
Dissertations and Theses

9-2011

Development and Implementation of a Fault Mitigating Control Development and Implementation of a Fault Mitigating Control

System for a Biodiesel Plug-In Hybrid Electric Vehicle for the System for a Biodiesel Plug-In Hybrid Electric Vehicle for the

EcoCar: The NeXt Challenge Competition EcoCar: The NeXt Challenge Competition

Sean Christopher Carter
Embry-Riddle Aeronautical University - Daytona Beach

Follow this and additional works at: https://commons.erau.edu/edt

 Part of the Mechanical Engineering Commons

Scholarly Commons Citation Scholarly Commons Citation
Carter, Sean Christopher, "Development and Implementation of a Fault Mitigating Control System for a
Biodiesel Plug-In Hybrid Electric Vehicle for the EcoCar: The NeXt Challenge Competition" (2011).
Dissertations and Theses. 35.
https://commons.erau.edu/edt/35

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted
for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more
information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=commons.erau.edu%2Fedt%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/35?utm_source=commons.erau.edu%2Fedt%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

Development and Implementation of a Fault Mitigating Control System for a Biodiesel
Plug-In Hybrid Electric Vehicle for the EcoCar: The NeXt Challenge Competition

By

Sean Christopher Carter

A	
 Thesis	
 Submitted	
 to	
 the	
 College	
 of	
 Engineering	
 Department	
 of	
 Mechanical	

Engineering	

in	
 Partial	
 Fulfillment	
 of	
 the	
 Requirements	
 for	
 the	
 Degree	
 of	

Master	
 of	
 Science	
 in	
 Mechanical	
 Engineering	

	

	

	

	

	

	

	

	

	

Embry-­‐Riddle	
 Aeronautical	
 University	

Daytona	
 Beach,	
 Florida	

September	
 2011	

	

ii	

	

iii	

Acknowledgements

 I want to thank the team for all of their work. The vehicle would not even be

running or came to fruition if it were not for them. I specifically want to thank Zachary

Karstetter, Brian Harries, and Brandon Smith for all of their efforts. They kept the team

together through all of the rough times and helped make all of those late nights in the lab

all the more fun! I also want to thank Dr. Liu for giving me the opportunity to work with

his Systems Engineering class. The systems engineering students deserve praise for all of

their hard work on procuring and developing all of the documentation that kept the

project moving. I personally want to thank my friends and family that have supported me

throughout the years of EcoCar. If it were not for them, I would not have pursued the

perfection I sought to achieve with the EcoEagles vehicle. I also want to thank Dr. Hagar

for the motivation to keep going when times were tough. Dr. compere was also a great

help in giving fresh ideas that were never considered. Last, but not least, I want to thank

Dr. White. He is the one who pushed me to become the person I am now and gave me the

opportunity to gain valuable experience for a future job with GM.

	

iv	

Abstract	

Researcher:	
 Sean	
 Christopher	
 Carter	

Title:	
 Development	
 and	
 Implementation	
 of	
 a	
 Fault	
 Mitigating	
 Control	

System	
 for	
 a	
 Biodiesel	
 Plug-­‐In	
 Hybrid	
 Electric	
 Vehicle	
 for	
 the	
 EcoCar:	

The	
 NeXt	
 Challenge	
 Competition	

Institution:	
 Embry-­‐Riddle	
 Aeronautical	
 University	

Degree:	
 Master	
 of	
 Science	
 in	
 Mechanical	
 Engineering	

Year:	
 2011	

 The automotive industry is continuously developing, and with it hybrid vehicle

technology is a growing field of interest. The design of the electric vehicle is a pressing

matter and grows in complexity with new powertrain components such as power inverters

and transmission systems that use electric motors. As a control system develops, the

architecture always comes back to systems engineering documentation to find safety

protocols, solutions to problems through fault testing, and validating and verifying the

control architecture throughout the whole process. Testing and evaluation plans are

required more than ever and are constantly being updated and implemented in today’s

automotive production standards. The paper discusses the development and

implementation of the control system through the use of systems engineering of a hybrid

vehicle as part of a competition called EcoCar: The NeXt Challenge.

	

v	

Table of Contents

Page

Thesis Review Committee…………………………………………………………… ii

Acknowledgements…………………………………………………………………… iii

Abstract………………………………………………………………………………. iv

List of Figures………………………………………………………………………… vii

List of Acronyms……………………………………………………………………… ix

 Chapter

I. Introduction…………………………………………………………… 1

Significance of Study…………………………………………. 1

Statement of the Problem……………………………………… 2

Purpose………………………………………………………… 4

II. Review of the Relevant Literature…………………………………….. 6

Systems Engineering…………………………………………… 6

Design Failure Modes and Effects Analysis…………………… 7

Fault Tree Analysis……………………………………………. 9

Validation & Verification……………………………………… 11

History of Advanced Vehicle Technology Competitions……… 13

Summary……………………………………………………….. 15

III. Control System Development and Implementation…………………… 16

1) Vehicle Control System Overview…..………………………… 16

1. Control Systems Development using Systems Engineering. 20

2. Gateway – Host Code Development...…………………….. 23

3. Gateway – Field Programmable Gate Array Development.. 31

	

vi	

2) Vehicle Control System Implementation……………………… 39

1. Database and Communication Development…………. 39

IV. Results………………………………………………………………… 45

EcoCar Control System Performance………………………… 45

Systems Engineering Results…………………………………. 49

V. Discussion, Conclusions, and Recommendations…………………….. 53

Discussion…………………………………………………….. 53

Conclusions…………………………………………………… 55

Recommendations…………………………………………….. 55

References…………………………………………………………………………….. 57

Appendices……………………………………………………………………………. 60

A. ASME 2011 5th International Conference on Energy Sustainability Paper…… 60

B. ASME 2011 International Mechanical Engineering
Congress & Exposition Paper………………………………………………….. 66

	

vii	

List of Figures

Figure Page

1. EcoCar Timeline and Deliverables……………………………………………. 3

2. Initial Vehicle Technical Specifications………………………………………. 5

3. Example of DFMEA Documentation
(Function, Failure Mode, Effect, Severity)……………………………………. 7

4. Example of DFMEA Documentation (RPN, Occurrence, Detection, etc.)…… 8

5. Example of DFMEA Documentation (Actions and Responsibility)………….. 9

6. Minor Fault for Fault Tree Analysis…………………………………………… 10

7. Major Fault for Fault Tree Analysis…………………………………………… 10

8. Validation and Verification process…………………………………………… 12

9. General Overview of Control Systems………………………………………… 17

10. The Battery Pack, DDE, and BRUSA Charger……………………………….. 18

11. 1.3L Turbo Diesel GM Engine……………………………………………….. 19

12. The sbRIO – 9642 (left) and sbRIO – 9602 (right)…………………………… 20

13. Front Panel of the Gateway Host Code……………………………………….. 24

14. Gateway Host Code FPGA Initialization……………………………………… 25

15. Gateway Host Code Message ID List Configuration…………………………. 25

16. Gateway Host Code Memory Write Loop…………………………………….. 27

17. Gateway Host Code FPGA Check…………………………………………….. 28

18. Gateway Host Code Driver Panel Management Initialization………………… 28

19. Gateway Hose Code Driver Panel Management Message Bundling………….. 29

20. Gateway Host Code Driver Panel Management Periodic Message Handling…. 30

21. Gateway Host Code Driver Panel Port Control……………………………….. 30

	

viii	

22. Gateway FPGA Front Panel Interface………………………………………… 32

23. Gateway FPGA CAN, Boolean, and Port Initialization………………………. 33

24. Gateway FPGA VI Memory and First-In / First-Out (FIFO) Configuration…. 34

25. Gateway FPGA Write to Memory Loop……………………………………… 35

26. Gateway FPGA CAN Module Communication Restart……………………… 35

27. Gateway FPGA CAN Read Loop…………………………………………….. 36

28. Gateway FPGA Memory Checker Loop (simple)……………………………. 37

29. Gateway FPGA Memory Checker Loop (complex)………………………….. 37

30. Gateway FPGA CAN Write Loop……………………………………………. 38

31. Gateway FPGA Driver Panel Notification Port Control Loop……………….. 38

32. Supervisory Control Unit FPGA Communication Development……………... 40

33. Supervisory Control Unit FPGA Subsystem Control Loop…………………… 41

34. National Instruments Measurement and Automation Explorer……………….. 42

35. Vehicle Engine Bay…………………………………………………………… 46

36. Vehicle Exhaust System (DPF on left)………………………………………... 47

37. IDEA Computer with Student Designed Bezel……………………………….. 48

38. EcoEagles Production Vehicle Readiness…………………………………….. 50

39. Vehicle Technical Specifications (VTS)……………………………………… 52

	

ix	

List of Acronyms

ANL Argonne National Labs

CAN Controller Area Network

DFMEA Design Failure Modes and Effects Analysis

DIS Daytona International Speedway

DOE Department of Energy

DPF Diesel Particulate Filter

DSP Digital Signal Processing

ECM Engine Control Module

EPA Environmental Protection Agency

FEA Finite Element Analysis

FIFO First In / First Out

FMECA Failure Modes, Effects, and Criticality Analysis

FPGA Field Programmable Gate Array

FTA Fault-Tree Analysis

GM General Motors

GMLAN General Motors Local Area Network

GW Gateway

HIL Hardware-in-the-Loop

IDEA Intelligent Driver Efficiency Assistant

NI National Instruments

PTEB Powertrain Extended Bus

	

x	

RPM Rotations Per Minute

RPN Risk Priority Number

sbRIO Single Board Reconfigurable Input / Output

SCU Supervisory Control Unit

SIL Software-in-the-Loop

TPM Technical Performance Measures

V&V Validation and Verification

VCS	
 Vehicle	
 Control	
 System	

VTS Vehicle Technical Specifications

	

	

	

1	

Chapter I

Introduction

 Engineered systems have a functional purpose in response to an identified need

and have the ability to achieve some stated operational objective [1]. They are brought

into being and operate over a life cycle. These systems begin with a need, and continue

until phasing out is required or if the product needs to be disposed. Engineered systems

are often composed of subsystems, or development groups that interact with each other.

