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Abstract 

Author:  Jun Shishino 

Title:  Acoustic Emission Signal Classification for Gearbox Failure Detection 

Institution: Embry-Riddle Aeronautical University Daytona Beach Campus 

Degree:  Master of Science in Aerospace Engineering 

Year:  2012 

The purpose of this research is to develop a methodology and technique to determine the optimal number 

of clusters in acoustic emission (AE) data obtained from a ground test stand of a rotating H-60 helicopter 

tail gearbox by using mathematical algorithms and visual inspection. Signs of fatigue crack growth were 

observed from the AE signals acquired from the result of the optimal number of clusters in a data set. 

Previous researches have determined the number of clusters by visually inspecting the AE plots from 

number of iterations. This research is focused on finding the optimal number of clusters in the data set by 

using mathematical algorithms then using visual verification to confirm it.  

The AE data were acquired from the ground test stand that simulates the tail end of an H-60 Seahawk at 

Naval Air Station in Patuxant River, Maryland. The data acquired were filtered to eliminate durations that 

were greater than 100,000 µs and 0 energy hit data to investigate the failure mechanisms occurring on the 

output bevel gear. From the filtered data, different AE signal parameters were chosen to perform 

iterations to see which clustering algorithms and number of outputs is the best. The clustering algorithms 

utilized are the Kohonen Self-organizing Map (SOM), k-mean and Gaussian Mixture Model (GMM). 

From the clustering iterations, the three cluster criterion algorithms were performed to observe the 

suggested optimal number of cluster by the criterions. The three criterion algorithms utilized are the 

Davies-Bouldin, Silhouette and Tou Criterions. After the criterions had suggested the optimal number of 

cluster for each data set, visual verification by observing the AE plots and statistical analysis of each 
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cluster were performed. By observing the AE plots and the statistical analysis, the optimal number of 

cluster in the data set and effective clustering algorithms were determined. Along with the optimal 

number of clusters and effective clustering algorithm, the mechanisms of each cluster can be determined 

from the statistical analysis as well. From the results, the 5 cluster output using the Kohonen SOM 

clustering algorithm showed the distinct separation of clusters. 

Using the determined number of clusters and the effective clustering algorithms, the AE data sets were 

analyzed for the fatigue crack growth. Recorded data from the mid test and end test of the data acquisition 

period were utilized. After each set of clusters were associated with different mechanisms dependent on 

their AE characteristics. It was possible to detect the increase in the activities of the fatigue crack data 

points. This indicates that the fatigue crack is growing as the acquisition continued on the H-60 Seahawk 

ground test stand and that AE has a good potential for early crack detection in gearbox components.   
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Chapter 1. Introduction 

1.1. Research Objective 

Based on the few problems reported from the H-60 helicopter community on its tail gearbox (TGB) 

output bevel gear (OBG), the purpose of this research is to develop a methodology and technique to 

determine the optimal number of clusters in acoustic emission (AE) data obtained from a ground test 

stand of a rotating H-60 Seahawk helicopter tail gearbox. Results of the optimal number of cluster in a 

data set using mathematical algorithms and visual inspection were used to observe the signs of fatigue 

crack growth from the AE signals acquired. Also, this research will observe the relationship between the 

AE hit signal characteristics to the failure mechanisms. Previous researches have determined the number 

of clusters by visually inspecting the AE plots from multiple iterations. This research is focused on 

finding the optimal number of cluster in the data set by using mathematical algorithms and then using 

visual verification to confirm it to be used for further analysis. Success of these tasks will establish 

additional understanding of the diagnosis and prognosis of rotating machinery using multiple AE hit 

signal parameters and pattern recognition algorithms.  

1.2. H-60 Helicopter  

1.2.1. Basic Information 

The H-60 helicopter is a four bladed twin engine utility helicopter manufactured by the Sikorsky Aircraft 

Corporation. Introduced to the United States Army in the mid 1970’s as the Blackhawk, it has been the 

one of the most important rotary aircraft in its fleet. Beginning with the UH-60A Blackhawk, many 

different models have evolved to serve its needs as a multi-mission support aircraft for air assault, border 

security, command and control, drug interdiction, search and rescue and medical evacuation [1]. For 

example, the SH-60 Seahawk operated by the US Navy has evolved and redesigned to serve the needs of 

the Navy. The H-60 helicopter is operated internationally, and in the case of the Blackhawk, over 26 

governments and militaries are operating it around the world. 
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Figure 1 MH-60R Seahawk [2] 

1.2.2. Fatigue Problem 

Five crack incidents of the TGB OBG have been reported from the H-60 helicopter community since 

2008. Of these incidents, one was from a United States Army Blackhawk, one from the Japan Maritime 

Self-Defense Force, and three failures from the United States Navy Seahawks [3]. Figure 2(a) shows the 

tail end of the H-60 Seahawk and the Figure 2(b) shows the TGB. In the TGB, there is an OBG inside 

similar to Figure 2(c) where it is circled in Figure 2(b).  

 

Figure 2 (a) Tail of H-60 Seahawk [4] (b) Tail Gear Box [3] (c) Output Bevel Gear Test Specimen [3]  

(a)                                       (b)                                                                   (c) 
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These incidents have created an interest in investigating the cause of the failures as well as diagnosis and 

prognosis methods for the failed components. Complete root cause is still under investigation, but it has 

been recognized that fretting wear takes the protective coating layer of silver-plate off from the splines. 

After the protective layer is gone, bare metal to metal rubbing continues and triggers galvanic corrosion. 

When a galvanic couple forms, one of the metals in the couple becomes the anode and corrodes quicker 

than on its own, while the other becomes the cathode and corrodes more slowly. This provides conditions 

for crack initiation to the splines of the OBG. Figure 3 shows an x-ray image of OBG spline cracks from 

fretting. 

 

Figure 3 X-Ray Image of Bevel Gear Spline Cracks From Fretting [5] 

In addition to the fretting wear and metal to metal rubbing, the bending hub moment occurring on the 

OBG is another potential initiation of the fatigue crack. This once-per-revolution cyclic loading causes 

the crack to grow circumferentially around the OBG splines as it is shown in Figure 4. 
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Figure 4 Crack Growth around the Gear Spline [6] 

1.3. Approach to the Problem 

Two acoustic emission data acquisitions were performed on a ground test stand at Naval Air Station in 

Patuxant River, Maryland in 2010 and 2011. Different mathematical clustering algorithms are utilized to 

determine the significant difference in clustering the acoustic emission data for further analysis of the 

rotating machinery. These mathematical models are Kohonen Self-organizing map (SOM), k-mean, and 

Gaussian Mixture Models (GMM). To determine the efficiency and accuracy of the classification 

methods, three cluster verification methods are performed. The three verification methods are Silhouette, 

Davies-Bouldin, and Tou criterion. From the result of the criterion verification, the optimal number of 

clusters in the data set can be suggested. From the suggested number of clusters, visual verification is 

performed by observing AE plots and statistical analysis of the each set of clusters. The data sets are 

clustered again with the result from the visual verification of optimal number of clusters for the metal 

failure diagnosis of rotary machinery component. Moreover, the research will be further extended in the 

future for real-time structure health monitoring of the helicopter rotary machinery.  

Notch 

Crack 
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Chapter 2. Literature Review 

2.1. Nondestructive Evaluation Techniques 

Nondestructive evaluation (NDE) and structural health monitoring (SHM) systems are of great interest for 

aging structures, as well as new innovative structures. Liu et al. [7] has indicated some perspectives in the 

research area of the SHM. Much research on analysis techniques such as statistical pattern recognition 

and vibration analysis has been used to detect, quantify and localize the damage. In addition to the 

analysis techniques, research on sensing techniques such as using piezoelectric transducers, optic fiber 

Bragg gratings, and accelerometers is in progress. Combinations of these advanced techniques have 

influenced the improvement of the evaluation techniques and the monitoring systems. Liu et al. states that 

the most useful SHM techniques developed for Department of Defense and aerospace applications are 

vibration-based approaches and guided wave propagation-based approaches. Montalvão et al. [8] has 

created a review on the vibration based SHM on composite materials. Belsak et al. [9] monitored 

vibration to detect the cracks in the tooth root of gears. They have conducted different methods of time 

signals analysis for the recorded signals. They have concluded that the time-frequency analysis, especially 

the typical spectrogram pattern of a short-time-frequency analysis, was capable of fault detection 

compared to the classical frequency analysis under low level of noise condition. Another approach that 

Liu et al. indicated is the guided wave propagation to inspect structures for flaws. They state that current 

diagnosis techniques require initial baseline on undamaged information of the structure so the damaged 

information can be compared to estimate the damage state of the structure. However, Liu et al. also states 

that since the reference signals will not be always available, development of techniques for the 

unsupervised damage detection are one of the important area of study for NDE and SHM.  

2.2. Data Analysis Methods for AE Nondestructive Evaluation 

It has been shown that AE NDE used with pattern recognition algorithms and statistical analysis is 

capable of classifying different failure mechanisms in various materials under loading. Mahamed et al. 

[10] states that AE and vibration technique to detect the bearing failure are similar except for the 



6 

 

detection frequency. Since AE is capable of making detections simply and more quickly, Mahamed et al 

has used AE and artificial neural network (ANN) for diagnosis and prognosis of bearing failure in rotating 

machinery. Yella et al. [11] has researched different types of pattern recognition algorithms. They have 

used support vector machines, learning vector quantization, muti-layer perception, radial basis function 

networks, and the Gaussian mixture models to observe difference in the clustering rate. Acquiring the 

data from wooden beams, Yella et al. has concluded that the Gaussian mixture model achieved the highest 

classification rate. This was followed by support vector machines and learning vector quantization.  

In 1998, Vaughn [12] demonstrated in-flight fatigue crack monitoring using AE and was able to classify 

different failure mechanisms on Piper PA-28 engine cowling by using SOM. Also in 1998, Rovik [13] 

examined fatigue crack on the vertical tail section of a Cessna T-303 Crusader aircraft. Rovik acquired 

the AE data from a controlled lab environment to train the SOM and used AE signals from a flying test 

bed to test the trained SOM. Rovik was able to successfully classify the AE signal data from the flying 

test bed into fatigue cracks to develop a fatigue crack monitoring system. Other than using the Kohonen 

SOM, there are other pattern recognition algorithms that can be used to classify the failure mechanisms. 

Meriaux et al [14] used k-mean to cluster the AE signals from fretting fatigue test. From the analysis, 

three different steps in the crack propagation were observed.  

While classifying the failure mechanisms using a pattern recognition algorithm, it is necessary to 

understand and correlate the AE signals with the clusters that the algorithms have created. Sause et al. 

[15] has correlated AE signal types to microscopic failure mechanisms on fiber reinforced plastics. This 

was done by correlating fracture surface microstructure of different specimens with frequency of 

occurrence of distinct signal types, and by comparing experimental signals and signals based from finite 

element simulations. From these comparisons, the feature values of three different failure mechanisms 

coincided well with the simulated signals and experimental signals showing the applicability of AE signal 

classification methods for failure analysis of fiber reinforced plastics. Vaughn [12] has demonstrated the 

correlation between AE signals and clusters from pattern recognition algorithms on metal specimen. 
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Vaughn has acquired acoustic emission signals from the metal fatigue test specimen in the lab experiment 

which were then analyzed by performing Kohonen SOM. While the test was observed in real-time on 

duration vs. amplitude plot, Vaughn was able to observe each of the failure mechanisms occurring at 

different times and strength of amplitude, showing that failure mechanisms during the fatigue failure have 

different AE characteristics that can be applied for the clustering of the pattern recognition algorithms.  

2.3. Other Methods for Diagnosis and Prognosis of Rotating Machinery  

Other than using nondestructive evaluation, there have been many studies on methods that can be used for 

the prognosis of rotating machinery. The numerical methods using finite element analysis are the most 

common method performed. Glodež et al. [16] has performed finite element analysis to determine the 

service life of a gear tooth under bending fatigue. Strain-life method in finite element method was used to 

determine the number of stress cycles required for fatigue crack initiation, and simple Paris equation was 

used for further simulation of the fatigue crack growth. By comparing the number of loading cycles with 

the computational analysis result to the experimental result, it has shown that the computational result 

correspond well with the experimental data. Flasker et al. [17] observed the effect of contact area to the 

direction of crack propagation and service life of gears with crack in a tooth root while applying different 

load conditions numerically and experimentally. From the experiment, the results showed that the speed 

and direction of the crack growth and the service life are influenced by contact are of the gear tooth by 

direct comparison with experiment and the finite element model.   
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Chapter 3. Nondestructive Evaluation and Acoustic Emission 

3.1. Nondestructive Evaluation and Structural Health Monitoring 

NDE is a method that can be used for investigating a part, material or system without damaging it for 

future usage. Using different NDE techniques, it is possible to detect variations in structures, minute 

changes in surface finish, the presence of crack or discontinuities, and to determine material/structure 

property/characteristics [18]. The main reasons for many manufacturers to use the nondestructive 

evaluations are to ensure product integrity, to avoid failure, and to control manufacturing process. All of 

these reasons are related to lowering the manufacturing cost and the safety of the product. Also by using 

some of the NDE methods such as acoustic emission, ultrasonic, and vibration, real-time structural health 

monitoring can be performed. By observing the structure in real-time, it is possible to detect change in the 

structure before severe failure. This real-time structural health monitoring is performed on many large and 

safety dependent structures such as bridges, buildings, and gas tanks.  

