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Definition of Terms 

Augmented Planform  Any of the fixed planforms (fixed sweep or delta) where high 

lift devices are added to the trailing edge and or leading edge 

of the wing. 

Clean Planform Any of the three planforms (variable geometry, fixed sweep 

or delta) where no high lift devices are added 

Fixed Planforms The planforms which cannot vary the sweep angle. In this 

case, they are the fixed swept and delta planforms. 

Lift to Flap Weight Ratio A created ratio which compares the increment in maximum 
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Unswept Wing The case where the variable geometry planforms wings are in 

the forward most swept position. 
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A numerical investigation of the effects of high lift devices on the low-speed performance of 

a generic swept wing and a delta wing was conducted. The two fixed planforms were initially 

sized to achieve the same high speed performance as the baseline variable geometry wing. 

Following a review of high lift devices a detailed analysis of their use was conducted with 

the aid of vortex lattice method and empirical formulations. The slat and Fowler flap 

combination proved to be the best mechanical solution. In comparison with the initially sized 

delta planform, the final delta planform required a 26% increase in wing area with high lift 

devices to achieve the required low speed performance. This increase in area resulted in a 

14% reduction of the maximum lift-to-drag ratio at cruise. The fixed swept wing had an 

increase in area of 8% over the initially sized fixed swept planform. This resulted in a 

decrease of the maximum lift-to-drag ratio by 1.1% at cruise. The calculated specific air 

range ratio for the delta planform versus the variable geometry planform was 0.95. The 

calculated specific air range ratio for the fixed swept planform versus the variable geometry 

planform was 0.94. The resulting weight penalty for the variable geometry planform did not 

appear to be as detrimental as initially thought when comparing against larger fixed wing 

planforms with high lift devices. Leading edge extensions and vortex lift could provide an 

even further increase in 𝐶𝐿𝑀𝐴𝑋
.  



1 

 

 

 

Chapter I 

Introduction 

1.1 Scope 

 Two fixed wing models, a fixed swept and a delta planform, were initially sized to 

have similar cruise performance to the baseline, variable geometry wing. Their clean high 

speed cruise and clean low speed approach performance were analyzed with VLAERO+©, 

a Vortex-Lattice Method (VLM) program. These fixed planforms were augmented by high 

lift devices, where the deltas in lift were empirically calculated. The deltas in lift were 

added to the clean, fixed planforms and compared to the unswept variable geometry model 

at the approach conditions. Vortex lift and any type of blown flaps will not be included in 

the study. The planforms were suggested as good candidates for a Supersonic Business Jet 

(SSBJ) while remaining generic for the high lift device application. 

1.2 Statement of the Problem 

The SSBJ must be efficient during supersonic cruise and as a result its low speed 

performance is compromised, especially when compared to subsonic business jets. Sweep 

angle and lift are inversely proportional; as sweep angle increases 𝐶𝐿𝛼
 and 𝐶𝐿𝑀𝐴𝑋

 decrease. 

This results in a faster approach speed and consequently longer runways limiting the 

usefulness unless a solution is found. To have an acceptable and safe landing distance an 

increase in 𝐶𝐿𝑀𝐴𝑋
 is needed. This has been achieved by variable geometry wings (Kubota, 

2008). However, there are a number of concerns with variable geometry wings including 

their complexity, additional weight, and difficulties in certification (Warwick, 2012; 

HISAC 2008). Consequently, an alternative is sought with similar cruise and low-speed 
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performance without the complicated and heavy mechanisms needed for a variable sweep 

wing. 

1.3 Purpose Statement 

The purpose of this study is twofold: (1) propose an alternate solution to variable 

geometry by attempting to design a swept and delta planform with various high lift devices 

that are capable of achieving similar approach and cruise performance to that of a variable 

geometry wing planform; and (2) create a preliminary list of the effectiveness of various 

leading edge and trailing edge high lift devices on a swept and delta planform wing which 

are recommended for further detailed studies.  

1.4 Significance of the Study 

 Low speed performance is important for all aircraft. However, for an SSBJ the slow 

speed performance is essential if a successful jet is to be produced. Although the SSBJ 

could save significant amounts of travel time between major intercontinental cities, if the 

aircraft were to be restricted to a limited number of large airports and runways then it could 

drastically hinder the commercial success of the concept. Landing distance is directly 

related to the approach speed which is inversely proportional to 𝐶𝐿𝑀𝐴𝑋
, which is reduced 

by wing sweep. This can be achieved through wings with variable sweep. The first variable 

geometry concept started in the early 1930s with Westland-Hill Pterodactyl MK. IV – only 

used for longitudinal trim (Revel, 2001). It was not until the Bell X-5 that variable sweep 

was studied which helped develop the first production variable geometry aircraft, the F-

111, in the 1960s (Pappalardo, 2006).  
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The advantages of variable sweep wings are offset by their large inherent weight 

penalty in addition to volume needed for the supplemental structure and mechanical 

devices. Furthermore, the complexity in terms of electrical and mechanical systems, not to 

mention the redundancies needed for operational safety, increase the difficulties with the 

design. Civil certification is another critical concern with variable geometry wings; to this 

day, a commercial aircraft with variable geometry wings has never been certified (HISAC, 

2008). Safety concerns are closely associated with potential certification issues, especially 

when dealing with uneven wing sweep situations or in the event that one wing is stuck 

forward or aft. Not only will the stability requirements demand a large and powerful 

empennage to overcome such situations but the structural considerations in such a case 

could be complex with large and uneven aerodynamic loads. This case could worsen if the 

uneven wing sweep or a stuck wing malfunction occurred at higher speeds. Operating costs, 

specifically the cost of maintenance, was part of reason the F-14 Tomcat was retired and 

replaced by the fixed-winged F-18 Hornet, besides the large technical and operational 

improvements on the F-18 (Stickley, 2006). If a fixed-wing could create similar low speed 

performance to that of the variable geometry wing while maintaining similar cruise 

performance, it would produce the ideal candidate for an SSBJ. The development, 

production, and operating costs could be significantly lower and therefore drastically 

increase the feasibility of the concept.  

1.5 Background 

The combination of comfort, speed, reliability, safety, and cost has been the basis 

of business jets since they were introduced in the late 1950s. Business jets have come a 
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long way from the Morane-Saulnier MS 760 Paris and Lockheed JetStar to the Gulfstream 

G650 and the Bombardier Global 8000 ( Padfield, 2008). Today, business jets have some 

of the longest ranges, fastest cruise speeds, and quietest engines to ever go into service 

(HISAC, 2008; Kubota, 2008). All of the current jet designs are limited by the 

compressibility drag rise and an unstable, high-frequency flow separation or shock wave 

oscillation known as the buffeting phenomenon (Bertin & Cummings, 2014). Although the 

current business jet designs are efficient at transonic speeds, business jets have yet to 

exceed a cruise speed of M0.935 (Cessna Aircraft Company, 2013). In addition, the current 

FAA regulations prohibit civil supersonic flight over land (14 CFR Part 91.821). There will 

always be a need to reduce travel time and Supersonic Transport (SST) will be a vital 

component in the future of air travel, not only for business but eventually commercial and 

cargo (Kubota, 2008).  

There are three main areas of concern with regards to an SSBJ: market viability, 

environmental concerns, and aircraft technologies (Kubota, 2008). The questions 

concerning market viability are related to more of the unknown factors such as the 

developmental costs, true production costs, and maintenance costs. However, it is known 

that an SSBJ would be far more expensive to own and operate than a subsonic business jet. 

The concerns regarding environmental acceptability range from the exhaust emissions in 

the higher altitudes to the sonic boom production. Minimizing the sonic boom overpressure 

and aircraft technologies are closely related. Designing an aircraft to fly efficiently at 

supersonic speeds while emitting a very small sonic boom is an extraordinary engineering 

challenge. This requires small and smooth area transitions while tailoring the airframe to 
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create sinusoidal pressure signatures on the ground rather than the sharp N-wave which is 

associated with the large sonic boom (Warwick, 2012). 

1.6 Limitations and Assumptions 

While providing quick results, the Vortex Lattice Method (VLM) has some 

limitations as it cannot predict or simulate flow separation of any kind. Therefore the results 

cannot capture separation, stall, or any addition of vortex lift. In most modern supersonic 

aircraft, vortex lift can account for a large portion of low speed lift produced (Bertin & 

Cummings, 2014). Since the VLM cannot predict separation, vortex lift is not taken into 

account.  

The empirical calculations were primarily sourced from Roskam’s Airplane Design 

(1990) and Nicolai and Carichner’s Fundamentals of Aircraft Design (2010) books. Their 

methods are primarily based on the methods presented in Finck, and Hoak USAF Stability 

and Control Datcom (1975). The following list summarizes the assumption behind the 

empirical calculations.  

 Linear-lift range 

 No separated flow on wings and flaps 

 M<0.8, t/c<0.1 

 Mechanical flaps 

 Plain trailing edge flaps had sealed gaps 

 No beveled trailing edges 

 No compressibility effects 
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 Single-slotted and Fowler flaps 

 Near fully extended position 

 Slot properly developed 

 Slats 

 First order approximation 
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Chapter II 

Review of the Relevant Literature 

2.1 Brief History and Developments of the SSBJ 

 In the 1870s Ernst Mach was the first to explain the phenomenon of sonic booms 

(Benson, 2013). The first major milestone in aviation was in 1947 when Capt. Chuck 

Yeager in the Bell XS-1 (later X-1) flew M1.07 in level flight (Benson, 2013). Later, in the 

1950s the Air Force started work on a new generation of interceptors and fighters known 

as the Century Series, F-100 through F-106. It was not until the Convair B-58 Hustler that 

sustained supersonic flight was capable (1,000+ miles) (Benson, 2013). With the sustained 

flights above Mach 1 the delta winged B-58 helped demonstrate the feasibility of 

Supersonic Transport (SST). These sustained flights also made the B-58 a symbol for sonic 

boom complaints; leaving a sonic boom wake approximately 20 to 40 miles wide, 

frightening residents, breaking windows, and making their dogs bark (Benson, 2013). 

2.1.1  SSBJ Studies  

 The idea of an SSBJ first started with the Supersonic Commercial Air Transport 

(SCAT) programs started by NACA then inherited by NASA in 1958 (Chambers, 2005). 

The first test bed for the SCAT program was the XB-70A in 1959 and it was not until the 

early 1960s that three main concepts (of about 40) were used for industry studies and 

proposals (Benson, 2013). The Russian Tu-144 SST had a short lifespan as a passenger 

transport followed by the Concorde which was a technical success but not economically 

viable (Chambers, 2005).  
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Figure 2.1 shows the timeline of various NASA SST research projects culminating 

with the Quiet Supersonic Platform (QSP) (Chambers, 2005). Research showed the sonic 

boom depended on a number of factors including; aircraft maneuvering speed, flight path, 

atmospheric conditions, aircraft configuration, and the lift produced as well as the total 

volume of the aircraft (Chambers, 2005). The latter two factors, lift produced and the 

aircraft’s volume, could be diminished if the design went from a 100-300 passenger SST 

configuration to an 8-12 passenger SSBJ configuration. Due to the many difficulties in 

developing a big, supersonic commercial aircraft in one step, an SSBJ seems a simpler and 

definite path to solve some of the issues with SST. The SSBJ alternative was suggested “to 

validate the critical supersonic technologies in a small research vehicle…” (Chambers, 

Figure 2.1 Chronology of supersonic research at NASA Langley Research Center 

(Chambers, 2005).   This illustrates the various SST programs leading up to recent 

times. 



9 

 

 

 

2005). From 1963 to 1995 at least 22 studies and projects were done on various SSBJ 

concepts but the sonic boom overpressure was still too large. In 2001, the start of the QSP 

was directed towards technical development and validation of critical technologies 

including substantially reducing the sonic boom (Chambers, 2005).  

High-Speed Aircraft (HISAC) is a European research project funded by the 

European Union between 37 organizations including Dassault, Sukhoi and Rolls-Royce 

(HISAC, 2008). The project studied the feasibility of a small SST. Some of the design 

requirements were: a) a cruise speed between M0.95 and M1.8 with some aircraft having 

the capability for short sprints at M1.2, b) minimum range between 3000 Nm and 5000 Nm 

with 8 PAX, c) maximum landing weight between 70% and 95% MTOW, d) an approach 

speed between 120 kt and 140 kt, and d) a Balanced Field Length (BLF) between 5,500 ft 

and 6,500 ft. The project studied various planforms of which the variable geometry will be 

Figure 2.2  HISAC External Shapes of the Variable Geometry and Low Sonic Boom 

Configurations (HISAC, 2008). For the low sonic boom configuration, notice how there 

appears to be relatively bare below the wings. 
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discussed in the next section. Figure 2.2 and Figure 2.3 show some of the later stages of 

design results.  

Figure 2.2 shows the variable geometry configuration on the left and the low sonic 

boom configuration on the right. The variable geometry configuration appears on par with 

past variable sweep SST configurations. The low sonic boom configuration is a little 

different having the engines on top which relieves some of the sonic boom transmitted 

below in addition to the cranked wing planform (HISAC, 2008). Figure 2.3 shows the low 

noise aircraft and the long range configuration which is primarily based on laminar flow.  

The study did some assessments of CFD prediction on capability for high-lift 

systems. While installed vortex generators reduced the areas of separation on the flap 

surface, they had adverse effects on the overall flow of the wing leading to earlier vortex 

bursting and a reduction in lift (HISAC, 2008). 

After various low boom and shaped sonic boom projects including Gulfstream’s 

Quiet Spike there is still the technical issue of having an efficient cruise with low sonic 

boom and sufficient low speed performance (Benson, 2013).  

Figure 2.3  HISAC External Shapes of the Low Noise and Long Range Configurations 

(HISAC, 2008). The long rang configuration would use a supersonic leading edge with a 

very thin wing. 
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2.1.2  Variable Geometry 

 The HISAC research project demonstrated that variable geometry model showed 

good aerodynamic characteristics, with no need for leading edge vortices to obtain a high 

maximum lift requiring 30%-40% less thrust, resulting in much lower airport noise. The 

exact figures were not disclosed in the HISAC Public Report (2008). In addition, the 

variable geometry wing could be significantly smaller than a fixed wing counterpart. This 

could have a large impact on aircraft size, lift, fuel consumption and noise. However the 

study also indicated to the risks of increased weight, and drag of the hinge system, 

integration of the structures, systems in the hinge area and relatively sophisticated high lift 

system in a thin wing. Another question was feasibility of storing fuel in a moving wing 

box and options to control the aircraft due to shifts in aerodynamic center. In addition, there 

were difficulties with fatigue in the wing around the hinges. The first analysis showed 

difficulties to substantiate a single load path hinge, leading to a multiple load path design 

for the single pivot point (HISAC, 2008).  

