
Dissertations and Theses

8-2016

Vision-Aided Navigation for Autonomous Vehicles Using Tracked Vision-Aided Navigation for Autonomous Vehicles Using Tracked

Feature Points Feature Points

Ahmed Saber Soliman Sayem

Follow this and additional works at: https://commons.erau.edu/edt

 Part of the Automotive Engineering Commons

Scholarly Commons Citation Scholarly Commons Citation
Sayem, Ahmed Saber Soliman, "Vision-Aided Navigation for Autonomous Vehicles Using Tracked Feature
Points" (2016). Dissertations and Theses. 240.
https://commons.erau.edu/edt/240

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted
for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more
information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1319?utm_source=commons.erau.edu%2Fedt%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/240?utm_source=commons.erau.edu%2Fedt%2F240&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

VISION-AIDED NAVIGATION FOR

AUTONOMOUS VEHICLES USING TRACKED FEATURE POINTS

A Thesis

Submitted to the Faculty

of

Embry-Riddle Aeronautical University

by

Ahmed Saber Soliman Sayem

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Unmanned and Autonomous Systems Engineering

August 2016

Embry-Riddle Aeronautical University

Daytona Beach, Florida

iii

ACKNOWLEDGMENTS

To Richard Skrabe who without him, this work would not have been possible.
To my advisor Dr. Richard Prazenica who I can not express in words how much
help I got from him to make this happens. To my wife, Amanda who supported and
encouraged me to finish this thesis all the way till the end. To Dr. Ilteris Demirkiran,
my mentor and my friend who was always there for me.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABBREVIATIONS . ix

ABSTRACT . x

1 Introduction . 1
1.1 Literature Review . 2
1.2 Statement of Hypothesis . 4

2 Feature Detection and Tracking . 5
2.1 Definitions . 5

2.1.1 Feature point . 5
2.1.2 Types of features . 5

2.2 Methodology . 7
2.3 Feature Detection Algorithms . 10
2.4 Feature Tracking Algorithms . 20

3 Navigation Sensors and Algorithms . 24
3.1 GPS . 24
3.2 IMU . 27
3.3 Vision-Based Navigation . 28

3.3.1 Challenges . 29
3.3.2 Techniques . 30

3.4 Vision-Aided Sensor Fusion Algorithm 35

4 Implementation and Experimental Results 42
4.1 Experimental Description . 42
4.2 Vision-based Navigation Results . 43
4.3 Vision-Aided Navigation Filter Results 59

5 Conclusion and Recommendations . 68

REFERENCES . 70

A Matlab Code for GPS Lat-Lon-Alt Conversion to NED 73

B Matlab Code for IMU Navigation . 75

v

C Matlab Code for Vision Algorithm . 78

vi

LIST OF TABLES

Table Page

2.1 Detection Algorithms . 10

4.1 Trajectory Mean Square Error . 63

vii

LIST OF FIGURES

Figure Page

2.1 Blobs Example (“OpenCV-Python Tutorials”, 2015) 7

2.2 Feature Types. (Webb, Prazenica, Kurdila, & Lind, 2004) 9

2.3 Window Function . 11

2.4 Harris Derivatives. (“OpenCV-Python Tutorials”, 2015) 13

2.5 Shi and Tomasi. (“OpenCV-Python Tutorials”, 2015) 14

2.6 FAST. (Rosten & Drummond, 2005) 15

2.7 Scaling Problem. (“OpenCV-Python Tutorials”, 2015) 16

2.8 Scaling Problem. (Lowe, 2004) . 17

2.9 SURF Box Filter. (Bay, Tuytelaars, & Van Gool, 2006) 18

2.10 SURF Orientation. (Bay et al., 2006) 19

2.11 SURF Matching. (Bay et al., 2006) . 19

2.12 Brightness Constancy . 21

3.1 GPS Triangulation (HyperPhysics, 2015) 25

3.2 GPS Challenges (WIDE, 2005) . 26

3.3 Epipolar Geometry (“OpenCV-Python Tutorials”, 2015) 31

3.4 Image Planes Orientation (“OpenCV-Python Tutorials”, 2015) 32

3.5 Vision-Aided Navigation Filter Block Diagram 36

3.6 IMU Coordinate System (Android, 2016) 40

4.1 Cheerson CX-20 Quadcopter . 43

4.2 GPS Path for Quadcopter Flight Test 44

4.3 IMU-Based Estimation Results (Quadcopter) 45

4.4 Filtering Feature Points . 46

4.5 Quadcopter Snapshots with Feature Points 47

4.6 Radial and Tangential Distortion (“OpenCV-Python Tutorials”, 2015) 49

viii

Figure Page

4.7 SURF 8-point (Kitti dataset) . 50

4.8 Harris 8-point (Kitti dataset) . 51

4.9 FAST 8-point (Kitti dataset) . 52

4.10 SURF MSAC (Kitti dataset) . 53

4.11 Harris MSAC (Kitti dataset) . 54

4.12 FAST MSAC (Kitti dataset) . 55

4.13 SURF MSAC (Quadcopter dataset) . 56

4.14 FAST MSAC (Quadcopter dataset) . 57

4.15 GPS Tracks from the Experimental Data Sets 60

4.16 Trajectory Estimation (Quadcopter Data Set) 61

4.17 Trajectory Estimation (Kitti Data Set) 62

4.18 Estimated Attitude and Attitude Rates (Quadcopter Data Set) 65

4.19 Total Feature Points vs. Matched Feature Points 66

4.20 Matched Feature Points vs. Filtered Feature Points 67

ix

ABBREVIATIONS

IMU Inertial Measurement Unit
INS Inertial Navigation System/Sensor
GPS Global Positioning System
FAST Features from accelerated segment test
SIFT Scale-invariant feature transform
SURF Speeded-Up Robust Features
LoG Laplacian of Gaussian
DoG Difference of Gaussian
TOA Time Of Arrival
TOT Time Of Transmission
TOF Time Of Flight
SVD Singular Value Decomposition

x

ABSTRACT

Saber, Ahmed MSUASE, Embry-Riddle Aeronautical University, August 2016. Vision-

Aided Navigation for Autonomous Vehicles using Tracked Feature Points.

This thesis discusses the evaluation, implementation, and testing of several nav-
igation algorithms and feature extraction algorithms using an inertial measurement
unit (IMU) and an image capture device (camera) mounted on a ground robot and a
quadrotor UAV. The vision-aided navigation algorithms are implemented on data col-
lected from sensors on an unmanned ground vehicle and a quadrotor, and the results
are validated by comparison with GPS data. The thesis investigates sensor fusion
techniques for integrating measured IMU data with information extracted from im-
age processing algorithms in order to provide accurate vehicle state estimation. This
image-based information takes the form of features, such as corners, that are tracked
over multiple image frames. An extended Kalman filter (EKF) is implemented to
fuse vision and IMU data. The main goal of the work is to provide navigation of
mobile robots in GPS-denied environments such as indoor environments, cluttered
urban environments, or space environments such as asteroids, other planets or the
moon. The experimental results show that combining pose information extracted
from IMU readings along with pose information extracted from a vision-based algo-
rithm managed to solve the drift problem that comes from using IMU alone and the
scale problem that comes from using a monocular vision-based algorithm alone.

1

1. Introduction

Mobile vehicle state estimation algorithms depend heavily on the Global Positioning

System (GPS), which does not function well in indoor environments or cluttered urban

environments, and is unavailable for space missions such as exploration of asteroids,

moons, or other planets. The work of this thesis uses sensors that are independent

of GPS in sensor fusion algorithms with the objective of providing a similar level of

accuracy as GPS-based navigation algorithms. The sensors evaluated in this thesis

include inertial measurement units (IMUs) and vision sensors. The sensors are part

of a consumer-grade smart phone with monocular camera. Individually, these sensors

do not typically provide the required accuracy. For example, IMU-based estimates of

position and orientation, which require integration of noisy sensor measurements, are

subject to drift over time. Vision-based state estimation has been proven to be quite

effective for estimating angular motion, but it also suffers from a scale ambiguity

issue because the range to features cannot typically be determined from a sequence

of two-dimensional images. Therefore, the goal of this research is to minimize the

error in the estimated position and orientation of a mobile vehicle using sensor fusion

techniques that will integrate the IMU data and processed image data. In addition

to improved navigation in GPS-denied environments, this work is also applicable to

the mapping of unknown environments.

2

1.1 Literature Review

Previous work by (Webb et al., 2004) is used as a basis for the evaluation of

algorithms discussed in this thesis. This work includes a vision-based approach that

implements an implicit extended Kalman filter (IEKF), which is a variation of the

extended Kalman filter that has been modified to accommodate measurements that

are implicit functions of the vehicle states (Soatto, Frezza, & Perona, 1996). These

implicit measurements are based on tracked feature points (corners) and the epipolar

constraint (Prazenica, Hielsberg, Sharpley, & Kurdila, 2013). Another experiment

conducted by (Jin, Favaro, & Soatto, 2001) employed the IEKF for estimating the

three-dimensional motion of an object from a sequence of projections. The paper

identifies nonlinear implicit system parameters and provides dynamic state estimation

of the object (Soatto et al., 1996). It is important to note that, while this thesis will

build on this related work, these previous studies did not consider the integration of

IMU data into the state estimation filter, which is a key aspect of this thesis work.

The work of (R. Hartley & Zisserman, 2003) provides the basis for the visual odometry

step in the vision-aided navigation algorithm.

