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Abstract 

Researcher: Jason Richard Ekelmann 

Title: Design and Implementation of the Kinect Controlled Electro-Mechanical 

Skeleton (K.M.E.S) 

 

Institution: Embry-Riddle Aeronautical University 

Degree: Master of Science in Mechanical Engineering 

Year: 2012 

Mimicking real-time human motion with a low cost solution has been an extremely 

difficult task in the past but with the release of the Microsoft Kinect motion capture 

system, this problem has been simplified. This thesis discusses the feasibility and design 

behind a simple robotic skeleton that utilizes the Kinect to mimic human movements in 

near real-time. The goal of this project is to construct a 1⁄3-scale model of a robotically 

enhanced skeleton and demonstrate the abilities of the Kinect as a tool for human 

movement mimicry. The resulting robot was able to mimic many human movements but 

was mechanically limited in the shoulders. Its movements were slower then real-time due 

to the inability for the controller to handle real-time motions. This research was presented 

and published at the 2012 SouthEastCon. Along with this, research papers about the 

formula hybrid accumulator design and the 2010 autonomous surface vehicle were 

presented and published. 
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Overview of Thesis 

The following document will present the research performed by Jason Ekelmann during 

the time of enrollment for a Masters Degree at Embry-Riddle Aeronautical University. 

This document covers the research that went into the K.C.E.M.S. research that was 

presented at the 2012 SouthEastCon and the research that occurred after the conference. 

Chapter 1 covers the introduction, statement of the problem, and the significance of the 

study. Chapter 2 covers the literature review, which contains brief summaries of relevant 

research that was compiled over the duration of the project. Chapter 3 covers the 

methodology of the research, which is broken down into the design of each joint, 

component selection, and software. Chapter 4 covers the results of the project, which 

breaks down the final design, testing, and cost analysis. Chapter 5 covers the conclusions, 

recommendations, and future work for the project. The appendix contains the full source 

code and the three papers written and published in the proceedings of the 2012 

SouthEastCon by Jason Ekelmann and Brian Butka.  

The compilation of papers presented at the end of this document is a series of research 

projects performed by teams of students at Embry-Riddle that Jason Ekelmann was a part 

of. These research projects relate to one another in the fact that they are all mechatronics 

project at their core. These papers cover a wide range of subjects such as the Kinect 

controlled skeleton, an autonomous surface vehicle, and the energy accumulator design 

for the formula hybrid car. The Kinect controlled skeleton is a mechatronics at its core 

since it is the combination of mechanical, electrical, and software engineering. The 

design of the joints and structure being mechanical; the component selection and 

integration being electrical; and the programming being software. 



xii 

The surface vehicle project was started to compete in the AUVSI (Association for 

Unmanned Vehicle Systems International) Roboboat competitions. Embry-Riddle has 

been competing in these competitions since the first competition in 2008. The object of 

this project was to design a surface vehicle or a vehicle that moves on top of water 

autonomously. The vehicle must then complete a series of tasks in which points are 

awarded based upon completion. These tasks can range from GPS waypoint navigation to 

following a series of colored buoys. 

The paper written for the conference discussed the design and implementation of the 

systems seen on the 2010 surface vehicle. This document covers the hull design which 

involved hydrodynamics and mechanical engineering; the sensor selection and system 

integration which required electrical engineering; and the programming of the system 

which was software engineering. Once again the document relates to the rest of the 

projects through mechatronics. 

The final paper attached to this document is a project which is comprised 

mostly of mechanical and electrical engineering. This paper is comprised of 

the research and work that went into the energy storage system for the 2012 

Embry-Riddle Formula Hybrid car. The basis of this research was to design 

and build a system which will house the high voltage system for the car. 

This system contains batteries, controllers, and safety monitoring systems. 

The paper covers the components that went into the design, along with the 

CAD models of the overall accumulator design. These designs are then 
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supported by a series of calculations and safety considerations. Once again 

the paper is related to the others through the principles of mechatronics.
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Chapter I 

Introduction 

Robots that mimic human movement have been depicted as the robots of the 

future in literature and film for a long time. The recent Hollywood movie “Real Steel” 

features a robot that mimics human movements through watching a person move and 

then performing the same movements simultaneously. Although the movie is currently 

science fiction, current research shows the potential for this to become a reality. 

 The ability to capture and accurately record human motions has been the 

backbone for many industries such as video game development and animated movie 

development for a long time. A professional motion capture system was used to digitally 

capture human movements for the 1995 Atari game “Highlander: The Last of the 

MacLeods”. These professional level systems require a person to wear a body suit with 

reflective markers all over it, as seen in Figure 1 [1]. In addition to the custom body suits 

there is a vast array of sensors and software programs used to capture and compute these 

movements. Though the accuracies of systems such as Gypsy 7 are excellent, the 

hardware is expensive and the system is not designed to be used in real time applications. 

 

 

 

 

 

 

 

 

 

 
  

Figure 1 A body suit used for professional grade motion capture 

systems. Note the reflective markers used to track body motions [1]. 
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These professional motion capture systems utilize a variety of different markers 

for capturing the movements of objects passive and active markers. Research being 

performed at MIT, Stanford, and the University of Maryland has led to the development 

of marker-less systems, which allow users to capture motions without any sort of marker 

or suit. The thought behind marker-less systems is that marker based systems can in 

principle capture such motions of interacting subjects, but they suffer from widely known 

shortcomings, such as errors due to broken marker trajectories, long setup times, and the 

inability to simultaneously capture dynamic shape and motion of actors in normal 

clothing [2]. This of course increases with the addition of multiple bodies and objects that 

require detecting. These marker-less systems often use a series of RGB cameras for the 

purpose of capturing video and then complex software, which reconstructs the images 

taken in a 3-D realm. Figure 2 [2] shows captured images from a system developed by 

Tsinghua University. Even though these systems reduce the cost of having markers, they 

are still extremely expensive and still aren’t being used for real-time applications.  

 

 

 

 
 

Figure 2 Approach to capturing the motion of interactive characters even in the case of close 

physical contact: (a) one of the 12 input images, (b) segmentation, (c) estimated skeleton and 

surface [2]. 
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Since all the professional motion capture systems rely on high-speed cameras that 

are very expensive this  has led to a new field of research for motion capture (MoCap). 

This research is in the design and development of a low cost MoCap which would bring 

motion capture systems to the masses. Systems such as these rely heavily on software 

development and the software doing most of the work, while the professional grade 

systems have a considerable amount of human intervention. These low cost systems 

require the use of sensors that are readily available and can be purchased cheaply. A 

system such as the one developed at the University of Bologna utilizes a series of 

integrated accelerometers. Accelerometer-based sensing methods are promising 

technologies for low-cost MoCap systems since they can be implemented with low-

power integrated components [3]. These systems are not as accurate as their counterparts 

but they do not require the complex optical or movement sensor arrays that the larger 

systems use. This does allow these systems to become more suitable for mobile 

interaction based motion capture. Since the industry using these systems does not require 

real time capabilities, the systems themselves are designed for only non-real-time use. 

In 2010, Microsoft released a device named the Kinect. This device was to be 

used in conjunction with the Xbox 360 to provide a new and innovative gaming 

experience. The Kinect has the ability to capture human movements and relay them to the 

system in real-time. Costing $200 dollars, the Kinect made a huge change in the motion 

capture market, since the Kinect did all of its processing onboard and required only 

human input for the motions. Unlike many professional systems the Kinect setup tracked 

movements without any markers and could track 2 people simultaneously. Shortly after 
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the Kinect’s release, many people began writing new code for the sensor so that it could 

be used in various robotic applications. The University of Canterbury in New Zealand has 

used the Kinect as a depth sensor for autonomous navigation in a quadrotor system.  

Systems such as this rely heavily upon computations of depth maps and are common in 

visual robotic control systems. These computations are used in autonomous navigation, 

map building and obstacle avoidance [4]. Since the original release of the Kinect, 

Microsoft has realized that the potential market for this sensor does not revolve around 

gaming and in 2012 released a windows version of the Kinect. This version has an open 

source development platform which allows people around the world to develop and share 

code. Since this release Microsoft has sold 18 million Kinects, which shows the cost 

effectiveness of this sensor. 

This research focuses on developing a system that captures the motions of a 

human, uses this information to estimate the locations of key bones of the skeleton, and 

then uses this information to mechanically mimic the skeletal motions on a physical 

skeleton. Until recently, the technology required to perform this task were well outside of 

the budget of most museums, but the introduction of the Microsoft Kinect and open 

source software support allows this project to be performed on a reasonable budget. 

 

Significance of the Study 

Children’s museums and museums in general have been a great source of 

knowledge and learning for both adults and children alike. Educating future generations 

has been and always will be an extremely important undertaking. When dealing with 

children it is important to make learning fun in order to keep the attention of the 
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audience. In many children’s museums around the world, interactive demonstrations are 

used to enhance the learning that takes place on their premises. The Daytona Beach 

Children’s museum has many rotating interactive exhibits that are used to teach classes 

and broaden the horizons of the children that visit the museum. Some of the exhibits 

include a laser harp and bicycle that a person can ride and power light bulbs. Over the 

past year, Embry-Riddle Aeronautical University has been working with the museum to 

create several exhibits that will help children learn and understand the basics of flight. 

The K.C.E.M.S. project has the ultimate goal of becoming an interactive demonstration, 

which can be used to teach not only robotics, but also the human skeleton. 

 

Statement of the Problem 

Design and build a system, which can capture and mimic human movements in a 

real time environment. This system must be able to be cyclically loaded in random 

intervals such as an interactive exhibit in museum would see use. The project must also 

be able to withstand the abuse that can be seen in environments such as the Daytona 

Beach Children’s Museum. 

Purpose Statement 

The purpose of this study is to build an interactive demonstration for the Daytona 

Beach Museum of Arts and Sciences. 

Delimitations 

During the design and construction of this project the use of commercial off the shelf 

(COTS) parts will be used whenever possible. This is to increase development and 

construction speed and decrease cost. Limiting the number of different hardware 
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components should be strongly accounted for in the design phase of the project.  Only 

readily available software development kits are to be used so that future work can be 

easily started and prior work can be easily modified.  

Limitations and Assumptions 

Since the goal of this project is to create a low cost solution, funding will continue to be a 

limitation. Finding a simple readily available solution for the complexity found in the 

human shoulder joint turned out to be a severe limitation given the available controllers. 

Other limitations include the author’s limited knowledge of programming languages such 

as C Sharp and the Microsoft SDK development package. 

Definitions of Terms 

Femur   A bone of the leg situated between the pelvis and knee 

Stereovision Visual perception of or exhibition in three dimensions 

Humerus The long bone of the arm or forelimb 

Ulna  The bone extending from the elbow to the wrist on the side 

opposite to the thumb 

Radius  The bone located on the lateral side of the ulna 

Circumduction The circular movement of a limb   

List of Acronyms 

MoCap Motion Capture 

COTS Commercial Off the Shelf 

MAP-MRF Maximum A-Posteriori Markov Random Field 

FPS Frames Per Second 

ROI Region of Interest 



7 

 

 RGB  Red Green Blue 

 

LIDAR Light Detection and Ranging 

SDK Software Development Kit 

CNC Computer Numeric Control 

CAD Computer Assisted Design 

CMOS Complementary Metal Oxide Semiconductor 

PWM Pulse Width Modulation 

DFM Design For Manufacture 
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Chapter II 

Review of the Relevant Literature  

Markerless Motion Capture  

The ability to perform motion capture without the use of complex systems, which rely on 

motion markers significantly, reduces the costs of the system that it is being utilized in. 

The Automation Department at Tsinghua University has been developing a motion 

capture system which relies only on the use of cameras. This technology is being used 

where the current industry standard system aren’t being used. These instances are 

applications where there are multiple objects being looked at and these object contain 

bodies, which can become twisted together or free flowing alone. A situation such as two 

people dancing, with one person wearing a dress or skirt, is an ideal application for this 

system. The people dancing can confuse a marker system and the ability to capture the 

dress is negated because the objects of interest will be in marker suits.  

In this process, the image is segmented using a maximum a-posteriori Markov 

random field (MAP-MRF) optimization framework. This current system can only handle 

two person situations. The single person motion capture method was adapted from 

Motion Capture Using Joint Skeleton Tracking and Surface Estimation [20] to generate 

the initial skeletons for each body. Once a skeleton is applied to a single body, it is easy 

to apply and track the second body because the image has already been segmented and 

categorized. So for each frame the image is segmented into two parts and a skeleton is 

applied to each body and the image is then combined. This can be seen in Figure 3 [2], 

which walks through the process of the segmentation and skeletal application. 
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 As can be seen from the above figure, after the segmentation step, the bodies are 

labeled and then soon after the skeletons are applied. For this application, a series of 12 

cameras with a resolution 1296 X 972 pixels at 44 frames per second (fps)was used. This 

application was also tested with people acting out a combat situation, which hid some of 

the body; this was shown in Figure 2 above. The robustness of this system is clear but is 

severely limited by the number of cameras and the number of objects in the field of 

capture. 

Motion Capture Using Joint Skeleton Tracking and Surface Estimation 

 Research performed at Stanford University consisted of a system which could extract 

an image and apply a skeleton to a series of images taken from a video. All videos 

are a series of pictures that are then combined to make continuous motion. For a 

video that is taken at 30fps, one second of video will yield 30 individual still images. 

Note that these images can all be the same if there is no change in the object or its 

environment in the one second the video was taken. By looking at individual images, 

the process can be simplified because like images can be cut out through the same 

properties seen in movie compression.  

 In this system a process, which searches for a particular pose in a frame, is used.  To 

find the body poses in the current frame, the skeletal pose is optimized and a simple 

 

 
Figure 3 Overview of processing pipeline: (a) articulated template models, (b) input 

silhouettes, (c) segmentation, (d) contour labels assigned to each person (e) estimated 

surface, (f) estimated 3D models with embedded skeletons [2]. 
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approximate skinning is used to deform the detailed surface of the previous time step into 

the current time step [20]. From here an adaptive mesh is created and overlaid on the 

object of interest. This allows for erroneous data and objects to no longer be a part of the 

processed image. This in turn creates a region of interest (ROI) around the object of 

interest. Finally a 3-D model of the object of interest is created and a skeleton is overlaid. 

This 3-D model is a model based upon the model used to search for a pose in each frame, 

which means that the created model may not be identical to the object of interest. A series 

of images with the analysis performed on them can be seen in Figure 4 [20].  

This approach to locating and adapting a skeleton to an image utilizes a series of complex 

software strategies, which in turn can locate object in images as long as these object have 

 

 
Figure 4 Input image, adapted mesh overlay, and 3D model with estimated skeleton 

from a different viewpoint respectively [20]. 
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a rough model to be associated with. This technique does allow for the implementation of 

a skeleton on objects, such as cats and dogs, without the use of global optimization. 

MOCA: A Low-Power, Low-Cost Motion Capture System Based on Integrated 

Accelerometers 

 Students at the University of Urbino in Italy performed this research. The premise of 

this research was to develop a motion capture system based around the use of 

accelerometers. Accelerometer-based sensing methods are a promising technology for 

low-cost motion capture systems, since they can be implemented with low-power 

integrated components [3]. This system utilizes a series of accelerometers placed on the 

external appendages, such as the arms and the legs. Using accelerometers in this type of 

system provides a low cost solution and does not have the issues that systems using 

multiple cameras can experience. Issues with this system include inaccuracies due to the 

integration and processing, and the bands the sensors are mounted to can move. The 

resulting experiment was able to categorize motion made with an arm by mounting the 

sensor on the wrist. This system did not capture the motion of an entire arm, but just the 

motion of the lower arm in a 3-dimensional space. 

 This system in conception was going to be used for full motion capture, but in 

practice did not work, and was reduced to a motion capture system for gesture 

recognition. The issues that limited the system were the inability to track parts of the 

body other then arms and legs, and the lack of math and software to support the legs. The 

advantage of not using cameras does not outweigh the disadvantages of the overall 

system performance and results.  
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Altitude Control of a Quadrotor Helicopter Using Depth Map from Microsoft 

Kinect Sensor 

 The Microsoft Kinect is an extremely versatile sensor that has many different 

applications aside from its use in the gaming industry. Students at the University of 

Canterbury in New Zealand created a quadrotor system, which utilizes the Kinect to 

perform altitude control based upon the cameras built into the sensor. This method uses 

passive methods of inferring depth because the Kinect can only capture images and does 

not utilize active depth systems, such as lasers or ultra sonic sensors. From these 

methods, the system builds a computational depth map, which is used to create altitude 

parameters for flight control system of the quadrotor. 

 For this system, the Kinect needs to be calibrated; taking depth-based images from 

known distances did this. This process was repeated multiple times over varied ambient 

light conditions in order to check the sensitivity of the depth measurement to 

environmental conditions [4]. This application utilizes only the depth camera so the RGB 

camera is not used. The Kinect is mounted on the bottom of the quadrotor facing the 

ground. From this position the system can create a depth map, which will be used as the 

altitude field for controlling the vehicle. An onboard altitude controller is used to stabilize 

the quadrotor and integrate the depth controls to control the motors. This system shows a 

unique and simple way to use the Kinect sensor in a dynamic environment. When the 

Kinect is used for gaming purposes, it remains stationary while objects move in front of 

it. In this application, the Kinect is mounted to the moving object and can be in an 

environment filled with moving objects. This of course does not matter because the main 

focus is the ground or any object that the system may collide with.  
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Study on the Use of Microsoft Kinect for Robotics Applications 

 The researched performed by students at the University of California revolves 

around using the Kinect sensor in a ground robot application. This system has the ability 

to navigate indoor obstacles. The purpose of the Kinect in this application is to serve as a 

sensor that can replace the use of a light detection and ranging (LIDAR) sensor. To show 

the viability of the Kinect as a valid replacement, several experiments were setup to 

compare the Kinect with a LIDAR system. 

 The first experiment involved an indoor experiment in which a glass object was 

placed different distances away from the sensors and data was taken. The data shows the 

range of the object compared to the sensed range of each sensor. With each different 

distance, the Kinect was able to match the accuracy of the laser sensor within 5cm except 

at 40cm because this is outside the operating distance for the normal mode setting of the 

Kinect. The Kinect has two different operational settings; one for close distance operation 

and another for normal operations. The default setting has a blind spot from in front of 

the sensor to 80cm out. This experiment validates the accuracy of the Kinect for sensing 

objects indoors. 

 The second experiment was a repeat of the first experiment but it was performed 

outdoors. The results of this experiment were similar to the first experiment except at 

80cm the Kinect was unable to sense the object, while in the first experiment it produced 

a reading of an object at 81cm. Once again this experiment validates the Kinect as a 

sensor option for obstacle avoidance. The third set of experiments consisted of several 

indoor and outdoor runs of a ground vehicle instrumented with a Kinect as the sensor 

being used for obstacle avoidance. In these tests the robot was let loose in a room with a 
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chair and some other pieces of furniture in the room. As the robot approaches the chair it 

stops, performs a 90-degree turn, and continues its navigation of the room. In the outdoor 

experiment the robot performed as it did indoors. Once again these experiments and this 

research validate the use of the Kinect as a sensor for robotics.   

3D Image Reconstruction and Human Body Tracking Using Stereo Vision and 

Kinect Technology 

 The research on the Kinect, in combination with stereovision cameras, was 

performed at the Illinois Institute of Technology and encompasses research on a system 

which uses a stereovision camera for imaging and the Kinect as a depth sensor. In this 

research the Kinect is used in parallel with a stereovision system to identify and track a 

person. The goal of this research was to create a reconstructed image from the data taken 

by both sensors. This would allow for the construction of an image that contained depth 

data, with this depth data a model of what was in the image could be constructed; Figure 

5 [27] shows the results of the combined imaging. The images in the figure can then be 

used for gesture recognition and model construction.  This research shows the success of 

combining the capabilities of the Kinect with the imaging power of an HD camera, 

resulting in high quality 3-D image reconstruction for real-time streaming videos.  

 

 
Figure 5 Combined method for 3D image Reconstruction (a) 3D image, (b) Depth map 

[27]. 
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Accurate Simulation of Hip Joint Range of Motion 

 This research presents a hip joint motion simulation method using accurate hip joint 

features and hip range of motion. The purpose of this research is to develop models of the 

hip in which the maximum range of motion in all directions of the hip can be categorized. 

By creating models such as these, a better understanding of the limitations seen in the hip 

can be researched for medical purposes. The medical objective is to quantify hip 

kinematics in function of hip morphology. Doing so will allow for estimations of the 

motions that are limited by bone impingements [9]. By quantifying this data, medical 

professionals can diagnose the reasons for reduced hip movements and joint pains. Thus 

providing a deep insight to not only the hip joint itself, but the variations in the joint 

between individuals. 