The National Materials Advisory Board (NMAB) Ad Hoc Committee on Nondestructive Evaluation has 

classified the NDE techniques into six major categories: visual, penetrating radiation, magnetic-electrical, 

mechanical vibration, and thermal and chemical [18]. Table 1 shows different NDE techniques depending 

on the NMAB categories. Types of NDE techniques can be chosen depending on the detection objective, 

test environment and the budget. 
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Table 1. Different NDE Technique and its Detection Objective [18] 

NDE Technique  NMAB Category Detection Objective 

Visual  Visual Surface discontinuities, cracks, misalignments, 

warping, corrosion 

Liquid Penetrant Visual Surface discontinuities, seams, cracks, laps, 

porosity, leak paths 

Magnetic Particle Magnetic-electrical Surface discontinuities, seams, cracks, laps 

Eddy Current Magnetic-electrical Cracks, dents, holes, grain size and hardness, 

coating, material thickness, dimensions, 

composition, conductivity 

Radiography Penetrating Radiation Inclusions, lack of fusion, cracks, corrosion, 

porosity, leak paths, debris 

Acoustic Emission Mechanical Vibration Internal discontinuities, material property, leak 

detection, chemical reaction, phase transformation 

Ultrasonic Mechanical Vibration Surface discontinuities, internal discontinuities, 

material property 

Leak Testing Thermal and Chemical Cracks, discontinuities, leak paths 

Infrared and Thermal Thermal and Chemical Fluid flow, disconnects, discontinuities, heat 

transfer characteristic  

 

3.2. Acoustic Emission Nondestructive Testing 

3.2.1. Acoustic Emission 

Acoustic emission is elastic wave generated by the rapid energy release from localized source of stress 

due to failure in a structure under loading. When a structure is under loading, the material will begin to 

fail on both microscopic and macroscopic levels, thus generating elastic wave. This wave will propagate 

through the structure and are detected at the surface using AE piezoelectric transducers. These transducers 

convert the captured elastic wave into a voltage versus time electrical signal that can be recorded by AE 

data acquisition system after the signals are amplified and filtered. Figure 5 shows a sample 

representation of the setup. The analysis performed after the data acquisition can determine the location of 

the failure, failure mechanism classification, and condition monitoring of the structure.  
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Figure 5 Sample Representation of the AE Testing Setup [19] 

3.2.2. Acoustic Emission Nondestructive Evaluation 

AE NDE is one of the passive volumetric NDE techniques that are capable of performing pressure testing, 

diagnostics, condition monitoring, and leak detection through detection and analysis of AE signals. AE 

testing and modern technologies allow high speed large scale monitoring of the material and structures. In 

a typical AE test, equal or slightly greater controlled mechanical loads compared to the practiced 

application load are applied to simulate the AE signals from the test sample. From these tests, an AE 

system can be carefully instrumented as well as having a better understanding of the relationship between 

the AE signals and material/structure mechanisms. The major advantage of AE NDE is the capability of 

passive volumetric monitoring, which allows it to be used to obtain AE data from the whole test objects 

during its regular service. Utilizing multiple sensors can distinguish the location of the different sources 

of the emission waves. Another advantage of AE NDE is the high sensitivity to detect changes in 

structures, using the high frequency transducers. Despite having various advantages, there are also 

disadvantages of AE NDE as well. Due to its high sensitivity, noises, electromagnetic interference, and 

other environment noise sources are acquired during the signal acquisition as AE signals. These noise 

signals are not related to the structure deformation and must be removed for the further analysis. Also, 

since AE is an irreversible process, it will not generate more AE signals unless the discontinuity grows or 

the structure is applied with higher loads.  
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3.2.3. AE Piezoelectric Transducers 

AE Piezoelectric transducers are sensors that convert elastic energy wave to voltage to be recorded as 

electrical signal. The transducers usually have a ceramic plate that is coupled to the test structure for 

dynamic surface motion to propagate into the piezoelectric element. This piezoelectric element is 

connected to the AE acquisition system by electrical lead, and the piezoelectric element is covered by 

damping material to block the AE signal reflection to the active element. All components are covered by 

the casing and protected. Some transducers have integrated preamplifier inside the transducers. This is to 

reduce the amount of noise coming in from the surrounding environment to the electrical lead while 

traveling undistorted AE signal through long distances. A sample representation of AE piezoelectric 

transducer can be seen as Figure 6. Typical operating frequency of the transducer is in the range of 30 

kHz to 1MHz. Depending on the usage environment and operation requirements, different types of AE 

piezoelectric transducers are available from many manufactures.  

 

Figure 6 Sample Representation of AE Piezoelectric Transducers [20] 

3.2.4. AE Signal Parameters 

The threshold value is set to record the AE signals coming into the transducers. The signals that have 

amplitude greater than the threshold value are recognized as an AE hit and recorded by the AE data 

acquisition system. From the recorded AE hits, 6 different parameters are quantified: amplitude, rise time, 
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duration, counts, counts to peak, and measured area under the reflected signal envelope (MARSE), or 

energy. AE signal parameter representation can be seen in Figure 7 and the description in Table 2. When 

the AE acquisition system records the AE hits, it needs to set the timing values; which control how AE hit 

events are characterize. Different timing values include peak definition time (PDT), hit definition time 

(HDT), and hit lockout time (HLT). As seen in Table 3, the material and environment of the test object 

cause these timing values to differ. The PDT is time after the first crossing of the threshold to the highest 

peak of the signal. It is needed to avoid false measurements of high velocity and low amplitude signals. 

This time should be set as short as possible in order to discriminate between separate events, but long 

enough to capture the true peak of an event wave form. The HDT is time after the signal has fallen below 

the threshold. It is a measure of the time between events. The HDT is used to determine the end of an 

event to store the parameters of that event for later use. It must be long enough to record the event as well 

as low enough to separate individual events. The HLT is the time between the past signal to the new 

signal which closes out the measurement process and stores the AE parameters from the waveform. The 

HLT is set to prevent the measurement of reflected or late arriving parts of the AE signal to eliminate 

false event echoes and so that the data acquisition rate can be optimized. The values of HDT and HLT 

parameters are selected from the pencil lead break tests from different locations in the specimen. 

 

Figure 7 AE Signal Parameters [21] 
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Table 2 AE Signal Parameter Description 

AE Parameter Description Units 

Amplitude Strength of the maximum signal voltage Decibel (dB) 

Rise Time 
Time elapsed from initial threshold crossing to peak 

amplitude 
Microsecond (μs) 

Duration Time elapsed between initial to final threshold crossing Microsecond (μs) 

Counts Number of times signal positively crosses the threshold # of hits 

Counts to Peak Number of counts until signal reaches peak amplitude # of hits 

Energy 
Also called as Measured Area Under the Reflected 

Signal Envelope (MARSE) 
Energy Counts 

 

Table 3 Timing Values Depending on Material [22] 

Material PDT (μs) HDT (μs) HLT (μs) 

Composites, Non-Metals 20-50 100-200 300 

Small Metal Specimens 300 600 1,000 

Metal Structures (high damping) 300 600 1,000 

Metal Structures (low damping) 1,000 2,000 20,000 

 

3.2.5. Metal Failure Mechanisms and AE signals  

AE signals can originate from different sources. It is important to know the different failure mechanisms 

that a metal structure undergoes while it proceeds to the stage of catastrophic failure. The common failure 

mechanisms in metal structures are plastic deformation and fatigue cracking.  

Plastic deformation occurs when a certain location undergoes some loading which is higher than the 

elastic load. Sufficient stress resulting in incapability for the structure to elastically deform back to its 

original shape causes plastic deformation. When a certain location undergoes strain hardening after 

multiple plastic deformations due to a microscopic crack or small imperfection, crack initiation occurs at 

that location. While the loads are constantly applied (cyclic or uniaxial loading), the crack will grow until 

the amount of undamaged material is insufficient to carry the load. The structure then undergoes 

catastrophic failure.  

Three basic types of stress can be defined for crack-tip stress analysis as shown in Figure 8. Plane strain 

or Mode I is the most commonly encountered mode in fatigue failure. Plane strain or Mode I tears open 

the crack and continue to grow the crack. Mode II is developed while crack surface slide over each other 
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in perpendicular direction to the edge of the crack. While the crack grows, plane stress or Mode III that 

characterizes crack surfaces sliding respect to each other in parallel direction to the edge of the crack 

continues to grow the crack. Superposition of these three modes describes the general case of the local 

crack tip deformation. Addition to the three modes, plastic deformation occurs at the tip and the process 

returns back to the modes [23] [24]. 

 

Figure 8 Fatigue Crack Modes [25] 

Table 4 shows the characteristics of AE signals related to failure mechanisms of metal materials. By 

observing the amplitude, duration, and energy of the cluster created by the clustering algorithms, different 

failure mechanisms can be determined. Other than the failure mechanisms, noises must be categorized 

even though the noise itself does not involve in the failure of the material. The two major types of noise 

are electric noise (environmental noises) and mechanical noise (friction or fretting noises). Most of the 

time, frequency of these noise can be utilized to distinguish between the different types of noise.  

Table 4 Characteristics of AE Data and Failure Mechanisms in Metals [12] 

Mechanism Amplitude Duration Energy 

Fatigue Cracking High Medium High 

Plastic Deformation Low Short Low 

Noises Low-Medium Long Medium 
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Chapter 4. Data Acquisition  

4.1. Acoustic Emission Signal Data Acquisition  

Two tests were conducted. Dr. Fady F. Barsoum, professor of Mechanical Engineering Department at 

Embry-Riddle Aeronautical University in Daytona Beach, Florida acquired AE data during the first test in 

2010. Dr. Barsoum had conducted the data acquisition while serving as a faculty research fellow at US 

Navy Naval Air Station Patuxent River, Maryland. The AE data recording was conducted on the side 

while the test was performed for its original test plan. The second acquisition was conducted by the 

engineers at US Navy Naval Air Station Patuxant River in 2011. 

4.2. Flow Diagram of the AE Signal Acquisition System 

Figure 9 shows the flow diagram of AE data acquisition. After the elastic wave acoustic emission is 

captured by the transducers, the emission is converted to a voltage signal. This voltage signal is better to 

be pre-amplified before traveling the signal for long distances. The pre-amplifier is recommended to be as 

near as possible to the transducers since it will reduce the signal interference from the environmental 

noises. After the AE signal is amplified, it is filtered to eliminate unwanted signals. Types of filters that 

can be applied are low pass, high pass, and band-pass filters. After the filtering, the signal can be 

amplified again to strengthen the desired AE signals. The signals are then sent to computer system to be 

filtered again and detect the AE hit signal parameters. After the detection, the AE hit data are stored to be 

analyzed.  
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Figure 9 Flow diagram of AE Data Acquisition  

4.3. AE Signal Acquisition System Settings 

In 2010, a 4 channel Physical Acoustic Corporation (PAC) μDISP/NB-8 AE system was connected to two 

PAC R15I AE transducers through a BNC connecter cable. The AE hit data was then recorded and 

analyzed using the AEwin™ software. In 2011, the PAC PCI-2 system was connected to two PAC WD 

AE transducers and two PAC Micro30S AE transducers. Two different transducer types were used to 

observe the difference in the signal acceptance between the transducers. 

Table 5 AE System and Transducer Used 

Acquisition Year AE System Transducers 

2010 

(Channel 1-2) 
PAC μDISP/NB-8 2 PAC R15I Transducer 

2011 

(Channel 1-4) 
PAC PCI-2 2 PAC WD and 2 PAC Micro30S Transducers 

 

Data recording setting of the acquisition system must to be set to acquire the correct and enough AE 

signal parameters from the source. Table 6 and 7 shows acquisition system setting parameters.   

AE Transducer 

Pre-amplifier 

Filter 

Amplifier 

Computer System 

• Filter 

• Signal Detection 

• Data Storage 

Signal Analysis 



17 

 

Table 6 PDT, HDT and HLT Settings for 2010 and 2011 

PDT (μs) HDT (μs) HLT (μs) 

200 800 1000 

Table 7 AE Signal Acquisition System Settings for 2010 and 2011 

Acquisition 

Year 

Threshold 

(dB) 

Pre-amplifier 

(dB) 
Lower (kHz) Upper (MHz) 

Sample Rate 

(MSPS) 

2010 

(Channel 1-2) 
45 40 10 2 10 

2011 

(Channel 1-4) 
65 40 100 1 2 

In both data acquisitions, filtering was not performed at the acquisition stage. This was to understand how 

AE signals can be captured from the rotating ground test stand. Therefore, the entire AE signal was 

acquired during the 2010 and 2011 test. From the experiences obtained, an AE acquisition system 

parameter setting as well as equipment can be planned for the further AE signal acquisition tests.  

4.4. Acquisition Software 

4.4.1. AEwin™ 

AEwin™ [26] is a 32bit Windows program that is capable of controlling PAC’s AE systems. Using the 

PAC’s standard data files, DTA files, the AEwin™ allows users to not only record the AE data, but to 

replay and analyze the AE files that have been collected previously. Using AEwin™, location analysis, 

waveform analysis, and AE activity analysis can be performed. For this research, AEwin™ was used to 

acquire and record the data as well as to convert the AE signal parameters into ASCII data file that can be 

used with other software. Having the acquisition, graphing, and analysis capabilities imbedded in an AE 

system, along with many features to ease data analysis and visualization tasks, AEwin™ is one of the 

important software packages used for this research.   
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Chapter 5. Data Clustering and Cluster Verification Methods 

5.1. Data Clustering and Cluster Verification Analysis  

AE signals can originate from different failure sources in the structure. To observe the change in a 

structure and to determine which signal parameters are from specific mechanisms, correct analysis 

technique must be performed. The wave analysis was popular for AE analysis due to its simple 

observation. However, with the improvement of hardware and technique to observe AE signals in more 

detail, mathematical pattern recognition analysis is more popular today.  

In this research, there are three main steps in determining the optimal number of clusters in an AE signal 

data set obtained. The flow of the analysis is shown in Figure 10. First, the cluster analysis is performed 

by using three pattern recognition algorithms. The three pattern recognition algorithms are Kohonen SOM, 

k-mean, and GMM. These three are unsupervised clustering techniques that are capable of partitioning a 

data point from the input of number of cluster that the user specifies. Second, from the cluster analysis, 

three internal criteria are measured to observe how separated the clusters are. The three internal criteria 

are Davies-Bouldin Criterion also known as Rij, Silhouette Criterion and Tou Criterion. These criteria 

measures the properties of compactness of the clusters and how well separated groups are by outputting 

indices. At the end, AE verification is performed by statistical analysis for each cluster as well as 

inspecting the AE plots.  
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Figure 10 Flow Diagram of the Analysis 

5.2. Structural Pattern Recognition Analysis for Failure Mode Classification 

Unsupervised structural pattern recognition technique uses mathematical algorithm to determine the 

pattern and classification from a given data set. It is very difficult for humans to observe and analyze the 

complex patterns with many different parameters. Therefore, a mathematical algorithm is used to 

recognize the pattern from the given data sets. For the analysis of the AE signals, multi-parameter 

analysis would show a much more accurate and desirable results from the relationship of the AE signal 

characteristics and failure mechanisms.  

The unsupervised pattern recognition technique is often performed to separate between the noise and the 

desired failure mechanism AE signals. This technique is effective for data separation, but it has 

disadvantages. One of the major problems is the initial indication of the number of the cluster by the user. 

The algorithm itself does not have ability to automatically specify the number of clusters in the data set. 