Integration of vision and inertial sensor data is still an active research field. The

proposed work can be considered as an extension to the work done by (Sirtkaya,

Seymen, & Alatan, 2013) which utilized a loosely coupled Kalman filter that uses

vision (stereo) pose estimation as the measurement step for the filter and IMU sensor

data for the model propagation step instead of an assumed kinematic model. The

3

latter work was only used to estimate the 2D position of a Kitti benchmark dataset

(Geiger, Lenz, Stiller, & Urtasun, 2013) which corresponded to an image sequence

obtained from a ground vehicle along with inertial sensor readings. SLAM-based im-

plementations by (Weiss, Achtelik, Lynen, Chli, & Siegwart, 2012) provided another

approach to address the scale problem by using a speed-controller to correct the drift

error in Parallel Tracking and Mapping (PTAM) (Klein & Murray, 2007) (a variation

of Visual SLAM (Thrun & Leonard, 2008)) and self-calibration of camera-inertial

sensors on a MAV; however results were not shown for a maneuvering trajectory,

only for hovering in place. The work done by (Kelly, Saripalli, & Sukhatme, 2008)

provided more practical test results; however the cost of the sensor used was very

high and the system utilized a stereo vision odometry configuration in contrast to the

monocular and consumer-grade sensors used in this thesis. Similar work was done by

(Chambers et al., 2014) using an unscented Kalman filter (UKF), which uses a de-

terministic sampling approach to propagate the model instead of linearization of the

nonlinear model used in the EKF, and stereo camera pair to estimate position in the

case where GPS was unavailable. Another system was implemented by (Fraundorfer

et al., 2012) that utilized a forward-looking stereo camera for path planning and ex-

ploration along with a downward-looking monocular camera for autonomous landing

and small scale mapping to replace a laser sensor that put many limitations on the

weight and power required for MAV and UAV systems. (Mourikis & Roumeliotis,

2007) researched a tightly-coupled EKF implementation of vision-inertial fusion by

augmenting vision pose information in the process model with IMU data and used

4

feature points when available for the update step, but this approach makes the EKF

estimator more computationally expensive.

The work presented in this thesis combines some of the methods mentioned above

along with enhancements to the feature tracking step by employing some of the work

done by (Jin et al., 2001), which tried to enhance the outliers rejection mechanism,

which yielded better estimation of camera motion. Also, the work done by (Shen,

Mulgaonkar, Michael, & Kumar, 2013) is very similar to the intended goal of using a

monocular camera (aside from using another fish-eye camera) with IMU sensors for

MAV and UAV systems. While stereo vision does not suffer from the scale ambiguity

problem in monocular cameras, it works poorly on distant features, which makes it

less capable of retrieving robust information about camera motion.

1.2 Statement of Hypothesis

Applying sensor fusion techniques that combine IMU data with image-based fea-

ture extraction data will decrease the error in vehicle state estimation in GPS-denied

environments compared to using an IMU or vision-based algorithm alone. The accu-

racy of the developed algorithms can be validated using sensor data collected from a

ground vehicle and an unmanned aerial vehicle. In vehicle experiments, GPS data can

be collected for the sole purpose of validating the navigation algorithms developed in

this thesis.

5

2. Feature Detection and Tracking

2.1 Definitions

2.1.1 Feature point

A feature point in computer vision can be defined as a region/point of interest

(ROI) of an image. It is considered the building block for a large number of computer

vision algorithms used in modern applications. An algorithm that depends on fea-

tures will only perform as well as the feature detector. Feature extraction/detection

aims to reduce the amount of resources required to describe a large set of data. By

reducing the number of variables to analyze, less computational power and memory

will be required for intended applications like classification or tracking. Feature ex-

traction/detection is a low level image processing operation, which is usually the first

operation performed on an image. Filtering (e.g. with a Gaussian filter) is often

performed to smooth the image prior to feature extraction.

2.1.2 Types of features

Edges

An edge in an image represents points with a strong gradient magnitude in one

direction, which can be combined together to form boundaries of regions or lines.

6

Corners

A corner or interest point refers to a point-like feature in an image with a local

two dimensional structure. Usually the point does not have to be an actual corner.

For example, it could be a bright spot on a dark background, which corresponds to an

interest point that can be uniquely tracked in other image frames. The term ”corner”

is often generically used to describe these points.

Blobs

As the name implies, blob detection is associated with a larger image region than

point-like features. It is used to detect regions in the image that are too smooth to

be detected by a corner detector. A blob (Fig. 2.1) is basically a region in a digital

image that differs in brightness or color from surrounding regions.

7

Figure 2.1. Blobs Example (“OpenCV-Python Tutorials”, 2015)

2.2 Methodology

The choice of which feature to track depends heavily on the application. In general,

a feature should be invariant to morphological transforms in the image. That is

scale, rotation and translation. If a feature descriptor does not change between two

images after rotating, translating (in plane), and scaling (moving further/closer to)

the camera, the feature point is a good choice. As can be seen in Figure 2.2a, the blue

batch does not form a good feature point because moving it locally provides the same

patch again, so it cannot be uniquely tracked. For the black batch, more information

is provided; however, it is still not enough to uniquely identify the feature. That is

moving it horizontally will give the same batch again, but in the vertical direction it

will be different, which resembles an edge in the image. The red batch provides the

8

best feature to track, corresponding to a corner. If the batch is moved in any direction

it will be different in appearance; hence it the best feature to track. It can be seen in

the real image in Figure 2.2b that batches ’A’ and ’B’ are almost impossible to find

uniquely in the image because they are repeated many times. Batches ’C’ and ’D’

can be found in multiple locations along the top of the building. The last two batches

’E’ and ’F’ can only be uniquely found once in the whole image, which makes them

well suited for tracking in consecutive frames of the scene with different rotation and

translation of the camera.

The next step after choosing the corners in an image is to extract or describe them.

A descriptor is basically information about the feature itself which uniquely identifies

it; hence the descriptor makes it possible to track the feature across consecutive

frames. Many applications depend on the quality of the descriptors to be able to

extract useful information that can be used for navigation, object tracking, and other

tasks.

9

(a) Image batch types

(b) Image batches

Figure 2.2. Feature Types. (Webb et al., 2004)

10

2.3 Feature Detection Algorithms

There are several algorithms for detecting one or more of the aforementioned

feature types. Table 2.1 shows some of the algorithms that can be used for this

purpose.

Table 2.1. Detection Algorithms

Algorithm Feature Type

Canny Edge

Sobel Edge

Harris Edge, Corner

Shi & Thomasi Corner

FAST Corner, Blob

LoG Corner, Blob

MSER Blob

This discussion focuses on corner and blob detection algorithms as they are more

applicable to the navigation problem investigated here. Corner detection in general

is a search process using a window (patch) that is moved on the image to detect

intensity changes which would indicate an edge or a corner.

11

Harris

Harris invented a mathematical approach as described in Eq. 2.1 for determining

whether a window in an image contains an edge or a corner.

E(u, v) =
∑
x,y

w(x, y)[I(x+ u, y + v)− I(x, y)]2 (2.1)

where w(x,y) is the window function defined as either a rectangular window or Gaus-

sian window which gives weights to pixels underneath (Fig. 2.3). I is the intensity

function for x,y and the x,y pixel is shifted by u,v. For nearly constant patches, the

intensity difference will be near 0. For very distinctive patches, the difference will be

large. Hence, the Harris detector looks for patches with large values of E.

Figure 2.3. Window Function

For small shifts [u,v], E can be approximated as Eq. 2.2:

E(u, v) ∼= [u, v]M

u
v

 (2.2)

where M is a 2x2 matrix computed from the image derivatives (Eq. 2.3):

12

M =
∑
x,y

w(x, y)

 I2x IxIy

IxIy I2y

 (2.3)

where Ix, Iy are the gradient of the image in the x and y directions respectively. For

each window, a score is calculated using the formula

R = det(M)− k(trace(M))2 (2.4)

where, given the eigenvalues λ1 and λ2,

det(M) = λ1λ2

trace(M) = λ1 + λ2

and k is a constant between 0.04 and 0.06. Then if R is greater than a certain

threshold, it is considered a corner or an edge depending on the threshold value.

As can be seen in Figure 2.4, the vertical edge appears clearly in the X derivative

component but does not show in the Y derivative component. For a flat image, both

X and Y will not show any lines or gradients. As for corners, both the X and Y

components will show the strong gradients which indicate a corner in the original

image.

13

Figure 2.4. Harris Derivatives. (“OpenCV-Python Tutorials”, 2015)

Shi and Tomasi

Shi and Tomasi (1994) made a small change to the Harris algorithm in the scoring

function. Instead of using Eq. 2.4, they modified it to Eq. 2.5, so as can be seen in

Figure 2.5, only the green area is now considered a corner.

R = min(M) = min(λ1, λ2) (2.5)

14

Figure 2.5. Shi and Tomasi. (“OpenCV-Python Tutorials”, 2015)

FAST

Features from accelerated segment test (FAST) is an algorithm developed by

(Rosten & Drummond, 2005) with the goal to decrease the computation time for

corner detection. It offers better computational efficiency over other detectors, which

makes it very suitable for real-time feature tracking. The FAST operation consists of

the following steps:

1. Select a pixel C in the image (see Figure 2.6) which is to be identified as an

interest point or not. Let its intensity be Ic.

2. Select appropriate threshold value t.

15

3. Consider a circle of 16 pixels around the pixel under test.

4. The pixel C is a corner if there exists a set of n contiguous pixels in the circle

(of 16 pixels) which are all brighter than Ic + t, or all darker than Ic − t.

5. A high-speed test was proposed to exclude a large number of non-corners. This

test examines only the four pixels at 1, 9, 5 and 13 (first 1 and 9 are tested if

they are both brighter or darker. If so, then 5 and 13 are checked). If C is a

corner, then at least three of these must all be brighter than Ic + t or darker

than Ic − t.

