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ABSTRACT

Franquiz, Francisco J. MSAE, Embry-Riddle Aeronautical University, May 2015.
Attitude Determination & Control System Design and Implementation for a 6U

CubeSat Proximity Operations Mission.

The purpose of this work is to discuss the attitude determination and control system
(ADCS) design process and implementation for a 12kg, 6 U (36.6cm x 23.9 cmXx
27.97 cm) CubeSat class nano-satellite. The design is based on the requirements and
capabilities of the Application for Resident Space Object Proximity Analysis and
IMAging (ARAPAIMA) proximity operations mission. The satellite is equipped with
a cold gas propulsion system capable of exerting 2.5 mN m torques in both directions
about each body axis. The attitude sensors include an angular rate gyro and star
tracker (STR), supplemented by the payload optical array cameras.

The dynamic simulation of the satellite includes extensive environmental models
and analyses that show how the satellite attitude is affected by aerodynamic drag,
solar radiation pressure, gravity gradient torques, and residual magnetic moments. A
mechanical propellant slosh model and a reaction torque analysis of the deployable
solar panel hinges approximate the internal dynamics of the satellite. A trade study
is presented to justify the use of a reaction control thruster actuated system over the
more traditional reaction wheel configuration. Both actuation systems are modeled to
hardware specifications and their propellant and energy requirements are examined
alongside pointing performance.

Two methods of accounting for sensor noise and sampling rates are presented. The
first is an extended Kalman filter based on the nonlinear model of a rate gyro coupled
with quaternion attitude kinematics. The second presents a gyro-less angular rate
observer capable of extrapolating STR measurements to the desired frequency. An
additional method uses images from the payload cameras to perform [camera] frame
centering maneuvers and to address the possibility of bias in the controller reference
signal.

Four different controllers are described to reflect the chronological progression of
the ADCS design. The first controller, designed to perform long angle maneuvers
and target tracking, utilizes fixed gain eigenaxis control. The same controller is then
augmented with a parallel proportional-integral-derivative (PID) type control law
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using scheduled gains. This configuration is designed to switch between eigenaxis
and PID control during imaging procedures to take advantage of the integral control
introduced by the PID algorithm. To reduce system complexity, a modified eigenaxis
control law, which incorporates scheduled integral control but does not require a switch
to PID control, is introduced. A discrete time equivalent of the modified eigenaxis
control law is also developed. Additionally, a brief description of a detumbling control
law is presented.

Each of the four control laws is paired and tested with the different feedback and
estimation methods discussed. An extensive showcase of numerical simulation results
outlines the pointing performance of each system configuration and evaluates their
capabilities of meeting a 1 arcmin (3 0) pointing requirement. A comparison of the
different properties and performance of each control system configuration precedes
the selection of the discrete modified eigenaxis control law as the best alternative.



1. Introduction

The objective of this thesis is to describe the design process and implementation
of an attitude determination and control system (ADCS) on a CubeSat class nano-
satellite platform. Rather than focusing on traditional stability and performance
requirements alone, the ADCS design has followed the development of the Application
for Resident Space Object Proximity Analysis and IMAging (ARAPAIMA) mission
since its conception. Therefore, the design approach emphasizes that the ADCS is
a component of a larger system. As such, environmental, dynamic, and hardware
modeling are all implemented to reflect projected mission scenarios and design choices
ranging from body geometry to available computational resources. The result is
an extensive model and simulation environment flexible enough to accommodate a
growing system.

The ADCS design is divided into three main areas: dynamic modeling, filtering
and estimation, and controller implementation. The dynamics of the system include
the environmental models and attitude mechanics which describe the translational and
rotational behavior of the satellite. The filtering and estimation models account for the
different hardware properties of the system sensors. Lastly, the controller design brings

the control algorithms together with the dynamics and estimation to ensure mission



performance requirements are met. Comprehensive results of the ADCS pointing

performance are presented to show the logical progression of the design process.

1.1 CubeSat Background

The increasing interest in low budget space missions together with continuing
advances in miniaturization of high performance electronics has lead to significant
growth in the development of small satellites. These satellites, designated nano-
satellites and micro-satellites, aim to fulfill missions of the same scope as their full-sized
counterparts at a fraction of the cost. The flexibility of their design and relatively low
complexity represent an opportunity for mass production and deployment at a scale
hitherto unseen in the space industry.

These advantages, along with rising commercial support, have enabled academia
to become involved in active projects and initiatives worldwide. The most noticeable
of these began at CalPoly with the development of the CubeSat standard in 1999
(RikiMunakata, 2009). Since then CubeSats, miniaturized satellites with volume
measured in increments of 10 cm? (1 U), have become associated with university space
research programs. These satellites usually weigh approximately 1km per U and
use commercial off-the-shelf (COTS) products to simplify the design process and
reduce the overall construction cost. However, further development of space qualified
electronics designed specifically for use on the CubeSat platform continues to close
the gap between the capabilities of nano-satellites and the historically traditional,

full-scale satellites. As a consequence, CubeSats have become the object of interest of



a wide range of educational, commercial, and governmental organizations with over

300 launched since 2000 (Swartwout, n.d.).

1.2 ARAPAIMA Mission

One such program, sponsored by the Air Force Research Laboratory (AFRL), is the
University Nano-Satellite Program (UNP). Originally conceived to participate in the
8th iteration of the UNP program, the ARAPAIMA mission proposes a reconnaissance
approach to perform visible, infrared (IR), and 3D imaging of Resident Space Objects
(RSOs) without a priori knowledge of their shape or attitude (Harris et al., 2013).
This process follows a set of autonomous approach and close proximity maneuvers
carried out with sufficient accuracy to allow rendezvous and docking maneuvers with
the RSO.

The mission is carried out by a 12kg, 6 U (36.6 cm x 23.9 cm x 27.97 cm) CubeSat
placed in low Earth orbit (LEO) at an altitude of approximately 500km and a
28.5° inclination. The CubeSat is equipped with an imaging array consisting of an
IR camera, a miniature laser rangefinder, and a visible light monochrome camera
arranged such that their respective imaging directions are parallel to each other as
shown in Figure 1.1.

To perform orbital approach maneuvers, the satellite is equipped with an R-134a
cold gas propulsion system operated by means of rapid solenoid valve actuation using
miniaturized 2D nozzles attached to the satellite body. The propulsion system is

comprised of 16 reaction control system (RCS) thrusters set up in pairs, each one
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Figure 1.1. Imaging array placement on the satellite body. The x-axis on the satellite’s
body-fixed frame is defined as being parallel to the imaging direction.

capable of producing up to 25 mN of thrust. The nozzles are positioned such that
a pure moment can be exerted about each body axis. With this configuration, four
nozzles lie parallel to each other in both directions of the x and z body frame axes
(Figure 1.2). These four nozzle clusters make up the orbital maneuvering thrusters
(OMTs) and provide a total 100 mN of thrust.

Imaging constraints require the ADCS to maintain a pointing error of less than
larcmin at 3o throughout all imaging procedures. This is the driving requirement

for the design process presented in this thesis.



|
XRES8 XRCSs14
@ IXRcs7 T @

r

IXRcs13
XACss Ysr
Torque RCS
Dir. Pair
+x 6,8,10,12
-X 2,4,14,16
+y 2,6,12,16
-y 4,8,10,14
+z 1,7,9,15
-z 3,5,11,13
Legend
B:  Body-fixed frame Note: Thruster pairs A, B, E, and
RCS: Reaction control system thruster F lie on the -YBF face of the
e Center of mass satellite body. Pairs C, D, G, and
Solar panel array H lie on the +YBF face.

Figure 1.2. RCS thruster placement on satellite body-frame.

Attitude control is performed by operating the RCS thrusters in pairs to apply
stabilizing moments. The thruster arrangement described above provides a full layer
of attitude control redundancy, since the RCS system is able to operate with four
nozzle pairs (pairs A BCD or E F G H in Figure 1.2).

The attitude determination system utilizes a combination of star tracker (STR) and
angular rate gyro triad sensor readings to meet the pointing performance requirements.
As a secondary attitude determination system, the satellite will also carry photo-diode

sun sensors. These are used during operational modes in which the star tracker is



unable to provide an attitude solution such as detumbling maneuvers. An onboard
GPS module is utilized to track the position of the satellite during orbital maneuvers

and complement the communications array.



2. Dynamic Modeling

The satellite dynamics serving as the process or plant for the ADCS are modeled as a
combination of attitude kinematics and orbital mechanics for a rigid body with six
degrees-of-freedom (DOF). These are further augmented by a set of environmental
models and conditions which contribute to the external disturbances acting on the
satellite body. Sources of internal disturbances are also considered. In addition,
detailed actuator models that capture the hardware operation and possible inaccuracies

are included as part of the internal body dynamics.

2.1 Rigid Body Dynamics

The satellite body is treated as a rigid body with constant mass and moment of
inertia (MOI). The forces and moments acting on the satellite’s body fixed frame

(defined as shown in Figure 1.2) are given by

F,=m(Vi+w x V) + Fy+ F.4, (2.1)



Where m and V,, are the body’s mass and velocity respectively; J is a diagonal matrix
containing the principal moments of inertia. All perturbing forces and moments acting
on the system are taken into consideration through the F,; and M, terms respectively,
and are propagated through the integration of the angular velocity w. Similarly, inputs
are introduced through the F,,; and M,,,, terms.

Changes to the satellite’s configuration that occur throughout the mission, such
as when appendages (solar panels, antennas, etc.) deploy, are modeled as impulsive
changes in the body’s moment of inertia. For the purpose of attitude control simula-
tions, the mass flow rate of the propellant is assumed to be sufficiently small for the

mass to be considered constant throughout imaging maneuvers.

2.2 Quaternion Kinematics

The attitude kinematics are described in terms of rotation quaternions. All
quaternions referenced henceforth are considered to be normalized unit-quaternions

and are defined as

G cos(¢/2)

0 sin(¢/2)é, cos(¢/2) 9o
(2.3)

Q|
I
I
I
Il

0 sin(¢/2)é, sin(¢/2)e Qv

g3 _sin(¢/2)éz_

where € is an arbitrary unit column vector and ¢ is an arbitrary angle through which

a 3D frame is rotated about é.



The quaternion kinematic equation in terms of the inertially-referenced body

angular velocity w is given by (Shuster, 1993) to be

(2.4)

Q-
Il
Qi
®
\.gl

N | —

where ® indicates quaternion multiplication, and w is the “pure imaginary” quaternion

equivalent of w defined as

w = [0, wx,wy,wz]T. (2.5)

The matrix notation equivalent of Equation (2.4) is

-1 _

q= 59w (26)
where ~ _

0 —w, —wy —w,

w,; 0 Wy —Wy

wy —w, 0 Wy

W, Wy —wy 0

Equations (2.1), (2.2) and (2.4) make up the full dynamics of the model and allow the
satellite’s state to be determined at any time ¢ based on known initial conditions.
The attitude error of the body is also expressed in terms of quaternions. The error

quaternion g, of the satellite is defined as the quaternion which describes the rotation
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from the current quaternion state to the command or reference quaternion q.,,q and

is defined as
qo. . B
qe = =Qq.nq%q. (2.8)
qo.
A simpler attitude error representation, the pointing angle error, is defined as the
angle from the body x-axis (imaging direction) to the desired x-axis as given by the

error quaternion. It can be extracted from the direction cosine matrix resulting from

the quaternion triple product

w = quq’, (2.9)

where @* is the quaternion complex conjugate and v is an arbitrary vector expressed

in the form of Equation (2.5). By factoring the v terms, this can be further expanded

as
(QQ(%—U 0 0 U1 Q% q192 143 U1
w = 0 (2¢2 — 1) 0 v| T2 |0 @ @l v
0 0 (2¢5 — 1) | |vs Qg e 4G | |vs
- . - LS (210
0 —qoq3  qog2 U1
2| qogs 0 —qoq1 | |val o

—qoq2  Qoq1 0 U3
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then

202 +2¢7 — 1 2q1g2 — 2q0g3  2q1q3 + 2qoq2 | |1

W= 12g1q5 + 2q0g3 268 + 203 — 1 2q2q3 — 2q0qu | |v2| - (2.11)

20103 — 20092 2q2qs + 2q01  2q5 +2¢5 — 1| |vs

The three-by-three matrix in Equation (2.11) is the direction cosine matrix which

rotates the vector v in the frame. Substituting the unit quaternion norm

1= \/Q§+Qf+<£+qg?, (2.12)

and taking the inverse cosine of the first term in Equation (2.11), results in the angle

between the x-components of v and w

W = arccos(qy + 4 — 65 — 43). (2.13)

Substituting the quaternion error g, into Equation (2.9) and letting v be the body

x-axis unit vector &, results in the pointing error es defined above

¢e = arCCOS(Q(Q],e + Q%,e - qg,e - qge)' (214)

)

2.3 Reference Frames

At this point it is useful to specify the reference frames utilized throughout the
different models. The body-fixed frame (BFF) has already been defined as seen in

Figures 1.1 and 1.2. The inertial frame or Earth-Centered Inertial (ECI) frame is
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described by (Schutz, Tapley, & Born, 2004) as follows: the x-axis is aligned with
the mean vernal equinox of the J2000 system and the z-axis is aligned with the
Earth’s angular velocity vector wg as shown in Figure 2.1. The y-axis completes
the right-handed coordinate system. This frame is used for all internal calculations
throughout the models, and it serves as a reference point for transformations between

different frames.