Another is the difference in the classification result depending on the different algorithms used [27].  

5.2.1. Artificial Neural Networks and Kohonen Self-organizing Map  

ANNs are mathematical algorithms that function similar to the human brain by identifying complex 

patterns in nonlinear data space. ANNs are composed of artificial neurons, or processing elements (PEs), 



20 

 

that construct the system. Input layer of the ANN consist of each PEs representing specific AE signal 

parameter. Based on the number of the classifications defined by the user, the output can be in the form of 

binary or x-y coordinate representing each classification. The output layer is connected to the input layer 

through weight functions which are adjusted during the training phase of the network [28]. When 

understanding neural networks, it is necessary to observe the architecture, competitiveness, and 

supervision of the network.  

The Kohonen SOM is a one type of unsupervised learning artificial neural network which is competitive 

and single layered that creates discrete representation of low-dimensional map from multi-dimensional 

input space [29]. From multiple iterations, the Kohonen SOM is capable of sorting large amounts of data 

and accurately divides them into different clusters with common characteristics.  

A typical SOM architecture consists of an input layer, one or two dimensional Kohonen layers, and an 

output layer. Figure 11 shows an example of one dimensional Kohonen SOM. The PEs in the input layer 

are independent of each other, but all PEs are connected to all neurons with their own weights in the 

Kohonen layer.  

 

Figure 11 Representation of (a) one dimensional (b) two dimensional Kohonen SOM neural network 

The Kohonen SOM and unsupervised learning neural network allows the winning neuron weight to be 

updated, as well as the weights of the adjacent neurons that are linked through a neighborhood function to 

optimally exhibit the input space. The weights are calculated as shown in Equation 1. 

(a)           

(b)           
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     (   )      (   )   (       (   )) (1)  

 

Where Wi,j are the weight vectors, α is the learning coefficient, Xi is the input vector. Typical SOM learns 

by minimizing the Euclidean distance between the weight and input vectors. Euclidean distance can be 

calculated with following Equation 2. 

    √∑(       )
  (2)  

 

Where Dj is the Euclidean distance. The network locates the neuron with the closest weight vectors to the 

input vectors taken from the data set, and assigns specific coordinate to this input vector. As learning and 

updating of the weights continues, the network will attempt to cluster the input vectors into “like” data 

clusters as an output.  

In this case of Figure 12, the 4 input parameters are amplitude, average frequency, duration, and energy. 

Each PE in the input layer represents specific AE signal parameters that are used to classify the AE signal 

parameters to the failure mechanisms. Each PE in the Kohonen layer represents different failure 

mechanism classification specified by the user. At the end, output layer represents the classification by 

two dimensional coordinates. 
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Figure 12 Representation of one dimensional Kohonen SOM neural network with 4 input neurons, 5x1 

Kohonen layer and 2 output neurons  

5.2.2. K-mean Clustering Algorithm 

The k-mean clustering algorithm [30] is one of the simplest pattern recognition algorithms that are 

capable of generating a specific number of flat non-hierarchical clusters. This method is numerical, 

unsupervised, non-deterministic, and iterative technique. The final goal of the k-mean is to partition the 

data set into “k” number clusters to have similar characteristics with other data points in the same cluster. 

Figure 13 shows a flow diagram of the k-mean clustering algorithm.  

 

 

Figure 13 Flow Diagram of K-mean Clustering Algorithm 

User input of 
"k" clusters 

Place "k" points into 
the space as initial 

centroids 

Assign clusters 
index to data points 

that has closest 
centroids 

Calculate the cluster 
centroid 

Iterations continues until 

no centroid movement 
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After the input of number of “k” cluster wanted, the data points are partitioned into “k” clusters with 

centroids in each. Based on the centroids, the distances between the centroids and data points are 

calculated to minimize the distance. The distance is minimized by the objective function (J) as shown in 

Equation 3. 

   ∑∑‖  
( )
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Where   
( )

 is data points,    is cluster centroid. After the new cluster indexes are assigned to each data 

points, the centroid for the cluster is recalculated. Then, the distance between the centroids and the data 

points is calculated again. The k-mean algorithm is very simple for data clustering but has its 

disadvantages as an algorithm does not necessarily find the most optimal configuration. The algorithms 

are very sensitive to the initial randomly selected centroid points. This problem can be reduced by 

multiple iterations of the k-mean algorithm. 

5.2.3. Gaussian Mixture Model Clustering Algorithm 

The GMM clustering algorithm [31 - 33] is another type of pattern recognition algorithm that is capable 

of generating a specific number of the clusters from a given data set from unsupervised learning. The 

GMM is one of the mode-based approaches which use certain models for clustering and attempting to 

optimize the data and model. For this model, it considers clusters as Gaussian distribution centered on its 

centroid as seen in red from Figure 14 (b). The final goal of GMM is to cluster the data into a “k” number 

of cluster by maximizing the posterior probability of each data point. Figure 15 shows the flow of the 

GMM algorithm.  



24 

 

 

Figure 14 (a) Example of Gaussian Distribution (b) Multiple Gaussian Distribution from X-Y View 

 

Figure 15 Flow Diagram of Gaussian Mixture Model Clustering Algorithm 

The posterior probability is calculated by updating the likelihood with the prior probability. The 

likelihood is calculated as shown in Equation 4.  
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Where     ( | ) is log-likelihood,    is mixing coefficients that is greater than zero,   is mean of 

respective Gaussian distributions,   is variance parameters of the respective Gaussian distributions, X is 

data points from         and   is set of parameters {     }. The set of parameters {     } are iterated 

until they converge by exception-maximization algorithm. The GMM algorithms are more appropriate 

than k-mean when clusters have different sizes and correlation within the clusters.  

5.3. Cluster Criterion Algorithms for Cluster Verification 

Even when the cluster algorithm itself is very simple, it is very difficult to find the optimal cluster of 

configuration when performing a clustering analysis. This is because the clustering is performed without 

an initial understanding of the internal structure of the data and requiring the input number of cluster to be 

User input of 
"k" clusters 

"k" centroid 
created 

Each centroid 
creates 

Gaussian 
distributions 

Iterations: Maximize 
posterior probability for 

each point to assign 
clusters  

(a)                                                                    (b) 
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partitioned. When the cluster verification is performed, it describes each cluster by the strong internal 

similarities between the data points within the same cluster. It uses criterion function, such as the sum of 

squared distance from the cluster centroids, to maximize the criterion functions.  

5.3.1. Davies-Bouldin Criterion 

The Davies-Bouldin criterion [34], also known as Rij criterion, is based on the ratio of average within-

cluster distance to between-group distances. The average measure of such ratio is calculated using all of 

the different pairs of classes. Equation 5 shows the equation to calculate the Davies-Bouldin index to 

evaluate the quality of a given data partition.  
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Where DB is the Davies-Bouldin index,    is maximum of    . To obtain the   ,     must be explained. 

The     can be written as shown in Equation 6. 
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Where    and    are dispersions of clusters i and j and     are the distance between two centroids. The 

equations    and     are shown below. 
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Where    is number of vectors in cluster i and    is the centroid of cluster i. When q = 2, the equation is 

the standard deviation of the distance of samples in a cluster to the respective cluster centroid. 
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Where     is the kth component of the n-dimensional vector    with centroid i. When p = 2, the equation 

is the Euclidian distance between centroids. 

Minimizing the    for all cluster will minimize the Davies-Bouldin index. Therefore, to have a compact 

and separate cluster, the Davies-Bouldin index will have small values.  

5.3.2. Silhouette Criterion 

The Silhouette criterion is based on the ratio of the intra-group distance and the inter-group distance. In 

this research, the Simplified Silhouette criterion [35] was utilized. The Simplified Silhouette criterion was 

chosen since the original Silhouette criterion needs to calculate the distance between all of the data points 

which will result in increase of computational time. This Simplified Silhouette will calculate the distance 

between points and cluster centroids. Equation 9 shows the equation to calculate the silhouette index to 

evaluate the compactness and quality of the cluster.  

   ( )  
         

   (         )
 (9)  

 

Where      is the distance of the ith object to the centroid of its cluster,      is the distance of the ith 

object to the centroid of its closest neighboring cluster.  

By computing distances among all objects to the centroids, the Simplified Silhouette criterion indicates a 

better quality by having a higher Silhouette index.  

5.3.3. Tou Criterion 

The Tou criterion [36] corresponds to the ratio of the minimum distance between any pair of classes to the 

maximum of the average within class distances shown in Equation 10.  
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Where     is minimum distance between pair of classes and   is an average distance between the classes. 

Following Equations 11-12 show     and   .  

     ‖     ‖ (11)  

 

Where    are centroids for cluster i. 
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Where     is denoted as Equation 13.  
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Where         is the distance between the data point to the centroid.  

From Equation 10, the optimal clusters occur when  (  ) reaches a maximum peak.  

5.4. Analysis Software 

5.4.1. NeuralWorks
®
 Professional II/Plus 

The NeuralWorks
®
 Professional II/Plus [37] is software utilized for neural network analysis. It can run on 

multiple operating systems and have the file compatibility between the operating systems. This software 

allows the user to quickly operate one of the 28 standard neural networks architectures in the software. 

While a user can utilize the standard neural networks to design, build, train, and test to solve complex 

problems, NeuralWorks
®
 Professional II/Plus has capabilities for the user to create their own network by 

writing customized script files. In this research, the Kohonen SOM from the one of the 28 standard neural 

networks architectures was utilized to perform a clustering analysis on the AE signals. 
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5.4.2. MATLAB
®
 

The MATLAB
®
 is powerful numerical computing software that can be used to analyze data and develop 

algorithms and models. It can be used in a wide range of applications, but in this research, MATLAB
®
 is 

utilized for data processing, clustering analysis using k-mean and GMM functions, and plotting of the 

results.   
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Chapter 6. Data Acquisition Setup of the Rotating Gear Box 

6.1. Ground Test  

The acquisition was performed on a ground test stand at Naval Air Station Patuxant River, Maryland in 

2010 and 2011. The test stand was capable of simulating the service load conditions (hub moment and 

thrust) on the H-60 helicopter tail gearbox by loading actuators. The maximum continuous moment load 

can be as high as 70,000 in-lbf, while the thrust load can be as high as 2,000 lbf. While the output shaft of 

the tail gearbox is a rotating motion, these two loads can be applied separately or simultaneously. During 

the test, the AE transducers are mounted on the casing of the tail gearbox to record the signals that are 

subsequently analyzed using the processing software. 

6.1.1. Setup 

Figure 16 shows the 3D CAD drawing of the complete ground test stand. The setup consists of a drive 

stand, intermediate gearbox, moment bearing support assembly, water brake, and the tail gearbox, where 

bevel gear is housed. The drive stand supplies the torque to the intermediate gearbox through shaft 1. The 

shaft 2 is connected between the intermediate gearbox and the tail gearbox as well as the water brake for 

the rotational load absorption to simulate the loading effect of the H-60 helicopter tail rotor. The 

maximum rotating speed is 1,189 RPM. The black arrow in the Figure 16 shows the direction of the rotor.  
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Figure 16 3D Drawing of Ground Test Setup [3] 

6.1.2. Transducer 

To observe the different reactions of the transducers, different transducers and number of the channel 

were used in the two data acquisitions as shown in Table 8. From the observation, the transducer to be 

used in further research was to be determined. 

In 2010, a PAC R15I transducer was utilized and was attached to the casing of the gear box. The two 

transducers were placed 90 degrees apart from each other as shown in Figure 17(a). The PAC R15I 

transducer has an integrated 40dB preamplifier inside the transducer casing. The integrated preamplifier 

allows the transducer to have high sensitivity and capability of connecting long cables without additional 

preamplifiers. This type of transducer provides a good mixture of high sensitivity and high low frequency 

rejection to be useful to monitoring many common structures such as pipeline, bridges, and storage tanks 

[38].  

Test Section 

(Tail Gear Box) 

Intermediate 

Gear Box 

Shaft 2 

Shaft 1 

Drive Stand 

Water Brake 

Moment Bearing 

Support Assembly 
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In 2011, a PAC WD transducer and a PAC Micro30S transducer were used. Two of each transducer were 

attached to the casing of the tail gear box as shown in Figure 17(b). Two different transducers were 

placed next to each other as a set, and the two sets were spaced 90 degrees apart as same as the 2010 test. 

The PAC WD transducer is a differential wideband sensor that has very high sensitivity and bandwidth. 

The differential transducer differs from a general sensor by having two sensing elements with opposing 

polarization direction built-in the casing. The two signals from the two sensing elements are feed into 

differential preamplifier to eliminate the common noise. WD sensors are used for structural health 

monitoring of large structures like storage tanks and pipeline, as well as research applications where high 

AE response is needed [39]. The PAC Micro30S transducer is a small sized sensor with good sensitivity 

to be used in applications with size and weight limitations. With its small size and the sensitivity, it is 

ideal for structural health monitoring of structures like aircraft and storage tanks [40].  

Table 8 Transducer and Channels for each Test [38] [39] [40] 

Acquisition 

Year 
Channel Transducer 

Resonant 

Frequency (kHz) 

Operating Frequency 

Range (kHz) 

2010 1, 2 PAC R15I Transducer 150 80-200 

2011 
1, 3 PAC WD Transducer 450 125-1000 

2, 4 PAC Micro30S Transducers 225 150-400 
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Figure 17  Transducer Position for (a) 2010 [41] (b) 2011 

6.2. Parameters 

6.2.1. AE Parameters 

With the improvement of the recording hardware in past decades, it is possible to record many AE signal 

hit data using recent equipment. In the two acquisition years, different amounts of the AE hit parameters 

were recorded as seen in Table 9. Of the many parameters, four were selected: energy, duration, 

amplitude, and counts. The parameter to be used for analysis were chosen by experiences of the past work 

and research to observe the best classification performed by the clustering algorithms.  

Table 9 Recorded AE Hit Signal Parameters 

Acquisition Year Recorded AE Hit Parameters 

2010 Rise time, Counts, Energy, Duration, Amplitude, Channel 

2011 

Rise time, Counts, Energy, Duration, Amplitude, Average Frequency,  

Initialization Frequency, Signal Strength, Absolute Energy,  

Centroid Frequency, Peak Frequency, Channel, Partial Power 

 

Transducer 1 

Transducer 2 

Transducer 1 & 3 

Transducer 2 & 4 

(a)                                                                       (b) 
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6.2.2. Loading Profile  

For the analysis of the fatigue crack in the bevel gear, the mission profile of the H-60 helicopter was 

simulated in the data acquisition. Figure 18(a) (b) shows the hub moment loading and the rotational speed 

of the bevel gear on September 7th and October 18th, 2010. The rotating speed ranged from 0 to 1,189 

RPM and a different bending moment load was applied simultaneously. On different date, hub moment 

load, rotational speed, and acquisition time were different.  