Figure 2.6. FAST. (Rosten & Drummond, 2005)

SIFT

While the previously discussed algorithms are rotation-invariant (that is, corners

will still appear as corners when the image rotates), they are not scale-invariant as

16

can be seen in Figure 2.7. In the figure, the search window can detect the corner on

the left without a problem, but if the image is scaled, the same window will no longer

detect the corner.

Figure 2.7. Scaling Problem. (“OpenCV-Python Tutorials”, 2015)

(Lowe, 2004) provided an algorithm to solve the scaling problem which aims to

minimize the cost of feature extraction by applying the costly operations only on the

locations that pass an initial test in a cascaded filtering approach. The major stages

of the algorithm are:

1. Scale-space extrema detection: searching over all scales and image locations

using the Difference of Gaussians (DoG) (Figure 2.8) method which consists of

difference of Gaussian blurring of an image with two different σ (σ,kσ). DoG

is an approximation of Laplacian of Gaussian (LoG) (Lindeberg, 1993), defined

as subtraction of one blurred version of an image from another, less blurred

version of the same image.

17

Figure 2.8. Scaling Problem. (Lowe, 2004)

2. Keypoint localization: selection of points is based on stability measures.

3. Orientation assignment: each keypoint location is assigned one or more

orientation based on local image gradients.

4. Keypoint descriptor: the image gradients are measured at the selected scale

around each point, then transformed into a representation that tolerates local

shape distortion.

From the last stage, the algorithm got its name, as it transforms the image data into

scale-invariant coordinates relative to local features.

18

SURF

The (Lowe, 2004) algorithm solved the scale problem but in a costly manner, which

(Bay et al., 2006) tried to solve by an algorithm called Speeded-Up Robust Features,

or in short SURF. Instead of DoG as an approximation of LoG that (Lowe, 2004)

used, (Bay et al., 2006) employed the Box Filter method as in Figure 2.9. The main

advantage of using this method is that the convolution with the box filter can be

calculated with integral images in parallel on different scales.

Figure 2.9. SURF Box Filter. (Bay et al., 2006)

(Bay et al., 2006) uses wavelet responses in the horizontal and vertical directions

for a neighborhood of size 6 squares. These responses can be found very easily using

integral images at any scale. (Bay et al., 2006) provides a way to omit finding rota-

tion invariance, which speeds up the process and makes it robust up to ±15 deg as

illustrated in Figure 2.10.

19

Figure 2.10. SURF Orientation. (Bay et al., 2006)

(Bay et al., 2006) added a significant improvement over SIFT by using the sign

of Laplacian (the trace of M) for the underlying interest point in the matching stage

(Figure 2.11).

Figure 2.11. SURF Matching. (Bay et al., 2006)

(Bay et al., 2006) added optimization for each stage to improve the speed of SIFT

which made it 3 times faster. However, the algorithm does not work well for view

point or illumination change.

20

2.4 Feature Tracking Algorithms

Feature detection methods are usually combined with tracking these features over

multiple frames in order to extract relevant information about camera pose or con-

struct 3-D representations (structure from motion) of the scene. The main problem

that feature tracking algorithms attempt to solve is the image registration problem

(Zitov & Flusser, 2003). Image registration is the process of overlaying images (more

than one) of the same scene taken at different times, from different locations and/or

by different sensors (cameras). There are two main approaches for this purpose, area-

based or feature-based, according to the nature of the images. Image registration can

be divided into four main steps: feature detection, feature matching, transform model

estimation, which defines the type and parameters of the mapping function between

the reference and sensed images, and finally an image resampling and transformation

step. Each steps has its own set of problems and algorithms.

Challenges

Optimal output from the image registration algorithm faces a number of chal-

lenges. Some of these challenges include:

1. Choosing good features to track is essential (Shi & Tomasi, 1994) to make sure

they can be matched in subsequent frames (i.e., the features should have scaling

and rotation invariance).

2. Efficient tracking of points across frames.

21

3. Drift, which occurs due to small error accumulation in the model update.

4. Tracked points may appear/disappear due to occlusions or going outside the

field of view.

5. Outlier rejection is required for optimal estimation.

KLT Tracking

The algorithm derived by Kanade-Lucas-Tomasi (KLT) (Tomasi & Kanade, 1992),

which is based on the work of B. Lucas et al. (Lucas & Kanade, 1981) is the most

commonly used method for feature-based tracking implementation using geometric

deformation. The goal of KLT is to solve the structure from motion (SfM) problem,

which means recovering scene geometry and camera motion from a sequence of images.

A new method called the factorization method was introduced which can robustly

estimate shape and rotation but not depth. Key assumptions of the KLT tracker

(Fig. 2.12) are brightness constancy, small motion and spatial coherence.

Figure 2.12. Brightness Constancy

22

The brightness constancy constraint can be expressed by Eq. 2.6:

I(x, y, t) = I(x+ u, y + v, t+ 1) (2.6)

By defining J(x) = I(x, y, t), and I(x − d) = I(x + u, y + v, t + 1) Eq. 2.6 can be

rewritten as follows in Eq. 2.7:

J(x) = I(x− d) + n(x) (2.7)

where n is noise. The displacement vector d is then chosen to minimize the residue

error defined by the following double integral over the given window W :

ε =

∫
W

[I(x− d)− J(x)]2wdx (2.8)

where w is a weighting function which can be a Gaussian-like function or in the

simplest case it could be set to 1. When the displacement vector is small, the intensity

function can be approximated by its Taylor series truncated to the linear term:

I(x− d) = I(x)− g.d, (2.9)

where g represents the image gradient. The error residue Eq. 2.8 can be written as:

ε =

∫
W

[I(x)− g.d− J(x)]2wdx =

∫
W

(h− g.d)2wdx (2.10)

where h = I(x)−J(x). By differentiating Eq. 2.10 with respect to d, the minimization

is obtained in closed form, which yields Eq. 2.11

(

∫
W

ggTwdA)d =

∫
W

hgwdA (2.11)

Eq. 2.11 is the basic step of the tracking procedure. For every pair of adjacent frames,

the left-side part in parenthesis can be computed from one frame, by estimating

23

gradients and computing their second order moments. The right-hand side can be

computed from the difference between the two frames, which gives the solution for

displacement d.

Other Algorithms

Another algorithm introduced by (Jin et al., 2001) tries to minimize the cumulative

error when trajectories are integrated over time by combining illumination properties

with the geometric ones used by KLT. The standard cross correlation approach is

also used in some applications like face matching. Cross correlation is normally used

to solve the template matching problem, which is not applicable to the navigation

application considered in this thesis.

24

3. Navigation Sensors and Algorithms

3.1 GPS

GPS was developed by the U.S. military conceptually in the late 1960’s but the

first GPS satellite was not launched until 1978. GPS uses specialized satellites to

calculate the position of the receiver. Each satellite continuously broadcasts an epoch

that is used by the receiver to calculate time of arrival (TOA). A message also is sent

with the satellite location and time of transmission (TOT). The receiver needs the

TOTs and TOAs from at least four satellites to compute time of flight (TOF) using

speed of light and then calculate its position. The GPS satellites have atomic clocks

that are synchronized together with a ground clock to ensure accurate timing. Fig.

3.1 shows an illustration of the 24 GPS satellites used to triangulate a GPS receiver

using at least 3 satellites. One of them is used to measure distance to the receiver.

The other two locate the detector on the intersection of two spheres, which intersect

in two points. Using all three satellites, there is only one common intersection point

between them, which is the receiver location.

Due to the nature of GPS, it is not available all the time under all conditions. For

example, indoor environments block the satellite signals and prevent the triangula-

tion process from being completed. Also the satellite signals are affected by weather

conditions like rain or clouds that might block or scatter them. Buildings or tall ob-

25

Figure 3.1. GPS Triangulation (HyperPhysics, 2015)

jects introduce a multi-path problem which can make the signal come from a different

location due to reflections on these objects. They also can occlude satellite signals

resulting in an insufficient number of tracked satellites, reducing accuracy or prevent-

ing a fix. The errors in reporting the location and the time from each satellite make

the position calculation inaccurate. These problems can be summarized in Fig. 3.2.

GPS is frequently used on mobile robots in conjunction with other sensors to detect

its position. The GPS receiver update rate is relatively slower than other sensors

(approximately 1s), and this gap is filled by higher update rate sensors such as an

IMU. This technique is called sensor fusion and decreases the overall navigation error

and adds more advantages over using a single sensor. The coordinate system used

by GPS is defined by the World Geodetic System (WGS) standard. WGS 84 is the

latest revision of the standard done in 1984, which puts its coordinate system origin

at the Earth’s center of mass with an error of less than 2 cm. The International Earth

26

Figure 3.2. GPS Challenges (WIDE, 2005)

Rotation and Reference Systems Service (IERS) Reference meridian defines the zero

longitude and latitude for the WGS 84 model.

Using the WSG 84 model, captured GPS coordinates (longitude, latitude and al-

titude) are converted to Northing-Easting-Down (NED) Cartesian coordinates, which

are used as ground truth for our IMU-Vision filter output. A sample code for comput-

ing this conversion is provided in Appendix A. For the navigation studies performed

in this thesis, GPS is used to provide ground truth data for comparison with the

developed vision-aided navigation algorithms.