I ZEcl
ZECEF

XEci

Figure 2.1. ECI, ECEF, and NED reference frames. The latitude (A) and longitude
(¢) convention for an arbitrary point over the Earth’s surface with respect to the
ECEF frame is shown.

Another useful frame is the Earth-Centered Earth-Fixed (ECEF) frame, which

rotates with the Earth. Its x-axis points to the (0°, 0°) point on the Earth’s graticule
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and the z-axis points due North. It should be noted, however, that the z-axis does
not lie perfectly along w, due to polar motion.

Finally, some environmental models provide information on the North-East-Down
(NED) frame, a type of non-inertial, local tangent plane (LTP) reference system
usually used for aircraft navigation. In this system, the x-axis points to the polar
North (parallel to the LTP) while the z-axis points downward (nadir), towards the
Earth’s surface. The y-axis completes the right-handed frame and points East on
the LTP (Figure 2.1). Note that while the center of the NED frame is dependent on
the body’s location (relative to ECEF), the frame is not a body-fixed frame. Further

frames and conventions are defined in Appendix A.

2.4 Environmental Disturbances

To account for environmental conditions, a set of models is set parallel to the
dynamic equations discussed above. These models shape the disturbance moments
and forces acting on the system to mirror those of the ARAPAIMA mission scenario.
At the expected 500 km altitude, the effects of Earth’s gravitational and magnetic
field as well as its atmosphere are non-negligible (Wertz, Everett, & Puschell, 2011).

Therefore, they form the dominant aspect of the plant model.
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2.4.1 Aerodynamic Drag

At LEO, the atmospheric density and composition have a direct impact on the
satellite’s attitude especially when one considers its low mass and the size of the solar
panels relative to the body. Using the Mass Spectrometer and Incoherent Scatter
Radar Extended 1990 (MSISE90) atmospheric model it is possible to estimate the
density, temperature, and composition of the atmosphere as well as the number
densities of its components at a specified altitude on the ECEF frame (Hedin, n.d.).
Data from the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter
Radar Extended 2000 (NRLMSISE00) model, an updated version of the MSISE90
model, is also used since it contains additional data on Oxygen particles at altitudes
above 500 km (Picone, Hedin, & Drob, n.d.).

Aerodynamic torques are produced by the atmospheric particles colliding with
the satellite surface. Collisions occur at a higher frequency during maximum solar
activity resulting in larger disturbances. This worst case scenario has been assumed
for all aerodynamic calculations. The aerodynamic torques acting on the satellite are

estimated by Equation (2.15)
I 9
Mero = épdlag(voo)CMAlrefa (215)

where p is the mass density, V. is the freestream velocity, C); is the moment coefficient
vector, A is the projected surface area, and [, is the body reference length. Table 2.1

summarizes the values assigned to each constant.
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Table 2.1. Parameters and constants used to calculate the aerodynamic drag distur-
bance torque.

Parameter Symbol Value Units
Projected Area A 26.06 x 1072 m?
Reference length lres 0.1 m
Mass density p 1.02 x 1071 | kgm™3
Freestream velocity | Vi 7.612é kms™!

BF

Figure 2.2. Angle of attack (o) and angle of slip () definitions for the aerodynamic
drag on the satellite body-frame. These provide the orientation for the flow direction
in the DSMC iteration results.

At a nominal altitude of 500 km the NRLMSISEOO model gives an atmospheric
composition of 94% O and 6% N with a number density of n = 3.769 x 10"*m~3 at a
temperature of 1491 K. The mean free path between particles A = 27.33 km, which

compared with a reference length [,y of 0.1 m (taken to be approximately one-third
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of the maximum body dimension as suggested by (Wertz et al., 2011)) results in a
Knudsen number, K,, = A/l,.f = 273300 (Lyle & Stabekis, 1971). This indicates the
satellite operates in the free molecular flow regime.

Given the previous statement, the moment coefficients Cyy = [Ciy,, Cr,, Car,]" of
the satellite were calculated using the direct solution Monte Carlo (DSMC) program
DAC97, which employs algorithms based on the methods described by (Bird, 1994). A
variable hard sphere model has been assumed for the collisions between the particles
(O and N) and the satellite. V., = ||V|| has been assumed to be 7.612kms~*, which
is equivalent to the mean orbital speed.

A total of 1369 runs of the DAC97 code have been performed on the ARAPAIMA
body geometry for 37 different a and /3 values. The angle of attack was varied between
—90° and 90° in steps of 5°; the sideslip angle was similarly varied between 0° and
180° (the angle of attack and the sideslip angle are defined as seen in Figure 2.2). The
DSMC results are used to form 2D look-up tables which map the drag and moment
coefficients as functions of o and S as shown in Figure 2.3. Together with the total
mass density obtained from the MSISE90 model, Equation (2.15) is used to calculate
the aerodynamic disturbance torques at any orientation (Figure 2.4). The maximum
force coefficient corresponding to the drag coefficient in general aerodynamic terms is
approximately 2.0, which is within the expected range (2.0-2.2) for small satellites in

LEO (Wertz et al., 2011).
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Figure 2.4. Aerodynamic disturbance torques acting on the satellite body during one
orbit at a 500 km altitude and 28.5° inclination.

2.4.2 Magnetic Residual

The magnetic disturbance torque has two major sources: the force produced
on a point charge by the magnetic component of the Lorentz force, and the torque
experienced by an aspherical paramagnetic body which, in the absence of other torques,
aligns its long axis with the local magnetic field. This means that all electrically

conducting parts of the satellite contribute charges and produce time varying magnetic
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fields. Due to the complex nature of evaluating these disturbance torques, empirical
data is used to estimate their effect.

The Earth’s magnetic field Bg is predicted using the 2010-2015 World Magnetic
Model (WMM), which provides magnetic intensity, inclination, declination, and a
complete geometry of the field at any point in a —1km to 850 km range (z-direction)
in the NED frame (Maus et al., 2010). An estimate of the maximum magnetic torque
can then be obtained by merging all contributing magnetic effects into a residual
dipole moment specific to the satellite body and exposing it to the environmental

magnetic field (Wertz et al., 2011; Inamori, Sako, & Nakasuka, 2011)

M, = My X B, (2.16)

For the ARAPAIMA satellite, the magnetic dipole moment m,.,,,, is approximated to
be 0.1 Am? and aligned with the body y-axis thus m,,,, = [0,0.1,0]”7. The resulting

M., is calculated as shown in Figure 2.5.
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Figure 2.5. Magnetic disturbance torques acting on the satellite body during one orbit
at a 500 km altitude and 28.5° inclination.

2.4.3 Gravity Gradient

In order to have the body follow an orbital trajectory, a gravitational model of
Earth is used to determine the force acting on the satellite at any point in time. The
model implements the mathematical representation of the geocentric equipotential
ellipsoid described by the World Geodetic System 1984 (WGS84) (MathWorks, 2013).

When the center of mass of a satellite does not coincide with its center of gravity,

the variation of the Earth’s gravitational field over the volume of the spacecraft
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produces torques which, in the absence of other disturbances, will try to align one

of the body’s principal axes with the local gravity field vector (Curtis, 2013). This

disturbance is given by
(2.17)

where r is the satellite position in the ECI frame. The gravity gradient disturbance
contribution to the attitude dynamics are calculated by evaluating Equation (2.17)

along the satellite’s trajectory. The resulting moments are shown in Figure 2.6.

jx10" | | | |
—Torgue about x-axis
—Torgque about y-axis
05k | —Torque about z-axis

Torque (N)
o)
8]

-15

0 1000 2000 3000 4000 5000 6000
Time (s)

Figure 2.6. Gravity gradient disturbance torques acting on the satellite body during
one orbit at a 500 km altitude and 28.5° inclination.
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2.4.4 Solar Radiation Pressure

When solar photons collide with a satellite, the momentum exchange between
sunlight and the body surface results in a net pressure force called solar radiation
pressure (SRP). This pressure is a complex function of the shape and optical properties
of the satellite as well as the shading and solar intensity ®. The worst case scenario is
given by Equation (2.18) where ® is taken from an Systems Tool Kit (STK) simulation

for the day of January 1%, 2015

M,,, = (I)fsSS(Cl Ol (2.18)

The resulting Mj,, is shown in Figure 2.7. Note that the disturbances disappear

during the eclipse portion of the orbit. Additional parameters are listed in Table 2.2.

Table 2.2. Parameters and constants used to calculate the SRP disturbance torque.

Parameter Symbol Value Units
Surface area S 12.21 x 1072 m?
Moment arm ls 0.1 m
Reflectance factor ¢ 0.6 -
Average solar constant fs 1366 Wm 2
Speed of light c 3 x107® ms 2
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Figure 2.7. Solar radiation pressure disturbance torques acting on the satellite body
during one orbit at a 500 km altitude and 28.5° inclination.

2.5 Internal Disturbances

External factors are not the only sources of disturbances for a satellite; moving
parts and other mechanical interfaces also produce undesirable torques. Many of
these internal disturbances are also produced or exacerbated as a result of active
control. Because there is no ideal way to mitigate them, the controller must be able

to minimize both external and internal torques.
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2.5.1 Solar Panel Hinges

The solar panel hinges are loaded with torsion springs held by burn wire release
mechanisms which control the panel deployment. In order for the rigid body dynamics
outlined in Section 2.1 to be valid, the flexible joints must be modeled such that
any moment or force resulting from their movement can be incorporated into the
pre-existing dynamic equations. Assuming the solar panel themselves are inflexible,
the satellite can be analyzed as a system of rigid bodies with torsion spring joints.
Consider a single panel, connected to the main body by a spring-loaded hinge described

by the second order mass-spring-damper equation

M., = J,0,, + b0, + k6,,. (2.19)

Where M, is the input torque, Jy, is the panel’s moment of inertia, 6, is the spring’s
angular position, and b and k are the damping and spring coefficients respectively.
The input from the actuators results in a moment M. about the main body center
of mass. This moment is, in turn, opposed by the body’s angular acceleration such
that

T,, = M,y — Jp0,. (2.20)

Then the spring interaction with the rest of the body can be analyzed over time
according to

Mo — Jo0y = J,0,, + b0, + k6., (2.21)
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Where the subscript b indicates the quantities corresponding to the satellite body.
This analysis is then extended to account for all four solar panels simultaneously.
The resulting torques My, can now be added to Equation (2.2) as superimposed
disturbances. Although small in comparison to the external disturbances, modeling
this reaction is important in order to monitor and avoid exciting structural modes
through control actuation (Section 2.6.2). Based on the spring properties outlined in

Table 2.3, the damped frequency of the solar panel hinges

1 [k b\
=—\/=-—|= 2.22
Ja=5:\7 <2J) ’ (222)
is determined to be an average of 27 Hz.
Figure 2.8 shows the disturbance of a single panel due to angular acceleration of

the spring load. During deployment, the superimposed moments of the different panels

cancel each other. Table 2.3 shows the different spring properties for each panel.

Table 2.3. Properties and constants of the individual solar panel hinges. Spring and
damping coefficients were approximated from deployment video demonstrations. The
directions in parenthesis indicate in which body face the panel is located.