  

 

Figure 18 Hub Moment Load and Rotational Speed of the Bevel Gear in (a) September 7, 2010 (b) 

October 18, 2010  
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Chapter 7. Pre-analysis Data Processing 

7.1. Overview 

To prevent incorrect classification of the failure mechanisms by the clustering algorithm, the data needed 

to be sorted before the classification analysis. The raw data was checked to see if it contained enough AE 

signal to be analyzed. Figure 19 shows the sorting methods that were applied to the acquired AE signal 

data.  

 

Figure 19 Sorting Method for AE Data 

7.2. Elimination of Duration 

Durations greater than 100,000 μs were sorted out first since these long duration data are considered as 

noises or multiple hit data (MHD). MHD are AE hits in which several AE signals are closely spaced in 

overlapping time, making its statistics very different compared to single hit data. Rubbing or friction 

noises are typical example of MHD. Since the goal of this analysis is to observe the fatigue crack growth 

in the bevel gear, only AE signal with duration ≤ 100,000 μs which are boxed red in Figure 20(a) are used. 

The cutoff point of duration of 100,000 μs was chosen since the plot from Figure 20 (a) indicates there is 

only one cluster under 100,000 μs. Figure 20 (b) shows the analysis with only the signal duration ≤ 

100,000 μs. Comparing (a) and (b), it can be seen that the analysis is much more in detail.  

Raw AE Signal Parameter Data 

Eliminate Duration ≥ 100,000μs 

Eliminate Energy = 0  

Channel 
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Figure 20 October 18th AE Hit Data with Duration vs. Amplitude (a) all signals (b) signal duration ≤ 

100,000μs 

7.3. Elimination of Energy 

Zero energy AE hit data were also eliminated since it was not a meaningful AE data. When the signal are 

received by the AE system, the energy reading less than 0.5 are round down as zero energy hits. This is 

because of the conversion between analog and digital signals by the acquisition system. Table 10 and 11 

shows the comparison of AE hit with zero energy and energy other than zero. AE signal data with zero 

energy hit have lower duration time and counts compared to the AE hit with energy greater than 0. This 

indicates that the AE signals with energy less than zero can be eliminated from the analysis.  

Table 10 AE Data with Zero Energy 

Counts Energy Duration (μs) Amplitude (dB) 

1 0 1 45 

1 0 1 47 

2 0 38 46 

 

Table 11 AE Data with Energy Greater than Zero 

Counts Energy Duration (μs) Amplitude (dB) 

16 42 5267 48 

98 42 3589 52 

12 43 5834 47 

 

 

100,000μs 

(b) 

 

(a)  
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7.4. Elimination of Channels 

After the sorting was performed, AE signals were separated into channels to observe the different analysis 

result of the clustering analysis. For the 2010 data acquisition, it showed that the Channel 1 had more 

fatigue crack signal compared to Channel 2, as shown in Figure 21. One possible reason for this is that the 

fatigue cracks could have been occurring closer to Channel 1; hence Channel 2 data were put aside for 

further analysis for the 2010 acquisition data.   

 

Figure 21 Duration vs. Counts of October 18, 2010 (a) Channel 1 (b) Channel 2 

In 2011, four transducers were used to acquire AE signals. From the four transducers, Channel 2 and 3 

showed the most AE activities as shown in Figure 22. Since Channel 3 showed more AE activity 

compared to others, it was chosen for the further analysis.  

(a)                                                                             (b) 



37 

 

 

Figure 22 Duration vs. Counts AE Signals from TGBOBG0002 of 2011 Acquisition for Different 

Channels   

Ch 3 Ch 4 

Ch 1 Ch 2 
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Chapter 8. Iterations and Inspection  

8.1. Analysis Iterations 

To perform the clustering analysis, numbers and parameters for input and number of cluster for an output 

must be selected. The input AE parameters utilized were counts, duration, energy, amplitude, and average 

frequency. From these five parameters, different combinations were utilized to see the output 

classification result of the three clustering algorithms used. The output numbers were varied from 3-7 

clusters to observe the performance of each clustering techniques using the clustering verification criteria. 

Table 12 shows a list of all the iterations performed.  

Table 12 AE Input Parameters and Output Iterations  

Iteration Input Parameters 
Number of Input 

Parameter 

Number of 

Output Clusters 

1 Duration, Energy, Amplitude 3 3 - 7 

2 Counts, Duration, Energy, Amplitude 4 3 - 7 

3 Energy, Amplitude, Average Frequency 3 3 - 7 

4 Duration, Energy, Amplitude, Average Frequency 4 3 - 7 

 

The first two analyses were performed by using the native AE signal parameters obtained. Since the first 

two clustering show inconclusive results from the clustering criterions, average frequency was introduced 

to the clustering analysis as a new input parameter to observe the classification performance from the 

third iteration on. Out of the five input parameters, average frequency is only parameter that is not native 

from the AE signals. Equation 14 shows the equation of the average frequency.  

                    
      

       
 (14)  

 

8.2. Cluster Inspection 

The AE data points clustered by the three clustering algorithms are inspected in two steps, as shown in 

Figure 23. The two steps are cluster performance verification by using mathematical model and visual 

verification. From the performance verification, a possible number of clusters in the data set will be 

suggested. To verify the possible number of clusters in the data set, visual verification by performing 
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statistical analysis on each cluster and plotting the acoustic emission plots are performed. From the two, 

the number of clusters can be verified by the AE characteristics of each mechanism.  

 

Figure 23 Cluster Inspection Flow 

8.2.1. Criterion Verification of the Clusters 

Based on the three mathematical cluster performance analyses, the results can show the optimal number 

of the cluster in a data set. Figure 24 shows the example plot of criteria depending on the clustering 

techniques. In this plot, all numbers were normalized to have them fall between -1 to 1. Also, the criterion 

index value of the Davies-Bouldin criterion has been inversed to have the maximum criterion index value 

as the optimal number of clusters. Using each criterion index value calculated, each cluster index values 

for each criterion are given a point regarding to their rank within. In this research, the 5 different clusters 

are observed in between 3 through 7, the highest peak will be given 10 points, and the second highest 

peak will be given 9 points and so on. From the points given, all three points per cluster number are 

summed to include the voting plot in the verification plot. The cluster with the highest point are indicated 

with magenta dot and the second highest is shown as light blue dot. Figure 25 shows the flow of the 

voting plot. 
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Figure 24 Example of Criterion Verification Plot  

 

Figure 25 Flow of the Criterion Voting Plot 

From each clustering algorithm, the possible number of clusters in the data set will be predicted by the 

cluster criteria. To be sure the result from the criterion is the best possible number of the cluster in the 

data set, further verification of acoustic emission plots and statistical analysis of the each cluster will be 

necessary.  

8.2.2. AE plots and Statistical Analysis of Clusters 

Clustering can be verified by visual inspection. Figure 26 shows two examples of improper classification. 

Figure 26(a) is shown using Kohonen SOM with input AE parameters as energy, amplitude, and average 

frequency. This analysis shows the possibility of two types of signals within the green set of data by part 

of the green data points extending into the same direction as red area (circled in red). 

Perform 
Criterion 

Calculatrion 

Rank output 
index of 
criterion 
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Sum all 
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Figure 26 October 18, 2010 Duration vs. Count (a) Input: EAF Output 3 (b) Input: DEAF Output 4  

Additionally, Figure 26(b) shows improper classification with Kohonen SOM clustering into 4 clusters 

with inputs of duration, energy, amplitude, and average frequency as shown in red circle. Initial 

expectation of this iteration was that SOM would be able to further dissect the fatigue crack data and 

separate it into two different types: plane strain and plane stress cracking. However, the output result 

shows that this iteration was able to separate the plastic deformation cluster as shown in yellow. Still, the 

classification output showed that the blue data points are extending toward the red area which is plane 

stress. Hence, further increase of clusters was needed.  

After the plots have been checked to have a proper classification, statistical analysis of each clusters are 

performed to observe the relationship between the clusters. The parameters to be investigated are the 

minimum, maximum, average, standard deviation, and number of hits of the each cluster. From observing 

all parameters in statistical analysis of each cluster with the relationship of the each cluster mechanisms 

with AE signal parameters shown in Table 4, it is possible to determine the accuracy and mechanism of 

each cluster.  

With the optimal cluster number possibility suggested from the clustering verification criteria, the visual 

inspection of the acoustic emission plots and the statistical analysis can conclude the optimal number of 

cluster in the data set.   

(a)                                                                                 (b) 
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Chapter 9. Results 

The 2010 data collected with lower threshold of 45 dB had more significant hits than the 2011 data with 

higher threshold of 65 dB. The difference in the threshold value resulted in the different amount of AE 

hits to be analyzed. Results presented through 9.1and 9.4 are for 2010 data and the results for 2011 are 

presented at 9.5. 

9.1. Clustering Criterion Verification of 2010 Data 

Two of the acquisition dates were chosen to demonstrate the methodology and techniques established in 

this research. The two dates are September 7th and October 18th. These dates represent a midpoint data 

set and final date data set from the data acquired, respectively. From the data set clustered by the three 

clustering algorithm, cluster criterion verification was performed to obtain a suggested optimal number of 

clusters, followed by visual verification to confirm the suggested number of optimal clusters in a data set.  

9.1.1. K-mean Clustering Criterion Verification 

Figures 27 and 28 demonstrate the clustering criterion verification of the two dates after K-mean 

clustering algorithm. From the voting value plot of Figure 27, it indicates that the September 7th data has 

maximum peak at 6 clusters and next highest peak at 3 clusters. This indicates the possibility of the data 

having 6 clusters or 3 clusters in the September 7th data set.  



43 

 

 

Figure 27 September 7th K-mean (Input: Duration, Energy, Amplitude, Avg Freq.) Cluster Criterion 

For October 18th data set, it indicates the maximum peak at 6 clusters and next highest peak at 4 clusters 

as shown in Figure 28. From this date, it indicates the possibility of 6 or 4 clusters in the data being 

optimal.  

 

Figure 28 October 18th K-mean (Input: Duration, Energy, Amplitude, Avg Freq.) Cluster Criterion 
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9.1.2. Gaussian Mixture Model Clustering Criterion Verification 

Figures 29 and 30 show the clustering criterion verification of the two dates after GMM clustering 

algorithm. From the voting value plot of Figure 29, it indicates that the September 7th data has maximum 

peak at 6 clusters and next highest peak at 3 clusters.  

 

Figure 29 September 7th GMM (Input: Duration, Energy, Amplitude, Avg Freq.) Cluster Criterion 

For the October 18th data set after GMM, it indicates the maximum peak at 5 clusters and next highest 

peak at 3 clusters as shown in Figure 30. From this date’s data set, it indicates the possibility that 5 or 3 

clusters in the data are optimal.  



45 

 

 

Figure 30 October 18th GMM (Input: Duration, Energy, Amplitude, Avg Freq.) Cluster Criterion 

 

9.1.3. Kohonen Self-organizing Map Clustering Criterion Verification 

Figures 31 and 32 show the clustering criterion verification of the two dates after Kohonen Self-

organizing map clustering algorithm. As shown in Figure 31, the voting plot indicates the maximum peak 

of the criterion at 3 clusters and next highest at 4 clusters. 

 

Figure 31 September 7th K-mean (Input: Duration, Energy, Amplitude, Avg Freq.) Cluster Criterion 
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Figure 32 indicates the criterion analysis performed on October 18th from Kohonen SOM. It indicates 

that the criteria have the maximum peak at 3 clusters and next highest at the 5 clusters.  

 

Figure 32 October 18th K-mean (Input: Duration, Energy, Amplitude, Avg Freq.) Cluster Criterion 

 

9.1.4. Cluster Number Possibility from Clustering Criterions 

From the each clustering algorithms, the criterion peaks are tabulated as shown in Table 13. For each date, 

the 1st and 2nd peak clusters are listed as well as the highest possible clusters that the criterions are 

suggesting. The table cells with orange color indicate the highest peak for that date. 

Table 13 Criterion Peaks of Each Date using Different Cluster Algorithms for 4th Iteration 

 

Since the metal structures should have at least 3 clusters for these data sets (plastic deformation, fatigue 

crack, and noise), the higher peak was considered to be the optimal number of clusters suggested by the 
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criterions. From Table 13, it indicates that the highest criterion peak occurred in between 4 and 6 clusters. 

To perform the visual verification, the clusters between 4 through 6 were investigated to observe the 

performance of the clustering by statistical analysis and acoustic emission plots.  

9.2. Visual Verification of 2010 Data 

After the cluster criterion verification, the visual verification is done by performing statistical analysis and 

observation of the acoustic emission plots to suggest the number of clusters in the data set. Different 

colors in the plots indicate the different clusters separated by the clustering algorithms. After the visual 

verification suggesting single number of possible cluster in the data set, different mechanisms can be 

determined by comparing each mechanism with the AE characteristics of each cluster.  

9.2.1. K-mean Clustering 

9.2.1.1. September 7th K-mean 

Figures 33-35 and Tables 14-16 show the AE plots and the statistical analysis performed on September 

7th using the k-mean clustering algorithm. From the cluster criteria, it has provided with a possibility that 

6 clusters in the data set are the optimal number of cluster.  

