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Abstract

A new 3-D model of the high latitude ionosphere is developed to study the coupling

of the ionosphere with the magnetosphere and neutral atmosphere. The model

consists of equations describing conservations of mass, momentum and energy for

the six ionospheric constituents (O+, NO+, N+
2 , O

+
2 , N

+ and e−) and an

electrostatic potential equation. This 3-D model is used to examine interrelated

processes of ion heating, plasma structuring due to perpendicular transport, ion

upflow, molecular ion generation, and neutral wave forcing. It is first validated by

comparisons with a 2-D model, which uses similar mathematical and numerical

approaches, and is additionally compared against incoherent scatter radar data.

Results from a simulation of ionospheric response to a large amplitude acoustic

wave also suggests an important role for these waves in generating local dynamo

currents and density variations. Results of this model also shed some light on the

interplay of perpendicular and parallel transports of plasma in producing structures

in density and drift velocity profiles.
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Chapter 1

Introduction

This project aims to simulate dynamic processes occurring in the high-latitude iono-

sphere. By incorporating models of the mathematical descriptions of ionospheric

physics, we develop a platform to understand the three dimensional evolution of var-

ious aeronomic and transport processes. Three-Dimensional (3-D) numerical models

have been developed for the mid latitude regions to study the effects of the Perkins

instability [Yokoyama et al., 2008; Yokoyama et al., 2009] and equatorial spread F

[Huba et al., 2009]. However, due to the magnetospheric interactions in the high

latitude region, the auroral ionosphere experiences a different range of energetic pro-

cesses. As a result, it becomes essential to develop a 3-D high latitude ionospheric

model to study the impacts of these phenomena. Currently, 2-D models have been

developed which are capable to demonstrate many main processes. For example, the

depletion process in the E and F regions, ion upflow process in the upper regions

and plasma enhancement process in the E region [Zettergren and Semeter, 2012],

[Zhu et al., 2001] and [Noël et al., 2000]. This present work seeks to extend these
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studies by investigating effects of non-uniformity in density, energy flux or imposed

boundary conditions in 3-D. We focus specifically on the evolution of plasma density

structures, heating due to ion-neutral coupling, plasma flows and ion composition

changes through chemistry.

The outcome of this project is to provide a comprehensive test bed for researchers

to analyze the ionospheric physics and enhance our understanding of various iono-

spheric responses. We begin in Chapter 2 with an introduction to the fundamentals

of high latitude ionospheric physics including the formations of the ionosphere and

some basic processes. In Chapter 3, we then delve into the mathematical descriptions

and formulations of a new 3-D ionospheric model including the important numerical

techniques used along with the implementations. In Chapter 4, we will first validate

our model by making direct comparisons with previous work done in 2-D [Zettergren

and Semeter, 2012], and also analyze some simple 3D geometries. Finally in Chap-

ter 5, we will employ this model in case studies of the ionospheric responses to (1)

realistic potential patterns and (2) large amplitude acoustic waves.

2



Chapter 2

Terrestrial Ionosphere

2.1 Basic Ionospheric Processes

The basic features of the ionosphere are a consequence of the interactions among

three physical processes: Photoionizaton, chemical interactions (charge exchange and

recombination processes), and field aligned diffusion of plasma. These three processes

result in the typical layered plasma density profile (shown in Figure 2.1) . In the next

few sections, we will discuss each process and the associated contributions to the

formation of ionosphere. We will also outline several high-latitude features of specific

interest to this research.

2.1.1 Photoionization

The solar extreme ultraviolet (EUV) and X-ray radiation are the two main wave-

length ranges that interact strongly with the earth’s neutral atmosphere and produce

plasma through the different photoionization processes [Richards et al., 1994] and

3
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Figure 2.1: A nominal density profile is an equilibrim profile generated by the 3-D

auroral ionospheric model.
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[Solomon and Qian, 2005]. As solar radiation propagates downwards through the

Earth’s Atmosphere, the energy is absorbed in creation of ion-electron pairs. Ab-

sorption also results in heating which allows high temperatures to be maintained in

the thermosphere. With the basic assumptions of monochromatic radiation and a

single ionizable gas, this process is succinctly described using the Chapman theory

[Rishbeth and Garriott, 1969]. However, the interactions of solar radiation with the

neutral atmosphere are highly wavelength dependent. With the aid of high altitude

rockets, direct measurements have been made to construct a quantitative picture of

different ionization processes. In the D region, depending on the solar activity, both

X-rays spectrum α = 1 ∼ 8 Å and Lyman α with λ = 1286 Å can ionize some major

constituents (O2 and NO) in that region. Similarly in the E-region, X-rays with a

wavelength between 100 and 31 Å, Lyman β of 1025.7 Å and Lyman continuum of

less than 910 Å dominate the ionization of O2 and N2. Figure 2.2 shows the elec-

tron production rate pe(h) as a function of altitude and wavelength of the incident

radiation for typical daytime, mid-latitude conditions.

2.1.2 Chemistry

In addition to the photoionization process, which constitutes the productions of the

ionosphere, the chemical production and loss also play an important role in deter-

mining the density of constituents including ions present in the ionospheric regions.

Two main chemical processes (charge exchange and recombination) that govern the

chemical compositions of the auroral ionosphere are discussed:

5



Figure 2.2: X(E) = 8 ∼ 140 Å, UV(E) = 796 ∼ 1027 Å, E = UV(E)+X(E), F = 140

∼ 796 Å; E+F = 8 ∼ 1027 Å [Rishbeth and Garriott, 1969, Fig. 24 on pp. 101].
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Charge Exchange Processes

Reactions involving charge exchange perform momentum transfer in the process.

More specifically, the reactant of this process first exchanges the electric charge with

the neutral particles, and after the process is complete, the kinetic energy remains

the same. This sudden transition produces different kinds of ion species, and also

gives resulting neutral particles a different energy spectrum. In addition, due to the

nature of momentum/energy transfer in this process, the charge exchange reactions

are highly sensitive to temperature variations [St.-Maurice and Laneville, 1998]. The

general formula for charge exchange is listed as follows:

WX+ +YZ → WX+YZ+ (2.1)

The reaction constant is usually in the order of 10−10cm3s−1. Full lists of reactions

can be found in [Schunk and Nagy, 2004], [Rishbeth and Garriott, 1969] and [Banks

and Kockarts, 1973]. In addition, depending on the bond of the neutral particle, a

charged particle can also break a molecular bound to form a new charged species:

X+ +YZ → XY+ + Z (2.2)

Recombination

There are two kinds of recombination reactions. The first one is radiative recom-

bination. When an electron “strikes” a charged ion, it excites and neutralizes the

charged particle. The excited particle emits a photon to decay to a lower energy

state. This situation is very similar to the inverse of photoionization. The general

reaction formula is as follows:

X+ + e− → X∗ + hν (2.3)
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This reaction is typically quite slow, and occurs at reaction constant in the order of

10−12cm3s−1

The second type of recombination reaction is the dissociative recombination, and

it is most frequently occurred in the ionospheric environment. The production usually

excites the resulting atoms, and converts the excess energy into kinetic energy of the

products. This reaction has fast rate, of the order of 10−7cm3/sec. A typical reaction

of this kind is represented in the following:

XY+ + e− → X+Y (2.4)

Dissociative recombination rates are listed in Schunk and Sojka [1982]. Note, the

recombination of electron and atomic ions can take place only by a very slow radiative

process. In the F and E regions, dissociative recombination dominates the chemistry.

Figure 2.3 provided by Blelly et al. [1996] gives a complete diagram of the terrestrial

ionospheric chemical processes, with specific products and reactants.

2.1.3 Geomagnetic Field-Aligned Diffusion

Field-aligned diffusion is an important contributor to the ionospheric profile in the F-

region and topside. It helps explain the formation of the F2 peak. At the ionospheric

altitudes, four major forces act on particles: Gravity, Lorentz force, neutral collisions,

and pressure gradient. Figure 2.4 illustrates these forces. Note that the gravity force

can be neglected for the electrons owing to a much smaller mass. A force equilibrium

condition is achieved if the sum of forces acting equals to zero. Here, ∇ps is the

pressure gradient of species “s”, nsmsg is the force due to gravity and nsmsνin(vi−vn)
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Figure 2.3: Chemistry in Ionosphere [Blelly et al., 1996].
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is the collisional force,

∑
F = −∇ps − nsmsg + nsqsE − nsmsνin(vi − vn) = 0. (2.5)

Similarly, the equation for electrons becomes

∑
F = −∇pe − nemeg + neqeE − nemeνin(ve − vn) = 0. (2.6)

The above equations 2.5 and 2.6 can be solved by imposing the Ideal Gas Law

ps = nskTs and pe = nekTe. By invoking the conservation of mass and deploying

simple mathematical manipulations, solution for density in absence of production/loss

(valid only for topside) can be found from the continuity equation for density. More

specifically, by solving for the velocities of ionospheric species vs, and substituting

them to the continuity equation, it produces a diffusion equation. A more detailed

discussion can be found in Schunk and Walker [1973].

2.2 High Latitude Ionosphere

On a global scale, the high latitude ionosphere is coupled with the magnetosphere,

generating three interrelated processes: Global scale current systems, perpendicular

particle convection pattern in the polar region, and the polar wind. These processes

represent disturbances to the “background” ionosphere (see Section 2.1) and also

relate to the smaller scale auroral ionospheric disturbances focused on in this work.

10



Figure 2.4: A simplified diagram illustrates the vertical forces that contribute to the

ionospheric momentum balance [Rishbeth and Garriott, 1969, Fig. 36 on pp. 149].
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2.2.1 Global Scale Current System and 2-Cell Convection

Pattern

Interactions between the solar wind/geomagnetic field induce motional EMFs, pro-

ducing current flows into the ionosphere which acts as a resistive load in the “circuit”.

Depending on the locations of the sources for the currents, we classify them as the

Region-1 (R1) and Region-2 (R2) current systems. First of all, R1 currents link the

poleward portion of the auroral oval and the polar cap to the magnetosheath, solar

wind, or the boundary layer plasma near the magnetopause. R2 currents link the

inner magnetosphere with the auroral oval near its equatorward edge [Kelley, 2009].

For a very long time scale, we can assume that the currents have zero divergence

(see Section 3.2). Pedersen currents through ionosphere to close the loop from both

the highest latitude and the auroral zone regions of the ionosphere. This system is

illustrated in Figure 2.5. In addition, the electric field concurrent with the current

system, combined with the magnetic field, implies an E×B drift. The result of this

process is the well known 2-cell convection pattern.

The convection pattern implies that plasma is transported from the dayside to

the nightside in the polar cap region, and it is recirculated to dayside. Studies have

shown that the By of the IMF contributes the most to the geometrical size of the

convection cells [Heelis, 1984]. In addition, data from DE2 spacecrafts also suggests

that this perpendicular drift pattern could result in frictional heating with the neutral

gas creating upflow velocity. This correlation between the pependiuclar convection

flow and the upflow of plasma has been well examined by some authors [Heelis et al.,

1992].
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Figure 2.5: A 3-D representation of the Global Scale Current System (Adapted

from MedEd, an Teaching and Training Resources for Geoscience Community

https://www.meted.ucar.edu/index.php).
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Figure 2.6: Due to the E×B drifts, two-cell convection pattern appears [Heelis et al.,

1992, Fig. 6.3 on pp. 267].