 With the wings unswept, they can produce adequate lift at low speed conditions 

and with the wings swept aft, allowing for relative efficient cruise; aerodynamically, 

variable geometry is a great solution. As HISAC previously showed, mechanical 

complications, are the weak point. Boeing’s first proposal to use the variable sweep wing 

had an estimated pivot weight of 40,000 lb for a 250 passenger aircraft and their weight 

concerns became real; having to make multiple design changes to still fall short of the 

original design goals. Figure 2.4 shows Boeing’s multiple designs, ending with the 2707-

300 after Boeing gave up on the variable sweep concept in 1966 (Chambers, 2005). Later 
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in 1964 the fixed wing SCAT-15F was conceived from the variable sweep concept SCAT-

15 (Chambers, 2005).  

 

 

Figure 2.4 Evolution of the Final Boeing Supersonic 

Transport Configuration (Chambers, 2005).   The 

various concepts of Boeing over the years show 

attempts to use the variable sweep wings but 

ultimately it would prove too difficult. 
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To this day, there has not been a civil certification of variable geometry wings. This 

could lead to additional work and higher technical risks, if civil certification were to take 

place (HISAC, 2008). One way around this challenge is to have a fixed wing. A large 

concern with a fixed wing is the planform, as it is optimized for efficient cruise, typically 

with a large sweep angle and or a very thin wing. The large sweep and thin wing is 

inherently inefficient at low speeds. Ideally a straight elliptical wing is preferred but of 

course would not be practical at supersonic speeds. In order to create this additional lift 

from the wing, a series of lift augmentation devices is required.  

2.1.3  Lift Augmentation 

 The 𝐶𝐿𝑀𝐴𝑋
 is typically driven by landing requirements to which the aircraft is 

typically designed to. The landing requirements are a design point chosen but the results 

are driven by the laws of physics, the airfoil and planform characteristics. High lift devices 

allow a change in geometric and aerodynamic characteristics of the wing section (Abbott 

& Von Doenhoff, 1959). High lift devices work by increasing the suction on the upper 

surface relative to the lower surface and by delaying or preventing separation, which 

increases the overall wing circulation (Nicolai & Carichner, 2010). The suction may be 

increased by the physical wing angle of attack or by making the wing appear as if it has 

(any one or combination of) more positive camber, chord, and area.  

These high lift devices fall into two categories, unpowered mechanical (passive) 

devices or powered-lift (active) devices (Nicolai & Carichner; 2010, Gudmundsson, 2013). 

The mechanical devices are of two types: (1) Trailing Edge (TE) flaps which increase the 

camber of the airfoil and (2) Leading Edge (LE) devices which aid in flow separation delay 
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(Abbott & Von Doenhoff, 1959; Nicolai & Carichner, 2010). The high lift devices that will 

be discussed in this paper are displayed in Figure 2.5 for the trailing edge devices and 

Figure 2.6 for the leading edge devices. Note the inherent design differences from the 

simplicity of the plain flap to how complicated the mechanisms must be for the Fowler.  

Figure 2.5  Trailing Edge Flap Devices Analyzed (Gudmundsson, 

2014). These simple drawings illustrate the devices which will be 

compared. Top to bottom: plain flap, single slotted flap, and single 

Fowler flap. 
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Plain flaps are inherently simple to operate and maintain but are penalized in 

general effectiveness compared to other flap devices. In addition, plain flaps are sensitive 

to the condition of the boundary layer. As a result, plain flaps are severely affected by 

nonlinearity at higher deflection angles and large sweep angles (Bertin & Cummings, 2014; 

Roskam, 1990; Torenbeek 1982). Even though the flap may be sealed the break at the hinge 

line can have adverse effects on the separation point (Bertin & Cummings, 2014). 

 Slotted flaps can have significant increase in 𝐶𝐿𝑀𝐴𝑋
 over plain in addition to a 

decrease in drag for the slotted configuration (Bertin & Cummings, 2014). Unlike the plain 

flaps, slotted flaps are typically not very affected by the wing’s boundary layer as a new 

boundary layer forms over the flaps surface (Bertin & Cummings, 2014; Torenbeek 1982). 

The effectiveness is very sensitive to the flap geometry and hinge location (Torenbeek, 

1982). The heavier, complex and more costly hinge systems, actuation systems and 

maintenance are the main downfall of slotted flaps. 

 Aerodynamically, the Fowler flap acts identically to that of the slotted flap however 

the effect of the chord extension is much larger (Bertin & Cummings, 2014; Torenbeek, 

1982). Similar to the slat, the slotted flap allows for additional air to reenergize the upper 

boundary layer. The multi-elements not only aid in this feature but also help turn the air 

around the larger deflection angles (Abbott & Von Doenhoff, 1959; Hoerner & Borst, 

1992). The Fowler flap employs a similar track and hinge system mentioned above for the 

slotted flap but is more complex with the addition of the lengthened wing chord. This could 

pose an issue for thin wings especially for supersonic aircraft if the mechanisms cannot be 

completely concealed inside the wing. Past approximately 40° of deflection the single 
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slotted flaps (slotted and Fowler) lose their effectiveness and typically require a second 

element or a type of turning vane to help recover the flow turning effectiveness (Torenbeek, 

1982). 

Figure 2.6  Leading Edge Flap Devices Analyzed (Gudmundsson, 2014). 

These simple drawings illustrate the devices which will be compared. Top 

to bottom: nose flap, Krueger flap and leading edge slat. 
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The nose flap has never been a popular choice among commercial aircraft because 

with highly cambered and rounded airfoils, the nose flap typically induces early separation 

(Rudolph, 1996). The 𝐶𝐿𝑀𝐴𝑋
 is limited due to the radius of curvature on the upper surface. 

This may induce flow separation due to the lack of a slot and discontinuity in the curvature 

on the upper surface (Gudmundsson, 2013). That being said, it has been used on some 

fighter aircraft and is still being considered for future use in SST with benefits for vortex 

lift (Rudolph, 1996). This flow separation on thicker and more rounded airfoils with low 

to medium sweep would adversely affect performance. However, for a thin, highly swept 

wing, the nose flap helps trigger a stable vortex in the upper surface which helps promote 

vortex lift (Rudolph, 1996). This is a promising aspect of the mechanically simple nose 

flap or hinged leading edge. 

 Krueger flaps are often used on inboard section of wings in combination with 

outboard slats such as the Boeing 747. Krueger flaps improve the lift capability of the 

under-cambered airfoil near the root (Gudmundsson, 2014). There are various kinds of 

Kruger flap such as the simple Krueger, bull-nose Krueger and variable-camber Krueger 

(Gudmundsson, 2014).  Although effectiveness with changes in angle of attack is generally 

considered poor, it does increase lift without changing the αstall significantly and can be 

very effective at controlling stall progression along the wing (Gudmundsson, 2014).   

The leading edge slat works by assisting in turning the air around the leading edge 

at high angles of attack. The slat ducts air from the lower surface to the upper surface in 

such a manner that helps delay the upper surface separation over the wing and flap by 

providing a form of Boundary-Layer Control (BLC) (Abbott & Von Doenhoff, 1959; 
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Hoerner & Borst, 1992). This results in the wing continuing to create lift well past the angle 

of attack where the original wing would have stalled (Hoerner & Borst, 1992).  

Flaps have two effects on the lift curve slope of the wing. The use of flaps create a 

∆𝐶𝐿 and ∆𝐶𝐿𝑚𝑎𝑥
. The difference in these two are illustrated in Figure 2.7. The use of flaps 

shift the lift curve slope to the left which raises the 𝐶𝐿 at α = 0° (∆𝐶𝐿). In addition, an 

increase in the maximum lift coefficient occurs ( ∆𝐶𝐿𝑚𝑎𝑥
). The new maximum lift 

coefficient now occurs at a lower angle of attack. The use of a slotted leading edge extends 

the lift curve slope to a higher angle of attack, allowing for a marked increase in lift as seen 

in Figure 2.7. 

Leading edge devices can help with separation near the leading edge at high angles 

of attack but due to their wake, it may cause undesirable flow interference around the 

Figure 2.7  Construction of Wing Lift Curves for Mechanical High-Lit 

Devices (Nicolai & Carichner, 2010). 
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trailing edge flaps (Torenbeek, 1982). This may lead to a decrease of some 15% in ∆𝐶𝐿 

compared to the increment on unflapped airfoil (Torenbeek, 1982). This may be aided by 

the use of a slot but not completely avoided and only minimized, which is why slotted flaps 

are more frequently used today (Bertin & Cummings, 2014). In addition, with the advances 

in accuracies in CFD, the use of multielement airfoils has also decreased; only a single 

slotted flap is used on the Boeing 787 and the Airbus A380 (Bertin & Cummings, 2014). 

The effectiveness of a flap can vary greatly depending on a number of factors. First, the 

two-dimensional effectiveness depends on the specific airfoil; whether the airfoil is thick 

or thin, or has a large amount of camber can greatly influence a flaps effectiveness (Hoerner 

& Borst, 1992; Roskam, 1990). Secondly, and probably most importantly (two-dimension 

wise), the physical flap type has a very large influence; a split flap is simply operated but 

cannot come close to matching the increase in lift from a single or double slotted Fowler 

flap (Hoerner & Borst, 1992; Roskam, 1990). All of this produces a maximum two-

dimensional 𝐶𝑙 which is much higher than attainable by the wing. This is because of a series 

of three-dimensional factors that affects the two-dimensional lift which takes into account 

the three dimensional flow at the edges of the surface. These three-dimensional effects are 

based on features of the physical wing and planform. This depends primarily on the span 

of the flap (flapped wing area), the sweep of the wing, the aspect ratio and the taper ratio 

(Hoerner & Borst, 1992; Roskam, 1990). The effects in varying sweep angle, aspect ratio, 

and taper ratio can be seen in Figure 2.8. Increasing sweep angle, while decreasing the 

aspect ratio and taper ratio typically yield a decrease in 𝐶𝐿𝑀𝐴𝑋
.  
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Besides the flap design, the sweep angle of the wings is one of the largest factors 

when it comes to flap effectiveness. Trailing edge flaps are very effective on wings swept 

up to about 35° (Nicolai & Carichner, 2010; Roskam, 1990). A correction factor called 

sweep correction factor, is a number which takes into account wing sweep in determining 

the flap effectiveness. For a straight wing, the sweep correction factor is 1 but for typical 

Figure 2.8  Trend of 𝐂𝐋𝐌𝐀𝐗
 for various three-dimensional planforms 

(Nicolai & Carichner, 2010). This shows trend of increasing 𝐂𝐋𝐌𝐀𝐗
 

with increasing AR, lower Λ angle and flap sophistication system. 
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wing sweeps up to Λc/4 = 35° the sweep correction factor ≈ 0.9 – 0.8, defined in section 

3.1.4, Figure 3.17). Beyond that, the flap effectiveness drops rapidly somewhere between 

cos2Λ° and cos3Λ°, resulting in a sweep correction factor ≈ 0.6 – 0.25 (Hoerner & Borst, 

1992; Nicolai & Carichner, 2010; Roskam, 1990). This becomes a key problem for most 

fixed wing designs of an SSBJ. However, slots and slats still prove to be effective for sweep 

angles greater than 45° as they reduce separation near the tip and therefore reduce tip stall 

(Hoerner & Borst, 1992; Nicolai & Carichner 2010).  

Most trailing edge flaps are susceptible to a nonlinear decrease in incremental 

effectiveness with an increase in flap deflection angle beyond approximately δ=20° (Bertin 

& Cummings, 2014). For example, one method described in Roskam’s Airplane Design 

Part VI, 1990, in Figure 3.4, illustrates the use of a correction factor for nonlinear lift 

behavior of plain flaps at higher deflection angles. For a flap chord to wing chord ratio 

(cf/c), cf/c = 0.25 at a deflection angle of δ=15° the resulting factor is 0.97 and with a δ=30° 

the resulting factor is 0.65 which only decreases as cf/c increases. Certain types of flaps are 

more susceptible to sweep angle effects, such as plain and split flaps. Unlike, the slotted 

types of flaps, there is no mechanical way to reduce the upper surface separation before the 

flow reaches the trailing edge (Bertin & Cummings, 2014).  

Some flaps are inherently more efficient at producing lift but typically it is at a 

compromise of the complexity of the mechanisms and flap design. Flap design is an 

entirely different optimization problem depending on the size of the flap, internal or 

external linkages, what size gap or is the gap open or sealed. 
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Conventional (passive) high lift devices can typically produce a ∆𝐶𝑙𝑀𝐴𝑋
 in the 

neighborhood of 0.5 for plain flaps or as much as 2.2 for a double/triple slotted Fowler 

with slats (Roskam. 1990; Gudmundsson, 2013). This translates to 𝐶𝐿𝑀𝐴𝑋  in the order of 

1.5 for plain trailing edge flaps with leading edge flaps to 3.2 with double slotted Fowler, 

full span leading edge slats with dropped ailerons (Roskam. 1990; Gudmundsson, 2013; 

Nicolai & Carichner, 2010). The Airbus A321-200 with a 𝐶𝐿𝑀𝐴𝑋
 of 3.2 represents the 

current practical limit of conventional mechanical high lift devices (Nicolai & Carichner, 

2010). The most effective mechanical devices have proven to be the leading edge slat in 

combination with a single or double slotted Fowler flap. Most of the major commercial 

airliners and more of the recent business jets have begun to use these types of slotted flap 

systems, as their benefit and effectiveness have been demonstrated over other high lift 

systems for many years.  

When conventional mechanical high lift devices are not capable of producing the 

required lift, active or powered systems have been employed rather than a large wing or 

engine which would penalize the overall performance of the aircraft. Some of these systems 

are displayed in Figure 2.9. The inherent complex nature of these systems usually need a 

long development time unless a previous design can be used (Nicolai & Carichner, 2010). 

Boundary Layer Control (BLC) is one example. BLC works by controlling the behavior of 

the flow by means of reducing adverse pressure gradients and separation over the wing. 

This may be done by suction or ingestion of the slower boundary layer closest to the surface 
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or, by injecting air tangentially to the surface (Bertin & Commings, 2014). The latter adds 

energy to the air particles in the boundary layer either at one point or various points over 

the wing or flap (Bertin & Commings, 2014). This increases energy in the flow over the 

wing helping the flow to remain attached due to the Coandă effect (“the tendency of a fluid 

to remain attached to a curved surface”) (Bertin & Commings, 2014). The system has 

numerous operational issues such as the large power required for the pumps, a large 

increase in maintenance to keep all of the holes/slots free which can cause a rough surface 

at higher speeds when the system is not operational (Nicolai & Carichner, 2010). When 

operating correctly, a properly designed BLC control can prove to be very successful. The 

F-104 Starfighter, A-5 Vigilante and the F-4 Phantom II were the first few aircraft to 

successfully employ BLC. Table 2.1 summarizes some successful examples of BLC. 