27

3.2 IMU

An Inertial Measurement Unit (IMU) is an electronic device that is used to calcu-

late linear velocity, angular acceleration and orientation. An IMU consists of an ac-

celerometer, a gyroscope and sometimes a magnetometer. Position can be calculated

by integrating the acceleration readings twice; however it is not very accurate due to

drift errors that accumulate from the integration of noisy data. An INS combines an

IMU with GPS to help with position estimation when the GPS is not available (e.g.,

in tunnels or inside buildings). However, this approach still depends on acquiring a

GPS signal at some point to correct the drift error in the IMU. This error is caused

by sensor imperfections and vibrations, and when integrating the acceleration twice

to compute position, this error amplifies and propagates as time progresses. An INS

(Inertial Navigation System) combines a GPS receiver with an IMU utilizing the fast

update rate of the IMU and minimizing the error propagation using GPS updates.

INS is widely used for high accuracy applications. Without GPS however, the IMU

error will keep drifting, which makes the INS inaccurate when used indoors or when

GPS satellites are unavailable for an extended period of time. IMU motion estimation

is accurate for a relatively small amount of time due to drift errors that accumulate

due to integration of noise.

An IMU-based navigation algorithm is employed in this thesis for comparison with

the vision-based and vision-aided navigation filter results. The Euler angles were

estimated with integration of the rate gyro measurements. The noise was filtered

28

using normal integration for the first 4 gyroscope readings G as shown in Eq. 3.1.

The Runge-Kutta method was then used to integrate the remaining samples as shown

in Eq. 3.2.

ψt = ψt−1 +Gψ,t−1 × dt , t <= 4 (3.1)

ψt = ψt−1+(Gψ,t−1×dt+2×Gψ,t−2×dt+2×Gψ,t−3×dt+Gψ,t−4×dt)/6 , t > 4 (3.2)

This process filters the noise and gives a smoother curve. The accelerometer data are

used along with the rotation angles from the gyroscope to estimate the trajectory.

RTt = RTt−1 ×

R3,3 −T1,3

0 1


−1

(3.3)

where RTt is a 4x4 matrix describing the homogeneous rotation and translation values

in the world coordinate system. R3,3 is a 3x3 matrix computed by concatenating three

3x3 (yaw, pitch, roll) matrices obtained via integration of the angular velocities about

the IMU axes at time t− 1, and T1,3 is a 3x1 vector describing the translation using

linear velocities at time t − 1 multiplied by the time difference between the current

and previous reading. The linear velocity vector is rotated into the current IMU

coordinate system using rotation angles at time t.

3.3 Vision-Based Navigation

Using vision sensors for navigation is a relatively new field but it has received

considerable attention from researchers. Vision sensors are considered a very good

29

alternative to GPS because they are more tolerant to error propagation. Vision-

based navigation algorithms are mostly performed on a few image frames for each

step, which makes the error more localized.

3.3.1 Challenges

There are several challenges and requirements associated with using vision sensors

for navigation. These include:

� Processing speed can be a major problem due to the amount of information

that is stored in each frame. Images are typically composed of two or even three

dimensional arrays of data. This large amount of data makes image processing

more expensive than processing other navigation sensor data.

� There is a scale ambiguity problem associated with monocular vision systems.

This ambiguity causes the measured data in the image plane to be unit vectors

only, with no depth information.

� Images can be corrupted by noise, which occurs due to many factors like vehicle

vibrations, weather conditions, camera calibration issues, etc.

� The electrical power required to perform real-time image processing can make

it difficult to implement on small mobile vehicles with limited electrical power

resources.

� Feature detection and matching algorithms are very susceptible to noise.

30

3.3.2 Techniques

The main purpose of any vision-based navigation technique is the ability to esti-

mate camera pose with respect to the environment using a sequence of images taken

from a moving camera (monocular vision), or pair of cameras (stereo vision). This

discussion focuses on classical techniques for monocular vision based on epipolar ge-

ometry.

Epipolar Geometry

Epipolar geometry is based on the essential constraint, which describes the re-

lationship between the camera coordinates of a static feature point at two instants

of time and the extrinsic properties of the camera (i.e., camera rotation and trans-

lation). The camera has to be calibrated to convert points measured in the image

plane to equivalent pinhole camera measurements. These pinhole measurements take

the form of unit vectors from the camera to the feature point, and the calibration

process entails removing effects such as radial distortion. Figure 3.3 illustrates the

epipolar constraint. Given measurements ~Πr and ~Πl of a static feature point in the

left and right camera images, the epipolar constraint can be expressed as in Eq. 3.4:

~Πr.(~T ×R~Πl) = 0 (3.4)

31

Figure 3.3. Epipolar Geometry (“OpenCV-Python Tutorials”, 2015)

where ~Πr and ~Πl are measured as

~Πr = f


ur,p

vr,p

1

 , ~Πl = f


ul,p

vl,p

1

 (3.5)

where f is the camera focal length, and up and vp are the image coordinates for feature

point p in homogeneous coordinates. The same principle can be applied to the unit

vectors from the camera origin to the feature point as in Eq. 3.6:

~Or.(~T ×R~Ol) = 0 (3.6)

In Eqs. 3.4 and 3.6, R represents the 3-D rotation matrix from the left image

plane Πl to the right image plane Πr, which is computed from the frame-to-frame

Roll (dφ), Pitch (dθ), and Yaw (dψ) rotation matrices of the camera (Eqs. 3.8, 3.9

and 3.10) as follows:

R = RdφRdθRdψ (3.7)

32

Rdφ =


1 0 0

0 cos(dφ) sin(dφ)

0 −sin(dφ) cos(dφ)

 (3.8)

Rdθ =


cos(dθ) 0 −sin(dθ)

0 1 0

sin(dθ) 0 cos(dθ)

 (3.9)

Rdψ =


cos(dψ) sin(dψ) 0

−sin(dψ) cos(dψ) 0

0 0 1

 (3.10)

~T is the 3-D translation vector from the left image plane to the right image plane. ~T

is expressed in right image plane coordinates as shown in Fig. 3.4. Eq. 3.4 can be

Figure 3.4. Image Planes Orientation (“OpenCV-Python Tutorials”, 2015)

33

applied to all measured feature points, where nfp is the total number of valid feature

points, resulting into Eq. 3.11:
ur,p

vr,p

1



T

E


ul,p

vl,p

1

 = 0, p = 1, ..., nfp (3.11)

where E denotes the essential matrix for feature point coordinates (fundamental

matrix for normalized ones), which is defined as ~T ×R.

These equations can be combined into a single equation (Eq. 3.12) (Soatto et al.,

1996), which is the first step of the eight-point algorithm to compute the essential

matrix. (Longuet-Higgins, 1981) introduced the eight-point algorithm, which finds

the fundamental matrix. (R. I. Hartley, 1997) described a more practical approach

to find the essential matrix which is the normalized eight-point algorithm.

C~e = 0, C ∈ <nfp×9 (3.12)

where Cp, the pth row of C, is defined as Eq. 3.13:

Cp = [ur,pul,p ur,pvl,p ur,p vr,pul,p vr,pvl,p vr,p ul,p vl,p 1] (3.13)

and ~e is the stacked columns of E. Note that the scale ambiguity is apparent in 3.12

because, given a solution ~e, any scalar multiple of ~e would also satisfy the constraint.

This implies that the translation vector ~T can only be determined up to a scale factor

(i.e., only the unit vector of translation can be computed).

In theory, the coplanarity constraint is true for all feature points, which makes

the solution for E trivial given enough feature points (at least five). However, this is

34

not always practical in real world scenarios due to environment variables (like noise,

vehicle vibration, etc) that affect the quality of the measured feature points. Another

problem with the regular eight-point algorithm is that feature point coordinates are

not necessarily normalized; hence the values of the first two coordinates have a much

larger range than the third one for each feature point. Hartley proposed a way

to transform the coordinate system of the feature points to normalize them, which

makes Eq. 3.12 better-conditioned in practical use. With this approach, solving the

equation requires at least 8 feature points because there are 9 equations (with 1 trivial

equation). The resulting matrix may not satisfy the epipolar constraint due to noise

in the feature points coordinates. Therefore, the last step of the algorithm is to find a

matrix E‘ which minimizes the error of the resulting matrix Eest. The singular value

decomposition of Eest is applied as in Eq. 3.14 :

Eest = USV T (3.14)

where U, V are orthogonal matrices and S is a diagonal matrix which contains the

singular values of Eest. To compute E‘, the largest two singular values s1,s2 of S are

used to form S‘ in Eq. 3.15 :

S‘ =


(s1 + s2)/2 0 0

0 (s1 + s2)/2 0

0 0 0

 (3.15)

Then E‘ is formed as in Eq. 3.16 :

E‘ = US‘V T (3.16)

35

Rotation and Translation from Essential Matrix

Using the SVD of E, there are 4 possible solutions for rotation and translation,

with only 1 physically feasible solution, as shown in Eq. 3.17

R1 = UWV T , R2 = UW TV T , ~T1,2 = ±u3 (3.17)

where u3 is the last column of the U matrix and W is defined as Eq. 3.18

W =


0 −1 0

1 0 0

0 0 1

 (3.18)

The physically feasible solution is determined by testing the feature points against

each one of the solutions. Only one combination of R and ~T will project all points

in front of the camera. Testing for the valid combination is done by back-projecting

each pair of the feature points using each of the four combinations. If any of the

3D projected points have a negative depth value, the combination is rejected because

this implies that the point exists behind the camera, which is not physically possible.

Sometimes due to noise, all of the four combinations give negative depth values for

some of the points. In this case, the combination is chosen that gives the highest

percentage of positive depth values.

3.4 Vision-Aided Sensor Fusion Algorithm

An algorithm has been implemented for camera pose estimation which can be

divided into two main stages. A block diagram of the algorithm is shown in Fig. 3.5.

