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ABSTRACT

Franquiz, Francisco J. MSAE, Embry-Riddle Aeronautical University, May 2015.

Attitude Determination & Control System Design and Implementation for a 6U

CubeSat Proximity Operations Mission.

The purpose of this work is to discuss the attitude determination and control system
(ADCS) design process and implementation for a 12 kg, 6U (36.6 cm ⇥ 23.9 cm⇥
27.97 cm) CubeSat class nano-satellite. The design is based on the requirements and
capabilities of the Application for Resident Space Object Proximity Analysis and
IMAging (ARAPAIMA) proximity operations mission. The satellite is equipped with
a cold gas propulsion system capable of exerting 2.5mNm torques in both directions
about each body axis. The attitude sensors include an angular rate gyro and star
tracker (STR), supplemented by the payload optical array cameras.

The dynamic simulation of the satellite includes extensive environmental models
and analyses that show how the satellite attitude is a↵ected by aerodynamic drag,
solar radiation pressure, gravity gradient torques, and residual magnetic moments. A
mechanical propellant slosh model and a reaction torque analysis of the deployable
solar panel hinges approximate the internal dynamics of the satellite. A trade study
is presented to justify the use of a reaction control thruster actuated system over the
more traditional reaction wheel configuration. Both actuation systems are modeled to
hardware specifications and their propellant and energy requirements are examined
alongside pointing performance.

Two methods of accounting for sensor noise and sampling rates are presented. The
first is an extended Kalman filter based on the nonlinear model of a rate gyro coupled
with quaternion attitude kinematics. The second presents a gyro-less angular rate
observer capable of extrapolating STR measurements to the desired frequency. An
additional method uses images from the payload cameras to perform [camera] frame
centering maneuvers and to address the possibility of bias in the controller reference
signal.

Four di↵erent controllers are described to reflect the chronological progression of
the ADCS design. The first controller, designed to perform long angle maneuvers
and target tracking, utilizes fixed gain eigenaxis control. The same controller is then
augmented with a parallel proportional-integral-derivative (PID) type control law
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using scheduled gains. This configuration is designed to switch between eigenaxis
and PID control during imaging procedures to take advantage of the integral control
introduced by the PID algorithm. To reduce system complexity, a modified eigenaxis
control law, which incorporates scheduled integral control but does not require a switch
to PID control, is introduced. A discrete time equivalent of the modified eigenaxis
control law is also developed. Additionally, a brief description of a detumbling control
law is presented.

Each of the four control laws is paired and tested with the di↵erent feedback and
estimation methods discussed. An extensive showcase of numerical simulation results
outlines the pointing performance of each system configuration and evaluates their
capabilities of meeting a 1 arcmin (3�) pointing requirement. A comparison of the
di↵erent properties and performance of each control system configuration precedes
the selection of the discrete modified eigenaxis control law as the best alternative.
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1. Introduction

The objective of this thesis is to describe the design process and implementation

of an attitude determination and control system (ADCS) on a CubeSat class nano-

satellite platform. Rather than focusing on traditional stability and performance

requirements alone, the ADCS design has followed the development of the Application

for Resident Space Object Proximity Analysis and IMAging (ARAPAIMA) mission

since its conception. Therefore, the design approach emphasizes that the ADCS is

a component of a larger system. As such, environmental, dynamic, and hardware

modeling are all implemented to reflect projected mission scenarios and design choices

ranging from body geometry to available computational resources. The result is

an extensive model and simulation environment flexible enough to accommodate a

growing system.

The ADCS design is divided into three main areas: dynamic modeling, filtering

and estimation, and controller implementation. The dynamics of the system include

the environmental models and attitude mechanics which describe the translational and

rotational behavior of the satellite. The filtering and estimation models account for the

di↵erent hardware properties of the system sensors. Lastly, the controller design brings

the control algorithms together with the dynamics and estimation to ensure mission
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performance requirements are met. Comprehensive results of the ADCS pointing

performance are presented to show the logical progression of the design process.

1.1 CubeSat Background

The increasing interest in low budget space missions together with continuing

advances in miniaturization of high performance electronics has lead to significant

growth in the development of small satellites. These satellites, designated nano-

satellites and micro-satellites, aim to fulfill missions of the same scope as their full-sized

counterparts at a fraction of the cost. The flexibility of their design and relatively low

complexity represent an opportunity for mass production and deployment at a scale

hitherto unseen in the space industry.

These advantages, along with rising commercial support, have enabled academia

to become involved in active projects and initiatives worldwide. The most noticeable

of these began at CalPoly with the development of the CubeSat standard in 1999

(RikiMunakata, 2009). Since then CubeSats, miniaturized satellites with volume

measured in increments of 10 cm3 (1U), have become associated with university space

research programs. These satellites usually weigh approximately 1 km per U and

use commercial o↵-the-shelf (COTS) products to simplify the design process and

reduce the overall construction cost. However, further development of space qualified

electronics designed specifically for use on the CubeSat platform continues to close

the gap between the capabilities of nano-satellites and the historically traditional,

full-scale satellites. As a consequence, CubeSats have become the object of interest of
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a wide range of educational, commercial, and governmental organizations with over

300 launched since 2000 (Swartwout, n.d.).

1.2 ARAPAIMA Mission

One such program, sponsored by the Air Force Research Laboratory (AFRL), is the

University Nano-Satellite Program (UNP). Originally conceived to participate in the

8th iteration of the UNP program, the ARAPAIMA mission proposes a reconnaissance

approach to perform visible, infrared (IR), and 3D imaging of Resident Space Objects

(RSOs) without a priori knowledge of their shape or attitude (Harris et al., 2013).

This process follows a set of autonomous approach and close proximity maneuvers

carried out with su�cient accuracy to allow rendezvous and docking maneuvers with

the RSO.

The mission is carried out by a 12 kg, 6U (36.6 cm⇥ 23.9 cm⇥ 27.97 cm) CubeSat

placed in low Earth orbit (LEO) at an altitude of approximately 500 km and a

28.5� inclination. The CubeSat is equipped with an imaging array consisting of an

IR camera, a miniature laser rangefinder, and a visible light monochrome camera

arranged such that their respective imaging directions are parallel to each other as

shown in Figure 1.1.

To perform orbital approach maneuvers, the satellite is equipped with an R-134a

cold gas propulsion system operated by means of rapid solenoid valve actuation using

miniaturized 2D nozzles attached to the satellite body. The propulsion system is

comprised of 16 reaction control system (RCS) thrusters set up in pairs, each one
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Figure 1.1. Imaging array placement on the satellite body. The x-axis on the satellite’s
body-fixed frame is defined as being parallel to the imaging direction.

capable of producing up to 25mN of thrust. The nozzles are positioned such that

a pure moment can be exerted about each body axis. With this configuration, four

nozzles lie parallel to each other in both directions of the x and z body frame axes

(Figure 1.2). These four nozzle clusters make up the orbital maneuvering thrusters

(OMTs) and provide a total 100mN of thrust.

Imaging constraints require the ADCS to maintain a pointing error of less than

1 arcmin at 3� throughout all imaging procedures. This is the driving requirement

for the design process presented in this thesis.
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Figure 1.2. RCS thruster placement on satellite body-frame.

Attitude control is performed by operating the RCS thrusters in pairs to apply

stabilizing moments. The thruster arrangement described above provides a full layer

of attitude control redundancy, since the RCS system is able to operate with four

nozzle pairs (pairs A B C D or E F G H in Figure 1.2).

The attitude determination system utilizes a combination of star tracker (STR) and

angular rate gyro triad sensor readings to meet the pointing performance requirements.

As a secondary attitude determination system, the satellite will also carry photo-diode

sun sensors. These are used during operational modes in which the star tracker is
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unable to provide an attitude solution such as detumbling maneuvers. An onboard

GPS module is utilized to track the position of the satellite during orbital maneuvers

and complement the communications array.
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2. Dynamic Modeling

The satellite dynamics serving as the process or plant for the ADCS are modeled as a

combination of attitude kinematics and orbital mechanics for a rigid body with six

degrees-of-freedom (DOF). These are further augmented by a set of environmental

models and conditions which contribute to the external disturbances acting on the

satellite body. Sources of internal disturbances are also considered. In addition,

detailed actuator models that capture the hardware operation and possible inaccuracies

are included as part of the internal body dynamics.

2.1 Rigid Body Dynamics

The satellite body is treated as a rigid body with constant mass and moment of

inertia (MOI). The forces and moments acting on the satellite’s body fixed frame

(defined as shown in Figure 1.2) are given by

F
b

= m(V̇
b

+ ! ⇥ V
b

) + F
d

+ F
cmd

, (2.1)

M
b

= J!̇ + ! ⇥ (J!) +M
d

+M
cmd

. (2.2)
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Where m and V
b

are the body’s mass and velocity respectively; J is a diagonal matrix

containing the principal moments of inertia. All perturbing forces and moments acting

on the system are taken into consideration through the F
d

and M
d

terms respectively,

and are propagated through the integration of the angular velocity !. Similarly, inputs

are introduced through the F
cmd

and M
cmd

terms.

Changes to the satellite’s configuration that occur throughout the mission, such

as when appendages (solar panels, antennas, etc.) deploy, are modeled as impulsive

changes in the body’s moment of inertia. For the purpose of attitude control simula-

tions, the mass flow rate of the propellant is assumed to be su�ciently small for the

mass to be considered constant throughout imaging maneuvers.

2.2 Quaternion Kinematics

The attitude kinematics are described in terms of rotation quaternions. All

quaternions referenced henceforth are considered to be normalized unit-quaternions

and are defined as

q̄ =

2

66666666664

q0

q1

q2

q3

3

77777777775

=

2

66666666664

cos(�/2)

sin(�/2)ê
x

sin(�/2)ê
y

sin(�/2)ê
z

3

77777777775

=

2

664
cos(�/2)

sin(�/2)ê

3

775 =

2

664
q0

q
v

3

775 , (2.3)

where ê is an arbitrary unit column vector and � is an arbitrary angle through which

a 3D frame is rotated about ê.



9

The quaternion kinematic equation in terms of the inertially-referenced body

angular velocity ! is given by (Shuster, 1993) to be

˙̄q =
1

2
q̄ ⌦ !̄, (2.4)

where ⌦ indicates quaternion multiplication, and !̄ is the “pure imaginary” quaternion

equivalent of ! defined as

!̄ = [0,!
x

,!
y

,!
z

]T . (2.5)

The matrix notation equivalent of Equation (2.4) is

˙̄q =
1

2
⌦(!)q̄, (2.6)

where

⌦(!) =

2

66666666664

0 �!
x

�!
y

�!
z

!
x

0 !
z

�!
y

!
y

�!
z

0 !
x

!
z

!
y

�!
x

0

3

77777777775

. (2.7)

Equations (2.1), (2.2) and (2.4) make up the full dynamics of the model and allow the

satellite’s state to be determined at any time t based on known initial conditions.

The attitude error of the body is also expressed in terms of quaternions. The error

quaternion q̄
e

of the satellite is defined as the quaternion which describes the rotation
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from the current quaternion state to the command or reference quaternion q̄
cmd

and

is defined as

q̄
e

=

0

BB@
q0

e

q
v

e

1

CCA = q̄�1
cmd

⌦ q̄. (2.8)

A simpler attitude error representation, the pointing angle error, is defined as the

angle from the body x-axis (imaging direction) to the desired x-axis as given by the

error quaternion. It can be extracted from the direction cosine matrix resulting from

the quaternion triple product

w = q̄v̄q̄⇤, (2.9)

where q̄⇤ is the quaternion complex conjugate and v̄ is an arbitrary vector expressed

in the form of Equation (2.5). By factoring the v̄ terms, this can be further expanded

as

w =

2

6666664

(2q20 � 1) 0 0

0 (2q20 � 1) 0

0 0 (2q20 � 1)

3

7777775

2

6666664

v1

v2

v3

3

7777775
+ 2

2

6666664

q21 q1q2 q1q3

q1q2 q22 q2q3

q1q3 q2q3 q23

3

7777775

2

6666664

v1

v2

v3

3

7777775

+2

2

6666664

0 �q0q3 q0q2

q0q3 0 �q0q1

�q0q2 q0q1 0

3

7777775

2

6666664

v1

v2

v3

3

7777775
,

(2.10)
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then

w =

2

6666664

2q20 + 2q21 � 1 2q1q2 � 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 2q20 + 2q22 � 1 2q2q3 � 2q0q1

2q1q3 � 2q0q2 2q2q3 + 2q0q1 2q20 + 2q23 � 1

3

7777775

2

6666664

v1

v2

v3

3

7777775
. (2.11)

The three-by-three matrix in Equation (2.11) is the direction cosine matrix which

rotates the vector v in the frame. Substituting the unit quaternion norm

1 =
q

q20 + q21 + q22 + q23, (2.12)

and taking the inverse cosine of the first term in Equation (2.11), results in the angle

between the x-components of v and !