 For this modeling, a three-step process was taken to create the model. The first step 

involves creating a reconstruction of the 3-D bone surfaces of the hip joint. Then 

estimations of the center of the hip joint are taken. The third and final step involves 

calculations, which determine the maximum range of motions. These calculations assume 

the hip joint center as the center for all motions in the ball socket joint. Several different 

simulations were then performed to calculate the hip joint center. After several 

simulations, it was determined that the femur head was the joint center of rotation. This 

would leave the same distance between the femoral head and acetabular rim. The results 

of this research produced several models, which were comparable to the real values taken 

from hip joints found in cadavers. Even though the models were not 100 percent accurate, 

the research led to the development of many models, which can be used in future 

research; these models can be seen in Figure 6 [9]. 
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Accuracy Analysis of A Novel Humanoid Robot Shoulder Joint  

 Students at Yanshan University in China have designed and built a robotic shoulder 

joint which can replicate the motions found in a human shoulder joint.  This research 

begins the foundation of designing an accurate robotic representation of the human body. 

Many humanoid robots have some of the capabilities of a human but do not have joints 

built like a human. This can be seen in solutions such as the robot Asimo that can 

perform many shoulder movements, but Asimo cannot perform movements such as 

shoulder shrugs.  

 The resulting shoulder that was designed and built was a spherical three-degree of 

freedom joint. This creates a moving platform in which three kinematic chains are 

connected to a fixed base, which acts as the socket the shoulder joint sits in. This 

platform is created using three shaft driven servos for each degree of freedom. At the 

conclusion of this research a joint, which can perform many shoulder movements, was 

created but had the same lack of movements as the Asimo joint design; Figure 7 shows 

the fine joint construction. 

 

 
Figure 6 Simulation of hip joint range of motion of 3D surface models of bones: Model 

from child dataset: (a) fully flexed hip, (b) fully abducted hip (c) fully adducted hip 

model from young woman dataset: (d) fully flexed hip, (e) fully abducted hip, (f) fully 

adducted hip [9]. 
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Summary 

 It is clear that there are many different ways to design and build a motion capture 

system. These systems can range from expensive to inexpensive, but for this research an 

inexpensive solution is ideal. The Microsoft Kinect provides an ideal low cost sensor 

package. The use of the Kinect is widespread in robotic-based research. It provides an 

ideal prototype sensor because of its open source programming and how readily available 

it is. The Kinect has been seen in flying, ground, and water based applications. When 

using the Kinect for skeletal tracking, it has built in software and programming to 

accomplish these tasks. 

 It is apparent from the research performed that creating a realist robotic universal 

joint is possible. This can be done in many different ways, with varying amounts of 

capabilities in the joint. The key in this research is to balance to cost of the joint with the 

overall performance. It is possible to build an expensive system of robotic joints, but it is 

 

 
Figure 7 The prototype of the shoulder joint on humanoid robot [10]. 
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also possible to build a system of inexpensive joint with similar capabilities. By 

combining the Kinects motion capture abilities with a series of robotic joints, a system, 

which can replicate human movements can be built. 

Hypothesis  

It was proposed to build a low cost system which can capture real-time human 

movements, and replicate them on a robotic platform. This proposed system will be 

designed for use in a museum thus requiring it to endure a high duty cycle. With the 

given research that has been completed, it is possible to build the purposed system. 
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Chapter III 

Methodology 

Mechatronics 

This project will focus on utilizing the captured skeletal maps and mimic the 

motions on a physical skeleton in real time. Software will analyze the motions of the 

skeleton 10 times per second. This data will be analyzed to assign specific movements to 

servo sets for the skeletal points located in the arms and legs. The goal of real-time 

movements on the physical skeleton requires the use of actuators that are powerful, fast, 

and accurate. For places on the body where there can be rotation, such as in the shoulder, 

a pan-tilt motion set up will be used to make the necessary multi-axis movements. Figure 

8 [21] shows the actuator locations; the red markings show places where multi-axis 

actuators are required. It should be noted that only motions of major bones of the skeleton 

are of interest for this effort. Motions, such as rotations of the wrist and forearm, are not 

incorporated in this work. 

 
Figure 8 A physical skeleton showing the joints targeted in this research. Black 

indicates a single axis of motion. Red indicates multi-axis motions [21]. 



20 

 

The final design requires the use of 16 actuators. To reduce the number of 

different parts used in the assembly, the same actuators will be used throughout the 

design. The actuator selection was based upon 4 different factors; servo speed and 

accuracy, holding torque, operating angle range, and cost. The holding torque of the 

actuator was the most crucial factor because in some movements, the actuator is required 

to hold the weight of entire appendage. The worst-case scenario for holding torque occurs 

in the leg, since it is the longest and heaviest part of the skeleton. For this requirement, a 

simple moment calculation was used to determine the holding torque of the actuator 

needed. The holding torque is given by:  

                                                (1) 

 

 where τ is the torque, r is the length of the lever arm, and F is the applied force. The 

worst case occurs when the leg is held straight in front of the body in a kicking motion. 

For the leg assembly, a mass of 0.3Kg is supported against the pull of gravity yielding a 

force of 2.94N. For a worst case estimate, the entire mass is assumed to exist at the end of 

the leg yielding a lever of 0.5m. The worst case holding torque is calculated to be roughly 

1.5Nm. 

 Since the actuators require a controller to interface with the software being written 

for the other function of this project, an onboard controller must be selected to integrate 

into the overall design of the system. This component will serve as an interface between 

the actuators and computer handling the Kinect inputs and algorithms, calculating the 

rotations needed to position the joints. The selected microcontroller will need to be able 

to send serial signals to at least 16 actuators and talk to a computer simultaneously.  
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 Prior to the system becoming museum ready, a laptop or another type of computer 

with a screen will be required to operate the system. The computer will be required to 

have Microsoft SDK installed for interfacing with the Kinect. The computer will also 

have some minor hardware specifications, such as requiring 4 gigabytes of RAM and a 

minimum of a dual core processor. Since the Kinect is interfaced through the laptop, a 

USB port will be required for the Kinect and another USB port will be needed for the 

interface to the controller. 

 Construction 

To reduce development time, many COTS (commercial off the shelf) products 

were used in the construction. The skeletal structure, referred to as the chassis, is a 1m 

tall plastic model with 25cm and 46cm appendages and was purchased from an 

anatomical model website. Several different factors had to be taken into account before 

deciding on the skeleton to be used. Sizing the chassis needed a great deal of 

consideration due to the size of each appendage; as the chassis becomes larger, the leg 

and arm appendages grow proportionally. Another deciding factor was that the arms and 

legs needed to be structural so actuators could be directly mounted to them. This in turn 

will increase the holding weight required by the servo exponentially since the servos will 

also become larger and heavier, as will the moments acting on them. Given all these 

factors, a roughly t scale skeleton was selected for the chassis. The skeleton is 

constructed from a hard molded resin and has moveable joints in all the areas that will be 

modified. This chassis is a cheap economical solution that will allow for rapid 

construction and easy modifications; Figure 9 [21] shows the skeleton that was chosen 

for the chassis. 
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Actuator Selection  

The Dynamixel AX-12A robot actuator was selected for use in this project. The 

AX-12A has several major advantages over standard hobbyist servos that will be taken 

advantage of in the construction of the skeleton. These actuators offer a maximum 

holding torque of 1.6Nm at 12 Volts [5]. When supplying this holding torque, the 

actuators draw only 900 mA, which allows the use of low cost off the shelf power 

supplies. Given the overestimates of the required holding torque, it is believed that these 

actuators are able to hold the entire leg without worry of failure. The AX-12A also offers 

360°/continuous operating angles and non-loaded speeds of 0.196sec/60°. These features 

will allow for near-real-time movements of all the appendages. Along with all the 

performance features of the AX-12A, there are several built-in features, such as the 

internal micro-controller, that will be used in this project. The built-in microcontroller 

 

 
Figure 9 Plastic model skeleton on its stand [21]. 
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provides feedback of the current angular position and angular velocity, as well as the 

torque being applied to the load; the availability of these feedback signals and the 

compact form factor led to the selection of these actuators. A bearing is used at the final 

axis to ensure no efficiency degradation with high external loads. The actuator also has a 

built in alarm system that can provide feedback to the higher-level controller when there 

are issues in current draw, voltage, internal temperature, and torque output. If any 

anomaly occurs during a high torque hold, the actuator will shut itself off and flash red 

showing that an error has occurred. The repowering of the system remedies this, and 

allows the full system to return to normal operation with no damage to the actuator that 

failed. The case that encloses the mechanics of the actuator has integrated mounting 

points, which will also be utilized in the assembly of the final design; Figure 10 [5] 

shows the AX-12A and a mounting bracket. 

The final driving factor for the selection of the actuator is the high number of 

additional parts and brackets that have been designed around them. The brackets 

designed for the Dynamixel actuators allow for the construction of multi-axis joint 

 
Figure 10 The Dynamixel AX-12A is the selected actuator for all joints [5]. 
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systems, with relative ease along with providing the proper amount of mounting holes to 

not cause a fault in the system; Figure 11 [22] shows a robotic arm built utilizing the AX-

12A’s and their associated brackets. 

 

Bracket Design and Selection 

In order to design and build an economical solution, much care needed to be taken 

in designing the brackets to be used in final construction. By selecting the Dynamixel 

actuators, a simple and unique solution presented itself. Since these actuators are used to 

build many robotic projects, a line of plastic brackets have been produced by Robotis. 

Brackets for the AX-12A’s are designed to mount sturdily to the actuators and have 

various shapes and size. These brackets range in cost from 1 dollar a bracket to 2 dollars 

a bracket, making these a very quick and economical solution. Since the rough math files 

for these brackets were readily available, it was simple to reproduce brackets of similar 

shape and size but with less detail. These reproduced brackets would need to be 

 

 
Figure 11 Robotic arm built using the AX-12A’s and brackets [22]. 
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machined using either a computer numeric controlled (CNC) milling machine or a hand-

milling machine. If custom brackets were to be used, nearly 25 brackets would need to be 

machined and have CNC code written for them. In order for the machining costs for these 

pieces to be limited, the parts would need to be manufactured in the school’s 

manufacturing labs. The overall time and effort to make these parts was not an option 

during the time of the semester the project was being built. Now looking at the 

construction of the bracket from a purely Design For Manufacturing (DFM) standpoint, 

making plastic brackets is simpler and less expensive then machine brackets. Plastic 

brackets such as the bracket shown in Figure 12 [23] are produced quickly using a 

process called injection molding. Parts like these are cheap to produce in large numbers, 

but the cost of making 25 different brackets using this method would be extremely high 

due to tooling costs however this is not of concern on this project since they are COTS. 

The economical advantage of using COTS brackets and designing around them far 

outweighs the time and cost disadvantage of designing and machining custom brackets. 

Joint Design 

 

 
Figure 12 Robotis bracket design for the AX-12A; cost $1.49 [23]. 
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Since the system needs to be able to replicate human joint movements, a series of 

actuators needed to be combined to produce the desired range of movements. The main 

issue with this is the complexity seen in the human shoulder and hip joints. These joints 

contain a ball joint that is an extremely complex mechanical movement to replicate with a 

series of single axis actuators. The shoulder contains many more possible movements 

than the hip joint due to the limited flexibility of the hip and the mechanical limitations of 

the hip socket. While the shoulder joint can rotate 360 degrees, the hip joint cannot; 

Figure 13 [24] shows some simple movements possible with the shoulder joint. 

 During the initial design phase of this project, a small-scale system was built to 

prove the concept of capturing human movements using the Kinect and relaying them to 

actuators. Since the type of actuator had been selected early on, an economical prototype 

needed to be rapidly designed and built so that the software integration could happen 

while the final structure was designed and built. The Bioloid, built and designed by 

Robotis, was the ideal solution for the prototype. This Humanoid robot contained 

everything that was going to be needed in the final construction of the system. The 

package included 18 AX-12A’s actuators, over one hundred brackets that are designed 

for the AX-12A’s, and the CM-530 robotic controller. The overall capabilities of the 

 

 
Figure 13 Simple shoulder movements [24]. 
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Bioloid can perform many of the movements a human can and some movements that they 

can’t; Figure 14 [25] shows the Bioloid used for the small-scale prototype. 

Using the Bioloid provided a unique advantage, in that it was a complete system 

in which the Kinect code could be meshed with its stock controller to produce a 

functional display. This prototype was shown at the IEEE Southeastcon 2012 to display 

the concepts of the final system. The other unique advantage the Bioloid had was having 

all the necessary components to build the final design in a quick and easy manner which 

limited down time between the software development for the prototype and the software 

implementation on the final design. The final system used many brackets from the 

Bioloid and similar joint designs for the elbows, knees, and hips. 

For the final design and software implementation, a strategy of building and 

testing the simplest joints was taken to allow for a smooth integration of subsystems and 

components. The elbow and knee joints were developed first because they utilized a 

single actuator, which allowed for a simple design and minimal fabrication and 

modification of stock brackets. Since the human elbow can only move roughly 150 

degrees given hyper extension [6] as seen in Figure 15 [7], the AX-12A actuator only 

 
 

Figure 14 Bioloid robot used for the small-scale prototype [25]. 
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needed to be mounted in a way in which it could be connected to the Humerus. The Ulna 

and Radius (bones that compile the lower arm) bones would then be mounted directly to 

the actuator. 

Since the elbow joint design is simple compared to the shoulder joint, the 

structure that is used to mount the arm to the shoulder will be included in the elbow joint. 

In designing the arm structure, a reinforcing bracket was needed in order to mount the 

Humerus of the skeleton to the actuators. This structure is needed because the model of 

the Humerus being used is not large enough to support a load; in this case the bones in 

the arm are purely cosmetic; Figure 16 shows a computer assisted design (CAD) model 

 

 
Figure 15 Movements possible from the elbow joint [7]. 

 
 

Figure 16 CAD model of the elbow joint and upper arm structure 
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of the elbow and upper arm design. This design allows for the full range of movements 

that a human elbow can perform. 

 Similar to the elbow joint, the knee joint is a simple joint to mechanically 

replicate using single axis actuators. This is the case because like the elbow, the knee  

also only moves on a single axis of rotation. The knee has a maximum range of motion of 

150 degree in flexion and cannot hyper extend without minor damage [7]. As with the 

elbow design, the actuator needed to be mounted in a fashion in which the Tibia can be 

mounted to the front face of the actuator. This will allow for the actuator to properly 

simulate the knee joint movements; Figure 17 [7] shows the range of motions possible 

from the knee joint. 

For the lower leg structure, the actuator being used for the knee joint will be 

located at the end of the Femur. For the skeleton being used, the Femur bone was large 

and strong enough to handle the dynamic forces being imparted from the hip movements. 

The actuator is mounted to the Femur utilizing two brackets and a ¼ inch through bolt to 

 

 
Figure 17 Rotational limits of the knee [7]. 

 



30 

 

fasten the brackets to the bone. The upper portion of the Femur is mounted to another 

series of brackets using another through bolt so that the leg can be attached to the hip 

joint; Figure 18 shows a CAD model of the lower leg assembly. 

The hip joint is the next most complex joint in the human body because it has 

many of the movements a ball and socket joint can perform but is mechanically limited 

by the socket the joint sits in. The hipbone and its connecting ligaments limit the range of 

motion for the entire joint. As with the knee and elbow joint, the hip joint has a range of 

about 140 degrees between flexion and hyperextension. Since the joint is a ball in socket 

joint. it also has 80 degrees of motion between abduction and adduction. The hip joint 

also has the ability to rotate away from the body with about 70 degrees of motion 

between lateral and medial rotations [8]. As with many other joints in the human body, 

the overall range of motion is highly dependent on the individual performing the motion. 

The major factor that affects the range of motion in the hip is flexibility in any direction 

of movement [9]. This limiting factor can make replicating the hip motion extremely 

 

 
Figure 18 CAD model of the lower leg 
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difficult because in some instances a person can be considerably more flexible than the 

average person. In these cases, the movement being made can exceed the maximum 

range of the constructed joint; Figure 19 [8] shows the various forms of motion the hip 

joint can create. 

 

In designing the hip joint for the final build, it was required to construct a joint 

that was able to follow any movements provided by the Kinect. Since the Kinect can 

sense Flexion, abduction, and rotation, the hip joint needs to be able to perform all these 

movements. The difficulty in this is packaging three single axis actuators in a way that 

does not consume an excessive amount of space and can perform all the necessary 

functions.  The issue with this form of joint is attempting to limit the number of 

mechanical interferences between mounting brackets in the joint design. Since the actual 

hip joint is only a single ball joint, there is no worry of mechanical interferences from 

things such as mounting brackets, unlike the constructed joint. One factor that makes 

replicating the hip joint easier is its limited range of motion inside its socket. The hip is 

 
 

Figure 19 Different motions made by the hip joint [8]. 
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comprised of several bones, which in turn form the socket in which the joint sits in. For 

this project’s case, the series of actuators that will comprise the hip joints will be built as 

one continuous structure. Since the bones from the skeleton will not be used in the 

construction of the hip joint, they will be mounted in front of the constructed joint to keep 

the model anatomically correct for educational purposes; Figure 21 shows a labeled CAD 

model associated with the hip joints. 

As seen in Figure 20, the hip is composed of 6 different single axis actuators in 

order to construct a joint that can perform the movements of both hip joints. The brackets 

on top of the two actuators are used to mount the hips to the super structure of the 

skeleton. The hips will be mounted utilizing a total of 8 size M2 bolts with their 

associating nuts. This many bolts was chosen for the amount of redundancy the extra 4 

bolts will provide. In early testing with the Bioloid it was noted that the nuts and bolts 

had a tendency to loosen and shake themselves out given a lengthy amount of use.  

 

 
Figure 20 CAD model of the hip joints 
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The top actuators will be used to impart the necessary movements needed to 

fulfill the medial and lateral rotations. The placement of the top actuator relative to the 

connecting bracket needs a large amount of consideration with respect to collisions with 

the adjacent joint. By placing the actuator in the rear position of the bracket, there is an 

increased lateral range and a decreased range in medial rotation due to collisions with the 

adjacent hip performing a medial rotation. When placing the actuator in the forward 

position on the bracket, an increased range in the medial rotation was created while 

decreasing the range in lateral hip rotation due to collisions much like placing the 

actuator in the rear section. By placing the actuator in the center of the bracket the lateral 

and medial hip rotations are equal. Since the combined rotation needed is 70 degrees 

based upon the research that was performed, the medial and lateral rotations from off 

center only need to be 35 degrees.  With the given design and the accuracy of the Kinect, 

this configuration can provide ample amounts of rotation in the hips without any 

collisions. 

When selecting the placements of the last two actuators, several different 

configurations could have been selected. The final configuration selected utilized the 

larger linear bracket as seen in the above figure. This allows for two actuators to be 

mounted inline with one another. From this linear combination the order of the front and 

rear actuator needed to be decided. By placing the actuator performing the flexion and 

extension motions in the rear of the bracket, a mechanical interference is created during 

the flexion motion. Even though there is a collision in the flexion motion, there is an 

exceedingly large amount of room for motion in the extension range of motion. This does 

not necessarily discount this design because the leg only needs to be able to perform in 
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the average range described in the research that was performed. Unfortunately the 

necessary range of motion in the series of motions is 110 degrees in flexion and 30 

degrees in extension. The design, which incorporates the flexion/extension actuator in the 

rear, is not a valid design in this instance. 

Since there is only one other place to locate the flexion/extension actuator, the 

actuator will be located in the front position in the linear bracket. This provides a 

mechanical inference with the leg bracket and the rear actuator during extension motions. 

This is an acceptable issue because the needed motion in extension is only 30 degrees, 

which this configuration meets. The motion in the flexion motion can also encounter a 

mechanical interference if the wires are not run properly. If the wires are run in front of 

the flexion/extension actuator, a pinch point will occur between the leg bracket and the 

linear bracket with the wire in the middle. This of course is a major issue for two reasons; 

one being it restricts the motion in the flexion direction to about 45 degrees, and two it 

can cause major damage to the wires powering the entire leg. With the wires being run 

behind the actuator a full motion of about 125 degrees in the flexion direction is 

obtainable and there is no potential for damaged wires.  

Since the third and final actuator in the three-actuator hip design is in the 

abduction/adduction motion, or side-to-side motion, the position of the actuator is 

relative. Whether it’s in the front or rear of the linear bracket makes no difference on 

performance. Since the flexion/extension actuator is in the front position, the 

abduction/adduction actuator must be placed in the rear position on the linear bracket. 

Regardless of position, the limiting factor for this actuator will be the mechanical 

interference cause by the collision between the actuators and the linear bracket. This 
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provides a small issue since the needed range of motion is 40 degrees in each direction. 

As seen in Figure 19 of hip motion, humans have the ability to cross their legs in the 

adduction motion; this motion will be limited due to possible collisions and the potential 

for the legs becoming entangled. To avoid such collisions the movements will be limited 

on the software side.  

The final joint is the shoulder joint, which is considered  one of the most complex 

joints in the human body. Although the shoulder is a simple ball joint, on paper it is an 

extremely difficult joint to animate using single axis mechanical systems [10]. Unlike the 

hip joint, the shoulder has very few limiting factors and has a considerably larger range of 

motion than the hip. The shoulder joint can move in all the same motions as the hip joint 

plus one extra motion; these motions being abduction/adduction, flexion/extension, 

outward/inward medial rotation, and circumduction. In the hips there exists a lateral 

rotation while in the shoulders there are only inward and outward medial rotations [11]. 