Symbol | 6 U (+Y/-Y) 3 U (+X/-X) Units
Spring coefficient k 100/90 100/110 Nmrad™!
Damping coefficient b 0.1/0.09 0.1/0.11 Nmsrad™?
Inertial load Jsp (3.5/3.55)x1072 | (1.6/1.55)x1073 kg m?




26

,x10” |
—6U Solar Panel Reaction Torque
O |
_05 | _
=3
00000 0SSOSO MO |
g
e}
|_
_1_5_ ................................................................................................................................ _
L P T F P RIS n
_2_5_ ................................................................................................................................ .
3 i i
0 500 1000 1500

Time ({s)

Figure 2.8. Solar panel hinge disturbance moment. The initial offset of is due to the
initial acceleration of the satellite and deployment of the solar panel

2.5.2 Propellant Slosh

Even in microgravity, liquid propellant slosh contributes directly to attitude
destabilization. In the case of the ARAPAIMA mission, slosh can hinder mission
completion by introducing unwanted angular momentum which could result in a
deviation from trajectory during orbital maneuvers or in oscillations of the pointing
axis which prevent sufficiently stable imaging. For this reason, a simple yet fairly

accurate mass-spring-damper equivalent mechanical model was incorporated in the
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simulation. A detailed analysis of this mechanical model designed specifically for the
ARAPAIMA mission was carried out by (Vazquez, 2014). A summary of the resulting
moment equation and parameters follows.

The model takes into account the propellant’s behavior through the Weber, Froude
and Bond numbers and is described by Equation (2.23) in terms of angular and linear

displacements as proposed by (Dodge, 2010)

Msl = _(Jx,() +msl,OHg)asl - Z msl,anl,n (fi'sl,n + Hsl,nasl,0> +g Z Mgt nTsin- (223)
0 0

Where J, o, Hy, and a4 are the respective moment of inertia, position, and angular
acceleration of the stationary propellant mass mg . 4, indicates the position of the
nth moving propellant mass mg; ,, along the spring direction, whereas Hy; ,, indicates
the position along the tank’s length. For micro-gravity scenarios, g represents the
translational thrust applied by the satellite. Figure 2.9 shows a second order (n=2)
representation of Equation (2.23).

Note that due to the nature of the mass-spring-damper representation, Equa-
tion (2.23) needs to be modified according to the expected motion along each axis
(especially depending on the alignment of the thrusters). The x-axis implementation
is given above. The output on all three axes for one orbit with a 65% propellant fill
ratio can be seen in Figure 2.10. Table 2.4 shows the parameters corresponding to

Equation (2.23) for a first mode model (n=1) with zero initial acceleration.
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Figure 2.9. Propellant slosh model diagram indicating a second order mass model
within a rectangular tank (Dodge, 2010).

Table 2.4. Parameters for a first mode slosh propellant slosh simulation at 65%
propellant fill ratio.

Fill ratio 65% Units
Linear acceleration Tsin 0 ms?
Height of fluid h 0.550 m
Tank width a 0.214 m
Oscillating mass my 0.695 kg
Stationary mass mo 0.341 kg
Initial position of mg | Hj 0.014 m
Initial position of my | H; 0.029 m
Moment of Inertia Jzo | 0.289 x 1073 | kgm?
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Figure 2.10. Propellant slosh disturbance moment.

2.6 Actuators

Originally the ARAPAIMA mission relied on reaction wheels (RW) to perform
attitude control; however, these are still dependent on the RCS thrusters to periodically
despin the flywheels. This dependency coupled with mass and volume constraints led
to descoping the reaction wheels in favor of an RCS thruster actuated control system.

A trade study which compares the attitude performance, propellant consumption, and
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electrical energy requirements of each actuator configuration is presented to justify

the decision.

2.6.1 Reaction Wheels

The RW model is based on the standard model of a brushed DC motor subjected
to static and dynamic imbalances. The physical properties of Sinclair Interplanetary
RW-0.03-4 flywheels were used to model the RW assembly (detailed in Table 2.5).
These are mounted so each RW’s spin axis is aligned with a particular body axis. The
generic open loop transfer function of a DC motor (neglecting friction and armature
inductance) is given by

Qo K,

= ) 2.24
V (Rimdrw)s + K2, (224)

Where €2,.,, and V' are the respective angular speed and voltage of the motor in the
Laplace domain. R,,, K,, and J,,, are the armature resistance, motor constant, and
moment of inertia respectively. s is the Laplace domain complex number frequency.

Additional disturbance torques due to the static and dynamic imbalances of
the flywheels are modeled as functions of the angular velocity w;.,, and imbalance

constants Uy, and Uy, as described by (Liu, 2007)

Us yw?yy o Si(Wi yt) + Us w2, , SI0(Wyey 2 1)

rw,y rw,z
My, = R, X Us7zwfw7z Sin Wy o) + Us,wwfw,gC Sin(Wyy o t) | (2.25)
Usﬁwwfw@ sin(wyy o) + Us,ywzw’y SIn (W yt)
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Ud7zwfwvz SIN(Wyp 1) — Ud7waw,y SIn Wy y )
My, = dewfw’z SIN(Wyp 2 T) — Ud%wfw’z Sin Wy 1) | - (2.26)
Ud,ngw,y Sin(wyy yt) — wawfw’w SIN(Wyep 2 t)

A PI controller is added to Equation (2.24), resulting in the closed loop reaction

wheel model

Qrw Km(kp rwS + kz rw)
= : ’ : (2.27)
R (erRm)32 + Km(kp,rw + Km)s + Kmki,rw

where k; ., and k,,,, are the integral and proportional control gains respectively.
The resulting torque applied to the body is a function of the RW angular momentum

H,,, and dependent imbalances

Mrlw = Wy X H,«w + MUS + MUd- (228)

Table 2.5. Reaction wheel model physical constants and control gains.

Parameter Symbol Value Units
Moment of inertia Jrw 5.109 x 10™° | kgm?
Armature Resistance R, 2.9 Q
Motor torque constant K,, 1.12x 1072 | NmA~!
Nominal momentum homaz 4.28 x 1072 Nms
Dynamic imbalance coefficient Uy 1.00 x 1071 | Nms?
Static imbalance coefficient U, 5.00 x 10710 N s?
Proportional gain Ky 1.65 -
Integral gain Kiruw 54.76 -
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2.6.2 RCS Thrusters

The RCS thruster model utilizes pulse width modulated (PWM) signals to ac-
curately represent rapid valve actuation. The PWM command regulates the torque
applied to the body and approximates a ‘throttleable’ actuator. The throttle action is
linear over the entire operational range for a set of user specified frequencies (approxi-

mately 1Hz to 100 Hz as shown in Figure 2.11), at increments of 1% of the maximum

thrust (Huang, 2014).
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Figure 2.11. Thrust command (top) and resulting valve operation signal (bottom).

Keeping the frequency constant, it is possible to produce the average desired

thrust value over time by controlling the signal duty cycle. The amount of time the
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valve remains open t,.s is proportional to the ratio of the desired thrust T,,,; and the

maximum available thrust 7;,..

1 Tcmd

trcs B fTCS Tmax ' (229)
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Figure 2.12. Thrust command (top) and resulting valve operation signal (bottom).
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Figure 2.12 illustrates the variation of Equation (2.29) with respect to the command
signal magnitude when the valves are operated at 10 Hz. The resulting thrust (7;..s)

from the RCS model must then be considered a function of time as follows

0 ' > tres
Tm(t’) = , (2.30)

where t' is an arbitrary periodic time variable with range [0, 1/ f,s]. The resulting

torque applied to the body is then

M,.s(t) = 2lyesTres(t). (2.31)

where the moment arm [, is set to be 5cm for all thrusters.

A separate model is implemented to account for manufacturer imperfections and
installation misalignment, which affects the resulting thrust and torque produced by
the thrusters. Small deviations (within the bounds of +£1%) from the ideal conditions,
4, are applied to each thruster’s maximum thrust, nozzle placement, and angular
offset. Additionally, the model accounts for the thrust component normal to the
surface of the satellite, Ty;4., which depends on the center of pressure (C,) of the
nozzle’s exhaust plume. The location of C), is also subject to a random offset. The
altered control moment acting on the body is a function of all the different deviations

M, . = 2diag(l,cs + ;) |C () (Tres(t') + 07) + diag(Tyiae) (Cp + ) | - (2.32)

rcs



35

Where C(§,) is the direction cosine matrix of the thrust offset angle ¢. Additional

model parameters and other physiscal quantities are detailed in Table 2.6.

Table 2.6. RCS thruster model parameters and propulsion system constants.

Parameter Symbol Value Units
Maximum Thrust Tz 25 x 1073 N
Specific impulse I, 60 s
Minimum pulse width timin 2 x 1073 S
Operating frequency fres 10 Hz
Thruster moment arm lyes 5x 1072 m
Side thrust Tyide 0.01(T ez N
Center of pressure C, 3 x 1072 m
Nozzle location offset 0 rand(0.01(l,cs)) m
Nozzle direction offset 0 rand(1.75) rad
Center of pressure offset Ocp rand(0.01(C),)) m
Thrust magnitude offset or rand(0.01(T naz)) N

2.6.3 Trade Study

The comparison between actuators focuses on the three areas of greatest impact
to the mission: accuracy, propellant consumption, and electrical energy required. A
250 m relative orbit about the RSO at a 500 km altitude is simulated for each type of
actuator. The satellite completes a full orbit while performing target tracking. Both
executions utilize the same solver (odel4x), simulation time step (1 ms), and include

all aforementioned disturbances. The operating frequency of the RCS thrusters is set

to 10 Hz.
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Figures 2.13 and 2.14 show the pointing accuracy achieved with each actuator

during the simulation. While both systems meet the target requirements, the thruster

controlled system is shown to be an improvement of approximately one order of

magnitude over the RW actuated system.
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Figure 2.13. Pointing accuracy of RW
system during target tracking and dis-
turbance rejection.
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Figure 2.14. Pointing accuracy of RCS
thruster system during target tracking
and disturbance rejection.

The propellant consumption of the RCS system is determined assuming the

mass flow rate per pulse is constant (no loss of pressure). The consumption rate

is approximately constant for the simulated maneuver since the tracking motion

dominates the pointing performance. This results in a total usage of 7.58 x 10~ kg

for a single orbit period.
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The propellant consumption of the RWs is based on the burn time required to
offload the stored momentum h
h

tourn = ———- 2.33
’ 2Tmaxlrcs ( )

The amount of propellant required is then

Mprw = mproptburna (234)

where the mass flow rate is defined as

. _ TmCLZE
Mprop = I

, (2.35
spdE )

where I, is the specific impulse of the propellant and g. is the acceleration due to
gravity at sea level.

Figure 2.15 shows the angular momentum stored in each RW throughout the
simulated maneuver. The RWs reach approximately 15.85%, 8.54% and 19.22% of
their saturation value respectively. A total of 6.34 x 10~*kg of propellant is required

to offload the combined momentum for a single orbit.

Energy Consumption

Since the base model of the RWs is that of a DC motor, its energy consumption is

simply the product of the voltage supplied by the controller and the current drawn by
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Figure 2.15. Angular momentum stored per axis in RWs in a single orbit during target
tracking and disturbance rejection.

the motor integrated over time. Figure 2.16 shows the energy required to operate the

RWs over a single orbit period. The sum of the energy consumed per axis results in a

1.019 x 103 J total. Similar analysis on the RCS pulse signal reveals 2.392 x 10%J of

energy is required for operation.

Table 2.7. RCS thruster and RW trade study results.

Parameter RCS RW Units
Accuracy (30) 0.07 0.7 arcmin
Propellant 7.58 x 107* | 6.34 x 10~* kg
Energy 2.392 x 10° | 1.019 x 103 J
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Figure 2.16. Reaction wheel energy consumption per axis in a single orbit during
target tracking and disturbance rejection.

The overall performance, restated in Table 2.7, suggests the RCS thruster system

is more costly to operate despite its superior accuracy. However, the RW system relies

on the thrusters because it requires regular offloading. This represents an inherent

power cost proportional to t,,, and increased operational complexity due to the

accompanying attitude correction maneuver. Additionally, the operational cost of the

thrusters can be reduced by adjusting the operating frequency f.s.