 = arccos(q20 + q21 � q22 � q23). (2.13)

Substituting the quaternion error q̄
e

into Equation (2.9) and letting v be the body

x-axis unit vector x̂, results in the pointing error es defined above

 
e

= arccos(q20,e + q21,e � q22,e � q23,e). (2.14)

2.3 Reference Frames

At this point it is useful to specify the reference frames utilized throughout the

di↵erent models. The body-fixed frame (BFF) has already been defined as seen in

Figures 1.1 and 1.2. The inertial frame or Earth-Centered Inertial (ECI) frame is
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described by (Schutz, Tapley, & Born, 2004) as follows: the x-axis is aligned with

the mean vernal equinox of the J2000 system and the z-axis is aligned with the

Earth’s angular velocity vector !
E

as shown in Figure 2.1. The y-axis completes

the right-handed coordinate system. This frame is used for all internal calculations

throughout the models, and it serves as a reference point for transformations between

di↵erent frames.

Figure 2.1. ECI, ECEF, and NED reference frames. The latitude (�) and longitude
(�) convention for an arbitrary point over the Earth’s surface with respect to the
ECEF frame is shown.

Another useful frame is the Earth-Centered Earth-Fixed (ECEF) frame, which

rotates with the Earth. Its x-axis points to the (0�, 0�) point on the Earth’s graticule
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and the z-axis points due North. It should be noted, however, that the z-axis does

not lie perfectly along !
e

due to polar motion.

Finally, some environmental models provide information on the North-East-Down

(NED) frame, a type of non-inertial, local tangent plane (LTP) reference system

usually used for aircraft navigation. In this system, the x-axis points to the polar

North (parallel to the LTP) while the z-axis points downward (nadir), towards the

Earth’s surface. The y-axis completes the right-handed frame and points East on

the LTP (Figure 2.1). Note that while the center of the NED frame is dependent on

the body’s location (relative to ECEF), the frame is not a body-fixed frame. Further

frames and conventions are defined in Appendix A.

2.4 Environmental Disturbances

To account for environmental conditions, a set of models is set parallel to the

dynamic equations discussed above. These models shape the disturbance moments

and forces acting on the system to mirror those of the ARAPAIMA mission scenario.

At the expected 500 km altitude, the e↵ects of Earth’s gravitational and magnetic

field as well as its atmosphere are non-negligible (Wertz, Everett, & Puschell, 2011).

Therefore, they form the dominant aspect of the plant model.
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2.4.1 Aerodynamic Drag

At LEO, the atmospheric density and composition have a direct impact on the

satellite’s attitude especially when one considers its low mass and the size of the solar

panels relative to the body. Using the Mass Spectrometer and Incoherent Scatter

Radar Extended 1990 (MSISE90) atmospheric model it is possible to estimate the

density, temperature, and composition of the atmosphere as well as the number

densities of its components at a specified altitude on the ECEF frame (Hedin, n.d.).

Data from the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter

Radar Extended 2000 (NRLMSISE00) model, an updated version of the MSISE90

model, is also used since it contains additional data on Oxygen particles at altitudes

above 500 km (Picone, Hedin, & Drob, n.d.).

Aerodynamic torques are produced by the atmospheric particles colliding with

the satellite surface. Collisions occur at a higher frequency during maximum solar

activity resulting in larger disturbances. This worst case scenario has been assumed

for all aerodynamic calculations. The aerodynamic torques acting on the satellite are

estimated by Equation (2.15)

M
aero

=
1

2
⇢diag(V 2

1)C
M

Al
ref

, (2.15)

where ⇢ is the mass density, V1 is the freestream velocity, C
M

is the moment coe�cient

vector, A is the projected surface area, and l
ref

is the body reference length. Table 2.1

summarizes the values assigned to each constant.
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Table 2.1. Parameters and constants used to calculate the aerodynamic drag distur-
bance torque.

Parameter Symbol Value Units
Projected Area A 26.06⇥ 10�2 m2

Reference length l
ref

0.1 m
Mass density ⇢ 1.02⇥ 10�11 kgm�3

Freestream velocity V1 7.612ê km s�1

Figure 2.2. Angle of attack (↵) and angle of slip (�) definitions for the aerodynamic
drag on the satellite body-frame. These provide the orientation for the flow direction
in the DSMC iteration results.

At a nominal altitude of 500 km the NRLMSISE00 model gives an atmospheric

composition of 94% O and 6% N with a number density of n = 3.769⇥ 1014m�3 at a

temperature of 1491K. The mean free path between particles � = 27.33 km, which

compared with a reference length l
ref

of 0.1m (taken to be approximately one-third
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of the maximum body dimension as suggested by (Wertz et al., 2011)) results in a

Knudsen number, K
n

= �/l
ref

= 273300 (Lyle & Stabekis, 1971). This indicates the

satellite operates in the free molecular flow regime.

Given the previous statement, the moment coe�cients C
M

= [C
M

x

, C
M

y

, C
M

z

]T of

the satellite were calculated using the direct solution Monte Carlo (DSMC) program

DAC97, which employs algorithms based on the methods described by (Bird, 1994). A

variable hard sphere model has been assumed for the collisions between the particles

(O and N) and the satellite. V1 = ||V1|| has been assumed to be 7.612 km s�1, which

is equivalent to the mean orbital speed.

A total of 1369 runs of the DAC97 code have been performed on the ARAPAIMA

body geometry for 37 di↵erent ↵ and � values. The angle of attack was varied between

�90� and 90� in steps of 5�; the sideslip angle was similarly varied between 0� and

180� (the angle of attack and the sideslip angle are defined as seen in Figure 2.2). The

DSMC results are used to form 2D look-up tables which map the drag and moment

coe�cients as functions of ↵ and � as shown in Figure 2.3. Together with the total

mass density obtained from the MSISE90 model, Equation (2.15) is used to calculate

the aerodynamic disturbance torques at any orientation (Figure 2.4). The maximum

force coe�cient corresponding to the drag coe�cient in general aerodynamic terms is

approximately 2.0, which is within the expected range (2.0-2.2) for small satellites in

LEO (Wertz et al., 2011).
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Figure 2.4. Aerodynamic disturbance torques acting on the satellite body during one
orbit at a 500 km altitude and 28.5� inclination.

2.4.2 Magnetic Residual

The magnetic disturbance torque has two major sources: the force produced

on a point charge by the magnetic component of the Lorentz force, and the torque

experienced by an aspherical paramagnetic body which, in the absence of other torques,

aligns its long axis with the local magnetic field. This means that all electrically

conducting parts of the satellite contribute charges and produce time varying magnetic
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fields. Due to the complex nature of evaluating these disturbance torques, empirical

data is used to estimate their e↵ect.

The Earth’s magnetic field B
E

is predicted using the 2010-2015 World Magnetic

Model (WMM), which provides magnetic intensity, inclination, declination, and a

complete geometry of the field at any point in a �1 km to 850 km range (z-direction)

in the NED frame (Maus et al., 2010). An estimate of the maximum magnetic torque

can then be obtained by merging all contributing magnetic e↵ects into a residual

dipole moment specific to the satellite body and exposing it to the environmental

magnetic field (Wertz et al., 2011; Inamori, Sako, & Nakasuka, 2011)

M
rmm

= m
rmm

⇥B
E

. (2.16)

For the ARAPAIMA satellite, the magnetic dipole moment m
rmm

is approximated to

be 0.1Am2 and aligned with the body y-axis thus m
rmm

= [0, 0.1, 0]T . The resulting

M
rmm

is calculated as shown in Figure 2.5.
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Figure 2.5. Magnetic disturbance torques acting on the satellite body during one orbit
at a 500 km altitude and 28.5� inclination.

2.4.3 Gravity Gradient

In order to have the body follow an orbital trajectory, a gravitational model of

Earth is used to determine the force acting on the satellite at any point in time. The

model implements the mathematical representation of the geocentric equipotential

ellipsoid described by the World Geodetic System 1984 (WGS84) (MathWorks, 2013).

When the center of mass of a satellite does not coincide with its center of gravity,

the variation of the Earth’s gravitational field over the volume of the spacecraft
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produces torques which, in the absence of other disturbances, will try to align one

of the body’s principal axes with the local gravity field vector (Curtis, 2013). This

disturbance is given by

M
gg

=
3µ

||r||3 (r̂)⇥ Jr̂, (2.17)

where r is the satellite position in the ECI frame. The gravity gradient disturbance

contribution to the attitude dynamics are calculated by evaluating Equation (2.17)

along the satellite’s trajectory. The resulting moments are shown in Figure 2.6.

Figure 2.6. Gravity gradient disturbance torques acting on the satellite body during
one orbit at a 500 km altitude and 28.5� inclination.
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2.4.4 Solar Radiation Pressure

When solar photons collide with a satellite, the momentum exchange between

sunlight and the body surface results in a net pressure force called solar radiation

pressure (SRP). This pressure is a complex function of the shape and optical properties

of the satellite as well as the shading and solar intensity �. The worst case scenario is

given by Equation (2.18) where � is taken from an Systems Tool Kit (STK) simulation

for the day of January 1st, 2015

M
srp

=
�f

s

S
s

(1 + ⇣)l
s

c
. (2.18)

The resulting M
srp

is shown in Figure 2.7. Note that the disturbances disappear

during the eclipse portion of the orbit. Additional parameters are listed in Table 2.2.

Table 2.2. Parameters and constants used to calculate the SRP disturbance torque.

Parameter Symbol Value Units
Surface area S

s

12.21⇥ 10�2 m2

Moment arm l
s

0.1 m
Reflectance factor ⇣ 0.6 -
Average solar constant f

s

1366 Wm�2

Speed of light c 3⇥ 10�8 ms�2
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Figure 2.7. Solar radiation pressure disturbance torques acting on the satellite body
during one orbit at a 500 km altitude and 28.5� inclination.

2.5 Internal Disturbances

External factors are not the only sources of disturbances for a satellite; moving

parts and other mechanical interfaces also produce undesirable torques. Many of

these internal disturbances are also produced or exacerbated as a result of active

control. Because there is no ideal way to mitigate them, the controller must be able

to minimize both external and internal torques.
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2.5.1 Solar Panel Hinges

The solar panel hinges are loaded with torsion springs held by burn wire release

mechanisms which control the panel deployment. In order for the rigid body dynamics

outlined in Section 2.1 to be valid, the flexible joints must be modeled such that

any moment or force resulting from their movement can be incorporated into the

pre-existing dynamic equations. Assuming the solar panel themselves are inflexible,

the satellite can be analyzed as a system of rigid bodies with torsion spring joints.

Consider a single panel, connected to the main body by a spring-loaded hinge described

by the second order mass-spring-damper equation

M
sp

= J
sp

✓̈
sp

+ b ˙✓
sp

+ k✓
sp

. (2.19)

Where M
sp

is the input torque, J
sp

is the panel’s moment of inertia, ✓
sp

is the spring’s

angular position, and b and k are the damping and spring coe�cients respectively.

The input from the actuators results in a moment Mact about the main body center

of mass. This moment is, in turn, opposed by the body’s angular acceleration such

that

T
sp

= M
act

� J
b

✓̈
b

. (2.20)

Then the spring interaction with the rest of the body can be analyzed over time

according to

M
act

� J
b

✓̈
b

= J
sp

✓̈
sp

+ b ˙✓
sp

+ k✓
sp

. (2.21)
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Where the subscript b indicates the quantities corresponding to the satellite body.

This analysis is then extended to account for all four solar panels simultaneously.

The resulting torques M
sp

can now be added to Equation (2.2) as superimposed

disturbances. Although small in comparison to the external disturbances, modeling

this reaction is important in order to monitor and avoid exciting structural modes

through control actuation (Section 2.6.2). Based on the spring properties outlined in

Table 2.3, the damped frequency of the solar panel hinges

f
d

=
1

2⇡

s
k

J
�
✓

b

2J

◆2

, (2.22)

is determined to be an average of 27Hz.