Circumduction in anatomy is the ability to move a limb or appendage in a circular 

motion. This particular motion defines the main motion of the shoulder and many simple 

motions are built from this ability. The shoulder has the ability to perform a medial 

rotation both inward and outward; this is also known as a shrug. Since the Kinect cannot 

detect this motion, its movements will not be incorporated in the final joint design. Since 

the Kinect can sense the other motions, these will have to be incorporated. When defining 

the range of motion for these different movements, the average human will have to be 

examined again. In many cases flexibility and being double jointed can severely affect 

the maximum range of motion in this joint.  
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As with the hip, the range of motion in every type of movement the shoulder can 

make is highly dependent on the flexibility of the person making the movements. For the 

average person the range of motion has been defined by an approximation of ranges for 

each motion and these ranges are used throughout the medical industry as a standard [12].  

Figure 21 [8] shows the movements possible by the shoulder joint.  

Since the shoulder has the ability of circumduction, the average motion for this is 360 

degrees. The average range of motion for a shoulder making an extension motion is a 

maximum of 50 degrees, while in flexion the range is 90 degrees. For the medial 

rotations, both inward and outward motions are 90 degrees in each direction. Much like 

the medial rotations, the abduction and adduction movements have a maximum range of 

90 degrees. It should be noted that in this single joint there are movements in four unique 

directions.  

 

 
Figure 21 Different motions made by the shoulder joint [8]. 
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The shoulder joint went through a total of three different designs before a final 

design was chosen. The reason for having built three different shoulder designs was the 

development of limitations each different design had during testing. The issues seen in 

each design varied in the joints’ ability to perform motions that were going to be 

anticipated during upcoming demonstrations. The series of motion that are simple to 

perform with a joint such as the shoulder became difficult to replicate utilizing single axis 

actuators. Motions that were possible to make using a given design then became difficult 

or near impossible to perform using the software methods that had been developed. 

Common motions that were assumed to be made were motions such as waving hands, 

pointing, clapping, patting the head, and putting the hands on the hips. These motions 

utilize a combination of individual shoulder motions that provide an impressive and 

reactive display for children. 

The first shoulder joint that was designed, built, and tested was a joint that was 

comprised of two actuators. This design was based off the shoulder that was found in the 

Bioliod. This particular design was used originally because the beta version of the 

software was ported to the Bioliod. So the software was the main driving factor of the 

 

 
Figure 22 CAD model of shoulder joint design 1 
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first joint design. By using only two actuators you gain simplicity on the software side 

but you lose mobility on the mechanical side, which in the long run was deemed 

unacceptable; Figure 22 shows shoulder joint design 1. 

The two-actuator joint allows for the critical circumduction movement to be 

performed with ease using both actuators. Rotating the bottom actuator to be in line with 

the axis, the top actuator rotates about, and then rotating the top actuator performs this 

motion. By only rotating the bottom actuator, the robot is able to mimic abduction and 

adduction movements. If only the top actuator is rotated the robot can mimic the flexion 

and extension motions. Though it seems this joint design can perform all the proper 

movements, not only the motions but the directions the bones are facing are incorrect. 

These issues create movements that don’t seem natural because they cannot follow the 

path the actual arms are making. Using this joint arrangement would require software that 

would perform path planning to move the arm to the final position instead of following 

the input motions. These issues are apparent when the first motion made is a 90-degree 

abduction and then performing a forward pointing motion or head patting motion. In an 

instance where the first motion is a 90-degree abduction, the system has a tendency to get 

stuck on the software side because there is no way to directly translate from that position 

to any other common position without returning to the arms down position. Since this 

needs to be a fluid demonstration, where the robot follows the movements the person is 

making as closely as possible, this design has a fatal flaw and needed to be redesigned. 

The second design incorporates a third actuator to gain the ability to make 

movements that follow actual movements more realistically. The second shoulder design 

is identical to the hip joint design. This was chosen as the second design for its ability to 
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simulate the ball joint in the hip. The issue with this design is that the known limitations 

of the actual hip joint would now be applied to the shoulder joint. Another main 

disadvantage of this joint setup is the complexity of the software needed to operate it. 

Since the orientation and overall design of the joint was different from the first design, it 

required the integration of a third actuator into the software. Along with this integration 

issue, the overall software strategy needed to be rewritten since the joint movement is 

completely different from the first design; Figure 23 shows the CAD model of the second 

joint design. 

Since the above design is identical to the hip joint, the software used was also 

very similar. The key issue to this was that the hip joint is incapable of performing 

circumduction. It was decided by the team to continue on with the design because 

circumduction was not necessarily needed to perform many of the required maneuvers. 

The first bottom actuator was used to perform maneuvers requiring abduction or 

adduction. The rear bottom actuator was used to perform the extension and flexion 

 

 
Figure 23 CAD model of shoulder joint design 2 
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maneuvers. While the top actuator was used for medial rotation in the hips, it cannot 

perform the same medial rotation that is made by the shoulder joint. It was clear that this 

design was incapable of performing the necessary movements because of the limitation 

that allowed this design to excel as the hip joint. When this joint performs an extension or 

flexion motion, it has a mechanical interference with the linear bracket that does not 

allow for the full range of motion necessary for proper shoulder movement.  Since these 

flaws were realized early on, there was limited amount of testing performed on this joint 

to verify its ability to perform movements such as hand waving and points, neither of 

which this joint can perform. 

The third and final joint design also uses a three-actuator design in a similar 

arrangement as the second joint design. This design changes the overall orientation and 

positioning with the top actuator. It still utilizes the linear bracket, which contains two 

actuators. This design was chosen because the motions it could handle were the motions 

the team decided the system was most likely to encounter during a demonstration. This 

was true because many of the limitations given by the orientation of the hip joint were not 

applicable in the new configuration. Once again, by changing the overall orientation, the 

 

 
Figure 24 CAD model of shoulder joint design 3 
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software needed to be rewritten which requires many new position values to be set; 

Figure 24 shows a CAD model of the third shoulder joint design. 

The third design orients the linear bracket vertically, which incorporates the 

advantages of the first and second designs. The actuator that is not in the linear bracket 

will be used in combination with the bottom actuator in the linear bracket to perform a 

circumduction like motion. It should be noted that the size and position of the linear 

bracket with respect to the first actuator causes the circumduction motion to produce a 

larger circle. This position of the first actuator on the linear bracket also causes the 

circumduction motion to be off center, unlike the motion performed by a real shoulder 

joint. This is acceptable because the accuracies of the sensors selected may not actually 

detect the difference between a small circumduction movement and a larger 

circumduction movement. The bottom actuator in the linear bracket is used to perform 

the abduction and adduction motions while the actuator that is not in the bracket can be 

used to perform the flexion and extension motions. The second actuator in the linear 

bracket can perform a medial rotation by definition, but this type of movement in the 

actual shoulder also has a linear component of motion. This actuator will instead be used 

to add some amounts of realism to the other motions. In the given configuration, that 

actuator is highly limited by a mechanical collision with the linear bracket. 

 When this design performs the abduction and adduction movements, it can 

perform the entire range required from the studies used for this research. Once again, the 

adduction movements will be limited on the software side to prevent hang-ups and 

collisions. The flexion and extension motions, which are performed by the actuator that is 

not in the linear bracket, are exceeded on the performance side. Since this design can 
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rotate 360 degrees, it can perform circumduction by this motion. Motions, such as 

performing a clap, can be accomplished by rotating the first actuator and rotating the 

bottom linear bracket actuator. The issues seen with this motion is that the sensor does 

not have the ability to sense the rotation of the bone, so this causes the clapping motion to 

often have the back of the hands coming together, which is an unnatural motion. Once 

again, a motion such as waving  can be looked at differently because the forearm does not 

have the ability to rotate. The motion of pointing is easily accomplished, along with 

motions such as the jumping jack arm motion, and putting the hands on the hips. The 

issues the first design had are not readily apparent due to the orientation and position of 

the linear bracket. The possibilities for the software getting stuck in a position which it 

cannot recover from with this design is still possible but limited and not readily apparent. 

Final Construction 

In order to build the final system, several different mounting brackets needed to 

be machined so that the COTS brackets could mount to them. These parts were built 

using a milling machine in the schools’ machine shop. In order for the skeleton to be held 

upright, a long bar was built to mount all the different components to. This bar was 

constructed from a 3 foot long piece of 1/2-inch steel square stock. Four holes were 

machined into the square stock so that the leg bracket and shoulder bracket could be 

mounted. The first bracket is the bracket that will be used to mount the hips and legs to 

the upright bar. This bracket was constructed of a piece of 1/2-inch thick steel L-channel 

with 2 inch flanges. This piece of stock had two holes machined into it so it could be 

mounted to the upright bar, and two sets of four holes that matched the mounting hole 

found on the COTS brackets. These holes allowed for the mounting of the whole leg 
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assembly. The second bracket that was machined was designed to mount the two arm 

assemblies. This bracket was machined using a 1/4-inch thick steel plate that was 

machined into a cross like shape. The reasoning for this was to eliminate a mechanical 

collision with the linear brackets in the shoulder joints. The piece of steel plate then had 

ten holes machined into it. Eight of these holes matched the holes found on the COTS 

bracket; two holes for mounting to the upright bar and two holes for mounting the upper 

body of the skeleton to the steel plate. The robot also needed a base so it could be free 

standing; this base was built using a large piece of rectangle stock, which provided 

enough size and weight to support the robot in motion. The bones from the skeleton that 

were not used as structural components of the design were machined and mounted to 

brackets, which were affixed to the appropriate actuators. The main body of the skeleton 

was not strong enough to bear any sort of major loading so this piece was also affixed to 

the main super structure through bolts, which were mounted to the steel plate; Figure 25 

shows a CAD model of the final design without the base or ornamental bones. 

 

 

 
Figure 25 CAD model of the final build minus the base and the skeleton body. 
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Sensor Selection 

Since this project is based around the Kinect, that was the sensor that was 

selected. At a cost of $200, the Microsoft Kinect has the ability to track the movements of 

24 distinct skeletal points on the human body. These points include the head, hands, 

arms, and legs. Along with these 24 skeletal points, the Kinect can track two people at the 

same time and has voice recognition capabilities [13]. This project only requires the 

tracking of less than 15 skeletal points for a single user. Figure 26 [14] shows the Kinect 

and a skeletal map.  

The Kinect sensor generates the skeletal map by reading data from an array of 

sensors including: a depth sensor, an accelerometer, a multi-array microphone, and a 

RGB camera [14]. The microphone was originally not going to be used for this 

application but voice commands were added to assist with testing and user interface 

issue. Commands such as stop and pause are used to stop the demo; resume game is used 

to resume the demo. Commands such as faster and slower may be implemented to adjust 

the speed of the actuators during testing. The main driving sensors on the Kinect are the 

depth sensor and the cameras. The depth sensor is a Micron 1/2-Inch Megapixel CMOS 

Digital Image Sensor that consists of an infrared laser projector and a CMOS 

 

 
Figure 26 A 15-point skeletal model (left) produced by a Microsoft Kinect sensor (right) 

[14]. 
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(Complementary metal–oxide–semiconductor) sensor. This CMOS is considered an 

active pixel sensor and is capable of capturing 3D video data in ambient light [13,15]. 

The main bulk of the data used to construct the skeletal points is taken from the two RGB 

cameras in the Kinect [27]. These cameras are Aptina 1/4-Inch 1.3- Megapixel SOC 

CMOS Digital Image Sensors, which give the Kinect a viewing range of roughly 11ft 

[26]. Along with the mentioned sensor, the Kinect is equipped with a motorized pivot that 

allows the Kinect to physically move as it tracks targets. This pivot is not used in the 

demo because the Kinect will ideally be mounted so that pivoting the sensor will not be 

necessary.  

Microcontroller Selection 

Since the skeleton requires a total of 16 actuators in order to perform all necessary 

movements, a microcontroller that can handle a minimum of 16 actuators will be 

required. The AX-12A requires TTL level serial communications to send and receive 

signals. This project utilizes a total of 1 AX-12A’s to be controlled in realtime. Although 

a controller is available from Robotis (the manufacturer of the AX-12A actuators), it is 

unclear if the controller will be able to perform all of the necessary analysis of skeletal 

motion in realtime. It was anticipated that as the project neared completion, a more 

powerful controller such as Vanadium Labs ArbotiX Robocontroller would be required. 

However, in the interests of speeding development, the Robotis controller and software 

was used as the development platform.  

The Robtis CM-5 controller is the control that was used with the Bioloid robots. 

This controller was able to handle moving the 18 actuators with ease. The CM-5 utilizes 

the ATMEGA128 for its microprocessor. The high-performance, low-power Atmel 8-bit 
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AVR RISC-based microcontroller combines 128KB of programmable flash memory, 

4KB SRAM, a 4KB EEPROM, an 8-channel 10-bit A/D converter, and a JTAG interface 

for on-chip debugging. The device supports throughput of 16 MIPS at 16 MHz and 

operates between 4.5-5.5 volts [16]. The CM-5 also has the advantage of having the 

Bioloid software preloaded onto it, which allows for an easy interface between the kinect 

software and output commands to the actuators. The main flaw with using this controller 

is the inability to change the speed of the actuator, since commands are being sent to the 

controller and the controller is moving them as if it were connected to the Bioloid. 

The advantage of the ArbotiX controller over many other popular micro-

controllers such as the Arduino family is that this ArbotiX controller is designed with the 

Dynamixel AX-12 servos in mind. This microcontroller boasts the ability to control more 

than 24 AX-12 servos simultaneously using its integrated Atmega644p processor [17]. 

The ArbotiX also has the ability to incorporate an XBee system for wireless 

communications. If needed there are motor drivers, encoder headers, and 32 analog 

headers equipped to this board allowing the use of PWM (pulse width modulation) servos 

if needed; Figure 27 [17] shows the ArbotiX microcontroller 

 

 
Figure 27 The Arbotix microcontroller selected as the controller for this research 

[17]. 
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Software 

 Before writing software that interfaced with the Kinect, the team needed to 

understand exactly what the native software on the Kinect was doing. It is given that the 

Kinect senses the body and then output a series of points that represent joints and 

positions on the body. That being said, the software development kit (SDK) provided by 

Microsoft allows for interfacing with the Kinect without needing to know exactly what is 

going on in the background. The Kinect uses two cameras to capture real-time images of 

the environment in the field of view. First, the Kinect creates a depth map using 

structured light and then infers body position from a technique called machine learning 

[18]. From this inferred body position, a skeletal map is built by estimating the positions 

of 20 different skeletal points. The points represent the major joints such as the knees and 

elbows, and minor joints such as the wrists and ankles. The Kinect then tracks these 

skeletal points and the skeletal map is continuously updated based upon changes in the 

position of these points. By utilizing these points, the software for controlling the 

actuators in the robot can relate the skeletal movements recorded by the Kinect to 

rotations needed to be performed by the actuators. 

 In order to write the software interface between the Kinect and the actuator, the 

proper language needs to be selected. The language chosen was C# because of its ability 

to easily call the Microsoft SDK library. Additionally, C# allows for a compiled .exe with 

sophisticated graphical user interfaces (GUI) along with the sample source code for the 

Kinect being provided in C#. C# also allows for a quick run-time, which is necessary for 
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a computationally complex task such as this. Since there is an open source SDK for the 

Kinect, all interfaces on that side will be done through that. This SDK has some built in 

higher level functions that can be utilized, such as obtaining the relative positions of all of 

the joints of a human in the field of view of the Kinect. The SDK also allows for various 

graphical outputs for debugging. Among these is the display of all of the skeletons in 3D 

space. The .NET framework is used for hardware interfaces because it is well integrated 

into the C# language, and is easy to access using Visual Studio. Any function that is not 

possible natively using C#’s built-ins or the Kinect SDK can be done with .NET. The 

.NET frameworks will be utilized for all math based operations and the serial 

communications with the CM-5 controller. 

 In order to relate the actuators to the corresponding positions on the skeletal map, 

an understanding of all the positions in relation to the body should be made; Figure 28 

[19] shows these relations.  

 

 
Figure 28 Skeletal points imposed on Vitruvian Man [19]. 
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With the skeletal map given, each of the joints are indexed and their X, Y, and Z 

positions are known relative to the dimensional space the Kinect has created. For this 

project, the angles of the knees, elbows, shoulders, and hips need to be calculated from 

the skeletal points so that the angles can be used to operate the actuators. Since the given 

coordinates are relative Cartesian coordinates of each of the joints in the above picture, 

angles that approximate the proper servo settings in order to best match the position of 

the robot to that of the operator must be produced. 

 When designing the software for the system, the software components for the 

knees and elbows were designed first because of their similarity and overall straight 

forwardness in relating the Kinect outputs to the actuators. For the purposes of this 

system, the knee and elbow methodology is identical to one another with some 

differences in limits and starting positions. The goal of the software is to calculate the 

angle for the elbow joints; this can be done because the positions of the shoulder, elbow, 

and wrist joints are known. In this situation, the vector pointing from the wrist to the 

elbow will be defined as vector “a”.  The vector pointing from the elbow to the shoulder 

will be defined as vector “b”. By solving for theta in the following equation, the angle for 

the elbow can determined. 

  |   |  | || |         (2) 

By taking this equation and solving for theta, you obtain the following equation. 

          
|   |

| || |
     (3) 

By adding a scaling factor, theta can be directly applied to the actuators, which will allow 

for movements that coincide with elbow motions captured by the Kinect. The difference 

between the elbow and the knee is that vector “a” is the vector pointing from the knee to 



50 

 

the ankle, while vector “b” is the vector pointing from the knee to the hip. As with the 

elbow, theta requires a scaling factor before it can be used, though this factor can be 

different than the elbow. Since software limits also need to be put in place, these limits 

contain the maximum range in which these joints can move. Along with limits, the start 

positions are also defined.  These positions are the at-rest positions or the positions the 

actuators return to when they become unpowered. In the case of the knee, the angle 

between the upper leg and the lower leg will be 180 degrees. This position also is 

identical for the elbow joint with relation to the upper and lower arm. 

 The software design for the hips and shoulders is considerably different than the 

design of the elbows and knees. These joints require a different methodology because 

both joints are universal ball joints, while the robots joints are not. Before the math can 

be discussed, the axis of motion must be defined. The first axis will be called the “Lifter 

axis”, which produces the motion to raise the arms in front of the body. The second axis 

will be called the “Flexor axis”, which produces the motion to raise the arms up the side 

of the body creating a “T”. Next, the vectors that will be used in the calculation must be 

defined. The vector, which points from the shoulder to the elbow, will be defined as 

vector “a”. Vector “b” is the vector that points from the shoulder to the hip. Vector “c” is 

the vector that points from the center of the shoulders to the shoulders. The first angle of 

interest is the angle between vectors “a” and “b”. This can be calculated using the same 

equation used in the elbow calculations and solving for   . The second angle is difficult 

to visualize and is the angle that, when looking down upon a person, their arm is 

pointing. Zero degrees would be an arm pointing away from the side of the body; ninety 

degrees would be an arm pointing away from the font of the body. This angle is 
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calculated by ignoring the z components of the vectors “c” and “a” and finding the angle 

between them. This angle can be found using the same relation from before but it can be 

seen below in the following equations.   

  |   |  | || |                            (4) 

          
|   |

| || |
                    (5)   

Once this second angle is determined, proper values for the “Lifter” and “Flexor” servos 

can be found using the following processes. Taking    and multiplying it by the cosine 

of    will solve for the lifter actuator; this can be seen in the equation below. 

                 (6) 

  

By taking   and multiplying it by the sine of    will solve for the flexor actuator; which 

can be seen in the equation below. 

                 (7)  

By utilizing these equations, the motions of the skeletal points created by the Kinect 

software can be replicated by the actuators on the robot. 

 The final component of the software system is the interface with the Bioloid 

controller. This is handled by .NET’s serial communication libraries, which make 

interfacing simple. First an initialization is done upon the program starting, which sets up 

a COM port for use with the controller. While the program is running, only writing 

values to the port are necessary. In order to communicate with the CM-5 controller, a few 

commands are used. These commands replicate the controller being connected to the 

“roboplus” program. These commands consist of some initializers and terminators, and a 

command that writes values to the actuators. This command requires that you change 

either 1 actuator value or all of them. It was decided to update all of the servos after one 
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cycle. By combining the .NET framework and C#, a software system was developed that 

has the ability to interface with the Kinect SDK and the CM-5 controller simultaneously, 

while handling real-time mathematical calculations which drives the angular positions of 

each of the actuators built into the system. This leads to a robust system that drives a total 

of sixteen actuators in a real time environment.  
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Chapter IV 

Results 

Functional Demo 

 The objective of this project was to produce a fully functional demonstration that 

could be displayed in the Daytona Beach Museum of Arts and Sciences. This 

demonstration was required to not only look like a skeleton, but to function like one. It 

needed to be able to have a person stand in front of it and perform movement, and the 

systems would then replicate the motions to some degree of accuracy. This varying 

accuracy represents the accuracies given from the mechanical and the sensor systems. 