Figure 2.9  Powered-lift STOL Concepts (Nicolai & Carichner, 2010).   

This shows various ways to employ active flaps systems using a deflected 

slipstream system. 
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Table 2.1 

Experimental Trimmed Maximum Lift Coefficients for Several Airplanes with Active Flap 

Systems (Roskam, 1990).  

Model 𝐴𝑅 𝛬(°) 𝑏𝑓/𝑏 HLD Type 𝐶𝐿𝐶𝑙𝑒𝑎𝑛
* 𝐶𝐿𝑀𝐴𝑋

* 

McDonnell F4 2.78 45 0.65 
Plain Blown Flaps + 

Inbd. LE Flaps + Outbd. 
Blown LE Flaps 

1.05 1.40 

Hawker 
Siddeley 
Buccaneer 

3.58 24 1.0 
Blown Plain Flaps + 

Blown LE 
0.96 2.2 

Gen. Dynamics 
F-111 

6.0 13 0.665 
Blown Plain Flaps + 

Blown Center & Outer 
LE Flaps 

1.55 2.45 

North Am. 
F-100A (Exp.) 

3.72 45 0.8 
Blown Plain Flaps + 

Blown LE Flaps 
1.2 1.5 

Boeing 707-120 
(Exp.) 

7.0 35 0.665 
Blown Plain Flaps + LE 

Flaps 
 2.34 

Lockheed C5A 8 25 0.74 
Double Slotted Flaps + 

LE Kruger Flaps + 
External Jet Blowing 

1.45 3.8a 

Douglas A3D 6.75 36 .575 
Blown, Single Slotted 

Flaps + LE Slats 
1.37 1.9 

Note.  Adapted from “Airplane Design, Part VI,” by J. Roskam, 1990, p.361.  Copyright 

by Roskam Aviation and Engineering Corporation. HLD = High Lift Device(s) Down, 

*Trimmed, Gear-up, Inbd = Inboard, Outbd = Outboard. 
aFrom NASA TN D-4928. Wind-tunnel investigation of a large jet transport model 

equipped with an external-flow jet flap.  

 

 

Besides BLC are deflected slipstream systems as shown in Figure 2.9 through        

Figure 2.11. This can be thought of as a kind of thrust vectoring in addition to BLC. Either 

the propeller’s slipstream or jet exhaust is deflected (partial or full) by the flap arrangement 

over part or the entire span. In order for these systems to be used safely, there is typically 

a cross-over duct that allows for the deflected slip stream system to still function under 

engine failure(s) (Nicolai & Carichner, 2010). Figure 2.10 show the potential performance 

of various powered-lift systems. 
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Deflected slipstream systems are very effective in augmenting lift but are very 

harsh on the flap section exposed to the hot jet exhaust. Not only are the temperatures 

beyond ambient, the forces exerted by the jet blast are many times stronger than a typical 

Figure 2.10  Low-Speed Drag Polars for Various Powered-Lift 

Concepts (Nicolai & Carichner, 2010). 
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flap would experience (Nicolai & Carichner, 2010). These effects can be seen on the C-17 

in Figure 2.11 with a reinforced surface behind each engine on the flaps. 

 

Figure 2.11 C-17 with Externally Blown Flaps (Jones, M. Jr. 2010). It is evident the 

externally blown flaps on the C-17 have some additional structural features where the jet 

blast comes in contact with the flaps 
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2.1.4  Vortex Lift 

Flap effectiveness reduces with sweep angles. Highly swept wings with low aspect 

ratio experience a nonlinear lifting phenomenon called vortex lift at high angles of attack. 

Vortex lift is generated by sheets that are shed off the leading edge and eventually roll up 

into pairs of stable vortices over the upper surface of the wing. Figure 2.12 illustrates these 

vortices. These vortices appear because the pressure on the bottom surface of the wing at 

high angles of attack is higher than the pressure on the top of the wing. The flow on the 

bottom surface in the vicinity of the leading edge flows up and around the leading edge. If 

the leading edge is sharp, the flow will separate along its entire length. After separating at 

the leading edge, flow curls into a primary vortex. This vortex exists just inboard and above 

the leading edge, and then reattaches along the primary attachment line, see Figure 2.13. 

Figure 2.12  Leading Edge Vortices Over the Top 

Surface of a Delta Wing at an Angle of Attack 

(Anderson, 2007). The vortices are made visible by dye 

streaks in the water flow. 
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Vortex lift primarily occurs on delta type planforms but has also been known to appear on 

other highly swept planforms (Anderson, 2007).   

 

These vortices appear on the top of the wing and increase in strength downstream 

of the wing apex, as each segment downstream adds to this circulating vortex. These 

leading-edge vortices are fully developed by the time they reach the trailing edge (Hoerner 

& Borst, 1992; Clark & Yeh, 2007). A secondary vortex is formed underneath the primary 

vortex with its own separation shown in Figure 2.13 (Hoerner & Borst, 1992; Anderson, 

2007). The developed vortices can be seen Figure 2.14 with the Concorde taking off. These 

vortices can be very stable and defined until vortex breakdown initiates as seen in          

Figure 2.15. 

Figure 2.13  Schematic of Flow Field Over Top of Delta Wing at an Angle of Attack 

(Anderson, 2007). This illustrates the concept of how the flow over delta wings uses 

vortex lift at high angles of attack 
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With an increase in angle of attack, the strength of the vortex also increases up to a 

point of vortex breakdown or vortex bursting illustrated in Figure 2.15. Vortex breakdown 

is very irregular and greatly influences the flow patterns especially through higher angles 

of attack (Hoerner & Borst, 1992). Once the vortex starts to break down it does not lead to 

a complete absence of vortex lift but it can be expected that the vortex lift increment will 

decrease with further increases of angle of attack (Hoerner & Borst; 1992; Anderson, 

2007). There are two forms of vortex breakdown, the first called spiral-type of breakdown 

where the vortex progressively twists along the core in various directions. The other form 

Figure 2.14  Leading Edge Vortices Forming on Takeoff (Delafosse, P. 

(Photographer). (2003). An Air France Concorde Taking off [Print Photo]. 

Retrieved from http://arcus.centerblog.net/rub-avions--2.html). The relatively high 

angle of attack for the Concorde on takeoff shows these leading edge vortices 

following the leading edge where they expand and lead to vortex breakdown. 
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is bursting as shown in Figure 2.15 where large bubbles form and burst in a chaotic and 

abrupt manner; spiral breakdown is more common (Anderson, 2007). An interesting note, 

CFD solutions of the Euler equations (inviscid flow) have successfully captured this vortex, 

resulting in the conclusion that friction appears to not play a critical role in vortex formation 

and breakdown (Anderson, 2007). There are ways to augment vortex strength and thus 

vortex lift over highly swept wings beyond that of regular mechanical flaps. 

A Leading-Edge Vortex Flap (LEVF), apex fence (apex flap), and a Leading Edge 

Extension (LEX) contribute to higher lift at subsonic speeds due to the ‘nonlinear’ vortex 

Figure 2.15  Vortex Breakdown Over a Delta (Lim, T. T. (Photographer). (2005). Vortex 

Breakdown over a Delta Wing (using dye) [Print Photo]. Retrieved from 

http://serve.me.nus.edu.sg/limtt/). This was performed using dye to visually show the 

vortices. 
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lift and can have a reduction in net drag (Anderson, 2007; Clark & Yeh, 2007; Rinoie, 

2003). Typical mechanical flap systems as previously discussed work to promote attached 

flow or suppress leading edge vortices therefore conventional flap systems typically do not 

aid much in vortex lift. There, however are various devices that aid in increasing the 

vortices strength, and help increase the force components in the thrust and lift directions.  

An LEVF is a full span deflectable surface attached to the leading edge of a delta 

wing, similar to a nose flap (Rinoie, 2003). By deflecting the LEVF, the vortex can be 

formed over the forward-facing surface resulting in a force which generates a thrust 

component forward (Anderson, 2007; Rinoie, 2003). An LEVF can be seen in Figure 2.16 

with a sharp and rounded noise on the left and the spanwise pressure distribution on the 

right. These show the forward facing thrust vectors. Figure 2.17 shows that the flow 

reattachment line is very near the flap/wing junction (Brandon, Hallissy, Brown & Lamar, 

2001).  

 

Figure 2.16 (Left) Rounded and Sharp Edged Examples of LEVF (Rinoie, 

Kwak, Miyata & Noguchi, 2002).  (Right) Schematic of Spanwise Pressure 

Coefficient Distribution over the Top of a Delta Wing Modified by a LEVF 

(Anderson, 2007). 
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The apex fence works very simply by deflecting a surface vertically into the airflow 

at the apex of the wing increasing the vortex strength (Moskovitz, Vess & Wahls, 1986). 

This is an upper surface, hinged panel originally planned for use as vortex control device 

on delta, cranked or arrow wings (Moskovitz et al., 1986). Apex fences appear to work 

well at lower angles of attack by effectively augmenting the suction level over the apex, 

whereas at higher angles of attack the apex suction was reduced. As a result of higher 

suction, a nose-up pitching moment is created. This aids in longitudinal trim to counteract 

the nose-down pitching moment from the deflecting of the trailing edge flaps (Moskovitz 

et al., 1986). Apex fences have been found to noticeably increase trimmed lift capabilities 

(Hoffler, Dhanvafa & Frassinelli, 1986). 

Vortex lift is used by most highly swept, thin wing, modern aircraft such as the        

F-18 and F-22. Instead of an apex fence, these aircraft use variations on LEXs or strakes 

Figure 2.17  Detail of Forward Sections of the Vortex Flap with Oil Flow Pattern, on 

an F-106B α=13°, 40° Vortex Flap (Brandon, Hallissy, Brown & Lamar, 2001). The 

solid oil line on the LEVF shows the edge of the vortex on the flap. 
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as seen in Figure 2.18 through Figure 2.21. A LEX is a highly swept leading edge, and may 

be viewed as a very thin and slender delta wing which is installed in front of the main wing. 

With this low profile, the LEX adds very little drag at cruise conditions. A top view of a 

LEX can be seen in Figure 2.18 on an F-18 model. 

The formation of the larger vortices due to the LEX on the F-18 is clearly illustrated 

in Figure 2.19. The leading vortices help the flow to remain attached over the upper surface 

of the wing at higher angles of attack. 

 

 

 

 

 

Figure 2.18  Leading Edge Extensions on an F-18 

Model (Curry, M. 2003). Circled in blue are the 

leading edge extensions on the F-18 model, image 

may not be to scale. 
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Figure 2.20 shows the various formations of the leading edge vortices from the LEX 

on an F-18 model at different angles of attack. The upper and lower right images are at a 

higher angle of attack (≈25°) while the lower left image is at a lower angle of attack. Figure 

2.20 shows how a LEX can function at the two different angles. Without a LEX, at a high 

angle of attack, a large percentage of the F-18 wing will operate stalled and not be able to 

produce the lift required. The LEX helps to create a new vortex lift segment which is 

generated near the root. By producing this high speed vortex on the upper surface of the 

wing, smooth air flow is maintained well past normal stall conditions and stall is delayed 

(Gülçat, 2010). The effect is achieved by creation of a strong suction on the upper surface, 

which adds to the tip vortex of the wing and increases the total lift (Gülçat, 2010).  

Figure 2.19 An F-A-18E Takeoff (Mass Communication Specialist 2nd Class, Evans, 

James R. (Photographer, 2011). Use of released U.S. Navy imagery does not constitute 

product or organizational endorsement of any kind by the U.S. Navy. The LEX on the F-

18 produces a very evident vortex going over top of the wings. 
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Figure 2.21 shows different flow patterns over the upper portion of the wing. 

Without the LEX at an α = 12°, there is a reverse flow field near the tip which transitions 

to a stagnant flow at α = 18°. With the addition of the LEX, Figure 2.21 shows an 

improvement in flow with the leading edge vortex over the wing. Even at an angle of attack 

α = 18°, the vortex is still strong enough to significantly suppress the stagnant zone on the 

Figure 2.20  1/48-scale model of an F-18 during water tunnel test in the 

Dryden Flow Visualization Facility (NASA, 1985). The top and bottom 

right image are at high angle of attack while the lower left is at a lower 

angle of attack. The dyes allow for easy visualization of the vortices 

produced by the LEX. 
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outer portion of the wing. This creates a noticeable increase in lift. Vortex lift results in 

∆𝐶𝐿𝑀𝐴𝑋
 increases of around 0.6 at 28°, and 0.4 at 18° (Huenecke, 1987). 

Although this study cannot calculate the vortex lift directly, it is recommended for 

further detailed study. Low-speed, high-lift conditions around most fixed wing, supersonic 

aircraft are dominated by flow separation and vortex flows (Anderson, 2007; Bertin & 

Commings, 2014; Clark & Yeh, 2007). However the lift increment from vortex lift may be 

estimated by a method developed by Polhamus, for sharp leading edge delta type wings 

Figure 2.21  Comparison of Flow Field and Lift Development over a Wing with 

and Without LEX (Huenecke, 1987).  
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base upon the leading-edge suction analogy (Polhamus, 1966, 1968, 1971; Hoerner & 

Borst, 1992). The Leading-Edge Analogy depends on the assumption  

…That the total lift is comprised of two parts: (1) a lift associated with the 

reattached flow which can be estimated by an appropriate application of potential-

flow lifting-surface theory, and (2) a vortex lift which is equal to the force required 

to maintain the equilibrium of the potential theory-type flow around the sprial 

vortex. (Polhamus, 1968).  

Full description, assumptions and limitations can be found in the various papers 

published by Polhamus in 1966, 1968, 1971.  

A much less mature technology emerging now is the use of smart materials and 

adaptive or morphing structures. A joint NASA and Wright Laboratory demonstration 

program in 1990 on an F-111A aircraft investigated the active control of chordwise camber, 

spanwise camber, and wing sweep while maintaining a smooth continuous airfoil (Sater, 

Crowe, Antcliff & Das, 2000). At the time of the study, the linkages and devices required 

to obtain the shape alterations were too complex and the system was deemed impractical 

for implementation (Sater et al., 2000). However, recently, smaller scale studies have 

shown more positive results. Studies have shown successful application on micro aerial 

vehicles, small scale and or low speed tests (Wickramasinghe, Chen, Martinez, Wong, & 

Kernaghan, 2011). The small scale studies have shown positive results because of the 

relatively low forces required to maneuver the small scale aerial vehicles. These test have 

used active trailing edges driven by piezoelectric and electroactive polymers 

(Wickramasinghe, et al., 2011). Piezoeletrically driven synthetic jets have shown positive 
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results on flow control and low speed maneuvering when small forces are required       

(Koklu, 2007).   

