as
resources for their respective stage. Table 5 displays the stage capacity (e.g. number of
clients in each stage) based on the average number of clients in the stage for that order. The
Arena model ran for 50 replications which yielded 50 samples (n = 50) of the average time
order cycle time. This data set was compared to the actual observed cycle time. Table 6

displays the descriptive statistics for the data samples used in this study.
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Table 5

Average Number of Clients in each Stage

Order Size Stage Number of Clients
4740 Fill Pellets in Cup 3
Pour Pellets in Bag 5
Tie Bag 5
Glue Bag Knot 3
Zip Tie Bag 3
1666 Fill Pellets in Cup 2
Pour Pellets in Bag 4
Tie Bag 2
Glue Bag Knot 2
Zip Tie Bag 2
1861 Fill Pellets in Cup 2
Pour Pellets in Bag 4
Tie Bag 3
Glue Bag Knot 3
Zip Tie Bag 3
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Table 6

Descriptive statistics for the independent-samples t-test of cycle time

. Actual Model Sig. (2- Mean
Order Size ] i - ]
Cycle Time Cycle Time t df tailed) Difference
4740 33 33.043 .558 49 .580 .04304
1666 15.5 15.590 1.092 49 .280 0.095
1861 13 12.972 -.488 49 627 -0.028

Three independent-samples t-tests were conducted in order to statistically analyze
the simulations and SMA’s actual cycle time to each other. The results of the independent-
samples t-test showed there was not a significant between the order size of 4740 groups,
t(49) =.558, p = 0.580, the order size of 1666 groups, t(49) = 1.092, p = 0.280, and the
order size of 1861 groups, t(49) = -.488, p = 0.627. These results from the independent-
samples t-tests indicate that the Arena model is a valid representation of the actual SMA
cycle time. Once the model was determined to be valid, the model was modified with an
integrated kanban system, and mathematical programming was used to determine the
optimal size of kanbans for weight bag production.

Kanban Simulation Model

To determine whether cycle time would be reduced in weight bag production by
integrating a kanban system, a second Arena model was constructed. To model the
production system with kanbans, first, the first kanbans was seized, or held, prior to the
first process in the system. Upon complete of the first process, the second kanban was
seized, then the first kanbans was released, and the second process in the production
began. This system continued throughout all processes in production. Because pull

systems—including kanbans systems—release of work is authorized from actual system
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demand, the final kanbans is released based on the level of safety stock. If the safety stock
is less than a predetermined level of safety stock, the final kanban will be released, which
will continue to authorize work to the subsequent stage, and production will continue.
However, if the safety stock is equal to the order size, production will be held until the next
order, thus producing only what is needed when it is needed. Figure 17 below illustrates
the operations flow of weight bag production with integrated kanbans to release work
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Figure 17. Arena model of weight bag production with kanban system.
Kanban size optimization and sensitivity analysis. The objective of mathematical
programming using OptQuest was to find an optimal size of kanbans for each stage and

level of safety stock in order to reduce the overall production cycle time. A constraint—
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90% of the order cycle time shall be completed in less than or equal to 20 days—was
implemented into OptQuest to find the minimum size of kanbans and safety stock based on
the fitted order sizes and time to complete a unit in each stage. Table 7 below depicts the
mathematical programming solution from OptQuest to optimal kanbans size and level of
safety stock to reduce SMA’s production cycle time.

Table 7.

Optimal Kanban Size and Level of Safety Stock based on Sensitivity Analysis

Stage Optimal Size
Fill Pellets in Cup 20
Pour Pellets in Bag 10
Tie Bag 10
Glue Bag Knot 10
Zip Tie Bag 10
Safety Stock 500

Cycle time results. To determine whether SMA weight bag production would
benefit, with respect to cycle time, by implementing and integrating a kanban system, the
current weight bag production system and the weight bag production with kanbans
models’ cycle time output were statistically compared. The first models compared were
based on the empirical distributions of time between arrivals and order size. Table 8
displays the cycle time means and standard divinations of the two systems. Figure 23

graphically depicts the cycle time means of the two systems.
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Figure 23. Graph of cycle time means of current and kanbans systems.
Table 8.

Cycle Time Statistics based on Empirical SMA Data

Std. Std. Error
System N Mean Deviation Mean
Current System 100 26.9036 17.95014 1.79501
Kanban System 100 17.5852 12.38261 1.23826

An independent-samples t-test was conducted in order to statistically analyze the
two groups’ cycle time to each other. The results of the independent-samples t-test showed
there was a significant difference between the two systems, where the kanbans system had
a significantly lower cycle time, £(198) =4.273, p = 0.000.

Additional independent-samples t-tests were conducted using the data—order size

and number of clients per stag—used to validate the current system model. Figure 24
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graphically depicts the cycle time means of the systems for different order sizes. Results of

these cycle time descriptive statistics are displayed in table 9 below.