2.2.2 Polar Wind Outflow

Polar wind outflow is a fairly constant flow of protons out of the polar cap region.

This stream of outflow depletes the lighter charged particles such as H+ from the high

altitude regions thus reducing the electron densities and altering plasma composition.

Qualitatively speaking, this is a result of the open magnetospheric geometry in the

high latitude regions whereby polar ionosphere is connected to lower pressure tail

lobes. As polar wind plasma flows upward, a decrease in collisions frequency allows

the charge species to accelerate from the electric field and pressure gradients. At

around 2000 to 4000 km altitude, a sufficient amount of energy has been given to

each particle, allowing them to achieve escape speed and transporting them well into

the magneto tail [Banks and Kockarts, 1973]. Figure 2.7 shows the parallel velocity

of H+ through the collisionless transition region.

14



Figure 2.7: Daytime Polar Region H+ Velocity Profiles [Banks and Kockarts, 1973,

Fig. 21.12 on pp. 230].
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Figure 2.8: Simplistic Illustrations of the Ionospheric Current System (Courtesy of

Dr. M. Zettergren).

2.3 Auroral Ionospheric Disturbances

Due to the complex coupling between the ionosphere and magntosphere, disturbances

in the auroral regions create ionospheric responses that can be spatially extended

and temporally persistent. In this section, we will focus on the smaller scale auroral

disturbances. Before we dive into the different processes, we will first focus our

attention to a simplified diagram of 2-D auroral ionospheric structure (Figure 2.8).

On the left, when a potential structure is imposed on top of this system, down-

ward current region (DCR) and upward current region (UCR) are formed. Since the

electrons have higher mobility than the ions in the parallel direction, they become

the main carrier for the current as indicated in Figure (2.8). Based on the quasi-

static approximation of the charge continuity equation: ∇ · J = 0, these two current
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regions have to be closed. The closure occurs at the lower region (E-region) of the

ionosphere where the cross-field conductivity is the highest. This cross-field current

is called the Pedersen current. In that region, ions are essentially the only carrier to

close the loop, creating plasma depletion (Section 2.3.4) and enhancement (Section

2.3.1) in the DCR and UCR respectively. However, the E-region is highly collisional,

and the perpendicular motion of the ions causes them to collide with neutrals, and

heat the E-region (Section: 2.3.2). In addition, in the DCR, the combination of the

E×B drift and the downward motion of electrons causes the heating which results in

upward motion of ions. In contrast, in the UCR, upward moving electrons precipitate

energy resulted from the ion-electron collisions. A more quantitative description is

discussed in Section 2.3.3.

2.3.1 Plasma Enhancement

At the bottom of the downward current region, the plasma enhancement is due to

two important processes: Ion motions due to Pedersen current and electron impact

ionization. Electron impact ionization is an important source for creating charged

particles:

e− +O ⇒ 2e− +O+ (2.7)

This excitation of the O+ leads to three different energy states (4S, 2P and 2D).

Experiments using Atmosphere Explorer D satellite measured the emissions due to

each of these states [Rees et al., 1982]. Analysis have shown the production efficiency

of 2P is around 18 percent [Rees et al., 1982]. This number also confirmed the

theoretical calculation by Burnett and Roundtree [1979] using the differential and
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total cross sections for electron impact ionization of the oxygen gas. Due to the

geometry of electric fields, the ions in the E-regions stagnate to further create plasma

enhancement. The combination of these two processes can produce an enhancement

of around 100 percent. At some point, this stagnation area may expand vertically

and reach to the bottom of the F-region [Zettergren and Semeter, 2012].

2.3.2 Frictional Heating

The temperature profile in the high latitude auroral ionopshere is governed by fric-

tional heating between ion and neutral species. As we recall, the motion of the ions

is controlled by the E×B drift. As the ions drift along this direction, they encounter

neutral species through collisions, these collisions trigger energy and momentum ex-

change and in turn increase the total energy of the neutral species. A simplified

frictional heating rate Rheat of a two gas system r and s is described by Banks and

Kockarts [1973] as follows:

Rheat = νrsµrsnr (vs − vr) (2.8)

where νrs is the reduced mass of the gases, µrs is the momentum transfer collision

frequency, nr is the density of species “r” and vs and vr are the drift velocities of

the r and s gases.

Figure 2.9 illustrates the temperature profile (solid line) which shows the frictional

heating manifested in the E-region and continues to be maintained after reaching a

maximum of 2250 K. it also fluctuates between 1250 and 2000 K as altitude gets well

into the F-region. The high temperatures are the result of frictional heating. The
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Figure 2.9: Measurements of Frictional Heating and Model Comparison [Zettergren

and Semeter, 2010].

data show the ion temperature from the Sondrestrom ISR during an auroral event.

The two dotted lines signified data generated using a simple model to simulate the

temperature profiles of two primary constituents O+ and NO+.

2.3.3 Ion Upflow

In the topside of the high latitude ionosphere, observations have frequently measured

the upward flow of ions travelling with high vertical velocities [Su et al., 1999]. For

instance, a velocity of approximately 1000 m/s for O+ has been simulated [Su et al.,

1999]. It suggests that there are two main processes that could contribute to the

upflow of O+. The first one is due to the ion frictional heating. As we have mentioned,

ion frictional heating occurring in the E-region initiates ion upflow. However, due

to the high collisional environment below the F-region, this upflow is suppressed
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significantly. Once ions reach above 500 km altitude, the decrease in collisions with

neutral species allows parallel ion motions resulting in high upflow velocity. We will

revisit this process in Chapter 4.

A second contributor of it is due to the electron temperature enhancement driven

by electron precipitation. The details of this process are described in Whitteker

[1977].

2.3.4 E-Region and F-Region depletion processes

There are two regions of the ionosphere that experience depletion in plasma density.

However, the mechanism behind these are completely different. In the E-region, we

have depletion due to Pedersen current that advects the ions from the bottom of the

DCR to the UCR. This current is mainly determined by two factors: the E-region

density or the initial conductivity and the size of the current system. Zettergren and

Semeter [2012] illustrate the effects of it by modifying the imposed topside current

density. In the F-region however, chemistry is responsible for the depletion. More

specifically, the increase in temperature triggers the charge exchange process turning

atomic O+ to molecular ion NO+. With the high recombination rate of NO+ with

the electrons, it forces the charged particles to be quickly converted into neutral.

That in turn creates the depletion in the F-region. In this model illustrated in Figure

2.10 , it makes a comparison of the electron density with and without temperature

enhancement. With only the current closure simulated (dashed red line), the depletion

only occurs in the E-region. By incorporating the frictional heating process (solid

green line), it reveals the depletion of both the E and F regions.
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Figure 2.10: Simulation of E and F Regions Depletion [Zettergren and Semeter, 2012].
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Chapter 3

Formulation of the Ionospheric

Model

3.1 Fluid Moment Formulation

According to Schunk and Nagy [2004], due to the highly non-equilibrium flow con-

ditions and the diverse collisional environment existing in high latitude ionosphere,

there have been a number of efforts to model the various flow conditions by using

the collison-dominated and collisionless transport equations, kinetic and semi-kinetic

models, and macroscopic particle-in-cell techniques. Among them, Boltzmann’s equa-

tion has the capabilities to demonstrate various flow conditions. In addition, it is also

an analytical description of the distribution of the particles. By fusing the areas of

electricity and magnetism with the formulation of hydrodynamics, it allows users to

simulate different kinds of ionospheric physics. For the purpose of this project, we

will focus our attention to three primary state variables: density, velocity, and en-
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ergy. The basic formulation of the full fluid moment equations are obtained by taking

velocity moments of Boltzmann equation. They are expressed as followed:

Density Equation:

∂ns

∂t
= −▽ ·(nsvs) + Ps − Lsns (3.1)

This expression describes the time evolution of density. Essentially, it suggests that

there are three different processes that contribute to the density change: particles

being advected to a new location via vs, and productions Ps model or loss Ls via

the chemical interactions. (Note, “s” subscript denotes six different ionospheric

constituents, they are O+, NO+, N+
2 , O

+
2 , N

+ and e−).

Momentum Equation:

ms(
∂vs

∂t
) +ms(vs · ▽vs) = msg − 1

ns

▽ ps +

qs(E+ vs ×B) +
∑
t

msνst(vt − vs) (3.2)

On the right hand side of this equation, we have the Lorentz’s force qs(E+ vs ×B)

in addition to the pressure gradient 1
ns

▽ ps due to changes in temperature and

density. Other forces include gravity msg, Coulomb and ion-neutral Collisions∑
t

msνst(vt − vs). These forces contribute to the total time rate of change of the

drift velocities. This equation closely resembles the Newton’s second law: msa = F.
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Energy Equation:

∂Ts
∂t

+ vs · ∇Ts +
2

3
Ts(∇ · vs) +

2

3nskB
∇ · hs =

−
∑
t

msνst
ms +mt

[2(Ts − Tt)−
2mt

3kB
(vs − vt)

2] (3.3)

Since we only have three equations with five unknowns (ns,vs, Ts, hs and ps, in

order to close the system, two additional pieces of information have to be added. The

first equation comes from the ideal gas law which relates ns, Ts and ps:

ps = kbnsTs, (3.4)

where kb is the Boltzmann’s constant.

The second piece of information resolves the heat flux. It is common to express

heat flux hs for ions and he for electrons using a Fourier’s law to capture effects of

heat conduction and thermo-electric processes. They are expressed in the following

manner:

hs = −λs∇Ts, (3.5)

he = −λe∇Te − βeJ, (3.6)

where λs and λe are the thermal conductivities for ions and electrons respectively.

The coefficient βe measures how much heat is carried per unit charge. Note that the

heat flux equation is circumvented in this model through the use of the steady state

energy approximation (see Section 3.1.2 for a detailed discussion).
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3.1.1 Momentum Balance Approximation

Unlike a direct solution to the momentum equation which illustrates the transient

state of the motions of the particles, the momentum balance solution directly gives

the equilibrium state of motions. In our model, we deploy this method to calculate

the perpendicular drift of ions and parallel drift of electrons. The detailed discussion

is deferred until Section 3.2.

To obtain this equation, let’s recall equation 3.2 and set the right hand side zero:

msg − 1

ns

▽ ps + qs(E+ vs ×B) +
∑
t

msνst(vt − vs) = 0. (3.7)

For simplicity, let’s rewrite it as followed without the summation and move the

drift velocity term vs, and first consider the perpendicular term vs⊥ That is,

vs⊥ ×B− msνs
qs

vs⊥ =
1

nsqs
▽ ps − E⊥ − msνs

qs
vn⊥, (3.8)

where νs ≡
∑
n

νsn (it only sums over the neutral species).