By visually observing Figures 33-35, it is possible to detect one of the clusters is extending in two 

directions from the duration versus counts plot. This indicates that there are two different average 

frequencies in one cluster. Due to this reason, it is possible to state that the k-mean clustering algorithms 

were not able to classify the September 9th data into definite clusters. The cluster with two different 

average frequencies is circled in red.  
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Figure 33 September 7th - 4 Clusters K-mean Clustering AE Plots 

 

Table 14 September 7th – 4 Clusters K-mean Statistical Analysis (a)Amplitude (b)Duration (c)Energy 

 

 

 

Min Max Average SD # of Hits Rank

45 51 46.31 1.01 7086 4

45 69 47.05 1.64 3071 1

45 61 46.37 1.14 4618 2

45 59 46.34 1.15 3748 3

Amplitude

Min Max Average SD # of Hits Rank

480 1189 729.72 148.50 7086 2

897 97406 1991.71 3770.72 3071 1

228 878 432.45 99.10 4618 3

45 540 215.31 62.70 3748 4

Duration

Min Max Average SD # of Hits Rank

2 7 4.20 1.00 7086 2

6 772 13.77 32.56 3071 1

1 15 2.46 0.85 4618 3

1 7 1.11 0.38 3748 4

Energy
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Figure 34 September 7
th

 - 5 Clusters K-mean Clustering AE Plots 

 

Table 15 September 7th – 5 Clusters K-mean Statistical Analysis (a)Amplitude (b)Duration (c)Energy 

 

 

Min Max Average SD # of Hits Rank

45 53 46.78 1.07 3590 2

45 59 46.34 1.15 3695 4

45 61 46.37 1.13 4429 3

45 51 46.29 1.01 6609 5

46 69 50.03 3.95 200 1

Amplitude

Min Max Average SD # of Hits Rank

873 3766 1411.72 435.58 3590 2

45 493 213.63 61.38 3695 5

225 878 426.38 97.70 4429 4

464 1052 690.73 120.36 6609 3

653 97406 8902.35 12856.91 200 1

Duration

Min Max Average SD # of Hits Rank

5 23 8.79 2.93 3590 2

1 7 1.10 0.36 3695 5

1 13 2.40 0.81 4429 4

2 6 3.97 0.84 6609 3

11 772 75.24 110.33 200 1

Energy
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Figure 35 September 7th - 6 Clusters K-mean Clustering AE Plots 

 

Table 16 September 7th – 6 Clusters K-mean Statistical Analysis (a)Amplitude (b)Duration (c)Energy 

 

Min Max Average SD # of Hits Rank

45 51 46.14 0.97 4932 6

45 51 46.72 1.06 2916 3

45 61 46.93 1.26 2702 2

45 51 46.27 1.01 4145 5

46 69 49.88 3.97 184 1

45 59 46.36 1.16 3644 4

Amplitude

Min Max Average SD # of Hits Rank

467 1067 661.74 111.51 4932 4

902 3766 1491.02 447.90 2916 2

442 1970 837.03 186.70 2702 3

225 656 407.45 76.49 4145 5

948 97406 9542.17 13211.20 184 1

45 487 212.28 60.83 3644 6

Duration

Min Max Average SD # of Hits Rank

2 6 3.73 0.72 4932 4

6 23 9.23 3.05 2916 2

3 17 5.29 1.54 2702 3

1 4 2.21 0.50 4145 5

16 772 80.39 113.59 184 1

1 5 1.11 0.37 3644 6

Energy
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9.2.1.2. October 18th K-mean 

Figures 36-38 and Tables 17-19 show the AE plots and the statistical analysis performed on October 18th 

using the k-mean clustering algorithm. Again, cluster criteria have provided with a possibility that 6 

clusters in the data set are optimal. To verify that having 6 clusters in the data set is optimal, 4 through 6 

clusters were checked.  

The verification must be done by observing Figure 36 and Table 17 at the same time. From Table 4, the 

plastic deformation should have the lowest amplitude, shortest duration, and lowest energy. By observing 

Table 17, “red” color in the AE plot indicates that it satisfies the characteristics of the plastic deformation. 

Therefore, the red cluster can be concluded to be plastic deformation. Next, the “yellow” shows it has 

longest duration and the rest in the medium. This indicates that the yellow cluster is noise. Thirdly, the 

“green” indicates that it satisfies the acoustic emission characteristics of the fatigue cracking. Finally, the 

“blue” cluster indicates the two different average frequency form the counts versus duration plot. This 

indicates that there is a possibility of two different clusters in the blue cluster. From these reasons, there is 

a possibility of cluster number increasing.  
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Figure 36 October 18th - 4 Clusters K-mean Clustering AE Plots 

 

Table 17 October 18th – 4 Clusters K-mean Statistical Analysis (a)Amplitude (b)Duration (c)Energy 

 

 

By comparing the 4 cluster and 5 cluster AE plots, it is possible to observe that the “blue” cluster from the 

4 cluster plot has separated in to two different clusters in the Figure 37. Again, by observing Figure 37 

Min Max Average SD # of Hits Rank

45 59 47.30 2.06 352 4

47 52 48.74 0.92 444 2

45 64 47.84 1.45 625 3

51 94 67.14 11.36 124 1

Amplitude

Min Max Average SD # of Hits Rank

78 1142 509.97 248.35 352 4

4948 82363 14227.57 10942.41 444 1

922 5244 2544.28 1174.80 625 3

869 48491 8517.85 6430.69 124 2

Duration

Min Max Average SD # of Hits Rank

1 20 4.02 2.59 352 4

40 713 119.86 95.77 444 2

6 43 20.68 9.70 625 3

26 5528 714.07 1096.97 124 1

Energy

Mechanism Amplitude Duration Energy

Fatigue Cracking High Medium High

Plasitc Deformation Low Short Low

Noise Medium Long Medium

AE Characteristics and Mechanisms
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and statistical analysis on Table 18, it is possible to distinguish each cluster with each mechanism. The 

“red’ cluster has lowest amplitude, duration, and energy, indicating it is possibly a plastic deformation 

Secondly, looking at the “yellow” clusters, it has high duration, mid – high amplitude, and energy, 

indicating as one type of noise. In addition, the “blue” cluster can be considered to be noise as well from 

the AE characteristic of the noise signal. Looking at “pink” cluster, it has high amplitude and energy, with 

medium duration. This indicates that the “pink” cluster is one type of fatigue crack.  

 

Figure 37 October 18th - 5 Clusters K-mean Clustering AE Plots 

 

Mechanism Amplitude Duration Energy

Fatigue Cracking High Medium High

Plasitc Deformation Low Short Low

Noise Medium Long Medium

AE Characteristics and Mechanisms
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Table 18 October 18th – 5 Clusters K-mean Statistical Analysis (a)Amplitude (b)Duration (c)Energy 

 

 

Figure 38 shows the 6 cluster plots by the k-mean algorithm. From observing Table 19 it can be observed 

that the “red” clusters is plastic deformation since it has lowest amplitude, duration, and energy. The 

“light blue” and “yellow” clusters indicate having the very close AE characteristics of noise; the two 

clusters can be classified as noise cluster. In observing the AE characteristic of “green” and “pink” 

clusters, both shows the characteristic of fatigue crack. As the cluster criteria have suggested, the 6 cluster 

for k-mean algorithm shows a decent clustering. However, there is a possibility that some point in “blue” 

cluster could be from the “yellow” cluster by observing the similar value of the amplitude in two clusters. 

Therefore, the number of cluster in this data set could be 5. However, if we observe the 5 cluster AE plot, 

the “green” cluster does not have the distinct characteristics of the fatigue crack or noise. Due to this 

reason, 5 clusters in the data set is optimal in the data set, but the k-mean clustering algorithms may not 

have the capabilities to classify the data well enough to be analyzed for failure mechanisms inspection.  

Min Max Average SD # of Hits Rank

51 94 67.14 11.36 124 1

45 59 47.39 2.26 214 5

47 52 48.99 0.85 283 2

46 54 48.13 1.07 473 3

45 64 47.50 1.69 451 4

Amplitude

Min Max Average SD # of Hits Rank

869 48491 8517.85 6430.69 124 2

78 797 345.56 149.58 214 5

8125 82363 18597.29 11608.76 283 1

2013 8773 4555.40 1673.46 473 3

495 2333 1319.37 483.97 451 4

Duration

Min Max Average SD # of Hits Rank

26 5528 714.07 1096.97 124 1

1 17 2.79 2.07 214 5

68 713 157.72 102.01 283 2

17 70 37.11 13.61 473 3

3 27 10.58 4.41 451 4

Energy
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Figure 38 October 18th - 6 Clusters K-mean Clustering AE Plots 

 

Mechanism Amplitude Duration Energy

Fatigue Cracking High Medium High

Plasitc Deformation Low Short Low

Noise Medium Long Medium

AE Characteristics and Mechanisms
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Table 19 October 18th – 6 Clusters K-mean Statistical Analysis (a)Amplitude (b)Duration (c)Energy 

 

 

9.2.2. Gaussian Mixture Model 

9.2.2.1. September 7th Gaussian Mixture Model 

Figures 39-41 and Tables 20-22 show the AE plots and the statistical analysis performed on September 

7th using the Gaussian Mixture Model clustering algorithm. From the cluster criteria, the analysis has 

provided a possibility that 6 clusters in the September 7th data are the optimal number of clusters.  

By visually observing the Figures 33-35, it is possible to detect that one of the clusters is extending in two 

directions from the duration versus counts plot. This indicates that there are two different average 

frequencies in one cluster. Due to this reason, it is possible to say that the Gaussian Mixture Model 

clustering algorithms were not able to classify the September 9th data into definite clusters. The cluster 

with two different average frequencies is circled in red.  

 

 

Min Max Average SD # of Hits Rank

55 94 74.11 10.13 70 1

46 51 48.02 0.89 456 4

45 50 47.15 0.93 413 5

48 69 54.43 4.90 122 2

45 54 47.06 1.46 200 6

47 52 48.99 0.86 284 3

Amplitude

Min Max Average SD # of Hits Rank

5582 48491 12341.33 6186.35 70 2

2219 8773 4603.88 1667.20 456 3

495 2327 1283.58 483.31 413 5

347 6125 2560.48 1420.88 122 4

78 797 331.26 142.54 200 6

7893 82363 18559.60 11605.63 284 1

Duration

Min Max Average SD # of Hits Rank

133 5528 1211.31 1252.38 70 1

17 69 37.24 13.72 456 4

3 18 9.87 3.98 413 5

7 129 41.48 32.01 122 3

1 7 2.44 1.29 200 6

68 713 157.42 101.96 284 2

Energy
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Figure 39 September 7th - 4 Clusters GMM Clustering AE Plots 

 

Table 20 September 7th – 4 Clusters GMM Statistical Analysis (a)Amplitude (b)Duration (c)Energy 

 

 

Min Max Average SD # of Hits Rank

45 69 48.66 2.94 591 1

45 50 46.08 0.95 2763 4

45 51 46.14 0.96 8419 3

45 53 46.82 1.05 6750 2

Amplitude

Min Max Average SD # of Hits Rank

45 97406 3407.99 8458.13 591 1

77 656 218.15 60.30 2763 4

211 1592 605.74 224.53 8419 3

128 3906 944.40 559.35 6750 2

Duration

Min Max Average SD # of Hits Rank

1 772 28.65 72.35 591 1

1 1 1.00 0.00 2763 4

2 10 3.40 1.39 8419 3

1 26 5.81 3.59 6750 2

Energy
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Figure 40 September 7th - 5 Clusters GMM Clustering AE Plots 

 

Table 21 September 7th – 5 Clusters GMM Statistical Analysis (a)Amplitude (b)Duration (c)Energy 

 

Min Max Average SD # of Hits Rank

45 50 46.08 0.95 2762 5

45 53 46.82 1.04 6289 3

45 51 46.14 0.96 8419 4

45 53 46.95 1.18 666 2

46 69 49.39 3.29 387 1

Amplitude

Min Max Average SD # of Hits Rank

77 656 218.05 60.07 2762 4

201 3906 1003.06 538.45 6289 2

211 1592 605.74 224.53 8419 3

61 496 179.36 60.71 666 5

45 97406 5068.73 10062.94 387 1

Duration

Min Max Average SD # of Hits Rank

1 1 1.00 0.00 2762 4

2 26 6.20 3.45 6289 2

2 10 3.40 1.39 8419 3

1 1 1.00 0.00 666 4

1 772 42.68 86.18 387 1

Energy
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Figure 41 September 7th - 6 Clusters GMM Clustering AE Plots 
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Table 22 September 7th – 6 Clusters GMM Statistical Analysis (a)Amplitude (b)Duration (c)Energy 

 

 

9.2.2.2. October 18th Gaussian Mixture Model 

Figures 42-44 and Tables 23-25 show the AE plots and the statistical analysis performed on October 18th 

using the Gaussian Mixture Model clustering algorithm. From the cluster criteria, the analysis has 

provided a possibility of 5 clusters in the October 18th data being the optimal number of clusters.  

From observing Figure 42 and Table 23, it is possible to match each cluster with the mechanisms. For 

example, the “red” cluster has the lowest amplitude, duration, and energy, indicating that it is possibly a 

plastic deformation signal. The “yellow” cluster can be considered as one type of noise since it has 

medium amplitude and energy with long duration. Examining the “green” and “blue” clusters with the 

three acoustic emission characteristics, it is possible to conclude that both is two different types of fatigue 

crack. From the observation, the 4 clusters in this data show good clustering. However, since the criterion 

has suggested that 5 clusters is the optimal number of cluster, it is important to check and observe those 

plots and statistical analysis as well, as some of the clusters could be separated even further.  

Min Max Average SD # of Hits Rank

45 51 46.12 0.97 2604 5

45 50 46.08 0.95 2762 6

45 51 46.14 0.95 5815 4

45 53 46.82 1.04 6288 3

45 53 46.95 1.18 666 2

46 69 49.39 3.29 388 1

Amplitude

Min Max Average SD # of Hits Rank

211 789 384.59 65.11 2604 4

77 656 218.05 60.07 2762 5

345 1592 704.78 198.44 5815 3

201 3906 1003.07 538.49 6288 2

61 496 179.36 60.71 666 6

45 97406 5058.09 10052.1 388 1

Duration

Min Max Average SD # of Hits Rank

2 2 2.00 0.00 2604 4

1 1 1.00 0.00 2762 5

3 10 4.03 1.23 5815 3

2 26 6.20 3.45 6288 2

1 1 1.00 0.00 666 5

1 772 42.59 86.09 388 1

Energy
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Figure 42 October 18th - 4 Clusters GMM Clustering AE Plots 

 

Table 23 October 18th – 4 Clusters GMM Statistical Analysis (a)Amplitude (b)Duration (c)Energy 

 

 

Min Max Average SD # of Hits Rank

45 55 47.65 1.63 354 3

50 94 65.55 11.39 143 1

45 52 48.05 1.12 989 2

45 51 46.68 1.25 59 4

Amplitude

Min Max Average SD # of Hits Rank

180 3794 988.19 739.78 354 3

145 48491 7448.52 6579.30 143 2

358 82363 7803.22 9393.60 989 1

78 281 179.59 52.12 59 4

Duration

Min Max Average SD # of Hits Rank

2 42 8.40 7.52 354 3

2 5528 620.44 1048.78 143 1

3 713 65.06 81.37 989 2

1 1 1.00 0.00 59 4

Energy

Mechanism Amplitude Duration Energy

Fatigue Cracking High Medium High

Plasitc Deformation Low Short Low

Noise Medium Long Medium

AE Characteristics and Mechanisms
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Figure 43 and Table 24 show the AE plots and the statistical analysis of the October 18th data with 5 

clustering using GMM. Again, by performing a comparison between each cluster with the statistical 

analysis results, it is possible to distinguish the failure mechanisms for each cluster. Signal characteristics 

matches with the characteristics of each cluster, and therefore shows that “red” is plastic deformation, 

“yellow” and “blue are noise, while “green” and “pink” are two different types of fatigue cracking. 