These are the basics of any engineered system and are integrated into many

developmental processes in industry.

Significance of Study

System evaluation is the assessment and examination of a system or system

element [1]. With system evaluations and assessments, these tools help determine

whether or not the system itself is on track and meeting the end goal desired. The

evaluations derived from the system are continuous through the product’s life cycle and

only stop once the product no longer exists. With newly developed technological

advancements, there arise new procedures and protocols that have to be developed and

evaluated to ensure the safety of use by customers and co-workers alike. The automotive

industry is such an example. General Motors (GM), Ford, and Chrysler are some of the

many automotive industries that provide luxury cars for the middle class world and are

investing more heavily in electrical technology.

 Systems engineering has an important role in developing the newest hybrid

technology. The process and principles used from systems engineering allow the

	

2	

automotive industry to grow and develop new technologies quickly, efficiently, and

safely. Through the use of design fault mitigation and effects analysis (DFMEA), proper

planning can be done to assist in quickly developing a vehicle. The use of fault tree

analysis (FTA) allows a vehicle to develop proper safety ratings. Validation and

verification (V&V) enables the vehicle to develop efficiently and helps ensure that

requirements are met. The EcoCar: The NeXt Competition is an example of the uses of

these practices.

Statement of the Problem

 Systems engineering plays a vital role in the automotive industry and can be seen

in the EcoCar competition. The areas that are focused on for each year are shown in

Figure 1 on the next page. This shows the deliverables that were expected of the students

from the competition organizers. From a systems engineering viewpoint, these are the

milestones of the product over the next three years. Importance is stressed in certain areas

of systems engineering to make sure that the vehicles operate correctly and safely for

each team. The aspects of systems engineering that are important to the competition are

the validation and verification of the results obtained through the design process, the

fault-tree insertion into the different aspects of the project to ensure safe operation and

safety of the driver, and design failure modes and effects analysis for continuous change

and observation of the high risk priority items. These are the problems faced by every

team through the entire three years of the competition so that each team can develop safe

vehicle architectures.

	

3	

 During year two of development, the systems engineering process was held back

when certain problems starting occurring during vehicle development for the EcoEagles.

The control system was underdeveloped and was causing problems when trying to

properly validate and verify the subsystems. The fault tree analysis was not helpful and

the DFMEA documentation needed updating. This was not a fault of the EcoEagles or

any sponsor, but merely a lack of full understanding of how the vehicle architecture

properly worked. The transmission and engine were two subsystems that were never

meant to be together and the EcoEagles had to discover a means to incorporate the

technology.

Figure 1: EcoCar Timeline and Deliverables [2]

	

4	

Purpose

 Control system development is complex, especially with the newer hybrid

technologies being produced by the automotive companies in today’s industries. Systems

engineering is a beneficial process to help develop and implement such a complex system

into a vehicle and have the vehicle operate correctly and safely. The EcoCar competition

required a complex control system and had a lot of preliminary planning and

documentation developed to help support a secure architecture.

Some of the DFMEA, FTA, and V&V in place towards the end of year two

helped in understanding the problems the EcoEagles faced, the team from Embry-Riddle

Aeronautical University. There was not enough information on the transmission and

engine to properly develop the control architecture. Through the efforts of GM, the

systems engineering students, and the EcoEagles the vehicle documentation could be

properly updated. From the end of year two and the beginning of year three, the systems

engineering principles became vital to the EcoEagles success. The intention of this paper

is to go into detail about the EcoEagles control system development and implementation

through the use of systems engineering tools. The goal is to also discuss the fault

mitigation incorporated into the control system and the results from the competition on

the success of the systems engineering practices. Figure 2 shows the higher-level

requirements that each team was required to improve or meet according to the vehicle

technical specifications for the competition.

	

5	

Figure 2: Initial Vehicle Technical Specifications

	

6	

Chapter II

Review of Relevant Literature

Systems Engineering

 Hall [1962] asserts that the first attempt to teach systems engineering as

we know it today came in 1950 at MIT by Mr. Gilman, Director of Systems Engineering

at Bell [3]. Since the discipline's inception, the mission of systems engineering has been

to "engineer the system" to meet acquirer/user needs within budget and on schedule [4].

Hall [1962] defined systems engineering as a function with five phases: (1) system

studies or program planning; (2) exploratory planning, which includes problem definition,

selecting objectives, systems synthesis, systems analysis, selecting the best system, and

communicating the results; (3) development planning, which repeats phase 2 in more

detail; (4) studies during development, which includes the development of parts of the

system and the integration and testing of these parts; and (5) current engineering, which

is what takes place while the system is operational and being refined [3]. These steps are

similar to the project definition stages, or earlier stages of what is defined as a systems

life cycle according to Systems	
 Engineering	
 Standard	
 ISO/IES	
 15288	
 [5]. Importantly,

it is imperative to integrate program needs, cost, performance, schedule, and risk with the

acquisition strategy to obtain the intended program solution [6]. Engineers, especially

automotive engineers of future complex systems, face an emerging challenge of how to

address problems associated with integration of multiple complex systems [7].

	

7	

Design Failure Modes and Effects Analysis (DFMEA)

 DFMEA, alternatively FMECA [1], is a systematic team driven approach that

identifies potential failure modes in a system, product, or manufacturing / assembly

operation caused by design or manufacturing / assembly process deficiencies [8]. The

overall goal is to find potential failures within the system being designed and to

determine the effect, the severity of the failure, how often the failure occurs, how to

prevent or manage the failure, and who is responsible for that failure’s analysis. The

information is then organized, and put into a spreadsheet, shown in figure 3.

Figure 3: Example of DFMEA Documentation (Function, Failure Mode, Effect, Severity)

 Each item or function discussed should be examined for any potential failure

mode that could potentially occur during vehicle operation or even when the boards are

simply starting up. Potential effects from the failure also had to be discussed along with

the severity of the problem. The severity level of each failure is assigned a rating from

one to ten, one being the least severe and ten being the most severe. Depending on

product development, or if other problems discovered are more of an issue, the severity

rating could change.

 Discussion of failures that could commonly happen is a great way to discover and

document as many potential failures as possible. These causes are later used in fault

	

8	

mitigation and testing. This also leads to the discussion of the rate of occurrence, which is

a rough estimate of how often the problem may occur on the product. This number is

assigned a rating from one to ten, one being least likely to happen and ten being most

likely, and could also change based on production progression. Preventative measures to

help make the system tolerant of faults and detection to help mitigate any fault that would

occur are ways to verify and validate that the failure can be managed safely, and an

example of the documentation is shown in figure 4. The detection rating, another

important factor for faults, is assigned a rating from one to ten, one being most likely, and

ten being least likely to be detected.

The most important column that will constantly change is the risk priority number

(RPN). The RPN is a numerical way of determining which fault is most important. The

higher the occurrence, severity, and detection rating, the higher the RPN will increase as

well. The main goals are to try and reduce the RPN by trying to affect the occurrence of

the fault, detect the problems more efficiently before the fault occurs, and by trying to

reduce the severity of the problem. All these anomalous situations are collected on a

table, and for each fault scenario the RPN is evaluated and recommended actions are

suggested to improve the situation [9].

Figure 4: Example of DFMEA Documentation (RPN, Occurrence, Detection, etc.)

	

9	

 Ultimately, the actions area of the DFMEA documentation, shown in figure 5, is

determined and then modified later as the failure is tested and validated once the project

reaches that stage in the development process. Responsibility is truly shared throughout

the project, but a group or subgroup is in charge of making sure that the failure is

properly detected or prevented. The group that is responsible is normally determined

through discussion and what makes common sense. The continuous updating of the

DFMEA documentation is responsible for a living document that keeps track of the fault

mitigation progress on product development.

Figure 5: Example of DFMEA Documentation (Actions and Responsibility)

Fault Tree Analysis (FTA)

 Fault tree analysis (FTA) is a top down, deductive failure analysis in which an

undesired state of a system is analyzed using Boolean logic to combine a series of lower-

level events [10].	
 The process involves introducing failures into a system to yield results.

The actual faults can be inserted into the system to determine reliability, but more often

than not the faults being tested are possible causes and not actual. The false occurrences

introduced into the system allow detection of improper function and the ability to

	

10	

properly take action without risking safety or damage. With FTA, the process can be used

to evaluate design alternatives and to establish performance-based design on the faults

instigated [11]. The faults put into the system can range from minor to critical and obtain

results of equal criticality. By introducing minor faults into a system, it may lead to the

discovery of a major fault that could occur. Allowing major faults into the system also

improve the ability of detection by noticing minor faults that potentially occur as a result.

A lot of the fault trees created stem from the DFMEA documentation. FTA also helps by

finding other potential causes for the other causes that were discovered, enabling the

DFMEA to expand and consider more possible failures. Some of these failures are shown

in figure 6 and 7.	

Figure 6: Minor Fault for Fault Tree Analysis

Figure 7: Major Fault for Fault Tree Analysis

Plug-­‐In	
 Charger	

Loss	
 of	

Communication	

Battery	
 Pack	

Not	
 Powered	
 On	

Charger	
 Not	

Turning	
 On	
 Wire	
 Loose	
 Communication	

Protocol	
 Not	
 Set	

Charger	
 Not	

Plugged	
 In	

Transmission	

Input	
 Shaft	

Breaks	

Engine	
 Rough	

Startup	

Engine	
 Rough	

Shutdown	

Torque	
 Request	

Incorrect	

Accelerator	

Pedal	
 Position	

Faulty	

Engine	

Communication	

Loss	

	

11	

All of those causes would then be tested and inserted into each respective system

to see how well the safety protocols perform and creating a fault mitigating system.