We can rewrite the left hand side of the equation as follows: −msνs
qs

Bz

−Bz −msνs
qs


 vsx

vsy

 =
1

nsqs
▽ ps − E⊥ − msνs

qs
vn⊥. (3.9)

By taking the inverse of the coefficient matrix on the LHS, we have, vsx

vsy

 =
1

ν2s +
q2sB

2

m2
s

q2s
m2

s

 msνs
qs

Bz

−Bz
msνs
qs

 ·
(

1

nsqs
▽ ps − E⊥ − msνs

qs
vn⊥

)
. (3.10)

If we recall the gyro-frequency, that is

Ωs ≡
qsB

ms

, (3.11)
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The above equation 3.10 can be rewritten as vsx

vsy

 =
qs

msνs

 ν2s
ν2s+Ω2

s

νsΩs

ν2s+Ω2
s

− νsΩs

ν2s+Ω2
s

ν2s
ν2s+Ω2

s

 ·
(

1

nsqs
▽ ps − E⊥ − msνs

qs
vn⊥

)
. (3.12)

We can define the coefficient matrix of equation 3.12 as the mobility tensor µs of

species:

µs =
qs

msνs

 ν2s
ν2s+Ω2

s

νsΩs

ν2s+Ω2
s

− νsΩs

ν2s+Ω2
s

ν2s
ν2s+Ω2

s

 (3.13)

We may assume steady state for both the electrons moving in the vertical direc-

tion and ions moving in perpendicular directions (A detailed discussion is provided in

Section 3.2.1). For the electrons moving parallel to the Bêz field, the cross product

term becomes zero. Secondly, we can neglect the gravity due to the mass of an elec-

tron. By rewriting the collisions (Coulomb and electron-neutral) in term of mobility,

it yields the following:

ve∥ = µe0(E∥ −
1

neqe
▽∥ pe), (3.14)

where µe0 is the parallel mobility of an electron, and it is expressed as νe0 =
qe

meνe
.

Perpendicular to the B field, high ion Pederson and Hall mobilities indicate that

they are the primary charge carriers. Due to ion-neutral collision frequency, per-

pendicular to B, transport of ions can be approximated. By performing the same

procedures as before, the following equation is derived:

vs⊥ = µs⊥ · (E⊥ − 1

nsqs
▽⊥ ps +

msνs
qs

vn⊥). (3.15)

In summary, equations 3.14 and 3.15 can be used in place of the full time dependent

momentum equation. The justification of this can found in Section 3.2. It could speed
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up the computation process while providing a good approximation for the model.

Note that the vs∥ shall be obtained by solving the fully time dependent moment

equation.

3.1.2 Energy Balance Approximation

The Energy Balance approximation can also be used for obtaining the temperature

profile. The term Ts(▽ · vs) represents compressibility of the gas [Saint-Maurice and

Hanson, 1982]. Since the ion motion is essentially incompressible, this term can be

ignored, and for the purpose of approximation, we can neglect this term. Schunk and

Sojka [1982] also examine the effects of heat conduction up to 500km. It suggests

that the energy balance is not greatly affected by heat conduction. Therefore, heat

conduction term ▽ · hs can also be neglected for solution going up to 500km. All

these assumptions allow the use of the energy balance equation by setting:

∂T

∂t
= 0, (3.16)

which is essentially the equilibrium temperature to construct the temperature profile.

∂Ts
∂t

= −
∑
t

msνst
ms +mt

[2(Ts − Tt)−
2mt

3kB
(vs − vt)

2], (3.17)

In addition, due to dense concentration of the neutral species in the low altitude

region, the time scale for Coulomb Collisions normally occurs in the order of

seconds, much longer than the ion-neutral collisions ( 1/νsn). Therefore, we can

simply set the left hand-side of the equation zero, and only consider the ion-neutral

interactions. We assume that the most ions and neutral particles are all moving at

the same velocity in the perpendicular directions.
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Ts − Tn =
⟨mn⟩
3kB

(vs⊥ − vn⊥)
2, (3.18)

where ⟨mn⟩ is defined as follows:

⟨mn⟩ =

∑
t

mtνt
ms+mt∑

t

νst
ms+mt

. (3.19)

Instead of solving the entire energy equation, energy balance provides an approxi-

mation to the temperature while greatly reducing both the computational and numer-

ical complexity. In summary, the basic ionospheric transport model would consists

the followings:

Density:

∂ns

∂t
+▽ · (nsvs) = Ps − Lsns (3.20)

Momentum Equation for vs,∥:

ms(
∂vs,∥

∂t
) +ms(vs,∥ · ▽vs,∥) = msg − 1

ns

▽ ps +

qs(E+ vs,∥ ×B) +
∑
t

msνst(vt − vs,∥) (3.21)

Momentum Balance Equation for vs,⊥ and ve−,∥:

vs⊥ = µs · (E⊥ − 1

nsqs
▽⊥ ps +

msνs
qs

vn⊥) (3.22)

ve∥ = µe0(E∥ −
1

neqe
▽∥ pe) (3.23)

Energy Balance:

Ts − Tn =
⟨mn⟩
3kB

(vs⊥ − vn⊥)
2 (3.24)

Ideal Gas Law:

ps = kbnsTs (3.25)
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3.1.3 Numerical Methodology

Even though the momentum balance equations help to reduce the computational com-

plexity, we are still facing the challenge of resolving the parallel momentum equation,

and continuity equation in 3D for all ion species. As you recall, these advection equa-

tions are nonlinear with complex time and spatially dependent source and sink terms.

To resolve these complexity, we propose to use a fractional step method combined

with an appropriate finite volume method.

3.1.3.1 Fractional-Step

For our purposes, the fractional step method is to divide the equation into the ad-

vection term and the source/sink term. By solving each portion independently, it

drastically reduces the numerical complexity, yet still maintains an acceptable first-

order accuracy according to LeVeque [2002]. Similar methods have been deployed in

many MHD and ionospheric modeling codes. The system is of the following form:

∂f

∂t
+
∂vxf

∂x
= Ψ(f). (3.26)

The basic idea is to solve the homogeneous part to obtain the intermediate so-

lution. We then plug the intermediate solution to the source (sink) term. As an

example, consider following continuity equation:

∂ns

∂t
+▽ · (nsvs) = Ps − Lsns, (3.27)

where

▽ =

[
∂

∂x
,
∂

∂y
,
∂

∂z

]
. (3.28)
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By setting the source term to zero, we have the homogeneous equation.

∂ns

∂t
+▽ · (nsvs) = 0. (3.29)

There are a number of methods we can use to calculate the intermediate solution

for densities. Let’s assume for now that the numerical solution is obtained and de-

noted by n∗
s, where n

∗
s is the intermediate solution. Since the production and loss

terms couple different species at each grid, the approach is to compute the Pi,j and

Li,j using the values to calculate the the effects of source terms (P,L). That is,

dn∗
s

dt
= Pi,j − Li,jn

∗
s. (3.30)

The solution to equation 3.30 is calculated as:

nn+1
s = n∗

se
−Ln

i,j∆t +
P n
i,j

Ln
i,j

(
1− e−Ln

i,j∆t
)
, (3.31)

Equation 3.31 gives the solution to equation 3.27 for the next time step.

Similar techniques can also be used for computing the drift velocities. For example,

recall the advection portion of the momentum equation.

∂vsz
∂t

+
∂

∂x
(vszvsx) +

∂

∂y
(vszvsy) +

∂

∂z

(
1

2
vszvsy

)
= 0. (3.32)

Let’s denote the solution to equation 3.32 as the intermediate solution v∗sz. We then

combine this solution with the nonhomogeneous part of the full momentum

equation 3.21.
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For the quantities that increase the velocity, we denote them as the production

term. Likewise, all the retarding forces contribute to the loss terms. By only focusing

on the ẑ direction of the velocities, parallel to B, we have:

Li,j =

(
∂vx
∂x

+
∂vy
∂y

−
∑
t

νst

)
v∗sz,

Pi,j =− gz −
1

msns

∂p

∂z
+
qs
m
Ez +

∑
t

νstvtz,

(3.33)

Note that the term ∂vx
∂x

+ ∂vy
∂y

is relatively smaller than the collision term
∑
t

νst. As a

result, the loss term Li,j is always negative.

Then the source and sink step of the total solution would be

dv∗i,j
dt

= −Li,jv
∗
i,j + Pi,j. (3.34)

By using similar approach to solve equation 3.34 analytically to obtain the velocity

in the next time step. That is,

vn+1
s = v∗se

−Ln
i,j∆t +

P n
i,j

Ln
i,j

(
1− e−Ln

i,j∆t
)
. (3.35)

3.1.3.2 Advection Solution

The Advection equations 3.32 are the hyperbolic systems that can be solved using

some very familiar methods such as Lax-Wendroff or Beam-Warming Methods [LeV-

eque, 2002]. These second-order accurate methods do well in smooth function but

fail to give accurate results near sharp gradients (e.g. Step function). However, the

ionospheric system can experience various flow conditions which inevitably produce

very sharp gradients. One approach to resolving this is to apply a gate or a limiter to

control the flux in such a way that it suppresses the oscillations in the discontinuous
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portion of the solution but allows resolution of a smooth structure when needed. That

is called a slope-limiter method [LeVeque, 2002].

The advection solution is derived from the transport equation in its integral form:

d

dt

∫
V

fd3r +

∮
∂V

fva · ênda = 0, (3.36)

where va is the velocity at which the quantities f such as density, velocity and

temperature are advected.

As you can see from equation 3.36, the term fva is the flux. By doting with the

surface outward normal direction ên, we have the total flux of the above quantities

that passes through all the different walls. For the purpose of simple illustration, we

decompose the problem in one dimension. That is,

fva = ψêx. (3.37)

In discretizing problem spatially, one important assumption we make is that the

quantity is being calculated is the cell average which is defined as followings:

f
n

i =
1

∆x

∫
v

fdx, (3.38)

where ∆x is the length of a cell defined as ∆x = xi+1/2 − xi−1/2.

Since the variation of cell average at each cell f i,j,k is a result of the total time av-

erage flux calculated from different cell walls at each time step, according to LeVeque

[2002], the cell average at the next time step is defined:

f
n+1

i = f
n

i −
∆t

∆x

(
ψ

n+1/2

i+1/2 − ψ
n+1/2

i−1/2

)
, (3.39)
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where ψ is the time average flux defined:

ψ
n+1/2

i±1/2 =
1

∆t

tn+1∫
tn

ψ
n+1/2
i±1/2 dt. (3.40)

By going to half step in the cell grid i± 1/2 and time step n+1/2, it allows users to

achieve second order accuracy in both time and spatial domains, for smooth flows.

In order to allow nonuniform x grid and variable vx, the general numerical flux

function to compute average flux for a slope-limiter method can be obtained from

equation 3.40 with advection velocity vx added. It gives rise to the following expres-

sion:

ψ
n+1/2

i+1/2 =

 vxf
n+1/2

i+1 + vx(xi+1/2 − xi − vx∆t)σ
n+1/2
i if vx ≥ 0

vxf
n+1/2

i+1/2 − vx(xi+1 − xi+1/2 + vx∆t)σ
n+1/2
i+1 if vx ≤ 0

(3.41)

Our particular choice of slope is:

σi−1 = minmod

((
f i+1 − f i−1

xi+1 − xi−1

)
, 2

(
f i+1 − f i

xi+1 − xi

)
, 2

(
f i − f i−1

xi − xi−1

))
, (3.42)

where the minmod function is defined in the following:

minmod(a, b, c) =



a if | a |<| b | and ab > 0

a if | a |<| c | and ac > 0

b if | b |<| a | and ab > 0

b if | b |<| c | and bc > 0

c if | c |<| a | and ac > 0

c if | c |<| b | and bc > 0

0 if abc ≤ 0

(3.43)
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From equation 3.42,it is shown that there are three different slopes (Centered Slope,

Upwind Slope and Downwind Slope) are compared. Depending on the flow, the

selection process is controlled by the minmod function. This is called the Monotonic

Central-Difference Limiter (MC limiter) which provides a smooth slope without

artificially steepening the continuous functions and provides better resolution to any

sharp gradient [LeVeque, 2002]. Figure 3.1 shows a test which makes explicit

comparisons among various available limiters: minmod limiter, superbee limiter and

MC limiter. As seen, the MC limiter provides a nice compromise between preserving

the sharp gradients and maintaining the shape of smooth features.