Comparing Figure 42 and 43, it can be seen that the fatigue crack from the Figure 42 has separated further. 

This separation has indicated the more detailed and precise difference between the data point 

characteristics within the cluster.  

 

Figure 43 October 18th - 5 Clusters GMM Clustering AE Plots 

 

Mechanism Amplitude Duration Energy

Fatigue Cracking High Medium High

Plasitc Deformation Low Short Low

Noise Medium Long Medium

AE Characteristics and Mechanisms
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Table 24 October 18th – 5 Clusters GMM Statistical Analysis (a)Amplitude (b)Duration (c)Energy 

 

 

 

Figure 44 and Table 25 shows the AE plots and the statistical analysis of the October 18th data with 6 

clustering using GMM. When trying to determine which cluster is plastic deformation, the “red” cluster 

indicates having the lowest duration and energy but not amplitude. On the other hand, the “blue” cluster 

has the lowest amplitude but second to lowest duration and energy. From this reason, it is possible to state 

that the two clusters were forced to separate by the clustering algorithm. The other mechanisms can be 

assigned to the clusters as “yellow” and “light blue” identified as noise and the “green” and “pink” as 

fatigue crack from the AE characteristics of the each clusters. From the visual verification, the Gaussian 

Mixture Model was capable of clustering this data set into 5 clusters, as it was suggested by the clustering 

criterions.  

Min Max Average SD # of Hits Rank

45 52 48.08 1.10 970 3

51 94 70.04 11.25 90 1

45 51 46.62 1.18 58 5

45 55 47.54 1.57 368 4

49 91 57.20 6.60 59 2

Amplitude

Min Max Average SD # of Hits Rank

387 82363 7939.24 9433.93 970 2

3364 21824 10013.31 4894.58 90 1

78 281 180.52 52.09 58 5

180 3794 967.43 717.49 368 4

126 48491 2952.47 6481.07 59 3

Duration

Min Max Average SD # of Hits Rank

3 713 66.21 81.74 970 3

48 5528 909.33 1136.00 90 1

1 1 1.00 0.00 58 5

2 40 8.08 7.10 368 4

1 4669 118.75 603.69 59 2

Energy
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Figure 44 October 18th - 6 Clusters GMM Clustering AE Plots 

 

Mechanism Amplitude Duration Energy

Fatigue Cracking High Medium High

Plasitc Deformation Low Short Low

Noise Medium Long Medium

AE Characteristics and Mechanisms
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Table 25 October 18th – 6 Clusters GMM Statistical Analysis (a)Amplitude (b)Duration (c)Energy 

 

 

9.2.3. Kohonen SOM 

9.2.3.1. September 7th Kohonen SOM 

Figures 45-47 and Tables 26-28 show the AE plots and the statistical analysis performed on September 

7th using the Kohonen Self-organizing Map clustering algorithm. From the cluster criterions, the analysis 

has suggested a possibility of 4 clusters in the September 7th data as the optimal number of clusters.  

Comparing the September 7th result by Kohonen SOM with other clustering algorithms, it can be clearly 

been seen that each of the clusters are not extending in two directions from the duration versus counts plot. 

This indicates that Kohonen SOM was successful in clustering the data points into different clusters.  

Figure 45 and Table 26 show the AE plot and statistical analysis of the 4 clustering of the September 7th 

data set. From the observation of AE characteristics of the each cluster, it shows that the “red” is plastic 

deformation, “yellow” as one of the fatigue cracks, and “green” and “blue” as two different types of noise. 

To further investigate on the number of clusters, 5 and 6 cluster plots were investigated.  

Min Max Average SD # of Hits Rank

45 50 46.34 0.86 76 6

49 94 69.97 12.71 86 1

45 52 48.10 1.09 963 3

45 51 46.58 1.15 57 5

48 67 55.84 4.66 91 2

45 55 47.53 1.27 272 4

Amplitude

Min Max Average SD # of Hits Rank

248 1033 559.43 193.01 76 5

126 48491 8556.22 8096.92 86 1

618 82363 7992.80 9447.25 963 2

78 281 181.19 52.29 57 6

1143 16931 4409.44 2631.30 91 3

180 3589 940.91 643.26 272 4

Duration

Min Max Average SD # of Hits Rank

2 7 3.68 1.30 76 5

1 5528 952.87 1246.78 86 1

5 713 66.66 81.87 963 3

1 1 1.00 0.00 57 6

14 405 82.86 68.39 91 2

2 33 7.66 5.64 272 4

Energy
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Figure 45 September 7th – 4 Clusters Kohonen SOM Clustering AE Plots 

 

Table 26 September 7th – 4 Clusters KSOM Statistical Analysis (a)Amplitude (b)Duration (c)Energy 

 

 

Min Max Average SD # of Hits Rank

45 45 45.00 0.00 3104 4

46 46 46.00 0.00 8236 3

47 53 47.54 0.86 7086 2

47 69 52.59 4.97 97 1

Amplitude

Min Max Average SD # of Hits Rank

88 2724 517.03 286.13 3104 4

75 4352 649.28 428.71 8236 2

76 97406 999.82 2592.95 7086 1

45 3417 559.30 656.11 97 3

Duration

Min Max Average SD # of Hits Rank

1 16 2.849871134 1.77 3104 4

1 28 3.791767848 2.76 8236 3

1 772 6.551368896 22.05 7086 2

1 87 11.34020619 17.05 97 1

Energy

Mechanism Amplitude Duration Energy

Fatigue Cracking High Medium High

Plasitc Deformation Low Short Low

Noise Medium Long Medium

AE Characteristics and Mechanisms
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Figure 46 and Table 27 show the AE plot and statistical analysis of the 5 clustering of September 7th data 

set. Comparing it with the Figure 45 with 4 clusters, it can be observed that some of the noise cluster from 

Figure 45 has separated. From the Table 27, it indicates that the “red” cluster has the lowest amplitude, 

duration, and energy, showing it as the plastic deformation. The “yellow” and “blue” clusters have the AE 

characteristics of noise. The “pink” cluster can be identified as fatigue crack since it has high amplitude, 

energy, and medium duration.  

 

Figure 46 September 7th – 5 Clusters Kohonen SOM Clustering AE Plots 

 

Mechanism Amplitude Duration Energy

Fatigue Cracking High Medium High

Plasitc Deformation Low Short Low

Noise Medium Long Medium

AE Characteristics and Mechanisms
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Table 27 September 7th – 5 Clusters KSOM Statistical Analysis (a)Amplitude (b)Duration (c)Energy 

 

 

Figure 47 and Table 28 show the AE plot and statistical analysis of the 6 clustering of September 7th data 

set. It can be observed that the noise cluster again separated into different clusters. Also, by comparing the 

5 cluster and the 6 cluster, it can be observed that the “blue” cluster from 6 cluster data shows fewer hits 

compared to the other clusters. One may argue that the “pink” also has low number of hits, but observing 

Table 27, the “pink” cluster in Table 27, and “pink” cluster in Table 28 show exactly same value for the 

minimum and maximum as well as approximately same value for the average and number of hits. Due to 

this observation, it is possible to state that the “yellow” cluster in Table 27 and “pink” cluster in Table 28 

are same clusters. Therefore, 6 cluster in the data set is not an optimal number of clusters since the “blue’ 

cluster in Figure 27 was forced to separate into different cluster. By observing 3-6 cluster outputs, the 

Kohonen SOM was successful in clustering the data in to 5 clusters for the September 7th data set. 

Min Max Average SD # of Hits Rank

45 45 45.00 0.00 3104 5

46 46 46.00 0.00 8231 4

46 47 47.00 0.03 4574 3

48 53 48.52 0.76 2520 2

47 69 52.69 5.01 94 1

Amplitude

Min Max Average SD # of Hits Rank

88 2724 517.03 286.13 3104 5

75 4352 649.62 428.62 8231 3

77 6617 774.64 593.65 4574 2

76 97406 1405.77 4244.53 2520 1

45 3417 570.98 663.17 94 4

Duration

Min Max Average SD # of Hits Rank

1 16 2.85 1.77 3104 5

1 28 3.79 2.76 8231 4

1 52 4.71 4.11 4574 3

1 772 9.88 36.33 2520 2

1 87 11.64 17.23 94 1

Energy
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Figure 47 September 7th – 6 Clusters Kohonen SOM Clustering AE Plots 

 

Table 28 September 7th – 6 Clusters KSOM Statistical Analysis (a)Amplitude (b)Duration (c)Energy 

 

Min Max Average SD # of Hits Rank

45 45 45.00 0.00 3102 6

46 46 46.00 0.00 8123 5

45 52 47.21 1.15 408 3

47 47 47.00 0.00 4406 4

48 53 48.52 0.76 2415 2

47 69 54.12 5.09 69 1

Amplitude

Min Max Average SD # of Hits Rank

88 2724 517.30 286.03 3102 5

81 4352 656.42 427.33 8123 4

61 1735 185.15 149.80 408 6

97 6617 797.71 592.58 4406 2

88 97406 1455.38 4328.71 2415 1

45 3417 718.64 717.16 69 3

Duration

Min Max Average SD # of Hits Rank

1 16 2.85 1.77 3102 5

1 28 3.83 2.76 8123 4

1 19 1.49 1.54 408 6

1 52 4.84 4.12 4406 3

1 772 10.21 37.07 2415 2

1 87 15.23 18.88 69 1

Energy

Mechanism Amplitude Duration Energy

Fatigue Cracking High Medium High

Plasitc Deformation Low Short Low

Noise Medium Long Medium

AE Characteristics and Mechanisms
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9.2.3.2. October 18th Kohonen SOM 

Figures 48-50 and Tables 29-31 show the AE plots and the statistical analysis performed on October 18th 

using the Kohonen Self-organizing Map clustering algorithm. From the cluster criteria, the analysis has 

suggested that 5 clusters in the September 7th data is the optimal number of clusters.  

From Figure 48, it is possible to detect that one of the clusters is extending in two directions from the 

duration versus counts plot circled in red. This indicates that there are two different average frequencies 

in one cluster. Therefore, the 4 clustering for October 18th is not an optimal number of clusters in the data 

set.  

 

Figure 48 October 18th – 4 Cluster Kohonen SOM Clustering AE Plots 

 

Mechanism Amplitude Duration Energy

Fatigue Cracking High Medium High

Plasitc Deformation Low Short Low

Noise Medium Long Medium

AE Characteristics and Mechanisms
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Table 29 October 18th – 4 Clusters KSOM Statistical Analysis (a)Amplitude (b)Duration (c)Energy 

 

 

Figure 49 and Table 30 show the AE plot and statistical analysis of the 5 clustering of October 18th data. 

By performing the same analysis of observing the mechanism characteristics with each cluster, it shows a 

distinct difference in each. Since the “red” cluster has the lowest amplitude, duration, and energy, it is 

plastic deformation cluster. The “blue” and “yellow” clusters have similar characteristics of the noise. The 

“pink” and “green” clusters have characteristics of fatigue cracking, so it is considered as two different 

types within the fatigue crack.  

Min Max Average SD # of Hits Rank

49 94 66.17 11.437 135 1

47 55 49.39 0.899 142 2

46 56 48.74 1.253 571 3

45 50 46.97 0.795 697 4

Amplitude

Min Max Average SD # of Hits Rank

78 48491 7501.06 6721.04 135 2

14367 82363 26357.57 12055.00 142 1

88 14165 5798.16 3612.56 571 3

116 5634 1544.86 1158.55 697 4

Duration

Min Max Average SD # of Hits Rank

1 5528 652.06 1071.24 135 1

119 713 225.91 106.22 142 2

1 122 48.48 29.71 571 3

1 41 11.93 9.24 697 4

Energy
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Figure 49 October 18th – 5 Cluster Kohonen SOM Clustering AE Plots 

 

Table 30 October 18th – 5 Clusters KSOM Statistical Analysis (a)Amplitude (b)Duration (c)Energy 

 

  

Min Max Average SD # of Hits Rank

45 51 47.09 0.924 724 5

46 61 51.61 3.397 121 2

47 51 48.44 0.841 474 4

47 52 49.40 0.771 126 3

50 94 69.93 10.944 100 1

Amplitude

Min Max Average SD # of Hits Rank

116 4862 1409.52 966.04 724 5

78 16931 2120.88 2173.13 121 4

1970 15951 7296.68 3238.09 474 3

15899 82363 27770.47 12083.20 126 1

126 48491 9081.14 7059.88 100 2

Duration

Min Max Average SD # of Hits Rank

1 39 10.96 7.87 724 5

1 196 29.72 35.39 121 4

16 132 59.96 27.30 474 3

131 713 238.08 106.59 126 2

1 5528 861.50 1175.45 100 1

Energy

Mechanism Amplitude Duration Energy

Fatigue Cracking High Medium High

Plasitc Deformation Low Short Low

Noise Medium Long Medium

AE Characteristics and Mechanisms
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Figure 50 and Table 31 show the AE plot and statistical analysis of the 6 clustering of October 18th data. 