Figure 2.8 shows the disturbance of a single panel due to angular acceleration of

the spring load. During deployment, the superimposed moments of the di↵erent panels

cancel each other. Table 2.3 shows the di↵erent spring properties for each panel.

Table 2.3. Properties and constants of the individual solar panel hinges. Spring and
damping coe�cients were approximated from deployment video demonstrations. The
directions in parenthesis indicate in which body face the panel is located.

Symbol 6 U (+Y/-Y) 3 U (+X/-X) Units
Spring coe�cient k 100/90 100/110 Nm rad�1

Damping coe�cient b 0.1/0.09 0.1/0.11 Nm s rad�1

Inertial load J
sp

(3.5/3.55)⇥10�3 (1.6/1.55)⇥10�3 kgm2
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Figure 2.8. Solar panel hinge disturbance moment. The initial o↵set of is due to the
initial acceleration of the satellite and deployment of the solar panel

2.5.2 Propellant Slosh

Even in microgravity, liquid propellant slosh contributes directly to attitude

destabilization. In the case of the ARAPAIMA mission, slosh can hinder mission

completion by introducing unwanted angular momentum which could result in a

deviation from trajectory during orbital maneuvers or in oscillations of the pointing

axis which prevent su�ciently stable imaging. For this reason, a simple yet fairly

accurate mass-spring-damper equivalent mechanical model was incorporated in the
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simulation. A detailed analysis of this mechanical model designed specifically for the

ARAPAIMA mission was carried out by (Vazquez, 2014). A summary of the resulting

moment equation and parameters follows.

The model takes into account the propellant’s behavior through the Weber, Froude

and Bond numbers and is described by Equation (2.23) in terms of angular and linear

displacements as proposed by (Dodge, 2010)

M
sl

= �(J
x,0+m

sl,0H
2
0 )↵sl

�
nX

0

m
sl,n

H
sl,n

(ẍ
sl,n

+H
sl,n

↵
sl,0)+g

nX

0

m
sl,n

x
sl,n

. (2.23)

Where J
x,0, H0, and ↵sl,0 are the respective moment of inertia, position, and angular

acceleration of the stationary propellant mass m
sl,0. xsl,n

indicates the position of the

nth moving propellant mass m
sl,n

along the spring direction, whereas H
sl,n

indicates

the position along the tank’s length. For micro-gravity scenarios, g represents the

translational thrust applied by the satellite. Figure 2.9 shows a second order (n=2)

representation of Equation (2.23).

Note that due to the nature of the mass-spring-damper representation, Equa-

tion (2.23) needs to be modified according to the expected motion along each axis

(especially depending on the alignment of the thrusters). The x-axis implementation

is given above. The output on all three axes for one orbit with a 65% propellant fill

ratio can be seen in Figure 2.10. Table 2.4 shows the parameters corresponding to

Equation (2.23) for a first mode model (n=1) with zero initial acceleration.
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Figure 2.9. Propellant slosh model diagram indicating a second order mass model
within a rectangular tank (Dodge, 2010).

Table 2.4. Parameters for a first mode slosh propellant slosh simulation at 65%
propellant fill ratio.

Fill ratio 65% Units
Linear acceleration ẍ

sl,n

0 m s�2

Height of fluid h 0.550 m
Tank width a 0.214 m
Oscillating mass m1 0.695 kg
Stationary mass m0 0.341 kg
Initial position of m0 H0 0.014 m
Initial position of m1 H1 0.029 m
Moment of Inertia J

x,0 0.289⇥ 10�3 kgm2
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Figure 2.10. Propellant slosh disturbance moment.

2.6 Actuators

Originally the ARAPAIMA mission relied on reaction wheels (RW) to perform

attitude control; however, these are still dependent on the RCS thrusters to periodically

despin the flywheels. This dependency coupled with mass and volume constraints led

to descoping the reaction wheels in favor of an RCS thruster actuated control system.

A trade study which compares the attitude performance, propellant consumption, and
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electrical energy requirements of each actuator configuration is presented to justify

the decision.

2.6.1 Reaction Wheels

The RW model is based on the standard model of a brushed DC motor subjected

to static and dynamic imbalances. The physical properties of Sinclair Interplanetary

RW-0.03-4 flywheels were used to model the RW assembly (detailed in Table 2.5).

These are mounted so each RW’s spin axis is aligned with a particular body axis. The

generic open loop transfer function of a DC motor (neglecting friction and armature

inductance) is given by

⌦
rw

V
=

K
m

(R
m

J
rw

)s+K2
m

. (2.24)

Where ⌦
rw

and V are the respective angular speed and voltage of the motor in the

Laplace domain. R
m

, K
m

and J
rw

are the armature resistance, motor constant, and

moment of inertia respectively. s is the Laplace domain complex number frequency.

Additional disturbance torques due to the static and dynamic imbalances of

the flywheels are modeled as functions of the angular velocity !
rw,n

and imbalance

constants U
s,n

and U
d,n

as described by (Liu, 2007)

M
U

s

= R
w

⇥

2

6666664
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t)
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sin(!
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s,x

!2
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sin(!
rw,x

t)

U
s,x

!2
rw,x

sin(!
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t) + U
s,y

!2
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sin(!
rw,y

t)

3

7777775
, (2.25)
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M
U

d

=

2

6666664

U
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t)� U
d,y
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sin(!
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3

7777775
. (2.26)

A PI controller is added to Equation (2.24), resulting in the closed loop reaction

wheel model

⌦
rw

R
=

K
m

(k
p,rw

s+ k
i,rw

)

(J
rw

R
m

)s2 +K
m

(k
p,rw

+K
m

)s+K
m

k
i,rw

, (2.27)

where k
i,rw

and k
p,rw

are the integral and proportional control gains respectively.

The resulting torque applied to the body is a function of the RW angular momentum

Hrw and dependent imbalances

M 0
rw

= !
rw

⇥H
rw

+M
U

s

+M
U

d

. (2.28)

Table 2.5. Reaction wheel model physical constants and control gains.

Parameter Symbol Value Units
Moment of inertia J

rw

5.109⇥ 10�5 kgm2

Armature Resistance R
m

2.9 ⌦
Motor torque constant K

m

1.12⇥ 10�3 NmA�1

Nominal momentum h
max

4.28⇥ 10�2 Nms
Dynamic imbalance coe�cient U

d

1.00⇥ 10�10 Nms2

Static imbalance coe�cient U
s

5.00⇥ 10�10 Ns2

Proportional gain K
p,rw

1.65 -
Integral gain K

i,rw

54.76 -
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2.6.2 RCS Thrusters

The RCS thruster model utilizes pulse width modulated (PWM) signals to ac-

curately represent rapid valve actuation. The PWM command regulates the torque

applied to the body and approximates a ‘throttleable’ actuator. The throttle action is

linear over the entire operational range for a set of user specified frequencies (approxi-

mately 1Hz to 100Hz as shown in Figure 2.11), at increments of 1% of the maximum

thrust (Huang, 2014).

Figure 2.11. Thrust command (top) and resulting valve operation signal (bottom).

Keeping the frequency constant, it is possible to produce the average desired

thrust value over time by controlling the signal duty cycle. The amount of time the
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valve remains open t
rcs

is proportional to the ratio of the desired thrust T
cmd

and the

maximum available thrust T
max

t
rcs

=
1

f
rcs

T
cmd

T
max

. (2.29)

Figure 2.12. Thrust command (top) and resulting valve operation signal (bottom).
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Figure 2.12 illustrates the variation of Equation (2.29) with respect to the command

signal magnitude when the valves are operated at 10 Hz. The resulting thrust (T
rcs

)

from the RCS model must then be considered a function of time as follows

T
rcs

(t0) =

8
>>><

>>>:

0 t0 > t
rcs

T
max

t0  t
rcs

, (2.30)

where t0 is an arbitrary periodic time variable with range [0, 1/f
rcs

]. The resulting

torque applied to the body is then

M
rcs

(t) = 2l
rcs

T
rcs

(t0). (2.31)

where the moment arm l
rcs

is set to be 5 cm for all thrusters.

A separate model is implemented to account for manufacturer imperfections and

installation misalignment, which a↵ects the resulting thrust and torque produced by

the thrusters. Small deviations (within the bounds of ±1%) from the ideal conditions,

�, are applied to each thruster’s maximum thrust, nozzle placement, and angular

o↵set. Additionally, the model accounts for the thrust component normal to the

surface of the satellite, T
side

, which depends on the center of pressure (C
p

) of the

nozzle’s exhaust plume. The location of C
p

is also subject to a random o↵set. The

altered control moment acting on the body is a function of all the di↵erent deviations

M 0
rcs

= 2diag(l
rcs

+ �
l

)


C(�

�

)(T
rcs

(t0) + �
T

) + diag(T
side

)(C
p

+ �
cp

)

�
. (2.32)
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Where C(�
�

) is the direction cosine matrix of the thrust o↵set angle �. Additional

model parameters and other physiscal quantities are detailed in Table 2.6.

Table 2.6. RCS thruster model parameters and propulsion system constants.

Parameter Symbol Value Units
Maximum Thrust T

max

25⇥ 10�3 N
Specific impulse I

sp

60 s
Minimum pulse width t

min

2⇥ 10�3 s
Operating frequency f

rcs

10 Hz
Thruster moment arm l

rcs

5⇥ 10�2 m
Side thrust T

side

0.01(T
max

) N
Center of pressure C

p

3⇥ 10�2 m
Nozzle location o↵set �

l

rand(0.01(l
rcs

)) m
Nozzle direction o↵set �

�

rand(1.75) rad
Center of pressure o↵set �

cp

rand(0.01(C
p

)) m
Thrust magnitude o↵set �

T

rand(0.01(T
max

)) N

2.6.3 Trade Study

The comparison between actuators focuses on the three areas of greatest impact

to the mission: accuracy, propellant consumption, and electrical energy required. A

250m relative orbit about the RSO at a 500 km altitude is simulated for each type of

actuator. The satellite completes a full orbit while performing target tracking. Both

executions utilize the same solver (ode14x), simulation time step (1ms), and include

all aforementioned disturbances. The operating frequency of the RCS thrusters is set

to 10Hz.
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Pointing Accuracy

Figures 2.13 and 2.14 show the pointing accuracy achieved with each actuator

during the simulation. While both systems meet the target requirements, the thruster

controlled system is shown to be an improvement of approximately one order of

magnitude over the RW actuated system.

Figure 2.13. Pointing accuracy of RW
system during target tracking and dis-
turbance rejection.

Figure 2.14. Pointing accuracy of RCS
thruster system during target tracking
and disturbance rejection.

Propellant Consumption

The propellant consumption of the RCS system is determined assuming the

mass flow rate per pulse is constant (no loss of pressure). The consumption rate

is approximately constant for the simulated maneuver since the tracking motion

dominates the pointing performance. This results in a total usage of 7.58⇥ 10�4 kg

for a single orbit period.
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The propellant consumption of the RWs is based on the burn time required to

o✏oad the stored momentum h

t
burn

=
h

2T
max

l
rcs

. (2.33)

The amount of propellant required is then

m
p,rw

= ṁ
prop

t
burn

, (2.34)

where the mass flow rate is defined as

ṁ
prop

=
T
max

I
sp

g
E

, (2.35)

where I
sp

is the specific impulse of the propellant and g
e

is the acceleration due to

gravity at sea level.

Figure 2.15 shows the angular momentum stored in each RW throughout the

simulated maneuver. The RWs reach approximately 15.85%, 8.54% and 19.22% of

their saturation value respectively. A total of 6.34⇥ 10�4 kg of propellant is required

to o✏oad the combined momentum for a single orbit.

Energy Consumption

Since the base model of the RWs is that of a DC motor, its energy consumption is

simply the product of the voltage supplied by the controller and the current drawn by
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Figure 2.15. Angular momentum stored per axis in RWs in a single orbit during target
tracking and disturbance rejection.

the motor integrated over time. Figure 2.16 shows the energy required to operate the

RWs over a single orbit period. The sum of the energy consumed per axis results in a

1.019⇥ 103 J total. Similar analysis on the RCS pulse signal reveals 2.392⇥ 103 J of

energy is required for operation.

Table 2.7. RCS thruster and RW trade study results.