3.1.3.3 Dimensional Splitting

The advection solver may easily be extended to multiple dimensions LeVeque [2002].

Essentially, we first solve the equation in term of the x variable along the x-direction,

then we will use the updated solution to obtain the values along the y direction.

Consider 2D advection equation:

∂f

∂t
+ A

∂f

∂x
+B

∂f

∂y
= 0. (3.44)

Perform dimensional splitting:

x-sweeps: ∂f
∂t

+ A∂f
∂x

= 0, (3.45)

y-sweeps: ∂f
∂t

+B ∂f
∂y

= 0. (3.46)

According to LeVeque [2002], the errors introduced by this method for many

situations may be no worse than the numerical method being used for one-dimensional
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Figure 3.1: A Test on Different High Resolution Methods from [LeVeque, 2002, Fig.

6.2 on pp. 104].
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problem. Therefore, it is an excellent technique to reduce numerical complexity while

providing an easy algorithm for approaching many multidimensional problems.

3.1.4 Error Analysis

In order to test the accuracy of the advection solver, we can compare it against

a problem with known solution. Figure 3.2 and 3.3 show a graphical comparison

between a analytical solution and the numerical solution for solving a simple 3-D

advection problem with the form

∂f

∂t
+ v · ∇f = 0, (3.47)

with an initial condition of f(x, y, z, t0), the solution becomes

f(x, y, z, t) = f(x− vxt, y − vyt, z − vzt, t0). (3.48)

The numerical methodology uses both the MC Slope Limiter method and the

dimensional splitting. For initial condition, we use a 3-D Gaussian distribution.

f(x, y, z) = e
−
[
(x−a)2

σ2
x

+
(y−b)2

σ2
y

+
(z−c)2

σ2
z

]
(3.49)

With advection velocities of vx = 2 ms−1, vy = 8 ms−1 and vz = 16 ms−1, this initial

condition is started in the middle of the box (10m x 10m x 10m with

dx = dy = dz = 0.1 m grid points) and propagates diagonally on a particular x− y

plane. The corresponding analytical solution is:

f(x, y, z,v, t) = e
−
[
(x−vxt−a)2

σ2
x

+
(y−vyt−b)2

σ2
y

+
(z−vzt−c)2

σ2
z

]
. (3.50)
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In this exercise, we use the Courant-Friedrichs-Lewy (CFL) stability defined in

equation 3.51 to determine the time step. To be conservative, we use CFL = 0.5 to

ensure numerical stability, For one dimension, we have:

CFLx =
vx∆t

∆x
. (3.51)

This allows us to obtain ∆t for the next step. In a 3-D problem, each direction is

calculated and compared with others. By selecting the minimum value, it is then

used to compute the next time step.

From Figures 3.2 and 3.3, the numerical methodology we are proposing here has

an outstanding performance at preserving the shape of the function as it propagates.

This feature is essential for the model. In addition, we can clearly see that there

is an acceptable amount of numerical diffusion occurring. In the third row of each

figure, at the leading edge, the numerical technique underestimated the values as it

adjusting the slope in order to optimize the flux approximation. Similarly, at the

trailing edge, the numerical technique overestimated the value for the same purpose.

However, considering of using both the dimensional splitting and MC slope limiter,

achieving the relative differences of between 4 to 6 percent indicates that such a

numerical construct could provide confident results.

3.1.5 Implementation of Fluid Solver

The implementation can be described as follows: The program first obtains the veloc-

ities from the momentum balance approximation for different species. The data then

is fed to the full parallel momentum equation. By invoking the Operational Split-

ting, we obtain the final parallel drift velocities for all species. The data is routed to
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Figure 3.2: A comparison of Analytical and Numerical Solutions at t = 0.0028 second

(the 1st Time Step).
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Figure 3.3: A comparison of Analytical and Numerical Solutions at t = 0.0528 second

(the 19th Time Step).
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Figure 3.4: Synthesis of Transport Model.

the density calculation. The block diagram in Figure 3.4 illustrates the sequence of

processes for one time step of fluid solver.
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3.2 Ionospheric Electrodynamics

In order to construct the complete picture of the interactions within the ionosphere,

it is necessary to specify E and B for mobility tensor in equation 3.1.2. In this work,

the B comes directly from the geomagnetic field. Therefore, our primary objective is

to study the characteristics of electric fields and currents in the ionosphere, and how

they relate to the transports of various particles and the associated energy exchange

processes. Theoretical formulations are then introduced, and the associated numerical

approaches are presented, followed by a discussion of implementation.

3.2.1 Electrostatic Approximation

The most intuitive approach to obtain E field is to use the Gauss’s Law with the

electrostatic assumption, which states:

∇2Φ = −ρc
ϵ0
. (3.52)

However, the charge density is rather unknown to our problem. Therefore, it is not

advisable to obtain the potential solution using equation 3.52. However, another

approach deploying the electrostatic approximation is suggested by Zettergren and

Semeter [2012], which allows us to obtain electric potential without knowing the

charge distribution.

We start with the conservation for density from equation 3.1. If we define the

boundaries of a small volume, the change in charge density corresponds to the differ-

ences between the charges flowing in and out of the control surface of this volume. If

we detect a decrease of charge density inside this volume, it corresponds to a scenario
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where more charges are leaving the volume than coming in. The currents considered

in this work are steady and thus the system is characterized by no change in the net

charge density anywhere in space [Jackson, 1991]: That is,

∂ρc
∂t

= 0. (3.53)

Since we are mostly concerned with the final electrostatic state of the problem, we

can neglect the transient state of charge interactions. In general, the decay constant

for this transient state is in the order of 10−3 sec or smaller, compared to our much

longer time step (10−1 sec). By doing so, we transform our problem into a final

state boundary value problem where initial charge density can be neglected.

By substituting this condition into the continuity equation for charge conservation,

∇ · J = −∂ρ
∂t
. (3.54)

By neglecting displacement current in the magnetostaic limit, we obtain the

following important equation for current density:

∇ · J = 0. (3.55)

In order to use this important relation, recall the definition of current density:

J =
∑
s

nsqsvs. (3.56)

The current density consists of the parallel and perpendicular terms. These two

terms are governed by the motions of different species. In the perpendicular

direction, the currents are conveyed by the motions of the ions. To calculate the
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motions, the momentum balance approximation can be used because the electrons

have much higher parallel mobility along the field line compared to the ions moving

in the same direction. That makes the electrons the dominant charge carriers. As a

result, the electrons can attain a steady-state relatively quickly compared to the ion

species. In other words, the electrons have already achieved the equilibrium state

while the ions are still in the transient state. Therefore, we can use the momentum

balance equations for ions to resolve the J⊥. That is,

vs⊥ = µs⊥ · (E⊥ − 1

nsqs
▽⊥ ps +

msνs
qs

vn⊥). (3.57)

Similarly, the parallel current is mainly carried by the flow of the electrons. The

momentum balance approximation is applied, and the expression is as follows:

ve∥ = µe0(E∥ −
1

neqe
▽∥ pe). (3.58)

The introduction of these equations give rise to the expression of currents in terms

of electric field, motions of the neutral winds and pressure gradients:

J⊥ = σ⊥ · E⊥ +
∑
s

nsmsνsµs⊥ · vn⊥, (3.59)

the term
∑
s

nsmsνsµs⊥ · vn⊥ is the current driven by the neutral-ion coupling. The

effects of this can create a significant response in the E region of the ionosphere

(details are described in Section 5.2). By deploying the same approach, we can

obtain the expression field-aligned current density:

J∥ = σ0E∥ − µe0 ▽∥ pe. (3.60)

The electric field can be separated into two components: the ambient electric

field/ambipolar electric field due to the pressure gradient Ea, and the response field
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Er enforced by the imposed electric potential at the boundaries and by any charge

accumulation in the system. The sum of these two electric fields forms the total

electric field:

E = Ea + Er. (3.61)

Since we ignore the pressure gradient for the ion species, we only consider the

ambipolar electric field parallel to B field. To obtain it, we simply zero out the current

density from equation 3.60. The resultant electric field would be the ambipolar electric

fields:

Ea∥ =
µe0 ▽∥ pe

σ0
. (3.62)

After substituting the above expressions back to equations 3.59 and 3.60, the

result gives us a very simple expression for current density in term of the response

electric field Er

J⊥ = σ⊥ · Er⊥ +
∑
s

nsmsνsµs⊥ · vn⊥, (3.63)

J∥ = σ0Er∥. (3.64)

A more compact expression is

J = σEr +
∑
s

nsmsνsµs⊥ · vn⊥, (3.65)

where σ describes the anisotropic conductivity of plasma, and it is closely related to

the density, gyro frequency and collision frequency of the each species. They are

written as follows:
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σ =


σP −σH 0

σH σP 0

0 0 σ0

 =


∑

s
q2sns

msνs

ν2s
ν2s+Ω2

s

∑
s

q2sns

msνs
νsΩs

ν2s+Ω2
s

0

−
∑

s
q2sns

msνs
νsΩs

ν2s+Ω2
s

∑
s

q2sns

msνs

ν2s
ν2s+Ω2

s
0

0 0
∑

s
nsq2s
msνs

 . (3.66)

There are three distinctive conductivities that describe the conductivities in the E⊥

direction (Pedersen Conductivity σP ), E×B (Hall conductivity σH) and the field

aligned (Parallel Conductivity σ0) direction.

Finally, the electrostatics approximation is invoked:

∇× Er = 0, (3.67)

which gives

E = −∇Φ. (3.68)

Incorporating equation 3.68, the Ohm’s law 3.65 with quasistatic approximation,

the measurable quantity Φ can be calculated with neutral winds via the following

relation:

∇ · (σ · ▽Φ) = ∇⊥ ·

(∑
s

nsmsνsµs⊥ · vn⊥

)
. (3.69)

By expanding this expression, it yields the following algebraic expression:

A
∂2Φ

∂x2
+B

∂2Φ

∂y2
+ C

∂2Φ

∂z2
+D

∂Φ

∂x
+ E

∂Φ

∂y
+ F

∂Φ

∂z
= G, (3.70)
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with:

A = σP

B = σP

C = σ0

D =

(
∂σP
∂x

+
∂σH
∂y

)
E =

(
∂σP
∂y

− ∂σH
∂x

)
F =

∂σ0
∂z

G =
∑
s

nsmsνs

[
∂

∂x
(µsPvnx − µsHvny) +

∂

∂y
(µsHvnx + µsPvny)

]
.

(3.71)

It is beyond hope to obtain any analytical solution due to the complex spatial

variance of different conductivities in ionosphere. Therefore, numerical routines are

utilized to obtain an approximate potential solution.