36

An extended Kalman filter was used to integrate the vision-based motion estimation

(using the epipolar constraint and the 8-point algorithm) with the IMU data. The

IMU data were used in the propagation model as they give better accuracy than a

regular kinematic model by utilizing measured vehicle states at each instance of time.

The state estimation vector used in the Kalman filter is shown in Eq. 3.19.

Figure 3.5. Vision-Aided Navigation Filter Block Diagram

Xest = [dφ, dθ, dψ] (3.19)

dψ, dθ and dφ are the rotation angles deltas (rad) around the x-axis, y-axis and z-axis

in the camera frame between the previous and current timestamp. Only delta angles

are estimated, and not the total values of the angles, to eliminate the error propagation

from affecting the calculations. The EKF is divided into two main steps, a model

propagation step and a measurement update step. The state estimates from the EKF

at each time step are then used to update the inertial position and orientation of the

vehicle.

37

Propagation Step

The IMU measurements are used to propagate the state estimation vector. The

state is propagated using the rate gyro data as follows:

dφt = Gφ,t−1 × dt (3.20)

dθt = Gθ,t−1 × dt (3.21)

dψt = Gψ,t−1 × dt (3.22)

The estimation error covariance matrix is propagated using

P̃t = AP̂t−1A
T +Q (3.23)

where P̂t−1 is the covariance matrix from the EKF at the previous time step, Q is a

3x3 matrix representing the process noise, and A is a 3x3 Jacobian matrix resulting

from linearization of the state propagation model:

A =


1 0 0

0 1 0

0 0 1

 (3.24)

Vision-Based Measurement Update

The second step in the extended Kalman filter is the measurement update. In this

EKF implementation, the measurement update entails computing the pose vector us-

ing the vision-based algorithm as shown in Eq. 3.28. Due to the different update

rate between the IMU (100ms) and camera (33.3ms), a post-processing step is done

38

to synchronize the camera frames to the IMU timestamp. The measurement is then

computed between the camera frame in the previous and current IMU reading times-

tamps. The synchronization step assigns the closest camera frame timestamp to the

IMU reading timestamp and ignores in-between frames. The vision-based algorithm

is used to compute R from which the measurement can be extracted:

dφ,m = atan2(−R2,3, R2,2) (3.25)

dθ,m = asin(R2,1) (3.26)

dψ,m = atan2(−R3,1, R1,1) (3.27)

Xm = [dφ,m, dθ,m, dψ,m] (3.28)

The Kalman gain matrix is updated using Eq. 3.29:

Kt = P̃tC
T (CP̃tC

T +Rm)−1 (3.29)

The state estimate is then updated as follows:

Xest = Xp +Kt(Xm −Xp) (3.30)

The estimation error covariance matrix is then updated using Eq. 3.31:

P̂t = [I −KtC]P̃t (3.31)

39

C is 3x3 measurement matrix, and Rm is a 3x3 measurement noise matrix. Both

Q and Rm are tuned to give more weight to the measurement update over the prop-

agation model as shown in Equations 3.32 and 3.33:

Q =


0.5 0 0

0 0.5 0

0 0 0.5

 (3.32)

Rm =


0.05 0 0

0 0.05 0

0 0 0.05

 (3.33)

The measurement matrix C is computed as

C =


1 0 0

0 1 0

0 0 1

 (3.34)

Inertial Position and Orientation Update

Following the EKF at each time step, the estimated angles deltas (dφ, dθ, dψ) are

then used in conjunction with the scale factor computed from the current velocity to

update the inertial trajectory of the vehicle. The inertial rotation matrix RI,t−1 from

the previous time step is used to transform the previous IMU acceleration reading

from the IMU-based reference frame coordinate system (shown in Figure 3.6) to the

world coordinate system as shown in Eq. 3.35. The velocity estimate is updated by

multiplying the acceleration vector by the time difference between the current and

40

previous IMU readings. The magnitude of the velocity estimate is used to estimate

the transition scale factor as shown in in Eq. 3.37. Inertial position and orientation

estimates are then updated as shown in Equation 3.38, which uses homogeneous

coordinates. The frame-to-frame rotation matrix R in 3.38 is computed using the

estimated angle deltas (dφ, dθ, dψ) from the EKF.

Figure 3.6. IMU Coordinate System (Android, 2016)

at−1,world = (RI,t−1)
T × at−1,r (3.35)

vt,world = vt−1,world + at−1,world × dt (3.36)

Scalet = |vt,world|×dt (3.37)

41

(RITI)t = (RITI)t−1 ×

R −T × Scalet

0 1


−1

(3.38)

Eq. 3.38 provides the updated inertial position estimate TI,t as well as the rotation

matrix RI,t, which represents the orientation of the vehicle relative to the inertial

frame. The roll, pitch, yaw Euler angles can then be extracted as follows:

φ = atan2(−RI(2, 3), RI(2, 2)) (3.39)

θ = asin(RI(2, 1)) (3.40)

ψ = atan2(−RI(3, 1), RI(1, 1)) (3.41)

42

4. Implementation and Experimental Results

4.1 Experimental Description

The data used to test the navigation algorithms were captured using an Android-

based smart phone (HTC-one M8) with 2 GB RAM, Qualcomm Snapdragon 801

quad-core 2.3 GHz CPU, high-resolution camera (1920x1080) at 30 fps, accelerometer

with maximum range of 19.61 m/s2 and a resolution of 0.01 m/s2, gyroscope with

maximum range of 2291.8 deg/s and 0.6 deg/s resolution, magnetometer with 200

µT maximum range and 0.01 µT resolution, and a GPS sensor with a maximum

error of 5 meters. Sensor properties were acquired using an Android app installed

on the phone. The phone was mounted on a Cheerson CX-20 quadcoptor as shown

in Fig. 4.1. The quadcopter weighs 980 grams (2.2 lbs) without the phone and

battery (SpecOut, 2016). It has a span of 509 mm (20 inches), and its dimensions are

360x360x200 mm. The quadcoptor is equipped with GPS for a return to home (RTH)

feature. With a 2700 mAh/11v LiPo (180 grams) battery, the Cheerson CX-20 can

average 15 minutes of flight time without payload (phone/camera). It comes with a

GoPro camera mount, which has been altered to hold a smart-phone mount. It has a

maximum speed of 8 m/s or 18 mph. A 2.4 Ghz wireless controller is used to control

the quadcoptor with an operating range of 1500 meters. Testing was conducted in

Losco Regional Park in Jacksonville, Florida. Fig. 4.2 shows a 30 seconds part of the

43

GPS route of the test. The Kitti dataset (Geiger et al., 2013) was also used for the

vision algorithm validation. The Kitti dataset was collected using a standard station

wagon with two high-resolution color and grayscale video cameras. Accurate ground

truth was provided by a Velodyne laser scanner and a GPS localization system.

Figure 4.1. Cheerson CX-20 Quadcopter

An IMU-based navigation solution was computed for the quadcopter data set. As

shown in Figures 4.3a and 4.3b, the results show that the IMU-based trajectory starts

by following the correct path matching the GPS locations; however it starts to drift

away over time.

4.2 Vision-Based Navigation Results

The vision-based navigation algorithm starts by extracting initial feature points

using any of the methods mentioned in Chapter 2. The FAST, SURF, and Harris

corner detectors were all implemented in the vision-based navigation algorithm to

determine the best choice of feature detection algorithm. During testing, the SURF

method provided the best results for both the Kitti dataset and the quadcoptor data

44

Figure 4.2. GPS Path for Quadcopter Flight Test

as shown in Figures 4.14 and 4.12. The FAST method provided similar results in

the Kitti dataset but did not perform as well for the quadcoptor test data (Figures

45

(a) Yaw

(b) Trajectory

Figure 4.3. IMU-Based Estimation Results (Quadcopter)

4.13 and 4.10). The detected feature points are used to initialize the KLT tracker,

which tracks the feature points in subsequent frame(s). A threshold was implemented

to enforce updating the tracker points when there are not enough inliers for the

fundamental matrix estimator.

Filtering of Tracked Features

One important addition to the algorithm is a safeguard against the case of no

(or little) motion between image frames. This mechanism checks for the distance

46

between each pair of tracked points against the mean distance of all tracked points.

The standard deviation of this measure in the case of no motion will be very small;

hence the current frame is skipped from further processing if there are not enough

points after pruning feature points with small distances as illustrated in Fig. 4.4.

This measure also removes features tracked near the image vanishing point, which is

defined as the intersection point of the projection of a set of parallel lines in space on

the image plane. This filtering process provides the next step of the algorithm with

good features to estimate the fundamental matrix.

(a) Unfiltered feature points (835 points)

(b) Filtered feature points (249 points)

Figure 4.4. Filtering Feature Points

47

(a) Quadcopter snapshot (15th second)

(b) Quadcopter snapshot (23th second)

Figure 4.5. Quadcopter Snapshots with Feature Points

Fundamental Matrix Estimation

Even though the filtered points resulting from the last step are sufficient for mo-

tion estimation, there can still be some outlier points which cause the regular eight-

48

point algorithm to compute inaccurate estimates of the essential matrix, which in

turn results in poor approximation of the camera pose, as illustrated in Figures 4.7,

4.8 and 4.9. In the regular 8-point algorithm, all feature points (maximum of 1000

points) are used to compute the fundamental matrix. Camera frames are normalized

using the camera calibration parameters prior to computation of the fundamental

matrix. The Kitti dataset was captured using a camera with 718.856 focal length

and (607.1928,185.2157) principal point. The HTC smartphone that was used on the

quadcoptor has a camera with 1512 focal length and (947.76, 541.55) principal point.