Based on this analysis, the RWs are considered to be unnecessary in the present

system and may be excluded. In addition to reducing the mass and volume required



40

by the ADCS, removal of the RWs circumvents the need for angular momentum
management maneuvers. Moreover, the RCS thruster configuration is sufficient to
preserve attitude control redundancy. All further results utilize the thruster actuation

model exclusively.

2.7 Sensors

The ADCS primary attitude determination method consists of utilizing the STR
quaternion solutions and angular rate measurements to feedback the attitude states
required by the control law. In order to account for measurement uncertainty, simple
models based on manufacturer specifications are used to introduce noise directly into

the feedback signal.

2.7.1 Star Tracker

The STR model is based on the Nano Star Tracker developed by Blue Canyon
Technologies. This presents an advantage because the STR delivers attitude informa-
tion directly in quaternion format. Therefore, all present uncertainties are attributed
to white noise and are assumed to be independent of internal process error.

The star tracker output is represented as a combination of the true quaternion

solution and the quaternion representation of its roll and bore-sight uncertainties as

indicated in Table 2.8

qstr = q @ (q_str,bs ® QStT,r>- (236)
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Within the model, G55 and @s, are calculated by defining random offset angles ¢,
and ¢, that follow the accuracy distributions oy, ps and oy, respectively. Consider
two arbitrary unit vectors €,s and €, as defined in Equation (2.3), where & is

perpendicular and é, is parallel to the body x-direction. Then

cos(ps/2)
QStr,bs = (237)
sin(gbbs/Q)ébs
and
cos(60/2)
q_str,r = (238)
sin(¢,./2)é,

Note that é,s, ¢,, and ¢y are not fixed values; instead they are randomly generated

at every simulation step.

Table 2.8. STR hardware parameters based on the Blue Canyon Technology Nano
Star Tracker.

Parameter Symbol | Value | Units
Update rate Jstr ) Hz
Bore-sight accuracy O strbs 6 (lo) | arcsec
Roll axis accuracy ostrr | 40 (10) | arcsec
Nominal operation range - <1 °g~!
Off-nominal operation range - <4 °gt

2.7.2 Angular Rate Gyro

The angular rate gyro model is based on the Nano Inertial Measurement Unit

(IMU) developed by MEMSENSE. The model assumes the rate gyro triad can be
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analyzed as three separate sensors each collecting information about a single body

direction. Furthermore, measurements are assumed to be affected by bias b,, scaling

Sy and white noise Wy,

A simple gyro model for this set of assumptions is given by (Flenniken, 2005)

wyg = (14 Sy)w + by + Wary-

(2.39)

Note that there is no way of determining the scaling and bias values other than through

empirical data of the specific hardware in question. Therefore, random constant values

are assigned at the beginning of each simulation based on the deviations specified in

Table 2.9.

Table 2.9. IMU hardware paramaeters based on the MEMSENSE Nano IMU series.

Parameter Symbol Value Units
Update rate foyro 50 Hz
Angle random walk Warw | 1.66 x 1072 (10) | rads™?
Bias random walk Wprw | 2.62 x 1072 (10) | rads™
Scaling Random walk |  wg, 0.10 (10) s1
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3. Filtering and Estimation

The sampling rate and accuracy of the system sensors have a direct impact on the
ADCS performance. After implementing the sensor models discussed in Section 2.7,
two different methods of state estimation are proposed: an extended Kalman filter

(EKF), and a gyro-less rate observer.

3.1 Extended Kalman Filter

Some of the control laws presented in Chapter 4 require simultaneous quaternion
and angular rate error measurements. However, the maximum sampling rate of the
gyro is 50 Hz whereas the STR’s is 5 Hz. Therefore the main purpose of the EKF in
our system is to propagate the quaternion solution of the STR between measurements
using the quaternion kinematics discussed in Section 2.2.

Consider the attitude kinematics presented in Equation (2.6)

Wy 0 W, Wy Q1

-
I

Wy Wy —Wg 0 qs
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where w,, represents the true angular rate measured by the rate gyro about any of the

BFF axes. Then, solving Equation (2.39) for w,

1

Wy, = ——
1+ Sgn

(W — bgn — Warw)- (3.1)

Note that although b, and S, cannot be measured, they can be included in the

estimation process by

by« Wy prw 0 0

by=lby| =| 0 wow 0 |> (3.2)
bg x 0 0 Wy
Sg z Wsrw 0 0

Sg= 1S, =1 0 wyw 0 (3.3)
S,z 0 0 Wy

Where w,..,, and ws,,, are random constants based on the hardware properties specified
Table 2.9.
Together, Equations (2.6) and (3.1) to (3.3) form the state & to be estimated by

the EKF

T = [QOa q1,42, 43, bg,xa bg,yu bg,27 Sg,:va Sg,ya Sg,y]T~ (34)
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Appendix B shows the linearizion and discretization process in detail. The procedure
for the discrete EKF implementation is summarized here.

The estimation process uses a predictor-corrector approach, which assumes a
general, non-additive noise model (G. Blesser, n.d.). The predicted state p? and state

covariance PP are calculated according to

pi = g, pe1), (3.5)

P! = G.P_\G] + W RW/. (3.6)

Where G is the state transition matrix, R; is the process noise covariance matrix, and
W, is the “noise transition” matrix, required by the non-additive noise calculations.

The corrected or updated states are calculated using the Kalman gain K,

K,= Pl H/(H,P H/ +V,Q.V,")™", (3.7)
p = g + Ky [zt - Htuf] , (3.8)
P, = (I - K.H,)P?. (3.9)

Where H,; is the measurement correction matrix, Q; is the measurement noise co-
variance matrix, and V; is the “measurement walk” matrix corresponding to the
non-additive noise model. z; is the measurement update from the STR.

The EKF performance is measured by calculating the quaternion error as defined

in Equation (2.8), taking gunq to be the true attitude solution given by the plant and
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q as the EKF output. Figure 3.1 shows how the quaternion error converges over time.

Cuaternion Error

Quaternion Error

Quaternion Error

Cuaternion Error

Figure 3.1. Quaternion Error between the true plant output and the EKF output
with an STR update rate of 5 Hz and a gyro sampling rate of 50 Hz.

Note that the EKF only estimates the quaternion feedback; it is not designed to
filter the white noise from the gyro measurements. Additionally, the EKF quaternion

input corresponds to the simulated STR quaternion as defined by Equation (2.36).
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3.2 Angular Rate Observer

An alternative solution to the EKF is presented by (Thakur, Mazenc, & Akella,
2014) in the form of a smooth angular velocity observer. This solution estimates the
body angular rate based solely on the STR quaternion solution and does not require
gyro measurements or corrections. The estimation law is proven to be stable through

partial Lyapunov strictification and is defined using quaternion observer kinematics

Q-

= JE(@)(@ +2CT(@)d.) (3.10)

w=C"(@)J " |vG, — S(@P)J&P + Meyna — NI S(q,)(@7)]. (3.11)

Where A and « are tuning parameters and

WP =C(qw. (3.12)

In this notation, g and @ represent the estimated quaternion and angular rates
respectively. Their counterparts g and @ represent the corresponding estimation
errors. In turn, C' and S represent the cosine matrix and skew symmetric matrix of
their respective arguments. E represents a collapsed quaternion matrix analogous to

Equation (2.7) defined as:

E(q) = (3.13)
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Although limited by the operational conditions of the STR, this approach has the
advantage of estimating both quaternion and angular rate values without the need
for additional hardware. To account for the STR sampling time, a zero order hold is

placed on the continuous signal and is linearly extrapolated between measurement

updates.
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Figure 3.2. Quaternion Error between the true plant output and the angular rate
observer.

Figure 3.2 shows the error of the quaternion estimation. Notice that the error

magnitude remains constant with a zero mean instead of converging towards its steady
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state value like the EKF. As with the EKF, the inputs to the observer correspond to
the simulated sensor signals.

The estimated angular rates cannot be compared directly to the measured rates
because the sensor model output is never used as an input to the observer. Instead,
Figures 3.3 to 3.6 showcase the observer performance by comparing the estimate
(at an STR sampling rate of 1Hz) directly to the true values. The unused sensor
signal is included to present a qualitative comparison between the true, measured,

and estimated values.
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Figure 3.3. True angular rate about the BFF x-axis during target tracking.

Figure 3.4 shows the expected sensor output lies in the 1 x 107! rads™! range

1

whereas Figure 3.3 shows the true value is in the 1 x 1073 rad s~! range. The estimated



50

rate error (Figure 3.6) is of the same order of magnitude as the true data but the
estimated rates are seen to follow the same general progression of the true rates.
This performance is shown in Chapter 5 to provide sufficient accuracy to achieve the

pointing requirements.
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Figure 3.4. True angular rate about the BFF x-axis with gyro sensor model noise.
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Figure 3.5. Estimated angular rate about the BFF x-axis during target tracking.(The
STR sampling rate was set to 1 Hz)
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Figure 3.6. Error between true and estimated angular rate in the BFF x-axis.(The
STR sampling rate was set to 1 Hz)
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4. Controller Design

The ARAPAIMA mission has stringent attitude requirements that vary as the opera-
tional modes progress. Aside from orbital maneuvers, the mission requires the ADCS
be able to perform detumbling, slew, target tracking, and frame centering maneuvers.
Individual maneuvers and the transitions between them must also preserve stability
requirements. The different control configurations presented in this section focus on
addressing each mission maneuver. They also follow the chronological evolution of the

ADCS design and the rationale behind same.

4.1 Eigenaxis Control

The slew and target tracking control mode is based on the quaternion feedback
regulator proposed by (Wie, 1985). It consists of linear error quaternion feedback and
both linear and nonlinear angular rate feedback which counteract gyroscopic coupling
torques. This approach is based on eigenaxis rotations and is analogous to the well
known PD controller. It is designed for large angle maneuvers and both its global
stability as well as its robustness to inertia matrix uncertainty are proven in relation to

various spacecraft applications (Wie & Lu, 1995). One minor modification suggested
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by (Pong et al., 2010) changes the angular rate feedback term w to angular rate error

feedback w, defined simply as

We = W — Wref, (4.1)

where w,. is the reference angular velocity.

The regulator control output is the expressed as a command torque

Mg =—wx Jw - Kyw, — K,q.,, (4.2)

where K, and K, are gain matrices of the form K = aJ. According to (Wie, Weiss,
& Arapostathis, 1989), the gyroscopic decoupling feedback w x Jw is unnecessary for
slow tracking maneuvers. In such cases, Equation (4.2) reduces to the linear control

law

Mcmd = _dee - quev- (43)

4.2 PID Control

Some operations such as detumbling, frame centering, and inertial pointing require
terms to approach a zero steady-state error. The eigenaxis control law lacks integral
terms, resulting in unavoidable error offset or bias. Integral control action is introduced

into the system by switching to a PID-type controller implemented about each axis.
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A PID control law that utilizes the vector portion of the same input error quaternion

parameter as Equation (4.3) is defined as
K;
Mcmd = - |:Kp + ? ‘I’ Kd3:| qeva (44)

where K is also a gain matrix of the form K = aJ.

This control law has a marked advantage over the eigenaxis law in that it does not
have angular rate inputs, which means it is only affected by the STR white noise. It
must be noted, however, that this approach depends on the pointing error being small
at the moment of switch so the dynamics are decoupled. Otherwise, integral control

could drive the system unstable.

4.2.1 Gain Scheduling

Using the star tracker quaternion attitude solution, it is possible to apply Equa-
tion (4.4) to different types of maneuvers by choosing appropriate gains for each.
Instead of creating a new control law for each application, gain scheduling is utilized
to apply the same law to different control modes. The scheduling scheme is described

as a function of time by

p =p1+ f(t)(p2 —p1)
i =i+ () (i — i) (4.5)

d =di+ f(t)(dy — dy)
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where p, i, and d are the scalar terms of the gain matrices in Equation (4.4). f(t) is a
type of smoothstep function (ramp function with smooth edges) with an arbitrary slope
m that controls the duration of the control switch transition shown in Figure 4.1. By
setting the integral term ¢; to zero at the moment of switch, it is possible to transition
smoothly between control modes as this reduces the ‘bump’ effect of switching between
controllers with different integral terms. The switch performance can be further

improved by resetting the PID integrator and gain transition simultaneously.
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Figure 4.1. Smoothstep scheduling functions ensure a continuous gain transition.
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4.2.2 Detumbling

Detumbling operations require the body angular rates be reduced past a specified
threshold within a set of given constraints, usually determined by the time or energy
limitations of the system. A simple PI law results from applying Equations (4.4)

and (4.5) with dy = 0, which is used to bring the angular rates to zero

K;
Mg = — |:Kp + ?:| We. (46)

4.2.3 Image Feedback

Imaging operations require high accuracy and are sensitive to measurement noise
and bias in the controller input. Visual feedback utilizes the payload cameras at high
sampling rates to generate a secondary set of command inputs based on the position
of the RSO in the payload’s field of view (FOV). Assuming there is no significant
optical noise, this provides unbiased information which can be used to perform frame
centering maneuvers.