3.2.2 Finite Difference Equation (F.D.E.)

Elliptic PDEs are most commonly solved via finite difference methods. As usual, the

equation is obtained by first expressing any continuous function in term of the Taylor

Series Expansion:

f(x+∆x) = f(x) + f ′(x)∆x+ f ′′(x)
∆x2

2!
+ f ′′′(x)

∆x3

3!
+H.O.T, (3.72a)

f(x−∆x) = f(x)− f ′(x)∆x+ f ′′(x)
∆x2

2!
− f ′′′(x)

∆x3

3!
+H.O.T. (3.72b)

In order to obtain the first derivative, we can subtract equation (a) from (b) and

neglect higher order terms. It yields the following in uniform ∆x:
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f ′(x) =
f(x+∆x)− f(x−∆x)

2∆x
=
fi,j+1,k − fi,j−1,k

2∆x
. (3.73)

Likewise, adding (a) and (b) yields the second derivative,

f ′′(x) =
f(x+∆x)− 2f(x) + f(x−∆x)

∆x2
=
fi,j+1,k − 2fi,j,k + fi,j−1,k

∆x2
. (3.74)

The same methdology applies to obtain the first and second derivative in the

uniform ∆y. For non-uniform grid z-direction however, the expression is as followed:

f ′(z) =
f(z +∆z+)− f(z −∆z−)

∆z+ +∆z−
=
fi,j,k+1 − fi,j,k−1

∆z+ +∆z−
. (3.75)

By subtracting (b) from (a) yields the second derivative,

f ′′(z) = 2∆z+f(z−∆z−)−2(∆z−+∆z+)f(z)+2∆z−f(z+∆z+)

∆z+∆z2−+∆z−∆z+2

=
2∆z+fi,j,k−1−2(∆z−+∆z+)fi,j,k+2∆z−fi,j,k+1

∆z+∆z2−+∆z−∆z2+
. (3.76)

Full expansion of 3.70 in term of F.D.E is written as followed:

A

(
fi,j+1,k − 2fi,j,k + fi,j−1,k

∆x2

)
+B

(
fi+1,j,k − 2fi,j,k + fi−1,j,k

∆y2

)
+

2C

[
∆z+fi,j,k−1 − (∆z− +∆z+)fi,j,k +∆z−fi,j,k+1

∆z+∆z2− +∆z−∆z2+

]
+

D

(
fi,j+1,k − fi,j−1,k

2∆x

)
+ E

(
fi+1,j,k − fi−1,j,k

2∆y

)
+

F

(
fi,j,k+1 − fi,j,k−1

∆z+ +∆z−

)
= Gi,j,k. (3.77)

By collecting terms for all the neighboring points, it yields,
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ξ1i,j,kfi−1,j,k + ξ2i,j,kfi,j,k + ξ3i,j,kfi+1,j,k + ξ4i,j,kfi,j−1,k + ξ5i,j,kfi,j+1,k +

ξ6i,j,kfi,j,k+1 + ξ7i,j,kfi,j,k−1 = Gi,j,k, (3.78)

where ξi,j,k are the coefficients for the grid points. They consist of both the

conductivities and the spatial information. This finite difference method allows us

to construct a linear system as followed:

[
ξ1i,j,k ξ2i,j,k ξ3i,j,k ξ4i,j,k ξ5i,j,k ξ6i,j,k ξ7i,j,k

]



fi−1,j,k

fi,j,k

fi+1,j,k

fi,j−1,k

fi,j+1,k

fi,j,k−1

fi,j,k+1



= Gi,j,k (3.79)

Equation 3.79 represents a solution at each grid point fi,j,k as it cycles through the

entire system. It can also be written as a matrix system:

Mf = G. (3.80)

Each row of the coefficient matrix is constructed based on the geometrical location

of the grid location. It must also take into account of the edges, corners and the

method of sweeping (In this project, the order of sweep is y → x → z. These
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subtleties have to be borne in mind while constructing the coefficient matrix. In the

next section, we will discuss how each boundary condition can be implemented based

on such a mathematical construct.

3.2.3 Dirichlet and Neumann Boundary Conditions

In the situation where the electric potential is specified at the boundaries, the ap-

proach is simple. When the system is sweeping near the boundary, the fi,j,k are

already specified. Therefore, the values are known and can simply be moved to the

right hand side of the equation 3.80. For example, as we sweep along the left-side

of the boundary, all the fi,j−1,k are known. Therefore, the linear system 3.79 can be

written as:

49



[
ξ1i,j,k ξ2i,j,k ξ3i,j,k 0 ξ5i,j,k ξ6i,j,k ξ7i,j,k

]



fi−1,j,k

fi,j,k

fi+1,j,k

fi,j−1,k

fi,j+1,k

fi,j,k−1

fi,j,k+1



= Gi,j,k −



0

0

0

ξ4i,j,kfi,j−1,k

0

0

0



(3.81)

As shown, the term where the values have been given are zeroed out and moved to

the right hand side of the equation with the coefficients. Similar approaches can be

applied for the other boundaries.

For the situation when we encounter the Neumann boundary condition, we only

consider the situation when

∂Φ

∂x
|x=BC= 0. (3.82)
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As an example, let’s consider the left side of the boundary x = 0. We can rewrite

this in the finite difference form as followed:

fi,j,k − fi,j−1,k

∆x
= 0. (3.83)

We can first rewrite the x component of the finite difference equation 3.77 as follows:

A

(
fi,j+1,k − fi,j−1,k − fi,j−1,k + fi,j−1,k

∆x2

)
+

. . .+D

(
fi,j+1,k − fi,j,k + fi,j,k − fi,j−1,k

2∆x

)
+ . . . = Gi,j,k. (3.84)

We then substitute the condition 3.83 in equation 3.84 which yields the following

FDE for grid points fi,j,k at the x=1 plane next to a Neumann boundary at the x=0

plane .

A

(
fi,j+1,k − fi,j,k

∆x2

)
+ . . .+D

(
fi,j+1,k − fi,j,k

2∆x

)
+ . . . = Gi,j,k. (3.85)

Similar approaches can be used for all the different sides, edges and corners by

clearly identifying the terms required to be zero. For any nonzero gradient at the

Neumann boundaries, the same approach can be used which only requires slight

modifications to equation 3.85.

Regardless of the boundary conditions, it is inevitable that we are encountering a

large linear system. In the next section, we will focus our attention to the methods

that are generally used for solving large sparse matrix systems.
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3.2.4 Iterative Solver

Normally, our system uses 100x100x128 size which consists of 1.28 millions data

points. That means that the size of the coefficient matrix is 1.28 million by 1.28

million. The general approach of using direct inverse method would requires a huge

storage for performing matrix inversion. Solving a matrix of this size requires the

use of an iterative method and sparse storage approach. Normally, there are two

major categories of iterative methods: stationary and nonstationary methods. The

Jacobi Method, Gauss-Seidel Method and SOR (Succesive Overrelaxation) method

are the well-known examples in the stationary iterative category. They are simple to

implement but slow and ineffective when we attempt to solve a large matrix system.

In order to understand the reasons for this, we can first express the general recursion

relation for any iterative methods:

xn+1 = Bxn + c. (3.86)

Both B and c are critical to the rate of convergence. In the stationary method,

since these two values are fixed during each iteration, their performance on conver-

gence and effectiveness can be greatly reduced. Therefore, nonstationary methods

have been developed to improve the performance.

Unlike the stationary method, the recursion relation for a nonstationary method

has additional variables based upon the iterations to optimize the rate of convergence.

Normally, it is expressed as followed:

xn+1 = xn + αnp
n. (3.87)
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The term αnp
n is the search vector for the optimal approximated solution. αn gives

the magnitude of this vector and pn provides directions. Based on the residuals after

from the previous time step, the search vector is updated to optimize the rate of

convergence.

According to Barrett et al. [1994], selecting the best iterative method for a par-

ticular application is largely a matter of trial and error. Table 3.1 reports the result

of a test of solving a Laplace’s Equation with 50x50x50 grid points running on a 3.10

GHz Intel Xeon CPU with Linux Operating System. Evidently, the CGS method

takes the least amount of time with relatively small number of iterations to achieve

the solution.

However, we are encountering a large system that is at least 200 times bigger than

this test scenario. Therefore, solely relying on the iterative method is not enough.

Another special technique that can boost the performance is called the precondi-

tioning. It is a numerical process that transforms any coefficient matrix into a new

matrix with more favorable spectral properties which is most commonly defined as

the rate of convergence. The rate of convergence for any linear system is determined

by the condition number which measures how much the system would react to small

changes in the argument. We usually label those that have low condition numbers

to be well-conditioned and high condition numbers to be ill-conditioned. Hence, the

purpose of this method is to decrease the condition number, which increases the rate

of convergence. The basic idea is to multiply it with the conditioning matrix. For

example,
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Method Time (sec) Iterations

Quasi-minimal Residual Method 0.172 36

Conjugate Gradients Square 0.144 28

Biconjugate Gradient Method 0.165 37

LSQR 0.212 167

Transpose-Free Quasi-Minimal Residual Method 0.152 26

Table 3.1: A Comparison of Different Iterative Methods.

M−1Ax =M−1b. (3.88)

That trick is to make the quantity M−1A exhibit favorable spectral properties

which ease the burden on the iterative method.

After looking into a number of preconditioning methods, the team decided to use

LU Incomplete Factorization for this project. Due to the scope of this project, the

mechanism behind this method will not be discussed here. Barrett et al. [1994] and

Saad [1996] have extensive discussions on this. Table 3.1 shows the performance of

different non-stationary methods without using LU Incomplete Factorization. With

the LU Incomplete Factorization, the number of iterations can be reduced by 5 to

10 times. However, the LU Incomplete also incurs additional computational costs.

Therefore, it is also a trial and error process to obtain an optimal combination.
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Conditions Analytical and Numerical

B.C. All Dirichlet

Imposed B.C. Value Constant Value of 1

Grid Size dx = dy = dz= 1

Domains 20x20x20

Table 3.2: Initial Setup.

3.2.5 Error Analysis

The Laplace’s Equation can be obtained from our system by assuming the conduc-

tivities to be unity, and to set all the first derivative terms to zero. By doing so, it

allows us to test the model against analytical solutions. In the following example,

we will use the solution 3.89 provided by Jackson [1991, Problem 2.23, pp. 92] and

compare it against our numerical solution. Table 3.2 lists the setup of this problem.

Φ(x, y, z) =
∑
m,n

Amnsin
(nπ
a
x
)
sin
(mπ
a
y
) (
eγz − e−γz+2γa

)
, (3.89)

where

γmn =

[(nπ
a

)2
+
(mπ
a

)2]0.5
. (3.90)

In the analytical solution, 26 terms in the series are used to compute the approx-

imate potential solution. Figure 3.5 demonstrates a side-by-side comparison between

the analytical solution and numerical solution. The size of the system is 20x20x20.

More detailed analysis demonstrated in Figure 3.6 shows the average error at each
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Figure 3.5: Performance of the Numerical Φ Solver.

discrete point of z. With a relative error of approximately 0.9 percent, the second

order finite difference method performs quite well for calculating the electric potential.
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Figure 3.6: Relative Error of the Numerical Φ Solver.