The “red” cluster in Figure 50 shows lowest amplitude, duration, and energy, indicating it is a plastic 

deformation. The “yellow” and “light blue” clusters can be identified as noise since it has the AE 

characteristics of noise. Two types of fatigue crack can be observed from the “green” and “pink” clusters 

having high amplitude and energy as well as medium duration. Comparing with Figure 49, it can be 

observed that the “light blue” cluster was introduced by separating the “blue” and “yellow” cluster to 

Figure 50. Also, the size of the “red” and “blue” clusters between the two figures is different. Observing 

Figure 50, the “blue” cluster can be concluded to be noise since it has low average frequency compared to 

other failure mechanisms. However, the average duration of the “blue” cluster does not support this 

conclusion since it has a value very similar to the “red” and “green” clusters. Moreover, the amplitude 

and energy characteristic of the “blue” cluster are very similar to the “red” cluster. From this, it can be 

concluded that the “red” and “blue” are the same cluster showing that 5 clusters in this data set is the 

optimal number of clusters by using Kohonen SOM.  
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Figure 50 October 18th – 6 Cluster Kohonen SOM Clustering AE Plots 

 

Table 31 October 18th – 6 Clusters KSOM Statistical Analysis (a)Amplitude (b)Duration (c)Energy 

 

  

Min Max Average SD # of Hits Rank

46 61 52.97 3.767 109 2

45 48 46.58 0.572 460 6

46 52 48.14 0.826 470 5

47 51 48.59 0.830 328 4

48 52 49.54 0.767 90 3

52 94 71.58 10.561 88 1

Amplitude

Min Max Average SD # of Hits Rank

78 16931 2589.67 2446.23 109 5

117 4862 1229.94 895.32 460 6

116 5676 2681.65 1576.10 470 4

5323 18764 10084.30 3675.11 328 2

18757 82363 31885.32 12037.06 90 1

145 48491 9740.75 7207.31 88 3

Duration

Min Max Average SD # of Hits Rank

1 210 40.81 45.07 109 4

1 39 9.27 7.10 460 6

1 48 21.84 12.89 470 5

41 163 83.33 31.46 328 3

163 713 274.76 105.70 90 2

2 5528 966.64 1215.95 88 1

Energy

Mechanism Amplitude Duration Energy

Fatigue Cracking High Medium High

Plasitc Deformation Low Short Low

Noise Medium Long Medium

AE Characteristics and Mechanisms
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9.3. Cluster Number Possibility from Criterions and Visual Inspection of 2010 Data 

After performing the visual inspection from the suggested optimal number of cluster by the criteria, it is 

possible to conclude on the number of the cluster that is in the data set. Table 32 shows the result from the 

visual inspection. Some clustering algorithms could not produce a distinct clustering for September 7th 

data, but all of the clustering algorithms have indicated that 5 clusters is the optimal number of the cluster 

in the data set. Also, the Kohonen SOM algorithm was capable of producing a distinct clustering for both 

of the dates. Therefore, it is possible to conclude that the Kohonen SOM is one of the best clustering 

algorithms that are capable of producing 5 distinct clustering outputs in the data set of this rotating 

component.  

Table 32 Number of Clusters by Criterion and Visual Inspection 

 

 

9.4. Fatigue Crack Growth Observation of 2010 Data 

Since 5 classifications using Kohonen SOM has shown the best output classification from the criterion 

verification and visual verification, it is possible to use the plots from the Kohonen SOM 5 cluster to 

perform the analysis of the bevel gear. Figure 51 and 52 shows the AE plots of September 7th and 

October 18th, respectively. From Section 8.2.2, it can be recalled that each mechanism has its own 

distinct AE characteristics, and mechanisms can be determined by looking at the characteristics of each 

cluster. The legend in each plots indicate the mechanisms for the each cluster. 

In Figure 51, it is possible to observe the small amount of the plane stress circled in red. As the time 

progresses to October 18th, it can be observed that the plane strain and plane stress area increases from 

Clustering 

Algorithm Date

Number of 

Clusters by 

Criterions

Number of 

Clusters by 

Visual Inspection

9/7 6 ---

10/18 6 5

9/7 6 ---

10/18 5 5

9/7 4 5

10/18 5 5

K-mean

GMM

KSOM
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Figure 52. This is an indication of fatigue crack growth by the increase of the activities of each 

mechanism.  

 

Figure 51 September 7th – Kohonen SOM 5 Cluster AE plots 
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Figure 52 October 18th – Kohonen SOM 5 Cluster AE plots 

 

9.5. Kohonen SOM Clustering Analysis of 2011 Data 

From the 2010 results, we have concluded that the 5 cluster output using Kohonen SOM will generate the 

best clustering result. From this understanding, the 2011 acquisition data was analyzed by training the 

SOM using the October 18, 2010 with 5 clusters for the clustering analysis. The input parameters were 

the same as iteration 4 of the 2010 data by using duration, energy, amplitude, and average frequency. 

Figure 53 shows the output AE plots of one of the test dates. The output was set as 5 clusters but the 

result showed SOM only being able to classify the data set into 2 clusters. One reasons for this result was 

the setting of the amplitude threshold. Since the 2011 data’s amplitude threshold was at 65 dB while the 

2010 data threshold was at 45dB, the signals below were eliminated. Due to this elimination, signals of 

mechanisms that had low amplitude were not acquired resulting in AE plot that has not enough 

information about the fatigue crack growth of the test specimen.  
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Figure 53 TGBOBG0002 Kohonen SOM Clustering 
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Chapter 10. Conclusions and Recommendation 

10.1. Conclusions 

Acoustic Emission nondestructive evaluation is a powerful technique for passive volumetric NDE 

techniques that are capable of performing pressure testing, diagnostics, condition monitoring, and leak 

detection through detection and analysis of AE signals. It is powerful technique that requires knowledge 

on the analysis of the AE signals acquired.  

In this research, the H-60 Seahawk tail gear box output bevel gear was analyzed for fatigue crack growth 

inspection as well as developing a methodology and techniques for the analysis of the AE signals from 

rotating component for early crack detection. The acquired data was filtered to eliminate duration that 

were greater than 100,000 µs and 0 energy hits which are not the area of interest for the failure 

mechanisms. From the filtered data, three different clustering criteria were performed on three different 

clustering techniques with different AE input parameters to find out the optimal number of clusters in the 

data set. The three clustering criterion algorithms are the Davies-Bouldin, Silhouette and Tou Criterions. 

The three clustering algorithms utilized are the k-mean, Gaussian Mixture Model, and Kohonen Self-

organizing Map. From the clustering criteria, it has been suggested that the optimal number of clusters is 

between 4 to 6 clusters in the data set using the input of energy, duration, amplitude, and average 

frequency. After the clustering criteria, the visual verification was performed by observing the acoustic 

emission plots and statistical analysis of each cluster for the performance of the clustering. From the 

visual inspection, it was observed that all three clustering algorithms were able to very distinctly classify 

the data set into 5 clusters. The Kohonen SOM especially showed the best distinct classification compared 

to the other two algorithms. Therefore, it was concluded that using Kohonen SOM with an input of 

energy, duration, amplitude, average frequency, and output of 5 clusters will show distinct clustering from 

the data acquired from this test stand with rotating component. Figure 54 shows the complete flow of the 

analysis to obtain the optimal number of clusters in the data set. 
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This methodology and technique can be utilized on any kind of structure, not only for rotating 

components, to find out the optimal number of the output from the AE signal parameters. In the real life 

situations with hundreds and thousands of data sets, the analyzer may take few data sets to apply this 

methodology and technique to determine the optimal number of clusters for those AE data sets.  

 

 

Figure 54 Analysis Flow to Obtain Optimal Number of Cluster in a Data Set 

The Kohonen SOM was used as a clustering technique and output of 5 clusters, fatigue growth analysis 

was performed. By comparing the analyzed data sets at midpoint and end point of duration of the test 

from which the data was acquired, it was possible to observe the increase in fatigue crack activities. This 

increase in activity indicates the fatigue crack growth.  

AE Data 
Acquisition 

Data Filtering 

-Clustering- 

• K-Means 

• Gaussian Mixture 
Model 

• Kohonen SOM 

-Cluster Criterion 
Verification- 

• David-Bouldin 

• Sihouette 

• Tou 

-Cluster Visual 
Verification- 

• AE plots 

• Statistical Analysis 

Optimal Number of Cluster 
in a Data Set 
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The AE signals acquired from the tail gearbox output bevel gear of the ground test stand was able to 

develop a methodology and technique to determine the optimal number of the cluster in the data set. 

Additionally, the clustered acoustic emission plots from optimal cluster number found and effective 

clustering algorithm has indicated the increase in fatigue crack activity as a signal for fatigue crack 

growth. From this, the research steps toward the real-time monitoring system of the H-60 helicopter 

community have advanced to achieve the goal of safely landing the aircraft before a critical failure.  

10.2. Recommendations 

Development of a MATLAB
®
 code with MATLAB

®
 neural toolbox that can perform Kohonen SOM 

analysis is recommended. If the MATLAB
®
 code can be written for Kohonen SOM and shows similar 

results with the NeuralWorks
®
 Professional/II, the entire process of obtaining the optimal number of 

clusters in a data set can be done with a single command. While using MATLAB
®
 to perform Kohonen 

SOM is recommended, supervised clustering techniques such as learning vector quantization algorithm, 

support vector machine algorithm, and kth nearest neighbor algorithm should be investigated. These can 

use training file artificially made or use data set that has distinct clustering such as the October 18
th
, 2010 

data.  

It is further recommended to refine the methodology and techniques by using more clean AE signal data. 

The data set used here was very unclean data due to the nature of rotating component creating much noise. 

If the methodology and techniques can be refined by using AE signal data obtained from controlled 

environment, it is possible to state that the results will be improved with more understanding of 

methodology.  

This research is one small step towards analyzing the acoustic emission data from a noisy environment 

like the gearbox. With the methodology and technique established to understand the optimal number of 

the clusters in the data, it has taken one of the steps necessary to accomplish the future goal of fatigue 

crack diagnosis and prognosis of rotating gearbox machinery. It is true that further research is still 
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necessary to accomplish the goal, but it is possible to conclude that the direction of the future research has 

the potential to accomplish it. 
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Appendices  

Appendix A. MATLAB Code for Filter and Create Input File: InputSeparation.m 
%%% File Name: Thesis01_InputSeparation.m 
%%% Date: 11/7/2012 
%%% Programmer: JUN SHISHINO 
%%% SHM&NDE Lab ERAU LB184 
% This InputSeparation.m mfile is use to perform two task in analysis of AE 
% signal parameters. 
% The first task is to output the TXT file for the analysis using NeuralWorks. 
% User input is (1). 
% The second task is to output the XLSX file that has all of the AE 

parameters. 
% User input is (2). 
% % % % % % % % % % % % % % % % IMPORTANT !! % % % % % % % % % % % % % % %  
% It is important to change the output parameters depending on the 

performance  
% you are going to take. 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 
clc;clear all;close all; 

  
ask1 = input('Enter number for choice of performance. For NN(txt):[1], For 

all AE(xlsx);[3] '); 
while (ask1 ~= 1 & ask1 ~=3) 
    clc 
    ask1 = input('Enter number for choice of performance. For NN(txt):[1], 

For all AE(xlsx);[3] '); 
end 
if ask1 == 1 
    fprintf('\n>>> Output is for NN analysis (.txt) <<<\n'); 
elseif ask1 == 3 
    fprintf('\n>>> Output is for all AE data (.xlsx) <<<\n'); 
end 
fprintf('\nNN Input Separation Program Running\n\n') 
%% Initializer 
mkdir('Channel_allCh_EDAF'); 
mkdir('Channel_1_EDAF'); 
mkdir('Channel_2_EDAF'); 
mkdir('Channel_3_EDAF'); 
mkdir('Channel_4_EDAF'); 
checkCh1 = 0; 
checkCh2 = 0; 
checkCh3 = 0; 
checkCh4 = 0; 
% read the name of excel file that has all AE signals 
fileNameInput = importdata('listRawDataName.xls'); 
[listS1,listS2]=size(fileNameInput.textdata.Sheet1); 
%% 
%%% 1ID | 2D | 3H:M:S.mun | 4ss | 5CH | 6COUN | 7ENER | 8DUR | 9AMP |10 

FEQ %%% 
%%% 1T | 2CH | 3COUNTS |4NRG | 5DUR | 6AMP %%% 
for fileInc = 1:listS1 
    fprintf('NN Input Separation Program Running\n') 
    clear allChData ch1Data ch2Data ch3Data ch4Data 
    clear checkCh1 checkCh2 checkCh3 checkCh4 
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    rawInput = fileNameInput.textdata.Sheet1(fileInc,1); 
    fileNameforSave = fileNameInput.textdata.Sheet1(fileInc,4); 
    filename = strcat(rawInput) 

     
    counterAllCh = 1; 
    counterCh1 = 1; 
    counterCh2 = 1; 
    counterCh3 = 1; 
    counterCh4 = 1; 
    checkCh1 = 0; 
    checkCh2 = 0; 
    checkCh3 = 0; 
    checkCh4 = 0; 

     
    file = importdata(str2mat(filename)); 
    [m,n] = size(file.Sheet1); 

     
    %% Filtering Unwanted Data 
    fprintf('\nFiltering...') 
    for inc1 = 1:m 
        if file.Sheet1(inc1,4) > 0 %Energy less than 0 
            %Duration greater than 0 - 100000 micro sec 
            if (file.Sheet1(inc1,5) < 100000) && (file.Sheet1(inc1,5) > 0) 
                freqAll = (file.Sheet1(inc1,3))/(file.Sheet1(inc1,5)); 
                % % % % % % % % % % % % % % % % % % % % % % % % % % % %                 
                % need to change the parameters to be save depending on the 
                % output (allChData) 
                allChData(counterAllCh,:) = [file.Sheet1(inc1,4),... 
                    file.Sheet1(inc1,5), file.Sheet1(inc1,6), freqAll]; 
                counterAllCh = counterAllCh+1; 
                if file.Sheet1(inc1,2) == 1 %Channel 1 data 
                    freqCh1 = (file.Sheet1(inc1,3))/(file.Sheet1(inc1,5)); 
                    % % % % % % % % % % % % % % % % % % % % % % % % % % % %                     
                    % need to change the parameters to be save depending on 

the 
                    % output (ch1Data) 
                    ch1Data(counterCh1,:) = [file.Sheet1(inc1,4),... 
                        file.Sheet1(inc1,5), file.Sheet1(inc1,6), freqCh1]; 
                    counterCh1 = counterCh1 +1; 
                    checkCh1 = 1; 
                elseif file.Sheet1(inc1,2) == 2 %Channel 2 data 
                    freqCh2 = (file.Sheet1(inc1,3))/(file.Sheet1(inc1,5)); 
                    % % % % % % % % % % % % % % % % % % % % % % % % % % % % 
                    % need to change the parameters to be save depending on 

the 
                    % output (ch2Data) 
                    ch2Data(counterCh2,:) = [file.Sheet1(inc1,4),... 
                        file.Sheet1(inc1,5), file.Sheet1(inc1,6), freqCh2]; 
                    counterCh2 = counterCh2 +1; 
                    checkCh2 = 1; 
                elseif file.Sheet1(inc1,2) == 3 %Channel 3 data 
                    freqCh3 = (file.Sheet1(inc1,6))/(file.Sheet1(inc1,8)); 
                    % % % % % % % % % % % % % % % % % % % % % % % % % % % % 
                    % need to change the parameters to be save depending on 

the 
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                    % output (ch3Data)                     
                    ch3Data(counterCh3,:) = [file.Sheet1(inc1,4),... 
                        file.Sheet1(inc1,5), file.Sheet1(inc1,6), freqCh3]; 
                    counterCh3 = counterCh3 +1; 
                    checkCh3 = 1; 
                elseif file.Sheet1(inc1,2) == 4 %Channel 4 data 
                    freqCh4 = (file.Sheet1(inc1,6))/(file.Sheet1(inc1,8)); 
                    % % % % % % % % % % % % % % % % % % % % % % % % % % % % 
                    % need to change the parameters to be save depending on 

the 
                    % output (ch4Data)                     
                    ch4Data(counterCh4,:) = [file.Sheet1(inc1,4),... 
                        file.Sheet1(inc1,5), file.Sheet1(inc1,6), freqCh4]; 
                    counterCh4 = counterCh4 +1; 
                    checkCh4 = 1; 
                end 
            end 
        end 
    end 
     %% Export to .xlsx 
    fprintf('\nExporting...') 