These tests could potentially lower the RPN and help improve the overall safety of the

product development process. FTA further helps to overcome some of the limitations

such as computational time, expertise necessary for fault tree analysis and repeatability of

the analysis [12]. This system engineering development tool plays a crucial role in

ensuring the safety of the product and the consumer.

Validation and Verification (V&V)

 Validation is the process of making sure the system fulfills its intended purpose

[13] or that the right product is developed. Verification is making sure the system meets

specifications [13] or that the product is built correctly. V&V is an indispensable step

when developing a product. V&V is a continuing process of looking to the original

design criterion and determining that the design process and product meet the

requirements stated (verification) and meets the customer’s needs (validation). For each

step of the development phase, the project goes through and makes sure that the newest

addition to the product meets the requirements stated. Even if requirements and model

validation result in a design that should meet the ultimate need, the steps of verification

and system validation are required to prove the as-built system in fact does meet those

requirements and satisfies the ultimate need [14].

The V&V process is incorporated into every aspect of the development process.

From start to finish, the product is analyzed and critiqued as subsystems and

subassemblies are introduced. As the development process of the life cycle of the project

	

12	

progresses, the validation and verification process stays important throughout product

development. System software testing must include stress testing and fault injection in a

suitable simulation environment to determine the limits of capability and search for

hidden flaws [14]. The cycle begins with integration, testing, and verification, and then

the process goes into system verification and validation and finally ending on operations

and maintenance. Figure 8 represents the basic idea of validation and verification and the

involvement with the life cycle process.

Figure 8: Validation and Verification process [15]

The figure expresses the complete product life cycle in the form of what is known

as the “V” model. The left side of the “V” is the design aspect of the product

development, moving from the top to the bottom. The right side of the “V” is the

integration of the systems moving from the bottom and towards the top. The figure shows

that products are designed in a hierarchy from the top down to the smallest of subsystems

and then integrated and tested from these subsystems until the overall system is

eventually tested and completed. The arrows going from the right to the left express the

validation and verification of the project as the systems are integrated.

	

13	

Without the DFMEA documentation and the FTA, V&V has no starting place.

The DFMEA, FTA, and V&V areas of systems engineering need each other in order to

properly develop a product. The three topics together provide necessary documents that

allow the product development to continuously be improved. Many governing

organizations, such as the United States Department of Energy (DoE) Advanced Vehicle

Technology Competition (AVTC) and Environmental Protection Agency (EPA), develop,

define, and disseminate information, requirements, and testing and evaluation procedures

that affect how car manufacturers, like GM, design, build, test, evaluate, manufacture,

and monitor their vehicles [16]. The United States DOE AVTC is a great example of

incorporating these systems engineering tools into a project that involves the automotive

industry.

History of Advanced Vehicle Technology Competitions (AVTC)

 The AVTCs have been a part of the DOE and Argonne National Labs (ANL)

since 1987 [17]. They have sponsored over 45 AVTCs over the past twenty-four years

[17]. These competitions accelerate the development and demonstration of technologies

of interest to DOE and the automotive industry while providing the automotive industry

with a new generation of engineering leaders with highly desirable experience [17]. The

competitions in order from the earliest to the most recent are Methanol, Natural Gas,

Ethanol, Propane, Sunrayce, HEV, FutureCar, FutureTruck, Challenge X, EcoCar, and

the newest competition EcoCar 2 [18]. Each competition is different in length, but the

goals and purpose are the same. Each team participating is required to improve the

efficiency of the vehicle and maintain consumer acceptability.

	

14	

 In past competitions, the automotive development played an important role in

showing the different improvements that could be made to increase efficiency and reduce

overall petroleum use in vehicles. In FutureTruck 2000, a 13% improvement was attained

in on-road fuel efficiency (MPGE), and a 26% reduction was attained in greenhouse gas

emissions, compared with the stock Chevrolet Suburban [19]. In FutureTruck 2003 the

greenhouse gas emissions of eight student vehicles were less than those of the control

vehicle, with West Virginia University reducing GHG emissions by an incredible 48%

[19]. As these developments progressed, so did the automotive industry and the future

AVTCs.

 The competition that recently ended is EcoCar: The NeXt Challenge. This AVTC

involved the past three years and involved sixteen universities from the United States and

Canada. Each team submitted different vehicle architectures for the competition and was

expected to develop the vehicle through computer-aided drafting, SIL and HIL

development, and safe electrical development and implementation. Throughout the three-

year competition, the Virginia Tech team achieved their goals of a fuel-efficient vehicle

at 81.9 miles per gallon gasoline equivalent, or 70 percent over the stock vehicle [20].

Overall, the DOE sponsors these competitions with the main goal in mind to train new

engineers and make contributions that will help keep the North American automotive

industry competitive in the global marketplace, which is increasingly adopting fuel-

efficient designs [21].

	

15	

Summary

 AVTCs have helped improve the automotive industry and train future engineers

for the workforce. These competitions were a success due to the amount of planning and

work done by the DOE, GM, and ANL. Through them, guidelines and requirements were

set to help keep all of the teams on track and to provide an example of what the

automotive industry does when developing a vehicle. This could not have been done

without the basis of proper systems engineering implementation and development.

DFMEA provides a great way to maintain documentation on safety critical

systems for the AVTC competition. The documents provide a means for new students to

understand the functionality of the subsystems and how to meet the next milestone for the

vehicle development process. This leads to FTA and how the process helps update the

DFMEA documentation as the teams develop the hybrid vehicle technologies. Designing

a vehicle using FTA helps provide a safer environment for the driver and shows how well

the teams are prepared and have thought through the designing process. Using V&V

throughout the whole process of vehicle development keeps testing a priority and making

sure requirements are met. These tools are important and necessary for these vehicles to

run correctly and efficiently when it comes to test them at the competition. Systems

engineering has played a key role in ensuring efficient, safe, and well maintained

products, and the students learn to use these tools to develop a fully functioning vehicle.

	

16	

Chapter III

Control System Development and Implementation

Vehicle Control System (VCS) Overview

 A VCS is a major part of the vehicle development process and a good portion of

the DFMEA documentation. For the competition, the VCS is split into two separate parts.

There is the stock VCS that GM has developed and there is a student part for each

university to develop and integrate into the vehicle. Each team had to integrate a new

battery pack and a new powertrain system into the project vehicle. The EcoEagles chose

to integrate an A123 Lithium-Ion Iron Phosphate battery system, a GM 1.3L turbo diesel

engine, and a GM 2-Mode transmission. These choices were among the few that were

given to every team to develop their vehicle architecture.

 The EcoEagles VCS needed to communicate with the stock VCS and be able to

control each sub system separately. To do this, the VCS is comprised of four Controller

Area Network (CAN) busses. These busses are General Motors Local Area Network

(GMLAN), Powertrain Extended Bus (PTEB), ERAU High Speed (HS), and ERAU

PTEB [22]. The vehicle has GMLAN and PTEB as stock busses on the vehicle and the

team had to add the EcoEagles HS and PTEB busses to help isolate controlled

components, as shown in figure 9. GMLAN and PTEB are expressed in figure 9 as stock

VCS HS CAN and stock VCS PTEB CAN respectively. These isolated control

subsystems are the engine control module (ECM) and the battery pack control module

(BPCM). Each subsystem controls what it is rightfully named and needs isolation from

one another to ensure no cross communication could potentially cause damage. The

subsystems transmit messages over the CAN busses that could be received by one

	

17	

another and potentially cause damage. The two boards also shown in the figure are the

supervisory control unit (SCU) and the gateway (GW).

Figure 9: General Overview of Control Systems

Corresponding to figure 9, each subsystem shown has a specific purpose.

• Supervisory Control Unit (SCU) – The SCU is in charge of controlling

subsystems within the vehicle and the GW is in charge of the isolation and

communication management. The SCU’s main goal is to control the transmission,

battery, and engine systems parallel to another to ensure that each is properly

operating. The SCU also controls subsystems not shown such as the fuel pump,

vehicle throttle control, and the urea injection system.

• Gateway (GW) – The GW is in charge of the four busses shown in figure 9:

ERAU PTEB CAN, ERAU HS CAN, Stock VCS PTEB CAN, and Stock VCS

HS CAN. The GW makes sure that none of these systems can interfere with each

other and to ensure strong communication between the SCU and each subsystem.

The main goal for the GW is to properly isolate each respective subsystem from

interfering and potentially causing damage to one another.

	

18	

• Battery Pack Control Module (BPCM) – The battery pack is a Lithium-Ion Iron

Phosphate battery pack designed and developed by the company A123. The

battery pack had a voltage of 330V and was capable of 12.8 kWhrs of energy. The

battery pack contained four modules in series, but also separated with a manual

disconnect switch as a safety precaution and requirement for the vehicle shutdown

procedure. This battery pack was also connected to a charger produced by the

company BRUSA and was capable of automatically controlling the charging

process once plugged in. The EcoEagles designed a distribution and disconnect

enclosure (DDE) to manage these high voltage systems. A picture of the pack is

shown in figure 10.

Figure 10: The Battery Pack, DDE, and BRUSA Charger

• Engine Control Module (ECM) – The engine is treated a lot like a black hole in

space. This part of the EcoEagles control system relies on information that is

given to the team, but not so much what is sent to the engine. The engine itself is

a 1.3L turbo diesel engine designed and manufactured by GM for the Vauxhall

Astra in the European automotive market. The engine is capable of producing 60

kWhrs of power and will be fueled using B20, which is a combination of 80%

	

19	

regular diesel fuel and 20% biodiesel fuel manufactured on campus. The engine

can be seen in figure 11.