The overall system is deemed accurate since the motions it makes are representative of 

the motions that were taken as inputs. This can be confusing because one of the current 

limitations of the system is its speed. The system cannot replicate someone waving their 

arms rapidly because the number of total inputs and rate the input are coming is too fast 

for the actuators and the sensor to be able to replicate and  record.  

 The current form for the system is a functionally complete demo, which needs 

polishing touches to become museum quality. The overall system is complete with all the 

actuators and sensors being integrated into the final design and super structure. The 

quality issue with this system is that the Kinect sensor is not mounted and the robot itself 

needs to be placed in a case; these issues can be addressed at a later date. The other major 

issue is that the system currently runs off a personal computer so a demonstration 

computer needs to be purchased. The system is currently not operable without a user to 

turn the system on. The issues that separate the system from being museum ready do not 

separate the system from being complete as far as the research aspect is concerned. 
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Conceptually and physically the system is ready to perform demonstrations and the 

overall system and software is being tested for robustness. The system needs to be 

mechanically robust since it will be expected to operate 8 hours a day at the museum. 

Currently there is no way to test the system for full days because of the time needed to 

test this. While testing and integrating the software, the overall system performance is 

also being tested. As with many demonstrations that Embry-Riddle Aeronautical 

University makes for the museum, this demonstration will be fully stress tested in its 

actual environment with sample group sizes from the classes that are being taught at the 

museum, instead of being setup as a display immediately. This sample testing will allow 

for the team to see flaws and potential software and hardware malfunctions. These 

software and hardware failures will then be able to be fixed or redesigned to be more 

robust.  

 The final design came together as expected and matches the overall design shown 

in the CAD models made by the team. The final system features a total of 16 fully 

functional mechanical single axis actuators to create a combination of eight functional 

joint and four individual joint types. This completes a third scale human skeleton, which 

can replicate the motions of a human to some extent. The final super structure is built out 

of three sub-structures; those being the arm structure, the leg structure, and the base 

structure. The leg and arm structures are hard mounted to the base structure to complete 

the final super structure; the final system can be seen in Figure 29. Within the structure, 

the controller is mounted and the wiring is run throughout the different sub-structures; 

this wiring style allows for a reduced risk of kinks and snags during operation. 
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 In order for the demonstration to be considered successful, each of the joints 

needed to meet a certain specification based upon the average range of motion the 

corresponding joint can move on the human body. The first joint that was discussed was 

the elbow joint, with a range of motion of 140 degrees plus 10 degrees in hyperextension. 

The 10 degrees is noted separately because the joint designed for the robot was designed 

to operate in the normal range of motion for the elbow joint. By definition, 

hyperextension is a motion that is greater then normal extension. The designed joint has a 

range of motion of roughly 150 degrees, with the extra 10 degrees in the flexion range of 

motion. The reason the joint can’t go into the hyperextension range is because of a 

mechanical collision between the two bones that are mounted on the fore arm and upper 

arm; Figure 30 shows the final elbow joint construction. 

 

 
Figure 29 Completed super structure minus the skeleton body 
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 The knee joint was nearly identical in design as the elbow joint and displays the 

same range of motion, minus the hyperextension as well. The maximum range of motion 

for the knee is 150 degrees in the flexion motion. The designed knee joint was able to 

exceed the range of motion needed by having a total range of motion of about 155 

degrees in flexion and another 5 degrees in hyperextension. This is due to the mechanical 

features of the actuator in comparison to the ligaments that restrict motion in the knee 

joint; Figure 31 shows the final knee joint construction. 

 

 
Figure 30 Final elbow joint construction 

 

 
Figure 31 Final knee joint construction 
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 The hip joint had several different motions that needed to be categorized since it 

was a different type of joint than the both the elbow and knee joints. The hip joint is a 

ball joint that had three different types of motions; these motions consisted of 

medial/lateral rotations, flexion/extension movements, and abduction/adduction motions. 

The designed joint needed to be able to reproduce a range of motion of 140 degrees in 

flexion/extension, 80 degrees of rotation in the abduction/adduction, and 70 degrees in 

the medial/lateral rotations. The hip joint that was built and designed was able to meet 

and exceed the range of motion needed in the flexion and extension range by producing a 

maximum range of about 160 degrees. The medial and lateral rotations could also be 

reproduced exactly. The abduction and adduction motions need to be specially noted 

because the range of motion reproduced meets the 80 degrees necessary, but the 

adduction motion has the ability to cross the adjacent leg and this motion has been 

disabled to prevent the limbs from tangling with one another. In practice and testing, the 

hip joint can closely follow the motion made by an actual human hip; Figure 32 shows 

the final hip joint construction. 

 

 
Figure 32 Final hip joint construction 
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 As with the hip joint, the shoulder joint is an extremely versatile joint with respect 

to its ability to produce four different and unique types of movements. This ball joint, 

unlike the hip, is unrestricted as far as movements are concerned and has motions that 

consist of circumduction, abduction/adduction, medial rotations, and extension/flexion 

motions. Since the shoulder can perform the circumduction motion, the designed joint 

needed to be able to make a circular motion also; this could be completed to some degree. 

The limiting factor on the designed joint ability to perform circumduction is the radius of 

the circumduction being performed. For instance, a minor circumduction or a very small 

circle could not even be sensed, let alone it could not be performed accurately; while a 

full circumduction or the largest circle the arms can make can be performed up to 359 

degrees of rotation. This full circle limitation is a software check to prevent wires from 

binding. The act of performing any sort of medial rotation was not factored into the 

design because this motion is a shrug and the Kinect cannot sense this type of movement. 

If this motion were necessary, the current design would need to be rethought because 

there is only rotation movements in the joint and a system with a cam might need to be 

integrated to perform the shrugging motion. The abduction/adduction motion in a human 

shoulder is 90 degrees in each direction. The designed joint can perform a combined 

range of about 150 degrees because it is limited by software. The extra 30 degrees crosses 

the body and this could be a potential area for entanglement. The flexion motion is 90 

degrees, while the extension motion is only 50 degrees. The designed joint can perform 

359 degrees in this type of motion because of the abilities shown in a purely rotational 

joint. Given all the movements that can be made by a shoulder versus the movements 
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deemed necessary, the designed joint meets the requirements of the projects; Figure 33 

shows the final shoulder joint construction. 

 Once the system was fully constructed, full scale testing began. The original 

specifications of the project were to produce near real time movements that mimicked 

human inputs taken from the Kinect. Unfortunately, the current controller the system is 

using does not allow for the movement speed necessary to create near real time mimicry. 

Another limiting factor for this specification is the potential for the system to damage 

itself. This slowness is also caused by the use of the CM-5 controller, which still has the 

Bioloid software loaded onto it and uses the same movement speeds and algorithms from 

the Bioliod system. Since the system and the software are both in their prototype version, 

the overall robustness of the system has yet to be tested. Until the system is completely 

tested, utilizing slower speeds will lead to less mechanical issues and less down time. The 

plan is to incorporate a new controller, which will allow for increased operational speeds 

later in the project’s life. 

 

 
Figure 33 Final shoulder joint construction 
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Reliability Testing 

 Since this system is being designed for use as a museum demonstration, it is 

imperative that the overall robustness of the system is known. The idea for this project is 

to have it operating during all hours the museum is open. This of course can lead to many 

hours of use being put on every mechanical component of the system. The system itself 

can be broken down in two possible subsystems that need to be tested. The mechanical 

system, which encompasses everything that moves and if broken would impair the 

systems overall functionality. The other subsystem would be the hardware and software 

systems. This system encompasses the sensors, the controller, and the software itself. 

Unfortunately, with this systems design, if one component of these subsystems fails the 

whole system will fail. 

 The mechanical subsystem has many opportunities to fail, mainly in each actuator 

being used in the system. Fortunately enough, these particular actuators have safety 

systems built into them that attempt to mitigate any damage that the actuator may incur 

by shutting them down before the actuator is damaged. An example of this safety system 

in action comes when a leg raise is being performed. This is inherently the worst-case 

scenario of the actuators. This being that the leg is the longest and heaviest limb on the 

skeleton thus generating the highest required holding torque. In a electric actuator such as 

the ones being used, high torque holding loads require more power and more power 

generates more heat. After about 15-20 seconds the actuator will power itself down and 

flash red showing it has disabled itself. The actuator at this point is not damaged but 

requires the system to be reset. The leg is the only instance in which holding a position 

will cause the actuator to eventually shut itself down. Other cases of the actuator 
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disabling itself are if it isn’t properly fastened and if the actuator becomes stuck. An 

example of the actuator becoming stuck is if the arm becomes tangled with the rib cage. 

This in turn provides an infinite amount of resistance that the actuator cannot overcome; 

in this instance the actuator will also shut itself down. Unfortunately, resetting the system 

will not overcome this issue because the arm will still be entangled with the rib cage so 

the arm will have to be physically removed. To prevent issues such as these, software 

stops have been put in place at the expense of movements such as crossing legs and arms. 

To prevent the actuators from becoming loose, Loctite should be used on all fasteners. 

 Another type of failure in the mechanical system would be the permanent failure 

of any actuator. During testing and development this was seen on one actuator. After 

performing an analysis on the actuator, it was deemed that a particle made its way into 

the motor and seized it. Given these actuators were not designed to handle such work 

cycles, it is a matter of time in which they will fail. The only way to solve this issue is to 

replace the broken actuators or replace them when the whole system receives service. 

Replacing actuators before they fail will allow the system to operate continuously but it 

comes with an added cost. While only replacing broken actuators reduces costs but 

increases the potential for down time. Unfortunately there is no way to avoid the eventual 

failure of each actuator. This being known, the system has been designed to allow for the 

replacement of the actuators with minimal hassle. 

 The final mechanical failure would be any of the brackets failing. This would 

result in actuators becoming loose or falling off. This is an unlikely situation but if it 

were to occur, the only solution would be to replace the bracket. This was one of the 

driving factors behind selecting COTS brackets because replacing them is cheap and 
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simple. Replacing some brackets is easier than replacing others but the risk of failure is 

limited. In order to test the system on the mechanical side, the whole system must be 

tested. The test plan for the mechanical side is to test during development and then to run 

small group tests until the team feels the system is ready for full scale testing. Issues and 

failures will be documented and if needed, a redesign can be made. 

 Failures to the hardware and software subsystem are just as debilitating as having 

a mechanical failure. The only sensor the system uses is the Kinect and if that were to 

fail, the whole system would be incapable of performing what it was meant to do. 

Fortunately Microsoft did a lot of the reliability testing on the Kinect already. If the 

Kinect fails, it will need to be replaced, otherwise there will be no sensor for motion 

capture The system will still be able to function as far as being manually operated but the 

demo will be useless. The Kinect is designed to last many years and should not require 

the maintenance or have the risk of failing as some of the mechanical components do. 

 The CM-5 controller is another piece of hardware that if it fails, the system will 

not operate. This piece can fail in many different ways such as having a short or 

overheating. In either of these instances the controller will not function or function 

properly, which means there is no way to control the actuators. If the controller fails, it 

will need to be replaced. Once again, this is an easily obtainable part and is easy to 

install. The reliability of this component once again has been tested by Robotis and has 

less of a chance of failure than some components on the mechanical side. Nonetheless, if 

this system is to be used as a museum demonstration, a spare controller or two should be 

kept on hand just in case a failure in the current controller should happen. 
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 The final component in the hardware software subsystem that could fail is the 

software itself. Software in terms can fail, however the software never worked to begin 

with if it fails. These are called glitches as apposed to failures and if one of these were to 

occur, tests to reproduce the issue would need to be performed. This needs to be done to 

find the failure mode of the glitch. When this is found, a software patch will need to be 

written and the software will then need to be updated. Unfortunately, if this occurs while 

the system is at the museum, it will not be a quick fix because someone that is familiar 

with the system will need to fix it or someone who is unfamiliar will need to come up to 

speed with the system before they can fix it. This is why a long-term small group test will 

need to be performed in order to discover these glitches and solve them before the system 

is released as a final product. 

Cost Analysis 

Along with designing and building a system that can perform all the necessary 

requirements, it was imperative to keep costs down. This was necessary because the 

project was internally funded and was going to be for a museum. The overall cost of the 

project does not factor in engineering time, which can be extremely expensive compared 

to the rest of the costs on the project. Fortunately, using COTS brackets, which came in 

the Bioloid kit, reduced a lot of the costs of the project. The kit consisted of 18 actuators, 

the controller, and all the brackets that were needed to build the system. The skeleton was 

purchased from a medical display website and the aluminum that was used was given to 

the project; Table 1 shows the cost of the project. As can be seen from the table below, 

the overall system cost is extremely low. 
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It should be noted that this was the cost to build the system and does not factor in the 

necessary things to turn this into a museum quality demonstration. In order for this to be 

put into a museum, a computer will need to be purchased for the purpose of running the 

software. This computer can be purchased for around $1000. The other necessary item is 

a case to enclose the system. If the system were not put in a protective case, people trying 

to interact with it would surely damage it. A custom case can vary in cost because of 

material selection and overall appearance. The custom case should cost no more than 

$2000. That being said, a complete museum solution would cost in the range of $5000 to 

produce. Given the average museum demo costs tens of thousands of dollars, this can be 

considered a low cost piece for a museum to fund or purchase. 

 

 

 

 

 

 

 

 

 

 

 

Table 1 Total system cost 

Bioloid $1,200  

Skeleton $45  

Misc items 
/Kinect $300  

Total $1,545  
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Chapter V 

Conclusions and Recommendations 

Conclusions 

 The goal of this project was to design a low cost system that can mimic human 

movements. Through this process, the design team used readily available cutting edge 

technology to accomplish the overall goals set for the project. Creating a system which 

can mimic every type of motion the major joint in the body can do is an extremely 

difficult task. The original specifications of the project ended up being over ambitious 

and the final product did not meet 100 percent of the original specifications set forth in 

the beginning of the project Table 2 shows the movement capabilities of the system. 

  

The final product required making balanced decisions for performance, speed, and 

cost to build the overall system. Designing a system that could incorporate all the 

motions of the shoulder would have been costly and the end product would have been 

more complex than the current system. The speed issues were an oversight in design 

 

 

Table 2 System Ranges 

Body Part Movement Range Required  Range Performed Percent Error 

Elbow Flexion/Extension 140° 140° 0.00% 

Elbow Hyper Extension 10° 10° 0.00% 

Knee Flexion/Extension 150° 150° 0.00% 

Hip Flexion/Extension 140° 135° 3.57% 

Hip  Abduction/Adduction 160° 150° 6.25% 

Hip Medial Rotation 70° 35° 50.00% 

Shoulder Circumduction 360° 360° 0.00% 

Shoulder Flexion/Extension 140° 140° 0.00% 

Shoulder Abduction/Adduction 160° 150° 6.25% 

Shoulder Medial Rotation 180° 0° 100.00% 
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when selecting the controller, which became the limiting factor in movement speed. The 

overall cost of the project did fall below original estimates by $2000 dollars. The 

important issue to realize for this system is that the final system is meant to be a public 

display. In the showings and small-scale group testing that has been performed, the 

audience and users have been impressed with the demonstration. This is a valid 

representation of what could be expected from future museum patrons. 

Recommendations 

Before the system is ready for full time use, a long duration stress test should be 

performed. The robustness of the system should be demonstrated to museum 

representatives before placing the system in the museum. This should be done by leaving 

the system on for twelve hours at a time and allowing people to use it. Before the system 

can be placed in a public scenario, a computer must be purchased to run the system and a 

user interface must be designed. This will allow the system to be a near turnkey system 

for whoever uses it. The robot must also be enclosed so  no tampering can occur. A 

service plan should also be created so that people who were not related in the design of 

the system can service and replace broken parts if needed. Since the long-term goal is for 

this system to become a product, these key issues listed above are necessary in the 

product testing and evaluation stages.  
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Appendix A 

Source Code 

//------------------------------------------------------------------------------ 

 
// <copyright file="MainWindow.xaml.cs" company="Microsoft"> 

 

//     Copyright (c) Microsoft Corporation.  All rights reserved. 
 

// </copyright> 

 
//------------------------------------------------------------------------------ 

 

// This module contains code to do Kinect NUI initialization, 
 

// processing, displaying players on screen, and sending updated player 

 

// positions to the game portion for hit testing. 

 

namespace ShapeGame 
 

{ 

 
    using System; 

 
    using System.Text; 

 

    using System.IO.Ports; 
 

    using System.Collections.Generic; 

 
    using System.ComponentModel; 

 

    using System.IO; 
 

    using System.Linq; 

 
    using System.Media; 

 

    using System.Runtime.InteropServices; 
 

    using System.Threading; 

 
    using System.Windows; 

 

    using System.Windows.Controls; 
 

    using System.Windows.Threading; 

 
    using Microsoft.Kinect; 

 

    using ShapeGame.Speech; 
 

    using ShapeGame.Utils; 

 

    /// <summary> 

 

    /// Interaction logic for MainWindow.xaml 
 

    /// </summary> 

 
    ///  

 

    public partial class MainWindow : Window 
 

    { 

 



 

 

        #region Private State 

 
        private const int TimerResolution = 2;  // ms 

 

        private const int NumIntraFrames = 3; 
 

        private const int MaxShapes = 80; 

 
        private const double MaxFramerate = 70; 

 

        private const double MinFramerate = 15; 
 

        private const double MinShapeSize = 12; 

 
        private const double MaxShapeSize = 90; 

 

        private const double DefaultDropRate = 2.5; 
 

        private const double DefaultDropSize = 32.0; 

 

        private const double DefaultDropGravity = 1.0; 

 

        private readonly Dictionary<int, Player> players = new Dictionary<int, Player>(); 
 

        private readonly SoundPlayer popSound = new SoundPlayer(); 

 
        private readonly SoundPlayer hitSound = new SoundPlayer(); 

 
        private readonly SoundPlayer squeezeSound = new SoundPlayer(); 

 

        private double dropRate = DefaultDropRate; 
 

        private double dropSize = DefaultDropSize; 

 
        private double dropGravity = DefaultDropGravity; 

 

        private DateTime lastFrameDrawn = DateTime.MinValue; 
 

        private DateTime predNextFrame = DateTime.MinValue; 

 
        private double actualFrameTime; 

 

        private Skeleton[] skeletonData; 
 

        // Player(s) placement in scene (z collapsed): 

 
        private Rect playerBounds; 

 

        private Rect screenRect; 
 

        private double targetFramerate = MaxFramerate; 

 
        private int frameCount; 

 

        private bool runningGameThread; 
 

        private FallingThings myFallingThings; 

 

        private int playersAlive; 

 

        public int count = 0; 
 

        public int RightElbowIndex = 5; public int LeftElbowIndex = 6; public int RightKneeIndex = 11; public int LeftKneeIndex = 13; 

 
        public int RightShoulderFlexorIndex = 3; public int LeftShoulderFlexorIndex = 4; public int RightShoulderSpinnerIndex = 10; 

public int LeftShoulderSpinnerIndex = 1; 

 
        public int RightShoulderLifterIndex = 14; public int LeftShoulderLifterIndex = 11; public int RightHipLifterIndex = 16; public 

int LeftHipLifterIndex = 15; 

 



 

 

        public int RightHipFlexorIndex = 18; public int LeftHipFlexorIndex = 17; public int RightHipSpinnerIndex = 7; public int 

LeftHipSpinnerIndex = 8; 
        public int RightElbowStart = 517; public int LeftElbowStart = 550; public int RightKneeStart = 158; public int LeftKneeStart = 

527; 

 
        public int RightShoulderFlexorStart = 504; public int LeftShoulderFlexorStart = 810; public int RightShoulderSpinnerStart = 

833; public int LeftShoulderSpinnerStart = 852; 

 
        public int RightShoulderLifterStart = 194; public int LeftShoulderLifterStart = 670; public int RightHipLifterStart = 519; public 

int LeftHipLifterStart = 193; 

 
        public int RightHipFlexorStart = 510; public int LeftHipFlexorStart = 528; public int RightHipSpinnerStart = 237; public int 

LeftHipSpinnerStart = 522; 

 
        public int RightElbowMin = 187; public int LeftElbowMin = 550; public int RightKneeMin = 500; public int LeftKneeMin = 

500; 

 
        public int RightShoulderFlexorMin = 219; public int LeftShoulderFlexorMin = 550; public int RightShoulderSpinnerMin = 500; 

public int LeftShoulderSpinnerMin = 500; 

 

        public int RightShoulderLifterMin = 500; public int LeftShoulderLifterMin = 300; public int RightHipLifterMin = 500; public int 

LeftHipLifterMin = 500; 

 
        public int RightHipFlexorMin = 500; public int LeftHipFlexorMin = 500; public int RightHipSpinnerMin = 500; public int 

LeftHipSpinnerMin = 500; 

 
        public int RightElbowMax = 489; public int LeftElbowMax = 847; public int RightKneeMax = 500; public int LeftKneeMax = 

500; 
 

        public int RightShoulderFlexorMax = 505; public int LeftShoulderFlexorMax = 820; public int RightShoulderSpinnerMax = 500; 

public int LeftShoulderSpinnerMax = 500; 
 

        public int RightShoulderLifterMax = 500; public int LeftShoulderLifterMax = 700; public int RightHipLifterMax = 500; public 

int LeftHipLifterMax = 500; 
 

        public int RightHipFlexorMax = 500; public int LeftHipFlexorMax = 500; public int RightHipSpinnerMax = 500; public int 

LeftHipSpinnerMax = 500; 
 

        public int[] StartingValues = new int[19]; 

 
        public int[] CurrentValues = new int[19]; 

 

        public int[] MinValues = new int[19]; 
 

        public int[] MaxValues = new int[19]; 

 
        private SpeechRecognizer mySpeechRecognizer; 

 

        SerialPort serialPort1; 
 

        #endregion Private State 

 
        #region ctor + Window Events 

 

        public MainWindow() 
 

        { 

 

            InitializeComponent(); 

 

            this.RestoreWindowState(); 
 

        } 

 
        // Since the timer resolution defaults to about 10ms precisely, we need to 

 

        // increase the resolution to get framerates above between 50fps with any 
 

        // consistency. 