Parameter RCS RW Units
Accuracy (3�) 0.07 0.7 arcmin
Propellant 7.58⇥ 10�4 6.34⇥ 10�4 kg
Energy 2.392⇥ 103 1.019⇥ 103 J
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Figure 2.16. Reaction wheel energy consumption per axis in a single orbit during
target tracking and disturbance rejection.

The overall performance, restated in Table 2.7, suggests the RCS thruster system

is more costly to operate despite its superior accuracy. However, the RW system relies

on the thrusters because it requires regular o✏oading. This represents an inherent

power cost proportional to t
burn

and increased operational complexity due to the

accompanying attitude correction maneuver. Additionally, the operational cost of the

thrusters can be reduced by adjusting the operating frequency f
rcs

.

Based on this analysis, the RWs are considered to be unnecessary in the present

system and may be excluded. In addition to reducing the mass and volume required
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by the ADCS, removal of the RWs circumvents the need for angular momentum

management maneuvers. Moreover, the RCS thruster configuration is su�cient to

preserve attitude control redundancy. All further results utilize the thruster actuation

model exclusively.

2.7 Sensors

The ADCS primary attitude determination method consists of utilizing the STR

quaternion solutions and angular rate measurements to feedback the attitude states

required by the control law. In order to account for measurement uncertainty, simple

models based on manufacturer specifications are used to introduce noise directly into

the feedback signal.

2.7.1 Star Tracker

The STR model is based on the Nano Star Tracker developed by Blue Canyon

Technologies. This presents an advantage because the STR delivers attitude informa-

tion directly in quaternion format. Therefore, all present uncertainties are attributed

to white noise and are assumed to be independent of internal process error.

The star tracker output is represented as a combination of the true quaternion

solution and the quaternion representation of its roll and bore-sight uncertainties as

indicated in Table 2.8

q̄
str

= q̄ ⌦ (q̄
str,bs

⌦ q̄
str,r

). (2.36)
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Within the model, q̄
str,bs

and q̄
str,r

are calculated by defining random o↵set angles �
bs

and �
r

that follow the accuracy distributions �
str,bs

and �
str,r

respectively. Consider

two arbitrary unit vectors ê
bs

and ê
r

as defined in Equation (2.3), where ê
bs

is

perpendicular and ê
r

is parallel to the body x-direction. Then

q̄
str,bs

=

2

664
cos(�

bs

/2)

sin(�
bs

/2)ê
bs

3

775 (2.37)

and

q̄
str,r

=

2

664
cos(�

r

/2)

sin(�
r

/2)ê
r

3

775 (2.38)

Note that ê
bs

, �
r

, and �
bs

are not fixed values; instead they are randomly generated

at every simulation step.

Table 2.8. STR hardware parameters based on the Blue Canyon Technology Nano
Star Tracker.

Parameter Symbol Value Units
Update rate f

str

5 Hz
Bore-sight accuracy �

str,bs

6 (1�) arcsec
Roll axis accuracy �

str,r

40 (1�) arcsec
Nominal operation range - < 1 � s�1

O↵-nominal operation range - < 4 � s�1

2.7.2 Angular Rate Gyro

The angular rate gyro model is based on the Nano Inertial Measurement Unit

(IMU) developed by MEMSENSE. The model assumes the rate gyro triad can be
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analyzed as three separate sensors each collecting information about a single body

direction. Furthermore, measurements are assumed to be a↵ected by bias b
g

, scaling

S
g

and white noise w
arw

.

A simple gyro model for this set of assumptions is given by (Flenniken, 2005)

!
g

= (1 + S
g

)! + b
g

+ w
arw

. (2.39)

Note that there is no way of determining the scaling and bias values other than through

empirical data of the specific hardware in question. Therefore, random constant values

are assigned at the beginning of each simulation based on the deviations specified in

Table 2.9.

Table 2.9. IMU hardware paramaeters based on the MEMSENSE Nano IMU series.

Parameter Symbol Value Units
Update rate f

gyro

50 Hz
Angle random walk w

arw

1.66⇥ 10�2 (1�) rad s�1

Bias random walk w
brw

2.62⇥ 10�2 (1�) rad s�2

Scaling Random walk w
srw

0.10 (1�) s�1
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3. Filtering and Estimation

The sampling rate and accuracy of the system sensors have a direct impact on the

ADCS performance. After implementing the sensor models discussed in Section 2.7,

two di↵erent methods of state estimation are proposed: an extended Kalman filter

(EKF), and a gyro-less rate observer.

3.1 Extended Kalman Filter

Some of the control laws presented in Chapter 4 require simultaneous quaternion

and angular rate error measurements. However, the maximum sampling rate of the

gyro is 50Hz whereas the STR’s is 5Hz. Therefore the main purpose of the EKF in

our system is to propagate the quaternion solution of the STR between measurements

using the quaternion kinematics discussed in Section 2.2.

Consider the attitude kinematics presented in Equation (2.6)
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where !
n

represents the true angular rate measured by the rate gyro about any of the

BFF axes. Then, solving Equation (2.39) for !
n

!
n

=
1

1 + S
g,n

(!
g,n

� b
g,n

� w
arw

). (3.1)

Note that although b
n

and S
n

cannot be measured, they can be included in the

estimation process by

ḃ
g

=

2

6666664

ḃ
g,x

ḃ
g,x

ḃ
g,x

3

7777775
=

2

6666664

w
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0 0
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0

0 0 w
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3

7777775
, (3.2)

Ṡ
g

=

2

6666664

Ṡ
g,x
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Ṡ
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3

7777775
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6666664

w
srw

0 0

0 w
srw

0

0 0 w
srw

3

7777775
. (3.3)

Where w
rrw

and w
srw

are random constants based on the hardware properties specified

Table 2.9.

Together, Equations (2.6) and (3.1) to (3.3) form the state x to be estimated by

the EKF

x = [q0, q1, q2, q3, bg,x, bg,y, bg,z, Sg,x

, S
g,y

, S
g,y

]T . (3.4)
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Appendix B shows the linearizion and discretization process in detail. The procedure

for the discrete EKF implementation is summarized here.

The estimation process uses a predictor-corrector approach, which assumes a

general, non-additive noise model (G. Blesser, n.d.). The predicted state µp and state

covariance P p are calculated according to

µp

t

= g(u
t

,µ
t�1), (3.5)

P p

t

= G
t

P
t�1G

T

t

+W
t

R
t

W T

t

. (3.6)

Where G
t

is the state transition matrix, R
t

is the process noise covariance matrix, and

W
t

is the “noise transition” matrix, required by the non-additive noise calculations.

The corrected or updated states are calculated using the Kalman gain K
t

K
t

= P p

t�1H
T

t

(HtP
p

t�1H
T

t

+ V
t

Q
t

V T

t

)�1, (3.7)

µ
t

= µp

t

+K
t


z
t

�Htµ
p

t

�
, (3.8)

P
t

= (I �K
t

H
t

)P p

t

. (3.9)

Where H
t

is the measurement correction matrix, Q
t

is the measurement noise co-

variance matrix, and V
t

is the “measurement walk” matrix corresponding to the

non-additive noise model. z
t

is the measurement update from the STR.

The EKF performance is measured by calculating the quaternion error as defined

in Equation (2.8), taking q̄
cmd

to be the true attitude solution given by the plant and
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q̄ as the EKF output. Figure 3.1 shows how the quaternion error converges over time.

Figure 3.1. Quaternion Error between the true plant output and the EKF output
with an STR update rate of 5Hz and a gyro sampling rate of 50Hz.

Note that the EKF only estimates the quaternion feedback; it is not designed to

filter the white noise from the gyro measurements. Additionally, the EKF quaternion

input corresponds to the simulated STR quaternion as defined by Equation (2.36).
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3.2 Angular Rate Observer

An alternative solution to the EKF is presented by (Thakur, Mazenc, & Akella,

2014) in the form of a smooth angular velocity observer. This solution estimates the

body angular rate based solely on the STR quaternion solution and does not require

gyro measurements or corrections. The estimation law is proven to be stable through

partial Lyapunov strictification and is defined using quaternion observer kinematics

˙̄̂q =
1

2
E(ˆ̄q)(!̂ + �CT (˜̄q)q̃

v

), (3.10)

˙̂! = CT (˜̄q)J�1


�q̃

v

� S(!̂B)J!̂B +M
cmd

� �JS(q̃
v

)(!̂B)

�
. (3.11)

Where � and � are tuning parameters and

!̂B ⌘ C(˜̄q)!̂. (3.12)

In this notation, ˆ̄q and !̂ represent the estimated quaternion and angular rates

respectively. Their counterparts ˜̄q and !̃ represent the corresponding estimation

errors. In turn, C and S represent the cosine matrix and skew symmetric matrix of

their respective arguments. E represents a collapsed quaternion matrix analogous to

Equation (2.7) defined as:

E(q̄) =

2

664
�qT

v

q0I + S(q
v

)

3

775 (3.13)
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Although limited by the operational conditions of the STR, this approach has the

advantage of estimating both quaternion and angular rate values without the need

for additional hardware. To account for the STR sampling time, a zero order hold is

placed on the continuous signal and is linearly extrapolated between measurement

updates.

Figure 3.2. Quaternion Error between the true plant output and the angular rate
observer.

Figure 3.2 shows the error of the quaternion estimation. Notice that the error

magnitude remains constant with a zero mean instead of converging towards its steady
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state value like the EKF. As with the EKF, the inputs to the observer correspond to

the simulated sensor signals.

The estimated angular rates cannot be compared directly to the measured rates

because the sensor model output is never used as an input to the observer. Instead,

Figures 3.3 to 3.6 showcase the observer performance by comparing the estimate

(at an STR sampling rate of 1Hz) directly to the true values. The unused sensor

signal is included to present a qualitative comparison between the true, measured,

and estimated values.

Figure 3.3. True angular rate about the BFF x-axis during target tracking.

Figure 3.4 shows the expected sensor output lies in the 1⇥ 10�1 rad s�1 range

whereas Figure 3.3 shows the true value is in the 1⇥ 10�3 rad s�1 range. The estimated
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rate error (Figure 3.6) is of the same order of magnitude as the true data but the

estimated rates are seen to follow the same general progression of the true rates.

This performance is shown in Chapter 5 to provide su�cient accuracy to achieve the

pointing requirements.

Figure 3.4. True angular rate about the BFF x-axis with gyro sensor model noise.



51

Figure 3.5. Estimated angular rate about the BFF x-axis during target tracking.(The
STR sampling rate was set to 1Hz)

Figure 3.6. Error between true and estimated angular rate in the BFF x-axis.(The
STR sampling rate was set to 1Hz)
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4. Controller Design

The ARAPAIMA mission has stringent attitude requirements that vary as the opera-

tional modes progress. Aside from orbital maneuvers, the mission requires the ADCS

be able to perform detumbling, slew, target tracking, and frame centering maneuvers.

Individual maneuvers and the transitions between them must also preserve stability

requirements. The di↵erent control configurations presented in this section focus on

addressing each mission maneuver. They also follow the chronological evolution of the

ADCS design and the rationale behind same.

4.1 Eigenaxis Control

The slew and target tracking control mode is based on the quaternion feedback

regulator proposed by (Wie, 1985). It consists of linear error quaternion feedback and

both linear and nonlinear angular rate feedback which counteract gyroscopic coupling

torques. This approach is based on eigenaxis rotations and is analogous to the well

known PD controller. It is designed for large angle maneuvers and both its global

stability as well as its robustness to inertia matrix uncertainty are proven in relation to

various spacecraft applications (Wie & Lu, 1995). One minor modification suggested
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by (Pong et al., 2010) changes the angular rate feedback term ! to angular rate error

feedback !
e

defined simply as

!
e

= ! � !
ref

, (4.1)

where !
ref

is the reference angular velocity.

The regulator control output is the expressed as a command torque

M
cmd

= �! ⇥ J! �K
d

!
e

�K
p

q
e

v

, (4.2)

where K
d

and K
p

are gain matrices of the form K = aJ . According to (Wie, Weiss,

& Arapostathis, 1989), the gyroscopic decoupling feedback ! ⇥ J! is unnecessary for

slow tracking maneuvers. In such cases, Equation (4.2) reduces to the linear control

law

M
cmd

= �K
d

!
e

�K
p

q
e

v

. (4.3)

4.2 PID Control

Some operations such as detumbling, frame centering, and inertial pointing require

terms to approach a zero steady-state error. The eigenaxis control law lacks integral

terms, resulting in unavoidable error o↵set or bias. Integral control action is introduced

into the system by switching to a PID-type controller implemented about each axis.
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A PID control law that utilizes the vector portion of the same input error quaternion

parameter as Equation (4.3) is defined as

M
cmd

= �

K

p

+
K

i

s
+K

d

s

�
q
e

v

, (4.4)

where K
i

is also a gain matrix of the form K = aJ .