More recently, an ongoing research group called Smart High Lift Devices for Next 

Generation Wings (SADE) which comprises of 13 European aerospace partners is heavily 

invested in smart high lift devices. Its proof-of-concept, full-scale wind tunnel test was 

successful in showing that on a morphing droop nose and morphing trailing edge, that large 

deformations are possible even for load carrying structures (Smart High Lift Devices for 

Next Generation Wings, 2012). The next step is to carry out tests related to operational 

requirements such as bird strikes. There is however, a large primary technical challenge 

dealing with the elasticity required for the smart material operations versus the stiffness 

required for a typical wing:  

However, the high elasticity required for efficient adaptability of the morphing 

structure is diametrically opposed to the structural targets of conventional wing 

design like stiffness and strength. To find the optimum compromise, precise 

knowledge on target shapes for maximum high lift performance and sizing loads is 

mandatory. (European Commission, 2008). 

Technology from plasma actuators for benefit in boundary layer transition to 

altering variable camber morphing airfoils shows good small scale or low speed conceptual 

ideas. So far however, the use of smart materials in large scale, everyday commercial 

applications, is still in the preliminary phase (Duchmann, Simon, Tropea & Grundmann, 

2014; Yokozeki & Sugiura, 2014). 
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Chapter III 

Methodology 

3.1 Research Approach  

 VLAERO+© commercial code was used to explore and estimate the changes in lift 

between a variable geometry and fixed geometry planforms with addition of empirical 

calculations to estimate the lift increment due to high lift devices. VLAERO+© was used 

to capture the 𝐶𝐿 and 𝐶𝐷𝑖 of a variable geometry, fixed swept, and delta planform at cruise 

and approach conditions. All of the planforms were initially sized to have identical cruise 

performance. After the initial sizing for cruise, the planforms were analyzed at approach 

condition. The 𝐶𝐿𝑚𝑎𝑥
 was assumed from the stall conditions using the lift equation and was 

the goal for the planforms. The variable geometry wing was the baseline model without 

use of high lift devices. The ∆𝐶𝐿 and  ∆𝐶𝐿𝑚𝑎𝑥
 of various high lift devices were estimated 

from empirical methods and were applied to the initially sized fixed swept and delta 

planforms. After the increments in lift were added to the initially sized fixed swept and 

delta planforms, the wing areas were increased until the planforms are able to meet to 

required 𝐶𝐿. For not employing variable geometry, the fixed swept and delta planform were 

penalized by an increase in wing area. An increase in wing area would result in a higher 

wing weight and drag at cruise which decreases the L/D ratio. With a decrease in L/D ratio, 

the aircraft burns more fuel making the aircraft less efficient and more costly to operate. 

The increases in wing area for the fixed swept and delta planforms were minimized by the 

use of flaps. With the use of flaps and an increase in wing area, weight of the planforms 

would increase over the initial size. The increase in weight would further penalize the 
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planforms requiring more lift which results in higher drag and an increase in fuel 

consumption. This is all a consequence of the wing needing to supplement the low-speed 

lift that the sweep diminished. The weight penalty for the variable geometry planform was 

taken in account in the wing weight calculations. The overall impact of the increase in area 

and weight was taken into consideration with use of a Specific Air Range (SAR) ratio 

between the planforms.  

3.1.1  Mission Requirements and Parameters 

The flight conditions and basic aircraft parameters were designed to mimic a typical 

SSBJ in terms of profile and general requirements. They were as follows: (1) Business Jet 

class vehicle, (2) cruise speed twice as fast as current production vehicles, (3) day trip (4-

5 hour flight) operational range, and (4) general aviation airport operational restrictions. 

Table 3.1 summarizes the design parameters. 

Table 3.1   

Aircraft Design Parameters.  

Design Condition Units Target 
Range nm 4,000 – 4,800 
Cruise Mach --- 1.7 – 1.9 
Ceiling FL 510 
Balanced Field Length feet 5,000 – 6,000 
MTOW lb 90,000 – 100,000 
OEW lb 40,000 – 50,000 
PAX --- 8 - 12 

 

A design condition imposed was to ensure a subsonic leading edge which results in 

a minimum leading edge sweep of 56° plus a 2° margin resulting in a ΛLE of 58° for all 

planforms. Having a subsonic leading edge would have beneficial results to mitigate the 

sonic boom over pressure.  An iterative process was performed to create the cruise and 
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approach planform size; the planforms went through this iterative process to arrive at their 

final shape and dimensions, based on the lift requirements. Flaps were added to the delta 

and fixed swept planforms but not the variable geometry planform.  No fuselage or tail 

plane was used in the analysis in order to judge the results solely on the wings to capture 

the principal effects. The empennage and fuselage could have different effects at various 

angles of attack and could unevenly influence the results. These effects could be more 

realistic but the empennage would need to be sized according to the stability needs adding 

further variables and complexity to the problem. The shape of the fuselage would need to 

be optimized for supersonic flight which in itself a large problem. The center line of the 

model is where the wings would normally meet the fairing. An upper limit of  𝛼 = 15° was 

imposed on this study for pilot visibility consideration. The planforms were designed to 

satisfy the approach conditions with the calculations at cruise taking into account any 

penalties or benefits from the change in area needed to satisfy the approach conditions. 

Table 3.2 summarizes these conditions. 

Table 3.2   

Flight Condition.  

 Condition Units Value 
CRUISE 

Altitude FL 500 
Cruise Mach --- 1.8 
Cruise True Airspeed kt 1032.42 
Weight lb 80,000 (80%MTOW) 

APPROACH 
Altitude --- Sea Level 
Approach Mach --- 0.2419 
Approach True Airspeed kt 160 
Weight lb 80,000 (80%MTOW) 
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3.1.2  Planform Geometry  

For simplicity the NACA 63 – 66 series airfoils were used. A subsonic airfoil study 

over a range of angles of attack on the fixed swept planform revealed identical performance 

for the NACA series airfoils but also revealed their superior performance over similar 

geometric airfoils such as RAF26, AH21 MA409, AG17 and NACA M13. The NACA 63-

206 was selected as the airfoil of choice. The thickness of this airfoil is the same as 

supersonic wings of past designs 3% - 6% (HISAC, 2008).  

The general process is discussed here as it applies to all planforms with specific 

limitations and results in each of the respective planform sections. The sweep angle was 

calculated from the Mach angle for cruise at 1.8 with a margin of 2°, yielding the leading 

edge sweep angle for all planforms of ΛLE = 58°. The preliminary trend of the planform 

and flaps configurations was the main concern; a full optimization of the planform was not 

considered. An αmax = 15° was chosen taking pilot visibility into consideration. The delta 

and fixed swept planforms used high lift devices whereas the baseline variable geometry 

did not.  

The approach design point was assumed to be 160 kt (M0.249, 270.0 ft/sec) at sea 

level based on suggested data and an estimated stall speed of 123 kts (M0.1859, 207.6 

ft/sec) per, 14 CFR Part 25, §25.103: Stall speed. Briefly, this states the stall speed need to 

be equal to or less than 
𝑉𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ

1.3
  

3.1.2.1 Variable Geometry – The Baseline Planform   

The initial variable geometry planform was inspired by the HISAC variable 

geometry model. The following process was used to create the variable geometry 
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(baseline) planform. The required 𝑪𝑳 was found from the lift equation with a fixed 

αmax = 15°, VStall = 123 kts and the one variable, the wing area. Therefore the 

required amount of lift needed to occur by α = 15°.  Once the planform was capable 

of creating the lift at low speed, the wings were swept aft for the high speed 

analysis. 

The wing pivot point was located at mid-chord of the unswept wing and the 

centerline of the model. The wing fairing was determined by the point at which the 

leading edge of the unswept wing intersected the leading edge of the swept aft wing. 

The pivot point was based on previous designs, simplicity, and in order to minimize 

the change in wing area between the different configurations. With the wing 

unswept, the fairing is evident but with the wing swept aft, the fairing blends into 

the wing which is typical on most variable geometry planforms. The fairing is 

located in order to cover the hinge and mechanisms. This provides a type of leading 

edge extension of the unswept configuration and in actuality would most likely be 

thicker than the rest of the wing. However, the actual thickness is unknown and 

therefore not modeled.  

The wing is unswept about the pivot to 20° with a trailing edge sweep angle 

of 0° which is the resulting value from typical values of similar aircraft. The wing 

span of the unswept planform used the Aspen Colorado airport limited value of      

95 ft. This was done as the Aspen airport is an important airport for business jets to 

be capable to takeoff and land at. The swept aft span is the resultant of the leading 

edge sweep angle. The taper ratio was assumed from typical values. No flaps added 
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to the planform in order to see whether the aircraft could fly at the approach 

conditions.  

Figure 3.1 shows a dimensioned top view of the variable geometry planform 

with further wing dimensions in Table 3.3 and Table 3.4.  

 

Table  3.3   

Unswept Variable Geometry Wing Dimensions.  

Unswept  
Root to Fairing Fairing to Tip  

Chord at 
Root 
(ft) 

Taper 
Ratio 

Chord at 
Fairing 

(ft) 

Taper 
Ratio 

Half 
Span 
(ft) 

Aspect 
Ratio 

Total 
Span 
(ft) 

Total 
Area 
(ft2) 

27.48 0.645 17.72 0.143 41.4 8.1 95 1,114 

Figure 3.1  Variable Geometry Wing Dimensions. 
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Table  3.4   

Swept Aft Variable Geometry Wing Dimensions.  

 

 

 

Table 3.3 and Table 3.4 show the dimensions for the unswept and swept 

wings. The swept aft model lost an area of 22 ft2 which translates to a difference of 

2% in comparison to the unswept model. Lastly in Figure 3.2 the two VLAERO+© 

models are shown. The unswept model clearly shows the wing fairing.  

 

Swept Aft 

Root Chord 
(ft) 

Taper Ratio Aspect Ratio 
Total Span 

(ft) 

Total 
Area 
(ft2) 

30.15 0.149 3.9 65.78 1,092 

Figure 3.2  VLERO+ Swept Aft and Unswept Models. The swept aft 

model on top and the swept forward model on the bottom. The fairing is 

evident in the bottom image. 
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3.1.2.2 Fixed Sweep Planform 

 The planform started with the swept aft model for the variable geometry 

wing. From there, an identical iterative process that was used in finalizing the 

variable geometry planform was applied to finalize the fixed sweep planform. The 

only difference in the iterative process was the use of high lift devices during the 

low speed calculations.  

3.1.2.3 Delta Planform 

 At an initial cruise 𝐶𝐿= 0.161 the delta planform started with the same area 

as the variable geometry. These dimensions are shown in Table 3.5. 

Table  3.5   

Initial Delta Planform Geometry Wing Dimensions 

 

A typically low value for taper ratio was chosen of 0.15. The wing span was 

a result of a non-zero trailing edge to mitigate adverse sonic boom properties. No 

angle was selected. The aspect ratio should be between 1.5 and 3. The root chord 

had a fixed maximum value to no exceed 50 ft. The largest constraint on the delta 

planform was the subsonic leading edge. This resulted in a planform that would 

have a relatively long root chord and short wing span, yielding a low aspect ratio. 

To minimize the increase in area high lift devices were used. 

3.1.3  High Lift Device Geometry 

Wing flap geometry was obtained from recommendations in Roskam’s Airplane 

Design (1990), Gudmundsson’s General Aviation Applied Methods and Procedures 

Initial Delta Planform  
Root Chord 

(ft) 
Taper Ratio Aspect Ratio 

Total Span 
(ft) 

Total Area 
(ft2) 

44.2 0.15 0.863 43.9 1,114 
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(2014), and Rudolph’s High-Lift Systems on Commercial Subsonic Airliners (1996). All 

of the flap dimensions and values were chosen based on reasonable figures from past 

successful designs. The general flap types and nomenclature were discussed in section 

2.1.3. The specific dimensions will be presented here.  

As previously discussed there are many methods to augment the lift of any 

planform. The following flap systems were selected as they represent the best mechanical 

systems and an empirical method that could be used in estimating the incremental lift 

coefficient was available. Because of its nature, VLAERO+© does not deal with devices 

that delay stall such as slotted or Fowler flaps, Krueger and slats. In this study, the general 

impact of these devices on the lift characteristics of the aircraft is estimated by empirically 

derived methods. 

The basic leading and trailing edge flap dimensions are shown in Table  3.6 with 

the assumptions listed just below.  

Table  3.6   

Basic Trailing Edge Flap Dimensions. 

Flap 
𝑐𝑓

𝑐
 δ (°) 

𝑏𝑓

𝑏
 

𝑐′

𝑐
 

Trailing Edge Devices 
Plain  0.25 10,20, 30 0.6 0 
Single Slotted  0.25 20, 30, 40 0.6 0 
Single Slotted Fowler  0.25 20, 30, 40 0.6 1.05 - 1.1 

Leading Edge Devices 
Nose Flap 0.2 5, 15, 25 0.75 0 
Krueger Flap 0.1 20, 30, 40 0.75 1.1 - 1.05 
Slat 0.2 5, 15, 25 0.75 1.04 - 1.08 

                    Note: Per dimension definitions in section 3.2.1 
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Below in Figure 3.3 the results of the high lift device configuration are displayed 

for the swept and delta planforms.  

 

The trailing edge flap assume all flaps start at 0.05b to account for the wing fairing 

and end at 0.65b to allow room for ailerons. No dropped ailerons were taken into account. 

All flaps are assumed to be well designed including the gaps for slotted and Fowler flaps.  

 The leading edge flaps assume all flaps start at 0.05b to account for the wing 

fairing and end at 0.75b. All flaps are well designed including the radius for the Krueger 

flap in addition to the gap for the slat. 

In order to size the fixed swept and delta planforms for the approach conditions 

appropriately, the increment in lift, both ∆𝐶𝐿 and ∆𝐶𝐿𝑀𝐴𝑋
 need to be calculated. Since 

VLAERO+© can only calculate plain flaps and nose flaps a consistent calculation method 

needed to be used for all high lift devices. As a result empirical formulations were used to 

calculate increment in lift from the high lift devices. 