Cycle Time Comparion of Current vs.
Kanban System for Specific Order Sizes
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Figure 24. Graph of cycle time means of current and kanbans systems for specific order
sizes.

Table 9.

Cycle Time Statistics of Current and Kanbans Systems based on Historical SMA Data

Order N Mean Std. Std. Error
Size Deviation Mean
Kanban System CT 4740 30 26.9282  5.40760 98729
Current System CT 33.043
Kanban System CT 1666 30 9.422 2.55899 46721
Current System CT 15.59
Kanban System CT 1861 30 9.0318 11920 .02179
Current System CT 12.972

These independent-samples t-tests were conducted in order to statistically analyze
the order sizes of the two groups’ cycle time to each other. The results of the independent-
samples t-test for an order size of 4740 showed there was a significant difference between

the two systems, where the kanbans system had a significantly lower cycle time, t(29)=-
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6.150, p = 0.000. The results of the independent-samples t-test for an order size of 1666
showed there was a significant difference between the two systems, where the kanban
system had a significantly lower cycle time, t(29)=-13.202, p = 0.000. Results of the
independent-samples t-test for an order size of 1861 showed there was a significant
difference between the two systems, where the kanbans system had a significantly lower
cycle time, t(29)=-181.881, p = 0.000.

In the following section, results are discussed, including cycle time, validation of the
simulation model, and mathematical programming. Limitations encountered in this study
are also discussed. Suggestions on areas of future research are given at the end of the
section.

Discussion

The purpose of this study was to determine kanban size for a manufacturing system
with variable production rates in order to reduce cycle time. Mathematical programming
was utilized to determine the optimal kanban size based on historical SMA data, kanban
system layout, constraints—complete orders within 20 days, 90% of the time—and
objective—minimize the sum of kanbans and safety stock. Mathematical programming was
conducted to determine the optimal, yet feasible, solution for the system. Because the
model is non-linear and not able to provide an analytical solution, an empirical solution,
based on the Tabu Search, was applied through OptQuest. The results of the optimization
model were input into the kanban system model with the obtained kanban and safety stock
capacity. Statistical tests were conducted to assess the effects of kanbans on cycle time for

different order sizes.
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The first statistical test compared the cycle time of the two systems using the
empirical distribution of time between arrivals and order size. Results of the test indicated
that kanban system'’s cycle time was 9.4 days, almost two weeks, less than the current
system.

Three additional statistical tests were conducted using the data to validate the
current system model, including order size and number of clients per stage. Order sizes of
4740, 1666, and 1861 indicated a significant reduction in days with a kanban system,
specifically 6.14 days, 6.2 days, and 3.9 days respectively.

The significant reduction in cycle time can be attributed to the kanban system’s
ability to limit WIP and eliminate bottlenecks. Through observation of the current system
model, it appeared there was a large bottleneck at the second stage—pour pellets in bag—
and third stage—knot bag—for units took longer, on average, to be completed within these
stages as compared to the other stages. With the kanban system, the first stage—pour
pellets in cup—was not continuously sending units to the second stage; instead, the first
stage had to wait for authorization from the second stage to replenish the inventory stock,
thus eliminating the bottleneck at stages two and three.

Findings of this study were consistent with previous studies of manufacturing
systems that implemented a kanbans system. For example, an electronic company reduced
lead times from 180 hr to 60 hr and WIP by 70% (Lee-Mortimer, 2008). Also, a clothing
manufacturer, whom often experienced bottlenecks, high work-in-process (WIP), and
highly variable lead times, noted greatly reduced WIP levels, and consistent lead times

upon kanban system implementation (Billiesbach, 1994).
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By demonstrating that cycle time and WIP can be reduced in a manufacturing
environment without stationary production rates or demand and with large variablities,
there are great implications for such manufacturers. Jarupathiru et al., (2009) discussed the
challenges of integrating kanban systems into systems with varying demand and
production rate, stating system breakdowns and unexpected situations are more likely to
occur. However, this study demonstrated the positive impact of kanban systems in such
manufacturing environments.

The results of this study are of practical use to SMA production and other
manufacturers with variable production. Cycle time is a key component to manufacturers’
success; by reducing cycle time, in a parsimonious fashion such as the use of kanbans,
manufacturers are able to remain competitive to their customers. However, there are
practical challenges of implementing this type of system at SMA. For example,
implementing a JIT system into a current pull production environment requires a change in
culture from the clients, which has shown to be difficult in cultures with highly functional
adults (Verweij & Maassen, 2011). Implementing a JIT system in a workforce that is
mentally challenge could potentially lead to periodic system breakdown. There are also
issues due to training; training would require time away from production, which would
increase lead time for a period.