Radial lens distortion values were estimated for the smart-phone camera using the

MATLAB cameraCalibrator tool to (0.159827593819772, -0.359668203419746) along

with tangential distortion values of (-0.000480568550162411, -0.00259254233756110).

The radial and tangential distortion calibration yields a camera correction corre-

sponding to the image shown in Figure 4.6. A chess board with a 6x9 array of 25mm

squares was used as the calibration pattern.

Using random selection algorithms in combination with the 8-point algorithm

makes it more robust and less affected by outliers points, as shown in Figures 4.10

and 4.13 for 1000 trials. Random sample consensus (RANSAC) is an iterative method

to estimate the parameters of a mathematical model from a set of observed data

which contains outliers. Using a variation of RANSAC, M-estimator Sample Con-

sensus (MSAC), an initial fundamental matrix F is set to zero. Then a number of

fundamental matrices f (N trials) are estimated using 8 randomly selected pairs of

feature points using the normalized 8-point algorithm. In each trial, the fitness of

49

(a) Original Image

(b) Undistorted Image

Figure 4.6. Radial and Tangential Distortion (“OpenCV-Python Tutorials”, 2015)

50

Figure 4.7. SURF 8-point (Kitti dataset)

the estimated f is computed for all feature points (ui, vi) using the following fitness

function:
nfpt∑
i

min(d(ui, vi), t) (4.1)

where t is a specified threshold and nfpt is the total number of feature points. If the

fitness of f is less than the fitness of F where F denotes the current best estimate of

51

Figure 4.8. Harris 8-point (Kitti dataset)

the fundamental matrix, f is considered a better estimate and is used for evaluating

the next trials. The distance d is computed using the Algebraic method defined as

d(ui, vi) = (viFu
T
i)2 (4.2)

MSAC is used because it generally converges much quicker than RANSAC. The gen-

erated F matrix gives a better estimation of camera motion between each pair of

52

Figure 4.9. FAST 8-point (Kitti dataset)

frames and minimizes the overall error in total motion between all frames. However,

in order to get accurate results, the random selection process has to be repeated more

than once (trials) to ensure robustness, which adds extra computational overhead for

each fundamental matrix estimation step.

53

Figure 4.10. SURF MSAC (Kitti dataset)

54

Figure 4.11. Harris MSAC (Kitti dataset)

55

Figure 4.12. FAST MSAC (Kitti dataset)

56

Figure 4.13. SURF MSAC (Quadcopter dataset)

57

Figure 4.14. FAST MSAC (Quadcopter dataset)

Camera Pose Extraction

As discussed in Chapter 3, the rotation matrix and translation vector between the

current and previous frame can be extracted from the fundamental matrix. Combin-

ing this information with the last estimated camera pose provides an estimate of the

58

current rotation/translation of the vehicle in world coordinates (up to a scale factor).

This step has another threshold that filters most of the noise using the fact that the

rotation change between two consecutive frames is usually very small; hence when

encountering large changes, the algorithm discards this information as an outlier and

uses the previous pose as the current one. In other words, in this case, the algorithm

assumes that the vehicle is rotating with the previous rate with zero translation. As

shown in Fig. 4.13, the MSAC method applied to SURF features provided a trajec-

tory that closely matches the GPS output. However, there is one main issue (scale)

which is not possible to retrieve using only monocular vision algorithms. This scale

factor is solved by using acceleration values from the IMU to estimate the velocity

change between each two frames. After that, the scale factor is multiplied by the unit

vector computed from the fundamental matrix to get the metric translation between

frames. The current camera pose is calculated using Eq. 4.3.

(RITI)t = (RITI)t−1 ×

R −T

0 1


−1

(4.3)

where (RITI)t is a 4x4 matrix describing the homogeneous rotation and translation

values in the world coordinate system. R is a 3x3 matrix that describes the rotation

from the previous frame to the current frame coordinate system, and T is a 3x1

vector describing the translation (after multiplying it with the scale factor) from the

previous frame to the current frame in the previous frame coordinate system.

59

4.3 Vision-Aided Navigation Filter Results

The vision-aided navigation filter was evaluated using two experimental data sets.

The first was the Kitti dataset (2011˙09˙26˙drive˙0022 subset), with the GPS route

shown in Fig. 4.15a with 82 seconds of running time and a total of 800 1242x375 gray-

scale image frames. GPS/IMU data were measured and synchronized with the frames.

The second test was performed on the data collected from the Cheerson CX-20 quad-

coptor. A 35 seconds subset of data was used and synchronized with GPS/IMU data

and a total of 332 image frames. The GPS route from this dataset is shown in Fig.

4.15b. The vision-aided navigation filter results are shown in Figures 4.16 and 4.17

after several tuning attempts using different combinations of process/measurement

noise values. The yaw angle drift from the IMU is corrected by the yaw angle es-

timation using the vision pose measurement, which decreased the error between the

estimated vehicle trajectory and the actual path calculated using GPS. It is worth

noting that the GPS sensor used was a consumer-grade GPS device integrated into a

smart phone, which has mean position error of 3 meters. The results also show that

the EKF smooths the estimated trajectory compared to the raw GPS measurements.

The SURF and FAST feature detection methods were used in all tests to compare

the performance using two different categories of feature detector. FAST provided

comparable results to the SURF method with less computational time for both tests.

The main tuning parameter was the number of frames to use for tracking. Tracking

60

(a) Kitti Data Set

(b) Cheerson Quadcopter Data Set

Figure 4.15. GPS Tracks from the Experimental Data Sets

61

feature points over 2 or 3 frames gave the best results. This parameter relies heavily

on the frame rate of the processed image feed and the speed of the vehicle as well.

Figures 4.16 and 4.17 show the comparison between the IMU, Vision and Vision-

aided navigation filter output trajectory against the GPS path for the quadcoptor and

Kitti data sets. While the filtered path does not match the GPS path completely,

it follows the GPS track better than the IMU alone and more smoothly than the

vision output alone. The figures also show the difference between using the SURF

and FAST methods.

(a) SURF

(b) FAST

Figure 4.16. Trajectory Estimation (Quadcopter Data Set)

62

Table 4.1 shows the mean square error (MSE) for the quadcopter and the Kitti

datasets, which is the distance between the 3-D position calculated by GPS and the

3-D position calculated by the vision-aided navigation filter defined as follows:

MSE =

∑N
t=0(Posgps,t − (

∑t+range/2
ts=t−range/2 Posfilter,ts)/range)

2

N + 1
(4.4)

where range is the ratio between GPS update rate (1s) and filter update rate (100ms).

Ten filter runs were performed for the MSAC implementations and the average MSE

(a) SURF

(b) FAST

Figure 4.17. Trajectory Estimation (Kitti Data Set)

63

value was computed. The error becomes much larger when the regular normalized

8-point algorithm is used alone for both datasets. More than 90 percent of running

time of the filter is taken by the fundamental matrix estimation step when using the

FAST method, while only 1.2 percent of the total time was consumed by the feature

point detection step and 8.6 percent for the feature point tracking step. Using the

SURF method, 68 percent of the running time was consumed by the fundamental

matrix estimation, approximately 25 percent was used by the feature point detection,

and the tracking step only used 6 percent with a 1.3X increase in total running time

over using the FAST method for the quadcopter dataset.

Table 4.1. Trajectory Mean Square Error

Dataset Feature Detector MSE(metersˆ2)

Quadcopter SURF (MSAC) 60.2223

Quadcopter SURF (Norm8) 90.4586

Quadcopter FAST (MSAC) 62.0694

Quadcopter FAST (Norm8) 73.5585

Kitti SURF (MSAC) 343.7344

Kitti SURF (Norm8) 7.523E+03

Kitti FAST (MSAC) 507.1884

Kitti FAST (Norm8) 3.405E+03

64

Figures 4.18a and 4.18b show that both the IMU and vision-based algorithms

provided similar results most of the time, but due to the drift in the IMU calculation

it passes the π boundary earlier than the vision algorithm and because the EKF noise

was tuned towards favoring the measurements over the IMU, the filtered output from

the vision-aided navigation filter more closely follows the vision curve instead of the

IMU curve. A bounded change to the pitch and roll angles is also observed, as

expected.

65

(a) Estimated States vs. Time

(b) Attitude vs. Time

Figure 4.18. Estimated Attitude and Attitude Rates (Quadcopter Data Set)

Fig. 4.19 shows the number of features points extracted in each frame against the

number of matched features between each pair of frames using the SURF method. The

whole image resolution (1920x1080 pixels) is used, which provides high quality feature

points. A limit of 1000 feature points was used as it provided enough information to

estimate the fundamental matrix.

66

Figure 4.19. Total Feature Points vs. Matched Feature Points

Figure 4.20 shows the effect of using the distance between each pair of matched

points to prune out small distances to provide higher quality features to calculate the

fundamental matrix. A threshold of 0.7 of the mean distance was used here.

67

Figure 4.20. Matched Feature Points vs. Filtered Feature Points

68

5. Conclusion and Recommendations

In this thesis, a vision-aided navigation algorithm was developed that provides sensor

fusion of data from an inertial measurement unit (accelerometers and rate gyros) with

information extracted from a monocular vision sensor. The algorithm, which takes

the form of an extended Kalman filter implementation, utilizes the IMU data for the

state propagation step and vision-based information for the measurement update step.

This vision-based information corresponds to the frame-to-frame camera rotation and

translation, which is computed using tracked feature points and the classical eight-

point algorithm. The vision-aided navigation filter was implemented on experimental

data obtained from a ground vehicle and a quadcopter UAV. The navigation results

were then compared with those obtained using an IMU-based solution (i.e., using

only the IMU data to estimate the vehicle motion) and a vision-based solution that

used the eight-point algorithm alone to estimate the vehicle motion.