3.2.6 Implementation

After the conductivities are calculated, the information about the size of the system

are used for constructing the coefficient matrix. Depending on the geometric shape

and the type of boundary condition (Dirichlet and Neumann), the coefficient matrix

is constructed accordingly. The data is then stored in a known column vector. All

information then passes to the electric potential solver. There, the program first

manipulates the coefficient matrix using the LU incomplete factorization. In the

meantime, the initial guess for the potential profile from the previous time step along

with the conditioned coefficient matrix are input to the BIGSTAB method to compute

the final solution for the electric potential. Figure 3.7 illustrates the logical flow of

this process.
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Figure 3.7: Synthesis of the Potential Solver.
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3.3 Models and Simulation

By incorporating the previous numerical methodologies, the top level architecture for

the entire model is illustrated in Figure 3.8. During the initial setup, all parameters

are passed to the function through the MSIS model. It provides all the essential

initial information about the neutral environment. The program then first calculates

the potential in order to obtain the electric field and other arguments to compute

perpendicular velocities via Momentum Balance Equation. This information then is

given to the momentum equation to compute the parallel velocities. With the newly

updated velocities, the density function and energy balance equation then compute

the new density and temperature for the subsequent time steps. All results then are

fed back to the Input Parameters to initiate the next time step.
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Figure 3.8: Overall Program Architecture.
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Chapter 4

Model Comparison and Data

Verification

4.1 3-D and 2-D Models

Since this is the first model to demonstrate a small scale 3D ionospheric structure

with multiple fluids, there is no reference data that can help perform any system level

evaluation. However, our new model can theoretically be reduced to a 2-D model by

eliminating any variations in the extra dimension. Currently, Zettergren and Semeter

[2012] have already developed an ionospheric model in the 2-D limit. We will attempt

to utilize results from their work to validate the 3-D model. Also, we developed a few

simple 3-D scenarios in section 4.2 for which the behavior can easily be explained in

order to test the functionality of the new model.
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1

Set Up 2-D Model 3-D Model

Peak | E⊥ | 110 mV/m 110 mV/m

Is Φ Constant in Time? Yes Yes, and Φ is constant in y

Electron Flux ∼ 0.1 mW/m2 ∼ 0.025 mW/m2

B.C. DTNE DTNE

Background Winds No No

Rnn Time 10 mins 10 mins

Table 4.1: Comparison of Different Iterative Methods (note, DTNE: Dirichlet for

Topside and Neumann Elsewhere).

4.1.1 Setup

Table 4.1 shows the initial setup for the simulation. Figure 4.1 shows the imposed

topside boundary electric potential condition conditions and Figure 4.2 illustrates the

initial electron density profile. This profile is generated by running the simulation

without any imposed topside boundary condition and allowing the density to reach

an equilibrium state. In order to generate results similar to the 2-D model, the initial

setup has to eliminate any variations in the E-W direction. Therefore, a planar

geometry is imposed at the topside. Finally, this simulation is perform on an 100 x

100 x 130 finite difference grids (x,y,z) with a grid size of 10 km in both N-S and E-W

directions. In the vertical direction, it consists of non-uniform grids ranged from 80

km to 800 km in altitude.
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Figure 4.1: Topside Potential Boundary Condition (note that x is the E-W direction

and y is the N-S Direction).
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4.1.2 Physical Processes

In order to validate this model, each process has to be carefully examined. Therefore,

we will compare the 3-D and 2-D model panel-by-panel to understand the physical

processes that are reproduced here. Figures 4.3 and 4.4 show the model results of

2-D and 3-D respectively.

Fig. 4.3a and Fig. 4.4a:

Compared to the initial current density profile, the downward current region is broad-

ened (from initially 20 km to 40 km). This broadening is a result of the depletion

process in the E-region (around 100 km) density. As density reduces, it decreases the

Pedersen conductivity causing the downward current region to be broadened in order

to utilize more charges to maintain the current flow in this configuration. Both of

these panels demonstrate the same process.

Fig. 4.3b and Fig. 4.4b:

These panels show the Pedersen Current flowing in the negative direction to connect

the downward and upward current region. Above that altitude of around 100 km, a

decrease in Pedersen conductivity results in a very little cross-field current in those

regions (130 km < z < 350 km).

Fig. 4.3c and Fig. 4.4c:

In the E-region around 100 km, we have a depletion of the E-region due to a strong

Pedersen current which transports ions in the negative x direction. Stagnation of ions

in that region creates 77 percent enhancement of density at the bottom of the upward
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current region. In the F-region between 250km to 500km, we see another depletion

region, which is a combination of the chemical and recombination processes of O+

and NO+ (details are discussed in Section 2.1.2). This causes density to decrease

depleting the F-region. Furthermore, the features of ion upflow which extends to 800

km, and downflow below the F-region peak (around 350 km) are also illustrated.

Fig. 4.3d and Fig. 4.4d:

These panels show the transitional altitude where the plasma is 50 percent molecular

ions and 50 percent O+. Enhancements are a result of the chemical process discussed

above.

Fig. 4.3e and Fig. 4.4e:

Shows the ion heating occurring in the E and F regions. This heating is primarily

due to the ion-neutral collisions. When the ions are moving across the field line, it

collides with the neutral species creating frictional heating. This process is simulated

by implementing the energy equation. The 2-D model solves the full time dependent

energy equation [Zettergren and Semeter, 2012], while the 3-D model solves the en-

ergy balance equation. The differences between the transient and equilibrium states

constitute the variations between Figure 4.3e and Figure 4.4e. As we have discussed

in section 3.1.2, the 3-D model does demonstrate a very similar temperature profile

as the 2-D model from 80 km to 600 km.

Fig. 4.3f and Fig. 4.4f:

The frictional heating generates an intense topside pressure enhancement, which leads

to ion upflow in the high altitude region (Discussed in section 2.3.2). Due to the
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temperature variations and dynamics on the topside of this system, we therefore see

the variations in the velocity profiles between the 2-D and 3-D models.

4.1.3 Data Comparisons of the Transitional Altitudes

The transitional altitude corresponds to the ion composition of the ionosphere. This

altitude is determined when 50 percent of the plasma is O+ and 50 percent are the

other ion species. Since the composition variations are due to the ionospheric heating

and the chemical reactions, by modeling it against the electric field, it can illustrate

the important point of how electric field contributes to the variations in transitional

altitude. Zettergren and Semeter [2012] have an extensive discussion on the physical

implications of this. Our purpose here is to perform model verification. In Figure 4.5,

the data is obtained by measuring the perpendicular electric field and the transitional

altitudes for a long exposure time. For the 2001 data, the exposure time is from 0215

to 0415 UT. For the 2003 data, the exposure time is from 1050 to 1800 UT. We then

perform a data comparison with the 3-D model by taking a snap-shot at 100 and 809

seconds. The trends illustrated in these two time frames resemble the observation,

providing a good validation for the model. In conclusion, the model shows rough

agreement with the measurements.

4.1.4 Discussions

These two sets of figures generated by two different models are very similar except

for the E-region densities and current magnitude. Table 4.2 quantitatively shows the

approximate current densities. The 2-D model has linear current (it is defined as the
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Figure 4.3: 2-D Model of the Auroral Ionosphere after t=300 seconds [Zettergren and

Semeter, 2012], showing (a) Parallel Current Density, (b) Pederson Current Denisty,

(c) Density Profile, (d) Transitional Altitude, (e) Temperature Profile and (f) Parallel

Ion Drift Velocity.
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Figure 4.4: A Slice of the 3-D Auroral Ionospheric model after t=300 seconds, showing

(a) Parallel Current Density, (b) Pederson Current Denisty, (c) Density Profile, (d)

Transitional Altitude, (e) Temperature Profile and (f) Parallel Ion Drift Velocity.
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70



current density Jz multiplied by N-S Distance, that gives the linear current density

A/m along the E-W direction) density around 0.08 A/m, compared to the 3-D model

with around 0.05 A/m. The current density is directly proportional to conductivities

(see equation 3.66), and the conductivity is directly proportional to the density. We

can investigate if this ratio is related to the differences in E-region density. More

specifically, we have linear UC around 0.075 A/m in the 2-D model and 0.06 A/m in

the 3-D model. That gives a ratio of 1.25. Similarly, the ion densities in that region

are 3.16×1010m−3 and 2.51×1010m−3 respectively. That gives a ratio of around 1.27.

This analysis draw three preliminary conclusions. Firstly, the divergence of current

density remains very close to zero (see table 4.2) in both models. Secondly, for a

fixed topside potential, the current densities are indirectly related to the E-region ion

densities. Thirdly, the geometries of the current systems in both models are essentially

identical. More importantly, features such as the broadening of the downward current

region and the evacuation of E-region (see Fig. 4.4c), the chemical processes in the

F-region and ion upflow above 500km are all resolved. Furthermore, the transitional

altitude between the two graphs are identical (around 300km). The major differences

between them are the temperature profiles and the average parallel drift velocities

(4.4e vs. 4.3e and 4.4f vs. 4.3f). This is primarily due to the different approaches

in solving the energy equations Zettergren and Semeter [2012] model solves fully

time dependent energy equation, while 3-D solves the energy balance. Despite the

differences, these two models agree very well.
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Current System 2-D Model 3-D Model

Upward Current 4 µAm−2 1.3 µAm−2

N-S Distance 2 × 105 m 4 × 104 m

Linear UC 0.08 Am−1 0.052 Am−1

Downward Current 2 µAm−2 0.3 µAm−2

N-S Distance 4 × 105 m 2 × 104 m

Linear UC 0.08 Am−1 0.06 Am−1

Cross-field Current 2.5 µAm−2 1.2 µAm−2

Altitude 3 × 104 m 5 × 104 m

Linear UC 0.075 Am−1 0.06 Am−1

Table 4.2: Current System Comparison.

4.2 Idealized Auroral Structures

By imposing different top boundary conditions, we can simulate a more realistic

scenario to study the ionospheric responses under various types of atmospheric and

electromagnetic forcing. The results from idealized auroral structures can be easily

analyzed by drawing direct comparisons between this model and some well known

physical processes. It serves as additional testing to evaluate the plausibility of the

model’s results. In the following scenarios, some simplified topside geometries will

be imposed to elucidate the basic variations from the 2-D ionospheric model. Due to

the complexity of 3-D visualization with time dependency, slice plots are introduced

to dissect the system into a 2-D domains along the z direction to demonstrate the

important features in plasma density, temperature and parallel drift velocity. In
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addition, flow field diagrams are added to enhance visualization in order to allow

more detailed analysis to be performed on the current density, velocity and plasma

density evolution.

4.2.1 Bent Current Sheet

In this scenario, an error function equation 4.1 and Figure 4.6 constitute the geometry

of the topside electric potential.

Φ = erf

y − e
− (x−cx)

2

γ1

γ2

Φ0. (4.1)

Table 4.3 describes the basic setup of this run. In order to demonstrate the

evolution of different plasma’s characteristics, the Matlab slices function is deployed

to represent a 3-D function with a number of 2-D slices at the important regions along

the z-axis. In addition, each slice has its own subplot at that particular altitude to

further highlight the important features.

Temperature

The temperature profile is obtained by solving the energy balance equation (dis-

cussed in Section 3.1.2). As we know, in the E- and F- regions, we have frictional

heating occurring, creating ion and electron upflow and it continues to propagate

upward. Similar to the 2-D model, due to the imposed topside electric potential pro-

file, the bent current sheet forces the charged particles to move along the curvature

resulting in higher perpendicular velocity. Such an increase in speed creates localized

heating around the bent regions(see Figure 4.7).
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Figure 4.6: Topside Imposed Electric Potential Profile for Bent Current Sheet.
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Set Up Values

B.C. DTNE

Initial Condition Equilibrium Profile: 3 × 1011 m−3 (F-Region); 3.9 ×

1010 m−3 (E-Region)

Neutral Winds No

Electron Flux 0.025 mWm−2

Peak | E⊥ | 0.12 Vm−1

Slices z1 = 100 km,z2 = 250 km,z3 = 600 km,z4 = 800 km

Table 4.3: Basic Setup for Bent Current Sheet.