Figure 4.2 illustrates how the pointing error angle ¢, can be described as a function
of the distance between the satellite and the RSO, and the Az and Ay projection
parameters. Instead of the quaternion error seen thus far, the projection parameters
are used to direct the necessary Y-axis and Z-axis rotation commands

K, —Ax
Mcmd = — |:Kp + ? + Kd8:| . (47)

Ay
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RSO - =
projection

Y Body

Figure 4.2. Projection of the RSO on the camera FOV superimposed on a 2D Cartesian
coordinate system used for frame centering.

In practice, it is not possible to obtain 3D attitude information from a 2D projection
without multiple reference points obtained from the star field in the background or
by feature detection of the RSO. For the ARAPAIMA mission, it is assumed that a
constant angular rate is induced about the BFF x-axis prior to the frame centering
maneuver such that the solar panels are kept in sunlight (but not enough to interfere
with imaging operations). Therefore, no control torques are exerted about the body
x-direction throughout the maneuver.

The simulation model is not yet advanced enough to accept a stream of pictures

to determine Ax and Ay. Therefore, the projection parameters are obtained from the
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true (noiseless) quaternion error and the distance L, , between the satellite and the

RSO as
N
Az = _Lrso [%} ’
eXq,
e ﬁ_l : (4.8)
Ay = Lrso {Lqel} .
lgezq: | 15

Where # is the BFF x-axis unit vector and q.2q_ ' is the quaternion rotation of &
(Kuipers, 1999). Note that only a single element of the normalized vector is considered,

as specified by the subscript outside the square brackets.

4.3 Eigenaxis with Integral Control

With the implementation of the angular rate observer (see Section 5.2.2), the
performance of the eigenaxis and PID control laws is close enough to prompt the
question of whether the complexity added by switching controllers is justifiable. An
alternative solution was proposed by (Wie, Bailey, & Heiberg, 2002), which involves

adding an integral control term to the quaternion error feedback in Equation (4.3)

Mcmd = _dee - quev - Ki/qe,v- (49)

Gain scheduling is applied in the same manner as with the PID controller

Mcmd - _J(dwe — P4e, — i/qev) . (410)

Where d, p, and i vary according to Equation (4.5). In order to avoid possible

instability introduced by the integral term, ¢ is set to zero during rapid slews and
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large angle maneuvers. It is then scheduled to the proper value during frame centering

and imaging operations.

4.3.1 Image Feedback

Since the image feedback process described in Section 4.2.3 gives projection pa-
rameters as inputs, Equation (4.9) has to be modified in order to work properly. A

time derivative term is added to the quaternion error feedback such that

. d
Mcmd = _J(dwe +pQGU + Z/qev + aneu) : (411)
or, in the Laplace domain
Mpa=—J [dwe + (p +2 US) qev} . (4.12)
s

Where v is another gain constant that can be scheduled according to Equation (4.5).

As with 4, v is set to zero during all maneuvers for which it is not required.

4.3.2 Controller Discretization

A necessary step in the ADCS development is the discretization of the control
law, estimators, and feedback algorithms. For the moment, it is assumed that the
control law and estimator are implemented as part of a larger flight software that will
manage communication with the sensors and other hardware. The EKF algorithm

was designed from the start as a digital system and as such requires no discretization.
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Similarly, the rate observer together with the input extrapolator acts similar to a first
order hold (FOH) system which also requires no discretization other than using an
appropriate order numerical integrator to solve Equations (3.10) and (3.11).The main
concern is then the discretization of the controller.

Equations (4.4) and (4.12) contain all the terms of interest that require discrete
representation. Using the forward Euler integration method as given by (Franklin,

Powell, & Workman, 1990)

m0:/f@ﬁ, (4.13)

(k+1)T
/ ()t = y((k+ DT.) — y(kT), (4.14)

t=kTs

where £ is simply the discrete time step counter, and T} is the sampling time constant.

It is possible to express the Laplace domain integral

Y@)zéF@% (4.15)

as a discrete domain or Z domain approximation

F(2). (4.16)
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Therefore, the simple relation

1 1
-~ T, , 4.17
s z—1 ( )
can be used to discretize the control equations.
The PID controller is given as
T. N
J —— +d o 4.18
Pt N E |0 (4.18)

where the discrete time derivative has been changed to better represent the control
algorithm implementation. In the continuous time model, filtered time derivatives
are preferred because they can be implemented by using an integrator feedback loop.
The same format was followed in the discrete model, which makes Equation (4.17)
the only substitution necessary in the discretization. Figure 4.3 gives a block diagram
representation of the filtered time derivative. IV is simply a filter gain which can be
tuned to affect the response of the pole filter in the derivative. A default value of 100
is used throughout the model.

CO )i (D)

Input Output Input Qutput

Filter Gain Filter Gain
KTs
z1 |

Continuous-Time
Integrator

Discrete-Time
Integrator

(a) Block diagram of discrete time derivative  (b) Block diagram of continuous time deriva-
feedback loop representation in Simulink. tive feedback loop representation in Simulink.

Figure 4.3. Continuous discrete and filtered Time derivative block diagrams
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The modified eigenaxis control law defined in Equation (4.12) can now be discretized

in the same fashion

T. N
M,,..=—J|dw, —— e |- 4.19
d |:w+<p+zz_1+U1+NzTTbl)qu:| ( )

At this point, it is useful to note that the control and estimator algorithms can
have different sampling constants Ts. Additionally, sensor sampling rates can be set
to arbitrary multiples of T,. This allows the system performance to be evaluated in
multiple scenarios that reflect the availability of resources in the ARAPAIMA on-board

computer (OBC).

4.3.3 Transient Stability Analysis

The gain scheduling technique applied throughout this section gives rise to a
concern regarding system stability during gain transients. While each control law
presented ensures stability (given their respective conditions and assumptions are
valid), their individual properties do not guarantee stable transient behavior. This
behavior depends solely on how the gain scheduling is executed. In turn, this presents
a set of restrictions on the controller tuning.

Stability analysis is carried out by linearizing the plant at predetermined time
“snapshots”, beginning at the moment of switch. A pole-zero map is then produced at

each point to examine the system transient behavior.
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The results presented in Chapter 5 correspond to maneuver specific gain values for
a 10s gain transient. The analysis presented here examines a similar case for a PID
controller (Equation (4.4)) in a target tracking, disturbance-free, scenario. The initial

and final gain values (identical to those in Section 5.2.2) are listed in Table 4.1.

Table 4.1. Gain parameters for transient behavior pole-zero mapping.

Parameter Symbol | Value
PID proportional gain at switch D1 0.35
PID derivative gain at switch dy 0

PID integral gain at switch 11 0

PID proportional gain post-switch Do 0.75
PID derivative gain post-switch do 0.50
PID integral gain post-switch U9 0.025

The first 100s of the simulation are linearized at “snapshots” of (0, 2, 4, 6, 8, 10,
12.5, 15, 20, 25, 30, 40, 50, 75, and 100) s. The resulting pole-zero maps are shown in
Figure 4.4. Although the system is stable for the initial and final gain values, adding
a non-zero integral gain yields an unstable system for the first 8s after switching
gains. This coincides with the increase in pointing error at the moment of switch
seen in Figures 5.5 and 5.7. From the controller performance results, it seems evident
this brief instability period does not affect the overall target tracking performance.
However, any disturbance irregularity occurring during this period could potentially

cause severe system instability.
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Figure 4.4. Pole-zero map for unstable gain transient.

The issue is readily solved by modifying the initial gain values such that d; # 0,
and increasing the gain scheduling transient duration so the integral gain occurs more
gradually that the rest. A set of gain values which yield a stable transient system is
shown in Table 4.2. Note that the gain transient period is 10s for the proportional
and derivative gains, and 20s for the integral gain. The resulting pole-zero maps for

the same “snapshots” discussed above are shown in Figure 4.5.
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Table 4.2. Modified gain parameters for stable transient behavior pole-zero mapping.

Parameter Symbol | Value
PID proportional gain at switch D1 0.50
PID derivative gain at switch dy 0.25
PID integral gain at switch 11 0

PID proportional gain post-switch Do 1.0

PID derivative gain post-switch dy 0.75
PID integral gain post-switch 19 0.050
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Figure 4.5. Pole-zero map for stable gain transient.
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5. Numerical Simulations & Results

The numerical simulation outline follows the format of a simplified closed-loop control
system. As such, its components are divided into three main subsystems: the plant, the
controller, and the filter. The plant incorporates all internal and external disturbances
described in Chapter 2. These are produced by environmental models within an
orbital mechanics simulation in which the ARAPAIMA satellite has established a
250 m relative orbit about the target RSO. This orbit lies at an altitude of 500 km
from the Earth’s surface, at a 28.5° inclination.

The controller applies the different control configurations discussed in Chapter 4,
and provides the necessary torque commands to track the RSO with an accuracy
of 1larcmin at 30. The true pointing error of the satellite, its running mean, and
deviation, are calculated parallel to control laws; these serve as the primary measure
of the system performance. Lastly, the filter, placed downstream and in series with
the sensor noise models, estimates the plant state by implementing the procedures
outlined in Chapter 3. The different subsystems can be assigned their respective
operating frequencies to give a better approximation of the system performance under

different environmental or computational constraints.
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5.1 Simulation Parameters

Most of the results presented in this chapter show the tracking performance of the
satellite for a set of attitude quaternion and angular velocity profiles which correspond
to a relative orbit about the target RSO. These reference signals (Figures 5.1 and 5.2)
and their respective initial conditions were obtained from an ARAPAIMA mission

STK simulation. Initial conditions and other global simulation parameters are given

in Table 5.1.

x10°

—Angular Rate about x-axis
—Angular Rate about y-axis
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Figure 5.1. Attitude quaternion reference Figure 5.2. Angular rate reference pro-
profiles for one relative orbit about the files for one relative orbit about the RSO.

RSO.

Note the maximum allowed simulation step size, T 4, = 0.001 s, is dictated by the
actuator model because the simulation must be able to accommodate the minimum

pulse width (¢, = 0.002 s) of the RCS thruster valves.



Table 5.1. Global simulation parameters.
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Parameter Symbol Value Units
Initial Attitude gi [0.4227, —0.2419, —0.3824, 0.7852] " -
Initial Rate w; [1.5,1.0,0.4]F x 1073 rads™!
Orbit altitude Rorp 500 km
Orbit inclination Torb 28.5 °
Distance from RSO L, 250 km
RCS thruster frequency |  fres 10 Hz
Gain schedule transient Lgain 10 S
Rate observer gain A 1

Rate observer gain ~y 2

Simulation time step Ts sim 1 ms
Simulation start date - January 15, 2015 -

5.2 Target Tracking

This section details the tracking performance of the three main control laws

discussed in Chapter 4, namely eigenaxis control, PID, and modified eigenaxis control

with additional integral terms. Each is implemented with EKF, angular rate observer,

and image feedback techniques. They are presented in the same chronological order

as the ADCS design development. The parameters shown in Table 5.2 apply for all

the simulated cases in this section unless otherwise specified.

Table 5.2. Simualtion parameters for target tracking with eigenaxis control.

Parameter Symbol | Value | Units
Solver - ode4 -
Eigenaxis proportional gain p 1 -
Eigenaxis derivative gain d 0.25 -
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5.2.1 Eigenaxis Control

The following set of simulations use only fixed gain eigenaxis control as described
by Equation (4.3). Since there are no integral or time derivative q., terms, this control
configuration is ill suited for image feedback. Therefore, only the results for the
EKF and rate observer are shown. Note that the two estimators address, different
needs in the system. The EKF will propagate the STR quaternion solution such that
state estimates are available at each simulation time step whereas the observer will
extrapolate the STR output and give an estimate of the body angular rate at each

simulation time step.