This control law has a marked advantage over the eigenaxis law in that it does not

have angular rate inputs, which means it is only a↵ected by the STR white noise. It

must be noted, however, that this approach depends on the pointing error being small

at the moment of switch so the dynamics are decoupled. Otherwise, integral control

could drive the system unstable.

4.2.1 Gain Scheduling

Using the star tracker quaternion attitude solution, it is possible to apply Equa-

tion (4.4) to di↵erent types of maneuvers by choosing appropriate gains for each.

Instead of creating a new control law for each application, gain scheduling is utilized

to apply the same law to di↵erent control modes. The scheduling scheme is described

as a function of time by

p = p1 + f(t)(p2 � p1)

i = i1 + f(t)(i2 � i1)

d = d1 + f(t)(d2 � d1)

, (4.5)
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where p, i, and d are the scalar terms of the gain matrices in Equation (4.4). f(t) is a

type of smoothstep function (ramp function with smooth edges) with an arbitrary slope

m that controls the duration of the control switch transition shown in Figure 4.1. By

setting the integral term i1 to zero at the moment of switch, it is possible to transition

smoothly between control modes as this reduces the ‘bump’ e↵ect of switching between

controllers with di↵erent integral terms. The switch performance can be further

improved by resetting the PID integrator and gain transition simultaneously.

Figure 4.1. Smoothstep scheduling functions ensure a continuous gain transition.
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4.2.2 Detumbling

Detumbling operations require the body angular rates be reduced past a specified

threshold within a set of given constraints, usually determined by the time or energy

limitations of the system. A simple PI law results from applying Equations (4.4)

and (4.5) with d2 = 0, which is used to bring the angular rates to zero

M
cmd

= �

K

p

+
K

i

s

�
!

e

. (4.6)

4.2.3 Image Feedback

Imaging operations require high accuracy and are sensitive to measurement noise

and bias in the controller input. Visual feedback utilizes the payload cameras at high

sampling rates to generate a secondary set of command inputs based on the position

of the RSO in the payload’s field of view (FOV). Assuming there is no significant

optical noise, this provides unbiased information which can be used to perform frame

centering maneuvers.

Figure 4.2 illustrates how the pointing error angle  
e

can be described as a function

of the distance between the satellite and the RSO, and the �x and �y projection

parameters. Instead of the quaternion error seen thus far, the projection parameters

are used to direct the necessary Y-axis and Z-axis rotation commands
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Figure 4.2. Projection of the RSO on the camera FOV superimposed on a 2D Cartesian
coordinate system used for frame centering.

In practice, it is not possible to obtain 3D attitude information from a 2D projection

without multiple reference points obtained from the star field in the background or

by feature detection of the RSO. For the ARAPAIMA mission, it is assumed that a

constant angular rate is induced about the BFF x-axis prior to the frame centering

maneuver such that the solar panels are kept in sunlight (but not enough to interfere

with imaging operations). Therefore, no control torques are exerted about the body

x-direction throughout the maneuver.

The simulation model is not yet advanced enough to accept a stream of pictures

to determine �x and �y. Therefore, the projection parameters are obtained from the
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true (noiseless) quaternion error and the distance L
rso

between the satellite and the

RSO as

�x = �L
rso
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(4.8)

Where x̂ is the BFF x-axis unit vector and q̄
e

ˆ̄xq̄�1
e

is the quaternion rotation of x̂

(Kuipers, 1999). Note that only a single element of the normalized vector is considered,

as specified by the subscript outside the square brackets.

4.3 Eigenaxis with Integral Control

With the implementation of the angular rate observer (see Section 5.2.2), the

performance of the eigenaxis and PID control laws is close enough to prompt the

question of whether the complexity added by switching controllers is justifiable. An

alternative solution was proposed by (Wie, Bailey, & Heiberg, 2002), which involves

adding an integral control term to the quaternion error feedback in Equation (4.3)
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Gain scheduling is applied in the same manner as with the PID controller

M
cmd

= �J

✓
d!

e

� pq
e

v

� i

Z
q
e

v

◆
. (4.10)

Where d, p, and i vary according to Equation (4.5). In order to avoid possible

instability introduced by the integral term, i is set to zero during rapid slews and
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large angle maneuvers. It is then scheduled to the proper value during frame centering

and imaging operations.

4.3.1 Image Feedback

Since the image feedback process described in Section 4.2.3 gives projection pa-

rameters as inputs, Equation (4.9) has to be modified in order to work properly. A

time derivative term is added to the quaternion error feedback such that
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or, in the Laplace domain
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Where v is another gain constant that can be scheduled according to Equation (4.5).

As with i, v is set to zero during all maneuvers for which it is not required.

4.3.2 Controller Discretization

A necessary step in the ADCS development is the discretization of the control

law, estimators, and feedback algorithms. For the moment, it is assumed that the

control law and estimator are implemented as part of a larger flight software that will

manage communication with the sensors and other hardware. The EKF algorithm

was designed from the start as a digital system and as such requires no discretization.
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Similarly, the rate observer together with the input extrapolator acts similar to a first

order hold (FOH) system which also requires no discretization other than using an

appropriate order numerical integrator to solve Equations (3.10) and (3.11).The main

concern is then the discretization of the controller.

Equations (4.4) and (4.12) contain all the terms of interest that require discrete

representation. Using the forward Euler integration method as given by (Franklin,

Powell, & Workman, 1990)

y(t) =

tZ

t0

f(t)dt, (4.13)

(k+1)T
sZ

t=kT

s

f(t)dt = y((k + 1)T
s

)� y(kT
s

), (4.14)

where k is simply the discrete time step counter, and T
s

is the sampling time constant.

It is possible to express the Laplace domain integral

Y (s) =
1

s
F (s), (4.15)

as a discrete domain or Z domain approximation

Y (z) ⇡ T
s

z � 1
F (z). (4.16)
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Therefore, the simple relation

1

s
⇡ T

s

1

z � 1
, (4.17)

can be used to discretize the control equations.

The PID controller is given as
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where the discrete time derivative has been changed to better represent the control

algorithm implementation. In the continuous time model, filtered time derivatives

are preferred because they can be implemented by using an integrator feedback loop.

The same format was followed in the discrete model, which makes Equation (4.17)

the only substitution necessary in the discretization. Figure 4.3 gives a block diagram

representation of the filtered time derivative. N is simply a filter gain which can be

tuned to a↵ect the response of the pole filter in the derivative. A default value of 100

is used throughout the model.

(a) Block diagram of discrete time derivative
feedback loop representation in Simulink.

(b) Block diagram of continuous time deriva-
tive feedback loop representation in Simulink.

Figure 4.3. Continuous discrete and filtered Time derivative block diagrams
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The modified eigenaxis control law defined in Equation (4.12) can now be discretized

in the same fashion
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At this point, it is useful to note that the control and estimator algorithms can

have di↵erent sampling constants T
s

. Additionally, sensor sampling rates can be set

to arbitrary multiples of T
s

. This allows the system performance to be evaluated in

multiple scenarios that reflect the availability of resources in the ARAPAIMA on-board

computer (OBC).

4.3.3 Transient Stability Analysis

The gain scheduling technique applied throughout this section gives rise to a

concern regarding system stability during gain transients. While each control law

presented ensures stability (given their respective conditions and assumptions are

valid), their individual properties do not guarantee stable transient behavior. This

behavior depends solely on how the gain scheduling is executed. In turn, this presents

a set of restrictions on the controller tuning.

Stability analysis is carried out by linearizing the plant at predetermined time

“snapshots”, beginning at the moment of switch. A pole-zero map is then produced at

each point to examine the system transient behavior.
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The results presented in Chapter 5 correspond to maneuver specific gain values for

a 10 s gain transient. The analysis presented here examines a similar case for a PID

controller (Equation (4.4)) in a target tracking, disturbance-free, scenario. The initial

and final gain values (identical to those in Section 5.2.2) are listed in Table 4.1.

Table 4.1. Gain parameters for transient behavior pole-zero mapping.

Parameter Symbol Value
PID proportional gain at switch p1 0.35
PID derivative gain at switch d1 0
PID integral gain at switch i1 0
PID proportional gain post-switch p2 0.75
PID derivative gain post-switch d2 0.50
PID integral gain post-switch i2 0.025

The first 100 s of the simulation are linearized at “snapshots” of (0, 2, 4, 6, 8, 10,

12.5, 15, 20, 25, 30, 40, 50, 75, and 100) s. The resulting pole-zero maps are shown in

Figure 4.4. Although the system is stable for the initial and final gain values, adding

a non-zero integral gain yields an unstable system for the first 8 s after switching

gains. This coincides with the increase in pointing error at the moment of switch

seen in Figures 5.5 and 5.7. From the controller performance results, it seems evident

this brief instability period does not a↵ect the overall target tracking performance.

However, any disturbance irregularity occurring during this period could potentially

cause severe system instability.
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Figure 4.4. Pole-zero map for unstable gain transient.

The issue is readily solved by modifying the initial gain values such that d1 6= 0,

and increasing the gain scheduling transient duration so the integral gain occurs more

gradually that the rest. A set of gain values which yield a stable transient system is

shown in Table 4.2. Note that the gain transient period is 10 s for the proportional

and derivative gains, and 20 s for the integral gain. The resulting pole-zero maps for

the same “snapshots” discussed above are shown in Figure 4.5.
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Table 4.2. Modified gain parameters for stable transient behavior pole-zero mapping.

Parameter Symbol Value
PID proportional gain at switch p1 0.50
PID derivative gain at switch d1 0.25
PID integral gain at switch i1 0
PID proportional gain post-switch p2 1.0
PID derivative gain post-switch d2 0.75
PID integral gain post-switch i2 0.050

Figure 4.5. Pole-zero map for stable gain transient.
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5. Numerical Simulations & Results

The numerical simulation outline follows the format of a simplified closed-loop control

system. As such, its components are divided into three main subsystems: the plant, the

controller, and the filter. The plant incorporates all internal and external disturbances

described in Chapter 2. These are produced by environmental models within an

orbital mechanics simulation in which the ARAPAIMA satellite has established a

250m relative orbit about the target RSO. This orbit lies at an altitude of 500 km

from the Earth’s surface, at a 28.5� inclination.

The controller applies the di↵erent control configurations discussed in Chapter 4,

and provides the necessary torque commands to track the RSO with an accuracy

of 1 arcmin at 3�. The true pointing error of the satellite, its running mean, and

deviation, are calculated parallel to control laws; these serve as the primary measure

of the system performance. Lastly, the filter, placed downstream and in series with

the sensor noise models, estimates the plant state by implementing the procedures

outlined in Chapter 3. The di↵erent subsystems can be assigned their respective

operating frequencies to give a better approximation of the system performance under

di↵erent environmental or computational constraints.
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5.1 Simulation Parameters

Most of the results presented in this chapter show the tracking performance of the

satellite for a set of attitude quaternion and angular velocity profiles which correspond

to a relative orbit about the target RSO. These reference signals (Figures 5.1 and 5.2)

and their respective initial conditions were obtained from an ARAPAIMA mission

STK simulation. Initial conditions and other global simulation parameters are given

in Table 5.1.

Figure 5.1. Attitude quaternion reference
profiles for one relative orbit about the
RSO.

Figure 5.2. Angular rate reference pro-
files for one relative orbit about the RSO.

Note the maximum allowed simulation step size, T
s,sim

= 0.001 s, is dictated by the

actuator model because the simulation must be able to accommodate the minimum

pulse width (t
min

= 0.002 s) of the RCS thruster valves.
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Table 5.1. Global simulation parameters.