Limitations of the Study

There were several limitations of this study. The first limitation is in regards to the
quality of data provided by SMA. Errors existed throughout the SMA data files, including
repeats of orders, inaccurate order sizes, order dates and delivery dates. These errors were

corrected for by deleting duplicate order dates and calculating time between arrivals. Also,
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while data from 2007 to 2012 was used to build the model, additional data points would
enhance the validity of the model.

Other limitations of the study were due to assumptions made to build the model.
First, only one SMA manufacturing process was modeled. Several other manufacturing
processes occur at SMA. However, weight bag production has more production stages;
therefore it was more practical to utilize weight bag production. While these processes
have variable production rates, like weight bag production, order sizes and demand differ.
Kanban size for these other processes may not produce the same results obtained in this
model. Also, while these other processes were ignored for the model, there is the potential
that other processes could interfere with weight bag production.

Another assumption made was that production was 3.5 hours, from 10 AM to 1:30
PM; however, SMA production is from 9AM to 1:30 PM, with two breaks totaling one hour.
The scheduled breaks were not taken into consideration in order to simplify the simulation
model construction; however, there is potential for decreased model validity because
clients may work slower when approaching their break time or it may take them longer to
warm-up and continue producing at their previous rate after a break. Despite the model
being statistically valid, there is opportunity for enhanced validity.

Additionally, quality control points were not integrated into the model. No data was
provided in regards to the number of weight bag units needing to be reworked. To
compensate for this lack of information, the time to complete a unit per stage took into
account additional time spent on rework. This information would have provided additional

information in regards to the benefits of kanban implementation.
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Future Direction of the Study

This study was intended to provide a manufacturing system, with high production
variability, insight on determining kanban size for the purpose of decreasing production
cycle time. A model was constructed to compare the current system and the current system
with integrated kanbans to simulation and compare the operations flow. Other small
manufacturing facilities could follow the same process and utilize a similar kanban
production flow—seize kanban 1, process 1, seize kanban 2, release kanban 1, process 2,
etc. The model developed in this study provides a general approach to determine kanbans
size. Empirically, it is applicable to other manufacturers, with or without variable
production, who could utilize the model to determine kanban size and identify benefits by
updating time to complete units in a stage, time between arrivals, order size, and stage
capacity. Although other manufacturers have different process flow, they do have similar
high level operational flow where an order arrives, units go through a set number of stages,
and the order is shipped.

Future studies using this model could alter the model to test different
manufacturing philosophies for JIT systems. For example, a study could be conducted to
determine the impact of implementing a CONWIP system, generalized form of a single-
stage kanban system (Spearman et al., 1990; Marek et al., 2001). Perhaps a single stage
kanban, at the end of production, would enhance the efficiency of the manufacturing
system with variable production. Also, determining the optimal number of kanbans, could
reduce the production cycle time. For example, simulation and mathematical programming

could find it is most optimal to have a kanban after every other stage.
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Staffing considerations could also be explored for future studies. For example,
determining the optimal number of clients per stage, using mathematical programming,
could benefit the SMA production.

Additional studies could observe SMA weight bag production flow to count the
number of reworks throughout process. This additional information could provide
additional insight on the potential reduction of errors by implementing a kanban system
because kanban systems have shown to eliminate production defects entirely (Younies,
Barhem, & Hsu, 2007).

Conclusions

This study utilized discrete event simulation and mathematical programming to
determine the optimal size of a kanban for a real world manufacturing system with
variable production rates for the propose of reducing cycle time. The model used historical
data from a manufacturing system—SMA weight bag production—to create a validated
simulation model of the actual system. A second simulation model was constructed, based
on the current system’s operational flow, with integrated kanbans into the system.
Mathematical programming was used to determine the optimal kanban size, based on
current system performance and given parameters and constraints. Results of
mathematical programming, specifically optimal kanban size and level of safety stock, were
used in the kanban system model and specified as the respective resources’ capacity, and
the effectiveness of the kanbans based JIT system is verified.

As stated previously in the introduction section there has been limited research on
determining kanban size for a production system with variable production, specifically for

the manufacturing system SMA. It was unclear as to whether a kanban system would
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benefit such a system with variable production, but results indicated that on average, there
would be a significant reduction in cycle time of nine days.

Discrete event simulation and mathematical programming were shown to be
powerful tools in determining kanban size for the manufacturing process to reduce cycle
time. However, there are many complex factors that influence the production scheduling;
often it is not feasible to solve the optimization for the JIT kanbans system analytically,
such as in this studies case. Empirical solutions based on simulation results are of
particular value. Similar future studies for manufacturers can follow the same process to
optimize their process flow. A model such as this will be advantageous to industry to better

schedule clients, plan floor layouts, and determine different lean engineering parameters.
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