Figure 3.3 Swept Planform Displaying High Lift Device Configuration 
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3.1.4  Incremental Lift Calculations 

The results from VLAERO+© for the clean planforms were not altered. The 

increment in lift curve slope (∆𝐶𝐿) and the increment in maximum lift coefficient (∆𝐶𝐿𝑀𝐴𝑋
) 

were based on methods presented in Roskam’s Airplane Design Part VI, (1990), which 

quoted frequently Hoak, D.E., et al USAF Stability and Control Datcom, (1978).  

In order to estimate the lift increment due to flaps, ∆𝐶𝐿 and ∆𝐶𝐿𝑀𝐴𝑋
 of the flaps 

needed to be calculated. First the airfoil section lift increment due to flaps ∆𝐶𝑙 was 

calculated then corrected for three-dimensional characteristics of the wing planform 

resulting in ∆𝐶𝐿. Similarly the airfoil section  ∆𝐶𝑙𝑀𝐴𝑋
 was calculated and then corrected for 

three-dimensional characteristics of the wing planforms yielding  ∆𝐶𝐿𝑀𝐴𝑋
. 

Plain Flap ∆𝐶𝑙: 

∆𝐶𝑙 =  𝛿𝑓 (
𝐶𝑙𝛿

(𝐶𝑙𝛿
)

𝑡ℎ𝑒𝑜𝑟𝑦

) (𝐶𝑙𝛿
)

𝑡ℎ𝑒𝑜𝑟𝑦
∙ 𝑘′ 

Where: 

𝑘′ = Is a correction factors which accounts for nonlinearities at high flap 

deflections in Figure 3.4. 

(𝐶𝑙𝛿
)

𝑡ℎ𝑒𝑜𝑟𝑦
= Is found from Figure 3.5. It accounts for flap size and for 

thickness ratio. 

𝐶𝑙𝛿

(𝐶𝑙𝛿
)

𝑡ℎ𝑒𝑜𝑟𝑦

 = Is a correction factor for plain flaps found from Figure 3.6. 

 𝛿𝑓 = Is the flap deflection in radians. 

(1) 
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Figure 3.5  Lift Effectiveness of a Plain Flap (Roskam, 1990). 

Figure 3.4  Correction Factor for Nonlinear Lift 

Behavior of Plain Flaps (Roskam, 1990). 
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Slotted Flap ∆𝐶𝑙: 

∆𝐶𝑙 = 𝐶𝑙𝛼
∙ 𝛼𝛿 ∙ 𝛿𝑓 

Where: 

𝐶𝑙𝛼
 = Is the airfoil lift-curve slope with flaps up. 

𝛼𝛿 = Is the airfoil lift effectiveness parameter found from Figure 3.7. 

  

(2) 

Figure 3.6  Lift Effectiveness of a Plain Flap (Roskam, 1990). 



52 

 

 

 

 

Single Fowler Flap ∆𝐶𝑙: 

∆𝐶𝑙 = 𝐶𝑙𝛼
∙ 𝛼𝛿 ∙ (

𝑐′

𝑐
) 𝛿𝑓 

Where: 

𝑐′

𝑐
 = Is defined in Figure 3.8. 

 

 

Figure 3.7  Lift Effectiveness of a Single Slotted Flap (Roskam, 1990). 

(3) 

Figure 3.8  Fowler Flap Geometry (Roskam, 1990). 
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Trailing Edge Devices ∆𝐶𝑙𝑀𝐴𝑋
: 

∆𝐶𝑙𝑀𝐴𝑋
=  𝑘1𝑘2𝑘3(∆𝐶𝑙𝑀𝐴𝑋

)
𝑏𝑎𝑠𝑒

 

Where: 

𝑘1 = Factor which accounts for flap-chord to airfoil chord ratios different 

from 25 percent in Figure 3.9. 

𝑘2 = Factor which accounts for flap angles different form the reference flap 

angle in Figure 3.9. 

𝑘3 = Factor which accounts for flap motion as a function of flap deflection 

in Figure 3.10. 

(∆𝐶𝑙𝑀𝐴𝑋
)

𝑏𝑎𝑠𝑒
 = Airfoil increment, maximum lift coefficient due to flaps as 

determined in Figure 3.11. Note that the data in Figure 3.11 are based on a 

25 percent referenced flap-chord to airfoil chord ratio and on a reference 

flap deflection angled defined in Figure 3.9. 

Figure 3.9  Flap Chord Correction Factor (k1) and Flap Angle Correction Factor (k2) 

(Roskam, 1990). 

(4) 
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Even though empirical estimations for leading edge devices are not as reliable or 

developed as those for trailing edge devices a similar process was used to calculate ∆𝐶𝐿 for 

the various leading edge devices.  

 

Figure 3.11  Basic Airfoil Maximum Lift Increment due to Trailing 

Edge Flaps (Roskam, 1990). 

Figure 3.10  Flap Motion Correction Factor (Roskam, 1990). 

Figure 3.11 
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Nose Flap 

 

∆𝐶𝑙 = 𝐶𝑙𝛿
∙ 𝛿𝑓 

 

Where: 

𝐶𝑙𝛿
 = Leading edge flap effectiveness parameter for a nose flap from Figure 

3.12. 

(5) 

Figure 3.12  Lift Effectiveness of a Leading Edge Flap (Roskam, 1990). 
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𝛿𝑓 = Nose flap deflection angle in (°) referenced in Figure 3.12. 

Krueger Flap 

 

∆𝐶𝑙 = 𝐶𝑙𝛿
∙ 𝛿𝑓 (

𝑐′

𝑐
) 

 

𝐶𝑙𝛿
 = Leading edge flap effectiveness parameter for a Krueger flap from 

Figure 3.13. Use 
𝑐𝑓

𝑐′
 as the flap-chord to wing-chord ratio. 

𝛿𝑓 = Krueger flap deflection angle in (°) referenced in Figure 3.13. 

 
𝑐′

𝑐
 = Krueger flap chord ratio defined in Figure 3.13. 

 

 

 Leading Edge Slat 

 

(6) 

Figure 3.13  Krueger Flap Geometry (Roskam, 1990). 

Figure 3.14  Leading Edge Slat Geometry (Roskam, 1990) 
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∆𝐶𝑙 = 𝐶𝑙𝛿
∙ 𝛿𝑓 (

𝑐′

𝑐
) 

 

𝐶𝑙𝛿
 = Leading edge flap effectiveness parameter for a leading edge slat from 

Figure 3.14. Use 
𝑐𝑓

𝑐′
 as the flap-chord to wing-chord ratio. 

𝛿𝑓 = Slat deflection angle in (°) referenced in Figure 3.14. 

𝑐′

𝑐
 = Leading edge slat chord ratio defined in Figure 3.14. 

 

The maximum wing incremental lift coefficient due to trailing and leading 

edge high lift devices were found from  

 

∆𝐶𝐿𝑊
=  𝐾𝑏(∆𝐶𝑙) (

𝐶𝐿𝛼𝑊

𝐶𝑙𝛼

) (
(𝛼𝛿)𝐶𝐿

(𝛼𝛿)𝐶𝑙

) 

Where: 

𝐾𝑏 = Flap-span factor as obtained from the procedure suggested in the upper 

part of Figure 3.15 but with the data from the bottom section of Figure 3.15. 

∆𝐶𝑙 = Airfoil lift increment due to flaps. 

𝐶𝐿𝛼𝑊
= Wing lift curve slope. 

𝐶𝑙𝛼
 = Wing airfoil lift curve slope. 

(
(𝛼𝛿)𝐶𝐿

(𝛼𝛿)𝐶𝑙

) = Ratio of the three-dimensional flap effectiveness parameter to the 

two-dimensional flap-effectiveness parameter found in Figure 3.16. 

 

(7) 

(8) 
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Figure 3.15  Effects of Taper Ratio and Flap Span on Kb (Roskam, 

1990). 



59 

 

 

 

Roskam also adds a note: “If a mechanical high lift system consists of a 

combination of leading and trailing edge high lift devices, the method should be 

applied to each type of device separately. This resulting increments in lift 

coefficients can then be added.” 

The maximum wing incremental lift coefficient due to trailing edge flaps 

were found from  

 

∆𝐶𝐿𝑀𝐴𝑋
=  (∆𝐶𝑙𝑀𝐴𝑋

) (
𝑆𝑤𝑓

𝑆
) 𝐾Λ 

Where: 

∆𝐶𝑙𝑀𝐴𝑋
 = Airfoil incremental lift coefficient due to trailing edge flaps in Eq. 

4. 

𝑆𝑤𝑓

𝑆
 = Flapped wing area defined visually in Figure 3.18 and calculated with 

Eq.10 

Figure 3.16  Effects of Aspect Ratio and Flap-Chord Ratio 

on Three-dimensional Flap Effectiveness (Roskam, 1990) 

(9) 
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𝐾Λ = Planform correction factor found from Figure 3.17. 

 

𝑆𝑤𝑓

𝑆
=  

𝜂0 − 𝜂𝑖

𝑏
(1 +

1 − 𝜆

1 + 𝜆
(1 −

𝜂0 − 𝜂𝑖

𝑏
)) 

 

(10) 

Figure 3.17  Effects of Sweep on Planform 

Correction Factor (Roskam, 1990). 

Figure 3.18  Definition of Flapped Wing Area (Roskam, 1990). 
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3.1.5  Drag 

VLAERO+© only calculates induced drag. Thus, alternate methods were needed 

to estimate the total drag of the wing. The drag of the models was calculated using the 

methods presented in Nicolai and Carichner, Fundamentals of Aircraft and Airship Design, 

(2010). 

The following was used to estimate the subsonic drag during approach: 

𝐶𝐷 = (𝐶𝐷0
)

𝑤𝑖𝑛𝑔
+ 𝐶𝐷𝑖

 

Where: 

(𝐶𝐷0
)

𝑤𝑖𝑛𝑔
 = Subsonic zero lift drag coefficient of the wing from Eq. 11. 

 𝐶𝐷𝑖
 = Induced drag coefficient. 

(𝐶𝐷0
)

𝑤𝑖𝑛𝑔
= 𝐶𝑓 (1 + 𝐿 (

𝑡

𝑐
) + 100 (

𝑡

𝑐
)

4

)  𝑅 
𝑆𝑤𝑒𝑡

𝑆𝑟𝑒𝑓
 

Where: 

𝐶𝑓 = Turbulent flat plate skin friction coefficient from Figure 3.19. 

 𝐿 =Airfoil thickness location parameter. 

𝐿 = 1.2 for maximum  
𝑡

𝑐
  located at 𝑥 ≥ 0.3𝑐. 

𝐿 = 2.0 for maximum  
𝑡

𝑐
  located at 𝑥 < 0.3𝑐. 

(
𝑡

𝑐
) = Maximum thickness ratio of the airfoil. 

𝑅 = Lifting surface correlation factor obtained from Figure 3.20. 

𝑆𝑤𝑒𝑡

𝑆𝑟𝑒𝑓
 = Wetted area of the wing from Eq.13.  

(11) 

(12) 
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Figure 3.19  Skin Friction Coefficient over a Flat Plate (Nicolai & 

Carichner, 2010) 

Figure 3.20  Lifting Surface Correlation Factor for Wing Subsonic Induced 

Drag Coefficient (Nicolai & Carichner, 2010).  
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𝑆𝑤𝑒𝑡

𝑆𝑟𝑒𝑓
≈ 2 (1 + 0.2

𝑡

𝑐
) 𝑆𝑒 

Where: 

 𝑆𝑒 = Exposed area 

 

The following was used to estimate the supersonic drag during cruise: 

 

𝐶𝐷 = (𝐶𝐷0
)

𝑆𝑆 𝑤𝑖𝑛𝑔
+ 𝐶𝐷𝑖

 

Where: 

(𝐶𝐷0
)

𝑆𝑆 𝑤𝑖𝑛𝑔
 = Supersonic zero lift drag coefficient of the wing from           

Eq. 15. 

  

(𝐶𝐷0
)

𝑆𝑆 𝑤𝑖𝑛𝑔
=  𝐶𝐷𝑓

+ 𝐶𝐷𝑊
 

 

Where: 

𝐶𝐷𝑓
 = Supersonic skin friction expressed in Eq. 16. 

𝐶𝐷𝑊
 = Wing supersonic wave drag coefficient developed from supersonic 

linear theory expressed in Eq. 18 for a round-nose, subsonic leading edge. 

 

𝐶𝐷𝑓
=  𝐶𝑓

𝑆𝑤𝑒𝑡

𝑆𝑟𝑒𝑓
 

Where:  

𝐶𝑓 = (
𝐶𝑓𝑐

𝐶𝑓𝑖

) 𝐶𝑓𝑖
 

(15) 

(14) 

(16) 

(17) 

(13) 
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Where:  

𝐶𝑓𝑐

𝐶𝑓𝑖

 = is obtained from Figure 3.21. 

𝐶𝑓𝑖
 = is determined the same way for subsonic using cutoff and flight 

Reynolds number comparisoin. 

 

𝐶𝐷𝑊
=  𝐶𝐷𝐿𝐸

+
16

3
𝑐𝑜𝑡Λ𝐿𝐸 (

𝑡

𝑐
)

2 𝑆𝑒

𝑆𝑟𝑒𝑓
 

Where:   

𝐶𝐷𝐿𝐸
 = Supersonic round leading edge bluntness coefficient from           

Figure 3.22. Where b is the span (ft), 𝑟𝐿𝐸 is the radius of the leading edge at 

the mean aerodynamic chord (ft). 

 

 

(18) 

Figure 3.21  Compressibility Effect on Turbulent Skin Friction (Nicolai 

& Carichner, 2010). 



65 

 

 

 

 

 

 

 

Figure 3.22  Supersonic Round Leading Edge Bluntness Drag 

Coefficient (Nicolai & Carichner, 2010).  
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3.1.7  High Lift Device Weight  

The total weight of the high lift devices may be estimated by adding the individual 

weights of the leading edge device and the trailing edge device. This method is from 

Torenbeek (1982): 

 

𝑊𝑡𝑒𝑓

𝑆𝑓
= 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∙ 𝑘𝑓(𝑆𝑓𝑏𝑓𝑠)

3
16 ∙ [(

𝑉𝑙𝑓

100
)

2 sin 𝛿𝑓 cos 𝛬𝑓

(
𝑡
𝑐)

𝑓

]

3/4

 

 

Where: 

𝑊𝑡𝑒𝑓

𝑆𝑓
 = Trailing edge flap weight per flap area (lb/ft2) 

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =  0.105 when 𝑊𝑡𝑒𝑓 is in lb, 𝑆𝑓 in ft2, 𝑏𝑠𝑓 in ft and 𝑉𝑙𝑓 in kts or 

2.70 when 𝑊𝑡𝑒𝑓 is in kg, 𝑆𝑓 in m2, 𝑏𝑠𝑓 in m and 𝑉𝑙𝑓 in m/s 

𝑘𝑓= 𝑘𝑓1 + 𝑘𝑓2 

𝑘𝑓1= 1.0 : Single slotted; double slotted, fixed hinge 

 1.15: Double slotted, 4-bar movements; single slotted Fowler 

 1.30: Double slotted Fowler 

 1.45: Triple slotted Fowler 

𝑘𝑓1= 1.0 : Slotted flaps with fixed vane 

1.25: Double slotted flaps with “variable geometry”, i.e. extending 

flaps with separately moving vanes or auxiliary flaps 

𝑆𝑓= Flap area (ft2) 

(19) 



67 

 

 

 

𝑉𝑙𝑓 = Design speed flaps in landing configuration  

𝑏𝑠𝑓 = Structural flap span along average sweep angle of flap structure 

𝛬𝑓= Average sweep angle of flap structure 

(
𝑡

𝑐
)

𝑓
 = Thickness/chord ratio of flap 

The specific weight of leading edge high lift devices can be read from Figure 5.1.   