 



 

 

        [DllImport("Winmm.dll", EntryPoint = "timeBeginPeriod")] 

 
        private static extern int TimeBeginPeriod(uint period); 

 

        private void RestoreWindowState() 
 

        { 

 
            // Restore window state to that last used 

 

            Rect bounds = Properties.Settings.Default.PrevWinPosition; 
 

            if (bounds.Right != bounds.Left) 

 
            { 

 

                this.Top = bounds.Top; 
 

                this.Left = bounds.Left; 

 

                this.Height = bounds.Height; 

 

                this.Width = bounds.Width; 
 

            } 

 
            this.WindowState = (WindowState)Properties.Settings.Default.WindowState; 

 
        } 

 

        private void WindowLoaded(object sender, EventArgs e) 
 

        { 

 
            serialPort1 = new SerialPort("COM3", 57600); 

 

            serialPort1.DataBits = 8; 
 

            serialPort1.Parity = Parity.None; 

 
            serialPort1.StopBits = StopBits.One; 

 

            serialPort1.Open(); 
 

            StartingValues[3] = 0; StartingValues[9] = 0; 

 
            StartingValues[RightElbowIndex] = RightElbowStart; StartingValues[LeftElbowIndex] = LeftElbowStart; 

StartingValues[RightKneeIndex] = RightKneeStart; StartingValues[LeftKneeIndex] = LeftKneeStart; 

 
            StartingValues[RightShoulderFlexorIndex] = RightShoulderFlexorStart; StartingValues[LeftShoulderFlexorIndex] = 

LeftShoulderFlexorStart; 

 
            StartingValues[RightShoulderSpinnerIndex] = RightShoulderSpinnerStart; StartingValues[LeftShoulderSpinnerIndex] = 

LeftShoulderSpinnerStart; 

 
            StartingValues[RightShoulderLifterIndex] = RightShoulderLifterStart; StartingValues[LeftShoulderLifterIndex] = 

LeftShoulderLifterStart; 

 

            StartingValues[RightHipFlexorIndex] = RightHipFlexorStart; StartingValues[LeftHipFlexorIndex] = LeftHipFlexorStart; 

 

            StartingValues[RightHipSpinnerIndex] = RightHipSpinnerStart; StartingValues[LeftHipSpinnerIndex] = LeftHipSpinnerStart; 
 

            StartingValues[RightHipLifterIndex] = RightHipLifterStart; StartingValues[LeftHipLifterIndex] = LeftHipLifterStart; 

 
            CurrentValues[RightElbowIndex] = RightElbowStart; CurrentValues[LeftElbowIndex] = LeftElbowStart; 

CurrentValues[RightKneeIndex] = RightKneeStart; CurrentValues[LeftKneeIndex] = LeftKneeStart; 

 
            CurrentValues[RightShoulderFlexorIndex] = RightShoulderFlexorStart; CurrentValues[LeftShoulderFlexorIndex] = 

LeftShoulderFlexorStart; 

 



 

 

            CurrentValues[RightShoulderSpinnerIndex] = RightShoulderSpinnerStart; CurrentValues[LeftShoulderSpinnerIndex] = 

LeftShoulderSpinnerStart; 
 

            CurrentValues[RightShoulderLifterIndex] = RightShoulderLifterStart; CurrentValues[LeftShoulderLifterIndex] = 

LeftShoulderLifterStart; 
 

            CurrentValues[RightHipFlexorIndex] = RightHipFlexorStart; CurrentValues[LeftHipFlexorIndex] = LeftHipFlexorStart; 

 
            CurrentValues[RightHipSpinnerIndex] = RightHipSpinnerStart; CurrentValues[LeftHipSpinnerIndex] = LeftHipSpinnerStart; 

 

            CurrentValues[RightHipLifterIndex] = RightHipLifterStart; CurrentValues[LeftHipLifterIndex] = LeftHipLifterStart; 
 

            MinValues[RightElbowIndex] = RightElbowMin; MinValues[LeftElbowIndex] = LeftElbowMin; 

MinValues[RightKneeIndex] = RightKneeMin; MinValues[LeftKneeIndex] = LeftKneeMin; 
 

            MinValues[RightShoulderFlexorIndex] = RightShoulderFlexorMin; MinValues[LeftShoulderFlexorIndex] = 

LeftShoulderFlexorMin; 
 

            MinValues[RightShoulderSpinnerIndex] = RightShoulderSpinnerMin; MinValues[LeftShoulderSpinnerIndex] = 

LeftShoulderSpinnerMin; 

 

            MinValues[RightShoulderLifterIndex] = RightShoulderLifterMin; MinValues[LeftShoulderLifterIndex] = 

LeftShoulderLifterMin; 
 

            MinValues[RightHipFlexorIndex] = RightHipFlexorMin; MinValues[LeftHipFlexorIndex] = LeftHipFlexorMin; 

 
            MinValues[RightHipSpinnerIndex] = RightHipSpinnerMin; MinValues[LeftHipSpinnerIndex] = LeftHipSpinnerMin; 

 
            MinValues[RightHipLifterIndex] = RightHipLifterMin; MinValues[LeftHipLifterIndex] = LeftHipLifterMin; 

 

            MaxValues[RightElbowIndex] = RightElbowMax; MaxValues[LeftElbowIndex] = LeftElbowMax; 
MaxValues[RightKneeIndex] = RightKneeMax; MaxValues[LeftKneeIndex] = LeftKneeMax; 

 

            MaxValues[RightShoulderFlexorIndex] = RightShoulderFlexorMax; MaxValues[LeftShoulderFlexorIndex] = 
LeftShoulderFlexorMax; 

 

            MaxValues[RightShoulderSpinnerIndex] = RightShoulderSpinnerMax; MaxValues[LeftShoulderSpinnerIndex] = 
LeftShoulderSpinnerMax; 

 

            MaxValues[RightShoulderLifterIndex] = RightShoulderLifterMax; MaxValues[LeftShoulderLifterIndex] = 
LeftShoulderLifterMax; 

 

            MaxValues[RightHipFlexorIndex] = RightHipFlexorMax; MaxValues[LeftHipFlexorIndex] = LeftHipFlexorMax; 
 

            MaxValues[RightHipSpinnerIndex] = RightHipSpinnerMax; MaxValues[LeftHipSpinnerIndex] = LeftHipSpinnerMax; 

 
            MaxValues[RightHipLifterIndex] = RightHipLifterMax; MaxValues[LeftHipLifterIndex] = LeftHipLifterMax; 

 

            Thread.Sleep(4000); 
 

            serialPort1.Write("v E List\r\n"); 

 
            Thread.Sleep(5000); 

 

            serialPort1.Write("on\r\n"); 
 

            Thread.Sleep(100); 

 

           RobotWrite(CurrentValues); 

 

            Thread.Sleep(1000); 
 

            playfield.ClipToBounds = true; 

 
            this.myFallingThings = new FallingThings(MaxShapes, this.targetFramerate, NumIntraFrames); 

 

            this.UpdatePlayfieldSize() 
            this.myFallingThings.SetGravity(this.dropGravity); 

 

            this.myFallingThings.SetDropRate(this.dropRate); 



 

 

 

            this.myFallingThings.SetSize(this.dropSize); 
 

            this.myFallingThings.SetPolies(PolyType.All); 

 
            this.myFallingThings.SetGameMode(GameMode.Off); 

 

            SensorChooser.KinectSensorChanged += this.SensorChooserKinectSensorChanged; 
 

            this.popSound.Stream = Properties.Resources.Pop_5; 

 
            this.hitSound.Stream = Properties.Resources.Hit_2; 

 

            this.squeezeSound.Stream = Properties.Resources.Squeeze; 
 

            this.popSound.Play(); 

 
            TimeBeginPeriod(TimerResolution); 

 

            var myGameThread = new Thread(this.GameThread); 

 

            myGameThread.SetApartmentState(ApartmentState.STA); 

 
            myGameThread.Start(); 

 

            FlyingText.NewFlyingText(this.screenRect.Width / 30, new Point(this.screenRect.Width / 2, this.screenRect.Height / 2), 
"Shapes!"); 

 
        } 

 

        private void WindowClosing(object sender, CancelEventArgs e) 
 

        { 

 
            this.runningGameThread = false; 

 

            Properties.Settings.Default.PrevWinPosition = this.RestoreBounds; 
 

            Properties.Settings.Default.WindowState = (int)this.WindowState; 

 
            Properties.Settings.Default.Save(); 

 

        } 
 

        private void WindowClosed(object sender, EventArgs e) 

 
        { 

 

            SensorChooser.Kinect = null; 
 

            serialPort1.Close(); 

 
        } 

 

        #endregion ctor + Window Events 
 

        #region Kinect discovery + setup 

 

 

 

        private void SensorChooserKinectSensorChanged(object sender, DependencyPropertyChangedEventArgs e) 
 

        { 

 
            if (e.OldValue != null) 

            { 

                this.UninitializeKinectServices((KinectSensor)e.OldValue); 
 

            } 

 



 

 

            // Only enable this checkbox if we have a sensor 

 
            enableAec.IsEnabled = e.NewValue != null; 

 

            if (e.NewValue != null) 
 

            { 

 
                this.InitializeKinectServices((KinectSensor)e.NewValue); 

 

            } 
 

        } 

 
        // Kinect enabled apps should customize which Kinect services it initializes here. 

 

        private KinectSensor InitializeKinectServices(KinectSensor sensor) 
 

        { 

 

            // Application should enable all streams first. 

 

            sensor.ColorStream.Enable(ColorImageFormat.RgbResolution640x480Fps30); 
 

            sensor.SkeletonFrameReady += this.SkeletonsReady; 

 
            sensor.SkeletonStream.Enable(new TransformSmoothParameters() 

 
            { 

                Smoothing = 0.5f, 

 
                Correction = 0.5f, 

 

                Prediction = 0.5f, 
 

                JitterRadius = 0.05f, 

 
                MaxDeviationRadius = 0.04f 

           }); 

 
            try 

 

            { 
                sensor.Start(); 

            } 

 
            catch (IOException) 

 

            { 
                SensorChooser.AppConflictOccurred(); 

 

                return null; 
            } 

 

            // Start speech recognizer after KinectSensor.Start() is called 
 

            // returns null if problem with speech prereqs or instantiation. 

 

            this.mySpeechRecognizer = SpeechRecognizer.Create(); 

 

            this.mySpeechRecognizer.SaidSomething += this.RecognizerSaidSomething; 
 

            this.mySpeechRecognizer.Start(sensor.AudioSource); 

 
            enableAec.Visibility = Visibility.Visible; 

            this.UpdateEchoCancellation(this.enableAec) 

 
            return sensor; 

 

        } 



 

 

 

        // Kinect enabled apps should uninitialize all Kinect services that were initialized in InitializeKinectServices() here. 
 

        private void UninitializeKinectServices(KinectSensor sensor) 

 
        { 

 

            sensor.Stop(); 
 

            sensor.SkeletonFrameReady -= this.SkeletonsReady; 

 
            if (this.mySpeechRecognizer != null) 

 

            { 
 

                this.mySpeechRecognizer.Stop(); 

 
                this.mySpeechRecognizer.SaidSomething -= this.RecognizerSaidSomething; 

 

                this.mySpeechRecognizer.Dispose(); 

 

                this.mySpeechRecognizer = null; 

 
            } 

 

            enableAec.Visibility = Visibility.Collapsed; 
 

        } 
 

        #endregion Kinect discovery + setup 

 
        #region Kinect Skeleton processing 

 

        private void SkeletonsReady(object sender, SkeletonFrameReadyEventArgs e) 
 

        { 

 
            using (SkeletonFrame skeletonFrame = e.OpenSkeletonFrame()) 

 

            { 
 

                if (skeletonFrame != null) 

 
                { 

 

                    int skeletonSlot = 0; 
 

 

 
                    if ((this.skeletonData == null) || (this.skeletonData.Length != skeletonFrame.SkeletonArrayLength)) 

 

                    { 
 

                        this.skeletonData = new Skeleton[skeletonFrame.SkeletonArrayLength]; 

 
                    } 

 

                    skeletonFrame.CopySkeletonDataTo(this.skeletonData); 

 

                    foreach (Skeleton skeleton in this.skeletonData) 

 
                    { 

 

          
                       if (SkeletonTrackingState.Tracked == skeleton.TrackingState) 

 

                        { 
 

                            Player player; 

 



 

 

                            if (this.players.ContainsKey(skeletonSlot)) 

 
                            { 

 

                                player = this.players[skeletonSlot]; 
 

                            } 

 
                            else 

 

                            { 
 

                                player = new Player(skeletonSlot); 

 
                                player.SetBounds(this.playerBounds); 

 

                                this.players.Add(skeletonSlot, player); 
 

                            } 

 

                            player.LastUpdated = DateTime.Now; 

 

                            // Update player's bone and joint positions 
 

                            if (skeleton.Joints.Count > 0) 

 
                            { 

 
                                if ( count == 1) 

 

                                { 
 

                                    //Left Shoulder and Arm 

 
 

 

                                    CurrentValues[LeftElbowIndex] = GetAngle4Points(skeleton.Joints[JointType.WristLeft].Position, 
skeleton.Joints[JointType.ElbowLeft].Position, skeleton.Joints[JointType.ShoulderLeft].Position, 

 

                                        skeleton.Joints[JointType.ElbowLeft].Position, LeftElbowIndex, LeftElbowStart, 1.0); 
 

                                    double ShoulderLeftAngle2D = GetAngle4Points_2D_XY(skeleton.Joints[JointType.ShoulderRight].Position, 

skeleton.Joints[JointType.ShoulderLeft].Position, skeleton.Joints[JointType.ElbowLeft].Position, 
 

                                        skeleton.Joints[JointType.ShoulderLeft].Position); 

 
                                    CurrentValues[LeftShoulderFlexorIndex] =  GetAngle4Points(skeleton.Joints[JointType.ElbowLeft].Position, 

skeleton.Joints[JointType.ShoulderLeft].Position, skeleton.Joints[JointType.HipLeft].Position, 

 
                                        skeleton.Joints[JointType.ShoulderLeft].Position, LeftShoulderFlexorIndex, LeftShoulderFlexorStart+150, -

Math.Cos(ShoulderLeftAngle2D)); 

 
                                    CurrentValues[LeftShoulderLifterIndex] = GetAngle4Points(skeleton.Joints[JointType.ElbowLeft].Position, 

skeleton.Joints[JointType.ShoulderLeft].Position, skeleton.Joints[JointType.HipLeft].Position, 

 
                                        skeleton.Joints[JointType.ShoulderLeft].Position, LeftShoulderLifterIndex, LeftShoulderLifterStart, -

Math.Sin(ShoulderLeftAngle2D)); 

 

                                    //Right Shoulder and Arm 

 

                                    CurrentValues[RightElbowIndex] = GetAngle4Points(skeleton.Joints[JointType.WristRight].Position, 
skeleton.Joints[JointType.ElbowRight].Position, skeleton.Joints[JointType.ShoulderRight].Position, 

 

                                    skeleton.Joints[JointType.ElbowRight].Position, RightElbowIndex, RightElbowStart, -1.0); 
 

                                    double ShoulderRightAngle2D = GetAngle4Points_2D_XY(skeleton.Joints[JointType.ShoulderLeft].Position, 

skeleton.Joints[JointType.ShoulderRight].Position, skeleton.Joints[JointType.ElbowRight].Position, 
 

                                        skeleton.Joints[JointType.ShoulderRight].Position); 

 



 

 

                                    CurrentValues[RightShoulderFlexorIndex] = GetAngle4Points(skeleton.Joints[JointType.ElbowRight].Position, 

skeleton.Joints[JointType.ShoulderRight].Position, skeleton.Joints[JointType.HipRight].Position, 
 

                                        skeleton.Joints[JointType.ShoulderRight].Position, RightShoulderFlexorIndex, RightShoulderFlexorStart + 

150, -Math.Cos(ShoulderRightAngle2D)); 
 

                                    CurrentValues[RightShoulderLifterIndex] = GetAngle4Points(skeleton.Joints[JointType.ElbowRight].Position, 

skeleton.Joints[JointType.ShoulderRight].Position, skeleton.Joints[JointType.HipRight].Position, 
 

                                        skeleton.Joints[JointType.ShoulderRight].Position, RightShoulderLifterIndex, RightShoulderLifterStart, -

Math.Sin(ShoulderRightAngle2D)); 
 

                                    //Right Hip and Leg 

 
                                    CurrentValues[RightKneeIndex] = GetAngle4Points(skeleton.Joints[JointType.AnkleRight].Position, 

skeleton.Joints[JointType.KneeRight].Position, skeleton.Joints[JointType.HipRight].Position, 

 
                                    skeleton.Joints[JointType.KneeRight].Position, RightKneeIndex, RightKneeStart, -1.0); 

 

 

 

                                    double HipRightAngle2D = GetAngle4Points_2D_XY(skeleton.Joints[JointType.HipLeft].Position, 

skeleton.Joints[JointType.HipRight].Position, skeleton.Joints[JointType.KneeRight].Position, 
 

                                        skeleton.Joints[JointType.HipRight].Position); 

 
 

 
                                    CurrentValues[RightHipFlexorIndex] = GetAngle4Points(skeleton.Joints[JointType.KneeRight].Position, 

skeleton.Joints[JointType.HipRight].Position, skeleton.Joints[JointType.ShoulderRight].Position, 

 
                                        skeleton.Joints[JointType.HipRight].Position, RightHipFlexorIndex, RightHipFlexorStart + 150, -

Math.Cos(HipRightAngle2D)); 

 
                                    CurrentValues[RightHipLifterIndex] = GetAngle4Points(skeleton.Joints[JointType.KneeRight].Position, 

skeleton.Joints[JointType.HipRight].Position, skeleton.Joints[JointType.ShoulderRight].Position, 

 
                                        skeleton.Joints[JointType.HipRight].Position, RightHipLifterIndex, RightHipLifterStart, -

Math.Sin(HipRightAngle2D)); 

 
                                    //Left Hip and Leg 

 

                                    CurrentValues[LeftKneeIndex] = GetAngle4Points(skeleton.Joints[JointType.AnkleLeft].Position, 
skeleton.Joints[JointType.KneeLeft].Position, skeleton.Joints[JointType.HipLeft].Position, 

 

                                    skeleton.Joints[JointType.KneeLeft].Position, LeftKneeIndex, LeftKneeStart, -1.0); 
 

                                    double HipLeftAngle2D = GetAngle4Points_2D_XY(skeleton.Joints[JointType.HipRight].Position, 

skeleton.Joints[JointType.HipLeft].Position, skeleton.Joints[JointType.KneeLeft].Position, 
 

                                        skeleton.Joints[JointType.HipLeft].Position); 

 
                                    CurrentValues[LeftHipFlexorIndex] = GetAngle4Points(skeleton.Joints[JointType.KneeLeft].Position, 

skeleton.Joints[JointType.HipLeft].Position, skeleton.Joints[JointType.ShoulderLeft].Position, 

 
                                        skeleton.Joints[JointType.HipLeft].Position, LeftHipFlexorIndex, LeftHipFlexorStart + 150, -

Math.Cos(HipLeftAngle2D)); 

 

                                    CurrentValues[LeftHipLifterIndex] = GetAngle4Points(skeleton.Joints[JointType.KneeLeft].Position, 

skeleton.Joints[JointType.HipLeft].Position, skeleton.Joints[JointType.ShoulderLeft].Position, 

 
                                        skeleton.Joints[JointType.HipLeft].Position, LeftHipLifterIndex, LeftHipLifterStart, -

Math.Sin(HipLeftAngle2D)); 

 
                                    RobotWrite(CurrentValues); 

 

                                    count = 0 
 

                                } 

 



 

 

                                else 

 
                                { 

 

                                    count++; 
 