EKF Feedback

The eigenaxis control with EKF feedback simulation assumes that both sensors
are sampling at their respective maximum rates to obtain the best estimates possible.
However, as seen in Figure 5.3, the pointing performance still suffers because the EKF
is not designed to account for the white noise in the gyro measurements. The pointing
performance remains constant with a steady-state error of approximately 35 arcmin.
While this configuration produces error outside the acceptable performance range for
imaging operations, it is a stable system that can be implemented during mission
modes where pointing requirements are not as stringent and STR measurements are

unavailable.
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Table 5.3. Simulation parameters for target tracking with eigenaxis control and EKF
simulation

Parameter Symbol | Value | Units
Solver - ode3 -
Gyro sampling frequency |  fyyro 50 Hz
STR sampling frequency fstr 5 Hz
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Figure 5.3. Target tracking performance of eigenaxis controller with EKF feedback.

Observer Feedback

The eigenaxis and angular rate observer simulation does not require a gyro mea-
surement input, additionally the STR sampling rate is relaxed to 1 Hz. This was
determined to be the smallest sampling rate able to achieve the 3 ¢ pointing require-
ment (Figure 5.4). Although this configuration yields good performance it is dependent

on the STR being within its nominal operation range. In practice, regions in which
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the sensor is saturated by sunlight would produce long delays or large errors in the
STR. solution which could lead to an unstable satellite. In these situations, the EKF

feedback configuration would better preserve stability.

Table 5.4. Simulation parameters for target tracking using eigenaxis control with
angular rate observer feedback.

Parameter Symbol | Value | Units
Gyro sampling frequency |  fyyro n/a Hz
STR sampling frequency fstr 1 Hz
Observer frequency /T sim 1 MHz

Note that the observer frequency listed in Table 5.4 corresponds to the output

frequency of the STR quaternion extrapolator.
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Figure 5.4. Target tracking performance of eigenaxis controller with angular rate
observer feedback.
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5.2.2 Eigenaxis & PID Control

The following set of simulations use a combination of fixed gain eigenaxis control
and PID control with gain scheduling at the moment of switch. In each case, the
eigenaxis control is used on the system for the first 250s. Afterwards, the control
switches to PID control with gains determined by Equation (4.5); the corresponding
initial and final gain values are listed on Table 5.5.

The periodic ‘jumps’ in the running mean and deviation plots correspond to resets
in the calculation. These are scheduled a preset amount of time after each control

switch in order to give a better representation of the 3 ¢ pointing performance.

Table 5.5. Simulation parameters for target tracking using PID and eigenaxis control.

Parameter Symbol | Value | Units
PID proportional gain at switch D1 0.35 -
PID derivative gain at switch dy 0 -
PID integral gain at switch 1 0 -
PID proportional gain post-switch Do 0.75 -
PID derivative gain post-switch do 0.50 -
PID integral gain post-switch 19 0.025 -

EKF Feedback

During the first 250 s the pointing performance is similar to the one observed in
Figure 5.3. After the scheduled switch, the advantage of the PID control with EKF
becomes apparent. Since the PID controller’s only input is the error quaternion, there
is a marked improvement in the pointing error (Figure 5.5). However, from Figure 5.6

we can see that it takes approximately 2000s for the 3 ¢ line to converge to a value
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below 1arcmin. Smaller error values are possible with extended simulation time but
the capabilities of this configuration are clear from these results. In practice, the
convergence issue can be avoided by allowing the EKF to converge during maneuvers

with more relaxed pointing requirements before commencing imaging operations.

Table 5.6. Simulation parameters for target tracking using PID and eigenaxis control
with EKF feedback.

Parameter Symbol | Value | Units
Solver - ode3 -
Gyro sampling frequency | = fgyro 50 Hz
STR sampling frequency fstr 5 Hz
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Figure 5.5. Target tracking performance of eigenaxis and PID controllers with EKF
feedback. The switch to PID control occurs at 250s.
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Figure 5.6. Tracking performance of PID controller with EKF feedback.

Observer Feedback

As with the previous case, the performance before the control switch is similar
to that in the simulation with no PID control (Figure 5.7). However, there is no
appreciable improvement in pointing error after the switch. As mentioned previously
in Section 4.3 the similarity in pointing performance suggests the added complexity of

a switching controller is unwarranted.

Table 5.7. Simulation parameters for target tracking using PID and eigenaxis control
with angular rate observer feedback.

Parameter Symbol | Value | Units
Gyro sampling frequency |  fyyro n/a Hz
STR sampling frequency fstr 1 Hz
Observer frequency /T sim 1 MHz
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Figure 5.7. Target tracking performance of eigenaxis and PID controllers with angular
rate observer feedback. The switch to PID occurs at 250s.

Image Feedback

This simulation predicts the scenario in which the ARAPAIMA mission navigation
algorithms provide a biased solution for the RSO location. The payload cameras are
then used to provide unbiased image feedback by calculating the RSO’s vertical and
horizontal offsets from the center of the frame. For this simulation, Equation (4.8) is
used to calculate the offsets from the reference signal.

During the first portion of the simulation a constant 1° bias is added to the feedback
signal from the angular rate observer, which causes the fixed gain eigenaxis controller
to reach a steady-state error of 60 arcmin. After 250s, two simultaneous switches

occur: the controller input changes to image feedback as described in Equation (4.7),
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and the eignaxis control switches to PID control. In this case, the scheduled PID
gains are listed in Table 5.8. After the switch, the pointing error is quickly reduced to

a 3o value of less than 0.3 arcmin (Figure 5.10).

Table 5.8. Simulation parameters for RSO frame centering using PID and eigenaxis
control with payload image feedback.

Parameter Symbol Value Units
PID proportional gain at switch D1 2.0x 1073 -
PID derivative gain at switch dy 1.25 x 1073 -
PID integral gain at switch 1 0 -
PID proportional gain post-switch Do 5.0 x 1073 -
PID derivative gain post-switch ds 2.0 x 1073 -
PID integral gain post-switch io 5.0 x 1074 -
Gyro sampling frequency foyro 50 Hz
STR sampling frequency fstr 5 Hz
Observer frequency /T sim 1 MHz
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5.2.3 Eigenaxis with Integral Control

Elaborating on the observation in Section 5.2.2, the next set of simulations follow
the same sequence as the previous set but, instead of having two separate control laws,
Equation (4.12) is used for all three cases. This allows different tracking scenarios
to be associated with a specific set of gains instead of having multiple control laws,
which reduces the complexity of the control system. The scheduled gains are as listed

in Table 5.9 unless otherwise specified.

Table 5.9. Simulation parameters for eigenaxis control using gain scheduled integral
terms.

Parameter Symbol | Value | Units
Eigenaxis proportional gain P 1 -
Eigenaxis derivative gain d 0.25 -
FEigeanxis integral gain 1 0 -
Eigenaxis visual gain v 0 -
Proportional gain at switch D1 0.5 -
Derivative gain at switch dy 0.125 -
Integral gain at switch 11 0 -
Visual gain at switch vy 0 -
Post-switch proportional gain Do 1 -
Post-switch derivative gain ds 0.5 -
Post-switch integral gain U9 0.05 -
Post-switch visual gain Vg 0 -

EKF Feedback

The EKF feedback performance behaves as before during the first portion of the
simulation. Figure 5.11 shows a significant improvement in performance after the

gain switch but there is a mean steady state error of approximately 5arcmin. This
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occurs because the controller still requires an w, input, which includes the modeled

gyro white noise.

Table 5.10. Simulation parameters for eigenaxis control with gain scheduled integral
terms and EKF feedback.

Parameter Symbol | Value | Units
Solver - ode3 -
Gyro sampling frequency |  fgyro 50 Hz
STR sampling frequency fstr 5 Hz
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Figure 5.11. Target tracking performance of eigenaxis control with scheduled integral
gains and EKF feedback. Integral control switches ‘on” at 250s
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Observer Feedback

Figure 5.12 shows no appreciable difference between the tracking performance
of the fixed gain eigenaxis controller and the eigenaxis controller with scheduled
integral gain. Moreover, its 0.35 arcmin mean accuracy is equivalent to that of the

PID controller with observer feedback.

Table 5.11. Simulation parameters for eigenaxis control with gain scheduled integral
terms and angular rate observer feedback.

Parameter Symbol | Value | Units
Gyro sampling frequency |  fyyro n/a Hz
STR sampling frequency fstr 1 Hz
Observer frequency /T sim 1 MHz
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Figure 5.12. Target tracking performance of eigenaxis controller with scheduled
integral gains and angular rate observer feedback. Integral control switches ‘on’ at
250s.
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Image Feedback

The tracking performance of the modified eigenaxis controller during the image
feedback maneuver is nearly identical to that of the PID controller in the previous
simulation set. Together with the observer feedback performance, the simulation results
suggest the same level of accuracy is achievable without the additional complexity of

controller switching.

Table 5.12. Simulation parameters for eigenaxis control with scheduled integral and
visual gains using angular rate observer feedback.

Parameter Symbol Value Units
Proportional gain at switch P 2.0 x 1073 -
Derivative gain at switch dy 0 -
Integral gain at switch 1 0 -
Visual gain at switch 1 1.25 x 1073 -
Post-switch proportional gain D2 5.0 x 1073 -
Post-switch derivative gain do 0 -
Post-switch integral gain ia 5.0 x 10~* -
Post-switch visual gain Vo 2.0 x 1073 -
Gyro sampling frequency foyro n/a Hz
STR sampling frequency fstr 1 Hz
Observer frequency 1/Ts sim 1 MHz
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Figure 5.13. Target tracking performance of eigenaxis controller with scheduled 7 and
v gains using biased angular rate observer feedback. Unbiased payload image feedback
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5.3 Detumbling

The angular rate observer requires the STR to provide nominal attitude solutions
at all times in order to meet imaging accuracy requirements. This means the STR
must be kept out of direct sunlight, and the body angular rates must not exceed the
specified 1°s~! limit. A simple PI controller is shown here to demonstrate the satellite
is capable of executing detumbling maneuvers.

Worst case scenario deployment conditions expect initial rotation rates of 10°s™1
about each body axis. Figure 5.16 shows the angular rates are reduced to zero in a
case with ideal sensor feedback. Figure 5.16 shows how the angular rates converge to
approximately 0.01rads™! (0.57°s™!) when receiving unfiltered gyro measurements.
This offset, attributed to the sensor measurement bias, leaves a small error margin to
satisfy the nominal STR performance conditions. However, the STR is able to provide
attitude solutions with sufficient accuracy to exit detumbling mode when the angular
rates are below 0.07rads™! (4°s™!). After continuing to target tracking operations,
the angular rates are limited by the progression of the reference attitude profile. Note

that detumbling should only occur once during the mission lifetime.

Table 5.13. Simulation parameters for PID detumbling control using direct sensor
feedback.

Parameter Symbol Value Units
Initial angular rates Wy 0.175,0.175,0.175]7 | rads™!
Detumble PID proportional gain P 1 -
Detumble PID derivative gain d 0 -
Detumble PID integral gain 1 0.05 -
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Figure 5.16. Detumbling performance of PID controller with ideal sensor feedback.
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Figure 5.17. Detumbling performance of PID controller with modeled sensor noise

feedback.
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5.4 Multiple Maneuver Control

This simulation evaluates the performance of the ADCS throughout multiple
maneuvers. The scenario begins with a detumbling maneuver during which the
controller receives unfiltered gyro measurements at a rate of 50 Hz. After 500s, the
body angular rates are within the off-nominal operation range of the STR and the
ADCS begins receiving STR solution updates at a rate of 1 Hz. At this point the
controller switches to the modified eignaxis control law with p, d, 7, and v gains as
listed in Table 5.14. The body then performs a fast slew maneuver (Figure 5.19) as
it initiates target tracking operations. It is important to note the controller does
not keep track of the pointing error during detumbling maneuvers. It is shown in
Figure 5.18 only to demonstrate the ADCS’s ability to manage large initial offsets.

From 500s to 1000s the controller tracks the RSO as it receives state estimates
from the angular rate observer. However, the quaternion reference signal received thus
far incorporates a 1° bias. Therefore, the controller achieves a steady state error of
approximately 60 arcmin. After 1000 s, gain scheduling is used to begin image feedback
operations. The pointing error quickly decreases to within target performance, and
at 1300 s the updated running deviation confirms a 3 ¢ pointing error of 0.6 arcmin
(Figure 5.20). The performance continues to improve gradually until the end of the

simulation.
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Table 5.14. Simulation parameters for a multiple maneuver operation using scheduled

eigenaxis control.