Parameter Symbol Value Units
Initial Attitude q̄

i

[0.4227,�0.2419,�0.3824, 0.7852]T -
Initial Rate !

i

[1.5, 1.0, 0.4]T ⇥ 10�3 rad s�1

Orbit altitude h
orb

500 km
Orbit inclination i

orb

28.5 �

Distance from RSO L
rso

250 km
RCS thruster frequency f

rcs

10 Hz
Gain schedule transient t

gain

10 s
Rate observer gain � 1
Rate observer gain � 2
Simulation time step T

s,sim

1 ms
Simulation start date - January 1st, 2015 -

5.2 Target Tracking

This section details the tracking performance of the three main control laws

discussed in Chapter 4, namely eigenaxis control, PID, and modified eigenaxis control

with additional integral terms. Each is implemented with EKF, angular rate observer,

and image feedback techniques. They are presented in the same chronological order

as the ADCS design development. The parameters shown in Table 5.2 apply for all

the simulated cases in this section unless otherwise specified.

Table 5.2. Simualtion parameters for target tracking with eigenaxis control.

Parameter Symbol Value Units
Solver - ode4 -
Eigenaxis proportional gain p 1 -
Eigenaxis derivative gain d 0.25 -
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5.2.1 Eigenaxis Control

The following set of simulations use only fixed gain eigenaxis control as described

by Equation (4.3). Since there are no integral or time derivative q
e

v

terms, this control

configuration is ill suited for image feedback. Therefore, only the results for the

EKF and rate observer are shown. Note that the two estimators address, di↵erent

needs in the system. The EKF will propagate the STR quaternion solution such that

state estimates are available at each simulation time step whereas the observer will

extrapolate the STR output and give an estimate of the body angular rate at each

simulation time step.

EKF Feedback

The eigenaxis control with EKF feedback simulation assumes that both sensors

are sampling at their respective maximum rates to obtain the best estimates possible.

However, as seen in Figure 5.3, the pointing performance still su↵ers because the EKF

is not designed to account for the white noise in the gyro measurements. The pointing

performance remains constant with a steady-state error of approximately 35 arcmin.

While this configuration produces error outside the acceptable performance range for

imaging operations, it is a stable system that can be implemented during mission

modes where pointing requirements are not as stringent and STR measurements are

unavailable.
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Table 5.3. Simulation parameters for target tracking with eigenaxis control and EKF
simulation

Parameter Symbol Value Units
Solver - ode3 -
Gyro sampling frequency f

gyro

50 Hz
STR sampling frequency f

str

5 Hz

Figure 5.3. Target tracking performance of eigenaxis controller with EKF feedback.

Observer Feedback

The eigenaxis and angular rate observer simulation does not require a gyro mea-

surement input, additionally the STR sampling rate is relaxed to 1Hz. This was

determined to be the smallest sampling rate able to achieve the 3� pointing require-

ment (Figure 5.4). Although this configuration yields good performance it is dependent

on the STR being within its nominal operation range. In practice, regions in which
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the sensor is saturated by sunlight would produce long delays or large errors in the

STR solution which could lead to an unstable satellite. In these situations, the EKF

feedback configuration would better preserve stability.

Table 5.4. Simulation parameters for target tracking using eigenaxis control with
angular rate observer feedback.

Parameter Symbol Value Units
Gyro sampling frequency f

gyro

n/a Hz
STR sampling frequency f

str

1 Hz
Observer frequency 1/T

s,sim

1 MHz

Note that the observer frequency listed in Table 5.4 corresponds to the output

frequency of the STR quaternion extrapolator.

Figure 5.4. Target tracking performance of eigenaxis controller with angular rate
observer feedback.
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5.2.2 Eigenaxis & PID Control

The following set of simulations use a combination of fixed gain eigenaxis control

and PID control with gain scheduling at the moment of switch. In each case, the

eigenaxis control is used on the system for the first 250 s. Afterwards, the control

switches to PID control with gains determined by Equation (4.5); the corresponding

initial and final gain values are listed on Table 5.5.

The periodic ‘jumps’ in the running mean and deviation plots correspond to resets

in the calculation. These are scheduled a preset amount of time after each control

switch in order to give a better representation of the 3� pointing performance.

Table 5.5. Simulation parameters for target tracking using PID and eigenaxis control.

Parameter Symbol Value Units
PID proportional gain at switch p1 0.35 -
PID derivative gain at switch d1 0 -
PID integral gain at switch i1 0 -
PID proportional gain post-switch p2 0.75 -
PID derivative gain post-switch d2 0.50 -
PID integral gain post-switch i2 0.025 -

EKF Feedback

During the first 250 s the pointing performance is similar to the one observed in

Figure 5.3. After the scheduled switch, the advantage of the PID control with EKF

becomes apparent. Since the PID controller’s only input is the error quaternion, there

is a marked improvement in the pointing error (Figure 5.5). However, from Figure 5.6

we can see that it takes approximately 2000 s for the 3� line to converge to a value
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below 1 arcmin. Smaller error values are possible with extended simulation time but

the capabilities of this configuration are clear from these results. In practice, the

convergence issue can be avoided by allowing the EKF to converge during maneuvers

with more relaxed pointing requirements before commencing imaging operations.

Table 5.6. Simulation parameters for target tracking using PID and eigenaxis control
with EKF feedback.

Parameter Symbol Value Units
Solver - ode3 -
Gyro sampling frequency f

gyro

50 Hz
STR sampling frequency f

str

5 Hz

Figure 5.5. Target tracking performance of eigenaxis and PID controllers with EKF
feedback. The switch to PID control occurs at 250 s.
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Figure 5.6. Tracking performance of PID controller with EKF feedback.

Observer Feedback

As with the previous case, the performance before the control switch is similar

to that in the simulation with no PID control (Figure 5.7). However, there is no

appreciable improvement in pointing error after the switch. As mentioned previously

in Section 4.3 the similarity in pointing performance suggests the added complexity of

a switching controller is unwarranted.

Table 5.7. Simulation parameters for target tracking using PID and eigenaxis control
with angular rate observer feedback.

Parameter Symbol Value Units
Gyro sampling frequency f

gyro

n/a Hz
STR sampling frequency f

str

1 Hz
Observer frequency 1/T

s,sim

1 MHz
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Figure 5.7. Target tracking performance of eigenaxis and PID controllers with angular
rate observer feedback. The switch to PID occurs at 250 s.

Image Feedback

This simulation predicts the scenario in which the ARAPAIMA mission navigation

algorithms provide a biased solution for the RSO location. The payload cameras are

then used to provide unbiased image feedback by calculating the RSO’s vertical and

horizontal o↵sets from the center of the frame. For this simulation, Equation (4.8) is

used to calculate the o↵sets from the reference signal.

During the first portion of the simulation a constant 1� bias is added to the feedback

signal from the angular rate observer, which causes the fixed gain eigenaxis controller

to reach a steady-state error of 60 arcmin. After 250 s, two simultaneous switches

occur: the controller input changes to image feedback as described in Equation (4.7),
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and the eignaxis control switches to PID control. In this case, the scheduled PID

gains are listed in Table 5.8. After the switch, the pointing error is quickly reduced to

a 3� value of less than 0.3 arcmin (Figure 5.10).

Table 5.8. Simulation parameters for RSO frame centering using PID and eigenaxis
control with payload image feedback.

Parameter Symbol Value Units
PID proportional gain at switch p1 2.0⇥ 10�3 -
PID derivative gain at switch d1 1.25⇥ 10�3 -
PID integral gain at switch i1 0 -
PID proportional gain post-switch p2 5.0⇥ 10�3 -
PID derivative gain post-switch d2 2.0⇥ 10�3 -
PID integral gain post-switch i2 5.0⇥ 10�4 -
Gyro sampling frequency f

gyro

50 Hz
STR sampling frequency f

str

5 Hz
Observer frequency 1/T

s,sim

1 MHz
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Figure 5.8. Target tracking performance during frame centering maneuver using
eigenaxis control with biased rate observer feedback, and PID control with unbiased
payload image feedback after 250 s.

Figure 5.9. Tracking performance of eige-
naxis controller with biased angular rate
observer feedback.

Figure 5.10. Frame centering perfor-
mance of PID controller using payload
camera image feedback.
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5.2.3 Eigenaxis with Integral Control

Elaborating on the observation in Section 5.2.2, the next set of simulations follow

the same sequence as the previous set but, instead of having two separate control laws,

Equation (4.12) is used for all three cases. This allows di↵erent tracking scenarios

to be associated with a specific set of gains instead of having multiple control laws,

which reduces the complexity of the control system. The scheduled gains are as listed

in Table 5.9 unless otherwise specified.

Table 5.9. Simulation parameters for eigenaxis control using gain scheduled integral
terms.

Parameter Symbol Value Units
Eigenaxis proportional gain p 1 -
Eigenaxis derivative gain d 0.25 -
Eigeanxis integral gain i 0 -
Eigenaxis visual gain v 0 -
Proportional gain at switch p1 0.5 -
Derivative gain at switch d1 0.125 -
Integral gain at switch i1 0 -
Visual gain at switch v1 0 -
Post-switch proportional gain p2 1 -
Post-switch derivative gain d2 0.5 -
Post-switch integral gain i2 0.05 -
Post-switch visual gain v2 0 -

EKF Feedback

The EKF feedback performance behaves as before during the first portion of the

simulation. Figure 5.11 shows a significant improvement in performance after the

gain switch but there is a mean steady state error of approximately 5 arcmin. This
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occurs because the controller still requires an !
e

input, which includes the modeled

gyro white noise.

Table 5.10. Simulation parameters for eigenaxis control with gain scheduled integral
terms and EKF feedback.

Parameter Symbol Value Units
Solver - ode3 -
Gyro sampling frequency f

gyro

50 Hz
STR sampling frequency f

str

5 Hz

Figure 5.11. Target tracking performance of eigenaxis control with scheduled integral
gains and EKF feedback. Integral control switches ‘on’ at 250 s
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Observer Feedback

Figure 5.12 shows no appreciable di↵erence between the tracking performance

of the fixed gain eigenaxis controller and the eigenaxis controller with scheduled

integral gain. Moreover, its 0.35 arcmin mean accuracy is equivalent to that of the

PID controller with observer feedback.

Table 5.11. Simulation parameters for eigenaxis control with gain scheduled integral
terms and angular rate observer feedback.

Parameter Symbol Value Units
Gyro sampling frequency f

gyro

n/a Hz
STR sampling frequency f

str

1 Hz
Observer frequency 1/T

s,sim

1 MHz

Figure 5.12. Target tracking performance of eigenaxis controller with scheduled
integral gains and angular rate observer feedback. Integral control switches ‘on’ at
250 s.
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Image Feedback

The tracking performance of the modified eigenaxis controller during the image

feedback maneuver is nearly identical to that of the PID controller in the previous

simulation set. Together with the observer feedback performance, the simulation results

suggest the same level of accuracy is achievable without the additional complexity of

controller switching.

Table 5.12. Simulation parameters for eigenaxis control with scheduled integral and
visual gains using angular rate observer feedback.

Parameter Symbol Value Units
Proportional gain at switch p1 2.0⇥ 10�3 -
Derivative gain at switch d1 0 -
Integral gain at switch i1 0 -
Visual gain at switch v1 1.25⇥ 10�3 -
Post-switch proportional gain p2 5.0⇥ 10�3 -
Post-switch derivative gain d2 0 -
Post-switch integral gain i2 5.0⇥ 10�4 -
Post-switch visual gain v2 2.0⇥ 10�3 -
Gyro sampling frequency f

gyro

n/a Hz
STR sampling frequency f

str

1 Hz
Observer frequency 1/T

s,sim

1 MHz
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Figure 5.13. Target tracking performance of eigenaxis controller with scheduled i and
v gains using biased angular rate observer feedback. Unbiased payload image feedback
begins after 250 s.

Figure 5.14. Target tracking performance
using eigenaxis control with biased angu-
lar rate observer feedback.

Figure 5.15. Frame centering perfor-
mance of eigenaxis controller using i2 and
v2 gains.
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5.3 Detumbling

The angular rate observer requires the STR to provide nominal attitude solutions

at all times in order to meet imaging accuracy requirements. This means the STR

must be kept out of direct sunlight, and the body angular rates must not exceed the

specified 1 � s�1 limit. A simple PI controller is shown here to demonstrate the satellite

is capable of executing detumbling maneuvers.

Worst case scenario deployment conditions expect initial rotation rates of 10 � s�1

about each body axis. Figure 5.16 shows the angular rates are reduced to zero in a

case with ideal sensor feedback. Figure 5.16 shows how the angular rates converge to

approximately 0.01 rad s�1 (0.57 � s�1) when receiving unfiltered gyro measurements.