Figure 11: 1.3L Turbo Diesel GM Engine

• SCU and GW Control Boards – The boards that control the EcoEagles VCS are

two boards from National Instruments (NI). The supervisory control unit (SCU) is

a single-board reconfigurable input / output 9642 (NI sbRIO – 9642) [23]. The

gateway (GW) is a NI sbRIO – 9602 [24]. The difference between the boards is

the port configurations, where the sbRIO – 9642 has analog input and output

capabilities and the sbRIO – 9602 only has digital input and output. As mentioned

in the name, they are both reconfigurable, which allows for rapid prototyping

capabilities and faster development for the control architecture. They are both

shown in figure 12. Both boards were programmed in LabVIEW 2009 with patch

f3 prior to service pack 1 [25]. LabVIEW is a unique way of programming that

uses a graphical interface and translates the user’s graphical representation into C-

Code the boards can understand. The EcoEagles used LabVIEW throughout the

control architecture development process and utilized a lot of the tools that the

program had to offer.

	

20	

Figure 12: The sbRIO – 9642 (left) and sbRIO – 9602 (right)

• Vehicle Control System (VCS) – The purpose of the VCS is exactly what the

name implies. This system is the rest of the vehicle and the controllers that GM

has created to control each subsystem on the vehicle. The VCS is responsible for

controlling and reporting the typical vehicle activity that would happen from

everyday driving as selected subsystems are monitored by the SCU.

Gateway development during year two of the competition along with field

programmable gate array (FPGA) development was a main topic of concern. As vehicle

development progressed, work on the SCU database, FPGA, and communication were

main topics of concern for year three of the EcoCar competition. The next sections will

go into detail how these boards, the control architecture, and the systems engineering

principles came together to develop a more stable control system in little under a year for

year three of the EcoCar competition.

Control Systems Development using Systems Engineering

 The GW and SCU were developed utilizing the “tools” mentioned as DFMEA,

FTA, and V&V. By using these tools, a system could be developed efficiently with little

risk and effectively. The process first starts by developing the DFMEA documentation in

	

21	

a basic form. More detail goes into the DFMEA documentation as the project

development progresses. Conceptually, the document contains all of the functions and

hardware and the possible failures of each item. The GW and SCU were discussed as

having communication and control potential for failure and were given an initial rating

for each subsequent possible failure.

One example would be the control over the input shaft of the transmission. The

system requirements involved with the input shaft were allocated and identified early on.

The team had to make sure that the input shaft was correctly controlled. As the system

was investigated further, possible failure modes were identified but not all. These failures

would later then be used for FTA. After some of the failures were identified, possible

effects and causes were determined. This was discussed to find a good means of

identifying the failure when the problem occurred. The failures were then discussed to

find out how to detect each one. The means of detecting each failure is key to mitigating

or properly tolerating the problem. Each failure is then given a severity, detection, and

occurrence rating. As testing and development progresses through the use of V&V, the

DFMEA documentation will continuously change and hopefully to reduce the RPN.

For example, the input shaft initially had the occurrence rating set to a critical

rating between the numbers of 8-10. This is the high range that the EcoEagles determined

as a critical problem. The minor rating would range from 1-3 and the major range would

be 4-7. The detection rating and severity rating are similar. Both of these were set to a

critical rating from 8-10. This ultimately gave the input shaft failure a relatively higher

RPN and was noted as a high priority item in the DFMEA documentation.

	

22	

As development progress on the vehicle, the failure finally occurred for the input

shaft and was broken for the first time. Discussion led to a problem with the control

architecture and with this feedback led to the addition of a control architecture change to

prevent this fault from occurring again. The fault was now easier to detect and was able

to reduce in occurrence because of this change so the ratings for each went down

respectively within the DFMEA documentation. The EcoEagles still continued to label

this as a high priority item in respect to RPN, but the overall number was reduced

through this discovery and testing.

Unfortunately, the failure occurred again and led into another discussion of the

reason for the failure. This time the discovery was the engine was not being controlled

properly during a procedure required for proper vehicle operation. The failure was

discovered after testing through the fault tree analysis designated from the DFMEA. The

failure in question was not actually listed within the DFMEA documentation and was

further updated with this new possible failure. The control architecture was changed once

again to properly mitigate this failure from occurring. This led to the team lowering the

RPN number once again and almost reducing the failure from a critical state to a major

state, but the failure was still a high priority item and the team would never know if all

faults were discovered.

This was a continuous process that occurred all over the vehicle during vehicle

development. The team would test for potential failures, or actual failures, and then

update the DFMEA documentation if the system was not validating it was built correctly

or verifying that it was built to the expectations required of the system. Feedback is a

critical step in developing any system and is a crucial part of V&V. Testing and

	

23	

evaluation continued until each system and subsystem was validated to work as designed

and then verified to meet the requirements for each system. DFMEA, FTA, and V&V

played this role throughout the EcoEagles vehicle development. Without these

development tools, the problems would continue to occur as vehicle development

continued and potentially increase project development time. The next few sections will

discuss more in detail some of the faults that were occurring with the GW and the SCU

coded architectures and what was done to potentially lower the RPN for each system.

Gateway – Host Code Development

 The best way to describe the gateway conceptually is a lot like a bouncer at a

nightclub. The gateway allows messages to pass through in either direction but only if the

message ID is on the message list. Some of the messages are only allowed to pass from

the stock VCS to the EcoEagles HS, while others are allowed to pass freely from

EcoEagles HS to either stock VCS bus HS or PTEB. The list is regulated by the

controlled variables that need to be handled by the SCU. If the engine messages need to

be modified before being sent to the vehicle, the GW will make sure that the SCU is the

only controller that receives the message prior to being sent to the vehicle controllers.

The following figures will show how the host code of the GW works and how the

DFMEA, FTA, and V&V tools helped develop the control architecture. Figure 13 shows

some of the debugging that was done to ensure that the GW worked and some of the

message ID management that was done to make sure that the right IDs were being

allowed on each appropriate bus.

	

24	

Figure 13: Front Panel of the Gateway Host Code

 The debugging window in figure 13 was used to make sure that the GW was

allowing messages to pass through and to make sure that the FPGA was operating

correctly. This was part of the FTA process when determining communication failures

and seeing of the GW was properly mitigating the problem if the failure did occur. The

GW was also meant to serve as an information panel to the driver to notify when the

vehicle was charging, vehicle is ready, in regenerative braking mode, and when in charge

sustain mode. This was originally part of the requirements for the GW but later changed

when the IDEA system was developed and will be discussed later.

 The FPGA initialization, shown in figure 14, starts running the FPGA code by

opening and running the FPGA VI that is targeted. The box located on the upper right

hand side of the figure with a picture of glasses and a pencil near the top of the box is the

FPGA read / write control function and sends initialized data for the FPGA code [26].

This section is meant to make sure that the FPGA code does not continue on until later

	

25	

parts of the code allow the FPGA to move onto the next step. This was developed during

part of the V&V process when determining proper FPGA communication was established.

The control system would often fail due to certain Boolean variables left in the true case

and prevent the FPGA code from properly working. After some testing through fault

insertion, it was determined this was the best way to prevent this fault from occurring and

completely mitigating the problem.

Figure 14: Gateway Host Code FPGA Initialization

The message ID list configuration is the next step of the GW host code shown in

figure 15. This part of the code begins by entering a flat sequence structure, which is the

grey box that is surrounding the figure. A flat sequence structure is used to ensure that a

sub diagram executes before or after another sub diagram [27]. During part of the V&V

and FTA testing of the communication to the FPGA, the host code would not run in the

order that was necessary. The flat sequence structure was used to force the code to

operate in a sequential manor.

Figure 15: Gateway Host Code Message ID List Configuration

	

26	

There is a file loaded onto the board’s flash memory that can be targeted by the

host code, and is targeted as C:\GW1_Messages shown on the left side of the figure. This

file contains in a tab-delimited format the message IDs allowed to pass through the GW

in either direction for all four busses. This section of code opens the file [28] as a read-

only file, reads off the IDs in a string format [29] denoted as the pink lines in figure 15,

converts the strings into hexadecimal numbers [30], organizes them into separate arrays

[31] denoted by the thick blue lines on the right side of figure 15, and then sends the

arrays off into the next stage of the host code. To the knowledge of the team at the time,

there was no direct way to read and translate a file. This was the best way to ensure that

the sequential order operated correctly and mitigated any communication issues.

The EcoEagles made sure to have LabVIEW treat every message ID that is dealt

with on the bus is in a hexadecimal format. This allowed easier recognition of messages

relating to documentation given to the team from GM. There was a two second delay

integrated into this step using the wait VI [32] to make sure the code had ample time to

organize the messages appropriately. Throughout testing a discovery was made that even

with the sequential order now applied to the host code, the speed needed to be

constrained to ensure that the message list was properly communicated to the FPGA code.

The code would often skip over a few messages from the list due to this issue.

The loop shown in figure 16 took the arrays from the previous step in the flat

sequence structure and then sent the hexadecimal IDs one by one to the FPGA code using

a “for” loop [33]. The benefit of the “for” loop was the ability to send one message ID at

a time to the FPGA code instead of one massive array and was developed this way to

ensure proper communication requirements. As each one was sent, the host code would

	

27	

then send a Boolean to the FPGA using the FPGA read / write control function to make

sure that the code new it was done with one ID and it was now supposed to move onto

the next ID. The “for” loop would only run however many times there were messages for

that particular direction. Since there are four busses, there are four “for” loops running

and sending arrays to the FPGA. Once the “for” loops were done with the last ID, the

code would then move onto the next section of the flat sequence structure. The four “for”

loops enabled a more visual way of showing how each separate bus the GW handled. The

host code was organized in this way to enable ease of use and understanding to future

control students.