Parameter Symbol Value Units
Initial angular rates Wy [0.175,0.175,0.175]" | rads™!
Detumble PID proportional gain P 1 -
Detumble PID derivative gain d 0.05 -
Detumble PID integral gain 1 0.5 -
Eigenaxis proportional gain P 1 -
Eigenaxis derivative gain d 0.25 -
Eigenaxis integral gain 1 0 -
Eigenaxis visual gain v 0 -
Proportional gain at switch D1 2.0x 1073 -
Derivative gain at switch dy 0 -
Integral gain at switch 11 0 -
Visual gain at switch vy 1.25 x 1073 -
Post-switch proportional gain Do 5.0 x 1073 -
Post-switch derivative gain ds 0 -
Post-switch integral gain is 5.0 x 10~* -
Post-switch visual gain () 2.0 x 1073 -
Gyro sampling frequency foyro 50 Hz
STR sampling frequency fstr 1 Hz
Extrapolated frequency 1/Ts sim 1 MHz
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Figure 5.18. Tracking performance of a multiple maneuver simulation, which includes
(in order) detumbling, slew, biased target tracking, and frame centering.
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Figure 5.19. Performance of fast slew maneuver from a large arbitrary angle to target
tracking using eigenaxis control with biased observer feedback.
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Figure 5.20. Frame centering performance of eigenaxis controller with unbiased image

feedback.



38

5.5 Digital Control

The discrete ADCS is implemented directly into the previous simulation model
by specifying the data rate transitions between the plant, controller, and estimator
subsystems. The continuous plant states are sampled at the specified sensor rates
and then propagated at an estimator frequency fops (fers for the EKF). The state
estimates are further down-sampled at the desired controller frequency. The controller
output is subject to further computational delays, the worst case of which is a unit
delay equal to the controller time step. This output is fed directly to the RCS thruster
actuator model which adds an additional delay corresponding to the inverse of its
operating frequency. The discrete controller block diagram is shown in Figure C.6.

The following set of simulations show the performance of the discrete modified
eigenaxis controller (Equation (4.19)). The simulated scenarios are the same as for the
continuous controller. Further discussion and performance comparisons to previous

configurations are presented in the following section.
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Table 5.15. Simulation parameters for discrete eigenaxis control with scheduled integral
terms

Parameter Symbol | Value | Units
Eigenaxis proportional gain P 1 -
Eigenaxis derivative gain d 0.25 -
Eigenaxis integral gain 1 0 -
Eigenaxis visual gain v 0 -
Proportional gain at switch D1 0.5 -
Derivative gain at switch dy 0.125 -
Integral gain at switch 1 0 -
Visual gain at switch V1 0 -
Post-switch proportional gain D2 1 -
Post-switch derivative gain ds 0.5 -
Post-switch integral gain io 0.05 -
Post-switch visual gain Vg 0 -
Controller frequency 10/Ts sim | 100 Hz

EKF Feedback

Table 5.16. Simulation parameters for discrete eigenaxis control with gain scheduled
integral terms and EKF feedback.

Parameter Symbol | Value | Units
Solver - ode3 -
Gyro sampling frequency |  fyyro 50 Hz
STR sampling frequency fstr 5 Hz
EKF frequency fsekf 1 MHz




90 : .
_ _ —Pointing Accuracy
O e e, S S ——Mean
: : —Mean +3 o
70 .................................................................. ]
<60}
£
2
< 50}
o
o
(@)
£
IS
o
o

0 200 400 600
Time (s)

800

1 000

1 200

90

Figure 5.21. Target tracking performance of discrete eigenaxis controller with scheduled

integral gains and EKF feedback.

Observer Feedback

Table 5.17. Simulation parameters for discrete eigenaxis control with gain scheduled
integral gains and angular rate observer feedback.

Parameter Symbol | Value | Units
Gyro sampling frequency |  fyyro n/a Hz
STR sampling frequency fstr 1 Hz
Observer frequency fs.obs 1 MHz
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Figure 5.22. Target tracking performance of discrete eigenaxis controller with scheduled
integral gains and angular rate observer feedback.

Image Feedback

Table 5.18. Simulation parameters for discrete eigenaxis control with scheduled integral
and visual gains using angular rate observer feedback.

Parameter Symbol Value Units
Proportional gain at switch D1 2.0 x 1073 -
Derivative gain at switch dy 0 -
Integral gain at switch 1 0 -
Visual gain at switch vy 1.25 x 1073 -
Post-switch proportional gain Do 5.0 x 1073 -
Post-switch derivative gain ds 0 -
Post-switch integral gain 19 5.0 x 10~* -
Post-switch visual gain Vg 2.0 x 1073 -
Gyro sampling frequency foyro n/a Hz
STR sampling frequency fstr 1 Hz
Observer frequency fs.obs 1 MHz
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5.6 Summary

The performance of the four different control system configurations analyzed in
this chapter is summarized in Table 5.19.

The fixed gain eigenaxis controller is the simplest configuration that produces
a stable system but it only meets the imaging requirements with the rate observer
output. Furthermore, it is incompatible with image feedback.

The PID controller performs best when used with the EKF; however the EKF
is slower to converge than the rate observer. For all other cases, there is no other
significant improvement in performance over the fixed gain eigenaxis controller to
justify having two separate control algorithms

The modified, scheduled gain eigenaxis controller with integral terms is unable to
meet imaging requirements when used with the EKF. Otherwise, the only improvement
over its previous configuration is compatibility with image feedback. In this regard, it
was able to match the PID performance.

The discrete modified eigenaxis controller performance suffers more than its con-
tinuous counterpart when used with the EKF due to the reduced controller sampling
rate. However, the image feedback performance benefits from this delay because it
creates a ‘deadband’ effect. Thus allowing the error more time to converge in between

controller outputs.



Table 5.19. Target tracking mean pointing accuracy
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Controller EKF Rate Observer | Image Feedback
(arcmin) (arcmin) (arcmin)
Fixed gain eigenaxis 25 0.35 n/a
Scheduled gain PID 0.25 0.35 0.05
Scheduled gain eigenaxis ) 0.35 0.05
Discrete eigenaxis with 10 0.35 0.02
scheduled gains

Controller Selection

A total of twelve configurations corresponding to four controllers, and three different
feedback sources (see Tables 5.1 and 5.13) are discussed throughout this thesis. Though
extensive, their combined results quantify the ADCS performance in terms of pointing
accuracy.

Selecting a control law for the ARAPAIMA mission, however, is not a straight
forward matter. In conversational terms, ARAPAIMA needs a “controller for all
occasions”. In other words, the ideal choice would be a controller which gives the best
imaging performance but is also able to fulfill the requirements of all other operational
modes. Regrettably, no single controller configuration can accommodate all these
conditions. Therefore, the best alternative is determined by considering the different
possible mission constraints.

Firstly, the controller must be able to satisfy the 1 arcmin (3 ¢) during imaging and
tracking requirements. Only eight of the twelve configurations fulfill this condition.

Of those eight, only the scheduled gain PID controller can do so with EKF feedback.
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Second, the controller must be compatible with image feedback techniques to
correct possible bias in the reference signal. This eliminates the fixed eigenaxis gain
controller since it does not accept projection parameter inputs.

Third, the controller must be as simple as possible without affecting the pointing
performance. The PID controller, requires simultaneous gain scheduling and control
law switching. This presents an unnecessary risk to the mission, therefore, the PID is
not a viable option.

At this point we are left with two choices: the continuous and discrete modified
eigenaxis controllers, each with rate observer and image feedback. However, the
controller must run on the ARAPAIMA OBC and account for the different (and
possibly varying) sensor rates. The only possible choice then is the discrete modified

eigenaxis control with rate observer and image feedback. Therefore the current control

law of the ARAPAIMA ADCS is

T. N
M,,.=—J|dw. + | p+i——F(2) + e |-
d [w (p i—F() v1+N%F(Z))qU]
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6. Conclusions

The design approach of the ADCS presented in this thesis gives more focus to the
level of detail and sophistication of the simulation models than to the theoretical
backbone of each topic. However, the aim of such an approach is not to develop new
theories, but to instead utilize those that are already well known and available to
create new practices. Much of the work presented here, although not groundbreaking
in its separate fields, is new in its application to small satellites.

Rather than include an abundance of assumptions that oversimplify the design
process, every detail is considered in an effort to make the most comprehensive plant
model possible. To an extent, the bulk this work is modular and can be applied to any
arbitrary satellite mission in LEO. However, the portions specific to the ARAPAIMA
mission introduce a depth of analysis not present in traditional academic design
exercises. To this end, a considerable amount of this work’s value lies not only in
its implementation, but also in its development. The completed model’s capabilities
exceed those of a control loop simulation and can provide system level information
such as dynamic behavior, expended electrical power, propellant consumption, and

orbit trajectory perturbations.
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The result of this design approach constitutes a proof-of-concept for an academic
CubeSat platform proximity operation mission through extensive examination and

interpretation of simulated data.
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7. Recommendations

A number of models within the simulation can be improved further; most of these
improvements involve simplifying the code structure and replacing embedded code
with Simulink S-functions in order to decrease run time. Currently, the average
performance is 30 virtual seconds per second for the continuous time models, and 50

virtual seconds per second for the discrete controllers.

7.1 Future Work

Aside from changes to the simulation there are mission scenarios and ADCS

improvements te be considered:

The stability analysis presented in Section 4.3.3 needs to be developed further.
Particularly, a non-linear stability proof is needed to consider input switching

scenarios.

The ADCS model is advanced enough to begin hardware in-the-loop (HIL)
testing and real-time simulations. A dSpace DS006 processor has been obtained
for this purpose. This will allow trials with engineering test units and other

mission hardware. In time this will lead to integration and testing with other

ARAPAIMA subsystems.
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As mentioned in Section 5.6, a deadband type effect was observed during the
discrete controller simulations. A deadband region is currently being developed
which has shown small improvements during fixed gain tracking operations. Fur-
ther improvement on its implementation is expected to improve the performance

of all maneuvers.

The payload image feedback process needs to be modified to accept real images
and determine the projection parameters directly from them without having

access to the attitude quaternion.

Lastly, the controller and observer algorithms need to be tested for the scenario
in which optical measurements are unavailable from both the STR and the

payload optical array.
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A. ARAPAIMA Mission Time and Reference Frame Conventions

This document defines the conventions for time systems and reference frames used for
the Arapaima mission. The reference frames are divided into three groups, one group
comprises the spacecraft-based frames, the second group comprises the orbit-based
reference frame, and the third group comprises Earth-based frames.

Reference frames and conventions defined elsewhere in the the main document are

omitted.

Time Systems

The time is specified in the Julian Date system (JD), and it has at least eight
decimal places. According to (Vallado, 2013), eight decimal digits provide a reasonable

accuracy of 4 x 107*s. (Note that 1s = 1.1574 x 107° days.)

Spacecraft-based Reference Frames

The spacecraft-based reference frames are defined below and most of them are
presented in Figures A.2 and A.3. All the reference frames are right handed (RH)

systems.
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Geometric Fixed Reference Frame (GFF)

The GFF is the reference frame with respect to which all the origins and orientations
of the other spacecraft-based reference frames are defined and measured. The origin of

the GFF is placed at the reference (fiduciary) marker, typically a retro-reflector cube.

Origin : At the spacecraft reference (fiduciary) marker.

O, : Parallel to some edge of the satellite bus structure. The positive direction on
chaser satellite is the opposite of the satellite face with the apertures of the

payload instruments.
O, : Normal to the O, axis. Positive direction: TBD.

O, : Completes the RH reference frame.

Laser Rangefinder Reference Frame (L)

The laser range finder reference frame is attached to the receiver telescope of the

rangefinder.

Origin : At the spacecraft reference (fiduciary) marker.

O, : Along the optical axis of the laser rangefinder receiver telescope. The positive

direction is towards the aperture of the telescope tube.
O, : As defined by the instrument maker.

O, : Completes the RH reference frame.
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Infrared Camera Reference Frame (IRC)

The infrared camera reference frame is attached to a camera lens.