3.1.8  Wing Weight  

The metal wing weight estimation method is from Nicolai and Carichner 

Fundamentals of Aircraft and Airship Design (2010). The wing weight is shown in Eq. 21 

with the weight of trailing edge high lift devices in Eq.22 and leading in Figure 5.1. 

U.S. Air Force (USAF) Fighter Aircraft: 

𝑊𝑡 = 3.08 (
𝐾𝑃𝐼𝑉 ∙ 𝑁 ∙ 𝑊𝑇𝑜

𝑡
𝑐

{[tan Λ𝐿𝐸 −
2(1 − 𝜆)

𝐴𝑅(1 + 𝜆)
]

2

+ 1.0} × 10−6)

0.593

 

[(1 + 𝜆)𝐴𝑅]0.89𝑆𝑤
0.741

 

(20) 

Figure 3. 23  Specific Weight of Leading Edge High Lift Devices 

(Torenbeek, 1982) 
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Where: 

𝐾𝑃𝐼𝑉 = Wing variable-sweep factor 

= 1.00 for fixed wings 

= 1.175 for variable-sweep wings 

𝑁 = Ultimate load factor 

= 13.5 for fighter aircraft (based on a design limit load factor of +9.0   

and a margin of safety of 1.5) 

= 4.5 for bomber and transport aircraft (based on a design limit load 

factor of +3.0) 

𝐴𝑅 = Aspect ratio 

λ = Taper ratio 

𝑆𝑤 = Wing area (ft2) 

 

3.1.8  Statistical Aircraft Empty Weight 

Although the planform weights cannot be precisely calculated, a weight estimation 

was used in an attempt to compare a first order approximation of their specific air range 

(SAR) ratios using Eq. 20. This comparison is under the assumption of the same cruise 

speed in addition to the same thrust specific fuel consumption. Even though the actual 

specific fuel consumption of the planforms would be different, the values are likely to be 

in the same order of magnitude. Typically the weight used is the weight of the entire 

aircraft, however in this case, the aircraft weight is not known. Instead, a series of weights 

were calculated and added together to estimate the aircraft’s empty weight. This method 
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assumes the structure of the aircraft would be identical except the wings. The aircraft 

weight consists of a statistically estimated empty weight (𝑊𝑋) and a wing weight (𝑊𝑤𝑖𝑛𝑔). 

The  𝑊𝑤𝑖𝑛𝑔 consists of the weight of the wing in addition to the weight of any high lift 

devices.  𝑊𝑋 is the empty weight of the aircraft without the wings. 𝑊𝑋 was found by 

creating an expression that relates wing weight to the empty weight minus wing weight 

from statistical data of other aircraft with similar MTOW. This result is expressed in        Eq. 

21. The data pool of aircraft consisted of only straight tapered wings. As a result, the wing 

area of the fixed swept wing was used to calculate 𝑊𝑋 in order to keep a consistent basis 

with the historical data and to give all planforms an equal starting point. 

Statistical WX function: 

𝑊𝑋 = 2.665 (𝑊𝑤𝑖𝑛𝑔) 

This equation produces an estimated 𝑊𝑋 of 33,831 lb. This value will be used for 

all three planforms as the base weight of the structure minus the wing weight. To obtain 

the wing weight and flap weight Eq. 19 and Eq. 20 were used. 

3.1.9  Specific Air Range (SAR) Ratio  

The low speed aerodynamic performances of the three planforms are comparable 

in the sense that they all satisfy their specific lift-goal requirements. In order to further 

understand how the results may affect the cruise performance of the swept and delta 

planform, an attempt to quantify the results was made.  

The specific range ratios were determined from Eq. 22.   

 

(21) 



70 

 

 

 

𝑆𝐴𝑅𝑃𝑙𝑎𝑛𝑓𝑜𝑟𝑚

𝑆𝐴𝑅𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
=

𝑉∙(𝐿/𝐷)𝑃𝑙𝑎𝑛𝑓𝑜𝑟𝑚

𝑐∙𝑊
𝑉∙(𝐿/𝐷)𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑐∙𝑊

=
(𝐿/𝐷)𝑃𝑙𝑎𝑛𝑓𝑜𝑟𝑚

(𝐿/𝐷)𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 

((𝑊𝑋)+𝑊𝑤𝑖𝑛𝑔)
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

((𝑊𝑋)+𝑊𝑤𝑖𝑛𝑔)
𝑃𝑙𝑎𝑛𝑓𝑜𝑟𝑚

  

Where: 

(𝐿/𝐷)𝑃𝑙𝑎𝑛𝑓𝑜𝑟𝑚 = 94.3% (𝐿/𝐷)𝑀𝑎𝑥 

𝑊𝑋= Weight of the empty aircraft without wings. 

𝑊𝑤𝑖𝑛𝑔= Weight of wing and high lift devices. 

 

3.2 VLAERO+© 

VLAERO+© is a classical flat surface vortex-lattice method based aerodynamic 

program. The effects of Mach number are included through Prandtl-Glauert scaling. 

VLAERO+© can perform supersonic calculations by limiting the influence of each panel 

to the region inside the Mach cone with an apex at the section leading edge and an angle 

equal the Mach angle. Since shock formation is not modeled, wave drag is not computed 

(Analytical Methods, Inc., VLAERO+© User Manual, 2007). 

(22) 
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3.2.1  Mesh Density for the Study 

  A panel density study was performed using the swept aft model with α = 0° at 

approach conditions in order to observe any changes in the results. VLAERO+© limits the 

number of chordwise panels to 20. Therefore 20 chordwise panels were used. The study 

therefore focused on the spanwise distribution and any noticeable variations with the 

overall 𝐶𝐿. The study is visually represented in Figure 3.24. 

 Figure 3.24 shows little variation between the panel densities with the percent 

difference in 𝐶𝐿 at α = 0° is less than 0.2% when compared to the highest density of 

spanwise panels. The variation in lift coefficient did not happen until the 10-4 decimal 

place, which is well beyond the sensitivity of this study. Therefore, 88 spanwise panels 

were used. 

 

  

Figure 3.24  Spanwise Panel Density Study. 
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Chapter IV 

Results 

4.1  Initial Fixed Swept and Delta Planform  

4.1.1  Fixed Swept Wing 

 As the swept wing began as the swept aft position of the variable geometry wing, 

the final swept wing is similar to the variable geometry wing but slightly larger.  

Figure 4.1 shows the initial fixed sweep planform not capable of producing the 

required lift below α = 15°, even with the addition of Fowler flaps and slats. An increase 

in planform area was required in order to achieve this goal. The root chord and span were 

increased until the planform produced the required lift at the stall condition.  
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Figure 4.1  Initial Lift Curve Slope of Fixed Sweep Planform 1,114 ft2 
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4.1.2  Delta Wing 

The area required to have similar cruise performance will be drastically less than 

that required for the low speed performance.  Figure 4.2  shows the planform is not capable 

of producing the required at less than α = 15°. An increase in planform area is required in 

order to achieve this goal. Therefore the area of the delta planform will need a large 

increase in area from what is shown above.  

It is very apparent that both planforms need an increase in area. To minimize this, 

high lift devices were used and their maximum increment in lift were determined. 

Figure 4.2  Initial Lift Curve Slope of Delta Planform1,114 ft2 
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4.2 Lift Augmentation Devices 

 Shown are the results for the various high lift devices applied to the respective 

planforms. Figure 4.3 shows the results from the addition of trailing edge devices on the 

fixed sweep and delta planforms. With the method outlined in Roskam (1990), the 

nonlinearity of the flap effectiveness with increasing flap deflection angle was captured.  

The plain flap is comparable to the single slotted and single Fowler flap at the lower 

deflection angles but when deflected past δ = 20° the slotted and Fowler flap significantly 

outperform the plain flap. 

 

 

Figure 4.3 ∆𝑪𝑳𝒎𝒂𝒙
 Results for Trailing Edge Devices Results on the Swept and Delta 

Planforms at Approach Conditions. 
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 Figure 4.4 shows the results of the ∆𝐶𝐿 due to trailing edge flaps. Unlike the 

∆𝐶𝐿𝑚𝑎𝑥
 the fixed sweep planform produces a larger lift increase than that of the delta wing. 

The fixed sweep planform increment is larger across all the deflection ranges. 

Figure 4.5  shows the results from the addition of leading edge devices on the fixed 

sweep and delta planforms. The nose flap had a relatively consistent lift increment with 

deflection angle, whereas the slat, similar to the slotted and Fowler flaps, only seemed to 

be effective at the higher deflection angles where separation is likely to occur. The Kruger 

flap was effective at all of the deflection angles (δ = 40°, 30°, 20°). 

 

 

 

 

Figure 4.4 ∆𝑪𝑳 Results for Trailing Edge Devices Results on the Swept and Delta 

Planforms at Approach Conditions. 
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Figure 4.6 shows the 𝐶𝐿 for the swept planform with use of slats and Fowler flaps. 

The planform was successfully able to produce the required amount of lift. 

Figure 4.5  ∆𝑪𝑳 Results for Leading Edge Devices Results on the Swept Planform                  

at Approach Conditions. 

NOTE: Kruger deflection angles are (δ = 40°, 30°, 20°) left to right on the graph. 

Figure 4.6  Final CL Results for the Swept Planform with High Lift Devices. This is with 

slats and Fowler flaps. 
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The 𝐶𝐿 goal is lowered from the initial graph shown Figure 4.1 because of the area 

increase. The ∆𝐶𝐿𝑀𝐴𝑋
 of the Fowler flap at higher flap deflection angles is evident from 

Figure 4.6. 𝐶𝐿𝑀𝐴𝑋
 occurs at α = 13° with a flap deflection angle δf = 40° and a slat deflection 

angle δs = 25°. As previously shown, the maximum incremental lift from the Fowler flaps 

is poor at low deflection angles but substantially increases in effectiveness at higher flap 

deflections angles, especially when compared against other non-slotted high lift devices.  

Figure 4.7 shows the lift coefficient for the Delta planform with slats and Fowler 

flaps. Even though the 𝐶𝐿𝑀𝐴𝑋
is less than that of the swept forward wing it has a large 

enough area to compensate and still reach the 𝐶𝐿 goal as shown. The 𝐶𝐿 goal is even lower 

than the goal for the swept planform because of the larger increase in wing area. Similar to 

the fixed sweep wing, the ∆𝐶𝐿𝑀𝐴𝑋
 at low deflection angles is small, but significantly 

Figure 4.7  Final CL Results for the Delta Planform with slats and Fowler flaps. 
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increases as flap deflection increases. 𝐶𝐿𝑀𝐴𝑋
 occurs at α = 14° with a flap deflection angle 

δf = 40° and a slat deflection angle δs = 25°. 

Using this Leading-Edge Suction Analogy by Polhamus mentioned in section 2.1.4, 

an estimate of the possible lift increase of vortex lift on the delta planform can be 

performed. Figure 4.8 has been reproduced from Polhamus (1966), to show the potential 

lift increment over the delta clean wing. 

 

Figure 4.9 illustrates the potential of vortex lift. This has been done without using 

nose flaps to increase the vortex strength. Figure 4.10 shows the percent difference between 

the vortex lift increment without leading edge devices and slats at δs = 25° on the final 

delta planform. From Figure 4.10, it can be seen that vortex lift does not have an 

improvement on 𝐶𝐿 until after α = 8° with the largest increase in lift of 12% occurring at α 

= 14° resulting in a 𝐶𝐿 of 1.39 versus 1.11 without the addition of vortex lift. The previous 

𝐶𝐿 at α = 15° without the vortex lift estimate is 1.2. That lift coefficient is achieved 2°earlier 

as shown in Figure 4.13 and is actually attainable with a flap deflection angle δ = 30°. 
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Figure 4.9  CL Results for the Delta Planform with use of Polhamus Vortex Lift Increment 

and Fowler flaps. 

Figure 4.10  Potential Percent Difference With The Additon of Vortex Lift Without the 

use of a Leading Edge Device. 
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4.3  Final Fixed Swept and Delta Planform Geometries 

The final results of the fixed swept planform geometry are shown in Table 4.1.  

Table  4.1 

Fixed Sweep Wing Dimensions 

Fixed Sweep  
Root 

Chord 
(ft) 

Taper 
Ratio 

Half 
Span 
(ft) 

Aspect 
Ratio 

Total 
Span 
(ft) 

Total 
Area 
(ft2) 

31.54 0.194 2.12 3.7 66.34 1,206 
 

The final dimensions for the delta planform are listed below in Figure 4.11 with 

further dimensions in Table 4.2. The root chord did reach the maximum value of 50 ft 

resulting in a swept forward trailing edge angle of 7° as seen below.  

 

Figure 4.11 Final Delta Planform Dimensions. 
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Table  4.2   

Delta Planform Final Dimensions. 

Delta  
Outer  

Root 
Chord 

(ft) 

Taper 
Ratio 

Half 
Span (ft) 

Aspect 
Ratio 

Total 
Span 
(ft) 

Total 
Area 
(ft2) 

50 0.15 25.18 1.75 50.4 1,448 
 

 

Figure 4.12 shows an overlay over the 4 different planforms. Notice how the slight 

increase for the swept wing over the swept aft version of the variable sweep. The large 

increase in chord for the delta planform makes up for the lost area in span. The reason the 

swept aft and fixed sweep planforms do not start at (0, 0) is because of the way the variable 

geometry wing was created using the midchord as the pivot point. There would be wing 

Figure 4.12  Overlay of Final Planforms 
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area that is hidden inside the wing fairing such that when the wing is swept aft, there is no 

gap in the leading edge. This method allowed the wing fairing to be easily defined for the 

variable geometry model seen below.  