Figure 16: Gateway Host Code Memory Write Loop

This next section is the FPGA check, figure 17. This part of the code runs using a

while loop [34] continuously until the FPGA sends the appropriate Boolean. The host

code is meant to stay here until the FPGA is done writing all of the IDs to memory and to

make sure the code has time to be ready to move onto the next section. A lot of the

checking states of the code were implemented to use as debugging tools, as part of FTA,

and to make sure that communication was working properly before moving onto the next

stage of operation.

	

28	

Figure 17: Gateway Host Code FPGA Check

 Although the following sections of code were not used for the EcoCar

competition, the GW had a portion of code that was able to handle driver display

information and some of the messages that the SCU controlled. The figure below, figure

18, shows the initialization stage of the code. This section of the flat sequence structure

opened a database file on the board and obtained message information while organizing

all of the information into arrays. This was all done using the CAN frame to channel

conversion library provided by NI [35].

Figure 18: Gateway Host Code Driver Panel Management Initialization

 After opening the database and organizing all of the information, the next section

of code in the flat sequence structure, shown in figure 19, takes all specific information

from the messages using unbundle by name [36] and then combines the information and

bundles by name [37] into a cluster of information. This can be done for each message

	

29	

through use of the “for” loop. Once the clusters are created and the array of clusters is

organized, the next section of code is utilized.

Figure 19: Gateway Hose Code Driver Panel Management Message Bundling

 The code enters the next step by assigning a periodic transmit rate to each

message, shown in figure 20 on the next page. The GW would be able to handle multiple

messages with communication dependability and speed under consideration. It was

discovered through FTA and testing that to many messages would potentially slow down

the communication rate and lead to lag or potential communication loss. Once all of the

messages were set with their respective periodic rates, the code entered a continuous state

of running until the stop button was hit or if the board was powered down. This new

section also handled the messages that needed to be received or transmitted, shown in

figure 21, and also handled the driver panel notification through FPGA port control [38]

using the FPGA read / write function.

	

30	

Figure 20: Gateway Host Code Driver Panel Management Periodic Message Handling

Figure 21: Gateway Host Code Driver Panel Port Control

 The port control was never fully developed and tested. This was because of the

IDEA control system. The IDEA control system took over the driver notification panel

and any message handling that went along with the notifications. Leaving this code in the

GW did not slow down the communication but did enable the GW to expand if necessary

for vehicle development. Everything else within the GW host code was developed using

FTA during the year two competition and again during vehicle development leading to

year three competition.

FTA played a major role during the development of the host code of the GW.

Initially, the code had a lot of issues with communication between the FPGA and the host

	

31	

code. The flat sequence structures were discovered to assist in the debugging process. To

mitigate the communication errors occurring on the GW, the host code and FPGA were

both developed to acknowledge when certain steps were complete. Previously, the code

was able run without the acknowledgement and this was causing sections of code to not

establish proper communication. The flat sequence structure coupled with while loops

solved the issues causing the communications problems. The sequenced

acknowledgments, or handshaking, allowed the codes to interact and accomplish the

targeted goal without issue. Eventually, the IDs were being set correctly and those

messages were transmitting correctly on the respective busses. A majority of the message

ID control and communication control is set within the FPGA code on the GW board.

The FPGA code embedded is embedded into the GW board and was developed in parallel

to the host code.

The Gateway – Field-Programmable Gate Array Code Development

 The NI LabVIEW FPGA Module extends LabVIEW graphical development to

field-programmable gate arrays (FPGAs) on NI Reconfigurable Input / Output hardware

[39]. You can use this custom hardware for unique timing and triggering routines,

ultrahigh-speed control, interfacing to digital protocols, digital signal processing (DSP),

communications, and many other applications requiring high-speed hardware reliability

[39]. When ensuring communication and proper control over all of the subsystems,

reliability was crucial, like any other product under development. The EcoEagles

developed the FPGA code to manage the board’s ports and interfaces using the FPGA I/O

node function. The FPGA code was compiled using a compiler integrated into LabVIEW.

	

32	

What is unique to the FPGA code is its ability to operate within the nanosecond. This is a

lot faster than what is necessary, but allows communication to operate smoothly and

without much lag or interference. As mentioned, the FPGA interfaces with the hardware

side of the board and allows both the FPGA code and host code to control the hardware.

The boards have a CAN interface that NI produces that is attachable to the board. The

product is the two-port, high speed CAN module for NI compact RI/O, or the NI 9853

[40]. The SCU and GW are equipped with two of the NI 9853s. The FPGA allows the

ability to use these and isolate the busses.

The front panel of the FPGA, shown in figure 22, shows some of the Boolean and

arrays that were interfaced with by the host code. This panel also shows some of the

debugging tools that we linked to the host code to make sure that communication was

actually occurring during FTA and V&V development of the GW operation. The “match

found” Booleans along with the “total received” indicators were used to check and make

sure that communication was working and that the message list was set correctly.

Figure 22: Gateway FPGA Front Panel Interface

	

33	

The first section of the flat structure sequence in the FPGA code, figure 23,

initializes the FPGA. This step stops the CAN modules from communicating using the

invoke method function [41], sets all the Boolean variables to false, and enables the

digital input / output ports to a certain value using the invoke method function. The

FPGA code, along with the host code, was also setup to set the Boolean variables to false

to make sure that both codes were properly initialized. The double redundancy was

developed to ensure the communication fault would not occur. This section of code is

meant to make sure that no CAN modules are still running and to reset all the values prior

to going into the next phases of the flat sequence structure. This helps ensure proper

communication by making sure all modules are off prior to running. During some of the

testing and development, the CAN modules were discovered to still transmit if a failure

were to occur and prevent proper reestablishment of control.

Figure 23: Gateway FPGA CAN, Boolean, and Port Initialization

Before moving on to the next section of code, the VI needs to have on board

memory and FIFO allocation. The memory block serves as the list to check and see if the

message is allowed to pass through [42]. The FIFO is a method that should be used to

transfer data safely from a time-critical VI to a communication VI running at normal

priority, which can then be used to transfer the data to the host machine without affecting

	

34	

the system determinism [43]. In other words, it acts as a buffer between the host code,

FPGA code, and CAN modules to make sure that communication is not lagged or being

dropped due to one module running faster than the other. These FIFOs were discovered

to come in handy in preventing communication failures. The FIFOs and memory blocks

within the code are shown in figure 24.

Figure 24: Gateway FPGA VI Memory and First-In / First-Out (FIFO) Configuration

The memory-writing loop shown in figure 25 interacts with the host code of the

GW. Once a hexadecimal number is sent to the FPGA code from the host code, the host

code would send an acknowledgement Boolean to the FPGA and the code would then

write the number to memory and send an acknowledgement in return to tell the host code

that the FPGA is ready for the next one. Since the FPGA code operates at a faster pace

than the host code, messages would often not be written to memory or the FPGA would

think something was wrong and timeout. A lot of FTA testing was done to make sure that

the codes interact in this way to confirm proper communication. This repeats itself until it

is done with the last message ID and then stops the loop and continues to the next section

of the flat sequence structure.

	

35	

Figure 25: Gateway FPGA Write to Memory Loop

The next section restarts the CAN modules and readies them for communication,

shown in figure 26. Once the FPGA has restarted CAN communication, the next section

of code takes over and continues to run until the GW is either told to stop or is powered

down.

Figure 26: Gateway FPGA CAN Module Communication Restart

The FPGA has twelve loops handling communication and one loop handling the

driver notification panel and interface. Four of these loops are CAN read loops, shown in

figure 27 on the next page, and it begins by taking the CAN data from the CAN bus and

making sure that a message with the ID of x0 is not allowed to flood the bus. This ID in

the past has caused the CAN bus to cause loss of communication and lag by taking the

entire baud rate. Through some testing and evaluation, instigating the fault into the

	

36	

system has shown to eliminate the problem. Only message ID x0 was filtered out, any

other message ID was allowed into the case structure. A case structure is one or more sub

diagrams, or cases, exactly one of which executes when the structure executes [44]. The

case structure is what enables the code to act as a filter and only allow the messages we

want. The case that does allow the messages to go through has a “for” loop that will run

six times and write the data for the message into the FIFO.

Figure 27: Gateway FPGA CAN Read Loop

Another four loops that are running in parallel to the CAN read loop is the

memory checker loop. The memory checker loop blocks any unnecessary messages that

are not allowed in the direction the loop was designed for. Shown in figure 28, this loop

utilizes the FIFOs and memory blocks internal to the VI. The memory checker loop takes

the CAN message data saved in the read loop FIFO and checks for six elements. The

elements are checked to make sure that a full message was sent. The six elements include

timestamp high, timestamp low, message ID, message size, the first 32-bit data set, and

the second 32-bit data set. Once a complete message is received the code will then read

	

37	

the message from the FIFO and check the message ID with the list that is stored in

memory. If memory has that ID stored, then the case structure is set to true and allowed

into the next FIFO. The case structure does nothing if the message ID is not stored in

memory. When the loop sets the case structure to true, the “match found” Boolean goes

true as well and acts as an indicator that communication is working properly for

debugging purposes.

There is a second version for this loop and it accommodates for messages that

need to cross busses, shown in figure 29. In the second version, there is a case structure

that allows only the specific cases to cross over and communicate with the other bus.

That case structure is controlled through checking the message IDs coming into the loop

and having a specific case for each ID.

Figure 28: Gateway FPGA Memory Checker Loop (simple)

Figure 29: Gateway FPGA Memory Checker Loop (complex)

	

38	

 The next four loops that are running in parallel with the other eight is the CAN

write loop. The write loop takes the elements that passed the ID check in the memory

checker loop and sends the elements out as an array of six elements over CAN, just as it

was received. The CAN write loop also checks for six elements before sending to ensure

a complete message. This loop is shown in figure 30.