Density Evolution

After 156 seconds from the initial time step (see Figure 4.8), you can clearly see the

evolution of Pedersen current evacuating the E-region by creating low density region

(1010.55 m−3) at the base of DCR, and high density region (1010.64 m−3) at the base

of UCR. In this process, the plasma is being perpendicularly transported to a larger

region indicated in red. In the F-region, the production and chemical recombination

of NO+ result in the reduction of plasma density around the most intense heated

region at 250 km compared to higher altitudes around 600 or 800 km. At the 600 km

altitude, we see the non uniformity in density due to the perpendicular transport of

plasma. The E × B drift which follows the curvature causing the particles to move

from x = 1000 km toward x = 0 km. Consequently, it creates the high density region

on one side and low density region on the other (see Figure 4.8 at 600 km 2-D plot

panel and same for 4.9). Simultaneously, ion upflow also advects plasma upward in
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Figure 4.7: Ion Temperature Profile of Bent Current Sheet. Slices occur at z = 125

km (E-Region), z = 251 km (F-Region), z = 600 km and z = 800 km altitudes.

the region. From a simple comparison between Figures 4.9 and 4.8 at 800 km altitude

the 2-D plot panel shows an average of around 2 to 3 percent reduction. Finally, at

the 800 km altitude, again, we have ion upflow of around 1 km/sec that couples with

the E×B transport velocity, which advects features in the x-direction.
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Figure 4.8: Density Slices at t = 176.60 seconds. Slices occur at z = 125 km (E-

Region), z = 251 km (F-Region), z = 600 km and z = 800 km altitudes.
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Figure 4.9: Density Slices at t = 375 second. Slices occur at z = 125 km (E-Region),

z = 251 km (F-Region), z = 600 km and z = 800 km altitudes.
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Parallel Velocity Evolution

After 1.49 seconds, in Figure 4.10, at the bottom of the F-region, the parallel

velocity is driven by pressure gradient. Recall the plasma density peaks at the F-

region creating downward pressure force below the peak and upward pressure force

above the peak region. As the heating commences, this pressure gradient increases

the upward and downward velocities above and below the peak region respectively.

In addition, momentum is being advected along the bent current sheet. We can see

its evolution by comparing Figure 4.10, 4.11 and 4.12. It becomes pronounced in the

later time because the upflow velocity begins to settle down to the quasi-steady state,

while the perpendicular drift velocity E × B remains and dominates the transport

process.
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Figure 4.10: Parallel Velocity Structure at the initial time step, Slices occur at z =

125 km (E-Region), z = 251 km (F-Region), z = 600 km and z = 800 km altitudes.
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Figure 4.11: Parallel Velocity Structure at t=156 seconds, Slices occur at z = 125 km

(E-Region), z = 251 km (F-Region), z = 600 km and z = 800 km altitudes
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Figure 4.12: Parallel Velocity Structure at t=374 seconds, Slices occur at z = 125 km

(E-Region), z = 251 km (F-Region), z = 600 km and z = 800 km altitudes
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Reversed Bent Current Sheet

Another simulation with a similar bent current was run. The topside electric potential

is as follows:

Φ = erf

[
y + e−(x−cx)2/γ1

γ2

]
Φ0. (4.2)

Most other regions in the parallel direction remain relatively the same because the

response E field remains unchanged, causing the E×B drift to be pointed along the

bent current sheet. In the E-region however, we have a cross field current creating

electric field that allows particles to move across different current regions. As a

comparison, Figure 4.13 shows the plasma density in two different geometries after

375 seconds into the simulation. From the velocity flow fields, which are indicated

in white arrows, the plasma from the upper bent region is transported toward the

smaller region creating ∼ 4 percent density enhancement compared to the previous

geometry. If we construct a smaller scale system, this process is likely to exhibit a

more significant density enhancement. The geometrical placement of the upward and

downward current regions create different responses, demonstrating the significance

of introducing the third dimension.

Discussion

This kind of important of this kind of geometry occurs quite commonly in many

auroral events. Since the auroral arcs are rarely planar, departures from 2-D geometry

could have significant impacts on ionospheric response. However, the analysis has

shown that the processes being presented here match our basic expectations about

the ionosphere and further confirm the validity of our model.
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Conditions Values

B.C. DTNE

Initial Condition Equilibrium Profile: 3×1011 m−3 (F-Region), 3.9×1010

m−3 (E-Region)

Neutral Winds No

Electron Flux 0.025 mW/m2

Peak | E⊥ | 0.110 V/m

Slices z1=100 km,z2=250 km,z3=600 km,z4=800 km

Table 4.4: Intial Setup of Cylindrical Geometry for Topside Boundary.

4.2.2 “Cylindrical” Current System

This is a scenario when an elliptical Gaussian topside boundary condition is imposed

(see Figure 4.14). Unlike the error function, it creates a circular structure.

The topside Boundary Potential is as follows:

Φ = Φ0e
(x−cx)2/γ1−(y−cy)2/γ2 . (4.3)

In this case, the elliptical profile has stronger potential differences along the y-

direction (γy < γx) causing stronger perpendicular currents in that direction.

Unlike the previous scenario of having a two-current system, we have one main

downward current region at the center of the ellipse and two upward current regions

(see fig. 4.16). Similar to the previous scenario, the frictional heating from the

E×B drifts is quite pronounced.
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Figure 4.14: Topside potential boundary Condition for cylindrical current system.
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Figure 4.15: Equilibrum Temperature Profile.
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Figure 4.16: Vertical current system of the cylindrical current System.

Temperature Evolution

Similar to the previous scenarios, the temperature profile in Figure 4.15 is based on

the energy balance approximation. There are two high temperature regions. We

denote the first one R1 near the lower end of the y-axis and R2 near the higher end

of the y-axis. These two regions are caused by the stronger perpendicular currents

which creates more intense frictional heating than the currents in the other direction.

As the heating propagates upward, it maps along the field line toward the topside of

this system.

Density Evolution

In the E-region, the cross-field current evacuates and transport plasma from one

region to the two upward current regions causing the E-region structure we see in fig.

4.17.
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In the F-region, chemical alterations and recombination occur. However, since the

heating is not uniform in both x and y directions, we have a higher chemical recombi-

nation rate along the y-direction than x-direction. This results in density variations

as you see in the 250 km slice of Figure 4.17. Unlike the previous scenario, instead of

transporting plasma along a bent current sheet, we have elliptical circulating motion

in Figure 4.17 at the 250 km slice. As time progresses, it continuously rotates the

depleted plamsa to smear out the nonuniform density structure forming a uniform

plasma ring as you see in Figure 4.18 at the 250 km slice.

At the 600 and 800km altitudes, we have two comparable motions occurring si-

multaneously: the upflow of ions and the rotational motion. As we have previously

discussed in Section 4.1, the upflow creates density enhancement of around 60 percent

at the 800km altitude and around 9 percent at the 600km altitude. However, it is

not an uniform motion. The higher parallel velocity enhances the density, and less

enhancement appears in the lower parallel velocity region. As time progresses, the

difference in density enhancement becomes more and more pronounced . Again, the

perpendicular rotational motion creates a more uniform density ring geometry in the

later stages of evolution (Figure 4.18).

Parallel Velocity Evolution

In the E-region, due to the high collisions with the neutral species in that region, there

is very little parallel drift velocity. Right below the F-region, we have pressure gradient

driven downward parallel motion. However, due to the variations in temperature, they

intensify the downward velocity in the hotter region. In contrast, the cooler regions

have less effect on the downward velocity (see Figure 4.15. In addition, the rotational
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Figure 4.17: Density Slices at t = 179.60 seconds. Slices occur at z = 125 km (E-

Region), z = 251 km (F-Region), z = 600 km and z = 800 km altitudes.
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Figure 4.18: Density Slices at t = 435.11 seconds. Slices occur at z = 125 km (E-

Region), z = 251 km (F-Region), z = 600 km and z = 800 km altitudes.
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motion also advects the velocity in the elliptical manner similar to the density profile.

As time progresses to 200 seconds, Figure 4.20 shows slightly higher velocity (60

to 70 percent) than t=96 seconds in Figure 4.19 between the two higher downward

velocities regions that generates higher temperatures (R1 and R2).

At the 600 and 800km altitudes (see Fig. 4.21), we have two competing velocities

v⊥ and v∥. (Note, the perpendicular velocity remains unchanged with respect to

altitude due to the E×B drift). Combination of these two velocities creates helical

motions of plasma parcels. For example in Figure 4.21, at the 700 km altitude, the

magnitude of the parallel velocity is only 40 percent lower than the magnitude of the

perpendicular component in the hot regions R1 and R2.

Discussion

Overall, the data generated from this model creates explainable phenomenon that

match our physical understanding and expectations. It further strengthens our con-

fidence in the model. In the next chapter, we will deploy this model to look at some

realistic data and make some comparisons with the observations.
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Figure 4.19: Parallel Velocity Structure at t=96 seconds, Slices occur at z = 125 km

(E-Region), z = 251 km (F-Region), z = 600 km and z = 800 km altitudes.
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Figure 4.20: Parallel Velocity Structure at t=200 seconds, Slices occur at z = 125 km

(E-Region), z = 251 km (F-Region), z = 600 km and z = 800 km altitudes.
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Figure 4.21: 1st column slice graph shows the 3-D structure of the vertical velocity.

2nd column shows the parallel drift velocity at different sliced altitudes. 3rd column

shows the magnitude of the perpendicular velocities. The unit for coloarbars are in

m/sec. Slices occur at z = 125 km (E-Region), z = 251 km (F-Region), z = 600 km

and z = 800 km altitudes.

.
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Chapter 5

Case Studies

5.1 Realistic Boundary Conditions

On February 26, 2001, an experiment was conducted to analyze the responses of

ionosphere to magnetospheric forcing. Figure 5.1 shows the convection patterns esti-

mated by the SuperDARN radar data during an auroral event. It was simultaneously

observed by the Sonderstrom ISR (Incoherent Scatter Radar). The image shows a

flow reversal potential structure. Our area of interest is where the arrows point near

where the Sondrestrom radar is located. In this section, we attempt to model the

structure and the ionospheric response.

Figure 5.3 shows the imposed topside boundary condition. On one side, we will

have a strong potential gradient to simulate fast moving flow, and a weak potential

gradient on the other to simulate a slow moving flow.

Set up

There are two criteria we use to ensure our setup matches with the radar data: the
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Conditions Values

B.C. DE (Dirichlet B.C. Everywhere)

Initial Condition Equilibrium Profile: 3× 1011/m3 (F);5.4× 1010/m3 (E)

Neutral Winds No

Electron Flux 0.025 mW/m2

Peak | E⊥ | 0.0929 V/m

Table 5.1: Basic Setup of Realistic B.C.

geometry of the equipotential lines and the magnitude of the perpendicular drift

velocity (both quantities are provided from Figure 5.1). This figure shows that the

north side of the auroral arc exhibits high drift velocity of around 1800 m/sec. The

south side has average velocity of around 500 to 600 m/sec. Table 5.1 shows the basic

setup for this run. From Figure 5.2, we can see that the simulated perpendicular

velocity has a range between 600 m/sec to 1800 m/sec in the current sheet (x denotes

N-S Direction, y denotes E-W Direction). In addition, the simulated geometrical

structure appear to match the data shown in Figure 5.1. Therefore, this setup should

satisfy the objective of this run.