                                } 

 
                                player.IsAlive = true; 

 

                                // Head, hands, feet (hit testing happens in order here) 
 

                                player.UpdateJointPosition(skeleton.Joints, JointType.Head); 

 
                                player.UpdateJointPosition(skeleton.Joints, JointType.HandLeft); 

 

                                player.UpdateJointPosition(skeleton.Joints, JointType.HandRight); 
 

                                player.UpdateJointPosition(skeleton.Joints, JointType.FootLeft); 

 

                                player.UpdateJointPosition(skeleton.Joints, JointType.FootRight); 

 

                                // Hands and arms 
 

                                player.UpdateBonePosition(skeleton.Joints, JointType.HandRight, JointType.WristRight); 

 
                                player.UpdateBonePosition(skeleton.Joints, JointType.WristRight, JointType.ElbowRight); 

 
                                player.UpdateBonePosition(skeleton.Joints, JointType.ElbowRight, JointType.ShoulderRight); 

 

                                player.UpdateBonePosition(skeleton.Joints, JointType.HandLeft, JointType.WristLeft); 
 

                                player.UpdateBonePosition(skeleton.Joints, JointType.WristLeft, JointType.ElbowLeft); 

 
                                player.UpdateBonePosition(skeleton.Joints, JointType.ElbowLeft, JointType.ShoulderLeft); 

 

                                // Head and Shoulders 
 

                                player.UpdateBonePosition(skeleton.Joints, JointType.ShoulderCenter, JointType.Head); 

 
                                player.UpdateBonePosition(skeleton.Joints, JointType.ShoulderLeft, JointType.ShoulderCenter); 

 

                                player.UpdateBonePosition(skeleton.Joints, JointType.ShoulderCenter, JointType.ShoulderRight); 
 

                                // Legs 

 
                                player.UpdateBonePosition(skeleton.Joints, JointType.HipLeft, JointType.KneeLeft); 

 

                                player.UpdateBonePosition(skeleton.Joints, JointType.KneeLeft, JointType.AnkleLeft); 
 

                                player.UpdateBonePosition(skeleton.Joints, JointType.AnkleLeft, JointType.FootLeft); 

 
                                player.UpdateBonePosition(skeleton.Joints, JointType.HipRight, JointType.KneeRight); 

 

                                player.UpdateBonePosition(skeleton.Joints, JointType.KneeRight, JointType.AnkleRight); 
 

                                player.UpdateBonePosition(skeleton.Joints, JointType.AnkleRight, JointType.FootRight); 

 

                                player.UpdateBonePosition(skeleton.Joints, JointType.HipLeft, JointType.HipCenter); 

 

                                player.UpdateBonePosition(skeleton.Joints, JointType.HipCenter, JointType.HipRight); 
 

                                // Spine 

 
                                player.UpdateBonePosition(skeleton.Joints, JointType.HipCenter, JointType.ShoulderCenter); 

 

                            } 
 

                        } 

 



 

 

                        skeletonSlot++; 

 
                    } 

 

                } 
 

            } 

 
        } 

 

 
 

        public int GetAngle4Points(SkeletonPoint Vector1Point1, SkeletonPoint Vector1Point2, SkeletonPoint Vector2Point1, 

SkeletonPoint Vector2Point2, int JointIndex, double offset, double scaling) 
 

        { 

 
            float Vec1X = Vector1Point1.X - Vector1Point2.X; 

 

            float Vec1Y = Vector1Point1.Y - Vector1Point2.Y; 

 

            float Vec1Z = Vector1Point1.Z - Vector1Point2.Z; 

 
            float Vec2X = Vector2Point1.X - Vector2Point2.X; 

 

            float Vec2Y = Vector2Point1.Y - Vector2Point2.Y; 
 

            float Vec2Z = Vector2Point1.Z - Vector2Point2.Z; 
 

            float CrossX = Vec1Y * Vec2Z - Vec1Z * Vec2Y; 

 
            float CrossY = Vec1X * Vec2Z - Vec1Z * Vec2X; 

 

            float CrossZ = Vec1X * Vec2Y - Vec1Y * Vec2X; 
 

            double MagCross = Math.Sqrt(Math.Pow(CrossX, 2) + Math.Pow(CrossY, 2) + Math.Pow(CrossZ, 2)); 

 
            double Mag2 = Math.Sqrt(Math.Pow(Vec2X, 2) + Math.Pow(Vec2Y, 2) + Math.Pow(Vec2Z, 2)); 

 

            double Mag1 = Math.Sqrt(Math.Pow(Vec1X, 2) + Math.Pow(Vec1Y, 2) + Math.Pow(Vec1Z, 2)); 
 

            double Angle = (Math.Asin(MagCross / (Mag1 * Mag2)) * 300) * scaling + offset; 

 
            if (Angle > 1023) 

 

            { 
 

                Angle = Angle - 1023; 

 
            } 

 

            if (Angle < 0) 
 

            { 

 
                Angle = Angle + 1023; 

 

            } 

            if (Angle > MaxValues[JointIndex] || Angle < MinValues[JointIndex]) 

 

            { 
 

                Angle = CurrentValues[JointIndex]; 

 
            } 

 

            return ((int)Angle); 
 

        } 

 



 

 

        public double GetAngle4Points_2D_XY(SkeletonPoint Vector1Point1, SkeletonPoint Vector1Point2, SkeletonPoint 

Vector2Point1, SkeletonPoint Vector2Point2) 
 

        { 

 
            float Vec1X = Vector1Point1.X - Vector1Point2.X; 

 

            float Vec1Y = Vector1Point1.Y - Vector1Point2.Y; 
 

            float Vec1Z = 0; 

 
            float Vec2X = Vector2Point1.X - Vector2Point2.X; 

 

            float Vec2Y = Vector2Point1.Y - Vector2Point2.Y; 
 

            float Vec2Z = 0; 

 
            float CrossX = Vec1Y * Vec2Z - Vec1Z * Vec2Y; 

 

            float CrossY = Vec1X * Vec2Z - Vec1Z * Vec2X; 

 

            float CrossZ = Vec1X * Vec2Y - Vec1Y * Vec2X; 

 
            double MagCross = Math.Sqrt(Math.Pow(CrossX, 2) + Math.Pow(CrossY, 2) + Math.Pow(CrossZ, 2)); 

 

            double Mag2 = Math.Sqrt(Math.Pow(Vec2X, 2) + Math.Pow(Vec2Y, 2) + Math.Pow(Vec2Z, 2)); 
 

            double Mag1 = Math.Sqrt(Math.Pow(Vec1X, 2) + Math.Pow(Vec1Y, 2) + Math.Pow(Vec1Z, 2)); 
 

            double Angle = (Math.Asin(MagCross / (Mag1 * Mag2))); 

 
            return (Angle); 

 

        } 
 

        public void RobotWrite(int[] CurrentValues) 

 
        {    

 

            serialPort1.Write("go ---- "); 
 

            for (int i = 1; i < 19; i++) 

 
            { 

 

                if (i == 2) 
 

                { 

 
                    serialPort1.Write(" ----"); 

 

                } 
 

                else if (i == 12) 

 
                { 

                    serialPort1.Write(" ----") 

                } 

 

                else if (i == 9) 

 
                { 

 

                    serialPort1.Write(" ----"); 
 

                } 

 
                else 

 

                { 



 

 

 

                    //serialPort1.Write(i.ToString()); 
 

                    serialPort1.Write(" "); 

 
                    string printedval = (String.Format("{0:000.}", CurrentValues[i])); 

 

                    serialPort1.Write(printedval); 
 

                } 

 
            } 

 

            serialPort1.Write(" ---- ---- ---- ---- ---- ---- ----\r\n"); 
 

        } 

 
        private void CheckPlayers() 

 

        { 

 

            foreach (var player in this.players) 

 
            { 

 

                if (!player.Value.IsAlive) 
 

                { 
 

                    // Player left scene since we aren't tracking it anymore, so remove from dictionary 

 
                    this.players.Remove(player.Value.GetId()); 

 

                    break; 
 

                } 

 
            } 

 

            // Count alive players 
 

            int alive = this.players.Count(player => player.Value.IsAlive); 

 
            if (alive != this.playersAlive) 

 

            { 
 

                if (alive == 2) 

 
                { 

 

                    this.myFallingThings.SetGameMode(GameMode.TwoPlayer); 
 

                } 

 
                else if (alive == 1) 

                { 

 

                    this.myFallingThings.SetGameMode(GameMode.Solo); 

 

                } 
 

                else if (alive == 0) 

 
                { 

 

                    this.myFallingThings.SetGameMode(GameMode.Off); 
 

                } 

 



 

 

                if ((this.playersAlive == 0) && (this.mySpeechRecognizer != null)) 

 
                { 

 

                    BannerText.NewBanner( 
 

                        Properties.Resources.Vocabulary, 

 
                        this.screenRect, 

 

                        true, 
 

                        System.Windows.Media.Color.FromArgb(200, 255, 255, 255)); 

 
                } 

 

                this.playersAlive = alive; 
 

            } 

 

        } 

 

        private void PlayfieldSizeChanged(object sender, SizeChangedEventArgs e) 
 

        { 

 
            this.UpdatePlayfieldSize(); 

 
        } 

 

        private void UpdatePlayfieldSize() 
 

        { 

 
            // Size of player wrt size of playfield, putting ourselves low on the screen. 

 

            this.screenRect.X = 0; 
 

            this.screenRect.Y = 0; 

 
            this.screenRect.Width = this.playfield.ActualWidth; 

 

            this.screenRect.Height = this.playfield.ActualHeight; 
 

            BannerText.UpdateBounds(this.screenRect); 

 
            this.playerBounds.X = 0; 

 

            this.playerBounds.Width = this.playfield.ActualWidth; 
 

            this.playerBounds.Y = this.playfield.ActualHeight * 0.2; 

 
            this.playerBounds.Height = this.playfield.ActualHeight * 0.75; 

 

            foreach (var player in this.players 
            { 

 

                player.Value.SetBounds(this.playerBounds); 

 

            } 

 
 

 

            Rect fallingBounds = this.playerBounds; 
 

            fallingBounds.Y = 0; 

 
            fallingBounds.Height = playfield.ActualHeight; 

 

            if (this.myFallingThings != null) 



 

 

 

            { 
 

                this.myFallingThings.SetBoundaries(fallingBounds); 

 
            } 

 

        } 
 

        #endregion Kinect Skeleton processing 

 
        #region GameTimer/Thread 

 

        private void GameThread() 
 

        { 

 
            this.runningGameThread = true; 

 

            this.predNextFrame = DateTime.Now; 

 

            this.actualFrameTime = 1000.0 / this.targetFramerate; 

 
            // Try to dispatch at as constant of a framerate as possible by sleeping just enough since 

 

            // the last time we dispatched. 
 

            while (this.runningGameThread) 
 

            { 

 
                // Calculate average framerate.   

 

                DateTime now = DateTime.Now; 
 

                if (this.lastFrameDrawn == DateTime.MinValue) 

 
                { 

 

                    this.lastFrameDrawn = now; 
 

                } 

 
                double ms = now.Subtract(this.lastFrameDrawn).TotalMilliseconds; 

 

                this.actualFrameTime = (this.actualFrameTime * 0.95) + (0.05 * ms); 
 

                this.lastFrameDrawn = now; 

 
                // Adjust target framerate down if we're not achieving that rate 

 

                this.frameCount++; 
 

                if ((this.frameCount % 100 == 0) && (1000.0 / this.actualFrameTime < this.targetFramerate * 0.92)) 

                { 
 

                    this.targetFramerate = Math.Max(MinFramerate, (this.targetFramerate + (1000.0 / this.actualFrameTime)) / 2); 

 

                } 

 

                if (now > this.predNextFrame) 
 

                { 

 
                    this.predNextFrame = now; 

 

                } 
 

                else 

 



 

 

                { 

 
                    double milliseconds = this.predNextFrame.Subtract(now).TotalMilliseconds; 

 

                    if (milliseconds >= TimerResolution) 
 

                    { 

 
                        Thread.Sleep((int)(milliseconds + 0.5)); 

 

                    } 
 

                } 

 
                this.predNextFrame += TimeSpan.FromMilliseconds(1000.0 / this.targetFramerate); 

 

                this.Dispatcher.Invoke(DispatcherPriority.Send, new Action<int>(this.HandleGameTimer), 0); 
 

            } 

 

        } 

 

        private void HandleGameTimer(int param) 
 

        { 

 
            // Every so often, notify what our actual framerate is 

 
            if ((this.frameCount % 100) == 0) 

 

            { 
 

                this.myFallingThings.SetFramerate(1000.0 / this.actualFrameTime); 

 
            } 

 

            // Advance animations, and do hit testing. 
 

            for (int i = 0; i < NumIntraFrames; ++i) 

 
            { 

 

                foreach (var pair in this.players) 
 

                { 

 
                    HitType hit = this.myFallingThings.LookForHits(pair.Value.Segments, pair.Value.GetId()); 

 

                    if ((hit & HitType.Squeezed) != 0) 
 

                    { 

 
                        this.squeezeSound.Play() 

                    } 

 
                    else if ((hit & HitType.Popped) != 0) 

 

                    { 

 

                        this.popSound.Play(); 

 
                    } 

 

                    else if ((hit & HitType.Hand) != 0) 
 

                    { 

 
                        this.hitSound.Play(); 

 

                    } 



 

 

 

                } 
                this.myFallingThings.AdvanceFrame(); 

 

            } 
 

            // Draw new Wpf scene by adding all objects to canvas 

 
            playfield.Children.Clear(); 

 

            this.myFallingThings.DrawFrame(this.playfield.Children); 
 

            foreach (var player in this.players) 

 
            { 

 

                player.Value.Draw(playfield.Children); 
 

            } 

 

            BannerText.Draw(playfield.Children); 

 

            FlyingText.Draw(playfield.Children); 
 

            this.CheckPlayers(); 

 
        } 

 
        #endregion GameTimer/Thread 

 

        #region Kinect Speech processing 
 

        private void RecognizerSaidSomething(object sender, SpeechRecognizer.SaidSomethingEventArgs e) 

 
        { 

 

            FlyingText.NewFlyingText(this.screenRect.Width / 30, new Point(this.screenRect.Width / 2, this.screenRect.Height / 2), 
e.Matched); 

 

            switch (e.Verb) 
 

            { 

 
                case SpeechRecognizer.Verbs.Pause: 

 

                    serialPort1.Write("off\r\n"); 
 

                    Thread.Sleep(5000); 

 
                    this.myFallingThings.SetDropRate(0); 

 

                    this.myFallingThings.SetGravity(0); 
 

                    break; 

 
                case SpeechRecognizer.Verbs.Resume: 

 

                    serialPort1.Write("on\r\n"); 

 

                    Thread.Sleep(100); 

 
                    this.myFallingThings.SetDropRate(this.dropRate); 

 

                    this.myFallingThings.SetGravity(this.dropGravity); 
 

                    break; 

 
                case SpeechRecognizer.Verbs.Reset: 

 

                    this.dropRate = DefaultDropRate; 



 

 

 

                    this.dropSize = DefaultDropSize; 
 

                    this.dropGravity = DefaultDropGravity; 

 
                    this.myFallingThings.SetPolies(PolyType.All); 

 

                    this.myFallingThings.SetDropRate(this.dropRate); 
 

                    this.myFallingThings.SetGravity(this.dropGravity); 

 
                    this.myFallingThings.SetSize(this.dropSize); 

 

                    this.myFallingThings.SetShapesColor(System.Windows.Media.Color.FromRgb(0, 0, 0), true); 
 

                    this.myFallingThings.Reset(); 

 
                    break; 

 

                case SpeechRecognizer.Verbs.DoShapes: 

 

                    this.myFallingThings.SetPolies(e.Shape); 

 
                    break; 

 

                case SpeechRecognizer.Verbs.RandomColors: 
 

                    this.myFallingThings.SetShapesColor(System.Windows.Media.Color.FromRgb(0, 0, 0), true); 
 

                    break; 

 
                case SpeechRecognizer.Verbs.Colorize: 

 

                    this.myFallingThings.SetShapesColor(e.RgbColor, false); 
 

                    break; 

 
                case SpeechRecognizer.Verbs.ShapesAndColors: 

 

                    this.myFallingThings.SetPolies(e.Shape); 
 

                    this.myFallingThings.SetShapesColor(e.RgbColor, false); 

 
                    break; 

 

                case SpeechRecognizer.Verbs.More: 
 

                    this.dropRate *= 1.5; 

 
                    this.myFallingThings.SetDropRate(this.dropRate); 

 

                    break; 
 

                case SpeechRecognizer.Verbs.Fewer: 

 
                    this.dropRate /= 1.5; 

 

                    this.myFallingThings.SetDropRate(this.dropRate); 

 

                    break; 

 
                case SpeechRecognizer.Verbs.Bigger: 

 

                    this.dropSize *= 1.5; 
 

                    if (this.dropSize > MaxShapeSize) 

 
                    { 

 

                        this.dropSize = MaxShapeSize; 



 

 

 

                    } 
 

                    this.myFallingThings.SetSize(this.dropSize); 

 
                    break; 

 

                case SpeechRecognizer.Verbs.Biggest: 
 

                    this.dropSize = MaxShapeSize; 

 
                    this.myFallingThings.SetSize(this.dropSize); 

 

                    break; 
 

                case SpeechRecognizer.Verbs.Smaller: 

 
                    this.dropSize /= 1.5; 

 

                    if (this.dropSize < MinShapeSize) 

 

                    { 

 
                        this.dropSize = MinShapeSize; 

 

                    } 
 

                    this.myFallingThings.SetSize(this.dropSize); 
 

                    break; 

 
                case SpeechRecognizer.Verbs.Smallest: 

 

                    this.dropSize = MinShapeSize; 
 

                    this.myFallingThings.SetSize(this.dropSize); 

 
                    break; 

 

                case SpeechRecognizer.Verbs.Faster: 
 

                    this.dropGravity *= 1.25; 

 
                    if (this.dropGravity > 4.0) 

 

                    { 
 

                        this.dropGravity = 4.0; 

 
                    } 

 

 
 

                    this.myFallingThings.SetGravity(this.dropGravity); 

 
                    break; 

 

                case SpeechRecognizer.Verbs.Slower: 

 

                    this.dropGravity /= 1.25; 

 
                    if (this.dropGravity < 0.25) 

 

                    { 
 

                        this.dropGravity = 0.25; 

 
                    } 

 

                    this.myFallingThings.SetGravity(this.dropGravity); 



 

 

 

                    break; 
 

            } 

 
        } 

 

        private void EnableAecChecked(object sender, RoutedEventArgs e) 
 

        { 

 
            CheckBox enableAecCheckBox = (CheckBox)sender; 

 

            this.UpdateEchoCancellation(enableAecCheckBox); 
 

        } 

 
        private void UpdateEchoCancellation(CheckBox aecCheckBox) 

 

        { 

 

            this.mySpeechRecognizer.EchoCancellationMode = aecCheckBox.IsChecked != null && aecCheckBox.IsChecked.Value 

 
                ? EchoCancellationMode.CancellationAndSuppression 

 

                : EchoCancellationMode.None; 
 

        } 
 

        #endregion Kinect Speech processing 

 
    } 

 

} 
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Abstract—Mimicking real-time human motion with a low cost 

solution has been an extremely difficult task in the past but with 

the release of the Microsoft Kinect motion capture system this 

problem has been simplified. This paper discusses the feasibility 

and design behind a simple robotic skeleton which utilizes the 

Kinect to mimic human movements in real-time.  The long-term 

goal of this project is to construct a ½ scale model of a full 

robotically enhanced skeleton and demonstrate the abilities of the 

Kinect as a tool for human movement mimicry. 

Keywordst- Robotics; Kinect; Mechatronics; Motion Capture; 

I.  INTRODUCTION 

Robots that mimic human movement have been depicted as 
the robots of the future in literature and film for a long time. 
The recent Hollywood movie Real Steel features a robot that 
mimics human movements through watching a person move 
and then performing the same movements simultaneously.  
Although the movie is currently science fiction, this research 
investigates the development of a low-cost system motion 
capture system for use as a display in a children’s science 
museum.   

This research focuses on developing a system that captures 
the motions of a human, uses this information to estimate the 
locations of key bones of the skeleton and then uses this 
information to mechanically mimic the skeletal motions on a 
physical skeleton. Until recently, the technology required to 
perform this task were well outside of the budget of most 
museums, but the introduction of the Microsoft Kinect and 
open source software support allow this project to be 
performed on a reasonable budget.  

II. CURRENT STATE OF THE ART  

Professional motion capture systems have been used to 
digitally capture human movements for use in animation since 
the 1995 Atari game Highlander: The Last of the MacLeods. 
These professional level systems require a person to wear a 
body suit with reflective markers all over it as seen in Figure 1 
[4]. In addition to the custom body suits there is a vast array of 
sensors and software programs used to capture and compute 
these movements.  Though the accuracies of systems such as 
Gypsy 7 are excellent, the hardware is expensive and the 
system is not designed to be used in real time applications.   