Figure 30: Gateway FPGA CAN Write Loop

The last loop within the FPGA code is the driver panel notification port control

loop. This section of the GW control architecture was taken over by the IDEA system.

The driver panel notification port control loop, shown in figure 31, was left in the code if

the team ever decided to try and utilized the GW for what it was originally designed.

Figure 31: Gateway FPGA Driver Panel Notification Port Control Loop

	

39	

The FPGA code that was developed has been validated and verified through

communication fault mitigation. The FPGA code shown throughout this section is the

final result. Communication faults discussed through FTA and DFMEA were used to

develop the FPGA code. Systems engineering helped reduce communication lag and

finding the issues that caused problems within the GW system. The next thing that

needed to be implemented was the communication and databases handled by the SCU.

Vehicle Control System Implementation

 A majority of the GW work was done in year two of the competition. The SCU

was also being developed but communication with the vehicle was still not working

properly. After a thorough amount of validating and verifying the GW was

communicating appropriately to the SCU and the vehicle, the SCU needed some

refinement. Over the summer, between the end of year two and the beginning of year

three of the competition, the SCU FPGA and the databases used for communication were

modified to improve vehicle controllability and reliability.

Database and Communication Development

 The 2-Mode transmission for full-size, full-utility SUVs integrates two electro-

mechanical power-split operating modes with four fixed gear ratios and provides fuel

savings from electric assist, regenerative braking and low-speed electric vehicle operation

[45]. This transmission is a complex system and steps were taken to properly develop a

control strategy. The first steps that were taken were to ensure proper communication

before any database editing. The SCU was not properly communicating with the 2-Mode

	

40	

transmission and was causing improper and sporadic vehicle behavior. This required

editing the FPGA code for the SCU. To fully understand the problems encountered with

the 2-Mode transmission, GM was gracious and allowed the teams to use their hybrid

garage in Milford, MI. They helped each team by donating their time and engineering

expertise to solve every problem or question. The engineers at GM helped the EcoEagles

by showing the team how to handle protection values and rolling counts that would often

be part of important messages being sent over the CAN busses. The work done that

alleviated the problem is shown in figure 32 on the next page.

Figure 32: Supervisory Control Unit FPGA Communication Development

 This work was a majority of the updating that was needed for the DFMEA

documentation, FTA testing, and V&V testing that was currently being done for the

vehicle development. Now that the team knew about this problem, the rest of the

messages that required these edits were fixed and the communication problems no longer

occurred based on this possible failure point. This particular fault was keeping the team

from progressing in vehicle development and use of the DFMEA documentation, for it

was an unforeseen problem with no real solution at the time.

	

41	

After the FPGA was capable of handling the messages properly and the

controllers on the vehicle responded appropriately, the next step was to establish control

of all remaining sub systems. The rest of the subsystems were controlled by providing

power through relays or analog voltages. Utilizing the SCU boards capabilities with

analog inputs and outputs as well as the digital inputs and outputs did this. To control

these subsystems, the SCU FPGA needed to be programmed to use specific ports so the

SCU host code could use the hardware. A separate loop was created to run in parallel

with the rest of the SCU FPGA code. Keeping this section of code in a separate loop

helped organize the code and allowed future students to know which loops were required

for analysis if a fault did occur. Part of the code used to do digital and analog control is

shown in figure 33.

Figure 33: Supervisory Control Unit FPGA Subsystems Control Loop

 The next development phase was proper database management. The vehicle was

finally able to be communicated with correctly after a lot of updating of the DFMEA

documentation and control architecture, so the team started working on making sure the

	

42	

proper databases were created. Each database was developed with the future in mind. The

reasoning was because of the amount of development time required for each database

change. When a database was changed, a lot of the variables within the host code had to

be reorganized to accommodate the new messages, or lack of messages. There was no

better way to make the process more efficient that was known at the time. So to create

these databases, the program used was the measurement and automation explorer (MAX)

[46], shown in figure 34 on the next page. This program is part of LabVIEW and the NI

CAN drivers had to be downloaded and installed in order to allow MAX to create

messages that followed along with the CAN communication protocol [47] so the team

could develop the databases.

Figure 34: National Instruments Measurement and Automation Explorer

All of the communication and database development, along with the FPGA

development of both the GW and SCU had to be validated and verified to work properly

	

43	

and in accordance with the requirements. This was a continuous process throughout the

EcoCar competition. The validation and verification processes played a key role once

communication was established and the databases created. Troubleshooting through FTA

and checking the DFMEA documentation would occur during vehicle development to

verify that problems could not occur, or when problems did arise they were handled

quickly and safely through tolerance testing. One such example would be when a relay

signal would be intermittent. The team first looked at all of the electrical connections to

the relay. The investigations eventually led to the signal wire coming from the board. The

discovery was that the voltage would predictably drop every time the wire was moved.

The wire was replaced, and the relay was working properly once again.

Another problem the EcoEagles faced during the beginning of year three was the

1.3L turbo diesel engine. The team originally drove the vehicle by faking the engine data

to the vehicle. This temporarily allowed the vehicle to operate in mode one during the

integration process prior to real engine testing, which was an all-electric driving mode up

to speeds of 25 miles per hour. Unfortunately this meant the vehicle could not shift into

mode two and reach higher speeds. Without the engine, the transmission could not

accommodate the higher speeds due to the main oil pump requiring the engine to operate.

The engine controller never communicated over the CAN bus prior to mode one

capabilities.

After reading documentation online from Penn. State, the engine controller was

configured over CAN and verified sending data on the CAN bus to the SCU. The next

step was to take the data the engine was sending and let the vehicle see the specific data

needed. This was accomplished through verifying communication of engine CAN

	

44	

messages a few at a time on the bus required and validating the requirements for each

message needed for proper vehicle control. Once that was accomplished, the vehicle was

operational now with the engine controller taking over compared to the SCU faking the

engine data. The process took two months of testing, but the vehicle was finally operating

with the engine and capable to reach highway speeds after fault mitigation testing for

proper communication and engine control.

 Another important part of the car that needed communication development was

the charger and battery pack. A123 Systems designed the battery pack control module to

be able to communicate with the BRUSA charger. This was never tested prior to year two

in vehicle development. After looking at the A123 and BRUSA charger documentation,

all of the wiring required was connected and the control system was ready to be tested.

When the charger was plugged into the wall, the CAN line was observed to see if

communication was established between the charger and the battery pack. The team

discovered that the charger and battery pack work together and the charger could safely

manage the battery control system automatically. All of this was done in accordance with

DFMEA documentation and the requirements given by A123 Systems.

	

45	

Chapter IV

Results

EcoCar Control System Performance

 Year three of the competition was a year for refinement. The vehicle was in a

partially operational state at the beginning of year three and a lot of work was needed,

especially in accordance to the requirements that were set in year one. The EcoEagles

needed to get the engine controlled, have the IDEA system running, be able to achieve

highway speeds, apply aerodynamic modifications, and gain full control of all of the

subsystems. Over the course of the year, the team managed to accomplish this and be

ready for the year three competition.

 Engine control was a vital step in vehicle development. This enabled the team to

begin shift strategy development along with power management of the charging

capability of the engine. Once the communication and control was validated, work began

on the shift strategy. The shift strategy was created using software-in-the-loop (SIL)

system and tested using the vehicle as a hardware-in-the-loop (HIL) system.

Development quickly progressed and led to the EcoEagles testing the control system on

campus and was met with success. The vehicle control architecture was able to start the

engine, shift into neutral and mode two without any issues or problems. That day the

vehicle was able to achieve speeds of 30 miles per hour and higher. Figure 35 shows the

engine bay with the engine on the left and the tractive power inverter module (TPIM) on

the right hand side.

	

46	

Figure 35: Vehicle Engine Bay

There were two issues that arose during vehicle development involving the engine.

The transmission input shaft sheared apart and the team had to discover the issue that

caused this problem. Checking the DFMEA documentation led to improper

communication, incorrect torque request, or incorrect rotations per minute (RPM) setting.

After a long investigation, it was finally determined that engine shutdowns had to be

smoother to make sure that the input shaft was not fighting the engine during this phase.

The engine was taking control of the RPM of the input shaft because during the engine

shutdown procedure the controller would think the engine is about to stall and try to

inject more fuel into the system to compensate. To solve that problem, the SCU was

programmed to fake the engine messages temporarily while the engine control module

(ECM) was shut off for a brief second to prevent the ECM from thinking the engine was

stalling during the shutdown. Shutdowns resulted to be a lot smoother, but the input shaft

was a major concern and the controls team began testing within SIL systems to find ways

to prevent an input shaft failure from occurring again.

	

47	

Eventually there was the second issue with the engine at the year three

competition. The turbo on the turbo diesel engine failed due to backpressure on the

exhaust system. The diesel particulate filter (DPF) failed to be burned off due to the

rotations per minute (RPM) control from the EcoEagles control system, shown on the left

side of the picture of the exhaust tubing in figure 36. This potentially led to another failed

input shaft along with the broken turbo. To fix this problem the team would have to

reprogram the SCU to detect when the engine needs to burn off the DPF and allow the

RPM control to set the engine at a higher RPM. The team plans on replacing the turbo for

the diesel engine and incorporating the new DPF detection into the code.

Figure 36: Vehicle Exhaust System (DPF on left)

The IDEA system developed quickly over year three of the competition, which is

shown in figure 37. The VCS developed with consumer acceptability in mind. The

EcoEagles IDEA team lead worked on developing a panel that look appeasing to the eyes,

while enabling the team to be able to monitor vehicle status in accordance with

competition requirements. The team also decided to integrate the required driver display

into the IDEA system. LabVIEW was installed on the IDEA computer so that the device

could interface with the SCU and be able to control certain subsystems. Eventually the

IDEA system was able to control the driver panel notifications, which included

	

48	

regenerative braking, charge sustaining, external charge detection, control system

readiness, and ground fault detection.