Density Evolution

Due to the high gradient potential region between x =750 km to 900 km, it in-

vokes an initial disturbance in the region as shown in Figure 5.4, three seconds into

the simulation, the magnitudes of density perturbations are relatively small. As we

progress later to around 130 seconds (Fig. 5.5), we see that three different processes

are evolving. In the E region, the depletion occurs in the upper x-axis region due to
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Figure 5.1: Superdarn Radar Data from Feb 26, 2001.
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the Pedersen currents. In the F region however, we have two distinct processes occur-

ring simultaneously, the downward velocity driven by the pressure gradient (relatively

small) and the chemical recombination of NO+ (relatively large). As the plasma flow

from the high velocity region to the low velocity region, the depleted plasma starts to

stagnate creating low density region (79 percent reduction from the background den-

sity) after 2 minutes. In the meantime, perpendicular velocity continues transporting

new plasma to undergo the similar process. As a result, after 496 seconds (Figure 5.6

and even 1028 seconds (Figure 5.7), we see a large affected area of low plasma density

occurring in the lower x-axis region.

At the 600 and 800km altitudes, we see the nominal upflow of plasma enhancement

particularly from the high temperature region and the perpendicular drift transports

the dense plasma along the current system structure (see Fig. 5.6 and Fig. 5.7 at the

600 km and 800 km slices).

Velocity Evolution

In the E region, due to the high collision frequency with the neutral species, the

parallel drift velocities appear to be small, similar to all the previous scenarios (see

Figures 5.9 and 5.10). In the F region, we have downward velocities as before. How-

ever, in the higher altitude regions around 600 km in altitude, we have a upward

and downward flow regions separated by the transitional region for the velocity (see

Figures 5.9 and 5.10 at 600 km altitude.

Hypothesis

In Figure 5.7 and 5.6, there is a dense plasma region in the lower x-axis region (67

percent high than the background density). However, since the temperature in that
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Figure 5.4: Initial Density Disturbance at t = 2.51 seconds. Slices occur at z = 125

km (E-Region), z = 251 km (F-Region), z = 600 km and z = 800 km altitudes.
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Figure 5.5: Disturbance continues to develop at t = 130 seconds (occuring in the

F-region and above). Slices occur at z = 125 km (E-Region), z = 251 km (F-Region),

z = 600 km and z = 800 km altitudes.
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Figure 5.6: Large scale disturbance at t = 496 seconds. Slices occur at z = 125 km

(E-Region), z = 251 km (F-Region), z = 600 km and z = 800 km altitudes.
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Figure 5.7: Large scale disturbance continues developing at t = 1027 seconds. Slices

occur at z = 125 km (E-Region), z = 251 km (F-Region), z = 600 km and z = 800

km altitudes.
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region (see Figure 5.8) is low (T≈ 1500K), the ion upflow is not as high. As a

result, the pressure gradient due to the difference in densities between the dense

plasma and background plasma dominates the flow direction causing the motion of

the plasma to drift downward instead. Consequently, Figure 5.9 and 5.10 show at

the 600km altitude, that we have both upward and downward flows on both sides

of the transitional region. In the upper region, since the density enhancement is not

high enough to cause any pressure gradient drift, we only observe the ion upflow. In

other words, in the hotter region, the temperature intensifies the upward flow region.

As a result, the plasma experiences positive velocity. In the meantime, the effect of

E × B drift causes the particles to be ejected out to the cooler region. As a result,

the sudden cooling causes the plasma to drift downward creating the upward and

downward flow on both sides of the transitional region.
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Figure 5.8: Equilbirum Temperature Profile.
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Figure 5.9: The vertical drift velocity exhibits similar distrubance as plasma density

at t = 496 seconds. Slices occur at z = 125 km (E-Region), z = 251 km (F-Region),

z = 600 km and z = 800 km altitudes.
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Figure 5.10: The vertical drift velocity exhibits similar distrubance as plasma density

at t = 1028 seconds. Slices occur at z = 125 km (E-Region), z = 251 km (F-Region),

z = 600 km and z = 800 km altitudes.
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Conditions Values1

B.C. DTNE

Initial Condition Equilibrium Profile: 3× 1011 m−3 (E);1.19× 1011 m−3 (F)

Neutral Winds Yes

Electron Flux 0.1 mW/m2

max. | E⊥ | n/a

Slices z1 = 110 km

Table 5.2: Initial Setup for the Ionospheric Model with Neutral Wind Forcing

5.2 Ionospheric Response to Neutral Wave Forc-

ing

In this study, we will examine the effects of acoustic waves on the auroral ionosphere.

Unlike gravity waves, acoustic waves can be strongly localized as they propagate up-

ward above their sources. To simulate this phenomenon, a compressible atmospheric

model [Snively and Pasko, 2008] was used by solving the compressible Euler equations

in cylindrical coordinates. Viscosity and thermal conduction are included via a time-

split method. This model generates a directional upward forcing, which starts here at

the bottom of the troposphere with a radius of approximately 30 km and a maximum

vertical propagation of 250 km. This highly coherent and idealized source is simu-

lated within a peak amplitude of approximately 1 percent of the atmospheric ambient

pressure in the troposphere. As a result of the focused wave packet, it will not inter-

fere with the horizontal boundaries of the 3-D auroral ionospheric model, which may
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Figure 5.11: Acoustic Wave Profile in Cylinderical Coodinate System Provided by

Dr. J. B. Snively.

create unwanted artifacts. Measurements from situ satellite have detected acoustic

waves with similar amplitudes in the F-region ionosphere[Garcia et al., 2013]. Figure

5.11 illustrates the acoustic wave profile at t = 600 seconds in cylindrical coordinate

system.

After performed a coordinate transformation from Cylindrical to Cartesian coor-

dinate system, the neutral wind data become 3 sets of 3-D data that describe the

winds in x, y and z directions. In this scenario, we will discuss the ionospheric re-

sponses in terms of dynamo currents and density variations. Figure 5.12, 5.13 and

5.14 show the 3 components of current densities with respect to altitudes. The de-

pleting perpendicular velocity in higher altitude regions are clearly shown. That is
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due to the diminishing strengths in neutral winds in altitudes. Interestingly, we also

observe rotational currents structures in the E region. The complexity of this current

system is due to the perpendicular current density calculation. Recall the current

density equation with neutral winds disturbance

J⊥ = σ⊥ · Er⊥ +
∑
s

nsmsνsµs⊥ · vn⊥. (5.1)

Here, the summation
∑
s

nsmsνsµs⊥ acts as an altitude dependent rotational matrix

that transforms the neutral wind profile. Therefore, it invokes many interesting

geometries as you see from Figure 5.15, 5.16 and 5.17. The magnitude of current

density is significant enough to possibly be detected.

In addition to current density, vertical winds invoke interesting density enhance-

ments of 5 to 25 percent. For example, at z=125 km altitude, upper right corner

of Figure 5.18 shows an asymmetrical density feature. Based on the color bar, the

densest regions (red regions) are around 17 percent more compared to the background

density. Figure 5.18 shows a strong variations of such enhancements between 100 and

150 km in altitude with magnitudes between 7 percent to 23 percent. In the plot

diagram shown in Figure 5.18, blue line indicates the absolute variations between the

minimum and maximum densities at that particular altitude. The green line indicates

the density variation at the center [150, 150] km of each discrete altitude, where the

most activities occurred.

Discussion

Due to the complexity of strong neutral winds, further studies are needed to

describe the processes involved in creating these interesting geometrical structures.
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Figure 5.12: Ionosperic Jx Rsponse in Neutral Winds Model at t=458 seconds with

peak current density of ∼ 1.4 µAm−2. Slices occur at z = 100 km (E-Region), z =

130 km, z = 160 km altitudes.
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Figure 5.13: Ionosperic Jy Rsponse in Neutral Winds Model at t=458 seconds with

peak current density of ∼ 1.4 µAm−2. Slices occur at z = 100 km (E-Region), z =

130 km, z = 160 km altitudes.
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Figure 5.14: Ionosperic Jz Rsponse in Neutral Winds Model at t=458 seconds. Slices

occur at z = 100 km (E-Region), z = 130 km, z = 160 km altitudes.
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Figure 5.15: Perpendicular Current Response (Jx and Jy) due to Neutral Winds (vnx

and vny at t = 458.34 seconds and z = 100 km
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Figure 5.16: Perpendicular Current Response (Jx and Jy) due to Neutral Winds (vnx

and vny at t = 458.34 seconds and z = 130 km
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Figure 5.17: Perpendicular Current Response (Jx and Jy) due to Neutral Winds (vnx

and vny at t = 458.34 seconds and z = 160 kms
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Figure 5.18: Electron Density Disturbance Due to Neutral Winds at t = 458 seconds
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Quantitatively speaking, the variations in plasma density are significant enough that

they should be detectable by instrumentation. In addition, it is significant that

neutral wind and the neutral ion coupling are capable of generating a detectable

current system without any imposed magnetospheric conditions. From a modeling

standpoint, there are a number of improvements that can be made. For example,

the grid level fluctuations in density can be a numerical artifact, probably caused by

velocity profile being a discrete function with a 5-second interval, which could also

trigger unwanted disturbance in our simulation. However, the atmospheric inputs

demonstrated here are substantial, which create more opportunities for analyzing the

implications of neutral winds in the ionospheric model.
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Chapter 6

Conclusions and Future Work

The 3-D model has been developed and tested for variety of ionospheric scenarios:

• This new 3-D model is validated by comparing it to an existing 2-D simulation,

the following features are shown to be in good agreement between the two

models:

– Plasma enhancement and depletion in the E region

– Plasma frictional heating process

– Ion upflow in high altitude regions

– Chemically driven depletion process in the F region

– Rough agreement was achieved between the simulated transitional altitude

ẑ and that estimated from the radar data

• This work resolved and evaluated the plausibility of 3-D Ionospheric Responses

using a simplified Topside Potential Geometry.
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• The project conducted a simulation case study to model ionospheric response

to realistic topside potential patterns.

• This model demonstrated the ionospheric response due to neutral winds from

large amplitude acoustic waves.

Currently, the 3-D model uses the energy balance approximation to resolve the

ion temperature profile. For the future, the program will implement the full energy

equation to describe this profile up to 1000 km. For the ionospheric data estimated

by the incoherent scatter radar, there are still uncertainties due to the measure-

ments. As a result, fully 3-D interpretations of the transitional altitudes require more

in-depth analysis. Furthermore, literature has shown the phenomenon of E × B in-

stability in high latitude ionosphere, several models of similar kind have successfully

demonstrated its evolution [Huba et al., 1988; Yokoyama et al., 2008]. It is therefore

important for our next iteration of this project is to show this capability. Lastly, the

way the neutral winds were imported to the model needs to be altered to include tem-

poral interpolation to reduce the unwanted numerical artifacts. In addition, neutral

density fluctuation will be incorporated to demonstrate the full ionospheric response.

These improvements should give researchers the first look into the complex effects of

the coupling of the ionosphere and neutral winds.
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