 

Figure 1 A body suit used for professional grade motion capture systems. 

Note the reflective markers used to track body motions.  

III. LOW COST MOTION CAPTURE 

At a cost of $200 the Microsoft Kinect has the ability to 
track the movements of 24 distinct skeletal points on the 
human body. These points include the head, hands, arms, and 
legs. Along with these 24 skeletal points the Kinect can track 
two people at the same time and has voice recognition 
capabilities [7]. This project only requires tracking of less than 
15 skeletal points for a single user.  Figure 2 shows the Kinect 
and a skeletal map. 

 

Figure 2 A 15 point skeletal model (left) produced by a Microsoft Kinect 

sensor (right).  

 

The Kinect sensor generates the skeletal map by reading 
data from an array of sensors including: a depth sensor, an 
accelerometer, a multi-array microphone, and two RGB 
cameras [1]. The microphone is currently not be used for this 
application. The main driving sensors on the Kinect are the 
depth sensor and the cameras. The depth sensor is a Micron 



 

 

 

1/2-Inch Megapixel CMOS Digital Image Sensor that consists 
of an infrared laser projector and a CMOS (Complementary 
metal–oxide–semiconductor) sensor. This CMOS is considered 
an active pixel sensor and is capable of capturing 3D video data 
in ambient light [7,8]. The main bulk of the data used to 
construct the skeletal points is taken from the two RGB 
cameras in the Kinect. These cameras are Aptina 1/4-Inch 1.3-
Megapixel SOC CMOS Digital Image Sensors, which give the 
Kinect a viewing range of roughly 11ft.  Along with the 
mentioned sensor the Kinect is equipped with a motorized 
pivot that allows the Kinect to physically move as it tracks 
targets. 

IV. MECHATRONICS 

 This project will focus on utilizing the captured 
skeletal maps and mimic the motions on a physical skeleton in 
real time. Software will analyze the motions of the skeleton 10 
times per second. This data will be analyzed to assign specific 
movements to servo sets for the skeletal points located in the 
arms and legs. The goal of real-time movements on the 
physical skeleton requires the use of actuators that are 
powerful, fast and accurate. For places on the body where there 
can be rotation such as in the shoulder a pan-tilt motion set up 
will be used to make the necessary multi-axis movements. 
Figure 3 shows the actuator locations, the red markings show 
places where multi-axis actuators are required. It should be 
noted that only motions of major bones of the skeleton are of 
interest for this effort. Motions such as rotations of the wrist 
and forearm are not incorporated in this work. 

 

Figure 3 A physical skeleton showing the joints targeted in this research. 

Black indicates a single axis of motion. Red indicates multi-axis motions.  

  

The final design requires the use of 12 actuators. To reduce the 

number of different parts used in the assembly the same 

actuators will be used throughout the design. The actuator 

selection was based upon 4 different factors; servo speed and 

accuracy, holding torque, operating angle range and cost. The 

holding torque of the actuator was the most crucial factor 

because in some movements the actuator is required to hold 

the weight of entire appendage. The worst-case scenario for 

holding torque occurs in the leg since it is the longest and 

heaviest part of the skeleton. For this requirement a simple 

moment calculation was used to determine the holding torque 

of the actuator needed. The holding torque is given by!
                                            (1) 

where t is the torque, r is the length of the lever arm and F is 

the applied force. The worst case occurs when the leg is hold 

straight in front of the body in a kicking motion. For the leg 

assembly a mass of 0.3Kg is supported against the pull of 

gravity yielding a force of  2.94N. For a worst case estimate, 

the entire mass is assumed to exist at the end of the leg 

yielding a lever of 0.5m.  The worst case holding torque is 

calculated to be roughly 1.5Nm.  

A. Selecting the Actuator 

The Dynamixel AX-12A robot actuator was selected for 
use in this project. The AX-12A has several major advantages 
over standard hobbyist servos that will be taken advantage of in 
the construction of the skeleton. These actuators offer a 
maximum holding torque of 1.6Nm at 12 Volts [2]. When 
supplying this holding torque the actuators draw only 900 mA 
which allows the use of low cost off the shelf power supplies. 
Given the overestimates of the required holding torque it is 
believed that these actuators are able to hold the entire leg 
without worry of failure. The AX-12A also offers 
300°/continuous operating angles and non-loaded speeds of 
0.196sec/60°. These features will allow for near-real-time 
movements of all the appendages. Along with all the 
performance features of the AX-12A there are several feature 
built-in features such as the internal micro-controller that will 
be used in this project. The built-in microcontroller provides 
feedback of the current angular position and angular velocity as 
well as the torque being applied to the load. These availability 
of these feedback signals in a compact footprint drive the use 
of these actuators. A bearing is used at the final axis to ensure 
no efficiency degradation with high external loads. The 
actuator also has a built in alarm system that can feedback to 
the higher-level controller when there are issues in current 
draw, voltage, internal temperature, and torque output. The 
case that encloses the mechanics of the actuator has integrated 
mounting points, which will also be utilized in the assembly of 
the project; Figure 4 shows the AX-12A and a mounting 
bracket. 



 

 

 

 

 

 

 

Figure 4 The Dynamixel AX-12+ is the selected actuator for all joints. 

 

Since the skeleton requires a total of 12 servos in order to 

perform all necessary movements a microcontroller that can 

handle a minimum of 12 servos will be required. The AX-12A 

requires TTL level serial communications to send and receive 

signals. This project utilizes a total of 12 AX-12A’s to be 

controlled in realtime. Although a controller is available from 

Robotis (the manufacturer of the AX-12A actuators), it is 

unclear if the controller will be able to perform all of the 

necessary analysis of skeletal motion in realtime.  It is 

anticipated that as the project nears completion, a more 

powerful controller such as Vanadium Labs ArbotiX 

Robocontroller will be required. However, in the interests of 

speeding development, the Robotis controller and software 

will be used as the initial development platform. The 

advantage of the ArbotiX controller over many other popular 

micro-controllers such as the Arduino family is that this 

ArbotiX controller is designed with the Dynamixel AX-12 

servos in mind. This microcontroller boasts the ability to 

control more then 24 AX-12 servos simultaneously using its 

integrated Atmega644p processor [3]. The ArbotiX also has 

the ability to incorporate an XBee system for wireless 

communications. If needed there are motor drivers, encoder 

headers, and 32 analog headers equipped to this board 

allowing the use of PWM (pulse width modulation) servos if 

needed; Figure 5 shows the ArbotiX microcontroller. 

 

 
Figure 5 The Arbotix microcontroller selected as the controller for this 

research. 

V. CONSTRUCTION 

To reduce development time many COTS (commercial off 
the shelf) products were used in the construction. The skeletal 
structure referred to as the chassis is a 1m tall plastic model 
that was purchased from a anatomical model website. Several 
different factors had to be taken into account before deciding 
on the skeleton to be used. Sizing the chassis needed a great 
deal of consideration due to the size of each appendage; as the 
chassis becomes larger the leg and arm appendages grow 
proportionally. Since another deciding factor was that the arms 
and legs needed to be structural. This in turn will increase the 
holding weight required by the servo exponential since the 
servos ill also become larger and heavier as will the moments 
acting on them. Given all these factors a roughly half scale 
skeleton was selected for the chassis. A 1m tall skeleton was 
selected for the chassis; which has 25cm and 46cm 
appendages. The skeleton is constructed from a hard molded 
resin and has moveable joints in all the areas that will be 
modified. This chassis is a cheap economical solution that will 
allow for rapid construction and easy modifications. 

 

Figure 6 Physical skeleton plastic model on its stand. 



 

 

 

 

 

 

The skeleton has wire joints built into several key joints so 
structural modifications to the joints must be made. Large 
machined rods will replace all the wire joints in the shoulders, 
elbows, knees, and hips. This requires some machining of the 
stock plastic skeletal frame; metal rods are used for actuator 
mounts. Figure 7 shows a typical joint. The shoulder bracket 
will have the threaded rod run through the bracket’s center 
holes.  

 

Figure 7 Mechanical design of a typical joint showing mounting points.  

 

For multi-axis actuation, a second actuator will be affixed with 

a 90 degree offset to the above actuator. From the second 

servo another bracket similar in make to the shoulder bracket 

will connect the arm or upper leg to the servo system. Figure 8 

shows a pan/tilt servo set utilizing off the shelf brackets. 

 

 
Figure 8 A possible pan-tilt configuration of actuators.  

 

VI. SOFTWARE 

 

The software used in the system consists of three major 
elements: motion capture and extraction of skeletal joint 
positions, real-time analysis and path planning for 12 joints, 
and actuator control software. Much of the motion capture and 
joint position extraction is performed in the Kinect hardware. 
Once the hardware is correctly configured, the Kinect hardware 
will provide a continuous stream of joint positions that is 

updated multiple times per second.  The path-extraction 
software then needs to determine the position of joint. Once the 
joint positions are determined the kinematic model must be 
solved to determine the desired velocity and final position of 
each of the 12 actuators and transfer this information to the 
control software. The main function of the control software is 
to synchronize the motion of the actuators and assure that the 
actuators are operated within system limits. Humans can 
perform several motions that would be undesirable in the 
physical skeleton. Examples of prohibited motions would be 
striking bones together such as striking the head with a hand or 
simply clapping 2 hands together. Other prohibited motions 
would be rapid oscillations of major bones such as rapidly 
shaking the forearm.  

VII. CONCLUSIONS 

 

This paper has described the design of a system that will 

allow a human skeleton to mimic the motions of a human 

operator. The Kinect has the potential to revolutionize tele-

operated robots by dropping the price from hundreds of 

thousands of dollars to hundreds of dollars. There are 

numerous applications for robots that mimic the motions of 

human operators such as using robots to lift loads beyond 

the capabilities of humans to a doctor performing surgery 

from a remote location.  What is currently fodder for 

science fiction movies such as Real Steel will soon be a 

reality.  
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Abstract— The SAE Formula Hybrid competition is event were 

students from many different schools put their engineering 

knowledge to use to design complex hybrid racing systems; 

Embry-Riddle Aeronautical University has been competing in 

this competition since its inception.  This paper discusses the 

design on the team’s energy storage and accumulator design for 

the 2012 competition. This design is required to follow all 2012 

rules set forth by SAE International and this paper discusses the 

concerns of the design regarding these rules. 

Keywords- Formula Hybrid; Battery; Accumulator; Energy 

Storage Systems; Embry-Riddle 

I. INTRODUCTION 

The SAE (Society of Automotive Engineers) has been 

sponsoring a Formula Hybrid vehicle competition since 2007. 

In this highly competitive event over 30 different teams 

competing to build the best Hybrid Formula 1 car. The cars in 

which each team must build, design, and compete in must be 

open-wheeled single seat racecars. The competition is designed 

in a way that promotes innovation in fuel efficiency and 

drivetrain design in high-performance applications such as 

racecars. Before teams can compete with their vehicles they 

must pass a strict safety inspection where judges make sure all 

areas of the vehicle are safe [3]. In this portion of the 

competition there is a major emphasis on the safety of the 

energy storage system; this impart due to the hazards of dealing 

with high-voltage storage systems. This paper will go into the 

design of the ERAU (Embry-Riddle Aeronautical University) 

Formula Hybrid Team’s energy storage and monitoring system 

design which meats the SAE Formula Hybrid 2012 Rulebook. 

 

II. COMPETITION RULES 

 

The Formula Hybrid competition like many other 

competitions have a strict set of rules that teams must adhere 

to in order to compete fairly and safely. For the rulebook given 

in this competition there is a major focus on the HV (High 

Voltage) system. As per the rules a system is considered high 

voltage if it contains or produces a voltage greater than 30 

volts [1,5]. Such systems are required to be isolated and 

physically segregated from the other power systems of the 

vehicle. The HV storage system must be a self-contained a 

separate part of the vehicle structure and architecture. Along 

with the system being isolated it must contain various safety 

features as described in the rules. The first major safety system 

required is a GFD (Ground Fault Detector), which is utilized 

to detect any faults below 500 ohms/volt or 40kΩ. If such a 

fault is detected the immediate shutdown of all electrical 

systems is required. The Bender 475LY shown in Figure 1 is 

such an example. 

 

 
Figure 1 The Bender 475LY ground fault detection system. 

 

The second major set of rules involving safety pertains to the 

accumulator design. The accumulator must contain a 

monitoring system that varies depending on the energy 

accumulator type. The AMS (Accumulator Monitoring 

System) that will be used on the ERAU vehicle will be utilizing 

the rules for LiIon (Lithium Ion) batteries. The AMS is 

required to monitor the accumulator at time that energy is 

flowing into or out of the storage system. This system is to be 

used to prevent hazardous thermal conditions such as 

overheating and overcharging [6]. This is to prevent dangerous 

situations such as batteries catching fire or melting during 

charging and high load situations such as the acceleration run. 

For the LiIon accumulator type teams are require to build an 

AMS that can monitor the temperature of each battery module 

and voltage monitoring of each individual battery cell. This 

safety system must be able to disable the storage system by 

opening the contactors inside the accumulator. This can be 

caused by any of the specified hazardous conditions such as 

over-voltage, under-voltage, overheating, or cell reversal. 



 

 

 

 

 

 

Though not required by the rules a balancing system is 

recommended for the LiIon accumulator setup. 

 The mechanical design of the accumulator is 

specified in the electrical rules because it is necessary to have 

the storage system in a container that is isolated from the rest 

of the vehicle. The energy storage system must be in a closed 

container and utilize contactors for any connections leaving 

the enclosure. The mechanical properties required of the 

storage enclosure are clearly stated in the rules. The enclosure 

and mounts must withstand a 20g static load in front/back and 

sides and an 8g static load in the vertical direction. The 

enclosure most also be considered mechanically robust, 

fireproof, and must fully enclose the accumulator. Along with 

all these internal features the storage container must also have 

a fireproof barrier equipped between it and the cockpit. 

III. ERAU DESIGN OVERVIEW 

 The ERAU design utilizes the A123 M1A 

cylindrical cells. These cells will be housed in aluminum 

battery tubes. Between each cell contact plates will be used 

to allow connections to the AMS. For this accumulator 

design a total of nine tubes will be used. The goal of this 

design was to create a lightweight mounting structure that 

will meet all the rules and requirements as set by the 

competition officials; this will be accomplished by using an 

Aluminum Isogrid to construct the mounting structure. A 

series of L brackets will be used to construct the external 

box structure with fiberglass sides. The outward facing side 

will utilize a Lexan sheet to allow for visibility into the 

enclosure. Internally the system components will be 

mounted to the Isogrid using insulated stand offs. This 

entire enclose will be mounted to the vehicle chassis via 

aluminum mounts which will be bonded to the enclosure; 

Figure 2 shows a basic model of the ERAU design. 

 
Figure 2 Physical layout of the accumulator design. Visible are the cylindrical 

battery packs. 

 

IV. BATTERY SELECTION  

The A123 M1A cylindrical cells were selected for this design 

for several reason, one of which is these cells are commonly 

used by many teams at ERAU and there is a wealth of 

experience using these batteries. Experience aside the A123 

cells have several unique features that the team has found to 

be beneficial. These particular cells have a high power density 

over a broad SOC (State of Charge) [2]. They are capable of 

handling a high amount of physical abuse and have an 

extremely stable chemical composition. A123 technology is 

widely used in high performance vehicles around the world. 

The selected cells have a nominal voltage of 3.3 volts and a 

specific power of 2700 W/kg. The team’s design will use cells 

that have been extracted from DeWalt drill packs; in order to 

prevent any conductive paths from the cell casing the stock 

manufacturers paper coving will be retained. Each cell will 

then be wrapped in 6mm thick PVC (Polyvinyl Chloride) 

shrink-wrap to reduce the radius of the positive terminal, 

which will ensure isolation. The system design requires a total 

of 72 individual cells; Figure 3 shows several unwrapped cells. 

 

 
Figure 3 The negative and positive terminals of a typical A123 battery cell.  

 

V. BATTERY CONTAINMENT TUBE DESIGN 

A key feature of the accumulator pack design is the battery 

tubes, which house the individual cells. Aluminum was chosen 

for the battery tubes do to its availability, mechanical 

properties, and thermal conductivity. The other option was a 

plastic housing which would have needed to be a custom made 

tube in order to be used in this application; in turn this would 

have been a costly alternative. In selecting aluminum as the 

tube material there raises a concern that this may be in 

violation of the rules due to the fact a conductive pathway may 

develop between the cells and the tubing; further 

correspondence with the competition organizers will clear or 

verify these concerns. The tubes will have slots machined in 

them to allow for the contactor plates to be inserted easily 

between cells and for the AMS wires to leave the tubing. Each 

tube will consist of eight A123 cells and seven contactor 

plates. At the end of each tube will be a plastic end cap with 

terminals that will be used to connect each tube to the overall 



 

 

 

 

 

 

system; Figure 4 shows the design of nine tubes in the holding 

chamber. 
 

 

Figure 4 The battery containment system. 

VI. CONTACTOR PLATE, END CAP, AND TUBE RETAINMENT 

DESIGN 

In each battery tube contains 8 battery cells between each of 

these cells is a contactor plate. This plate is used to not only 

allow the batteries to make contact with each other but to 

allow the gathering of all the necessary data for the AMS. 

Each contactor plate is constructed of a conductive material in 

a plastic housing; a hole is drill in the tab of the contactor so 

that a wire can be connected to the AMS. During the tube 

assembly the plates can be easily inserted into the battery 

tubes then rotated to make contact with the next cell. This  

design brings yet another concern with a violation in the rules; 

with the given design the contactor plate if partial exposed 

which may provide a safety hazard; Figure 5 shows the 

contactors in the battery tube highlighting the concern. 

 

 

Figure 5 Close up of the battery monitoring contactor.  

 

As with the contactors each tube will have two custom-built 
end caps at each end. The ends of each tube will be threaded so 
that the end caps can be affixed to them. The end caps were 
designed to handle the thermal expansion of the batteries by 
incorporating springs at negative end of the tube. The springs 
used are Belleville disc springs and will give the system a 
preload of roughly 6 lbs.; this will ensure each battery makes 
contact with its following contactor. Both end caps will also 
contain the terminals used to connect the tubes together; Figure 
6 shows the positive and negative end cap designs. 

 

 

 

 

Figure 6 The positive (top) and negative (bottom) endcap designs for the 

battery containment tubes. 

 

Since there are nine battery tubes a simple custom retainment 

housing was design to hold each battery tube safely. The 

retainment housing is simple five-sided sheet metal enclosure 

with nine circular holes cut in the front and backsides to hold 

the battery tubes. The prevent chaffing on the tubes rubber 

grommets will be inserted into each hole prior to the battery 

tubes being placed. Once the tubes are placed in their 

individual slots the plastic end caps will be tightened down to 

the tube securing them to the retainment enclosure; Figure 7 

shows the retainment enclosure and Figure 8 the final position 

of the battery tubes. 

 

 
Figure 7 External battery containment system.  

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 The battery containment system showing the end-cap positioning.  

 

VII. HIGH VOLTAGE ENCLOSURE DESIGN 

Special consideration has been taken when designing the 

external enclosure because a vast amount of weight can be 

saved with a well thought out design. The main apart of the 

enclosure will be the aluminum isogrid, which will be used to 

structurally mount all the internal components. The nodes of 

the enclosure will have helicoiling for any steel bolts or will 

be tapped for aluminum bolts used in the attachment of 

components. Since the aluminum isogrid is naturally 

conductive it will be covered in an insulating fiberglass. From 

this all the components will be mounted using insulated 

standoffs.  These standoffs will be used to prevent conductive 

connections from forming between components and the grid 

via bolt connections. Figure 9 shows the planned layout of 

components on the isogrid. The components are blocked out 

and the high voltage routing has been highlighted. All wiring 

will be routed using standoffs the height of the standoff will be 

complaint with the requirements stated in the rulebook. This 

will insure if the grid becomes electrified, all components and 

wiring will still be compliant with the rules. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 High-voltage enclosure battery pack, battery management system 

and required isolation relays.   
 

Since the enclosure has two main sections; those being the 
battery pack and the rest of the electrical components it will be 
divided by a fiberglass panel. This will provide a level of 
separation when servicing the system. Mainly the design called 
for the motor controller and battery pack to be able to be 
serviced and inspected independently. Next is the defining 
structure, which will for the actual box enclosure. This is 
constructed from a series of L-brackets constructed in the shape 
of a box. These brackets will mount to the isogrid backing to 
finish the structure. As with the isogrid material the L-brackets 
will need to be covered in a fiberglass sheet to act as an 
insulator this will also close of the open sides of the structure. 
The final outward facing side will be constructed of 2 pieces of 
Lexan, which will be hinged to allow work on either the motor 
controller or the battery pack. The entire enclosure will then 
have four aluminum mounts fixed to the outside of the 
structure. These mounts retain spherical bearings, which will 
allow for the mounting to the chassis; Figure 10 shows the 
enclosure on the chassis. 

 

Figure 10 Enclosure chassis showing the hinge positions.  