Figure 37: IDEA Computer with Student Designed Bezel

 Testing for highway speeds and aerodynamic modifications occurred at the same

time. The Daytona International Speedway (DIS) offered to allow us to use the

backstretch of the racetrack after some of the team inquired. The team was able to take

the vehicle over and commence with basic testing of acceleration, braking, top speed, and

some of the aerodynamic modifications. Although acceleration, braking, and the

aerodynamic modifications were not fully tested the higher speeds of the vehicle were

tested. The EcoEagles managed to acquire a new high speed of 65+ miles per hour. This

speed was the highest speed the team has ever achieved from the vehicle.

 The subsystems were also a hassle during development of the vehicle during year

three. A lot of the time the subsystems would work, and then sporadically they would not.

However, charging the 12V battery typically solved this problem. It has not been

confirmed yet, but the SCU and GW might need a steadier state of 12V on the voltage

bus in comparison to one that fluctuates on a vehicle. The problems that would occur

would sometimes be loss of communication, and other times would be proper voltage

control over some of the relays but not all. If a 12V charger were on the vehicle and the

	

49	

team decided to deploy the SCU and GW controller codes, the vehicle would work. This

is a current problem that has not quite been fixed but there is an idea on how to fix the

issue. The idea is to put a capacitor in parallel with the 12V battery to help the SCU and

GW maintain a firmer 12V signal on the low voltage bus. This would help accommodate

any large current draw that the boards may need on booting. Currently, the boards work

well once they have booted with proper power and without any problems. This solution

may help the vehicle run more efficiently and without issue with the subsystems.

Systems Engineering Results

 The integration of Systems Engineering into the EcoCar project has been rather

difficult, but has helped the team greatly. Through DFMEA, the team was able to find

possible solutions or even create new ones based on the experience from the issue.

DFMEA played a big role in the trouble shooting process whenever a problem would

arise. The EcoEagles would check the documentation to get a good idea of what may

cause the problem, and then the team would start by putting that fault into the SIL

systems. The team was also able to properly identify how critical a lot of the problems

were in relation to the control system and the importance to the competition requirements.

With this further understanding, the team was able to lower the RPN on a few items

through the use of testing and evaluating the control architecture. Some of the RPNs

lowered were for communication issues, wiring dependability with the piggyback board,

and the accelerator pedal position signal and sensor for the engine controller.

The fault tree analysis helped the control architecture greatly. By instigating faults

into a SIL, and later the vehicle as a HIL, a majority of the problematic faults were

	

50	

mitigated and tested to ensure safety of the driver. The team made sure that if any critical

problem did occur on the vehicle that proper control settings were tolerant and in place to

allow any driver to have control of the vehicle to get to safety. Accelerator pedal failures,

CAN communication loss, input shaft failure, and loss of relay control are some of the

problems that were tested, and actually happened during vehicle development that the

team strived to fix and make sure to mitigate or tolerate properly.

The validation and verification process is what ultimately ties everything together.

V&V does not exist without proper FTA and DFMEA. Throughout the competition, the

team would often look back at the requirements to make sure the project was on task and

on time. The team was also making a graph to represent the overall production readiness

of the EcoEagles vehicle to keep track of progress, shown in figure 38.

Figure 38: EcoEagles Production Vehicle Readiness

Figure 38 expresses how the EcoEagles progressed over the summer between year two

and year three and throughout year three of the competition. Validation of the vehicle

control system and mechanical operation were satisfied for the requirements by the end

of year three competition.

	

51	

 The results shown in figure 38 are based off vehicle requirements and how the

team feels the vehicle compares to the production standards. At the end of year two,

shown in the figure, the vehicle was supposed to be at a 60% readiness in accordance

with vehicle production standards of the automotive development process. There is no

true definition of “60 % readiness” other than what is required of the vehicle for the

competition. The teams base the 60% readiness on how well they feel the vehicle is

performing and the current stage of development. This also counts toward the other

sections of the figure. The part of the graph that best expresses the most improvement of

the vehicle development for the EcoEagles is during the time between progress report

two and progress report three. The result of implementing better systems engineering

practices allowed the team to facilitate faster development through less risk. This gave

the team a 25% overall increase of what was felt as the production readiness of the

vehicle increasing from 60% to 85%.

The vehicle technical specifications were the requirements that needed to be

based on the performance of the vehicle. As the competition progresses in the various

stages, each university needs to predict the performance of the vehicle being designed.

Systems engineering integration into the project helped keep the development on track

and keep the predictions relatively close to the actual performance of the vehicle. Testing,

evaluation, validation and verification through FTA and DFMEA helped with keeping the

VTS up to date. The VTS can no longer be updated during year three of the competition.

This forces the teams to ensure performance measures are met and that vehicle

development progresses as set by the individual teams. These same practices are done in

	

52	

the automotive industry and prepare students for the workforce. The EcoEagles VTS that

progressed over the three years of the competition is shown in figure 39.

Figure 39: Vehicle Technical Specifications (VTS)

	

53	

Chapter V

Discussion, Conclusions, Recommendations

Discussion

 The EcoEagles had a few reoccurring problems throughout vehicle development.

The utilization of LabVIEW became a few problems when developing the control system.

Sometimes the control system would not work properly if certain aspects of the graphical

user interface were moved. Another issue that arose dealt with deployment of the code.

The version of LabVIEW that the EcoEagles used required some finesse when applying

state-charts, which are similar to state-flow in MatLab, to the control architecture. The

boards required an older style of formatting to properly store the state-charts in memory

and properly deploy. When designing a fault mitigating system, these are just a few

variables that you do not expect when determining possible fault causes of a failed

control system.

No matter how well planned out a system may be, unexpected occurrences will

always arise, but properly tolerated if the system is designed correctly. One way to

eliminate these possible faults from occurring during the control system development

would be to keep secure version control over any code being created. Another possible

solution could have been to update the program to the latest version, since the latest

version may have gotten rid of these issues. Updating to the latest version may cause

different issues, and the risks would then have to be weighed to discover the best

consideration.

Another issue that arose during vehicle development was the 2-Mode

Transmission communication with the SCU. In an unfortunate circumstance, the 2-Mode

	

54	

transmission was no longer being supported for the 2009 Saturn Vue due to vehicle

production being canceled. This caused GM to not have the capability to provide the

amount of support needed for the teams using this transmission. However, GM was able

to assign two engineers to help the teams discover the issues that were occurring. These

two engineers were able to give the teams a better understanding of how the transmission

operated and give them more confidence on a proper control strategy. The EcoEagles

were able to incorporate a diesel engine with the transmission where it was thought not

possible.

 The EcoCar competition required a lot of planning to properly integrate

everything into the vehicle safely and efficiently. The control system took a majority of

the time due to the complexity of the 2-Mode transmission. Due to the complexity, the

control system held the team back for almost a year. The vehicle was supposed to be in

an operational status of 60% production readiness by the end of the year two competition,

but the vehicle was unfortunately closer to 45%. Thanks to GM and ANL, the

coordinated efforts enabled the 2-Mode teams to fix all of the issues at hand and get the

vehicles operational. The EcoEagles had to pick up where the year two competition left

off and fully develop and refine all systems on the vehicle by the year three competition

deadline. This task was hard and tedious, but the team managed to pull through and get

the vehicle to a state of operation of 90% before the final competition.

	

55	

Conclusions

Systems engineering played a big part by the team utilizing the DFMEA

documentation along with the test procedures created to help assist the team during

development. Testing procedures help validate and verify system operation along with

helping keep the students who worked on the vehicle safe. The FTA that was created

helped the team discuss any possible failures that could occur on the vehicle and how to

prevent or detect these issues and properly mitigate the problem. These discussions led

back to the DFMEA documentation and assisted in keeping it up to date. Through the

guidance of the team, the systems engineering class was able to create documentation that

helped lead the team to work efficiently and more importantly safely. Systems

engineering was influential throughout this project and trained the students to discuss,

think, and more importantly cooperate and come together and develop a vehicle. Systems

engineering was important for this project, and it trained all of the students to better

understand the process and ultimately give them the experience they need to work in

industry. Because of this, the control system was successfully implemented and operated

safely for the GM drivers that tested the EcoEagles vehicle on the Milford Proving

Grounds in Michigan.

Recommendations

 A few things are considered for this project to be a complete success. One thing

that needs to be completed is the DPF section of the code to properly control engine so as

to not break another turbo. Another topic that was not fully developed on the vehicle is

the power management of the powertrain systems. Research was done on how to best use

	

56	

the engine with the transmission, but was not fully implemented into the vehicle due to

safety and time constraints. This would increase the vehicle overall efficiency and

performance and provide a better drive quality when in operation. Another system that

was not finished was the fuel gauge for the diesel tank. The wires for the tank exist but

not enough time was available to properly integrate that into the piggyback board and

SCU control system. The air conditioning (AC) is another device that has not been tested

and implemented into the control architecture. The changes that would need to be made

are a database change, electrical wiring, and conversion of the data. The proper message

needs to be converted and sent out to properly control the AC and the electrical wires are

to receive the AC high pressure reading for that specific message.

 The most important recommendation is keeping with the systems engineering

principles. One thing that was noticed was the team’s development and progression of the

EcoCar project. Systems engineering practices were not being used in certain areas of the

project and that hindered the team. This was not realized until the end of competition and

towards the beginning of the third year, but it is important to note. The reincorporation of

systems engineering after most of the information was given to the team allowed the

vehicle development to increase to a point where the vehicle went from a 45% state of

readiness to 85% in under a year. Making sure that a project keeps systems engineering

practices and principles to mind will ultimately save time and money in the long run.