This o↵set, attributed to the sensor measurement bias, leaves a small error margin to

satisfy the nominal STR performance conditions. However, the STR is able to provide

attitude solutions with su�cient accuracy to exit detumbling mode when the angular

rates are below 0.07 rad s�1 (4 � s�1). After continuing to target tracking operations,

the angular rates are limited by the progression of the reference attitude profile. Note

that detumbling should only occur once during the mission lifetime.

Table 5.13. Simulation parameters for PID detumbling control using direct sensor
feedback.

Parameter Symbol Value Units
Initial angular rates !0 [0.175, 0.175, 0.175]T rad s�1

Detumble PID proportional gain p 1 -
Detumble PID derivative gain d 0 -
Detumble PID integral gain i 0.05 -
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Figure 5.16. Detumbling performance of PID controller with ideal sensor feedback.

Figure 5.17. Detumbling performance of PID controller with modeled sensor noise
feedback.
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5.4 Multiple Maneuver Control

This simulation evaluates the performance of the ADCS throughout multiple

maneuvers. The scenario begins with a detumbling maneuver during which the

controller receives unfiltered gyro measurements at a rate of 50Hz. After 500 s, the

body angular rates are within the o↵-nominal operation range of the STR and the

ADCS begins receiving STR solution updates at a rate of 1Hz. At this point the

controller switches to the modified eignaxis control law with p, d, i, and v gains as

listed in Table 5.14. The body then performs a fast slew maneuver (Figure 5.19) as

it initiates target tracking operations. It is important to note the controller does

not keep track of the pointing error during detumbling maneuvers. It is shown in

Figure 5.18 only to demonstrate the ADCS’s ability to manage large initial o↵sets.

From 500 s to 1000 s the controller tracks the RSO as it receives state estimates

from the angular rate observer. However, the quaternion reference signal received thus

far incorporates a 1� bias. Therefore, the controller achieves a steady state error of

approximately 60 arcmin. After 1000 s, gain scheduling is used to begin image feedback

operations. The pointing error quickly decreases to within target performance, and

at 1300 s the updated running deviation confirms a 3� pointing error of 0.6 arcmin

(Figure 5.20). The performance continues to improve gradually until the end of the

simulation.
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Table 5.14. Simulation parameters for a multiple maneuver operation using scheduled
eigenaxis control.

Parameter Symbol Value Units
Initial angular rates !0 [0.175, 0.175, 0.175]T rad s�1

Detumble PID proportional gain p 1 -
Detumble PID derivative gain d 0.05 -
Detumble PID integral gain i 0.5 -
Eigenaxis proportional gain p 1 -
Eigenaxis derivative gain d 0.25 -
Eigenaxis integral gain i 0 -
Eigenaxis visual gain v 0 -
Proportional gain at switch p1 2.0⇥ 10�3 -
Derivative gain at switch d1 0 -
Integral gain at switch i1 0 -
Visual gain at switch v1 1.25⇥ 10�3 -
Post-switch proportional gain p2 5.0⇥ 10�3 -
Post-switch derivative gain d2 0 -
Post-switch integral gain i2 5.0⇥ 10�4 -
Post-switch visual gain v2 2.0⇥ 10�3 -
Gyro sampling frequency f

gyro

50 Hz
STR sampling frequency f

str

1 Hz
Extrapolated frequency 1/T

s,sim

1 MHz

Figure 5.18. Tracking performance of a multiple maneuver simulation, which includes
(in order) detumbling, slew, biased target tracking, and frame centering.
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Figure 5.19. Performance of fast slew maneuver from a large arbitrary angle to target
tracking using eigenaxis control with biased observer feedback.

Figure 5.20. Frame centering performance of eigenaxis controller with unbiased image
feedback.
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5.5 Digital Control

The discrete ADCS is implemented directly into the previous simulation model

by specifying the data rate transitions between the plant, controller, and estimator

subsystems. The continuous plant states are sampled at the specified sensor rates

and then propagated at an estimator frequency f
obs

(f
ekf

for the EKF). The state

estimates are further down-sampled at the desired controller frequency. The controller

output is subject to further computational delays, the worst case of which is a unit

delay equal to the controller time step. This output is fed directly to the RCS thruster

actuator model which adds an additional delay corresponding to the inverse of its

operating frequency. The discrete controller block diagram is shown in Figure C.6.

The following set of simulations show the performance of the discrete modified

eigenaxis controller (Equation (4.19)). The simulated scenarios are the same as for the

continuous controller. Further discussion and performance comparisons to previous

configurations are presented in the following section.
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Table 5.15. Simulation parameters for discrete eigenaxis control with scheduled integral
terms

Parameter Symbol Value Units
Eigenaxis proportional gain p 1 -
Eigenaxis derivative gain d 0.25 -
Eigenaxis integral gain i 0 -
Eigenaxis visual gain v 0 -
Proportional gain at switch p1 0.5 -
Derivative gain at switch d1 0.125 -
Integral gain at switch i1 0 -
Visual gain at switch v1 0 -
Post-switch proportional gain p2 1 -
Post-switch derivative gain d2 0.5 -
Post-switch integral gain i2 0.05 -
Post-switch visual gain v2 0 -
Controller frequency 10/T

s,sim

100 Hz

EKF Feedback

Table 5.16. Simulation parameters for discrete eigenaxis control with gain scheduled
integral terms and EKF feedback.

Parameter Symbol Value Units
Solver - ode3 -
Gyro sampling frequency f

gyro

50 Hz
STR sampling frequency f

str

5 Hz
EKF frequency f

s,ekf

1 MHz



90

Figure 5.21. Target tracking performance of discrete eigenaxis controller with scheduled
integral gains and EKF feedback.

Observer Feedback

Table 5.17. Simulation parameters for discrete eigenaxis control with gain scheduled
integral gains and angular rate observer feedback.

Parameter Symbol Value Units
Gyro sampling frequency f

gyro

n/a Hz
STR sampling frequency f

str

1 Hz
Observer frequency f

s,obs

1 MHz
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Figure 5.22. Target tracking performance of discrete eigenaxis controller with scheduled
integral gains and angular rate observer feedback.

Image Feedback

Table 5.18. Simulation parameters for discrete eigenaxis control with scheduled integral
and visual gains using angular rate observer feedback.

Parameter Symbol Value Units
Proportional gain at switch p1 2.0⇥ 10�3 -
Derivative gain at switch d1 0 -
Integral gain at switch i1 0 -
Visual gain at switch v1 1.25⇥ 10�3 -
Post-switch proportional gain p2 5.0⇥ 10�3 -
Post-switch derivative gain d2 0 -
Post-switch integral gain i2 5.0⇥ 10�4 -
Post-switch visual gain v2 2.0⇥ 10�3 -
Gyro sampling frequency f

gyro

n/a Hz
STR sampling frequency f

str

1 Hz
Observer frequency f

s,obs

1 MHz
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Figure 5.23. Target tracking performance of discrete eigenaxis controller with scheduled
i and v gains using biased angular rate observer feedback. Frame centering with
unbiased payload image feedback begins after 250 s.

Figure 5.24. Target tracking performance
using discrete eigenaxis control with bi-
ased angular rate observer feedback.

Figure 5.25. Frame centering perfor-
mance of eigenaxis controller using i2 and
v2 gains.
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5.6 Summary

The performance of the four di↵erent control system configurations analyzed in

this chapter is summarized in Table 5.19.

The fixed gain eigenaxis controller is the simplest configuration that produces

a stable system but it only meets the imaging requirements with the rate observer

output. Furthermore, it is incompatible with image feedback.

The PID controller performs best when used with the EKF; however the EKF

is slower to converge than the rate observer. For all other cases, there is no other

significant improvement in performance over the fixed gain eigenaxis controller to

justify having two separate control algorithms

The modified, scheduled gain eigenaxis controller with integral terms is unable to

meet imaging requirements when used with the EKF. Otherwise, the only improvement

over its previous configuration is compatibility with image feedback. In this regard, it

was able to match the PID performance.

The discrete modified eigenaxis controller performance su↵ers more than its con-

tinuous counterpart when used with the EKF due to the reduced controller sampling

rate. However, the image feedback performance benefits from this delay because it

creates a ‘deadband’ e↵ect. Thus allowing the error more time to converge in between

controller outputs.
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Table 5.19. Target tracking mean pointing accuracy

Controller EKF Rate Observer Image Feedback
(arcmin) (arcmin) (arcmin)

Fixed gain eigenaxis 25 0.35 n/a
Scheduled gain PID 0.25 0.35 0.05
Scheduled gain eigenaxis 5 0.35 0.05
Discrete eigenaxis with 10 0.35 0.02
scheduled gains

Controller Selection

A total of twelve configurations corresponding to four controllers, and three di↵erent

feedback sources (see Tables 5.1 and 5.13) are discussed throughout this thesis. Though

extensive, their combined results quantify the ADCS performance in terms of pointing

accuracy.

Selecting a control law for the ARAPAIMA mission, however, is not a straight

forward matter. In conversational terms, ARAPAIMA needs a “controller for all

occasions”. In other words, the ideal choice would be a controller which gives the best

imaging performance but is also able to fulfill the requirements of all other operational

modes. Regrettably, no single controller configuration can accommodate all these

conditions. Therefore, the best alternative is determined by considering the di↵erent

possible mission constraints.

Firstly, the controller must be able to satisfy the 1 arcmin (3�) during imaging and

tracking requirements. Only eight of the twelve configurations fulfill this condition.

Of those eight, only the scheduled gain PID controller can do so with EKF feedback.
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Second, the controller must be compatible with image feedback techniques to

correct possible bias in the reference signal. This eliminates the fixed eigenaxis gain

controller since it does not accept projection parameter inputs.

Third, the controller must be as simple as possible without a↵ecting the pointing

performance. The PID controller, requires simultaneous gain scheduling and control

law switching. This presents an unnecessary risk to the mission, therefore, the PID is

not a viable option.

At this point we are left with two choices: the continuous and discrete modified

eigenaxis controllers, each with rate observer and image feedback. However, the

controller must run on the ARAPAIMA OBC and account for the di↵erent (and

possibly varying) sensor rates. The only possible choice then is the discrete modified

eigenaxis control with rate observer and image feedback. Therefore the current control

law of the ARAPAIMA ADCS is

M
cmd

= �J


d!

e

+

 
p+ i

T
s

z � 1
F (z) + v

N

1 +N T

s

z�1F (z)

!
q
e

v

�
.
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6. Conclusions

The design approach of the ADCS presented in this thesis gives more focus to the

level of detail and sophistication of the simulation models than to the theoretical

backbone of each topic. However, the aim of such an approach is not to develop new

theories, but to instead utilize those that are already well known and available to

create new practices. Much of the work presented here, although not groundbreaking

in its separate fields, is new in its application to small satellites.

Rather than include an abundance of assumptions that oversimplify the design

process, every detail is considered in an e↵ort to make the most comprehensive plant

model possible. To an extent, the bulk this work is modular and can be applied to any

arbitrary satellite mission in LEO. However, the portions specific to the ARAPAIMA

mission introduce a depth of analysis not present in traditional academic design

exercises. To this end, a considerable amount of this work’s value lies not only in

its implementation, but also in its development. The completed model’s capabilities

exceed those of a control loop simulation and can provide system level information

such as dynamic behavior, expended electrical power, propellant consumption, and

orbit trajectory perturbations.
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The result of this design approach constitutes a proof-of-concept for an academic

CubeSat platform proximity operation mission through extensive examination and

interpretation of simulated data.
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7. Recommendations

A number of models within the simulation can be improved further; most of these

improvements involve simplifying the code structure and replacing embedded code

with Simulink S-functions in order to decrease run time. Currently, the average

performance is 30 virtual seconds per second for the continuous time models, and 50

virtual seconds per second for the discrete controllers.

7.1 Future Work

Aside from changes to the simulation there are mission scenarios and ADCS

improvements te be considered:

The stability analysis presented in Section 4.3.3 needs to be developed further.

Particularly, a non-linear stability proof is needed to consider input switching

scenarios.

The ADCS model is advanced enough to begin hardware in-the-loop (HIL)

testing and real-time simulations. A dSpace DS006 processor has been obtained

for this purpose. This will allow trials with engineering test units and other

mission hardware. In time this will lead to integration and testing with other

ARAPAIMA subsystems.
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As mentioned in Section 5.6, a deadband type e↵ect was observed during the

discrete controller simulations. A deadband region is currently being developed

which has shown small improvements during fixed gain tracking operations. Fur-

ther improvement on its implementation is expected to improve the performance

of all maneuvers.