 

 

 

 

 

 

VIII. CONCLUSIONS  

This paper describes the design of the energy accumulator 

system for the ERAU formula hybrid vehicle. With 

deadlines fast approaching a valid energy storage system 

design is required and compromises must be made in the 

interests of time.  Although the prototypes of the designed 

have functioned well, there are areas of ERAU, which will 

require further analysis to assure compliance with all 

competition safety rules.  
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Abstract— The AUVSI Autonomous Surface vehicle event is a 

student-based competition where teams design, build and 

compete with fully autonomous surface vessel. These vehicles are 

required to preform many different tasks that vary from 

competition to competition but the ability to navigate channels 

marked by red and green markers and perform GPS based 

navigation is always a constant. Embry-Riddle Aeronautical 

University has been competing in this competition since is start. 

This paper discusses the design of the Seagle 3.0 platform.  

Keywordst- Robotics; Autonomy; Autonomous Surface Vehicle; 

Computer Vision; Mechatronics; 

I.  INTRODUCTION 

An Autonomous Surface Vehicle is a floating, untethered 

robot capable of performing complex tasks without human 

interaction [7]. Seagle 3.0 represents a major advance in 

technology compared to the original Embry Riddle platforms 

that competed in past competitions. Seagle 3.0 is new above 

and below the waterline, including a new central processing 

computer, upgraded sensors, a water cooling system, and 

greatly enhanced and refined software, The vessel itself is a 

planning hull design intended to maximize the speed-to-thrust 

ratio. It uses a relatively flat large-wetted-surface area foam 

core covered with S-Glass laminate. All four sensors (DGPS, 

digital compass, and two cameras) are located on masts above 

the deck. 

Components inside the Electronics Enclosure include the 

onboard computer, a wireless router for communication during 

testing and debugging, a Devantech two-axis motor controller, 

a Parallax servo controller, an RxMux servo multiplexer, an 

Onboard Health Monitoring System (or OHMS for short), and 

batteries.  

II. DESIGN OVERVIEW 

Seagle 3.0 was developed to meet the requirements specified 

in the 2010 Autonomous Surface Vehicle Competition rules 

[2] and has since be used a developmental platform for current 

teams. During the design stages emphasis was put on safety, 

performance, simplicity of design, operational effectiveness, 

and reliability. Figure 1 shows Seagle 3.0 in the pool. 

Although Seagle 3.0 is intended to perform its mission 

autonomously, it must also be launched, prepared and 

recovered by a shore- based team. Seagle 3.0 is a small 

electrically propelled flat-bottom boat known as a skiff that is 

differentially driven by two SeaBotix BTD150 thrusters. 

Seagle 3.0 is 1.5m long, .5m wide and .75m tall. The entire 

vessel, including batteries, internal hardware, and competition 

nessicary hardware weighs 19 kg. Where appropriate, Seagle 

3.0 incorporates commercial-off-the-shelf (COTS) 

components to help ensure reliability. A Sea Horse watertight 

case provides a dry environment for the onboard electronics, 

including a custom built computer, a Devantech motor 

controller, a Parallax USB Servo Controller, an RxMux 

multiplexer (for switching from remote to autonomous 

operation), an onboard health monitoring system, four sealed 

custom Nanophosphate lithium ion battery packs, a Linksys 

2.4 GHz wireless router with a high gain antenna for faster 

remote desktop streaming while testing, a computer controlled 

switch for the water cannon and a water-cooling system. 

Seagle 3.0 includes two Axis 207MW cameras for buoy and 

target perception as well as obstacle avoidance, a DGPS, and a 

digital compass for navigation to specified points on the 

course; Figure 1 shows Seagle 3.0 during testing. 

 

III. PLATFORM DESIGN 

The skiff design used on Seagle 3.0 was fabricated from 
Extruded Polystyrene. This closed-cell foam material machines 
well, is resistant to salt water and most common chemicals, has 
a low coefficient of water absorption and is exceedingly 
buoyant, having a density about 1/30 that of water. The hull 
was milled out of the EPS foam. The final shape was obtained 
through sanding and rail rounding. The hull was then painted 
using an acrylic-based paint to seal the foam and laminated 
using 6oz. S-Glass cloth for structure. Motor keel mounts and 
mast plugs were inserted using an epoxy micro-balloon mix. 

 

 
Figure 1 Seagle 3.0 during testing  

 



 

 

 

 

 

 

After the laminating was completed, the vessel was hot coated 
using a pure epoxy mix; it was then finish sanded and sealed 
again with a clear coat. Lexan keels were machined and 
mounted to provide a secure structure for the thrusters. 

A. Electronics Enclosure 

The Electronics Enclosure is a modified Sea Horse 
watertight case mounted directly to the deck. The enclosure is 
shown in Figure 2. The stock case is watertight, and the use of 
water resistant connectors along with careful attention to 
sealing around penetrations provides a reliable water resistant 
enclosure for the electronics. The case has been modified to 
have two mounting layers, with the wiring and control boards 
below and the computer, power supply, and batteries above. 
The case is also equipped with a water- cooling system. 

 

IV. ELECTRICAL DESIGN 

Seagle 3.0 features various cost effective and high 
performance electrical components such as custom battery 
packs, GPS, digital compass, and network cameras that are all 
controlled by a custom built computer. Many of the 
components are advanced sensors used in the navigation 
algorithms.  

A. Cameras 

The cameras on Seagle 3.0 are critical components for 
navigation, obstacle avoidance, targeting, and payload retrieval. 
Seagle 3.0 is equipped with two Axis 207MW network 
cameras. The Axis 207MW has a horizontal field of view of 74 
degrees, a maximum resolution of 1280 x 1024 at a frame rate 
of 12 frames per second. One camera is mounted facing 
forward on the deck and the second camera is mounted on a 
servo on the center mast. The second camera is controlled to 
face forward or backward depending on challenge 
requirements; Figure 3 shows an Axis 207MW. 

 

 

 

 

 

B. Propulsion 

Propulsion is a key component to navigation so a differential 

drive system was developed utilizing two SeaBotix thrusters. 

The SeaBotix thrusters deliver a continuous Bollard thrust of 

2.2 kgf at only 4.25 amps. A peak thrust of 2.9 kgf can be 

attained for short periods by increasing the current. At 4.25 

amps and 19 VDC, the BTD150 thrusters use only 81 watts of 

power. 

C. Batteries 

Seagle 3.0 is powered by four lithium ion Nanophosphate 

battery packs, which where custom assembled by using eight 

A123 M1A cylindrical cells. These cells were selected for 

their size and energy output of their SOC (State of Charge) 

[1]. The battery packs consist of six 3.3V cells wired in series 

to achieve 19.8V. The Packs are then wired in parallel to reach 

a run time of 1.5 hours. 

D. Computer 

To increase data processing speeds, the team built a custom 

small form factor computer using commercially available 

components. This new computer contains a 2.5 GHz Intel 

quad core processor; 4 gigabytes of DDR2 Ram, and a 320 GB 

hard drive. A 250 Watt DC to DC power supply that has a 

low-voltage cut off feature powers it. The low- voltage cutoff 

safely shuts down the operating system when the input voltage 

drops below 13 volts. This onboard computer runs the 

Windows XP operating system and National Instrument 

LabVIEW programming environment, which is used for all 

mission- task programming. 

E. Wireless Communications 

A Linksys 2.4 GHz wireless router is connected to the 

computer to provide remote access to the software and vehicle 

systems. Testing and changes to the code can be accomplished 

conducted without having a physical connection to the vehicle. 

This allows for the monitoring Seagle 3.0 from the shore 

through a ground station. To increase range of the 

communications to the ground station a high gain antenna was 

equipped to the electronics enclosure. 

 

 

 
Figure 3 Top-level of the electronics enclosure; second level 

hidden  

 

  
Figure 2 Axis 207MW network camera 

 



 

 

 

 

 

 

F. GPS and Compass 

The Novatel Smart Antenna with OmniSTAR corrections is a 

compact, lightweight and weatherproof package that gives a 

0.6-meter Circular Error Probable (CEP) accuracy. The Pacific 

Navigation Instruments TCM2.5 tilt compensated 3- axis 

digital compass has an accuracy of 0.8 degrees. The GPS and 

Compass are used together for waypoint navigation. Since 

GPS is incapable of generating heading information when the 

vehicle is stationary [8], the compass is used to determine 

heading at low speeds. These sensors are used for heading 

hold navigation and waypoint navigation. 

G. Servo Controller 

A USB 16-Channel Parallax Servo Controller accepts USB 

output from the control computer and converts this to the 

pulse- width-modulated signals needed to command the 

Devantech motor controller and the Team Delta RC relay 

switch, which has been used to activate competition critical 

components. 

H. Motor Controller 

The MD22 Devantech Motor Controller is a robust two-axis 

motor driver. The driver is designed to supply power to two 

independent motors, allowing the vessel to be differentially 

driven. By allowing the vehicle to be differentially driven zero 

radius turns can be preformed during the obstacle avoidance. 

I. Onboard Health Monitoring System (OHMS) 

The onboard health monitoring system includes an Arduino 

Pro-Mini microprocessor, an AttoPilot current and voltage 

sensor and an analog thermometer. With this system the team 

is able to monitor the battery packs and electronics case 

temperature in real time. The Arduino is used to interpret 

temperature, voltage and current sensor data. It sends this 

information to the main vehicle computer as a serial string. 

LabVIEW is used to display this information on a graphical 

user interface. Also, a warning message is displayed when the 

system voltage drops to an unsafe level and LabVIEW 

initiates a shutdown sequence. 

V. SOFTWARE DESIGN 

The intelligent navigation software that operates Seagle 3.0 
is preloaded on the onboard computer prior to deployment. 
During development, setup and testing, an operator can 
interface with the onboard computer using Remote Desktop 
running over a standard 802.11 network. At the start of a 
competition run, the software is set up and running before 
switching into autonomous mode; for real world seniors a 
permanent link with the system can be established utilizing the 
testing setup. The software provides feedback (viewed on the 
remote desktop) to verify that the cameras operational and the 
software is attempting to correctly control the thrusters. Once 
all systems, including the onboard health monitoring system, 
are checked, the autonomous/manual switch on the RC 
transmitter is set to autonomous mode. The vessel then 
executes its mission autonomously. If at any time the ground 
station operators deem the system is in danger of harming itself 
or the environment around it a switch on the RC controller can 
be flipped and remote control of the vessel is reestablished. 

Should this system not work there is both a local and remote 
kill switch. The local kill switch is mounted on the electronics 
enclosure and cut power to the motor. While the remote kill 
switch is a hand held box that is armed before vehicle 
deployment and can be activated with the press of emergency 
stop at anytime. This remotely kills power to the motor 
controller. 

A. Mission Strategy and Software 

For each given competition a new set of mission objectives is 
given usually building on prior competitions. These objectives 
often require navigation through buoys, avoiding obstacles, 
find and shooting targets, performing GPS navigations, 
docking, and returning to the starting locations. A unique and 
innovative software system was developed to allow new 
challenges to be integrated with the old system. By utilizing a 
state driven software system the vehicle can move from 
software state to software state accomplishing a set of 
prewritten goals. Several of these states, which have been used 
through the course of this vehicle life, will be discuss. 

It is common in the competition for the vehicle to have to 
preform an autonomous speed run through a series of large 
colored gates. These gates tend to be marked by a red and 
green buoy. For this state the software will use both vision and 
Gps. Drive points generated by the vision code are used to 
control heading and speed, and GPS data is used to determine 
the distance traveled. Immediately after traveling the distance 
of the speed gate the software will switch into another state; 
lets say the next state is the buoy channel navigation. In order 
for the vehicle to navigate the buoy channel it must first find 
the start of the channel. This is done by performing a series of 
preset movement that have been developed to allow the vision 
system to find the buoys. Once a buoy is found the software 
switches from its buoy hunting state to the buoy navigation 
state. In this state the software utilizes both cameras to find red 
and green buoys and plot Gps based drive points for the vehicle 
to navigate. In this state the vehicle searches for a set number 
of buoy or times out in which the software will switch to 
another state. After all the required states are performed the 
software switches to the final state which required the vehicle 
to return to its starting position. This is done by navigating to a 
preset Gps waypoint and using the cameras for obstacle 
avoidance. 

B. Navigation Algorithum  

The vision-based navigation code generally uses a simple 

algorithm to determine motor thrust commands. When the 

vessel senses a single red buoy and a single green buoy, it will 

calculate a point equidistant between them and drive towards 

it. If the vessel only sees a red buoy, a drive point offset a 

user- specified distance to the left of the buoy will be selected 

and the vehicle will drive towards that point. If the vessel only 

sees a green buoy, a drive point offset a user-specified 

distance to the right of the buoy will be selected and the 

vehicle will drive towards that drive point. If the vessel does 

not see any buoys the drive point will be set to (0,0), the 

current location of the vessel, and the vehicle will turn in place 

in an attempt tore-acquire the buoys. Figure 4 shows the buoy 

navigation algorithm. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A proportional-derivative control law is used to determine 

how the vessel drives to a specified drive point. Using a local, 

vehicle- based coordinate frame, the distance and angle to the 

point of interest are calculated. The following equations are 

then used to determine the thrust command values for each 

thruster. 

 

 

 

 

 

 

 

 

 

 

Where VL-F and VR-F are the forward components of thrust 

with the proportional term that factors in the distance to the 

drive point. Those values are then applied to the two overall 

equations that we developed that give us the overall thrust for 

each thruster. 

The total thrust commanded from each thruster includes a 

forward drive component and a turning drive component. The 

forward thrust commanded from each thruster is proportional 

to the distance from the vehicle to the drive point. The farther 

away the drive point, the faster the vehicle will drive. As the 

vehicle approaches the drive point, it will begin to slow down. 

The turning component commanded from each thruster is 

based on the heading angle to the drive point. The greater the 

heading angle to the drive point, the greater the difference in 

thrust. A derivative control term has been added to the thrust 

command algorithm to reduce overshoot [6]. This variable is a 

damping system applied to the forward thrust to prevent over- 

corrections. A user-specified dead band on the turning 

component of proportional control prevents the vessel from 

hunting back and forth when the turn angle is near zero. A 

throttle control function has also been added, which allows the 

user the set the total percent of throttle that the vehicle applies 

to the thrusters. 

 

 

 

C. Vision Algorithum  

Seagle 3.0 is using several vision algorithms for many of the 

different challenges it has to perform such as obstacle 

avoidance and vision based navigation or targeting. The basic 

computer vision algorithm for each of these tasks is similar. A 

common user- defined ROI (region of interest will be set on 

the front panel by the operator [3]. This ROI allows the user to 

remove superfluous portions of the image such as the sky and 

visible parts of the boat. This step allows for higher image 

processing speeds. The speed gate challenge and the buoy 

channel navigation challenge use nearly identical vision 

algorithms based on a hue, saturation, and luminance 

representation of the color image [5]. A band-pass filter is 

applied separately to hue, saturation, and luminance. By 

setting a narrow band, only the pixels that contain values in 

these three bands will remain. This has proven to be an 

effective means for eliminating everything but the buoys, due 

to their small standard deviation. After filtering is complete, 

several standard LabVIEW morphological computer vision 

functions are applied, including those to remove small 

particles, erode, and create a convex hull. These are used to 

remove noise and combine the reflection of the buoy with the 

actual buoy. Finally, a circularity filter is applied is used to 

find buoys in the image. This separates any overlapping circles 

and classifies them based on their radius, area and perimeter. 

The results of applying this image processing technique to an 

image containing a red buoy are shown in Figure 5. 

The targeting challenge such as finding circular targets and 

shooting them with water use the same basic image processing 

techniques as the buoy navigation challenge. The primary 

differences are the band-pass values and the values used of the 

morphological filters that are applied. The algorithm processes 

both the red rings and the gray square. During the post 

processing of the Find Circle command, a targeting line must 

be drawn to control the servo-mounted cannon. The servo will 

take the X and Y positions of the center of each circle found 

and move from each center in a straight path starting at the 

bottom circle. This allows for the system to hit all targets 

found even if a false positive is found. The results of applying 

this image processing technique to an image containing an 

gray target with red rings are shown in Figure 6. 

 

Figure 4 Buoy navigation algorithm  
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Figure 5 Vision algorithm results for a red buoy  

 



 

 

 

 

 

 

In the past the vehicle was require to pick objects that where 

mounted to white buoys up. This requires the use of a rear-

facing camera for this vehicle. For this example there is a gold 

ring mounted to a white buoy. Like the other challenges, a 

band-pass filter is applied to the HSL representation of the 

images received. The algorithm will initially search for the 

large white buoy. Once the white buoy is detected, the 

algorithm has the vessel move closer to the buoy in the 

forward direction after the distance between the white buoy 

has been reduced predetermined number the vision algorithm 

changes from the buoy algorithm to the ring algorithm. At this 

point the vehicle performs a 180-degree spin using the 

compass and orients the top camera towards the rear to locate 

the ring. The heading of the vessel is adjusted to steer directly 

toward these targets. The results of applying this image 

processing technique to an image containing the gold ring are 

shown in Figure 7. 

 

VI. SYSTEM INTEGRATION AND TESTING 

Seagle 3.0 is the product of extensive development and 
design optimization. Such a complex, multidisciplinary project 
presents a significant systems integration challenge. 
Components on the vehicle; each must be able to function 
individually and in conjunction with the other systems on the 
vehicle. There are four main systems on Seagle 3.0, They are 
the electrical system, the hardware (sensors), the software 
system, and the mechanical system. Each system has a central 
point of integration; for example, the central point of 
integration for electrical system is the power distribution board. 
The central point of integration in the mechanical system is the 
hull and the hard mounting points. For the sensors and flow of 
information, the central point of integration is the navigation 
computer. The LabVIEW programming environment is the 
central point of software integration. LabVIEW is a critical tool 
used to receive and organize data from the sensors, and then 
make the necessary decisions. Software, especially the vision 
algorithm, was extensively tested in the lab using simulation 
tools. The team took the vessel out during different weather 
conditions to create videos of buoys and targets in the water. 
These videos were converted to Audio Video Interleave (AVI) 

format. The team was able to test the code with the videos in 
the lab without having to set up and run the vessel for every 
code modification. 

VII. CONCLUSIONS AND FUTURE WORK 

Seagle 3.0 is a fully autonomous surface vehicle designed and 

manufactured by engineering students at Embry-Riddle 

Aeronautical University. In developing Seagle 3.0, the team 

maintained a mission focus, seeking to meet all the base 

requirements while providing better than expected overall 

performance. Seagle 3.0 demonstrates exceptional systems 

integration, combining proven software and hardware 

solutions with unique ideas and novel solutions to accomplish 

the mission tasks. The future of Seagle 3.0 is to be used as a 

developmental platform for integrating new sensors and 

systems for future vehicle while they are being constructed. 

ACKNOWLEDGMENTS 

The authors of this paper would like to give a special thanks 
to all the students in the Robotics lab and the time and effort 
that they put in on these student projects. 

REFERENCES 

[1]   A123-M1a Datasheet. Feb 1, 2012.  http://www.a123systems.com/ 

[2] 2010 Official Rules and Mission, Association for Unmanned
Vehicle Systems International. San Diego, California 

[3]  Martins, A.; Almeida, J.M.; Ferreira, H.; Silva, H.; Dias, N.; Dias, 

A.;Almeida, C.; Silva, E.P.; , "Autonomous Surface Vehicle Docking 
Manoeuvre with Visual Information," Robotics and Automation, 2007 

IEEE International Conference on , pp.4994-4999, 10-14 April 2007  

[4]  Bruce, J.; Balch, T.; Veloso, M.; , "Fast and inexpensive color image 
segmentation for interactive robots," Intelligent Robots and Systems, 

2000. (IROS 2000). Proceedings. 2000 IEEE/RSJ International 
Conference on , vol.3, pp.2061-2066 vol.3, 2000 

[5] Dunbabin, M.; Lang, B.; Wood, B.; , "Vision-based docking using an 

autonomous surface vehicle," Robotics and Automation, 2008. ICRA 
2008. IEEE International Conference on ,pp.26-32, 19-23 May 2008 

[6] M. Dunbabin, J. Roberts, K. Usher, G. Winstanley, and P. Corke, “A 
hybrid AUV design for shallow water reef navigation,” in Proceedings of 

the 2005 International Conference on Robotics and Automation, 
Barcelona, Apr. 2005, pp. 2117–2122 

[7] Xiaojin Gong; Bin Xu; Reed, C.; Wyatt, C.; Stilwell, D.; , "Real-time 

Robust Mapping for an Autonomous Surface Vehicle using an 
Omnidirectional Camera," Applications of Computer Vision, 2008. 

WACV 2008. IEEE Workshop on ,pp.1-6, 7-9 Jan. 2008 

[8] M. Agrawal, K. Konolige, and R. C. Bolles. Localization and mapping 
for autonomous navigation in outdoor terrains: A stereo vision approach. 

WACV, 2007. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6 Vision algorithm results for a gray target 

 

 
Figure 7 Vision algorithm results for the gold ring mounted to a white 

buoy 
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