The experimental results show that, even though the vision-aided navigation filter

managed to solve partially some of the problems discussed (the scale problem from

vision and the drift error from IMU), due to the randomness of feature selection

for estimation of the fundamental matrix, the algorithm output was not guaranteed

to be accurate for all cases considered even after introducing the extra safeguard of

distance checks to account for noisy movement. Out of 20 test runs, 1 run yielded

69

inaccurate estimates of camera pose from vision, which was corrected by the IMU

fusion; however, the position estimation was affected, causing the overall trajectory

to drift away from the correct path. One possible solution is to tune the Kalman

filter parameters but that requires considerable trial and error.

Another observation from the results is that with smooth movement the algorithm

provides better estimation, which can be seen clearly from the Kitti dataset results.

Several feature detection algorithms were implemented for use in the vision-aided

navigation filter. These included SURF, FAST and the Harris corner detector. Over-

all, the best pose estimation was achieved using the SURF feature detection method.

While the algorithm is not ready for real time implementation, it provides a practical

approach which can be tuned to fit into a semi-real time implementation given the

increase of processing power in consumer-grade mobile devices. The algorithm was

implemented using Matlab but can easily be ported into embedded device program-

ming such as Java or C++, which can fit on a mobile device similar to the one used

for the test. As a final note, the work done here addresses a monocular camera in

contrast to much of the work that has been done in this field which used stereo vision.

70

REFERENCES

Android. (2016). Developers sensors api. Retrieved from
https://developer.android.com/guide/topics/sensors/sensors_overview.html

Bay, H., Tuytelaars, T., & Van Gool, L. (2006). Surf: Speeded up robust features.
In A. Leonardis, H. Bischof, & A. Pinz (Eds.), Computer vision – eccv 2006: 9th
european conference on computer vision, graz, austria, may 7-13, 2006. proceedings,
part i (pp. 404–417). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from
http://dx.doi.org/10.1007/11744023_32 doi: 10.1007/11744023˙32

Chambers, A., Scherer, S., Yoder, L., Jain, S., Nuske, S., & Singh, S. (2014,
June). Robust multi-sensor fusion for micro aerial vehicle navigation in gps-
degraded/denied environments. In 2014 american control conference (p. 1892-1899).
doi: 10.1109/ACC.2014.6859341

Fraundorfer, F., Heng, L., Honegger, D., Lee, G. H., Meier, L., Tanskanen, P., &
Pollefeys, M. (2012, Oct). Vision-based autonomous mapping and exploration using
a quadrotor mav. In 2012 ieee/rsj international conference on intelligent robots and
systems (p. 4557-4564). doi: 10.1109/IROS.2012.6385934

Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013, September). Vi-
sion meets robotics: The kitti dataset. Int. J. Rob. Res., 32 (11), 1231–
1237. Retrieved from http://dx.doi.org/10.1177/0278364913491297 doi:
10.1177/0278364913491297

Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision
(2nd ed.). New York, NY, USA: Cambridge University Press.

Hartley, R. I. (1997, Jun). In defense of the eight-point algorithm. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19 (6), 580-593. doi:
10.1109/34.601246

HyperPhysics, G. S. U. (2015). Gps. Retrieved from
http://hyperphysics.phy-astr.gsu.edu/hbase/mechanics/imgmech

Jin, H., Favaro, P., & Soatto, S. (2001). Real-time feature tracking and outlier
rejection with changes in illumination. In Computer vision, 2001. iccv 2001. pro-
ceedings. eighth ieee international conference on (Vol. 1, p. 684-689 vol.1). doi:
10.1109/ICCV.2001.937588

Kelly, J., Saripalli, S., & Sukhatme, G. S. (2008). Combined visual and in-
ertial navigation for an unmanned aerial vehicle. In C. Laugier & R. Siegwart
(Eds.), Field and service robotics: Results of the 6th international conference
(pp. 255–264). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from

71

http://dx.doi.org/10.1007/978-3-540-75404-6_24 doi: 10.1007/978-3-540-
75404-6˙24

Klein, G., & Murray, D. (2007, November). Parallel tracking and mapping for small
AR workspaces. In Proc. sixth IEEE and ACM international symposium on mixed
and augmented reality (ISMAR’07). Nara, Japan.

Lindeberg, T. (1993). Detecting salient blob-like image structures and their
scales with a scale-space primal sketch: A method for focus-of-attention. In-
ternational Journal of Computer Vision, 11 (3), 283–318. Retrieved from
http://dx.doi.org/10.1007/BF01469346 doi: 10.1007/BF01469346

Longuet-Higgins, H. C. (1981, Sep 10). A computer algorithm for reconstruct-
ing a scene from two projections. Nature, 293 (5828), 133-135. Retrieved from
http://dx.doi.org/10.1038/293133a0 doi: 10.1038/293133a0

Lowe, D. G. (2004, November). Distinctive image features from scale-
invariant keypoints. Int. J. Comput. Vision, 60 (2), 91–110. Re-
trieved from http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94 doi:
10.1023/B:VISI.0000029664.99615.94

Lucas, B. D., & Kanade, T. (1981). An iterative image registration tech-
nique with an application to stereo vision. In Proceedings of the 7th inter-
national joint conference on artificial intelligence - volume 2 (pp. 674–679).
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Retrieved from
http://dl.acm.org/citation.cfm?id=1623264.1623280

Mourikis, A. I., & Roumeliotis, S. I. (2007, April). A multi-state con-
straint kalman filter for vision-aided inertial navigation. In Proceedings 2007
ieee international conference on robotics and automation (p. 3565-3572). doi:
10.1109/ROBOT.2007.364024

Opencv-python tutorials [Computer software manual]. (2015). OpenCV. Retrieved
from http://opencv-python-tutroals.readthedocs.org/

Prazenica, R. J., Hielsberg, M., Sharpley, R., & Kurdila, A. (2013, Aug 15).

In (chap. 3-D Implicit Terrain Mapping and Path Planning for Autonomous MAV
Flight in Urban Environments). American Institute of Aeronautics and Astro-
nautics. Retrieved from http://dx.doi.org/10.2514/6.2013-4792 (0) doi:
10.2514/6.2013-4792

Rosten, E., & Drummond, T. (2005, Oct). Fusing points and lines for high perfor-
mance tracking. In Tenth ieee international conference on computer vision (iccv’05)
volume 1 (Vol. 2, p. 1508-1515 Vol. 2). doi: 10.1109/ICCV.2005.104

Shen, S., Mulgaonkar, Y., Michael, N., & Kumar, V. (2013, May). Vision-based state
estimation for autonomous rotorcraft mavs in complex environments. In Robotics
and automation (icra), 2013 ieee international conference on (p. 1758-1764). doi:
10.1109/ICRA.2013.6630808

Shi, J., & Tomasi, C. (1994, Jun). Good features to track. In Computer vision and
pattern recognition, 1994. proceedings cvpr ’94., 1994 ieee computer society confer-
ence on (p. 593-600). doi: 10.1109/CVPR.1994.323794

72

Sirtkaya, S., Seymen, B., & Alatan, A. A. (2013, July). Loosely coupled kalman
filtering for fusion of visual odometry and inertial navigation. In Information fusion
(fusion), 2013 16th international conference on (p. 219-226).

Soatto, S., Frezza, R., & Perona, P. (1996, Mar). Motion estimation via dy-
namic vision. IEEE Transactions on Automatic Control , 41 (3), 393-413. doi:
10.1109/9.486640

SpecOut. (2016). Cheerson cx-20. Retrieved from
http://drones.specout.com/l/70/Cheerson-CX-20

Thrun, S., & Leonard, J. J. (2008). Springer handbook of robotics. In B. Siciliano
& O. Khatib (Eds.), (p. 871-889). Springer Berlin Heidelberg.

Tomasi, C., & Kanade, T. (1992, November). Shape and motion from image
streams under orthography: A factorization method. Int. J. Comput. Vision,
9 (2), 137–154. Retrieved from http://dx.doi.org/10.1007/BF00129684 doi:
10.1007/BF00129684

Webb, T., Prazenica, R., Kurdila, A., & Lind, R. (2004, Aug 16).