The payload image feedback process needs to be modified to accept real images

and determine the projection parameters directly from them without having

access to the attitude quaternion.

Lastly, the controller and observer algorithms need to be tested for the scenario

in which optical measurements are unavailable from both the STR and the

payload optical array.
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A. ARAPAIMA Mission Time and Reference Frame Conventions

This document defines the conventions for time systems and reference frames used for

the Arapaima mission. The reference frames are divided into three groups, one group

comprises the spacecraft-based frames, the second group comprises the orbit-based

reference frame, and the third group comprises Earth-based frames.

Reference frames and conventions defined elsewhere in the the main document are

omitted.

Time Systems

The time is specified in the Julian Date system (JD), and it has at least eight

decimal places. According to (Vallado, 2013), eight decimal digits provide a reasonable

accuracy of 4⇥ 10�4 s. (Note that 1 s = 1.1574⇥ 10�5 days.)

Spacecraft-based Reference Frames

The spacecraft-based reference frames are defined below and most of them are

presented in Figures A.2 and A.3. All the reference frames are right handed (RH)

systems.
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Geometric Fixed Reference Frame (GFF)

The GFF is the reference frame with respect to which all the origins and orientations

of the other spacecraft-based reference frames are defined and measured. The origin of

the GFF is placed at the reference (fiduciary) marker, typically a retro-reflector cube.

Origin : At the spacecraft reference (fiduciary) marker.

O
x

: Parallel to some edge of the satellite bus structure. The positive direction on

chaser satellite is the opposite of the satellite face with the apertures of the

payload instruments.

O
y

: Normal to the O
x

axis. Positive direction: TBD.

O
z

: Completes the RH reference frame.

Laser Rangefinder Reference Frame (L)

The laser range finder reference frame is attached to the receiver telescope of the

rangefinder.

Origin : At the spacecraft reference (fiduciary) marker.

O
x

: Along the optical axis of the laser rangefinder receiver telescope. The positive

direction is towards the aperture of the telescope tube.

O
y

: As defined by the instrument maker.

O
z

: Completes the RH reference frame.
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Infrared Camera Reference Frame (IRC)

The infrared camera reference frame is attached to a camera lens.

Origin : At the spacecraft reference (fiduciary) marker.

O
x

: Along the optical axis of the camera. The positive direction is towards the

aperture.

O
y

: As defined by the instrument maker.

O
z

: Completes the RH reference frame.

Monochrome Camera Reference Frame (MC)

The monochrome camera frame is attached to the camera lens.

Origin : As defined by the instrument maker.

O
x

: Along the optical axis of the camera. The positive direction is towards the

aperture.

O
y

: As defined by the instrument maker.

O
z

: Completes the RH reference frame.

Star Tracker Reference Frame (STR)

The star tracker reference frame is attached to star tracker optics assembly.

Origin : As defined by the instrument maker.
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O
x

: Along the optical axis of the star tracker optics assembly. The positive direction

is towards the aperture of the optics assembly.

O
y

: As defined by the unit manufacturer.

O
z

: Completes the RH reference frame.

Figure A.1. RCS thruster placement on satellite body-frame.

Reaction Control System Thruster Reference Frames (RCS)

It is assumed that the reaction control system is made of sixteen thrusters grouped

by two in reaction control clusters. They provide attitude control torques about all
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body axes in both directions. Cluster C is made of thrusters one and two and it

is installed at the (�x
GF

, +z
GF

) corner of the satellite bus. Cluster B is made of

thrusters three and four and it is installed at the (+x
GF

, �z
GF

) corner of the bus.

Cluster D is made of thrusters five and six and it is installed at the (�x
GF

,�z
GF

)

corner of the bus. Cluster A is made of thrusters seven and eight and is installed

at the (�x
GF

, +z
GF

) corner of the bus. The remaining eight thrusters have been

added as redundancy to the system and they complete a mirror image of clusters A,

B, C, and D. The origin and axes directions for each RCS thruster reference frame

follow the convention described below.

Origin : At the point of application of the reaction force of the respective thruster.

O
x

: Along the optical axis of the star tracker optics assembly. The positive direction

is towards the aperture of the optics assembly.

O
y

: Along the axis of the respective thruster. The positive direction is towards the

exhaust plane of the thruster.

O
z

: Completes the RH reference frame.
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Figure A.2. Imaging array placement on the satellite body. The x-axis on the satellite’s
body-fixed frame is defined as being parallel to the imaging direction.

Orbit-Based Reference Frames

All orbit-based frames have their origin at the center of mass of the respective

satellite.

Local Vertical Local Horizontal Reference Frame (RSW)

The local vertical, local horizontal reference frame is also known as the Gaussian

reference frame or the radial, transverse, normal (RTN) frame.
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Origin : At the center of mass of the respective satellite.

O
x

: Along the line of position vector of the center of mass of the respective The

positive direction is towards the aperture of the optics assembly.

O
y

: Perpendicular to O
x

, positive direction in the direction of the velocity vector of

the satellite. Note that the O
y

axis of the RSW aligns with the

O
z

: Completes the RH reference frame.

Figure A.3. Illustration of the orbit-based and ECI reference frames.



109

Earth-based Reference Frames

World Geodetic System 1984 (WGS84)

The components of the position and velocity vectors obtained from the GPS module

are expressed with respect to the WGS-84 system (Imagery & Agency, 2000).

Origin : At the center of mass of the Earth.

O
x

: Intersection of the International Earth Rotation Service (IERS), Reference

Meridian (IRM), and the plane passing through the origin and normal to the

Z-axis. The IRM is coincident with the Bureau International de lHeure (BIH)

Zero Meridian (epoch 1984.0) with an uncertainty of 0.005”.

O
y

: Completes the RH Earth-Centered, Earth-Fixed system.

O
z

: The direction of the IERS Reference Pole (IRP). This direction corresponds to

the direction of the BIH Conventional Terrestrial Pole (CTP) (epoch 1984.0)

with an uncertainty of 0.005”.
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B. Extended Kalman Filter Gains

This document describes the process used to calculate the G, W , H , and V matrices

used in the EKF process outlined in Section 3.1.

The filter state is a ten element column vector derived from the quaternion

kinematics and rate gyro model. The kinematics are given in matrix notation as

˙̄q =
1

2

2

66666666664

0 �!
x

�!
y

�!
z

!
x

0 !
z

�!
y

!
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�!
x
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77777777775

2
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q0

q1

q2

q3

3

77777777775

,

where !
n

represents the true angular rate about the subscript body axis.

The rate gyro model assumes an individual sensor for each body axis. Thus, the

scalar equation

1

1 + S
g,n

(!
g,n

� b
g,n

� !
arw,n

) = !
n

,

is applied to each axis independently. Where S
g,n

is a scaling factor, b
g,n

is a bias

term and !
arw,n

is the angle random walk,

Substituting the gyro model equation into the quaternion kinematics yields the

non-linear state model
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(B.1)

S
n

and b
n

are also defined as part of the state:

ḃg =

2
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, (B.2)
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The complete estimated state is then

X(t,u,w) = [q0, q1, q2, q3, bg,x, bg,y, bg,z, Sg,x

, S
g,y

, S
g,z

]T , (B.4)

where u is the state input !
g,n

. It is assumed the system has non-additive noise so

the discrete linearization has the following form

g(u(k),X(k�1),w(k)) ⇡

g(u(k),µ(k�1), 0) +
�g(u(k),µ(k�1), 0)

�X(k�1)
�µ(k�1) +

�g(u(k),µ(k�1),w(k))

�w(k)
�w(k), (B.5)

g(u(k),X(k�1),w(k)) ⇡ g(u(k),µ(k�1)) +G(k�1)�µ(k�1) +W(k)�w(k). (B.6)

Where G and W are Jacobian matrices ((G. Blesser, n.d.)). The linearizion process

that follows in lengthy and unwieldy. Therefore, the process is shown in detail only

for the first state, q0, then the proceeding results are presented.

Consider the q̇0 term of the non-linear state equation

q̇0 =
1

2
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�
. (B.7)
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Its first-order partial derivative with zero noise corresponding to the first row of G

is

�q0
�q

i

(u,�µ, 0) =

1

2


�1

1 + S
gx,⇤

(!
g,x

� b
gx,⇤)�q1 �

1

1 + S
gy,⇤

(!
g,y

� b
gy,⇤)�q2

� 1

1 + S
gz,⇤

(!
g,z

� b
gz,⇤)�q3 +�b

g,x

(
�1

1 + S
gx,⇤

)q1,⇤ +�b
g,y

(
�1

1 + S
gy,⇤

)q2,⇤

+�b
g,z

(� �1

1 + S
gz,⇤

)q3,⇤ +
1

(1 + S
gx,⇤)2

(!
g,x

� b
gx,⇤)q1,⇤�S

g,x

+
1

(1 + S
gy,⇤)2

(!
g,y

� b
gy,⇤)q2,⇤�S

g,y

+
1

(1 + S
gz,⇤)2

(!
g,z

� b
gz,⇤)q3,⇤�S
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�
. (B.8)

And the partial derivative with respect to the noise w corresponding to the first row

of W is

�q0,⇤
�!

n

(u,�µ,w) =
1

2


�!

arw,x

(
1

1 + S
gx,⇤

)q1,⇤

+�!
arw,y

(
1

1 + S
gy,⇤

)q2,⇤ +�!
arw,z

(
1

1 + S
gz,⇤

)q3,⇤

�
. (B.9)

Equations (B.8) and (B.9) are brought into the discrete time domain using the

forward Euler method

y(k+1) = y(k) + T
s

g(t(k), y(k)), (B.10)
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where T
s

is the desired time step length. Which yields

�q0,(k) = �q0,(k�1) +
T
s

2


(� 1
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gx,(k�1)))�q1,(k�1) �
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� 1
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, (B.11)

�q0,(k) = �q0,(k�1) +
T
s

2


�!

arw,x,(k)(
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�
, (B.12)

respectively. Note that the equilibrium terms (⇤) simply become the conditions for the previous time step.
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Applying this method to the remaining nine states produces the complete G and W state estimation matrices

G(k�1) = T
s

2

66666666666666666666666666666666664

1
T

s

�dqx �dqy �dqz �dbx q1 �dby q2 �dbz q3 �dSx q1 �dSy q2 �dSz q3

dqx 1
T

s

dqy �dqz dbx q1 �dby q2 dbz q3 dSx q1 �dSy q2 dSz q3

dqx �dqy 1
T

s

dqz dbx q1 dby q2 �dbz q3 dSx q1 dSy q2 �dSz q3

dqx dqy �dqz 1
T

s

�dbx q1 dby q2 dbz q3 �dSx q1 dSy q2 dSz q3

0 0 0 0 1
T

s

0 0 0 0 0

0 0 0 0 0 1
T

s

0 0 0 0

0 0 0 0 0 0 1
T

s

0 0 0

0 0 0 0 0 0 0 1
T

s

0 0

0 0 0 0 0 0 0 0 1
T

s

0

0 0 0 0 0 0 0 0 0 1
T

s

3

77777777777777777777777777777777775

(k�1)

, (B.13)
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W(k�1) =

2

66666666666666666666666666666666664

0 �d!x q1 �d!y q2 �d!z q3 0 0 0 0 0 0

0 d!x q1 �d!y q2 d!z q3 0 0 0 0 0 0

0 d!x q1 d!y q2 �d!z q3 0 0 0 0 0 0

0 �d!x q1 d!y q2 d!z q3 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

3

77777777777777777777777777777777775

(k�1)

. (B.14)

Where

dqn =
1

1 + S
gn,(k�1)

(!
gn,(k) � b

gn,(k�1)), (B.15)

d!n =
�1

1 + S
gn,(k�1)

, (B.16)

dbn =
�1

1 + S
gn,(k�1)

, (B.17)
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dSn =
�1

(1 + S
gn,(k�1))2

(!
gn,(k) � b

gn,(k�1)). (B.18)

For simplicity, the measurement and correction matrices are assumed to be identity

H = I10⇥10, (B.19)

V = I10⇥10. (B.20)
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C. Simulation Block Diagrams

This document contains Simulink block diagram models of the control configurations

discussed in Chapter 5. They are intended to showcase the high-level system configu-

ration and provide more detail on the implementation of the di↵erent controllers on

the continuous and discrete domains.
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