Typical values were found to obtain a range of expected results for different aspects 

of the model to ensure reasonable agreement with past studies or aircraft. Typical values 

were based on previous SSBJ designs in addition to other jets with similar MTOW. The 

complete set of values can be found in Appendix B under Typical Values.  Table  4.3 

summarizes the results in comparison to the VLM models. Most of the final VLM geometry 

agrees well with the typical findings with few outside the typical values such as wing span, 

for the variable geometry and the fixed sweep planform. Also the area of the delta planform 

was slightly larger than the typical values. In addition to the wing loading of the variable 

geometry and the delta planforms were on the lower end of the typical values. The wing 

span of the variable geometry planform was larger than the typical values because the limit 

span at Aspen was used. The swept wing span is only slightly larger than that of the study. 

The wing area of the delta planform is larger than expected most likely because of the 

subsonic leading edge restriction in place, in addition to the lack of vortex lift taken into 

account.  
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Table  4.3   

Comparison Between Final VLM Model Geometry and Typical Values. 

Dimension VLM Models Trade Study 
 Variable 

Geometry 
Fixed 

Sweep 
Delta Fixed 

Wing 
Variable 

Geometry 
Wing Span (ft) 65.8 - 95 66.3 50.4 55 - 65 35 - 65 
Wing Area (ft2) 1,114 1,206 1,448 1,100 - 

1,400 
850 - 1100 

Taper Ratio (λ) 0.14 0.19 0.15 0.1 - 0.3 0.1 - 0.3 
Aspect Ratio (AR) 3.96 -8.1 3.7 1.75 1.5 - 3 1.5 - 3 

LE Sweep (Λ°) 58-20 58 58 72  - 50 65 - 20 
Dihedral (Γ°) 0 0 0 ≈0 ≈0 
MTOW (lbs) 100,000 100,000 100,000 90,000 – 

100,000 
90,000 – 
100,000 

PAX 8 - 12 8 - 12 8 - 12 8 - 12 8 - 12 
Vmax (KTS) 1.8 1.8. 1.8 M=1.7 - 

1.9 
M=1.7 - 1.9 

Wing Loading at 
MTOW (lb/ft2) 

89.8 82.9 69.1 70 - 80 90 - 110 
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4.4 Clean Planforms 

 Below are the various results from the clean planforms with no high lift devices. 

4.4.1 CL 

 

 Figure 4.13 shows the 𝐶𝐿𝛼
 where, the curves from α = -3° to α = 15° were performed 

at approach conditions while the curves from α = -2° α = 10° were performed at the cruise 

conditions. The lift curve slope is noticeably steeper for the unswept variable geometry 

wing versus the reest of the planforms for a number of reasons. First, for the geometric 

variation is the decrease in wing sweep angle which increases the wing span effectively 

increasing the aspect ratio. This has a positive effect on the lift curve slope. Before the 

critical Mach number the lift curve slope increases and then decreases shortly after the 

critical Mach number is reached. In addition, the peak of the of the lift coefficient decreases 

Figure 4.13  CL for the Three Final Clean Planforms at Cruise and Approach Conditions 
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with increasing supersonic Mach numbers (Stevens, Lewis, 2003). In order to obtain the 

cruise L/D ratio, the drag needed to be calculated.  

4.4.2 Drag 

 

Figure 4.14 shows the drag polar where the curves from α = -3° to α = 15° were 

performed at approach conditions while the curves from α = -2° α = 10° were performed 

at the cruise conditions. The large increase in drag between the approach and cruise 

condition is due to the effect of compressibility. Further, at higher lift coefficients, it can 

be seen that the increase in drag at cruise is significantly larger than that at approach. Again, 

this is due to the effect of wave drag created at cruise speeds.  

Figure 4.14  Drag Polar for the Three Final Base Planforms at Cruise and Approach 

Conditions. 
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4.4.3 L/D 

 

 

Figure 4.15 shows the L/D where the curves from α = -3° to α = 15° shows 

performance at approach conditions while the curves from α = -2° α = 10° shows 

performance at cruise conditions. The effect of wave drag is evident in this figure as well. 

The addition of wave drag significantly scaled down the respective L/D curves of 

planforms. Notice the subtle variations in L/D for the planforms at cruise, where 

compressibility is the dominating factor. The differences in performance of the planforms 

are more apparent at the lower speeds.  
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4.5 Specific Air Range 

 

Table 4.4  

Comparison of Specific Range with Wing Weight and Flap Weight Estimates 

Planform Specific Air Range Ratio 

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦

Variable Geometry
 1.000 

𝐹𝑖𝑥𝑒𝑑 𝑆𝑤𝑒𝑒𝑝

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦
 0.938 

𝐷𝑒𝑙𝑡𝑎

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦
 0.949 

𝐷𝑒𝑙𝑡𝑎

Fixed Sweep
 1.011 

 Wing Weight with Slats & Fowler Flaps (lb) 
Variable Geometry 13,434 

Fixed Sweep 12,696 
Delta 5,448 

 

Table 4.4 shows the final results of the SAR comparison with the variable geometry 

planform outperforming the fixed planforms by a small margin. The Delta planform was 

able to achieve the best results with 95% of the SAR when compared to the variable 

geometry planform. The fixed swept planform performed the poorest achieving 94% of the 

SAR of the variable geometry. 
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Chapter V 

Discussion, Conclusion, and Recommendations 

5.1  Discussion 

 The initial clean, fixed sweep and delta planforms could not produce the required 

lift which was clearly shown in Figure 4.1 and Figure 4.2. The clean planforms were well 

below the goal lift coefficients. This was caused by the high sweep angle and the thin wings 

required for supersonic flight. Without the addition of wing area or high lift devices, these 

planforms would not meet the required lift for approach conditions.  Even after the addition 

of high lift devices, the initial planforms were not capable of producing the necessary lift. 

In order to make up the difference, the planforms would either need to fly at a much higher 

angle of attack or be increased in size. Since the increase in angle of attack was limited, an 

increase in wing area was required. 

 As shown in section 4.1.1 the resulting fixed swept planform required an increase 

in wing area of 8% with use of Fowler flaps and slats. Shown in section 4.1.2 the resulting 

delta planform required an increase in wing area of 26% with Fowler flaps and slats. The 

delta planform required a much larger increase in area because of its significantly lower 

lift curve slope. The much lower aspect ratio of the delta further penalized the lift curve 

slope.  

5.1.1 Validation of Results 

The lift curve slopes for the swept aft, fixed sweep and delta planforms were within 

6% of those experimentally tested in USAF Datcom which were reproduced in Roskam’s 

Aircraft Design (1990). In addition, all of the geometric values were within or very close 
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to the typical values, except for that of unswept span for the variable geometry wing. This 

is due to the constraint imposed on the unswept wing span which used the limit wing span 

at Aspen airport in Colorado, USA. 

 The ∆𝐶𝐿 trends from the various high lift devices in this study are similar to those 

found in the literature review, specifically those in Rudolph (1990). Similar to the findings 

in Rudolph (1990), the trailing edge devices outperformed the leading edge devices in 

∆𝐶𝐿𝑀𝐴𝑋
 and particularly at the higher deflection angles the Fowler flap outperformed the 

other devices. However, the specific ∆𝐶𝐿 found here from the more complex flap systems 

are not as large as found in Rudolph’s study. One reason for this difference is due to the 

high sweep angles of the planforms. Although the planform properties are different, the 

trends are still identical to those found in Rudolph’s (1990) study. The nonlinear 

dependence of ∆𝐶𝐿 on flap deflection angle was successfully captured. 

The delta planform results were similar to those discussed in Corsiglia and Koenig 

(1966). Corsiglia and Koenig, studied the results of plain flaps and nose flaps on a delta 

wing of similar geometric properties. The aspect ratio of the delta wing was 1.3 with a 

leading edge sweep of 73°. This higher sweep angle would have increased vortex lift.  The 

tests were done in a large-scale 40 x 80 foot wind tunnel. Compared to the delta planform 

results stated here, the clean delta model by Corsiglia and Koenig produced approximately 

15% more lift at α = 15 ° (Corsiglia & Koenig, 1966). The difference in lift could be 

attributed to the wind tunnel model by Corsiglia and Koenig which made use of vortex lift. 

Vortex lift is not part of the empirical methods used here. However, the ∆𝐶𝐿 for the plain 

flap at δf = 20° on the study by Corsiglia and Koenig was approximately 0.24 which is 0.04 
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less than the results for the delta study here. This could be due to the over estimation of 

∆𝐶𝐿 from the empirical calculations.  

The following two studies examined a double slotted flap on low aspect ratio delta 

wings. Brown (1956) tested a 60° delta with an aspect ratio of 1.85 with a double slotted 

flap and Croom and Huffman (1956), tested a thin 60° delta wing with double slotted flaps. 

The main difference between the two studies was the size of the turning vane. Comparing 

the clean delta wing results obtained here and those tested by Croom and Huffman (1956) 

the results found here had a lift curve slope that was approximately 10% less than that 

found by Croom and Huffman (1956). The difference is most likely attributed to the work 

by Croom and Huffman (1956) being able to capture vortex lift. The two studies by Brown 

(1956) and Croom and Huffman (1956), resulted in similar 𝐶𝐿 of 1.2 – 1.25 at α=15° 

depending on the turning vane size. The resulting 𝐶𝐿 at α=15° are similar to the 𝐶𝐿𝑀𝐴𝑋
 

found here for the delta of 1.15 at α=15°. Compared to the results here of the lift curve 

slope for the delta planform with Fowler flaps deflected at δ = 40°, the lift curve slope of 

the delta planform in the study by Croom & Huffman (1956) had a 7% increase with a 

Fowler flap deflection of δ = 45°. This could be due to the slight increase in flap deflection 

angle in addition to the turning vane to help increase the flaps effectiveness. In order to 

obtain the 𝐶𝐿𝑀𝐴𝑋
 of 1.5 found in the two studies by Brown (1956) and Croom and Huffman 

(1956), the angle of attack required was α = 24° with a flap deflection angle δf≈50°. Overall 

the data from the delta planform with and without high lift devices matched consistently 

with previous analysis. 
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Unlike the highly swept delta wing, the fixed swept planform has not been the 

subject of studies with various mechanical high lift devices. However, since the results 

from the delta wing and clean swept wing match well with previous studies, it can be 

presumed that the results are fairly accurate for this study considering the assumptions and 

limitations. 

5.1.1 Clean Planforms 

The L/D curves of the variable geometry and the fixed swept planforms are similar. 

This is to be expected as the swept planform is essentially a slightly scaled version of the 

variable geometry planform. The aerodynamic difference between the planforms became 

evident at low speed, particularly with the L/D ratio. This is due to the inherent 

characteristics the planforms possess.  While being relatively efficient at high speeds, the 

results show the fixed swept and delta planforms suffer significantly at low speeds. 

The drag polars shown in Figure 4.14 show the large increase in drag due to the 

compressibility effects. That effect is evident by the roughly 0.013 or 130 drag counts 

increase between the respective planforms at approach and cruise conditions at α = 0. This 

translates to a 200% increase in drag at α = 0. In addition, the spread between the planforms 

is relatively small when comparing to the approach drag. This is mainly due to the 

similarities between the leading edge sweep angles and section airfoils. The slight decrease 

of cruise drag of the delta wing versus the variable geometry wing and fixed sweep wing 

is due to  𝐶𝐷𝐿𝐸
, which takes into account leading edge sweep, span, aspect ratio, and leading 

edge radius at the mean aerodynamic chord. The largest influence of  𝐶𝐷𝐿𝐸
  is the factor 
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aspect ratio divided by span, (
𝐴𝑅

𝑏
). Which, for the variable geometry is 1.5 times larger 

than the fixed sweep wing and 2.5 times larger than the delta wing. Besides sweeping the 

wing further aft, the only way to help decrease the drag is to use a sharp leading edge with 

a supersonic natural laminar airfoil. At higher lift coefficients, the fixed sweep and delta 

planforms were much further right on the drag curves compared to the variable geometry 

planform. This is the case because they require a larger angle of attack to achieve the same 

lift coefficients. Another reason why the high lift devices play such an important role in 

the low speed performance. These trends are even more apparent in the L/D curves. 

While typical business jets may exhibit a subsonic cruise L/D approaching 19, 

supersonic transport designs exhibit ratios less than 10, which shows the large increase in 

drag in supersonic flight (Anderson, 2007). All of the L/D ratios were less than 10 at 

supersonic cruise. In addition, the L/D ratio for the swept and delta planform were under 

19 for the approach phase for low angles of attack. The aerodynamic advantage of the 

unswept wing is very evident in the lift curve slope in addition to the L/D curve shown in 

Figure 4.15. The unswept variable geometry had an L/Dmax ratio twice that of the delta 

wing and 150% that of the swept wing. This can be attributed to doubling the effective 

aspect ratio as the wing is unswept to Λ = 20°. During cruise, the decrease in L/D ratio for 

the delta shows a penalty for the large increase in area.  

5.1.2 Augmented Planforms on Approach 

 From two-dimensional 𝐶𝑙 to three-dimensional 𝐶𝐿 the plain flaps lost on average 

50% of their effectiveness. This figure is much worse for the slotted and Fowler flaps. The 



93 

 

 

 

slotted and Fowler flaps lost on average 80% of their effectiveness. The loss in 

effectiveness is primarily due to the high sweep angle and low aspect ratio.  

One interesting note, due to the nature of the swept forward trailing edge on the delta 

planform, the hinge sweep line of the flaps was 18° which was significantly less than that 

of the fixed swept planform. The ∆𝐶𝐿 of the fixed swept planform is larger than that of the 

delta because the clean lift curve slope of the fixed swept planform is larger.   