Origin : At the spacecraft reference (fiduciary) marker.

O, : Along the optical axis of the camera. The positive direction is towards the

aperture.
O, : As defined by the instrument maker.

O, : Completes the RH reference frame.

Monochrome Camera Reference Frame (MC)

The monochrome camera frame is attached to the camera lens.

Origin : As defined by the instrument maker.

O, : Along the optical axis of the camera. The positive direction is towards the

aperture.
O, : As defined by the instrument maker.

O, : Completes the RH reference frame.

Star Tracker Reference Frame (STR)

The star tracker reference frame is attached to star tracker optics assembly.

Origin : As defined by the instrument maker.
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O, : Along the optical axis of the star tracker optics assembly. The positive direction

is towards the aperture of the optics assembly.
O, : As defined by the unit manufacturer.

O, : Completes the RH reference frame.

©)

© o
|
XReCss XRCs14
@ IXRes7 T @

y

XRCS13
@ XRest1]
VXHCS5 YBF

Torque RCS
Dir. Pair
+x 6,8,10,12
-x 2,4,14,16 Kacss|
+y 2,6,12,16
-y 4,8,10,14 Xer
+z 1,7,9,15
-z 3,5,11,13
Legend
B:  Body-fixed frame Note: Thruster pairs A, B, E, and
RCS: Reaction control system thruster F lie on the -YBF face of the

Center of mass satellite body. Pairs C, D, G, and

Solar panel array H lie on the +YBF face.

Figure A.1. RCS thruster placement on satellite body-frame.

Reaction Control System Thruster Reference Frames (RCS)

It is assumed that the reaction control system is made of sixteen thrusters grouped

by two in reaction control clusters. They provide attitude control torques about all
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body axes in both directions. Cluster C' is made of thrusters one and two and it
is installed at the (—zgp, +26r) corner of the satellite bus. Cluster B is made of
thrusters three and four and it is installed at the (+zgp, —zgr) corner of the bus.
Cluster D is made of thrusters five and stx and it is installed at the (—zgr ,—zar)
corner of the bus. Cluster A is made of thrusters seven and eight and is installed
at the (—zgp, +2cr) corner of the bus. The remaining eight thrusters have been
added as redundancy to the system and they complete a mirror image of clusters A,
B, C, and D. The origin and axes directions for each RCS thruster reference frame

follow the convention described below.

Origin : At the point of application of the reaction force of the respective thruster.

O, : Along the optical axis of the star tracker optics assembly. The positive direction

is towards the aperture of the optics assembly.

O, : Along the axis of the respective thruster. The positive direction is towards the

exhaust plane of the thruster.

O, : Completes the RH reference frame.
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Figure A.2. Imaging array placement on the satellite body. The x-axis on the satellite’s
body-fixed frame is defined as being parallel to the imaging direction.

Orbit-Based Reference Frames

All orbit-based frames have their origin at the center of mass of the respective

satellite.

Local Vertical Local Horizontal Reference Frame (RSW)

The local vertical, local horizontal reference frame is also known as the Gaussian

reference frame or the radial, transverse, normal (RTN) frame.
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Origin : At the center of mass of the respective satellite.

O, : Along the line of position vector of the center of mass of the respective The

positive direction is towards the aperture of the optics assembly.

O, : Perpendicular to O, positive direction in the direction of the velocity vector of

the satellite. Note that the O, axis of the RSW aligns with the

O, : Completes the RH reference frame.

\ Notation

\ \\ ECI I"C Position vector of frame C
- 5\ in the ECI frame

ZEcr

YECJ’

-
——

-
—_——

Legend Xc
C: Chaser satellite body-fixed frame
ECIl: Earth centered inertial frame
RSW: Local vertical, local horizontal frame
T Target satellite body-fixed frame
Center of mass RSW.C

Figure A.3. Illustration of the orbit-based and ECI reference frames.
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Earth-based Reference Frames

World Geodetic System 1984 (WGS84)

The components of the position and velocity vectors obtained from the GPS module

are expressed with respect to the WGS-84 system (Imagery & Agency, 2000).

Origin : At the center of mass of the Earth.

O, : Intersection of the International Earth Rotation Service (IERS), Reference
Meridian (IRM), and the plane passing through the origin and normal to the
Z-axis. The IRM is coincident with the Bureau International de IHeure (BIH)

Zero Meridian (epoch 1984.0) with an uncertainty of 0.005”.
O, : Completes the RH Earth-Centered, Earth-Fixed system.

O, : The direction of the IERS Reference Pole (IRP). This direction corresponds to
the direction of the BIH Conventional Terrestrial Pole (CTP) (epoch 1984.0)

with an uncertainty of 0.005”.
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B. Extended Kalman Filter Gains

This document describes the process used to calculate the G, W, H, and V matrices
used in the EKF process outlined in Section 3.1.
The filter state is a ten element column vector derived from the quaternion

kinematics and rate gyro model. The kinematics are given in matrix notation as

0 —w, —wy, —w.| |q
L1 |ws 0 w, —wy| |¢
q= 5 )

wy —w, 0 Wy G2

Wy Wy —Wg 0 qs

where w,, represents the true angular rate about the subscript body axis.
The rate gyro model assumes an individual sensor for each body axis. Thus, the

scalar equation

1

1+ g (wg,n - bg,n - warw,n) = Whn,
g?n

is applied to each axis independently. Where S ,, is a scaling factor, by, is a bias
term and weyy , is the angle random walk,
Substituting the gyro model equation into the quaternion kinematics yields the

non-linear state model



0 ﬁ(wy,m —bgx — Warw,z) ﬁ(wg,y —bgy — Warw,y) ﬁ(wg,z — gz — Warw,z)
_ 1 ﬁ(wg,x - bg,m - warw,z) 0 ﬁ(wg,z - bg,z - warw,z) ﬁ(wg,y - bg,y - warw,y)
’ ﬁ(“}g,y = byy — Warwy) ﬁ(“}g,z — by,z — Warw,z) 0 ﬁ(wg,w — bgz — Warw,w)
ﬁ(wg,z — by — Warw.z) m(wg,y —byy — Warwy) ﬁ(wg,x —Dy2 — Warwa) 0
] ) (B.1)
S, and b, are also defined as part of the state:
Wrrw,x 0 0
bo=1| 0 wyw, 0 | (B.2)
I 0 0 www,z—
Wsrw,z 0 0
Sg = 0 wywy O (B.3)
I 0 0 wsm,z-

ITT
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The complete estimated state is then

X(t7 u, ’UJ) - [q07 q1, 42,43, bg,:C) bg,y7 bg,za Sg,.T? Sg,ya Sg,Z]T) (B4)

where w is the state input w,,. It is assumed the system has non-additive noise so

the discrete linearization has the following form

(), Xk-1), wr)) ~

09(Uk), P(k-1), 0)

69 U k), H(k—1), W(k

X(k-1) OW(k)

'w(k), (B5)

9wy, Xe-1), W) = g(Uw)y, La-1)) + G- Ape-1) + Wi Awy. (B.6)

Where G and W are Jacobian matrices ((G. Blesser, n.d.)). The linearizion process
that follows in lengthy and unwieldy. Therefore, the process is shown in detail only
for the first state, qo, then the proceeding results are presented.

Consider the ¢y term of the non-linear state equation

1 1

1 (w5~ b )

S| T Wyaz — z — Warw,z - T o
2 1+ 8. " ’ i 1+ 5g,
1

145,

Go = (Wo.y = bgy — Warw,y) @2

(wg,z - bg,z - warw,z>q3 . (B7)
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Its first-order partial derivative with zero noise corresponding to the first row of G

is

dqo
0g;

(u, Ap,0) =

[ -1
2|1+ S,on
1

14 Spn

(Wg,w - bgw,*)A(h - (Wg,y - bgy,*)AQZ

1+ Sgys
-1

b )A Ab, . _
(Wg,z bgz,) g3 + Abg, ( 1+ Sy

)qL* + Abg,y( )(12,*

1+ Sy

1
)2 (Wge = g ) Q1+ ASg

+ Abg,z<_ W
gxT,*x

-1 ) N
1 +ng7* QS,*
1
+ (Wyy — bgy+)q2,+AS,, +

— by 4)q3AS, .| (B8
(1+Sgy,*)2 g ) 3 g ( )

—<w 7Z
(14827

And the partial derivative with respect to the noise w corresponding to the first row

of W is
5QO* 1 1
’ A =—-|A arw, *
(Swn (’U,, I,L,'LU) ) w s (1 + ng7*)q17
4 Aoy (Yo + A (—— )5 |. (B.9)
Warw T o * Warw\T7——7 — * | - .
Y 1 +Sgy7* q27 ) 1 +ng7* q37

Equations (B.8) and (B.9) are brought into the discrete time domain using the

forward Euler method

Y1) = Yy + Tsg(twy, Yi))s (B.10)



where 75 is the desired time step length. Which yields

T 1 1
A =A 1+ = (—————(Wow (k) — Do (k—1))) A oy —(w —b 1A _
qo,(k) Go,(k-1) + 5 ( o ng,(k—1)< g,(k) — Dga (k1)) A1, (k1) T Sgy,(k_1>< sk — gy, (k—1)) AG2, (k1)
L N I — ) — Abyy ety (o )
- (Wys (k) — gz (i 1) — o (b)) (—————— _1) — H(——— _
1+ng’(k;71) g 7(k) g 7(k 1) q37(k’ 1) g 7(k 1) 1+ng’(k;71)Q17(k 1) gy?(k 1) ]~+Sgy7(k71)q2’(k 1)
~1 1
— Abe. ) (———— s ey — iy — Do (e AS.
gz (k 1)(1+ng,(k71)q‘9”(k 1) (1+ng’(k71))2(wg (k) = by, (k—1)) 01, (k1) AS g (k1)
1 1

- (Woy, (k) — Dgy,(k—1))G2,(k—1) ASgy,(k—1) — ( (W, (k) = bgz,(k-1))43,(k-1) ASgz -1y |, (B.11)

(L4 Sgy,k-1))* L+ Sy k-1))?

1 1

T
A =A T+ = Aw o _— _1) + Awyg, _— _
qo,(k) qo,(k—1) arw, ,(k)(1 +ng’(k_1))(h,(k 1) a w,y,(k)(l +Sgy7(k_1))QQ,(k 1)

2

1

+ Awarw z 3T, o
= (1T S

)Q3,(/€—1) ) (B-12)

respectively. Note that the equilibrium terms (x) simply become the conditions for the previous time step.

V1T



Applying this method to the remaining nine states produces the complete G and W state estimation matrices

- Ti —dgx —dqy —dgz —dbxq¢ —dbyg¢ —dbzgs —dSxgq¢ —dSyq —dSz Q3-
dgx Tis dgqy —dqz dbxq; —dbyq dbzgz dSx¢ —dSyq. dSzgs
dgx —dqy 7% dgz dbx¢; dbyg —dbzqz dSxq¢; dSy ¢ —dSzgs
dgx dqy —dqz Ti —dbxq; dbygq, dbzgqs —dSxq; dSyq  dSzgs

0 0 0 0 = 0 0 0 0 0
G-1) =T, ) , (B.13)
0 0 0 0 0 7% 0 0 0 0
0 0 0 0 0 0 % 0 0 0
0 0 0 0 0 0 0 7 0 0
0 0 0 0 0 0 0 0 % 0
0 0 0 0 0 0 0 0 0 7

1T



0

Where

—dwx ¢
dwx ¢
dwx ¢

—dwx ¢

0

—dwy ¢ —dwzgs 0

—dwy ¢ dwz gz O

dwy ¢a  —dwzqs 0

dwy ¢ dwzgs 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1
1+ Son,(k—1) (om0

dwn 1 S_ L —

gn,(k—1)

dbn = —

(k=1)
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(B.14)

(B.15)

(B.16)

(B.17)
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-1
dSn = (1 T S " 1))2 (wgm(k) — bgn,(k71)>- (B18)
gn,(kK—

For simplicity, the measurement and correction matrices are assumed to be identity

H — I10><10, (Blg)

V = IlelO- (BQO)
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C. Simulation Block Diagrams

This document contains Simulink block diagram models of the control configurations
discussed in Chapter 5. They are intended to showcase the high-level system configu-
ration and provide more detail on the implementation of the different controllers on

the continuous and discrete domains.
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