In (chap. Vision-Based State Estimation for Autonomous Micro-Air Vehi-
cles). American Institute of Aeronautics and Astronautics. Retrieved from
http://dx.doi.org/10.2514/6.2004-5349 (0) doi: 10.2514/6.2004-5349

Weiss, S., Achtelik, M. W., Lynen, S., Chli, M., & Siegwart, R. (2012, May). Real-
time onboard visual-inertial state estimation and self-calibration of mavs in unknown
environments. In Robotics and automation (icra), 2012 ieee international conference
on (p. 957-964). doi: 10.1109/ICRA.2012.6225147

WIDE. (2005). Advanced topics for marine technology. Retrieved from
http://www.soi.wide.ad.jp/class/20050026/slides/01/img/61.png

Zitov, B., & Flusser, J. (2003). Image registration methods: a sur-
vey. Image and Vision Computing , 21 (11), 977 - 1000. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0262885603001379
doi: http://dx.doi.org/10.1016/S0262-8856(03)00137-9

73

A. Matlab Code for GPS Lat-Lon-Alt Conversion to NED

a = 6378137.0; % Semi-major axis of WGS 84 ellipsoid

f inv = 298.257223563; % Reciprocal of flattening for WGS 84 ellipsoid

e2 = 6.69437999014e-3; % First eccentricity squared for WGS 84 ellipsoid

% define a local NED reference frame

lat0 d = lat(1)*pi/180; % initial geodetic latitude

long0 d = lon(1)*pi/180; % initial geodetic longitude

h0 = alt(1); % initial height above ellipsoid (m)

chi = sqrt(1 - e2*(sin(lat0 d)ˆ2));

x0 ECEF GPS = (a/chi + h0)*cos(lat0 d)*cos(long0 d);

y0 ECEF GPS = (a/chi + h0)*cos(lat0 d)*sin(long0 d);

z0 ECEF GPS = (a/chi*(1-e2) + h0)*sin(lat0 d);

R GE 3 = [cos(long0 d), sin(long0 d), 0;

-sin(long0 d), cos(long0 d), 0;

0, 0, 1];

R GE 2 = [cos(lat0 d), 0, sin(lat0 d);

0, 1, 0;

-sin(lat0 d), 0, cos(lat0 d)];

R GE 1 = [0, 0, 1; 0, 1, 0; -1, 0, 0];

R GE = R GE 1*R GE 2*R GE 3;

74

r0 ECEF GPS = [x0 ECEF GPS, y0 ECEF GPS, z0 ECEF GPS]';

r0 ECEF = r0 ECEF GPS;

x0 ECEF = r0 ECEF(1);

y0 ECEF = r0 ECEF(2);

z0 ECEF = r0 ECEF(3);

for i=1:length(lat)

lat d = lat(i)*pi/180;

long d = lon(i)*pi/180;

h = alt(i);

chi = sqrt(1 - e2*(sin(lat d)ˆ2));

x ECEF GPS = (a/chi + h)*cos(lat d)*cos(long d);

y ECEF GPS = (a/chi + h)*cos(lat d)*sin(long d);

z ECEF GPS = (a/chi*(1-e2) + h)*sin(lat d);

pos ECEF = [x ECEF GPS - x0 ECEF,

y ECEF GPS - y0 ECEF,

z ECEF GPS - z0 ECEF]';

pos NED(:,i) = R GE*pos ECEF;

end

75

B. Matlab Code for IMU Navigation

dt = time(i) - time(i-1);

if(i<5)

gyro ang x = [gyro ang x; wrap2PI(gyro ang x(end)+p gyro(i-1)*dt)];

gyro ang y = [gyro ang y; wrap2PI(gyro ang y(end)+q gyro(i-1)*dt)];

gyro ang z = [gyro ang z; wrap2PI(gyro ang z(end)+r gyro(i-1)*dt)];

else

gyro ang x = [gyro ang x; wrap2PI(gyro ang x(end)+(p gyro(i-1)*dt +

2*p gyro(i-2)*dt + 2*p gyro(i-3)*dt+p gyro(i-4)*dt)/6)];

gyro ang y = [gyro ang y; wrap2PI(gyro ang y(end)+(q gyro(i-1)*dt +

2*q gyro(i-2)*dt + 2*q gyro(i-3)*dt+q gyro(i-4)*dt)/6)];

gyro ang z = [gyro ang z; wrap2PI(gyro ang z(end)+(r gyro(i-1)*dt +

2*r gyro(i-2)*dt + 2*r gyro(i-3)*dt+r gyro(i-4)*dt)/6)];

end

R psi = [cos(gyro ang z(end) -gyro ang z(end-1)), sin(gyro ang z(end)

-gyro ang z(end-1)), 0;

-sin(gyro ang z(end) -gyro ang z(end-1)),

cos(gyro ang z(end) -gyro ang z(end-1)), 0;

0, 0, 1];

R theta = [cos(gyro ang y(end) -gyro ang y(end-1)), 0,

76

-sin(gyro ang y(end) -gyro ang y(end-1));

0, 1, 0;

sin(gyro ang y(end) -gyro ang y(end-1)), 0, cos(gyro ang y(end)

-gyro ang y(end-1))];

R phi = [1, 0, 0;

0, cos(gyro ang x(end) -gyro ang x(end-1)), sin(gyro ang x(end)

-gyro ang x(end-1));

0, -sin(gyro ang x(end) -gyro ang x(end-1)), cos(gyro ang x(end)

-gyro ang x(end-1))];

R EBtemp = R psi*R theta*R phi;

R EB = R EB*R EBtemp';

a meas B = [ax meas(i-1), ay meas(i-1), az meas(i-1)]';

a meas E = R EB'*a meas B;

newT = [xVelIMU*dt,yVelIMU*dt,zVelIMU*dt]';

TrIMU(:,:,i) = TrIMU(:,:,i-1)/ [R EBtemp,-newT;0,0,0,1];

rotZYX = rotm2eul(TrIMU(1:3,1:3,i));

y = rotZYX(2);

z = rotZYX(1);

x = rotZYX(3);

zRotVIMU = [zRotVIMU;z];

xRotVIMU = [xRotVIMU;x];

yRotVIMU = [yRotVIMU;y];

xVIMU = [xVIMU;(TrIMU(1,4,i-1))];

yVIMU = [yVIMU;(TrIMU(2,4,i-1))];

77

zVIMU = [zVIMU;(TrIMU(3,4,i-1))];

xVelIMU = xVelIMU+a meas E(1)*dt;

yVelIMU = yVelIMU+a meas E(2)*dt;

zVelIMU = zVelIMU+a meas E(3)*dt;

78

C. Matlab Code for Vision Algorithm

cImgT1In = readFrame(inMov);

cImgT1In = rgb2gray(cImgT1In);

imagePoints1 = detectSURFFeatures(cImgT1In);

% Create the point tracker

tracker = vision.PointTracker('NumPyramidLevels', 5,

'MaxBidirectionalError', 0.1);

% % Initialize the point tracker

imagePoints1 = imagePoints1.Location;

initialize(tracker, imagePoints1, cImgT1In);

%% for all frames

total frame cnt = 0;

while(inMov.CurrentTime - time off < time sync)

if(inMov.CurrentTime - time off > 30)

break;

end

skip frame = 0;

if(mod(frame cnt,2) == 0 | | curSize < 20)

cImgT2In = readFrame(inMov);

cImgT2In = rgb2gray(cImgT2In);

79

imagePoints1 = detectSURFFeatures(cImgT2In);

% reset the point tracker

imagePoints1 = imagePoints1.Location;

if(size(imagePoints1) > 0)

setPoints(tracker, imagePoints1);

end

frame cnt = frame cnt + 1;

end

frame cnt = frame cnt + 1;

cImgT2In = readFrame(inMov);

cImgT2In = rgb2gray(cImgT2In);

[imagePoints2, validIdx] = step(tracker, cImgT2In);

matchedPoints1 = imagePoints1(validIdx, :);

matchedPoints2 = imagePoints2(validIdx, :);

curSize = size(matchedPoints1,1);

if(size(matchedPoints1,1) < 20)

skip frame = 1;

end

if(skip frame == 0)

dis sq = (matchedPoints1(:,1) - matchedPoints2(:,1)).ˆ2 +

(matchedPoints1(:,2) - matchedPoints2(:,2)).ˆ2;

mean dis sq = mean(dis sq)

if(mean dis sq < 50) % stopped or very little motion

skipped stopped = skipped stopped+1

skip frame = 1;

80

end

filteredValidIdx = dis sq >= (mean dis sq*1);

inlierPoints1 = (matchedPoints1(filteredValidIdx, :)')';

inlierPoints2 =

(cameraAdjR*matchedPoints2(filteredValidIdx, :)')';

if(length(inlierPoints1) < 16)

skipped notenough = skipped notenough + 1

skip frame = 1;

end

if(skip frame == 0)

[fMatrix, epipolarInliers, status] =

estimateFundamentalMatrix(...

inlierPoints1, inlierPoints2, 'NumTrials',

1000,'Method','MSAC','DistanceThreshold',1e-4);

if(status == 0)

% Find epipolar inliers

inlierPoints1 = inlierPoints1(epipolarInliers, :);

inlierPoints2 = inlierPoints2(epipolarInliers, :);

if(length(inlierPoints1) < 16)

skipped notenough = skipped notenough + 1

skip frame = 1;

81

end

else

skipped notenough = skipped notenough + 1

skip frame = 1;

end

end

if(skip frame == 0)

[fMatrix, epipolarInliers] = estimateFundamentalMatrix(...

inlierPoints1, inlierPoints2, 'NumTrials',

100,'Method','MSAC','DistanceThreshold',1e-4);

inlierPoints1 = (inlierPoints1(epipolarInliers, :)')';

inlierPoints2 =

(cameraAdjR*inlierPoints2(epipolarInliers, :)')';

end

end

if(skip frame == 0)

[R, t] = cameraPose(fMatrix, cameraParamsL,

inlierPoints1, inlierPoints2);

rotZYX = rotm2eul(R);

y = rotZYX(2);

z = rotZYX(1);

x = rotZYX(3);

else

z = 1;

t = [0 0 0];

end

82

t = t/(inMov FrameRate);

if(steps cnt < 5)

newR = eye(3);

else

newR = Rs(:,:,steps cnt-1);

end

if((abs(z) > 0.1 | | abs(x) > 0.1 | | abs(y) > 0.1) && steps cnt > 1)

cor cnt = cor cnt+1;

newT= ts(steps cnt-1,:);

Tr(:,:,steps cnt) = Tr(:,:,steps cnt-1)/ [newR,-newT';0,0,0,1];

R = newR;

t = newT;

else

tempTr = Tr(:,:,steps cnt-1)/ [R,-t';0,0,0,1];

Tr(:,:,steps cnt) = tempTr;

end

total frame cnt = total frame cnt + 1;

end

	Vision-Aided Navigation for Autonomous Vehicles Using Tracked Feature Points
	Scholarly Commons Citation

	tmp.1477600265.pdf.ri1GC