 The true potential of leading edge devices is difficult to capture without use of a 

wind tunnel or CFD. Therefore, there exists uncertainty in the data obtained with the 

leading edge devices in this study. One of the main reasons for the use of slats is to mitigate 

flow separation at higher angles of attack. Without a wind tunnel or CFD, capturing this 

decrease in flow separation is difficult and use of empirical methods is unreliable. For this 

reason, the increase in stall angle of attack and increase in 𝐶𝐿𝑀𝐴𝑋
 from the leading edge 

devices was not computed. Another concern with regards to the leading edge devices is the 

inability to properly capture the vortex lift. In particular, on the unswept and delta 

planforms. Whether or not this has a large impact on these planforms needs to be further 

investigated. With respect to the empirical calculations, the leading edge devices had larger 

uncertainty however, the error introduced by the leading edge empirical calculations would 

not have a profound impact on these results. This relatively small increase in lift from the 

leading edge devices is in agreement with a studies performed by Rinoie, Kwak, Miyata, 

and Noguchi, M. (2002), and Rinoie (2003), which studied leading vortex flaps on an SST 

configuration. As previously mentioned, the vortex flap is identical in shape and function 

to a nose flap, but used to increase vortex lift on highly swept wings. Though this study did 
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not deal with vortex lift, the ∆𝐶𝐿 results are similar to those found by Rinoie et al. (2002) 

and Rinoie (2003). A limited increase in 𝐶𝐿 was observed, especially under α=10° on the 

sharp and rounded flap (Rinoie, 2003). The benefit of the vortex flap does not appear until 

the higher angles of attack where the vortex is fully formed and past the angle of attack 

regime that was studied here. Although the studies by Rinoie et al., (2002) and Rinoie 

(2003) showed little increase in lift, they showed a marked increase in L/D ratio in the lift 

coefficient region typically seen during landing and takeoff. This shows the effectiveness 

of the LEVF to create forward facing thrust vector on the forward angled flap surface 

decreasing overall drag of the planform. 

In terms of estimated lift from leading edge devices, Torenbeek’s Synthesis of 

Subsonic Aircraft Design (1982) states “Reliable generalized methods for predicting the 

effects of leading-edge devices are not known to the author…” There are not many reliable 

methods to predict the lift increment for leading edge flaps as there is for trailing edge 

flaps.  For example, the ∆𝐶𝐿𝑀𝐴𝑋𝑤𝑖𝑛𝑔
stated in Roskam’s Aircraft Design (1990) is in Eq. 23 

 

∆𝐶𝐿𝑀𝐴𝑋𝑤𝑖𝑛𝑔
= 7.11 (

𝑐𝑓

𝑐
) (

𝑏𝑙𝑒𝑓

𝑏𝑒
) 𝑐𝑜𝑠2∆𝑐

4
 

 

Where: 

𝑐𝑓

𝑐
 = Leading edge flap chord ratio 

𝑏𝑙𝑒𝑓

𝑏𝑒
 = Leading edge flap span ratio 

 

 

Eq. 23 gives a fixed value for the leading edge device independent of the deflection angle 

and type of device. This equation was not used in this study because it did not appear to be 

(23) 



95 

 

 

 

produce reliable results which were dependent on the type of flap used and deflection angle. 

The ∆𝐶𝐿 of a trailing edge device is far greater than that of a leading edge device. It is 

known that the addition of a leading edge device does not substantially increase the ∆𝐶 𝐿 but 

aids primarily in flow separation at higher angles of attack with slats. For that reason the 

estimations of the leading edge devices have a larger chance to be more erroneous than that 

of the trailing edge devices.  

    Table 4.4 summarizes the results of the SAR calculation. Initially, it was thought 

that the delta wing was going to prove to be a poor aerodynamic choice, but upon 

estimating the SAR, it appears to be a comparable planform. The wing weight method 

appears to penalize higher aspect ratio wings. When compared with the delta planform, the 

aspect ratio of the swept wing is more than double. The delta planform therefore results in 

a specific range of 1% greater than the fixed swept planform but 5% less than the variable 

geometry planform. Even though the delta planform had an L/Dmax almost 14% less than 

that of the variable geometry. The structural requirements for the higher aspect ratio and 

longer wings seem to mitigate the L/D advantage. With the Variable geometry wing 

resulting in only a 5% increase in specific air rage ratio, for a business jet that difference 

does not appear to be substantial. However, with the SSBJ at supersonic cruise the 5% 

margin would over time create a significant reduction in fuel consumption. Whether or not 

that difference is large enough to overcome the additional maintenance is yet to be seen. A 

detailed business case would need to be studied. A 5% difference for a commercial aircraft 

is a very large margin, especially when the aircraft would be flying multiple times a day 

for many years. This could be thought of as further range or to use less fuel for the same 



96 

 

 

 

mission which could result in tens of thousands of gallons of fuel saved per year, per 

aircraft flying. In terms of performance, the weight penalty for variable geometry is not as 

severe as initially perceived. Due to the large increase in area required by the delta planform 

with the addition of flaps and the decrease in L/D ratio, these penalties incurred by the delta 

planform outweigh that of the weight penalty of the variable geometry. 

There may be a point where the flap complexity and weight is simply too great, or 

the flaps mechanisms cannot be completely hidden inside the wing. Therefore the addition 

of a Fowler flap may not be feasible with such a thin wing. The slotted flap is a very good 

alternative to the Fowler flap but still requires some relatively large linkages and 

mechanisms to operate. The plain flap while providing the lowest lift increment, is a very 

simple solution which is possibly one of the reasons the plain flap is found on many general 

aviation aircraft. The plain flap is relatively light, simply operated and inexpensive. While 

not providing a large increase in lift, it provides an adequate solution for those types of 

configurations. 

Table 5.2 shows the results of the flap weight calculations. There was no method 

found to estimate the weight of a plain flap therefore an estimate of ⅔ of the weight of 

Fowler flaps was used. For reference, the slotted flap weight is close to ¾ of the weight of 

the Fowler flap. In the study by Rudolph (1996), it was mentioned that, plain flaps are 

planned for future SST configurations. With that being said, a conclusion was attempted to 

be drawn from a ratio of the maximum lift increment, ∆𝐶𝐿𝑀𝐴𝑋
 to the weight of the high lift 

device called lift to flap weight ratio. The lighter plain flaps on fixed swept planform had 

a 4% decrease in lift to flap weight ratio compared to the Fowler flaps, while the slotted 
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flaps had only a 2% decrease. On the contrary, for the delta planform, the plain and slotted 

flaps had a 5% increase in lift to flap weight ratio. Overall, the range of the lift to flap ratios 

is rather small fluctuating by no more than ±5%. Comparing the geometry of the flaps on 

the delta planform with the swept planform, the delta planform flaps have a much lower 

“flap” aspect ratio comparing to the swept, with a shorter chord and longer flap span. This 

is not taken into account in the calculations. Whether or not the plain flap remains a 

candidate for the SST as stated by Rudolph (1996), is yet to be seen. What is clear is fitting 

the entirety of the high lift system inside the thin wing will be a challenge. 

Table 5. 1   

Comparison of Flap Data 

Fixed Swept 

Trailing Edge 
Flap 

∆𝐶𝐿𝑚𝑎𝑥
   

At 𝛿𝑓𝑚𝑎𝑥
 

Weight of High Lift 
Device (lb) 

∆𝐶𝐿𝑚𝑎𝑥

𝑊𝐻𝐿𝐷
∗ 1000 

% 
Difference 

Plain 0.316 624 0.506 -3.9 
Slotted 0.419 814 0.515 -2.3 
Fowler 0.493 937 0.526 - 

Delta 

Trailing Edge 
Flap 

∆𝐶𝐿𝑚𝑎𝑥
   

At 𝛿𝑓𝑚𝑎𝑥
 

Weight of Flap 
Device (lb) 

∆𝐶𝐿𝑚𝑎𝑥

𝑊𝐻𝐿𝐷
∗ 1000 

% 
Difference 

Plain 0.352 708 0.497 5.0 
Slotted 0.459 923 0.497 5.0 
Fowler 0.502 1062 0.53 - 

 

5.2  Conclusion 

 The Tu-144 and the Concorde have shown that SST is possible but in order to create 

an economical option all of the parameters must be sufficiently satisfied. These include but 

are not limited to, high speed and low speed performance, mitigation of the sonic boom, 

environmental concerns, and lastly, the aircraft must be economically viable. Variable 

geometry wings are a technical engineering accomplishment that have provided an 
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advantageous aerodynamic solution but mechanically still face many challenges. There 

have been numerous research efforts with regards to variable geometry implementation to 

SSBJ. The delta wing is a better candidate than a simply fixed swept wing. Although the 

weight of the larger delta planform was significantly less than the variable geometry, the 

drag increase at cruise proved to be too significant to overcome the weight advantage. The 

weight penalty incurred by the variable geometry planform is not as detrimental as initially 

though when coupled with the superior cruise performance. The combinations of 

complexity, additional weight, and expensive operating costs have proven the downfalls in 

previous designs with many replacement models having fixed wings. Recent SSBJ 

conceptual designs tend to have fixed wings (e.g., Aerion, Spike Aerospace or Lockheed 

Martin's N+2). The designs appear to fall into two categories. The first having a supersonic 

laminar flow, low wing planform with a supersonic leading edge and the engines mounted 

on top of the fuselage near the empennage. The second is a highly swept delta or ogival 

high wing with underwing engines near the trailing edge and a third engine mounted on 

the fuselage. 

When studying future planforms, not only are the aerodynamics important but also 

the mechanical and structural considerations. Though the aerodynamic solution of the 

variable geometry wing is promising, the results here show the SAR of the variable 

geometry wing to have benefit of 5% to 6% over the fixed wing counterparts. Taking into 

account the increase in maintenance, manufacturing and certification costs (among 

possibly others), the 5% margin at cruise may not be enough to overcome those additional 

costs. This leads to a very complicated business case. Without some suite of lift 
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augmentation devices a fixed wing alternative is not promising. Mechanical and augmented 

high lift devices have previously shown great success in commercial use, but application 

to a much thinner wing, like one that could be found on an SSBJ, would be difficult. Blown 

and or active flaps could be successful in augmenting lift, but their complex requirements 

and technical challenges may be too great to be feasible at this point. The most promising 

avenue appears to be with vortex lift and LEX as they exhibit good incremental lift in 

conjunction with trailing edge flaps on highly swept wings. 

5.3  Recommendations and Future Research 

The following are some suggested avenues for future work: 

 

 Utilize CFD to conduct more detailed studies on the promising planforms between 

the natural laminar flow supersonic leading edge and the swept highly modified 

ogee delta.  

 Modify this study to incorporate the variable geometry wing with simple high lift 

devices such as plain or slotted flaps with slats, similar to those found on the F-14 

to test whether the possible wing area reduction would balance the high lift devices 

weight penalty. 

 Perform a further detailed aerodynamic and structural study between the variable 

geometry and delta planform. Take into consideration some basic operational and 

maintenance costs for the two planforms to look at a possible business case study. 

 Conduct further studies to validate the effectiveness trailing edge devices in 

conjunction with the use of leading edge vortices for a SSBJ planform.   
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APPENDIX B 

 B1 Typical Values 

 

90s 90s 1977 1977

HISAC Low 

Noise Config

HISAC Long 

Range Config

HISAC 

Variable 

Geometry 

Config

HISAC Low 

Boom Config
Tu-444 S-21

NASA 

SSXJET I/II

NASA 

SSXJET III
AVG

60.70 78.74 50.5 - 67.6 62.66 53.08 65.40 42 45.5 59.04

1,615               1576.00 807            1,496               1,460          965              1,130          1,281             

0.08 0.08

2.28 3.93 3.16 - 5.66 2.62 1.93 1.84 1.84 2.8                

72.5 - 52 18.00 60 - 35 79 - 72.5 - 46  32 - 68 72 (LE) 72 (LE)

0 1.50 0 18 - 0 0 0

112,435            133,379             93,696        117,506           90,400        51,800      77,000          80,000        98,459           

8 8 8 8  6-10  6 - 10 8 8 8                   

M=1.6 M=1.6 M=1.6 M=1.8 M=2

LEX+Delta Diamond

69.6 84.6 116.1 78.5 61.9 79.8 70.8 79.5

1964 1967 1960 1972 1976 1975 1970

Dassault Mirage 

IV-A
GD F-111A GB B-58 TU-22M Concorde TU-144

North 

American 

B-1B

North 

American 

XB-70A

Boeing SST 

38.88  63 - 32 56.75  112.47 - 76.44 84 94.48 105.00

840                  530                   1,481         1,585               3,856          4,715        6,297          9,000             

0.11 0.33 0.00 0.28 0.12 0.13 0.32 0.02 0.21

1.80  7.5 - 1.93 2.20  8 - 3.69 1.70 1.90 1.80 3.40

60 (LE)  16 - 72 59 (LE)  20 - 65 Ogive  76/57 65.6 (LE)  30 -72

-1.5 0 0 0 8.3 (out) 0 -3

73,800             100,000             176,890      273,000           412,000      455,950     477,000        542,000       675,000          

90 - 120 277

1,261               1,432                M=2+ 1,446               1,259          1,350        M=2+ M=2+ 1,565             

36,000 ft M=1.88 55,000 ft 50,000 ft 75,000 ft

87.9 188.7 119.4 172.2 106.8 96.7 #DIV/0! 86.1 75.0  
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B2 Typical Values Results 

 

 

Preliminary Design Space

Fixed Wing Variable Geo Wing

Wing Span (ft) 55 - 65 35 - 65

Wing Area (ft2)  1,100 - 1,400  850 - 1100 

Taper Ratio (λ) 0.1 - 0.3 0.1 - 0.3

Aspect Ratio (AR) 1.5 - 3 1.5 - 3

Sweep (Λ°) 72 LE - 50 65 - 20

Dihedral (Γ°) ≈0 ≈0

MTOW (lbs)  100000 - 90000  100000 - 90000 

PAX  8 - 12  8 - 12

Vmax (KTS)  M=1.7 - 1.9  M=1.7 - 1.9 

Wing Loading (lb/ft2)  70 - 80  90 - 110 
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APPENDIX C 

 C1 Statistical Values Used in Wx 

 

Wing Weight Ratios 

Category Transport Transport Commercial Commercial Commercial Jet Transport Jet Transport Jet Transport Jet Transport Supersonic Cruise

C-130A C-130E DC-9 737-200 727-100

Hawk-Siddeley 

121-TC FokkerF28-1000 BAC 1-11/300

Sud-Aero 

Spatiale 

Caravelle Super - Cruiser

MTOW 108,000      155,000          108000 104000 161100 115000 65000 87000 110230 47900

Wwing 10,593        11,647            11391 11164 17682 12600 7330 9643 14735 3962

WEmpty 60,499        68,687            44539 46288 67168 67500 31219 48722 65050 19620

Wempty - Wwing 49,906        57,040            33,148           35,124           49,486           54,900                23,889              39,079               50,315              15,658                      AVG

(Wempty - Wwing)/(Wwing) 0.462 0.368 0.307 0.338 0.307 0.477 0.368 0.449 0.456 0.327 0.386

(Wwing)/(Wempty - Wwing) 2.16 2.72 3.26 2.96 3.26 2.09 2.72 2.23 2.19 3.06 2.665

VG Fixed Swept Delta

Wing weight 28,108        12,696           5,076            

OEM Estimate 74,902        33,831           13,525           

Stanford.edu http://adg.stanford.edu/aa241/structures/weightstatements.html Roskam

The wing planforms are most similar to the fixed sweep planform
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