	

57	

References

[1] Blanchard, B. S. and W. J. Fabrycky. Systems Engineering and Analysis. 3rd Edition. Upper
Saddle River: Prentice Hall, 1998.

[2] EcoCar. “2010 EcoCar Competition Finals Year 2 - Integration and Outreach.” US DOE and
GM, 2010.

[3] Buede, Dennis M. The Engineering Design of Systems. New Jersey: John Wiley & Sons, Inc.,
2009. Print

[4] Farrell, Curt; Sturges, Jim. “Systems Engineering.” Aerospace America 15 Dec. 2005. Pg. 35.
Print.

[5] Software & Systems Engineering Standards Committee. “Systems and software engineering –
System life cycle processes.” ISO/IEC 15288:2008(E). IEEE Std 15288TM – 2008.

[6] Eiler, John R. “Systems Engineering.” Aerospace America 15 Dec. 2008. Pg. 41. Print.

[7] Keating, Charles; Rogers, Ralph; Unal, Resit; Dryer, David. “System of Systems Engineering.”
Engineering Management Journal 15.3 (2003): 36-45. Print.

[8] Quality One International. Quality-One. 2011. 27 August 2011 http://www.quality-
one.com/services/fmea.php

[9] M. Boldrin; A. De Lorenzi; A. Fiorentin; L. Grando; D. Marcuzzi; S. Peruzzo; N. Pomaro; W.
Rigato; G. Serianni. “Potential failure mode and effects analysis for the ITER NB injector”
Fusion Engineering and Design 84.2-6 (2009): 466-469. Print.

[10] Wikipedia contributors. "Fault tree analysis." Wikipedia, The Free Encyclopedia. Wikipedia,
The Free Encyclopedia, 22 Jul. 2011. Web. 20 Sep. 2011.
http://en.wikipedia.org/wiki/Fault_tree_analysis#cite_ref-0

[11] Dr. William Vesely, SAIC. Fault Tree Handbook with Aerospace Applications. Handbook.
NASA. Washington: NASA, 2002.

[12] R. Ferdous; F.I. Khan; B. Veitch; P.R. Amyotte. “Methodology for Computer-Aided Fault
Tree Analysis.” Process Safety and Environmental Protection 85.1 (2007): 70-80. Print.

[13] Wikipedia contributors. "Verification and validation." Wikipedia, The Free Encyclopedia.
Wikipedia, The Free Encyclopedia, 19 Sep. 2011. Web. 20 Sep. 2011.
http://en.wikipedia.org/wiki/Validation_and_verification

[14] Duren, Riley M. “Validation and Verification of Deep-Space Missions.” Journal of
Spacecraft and Rockets 41.4 (2004): All. Print.

[15] Clarus Concept of Operations. Publication No. FHWA-JPO-05-072, Federal Highway
Administration (FHWA), 2005.

[16] Karner, Donald, et al. “Plug-in Hybrid Electric Vehicle (PHEV) Integrated Test Plan and
Evaluation Program.” Draft. U.S. Department of Energy FreedomCAR & Vehicle Technologies
Program Advanced Vehicle Testing Activity, 2007.

	

58	

[17] Rosa, Kristen de la. “Advanced Vehicle Technology Competitions for Students.” Argonne
National Laboratory June 2011. Web. 27 Aug. 2011.
http://www.transportation.anl.gov/competitions/index.html

[18] Jehlik, Forrest. “Advanced Vehicle Technology Competition: Challenge-X 2008 DOE Merit
Review.” 2008. 27 Aug. 2011.
http://www1.eere.energy.gov/vehiclesandfuels/pdfs/merit_review_2008/gate/merit08_jehlik.pdf

[19] Rosa, Kristen de la. “Competition Innovations.” Argonne National Laboratory Aug. 2009.
Web. 27 Aug. 2011. http://www.transportation.anl.gov/competitions/innovations.html

[20] Rosa, Kristen de la. “Virginia Tech Wins EcoCar Competition With an Extended-Range
Electric Vehicle, The Ohio State University and the University of Waterloo Finish Second and
Third.” Argonne National Laboratory June 2011. Web. 27 Aug. 2011.
http://www.transportation.anl.gov/competitions/EcoCar_2011.html

[21] Department of Energy. “Department of Energy Announces Advanced Vehicle Technology
Competition, EcoCar 2: Plugging into the Future.” Department of Energy EERE News 13 April
2011. Web. 27 Aug. 2011. http://apps1.eere.energy.gov/news/progress_alerts.cfm/pa_id=514

[22] Harries, Brian. “Control System Design and Optimization Using LabVIEW for a Plug-In
Hybrid Electric Vehicle as part of EcoCar: The NeXt Competition.” ASME 2011 International
Mechanical Engineering Congress & Exposition. Hyatt Regency Denver & Colorado Convention
Center. Denver, Colorado. Nov. 2011. Paper.

[23] sbRIO-9642/9642XT. National Instruments. 27 Aug. 2011.
http://sine.ni.com/nips/cds/view/p/lang/en/nid/205900

[24] sbRIO-9602/9602XT. National Instruments. 27 Aug. 2011.
http://sine.ni.com/nips/cds/view/p/lang/en/nid/205892

[25] LabVIEW. National Instruments. 27 Aug. 2011. http://www.ni.com/labview/

[26] FPGA Read / Write Control Function. National Instruments. 27 Aug. 2011.
http://zone.ni.com/reference/en-XX/help/371599F-01/lvfpgahost/readwrite_control/

[27] Flat Sequence Structure. National Instruments. 27 Aug. 2011.
http://zone.ni.com/reference/en-XX/help/371361G-01/glang/flat_sequence/

[28] Open/Create/Replace File. National Instruments. 27 Aug. 2011.
http://zone.ni.com/reference/en-XX/help/371361D-01/glang/open_create_replace_file/

[29] Read from Text File Function. National Instruments. 27 Aug. 2011.
http://zone.ni.com/reference/en-XX/help/371361G-01/glang/read_characters_from_file/

[30] Hexadecimal String to Number Function. National Instruments. 27 Aug. 2011.
http://zone.ni.com/reference/en-XX/help/371361G-01/glang/hex_string_to_number/

[31] Index Array Function. National Instruments. 27 Aug. 2011. http://zone.ni.com/reference/en-
XX/help/371361G-01/glang/index_array/

[32] Wait Function. National Instruments. 27 Aug. 2011. http://zone.ni.com/reference/en-
XX/help/371361G-01/glang/wait_ms/

	

59	

[33] For Loop. National Instruments. 27 Aug. 2011. http://zone.ni.com/reference/en-
XX/help/371361G-01/glang/for_loop/

[34] While Loop. National Instruments. 27 Aug. 2011. http://zone.ni.com/reference/en-
XX/help/371361G-01/glang/while_loop/

[35] CAN Frame to Channel Conversion Library User Guide. National Instruments. 27 Aug. 2011.
http://digital.ni.com/manuals.nsf/websearch/247EBF8EF4661015862576D600526455

[36] Unbundle by Name Function. National Instruments. 27 Aug. 2011.
http://zone.ni.com/reference/en-XX/help/371361F-01/glang/unbundle_by_name/

[37] Bundle by Name Function. National Instruments. 27 Aug. 2011.
http://zone.ni.com/reference/en-XX/help/371361F-01/glang/bundle_by_name/

[38] FPGA I/O Node (FPGA Module). National Instruments. 27 Aug. 2011.
http://zone.ni.com/reference/en-XX/help/371599C-01/lvfpga/fpga_io_node/

[39] LabVIEW FPGA. 27 Aug. 2011. http://www.ni.com/fpga/

[40] 2-Port, High-Speed CAN Module for NI CompactRIO. 27 Aug. 2011.
http://sine.ni.com/nips/cds/view/p/lang/en/nid/201972

[41] Invoke Method Function. National Instruments. 27 Aug. 2011.
http://zone.ni.com/reference/en-XX/help/371599E-01/lvfpgahost/invoke_method/

[42] VI-Defined Memory Configuration Node. National Instruments. 27 Aug. 2011.
http://zone.ni.com/reference/en-XX/help/371599E-01/lvfpga/fpga_vi_scoped_memory/

[43] VI-Defined FIFO Configuration Node. National Instruments. 27 Aug. 2011.
http://zone.ni.com/reference/en-XX/help/371599E-01/lvfpga/fpga_vi_scoped_fifo/

[44] Case Structure. National Instruments. 27 Aug. 2011.
http://zone.ni.com/reference/en-XX/help/371361G-01/glang/case_structure/

[45] Grewe, Tim M.; Conlon, Brendan M.; Holmes, Alan G. “Defining the General Motors 2-
Mode Hybrid Transmission.” SAE World Congress & Exhibition. Detroit, MI. April 2007. Paper.

[46] What is Measurement & Automation Explorer? National Instruments. 27 Aug. 2011.
http://digital.ni.com/public.nsf/allkb/71544521BDE34FFB86256FCF005F4FB6

[47] NI-CAN 2.7.3 – Windows 7/XP x86/Vista, Pharlap. National Instruments. 27 Aug. 2011.
http://joule.ni.com/nidu/cds/view/p/id/2646/lang/en

	

60	

Appendices

Appendix A

ASME 2011 5th International Conference on Energy Sustainability Paper

	

61	

	

62	

	

63	

	

64	

	

65	

	

66	

Appendix B

ASME 2011 International Mechanical Engineering Congress & Exposition Paper

	

67	

	

68	

	

69	

	

70	

	

71	

	

72	

	

73	

	

74	

	

75	

	

76	

	Development and Implementation of a Fault Mitigating Control System for a Biodiesel Plug-In Hybrid Electric Vehicle for the EcoCar: The NeXt Challenge Competition
	Scholarly Commons Citation

	Microsoft Word - 2011_Thesis_Defense_Sean_Carter_FD.docx