     
    % for all channel 
    if ask1 == 3 
        excelName = strcat('EDAF_',fileNameforSave,'_allCh.xlsx'); 
        xlswrite(str2mat(excelName), allChData); 
        

movefile(str2mat(excelName),'../InputSeparation_CODE/Channel_allCh_EDAF'); 
    end 
    if ask1 == 1 
        txtName = strcat('EDAF_',fileNameforSave,'_allCh.txt'); 
        dlmwrite(str2mat(txtName), allChData, 'delimiter', '\t'); 
        

movefile(str2mat(txtName),'../InputSeparation_CODE/Channel_allCh_EDAF'); 
    end 
    % for channel 1 data 
    if checkCh1 == 1 
        if ask1 == 3 
            excelNameCh1 = strcat('EDAF_',fileNameforSave,'_Ch1.xlsx'); 
            xlswrite(str2mat(excelNameCh1), ch1Data); 
            

movefile(str2mat(excelNameCh1),'../InputSeparation_CODE/Channel_1_EDAF'); 
        end 
        if ask1 == 1 
            txtNameCh1 = strcat('EDAF_',fileNameforSave,'_Ch1.txt'); 
            dlmwrite(str2mat(txtNameCh1), ch1Data, 'delimiter', '\t'); 
            

movefile(str2mat(txtNameCh1),'../InputSeparation_CODE/Channel_1_EDAF'); 
        end 
    end 
    % for channel 2 data 
    if checkCh2 == 1 
        if ask1 == 3 
            excelNameCh2 = strcat('EDAF_',fileNameforSave,'_Ch2.xlsx'); 
            xlswrite(str2mat(excelNameCh2), ch2Data); 
            

movefile(str2mat(excelNameCh2),'../InputSeparation_CODE/Channel_2_EDAF'); 
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        end 
        if ask1 == 1 
            txtNameCh2 = strcat('EDAF_',fileNameforSave,'_Ch2.txt'); 
            dlmwrite(str2mat(txtNameCh2), ch2Data, 'delimiter', '\t'); 
            

movefile(str2mat(txtNameCh2),'../InputSeparation_CODE/Channel_2_EDAF'); 
        end 
    end 
    % for channel 3 data 
    if checkCh3 == 1 
        if ask1 == 3 
            excelNameCh3 = strcat('EDAF_',fileNameforSave,'_Ch3.xlsx'); 
            xlswrite(str2mat(excelNameCh3), ch3Data); 
            

movefile(str2mat(excelNameCh3),'../rawData_separation_work/Channel_3_EDAF'); 
        end 
        if ask1 ==1 
            txtNameCh3 = strcat('EDAF_',fileNameforSave,'_Ch3.txt'); 
            dlmwrite(str2mat(txtNameCh3), ch3Data, 'delimiter', '\t'); 
            

movefile(str2mat(txtNameCh3),'../rawData_separation_work/Channel_3_EDAF'); 
        end 
    end 
    % for channel 4 data 
    if checkCh4 == 1 
        if ask1 == 3 
            excelNameCh4 = strcat('EDAF_',fileNameforSave,'_Ch4.xlsx'); 
            xlswrite(str2mat(excelNameCh4), ch4Data); 
            

movefile(str2mat(excelNameCh4),'../rawData_separation_work/Channel_4_EDAF'); 
        end 
        if ask1 == 1 
            txtNameCh4 = strcat('EDAF_',fileNameforSave,'_Ch4.txt'); 
            dlmwrite(str2mat(txtNameCh4), ch4Data, 'delimiter', '\t'); 
            

movefile(str2mat(txtNameCh4),'../rawData_separation_work/Channel_4_EDAF'); 
        end 
    end 

     
end 
%% END PROGRAM 
fprintf('\nEND OF PROGRAM') 
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Appendix B. MATLAB Code for Kohonen SOM: nnr2excel.m 
%%% File Name: Thesis02_nnr2excel.m 
%%% Date: 11/7/2012 
%%% Programmer: JUN SHISHINO 
%%% SHM&NDE Lab ERAU LB184 
% *************************************************** 
% %%%%%%%%%%%%%%%%% READ BEFORE RUNNING %%%%%%%%%%%%% 
% READ the README.docx before running this mfile!!!!! 
% *************************************************** 
% This code can convert the nnr file created by the  
% Neural Works Professional II Plus to Excel files  
% after adding the file extention of ".txt" to end  
% of each nnr files.  
% As well as converting, it will add the original 
% AE signal parameters to be used for further analysis 
clc;clear all;close all 

  
nnrI = 4; 
exI = 2; 
nameI = 1; 
fileNameInput = importdata('listFileName.xls'); 
[listS1,listS2]=size(fileNameInput.textdata.Sheet1); 
%% 
for inc = 1:listS1/4 
    fprintf('Transfering .nnr to excel\n') 
    nameFileRead = fileNameInput.textdata.Sheet1(nnrI,4); 
    nameFileName = strcat(nameFileRead) 

     
    nnrFileRead = fileNameInput.textdata.Sheet1(nnrI,1); 
    nnrFileName = strcat(nnrFileRead); 
    nnrFile = importdata(str2mat(nnrFileName)); 

     
    exFileRead =  fileNameInput.textdata.Sheet1(exI,1); 
    exFileName = strcat(exFileRead); 
    exFile = importdata(str2mat(exFileName)); 

     
    [exR,exC] = size(exFile.Sheet1); 

     
        %Change Here for different classification Current 4% 
    hitAndNN = [exFile.Sheet1(:,2),exFile.Sheet1(:,3),exFile.Sheet1(:,4),... 
                

exFile.Sheet1(:,5),exFile.Sheet1(:,6),nnrFile(:,1),nnrFile(:,2),nnrFile(:,3),

... 
                nnrFile(:,4),nnrFile(:,5)];    

  
    excelName = strcat('NNC5_',nameFileName,'.xlsx'); 
    xlswrite(str2mat(excelName), hitAndNN); 

  
    nnrI = nnrI+4; 
    exI = exI +4; 
    nameI = nameI +4; 
end 
fprintf('ENDPROGRAM\n\n')



C-1 

 

Appendix C. MATLAB Code for Kohonen SOM: Rij_FromKSOMnnpro.m 
%%% File Name: Thesis021_Rij_FromKSOMnnpro.m 
%%% Date: 11/7/2012 
%%% Programmer: JUN SHISHINO 
%%% SHM&NDE Lab ERAU LB184 
% This Thesis021_Rij_FromKSOMnnpro.m converts the NNpro result  
% of the binary numbers into index numbers. 
% Than, from the index number of the each cluster, 
% it performs the Rij Criterion. 
% Input is the (1)AE input parameters and (2)different excel files with  
% NNpro results. 
% Output is (1)Rij Criterion plot and (2)excel file of Rij criterion 
% values. 
clc; close all; clear all; 
%% Read KSOM NNPro Result Excel 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % CHANGE  DATE % % % % % % % % % % %  
% read excel file that has name of all excel file from 2 cluster to 7 
readFileName = importdata('listFileNameForKSOMVerification.xls'); 
% Files that has AE input for analysis 
trainFile = xlsread ('DEAF_10_18_all.xlsx'); 
% Name of the output file 
fileName = strcat('10-18-DEAF-KSOM-Rij'); 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 

  
%% Normalization of input data 
% trainFile = tansig(trainFile); 
% for i=1:4 
%     trainFile(:,i)=tanh(trainFile(:,i));     
% %     trainFile(:,i)=log(trainFile(:,i)); 
% end 
for i=1:4 
    trainFile(:,i)=(trainFile(:,i)-mean(trainFile(:,i)))/std(trainFile(:,i)); 
end 
train = [trainFile(:,1),trainFile(:,2), trainFile(:,3), trainFile(:,4)]; 

  
%% Change NNPro output to idx 
q=2;p=2; 
[r0 c0] = size(readFileName.textdata.Sheet1); 
for fileInc = 1:r0 
    fileNN = strcat(readFileName.textdata.Sheet1(fileInc,1));     
    readNNOutputFile = xlsread (str2mat(fileNN)); 
    [r1 c1] = size(readNNOutputFile);     
    numClust = c1 - 5; 
    idxR = 1; 
    for inc1 = 1:r1 
        if numClust >= 1 
            if readNNOutputFile(inc1, 6) == 1 
                idx(idxR,1) = 1; 
                idxR = idxR +1; 
            end 
        end 
        if numClust >= 2 
            if readNNOutputFile(inc1, 7) == 1 
                idx(idxR,1) = 2; 



C-2 

 

                idxR = idxR +1; 
            end 
        end 
        if numClust >= 3 
            if readNNOutputFile(inc1, 8) == 1 
                idx(idxR,1) = 3; 
                idxR = idxR +1; 
            end 
        end 
        if numClust >= 4 
            if readNNOutputFile(inc1, 9) == 1 
                idx(idxR,1) = 4; 
                idxR = idxR +1; 
            end 
        end 
        if numClust >= 5 
            if readNNOutputFile(inc1, 10) == 1 
                idx(idxR,1) = 5; 
                idxR = idxR +1; 
            end 
        end 
        if numClust >= 6 
            if readNNOutputFile(inc1, 11) == 1 
                idx(idxR,1) = 6; 
                idxR = idxR +1; 
            end 
        end 
        if numClust >= 7 
            if readNNOutputFile(inc1, 12) == 1 
                idx(idxR,1) = 7; 
                idxR = idxR +1; 
            end 
        end 
    end 
    fileInc; 
    idxSave(:,fileInc) = idx; 
end 
%% Rij Criterion 
k =7; 
for num=2:k 
    idx = idxSave(:,num-1); 
    for i=1:num 
        N0=0; 
        A=size(train(idx==i,:)); 
        T(i,1)=A(1,1); 
        D=train(idx==i,:); 
        ctrs(i,:)=mean(D); 
        fprintf('p2') 
        pause 
        for l=1:T(i,1) 
            N=(norm(D(l,:)-ctrs(i,:)))^q; 
            N0=N0+N; 
        end 
        N1(i,1)=N0; 
        S(i,1)=(N0/T(i,1))^(1/q); 
    end 
    S; 
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    for i=1:num 
        for j=1:num 
            M(i,j)=(sum((((ctrs(i,:)-ctrs(j,:)).^2).^(1/2)).^p))^(1/p); 
        end 
    end 
    M; 
    for i=1:num 
        for j=1:num 
            R1(i,j)=(S(i,1)+S(j,1))/M(i,j); 
        end 
        R1(i,i)=0; 
    end 
    R1; 
    for i=1:num 
        C(i,1)=max(R1(i,:)); 
    end 
    C; 
    R(num-1,1)=(sum(C(:,1))./num); 
    cluster_num(num-1,1)=num; 
end 
%% Plot Rij verfication 
R; 
cluster_num; 
figure(1) 
plot(cluster_num,R.^-1) 
set(gca,'xtick',2:7); 
title([fileName,' ','Verification Plot'],'fontsize',12,'fontweight','b'); 
xlabel('Number of Clusters','fontsize',12,'fontweight','b'); 
ylabel('Rij Value','fontsize',12,'fontweight','b'); 
filename1 = strcat(fileName, '_','_Verification.jpg'); 
saveas(1,str2mat(filename1)); 
%% excel file output Rij value  
fileNameRvalue = strcat(fileName,'_RVALUE.xlsx'); 
xlswrite(fileNameRvalue,R.^-1) 
%% excel file output of KSOM idx 
fileNameExIDX = strcat(fileName,'_IDXKSOM.xlsx'); 
xlswrite(fileNameExIDX,idxSave) 

  
fprintf('\n\nEND of PROGRAM') 
beep 
pause(0.25) 
beep 
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Appendix D. MATLAB Code for Kohonen SOM: Silhouette_FromKSOMnnpro.m 
%%% File Name: Thesis022_Silhouette_FromKSOMnnpro.m 
%%% Date: 11/7/2012 
%%% Programmer: JUN SHISHINO 
%%% SHM&NDE Lab ERAU LB184 
% This Thesis022_Silhouette_FromKSOMnnpro.m converts the NNpro result  
% of the binary numbers into index numbers. 
% Than, from the index number of the each cluster, 
% it performs the Silhouette Criterion. 
% Input is the (1)AE input parameters and (2)different excel files with  
% NNpro results. 
% Output is (1)Silhouette Criterion plot and (2)excel file of Silhouette 

criterion 
% values. 
clc; close all; clear all; 
%% Read KSOM NNPro Result Excel 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % CHANGE  DATE % % % % % % % % % % %  
% read excel file that has name of all excel file from 2 cluster to 7 
readFileName = importdata('listFileNameForKSOMVerification.xls'); 
% Files that has AE input for analysis 
trainFile = xlsread ('DEAF_10_18_all.xlsx'); 
% Name of the output file 
fileName = strcat('10-18-DEAF-KSOM-Sihouette'); 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 

  
%% Normalization of input data 
% trainFile = tansig(trainFile); 
% for i=1:4 
%     trainFile(:,i)=tanh(trainFile(:,i));     
% %     trainFile(:,i)=log(trainFile(:,i)); 
% end 
for i=1:4 
    trainFile(:,i)=(trainFile(:,i)-mean(trainFile(:,i)))/std(trainFile(:,i)); 
end 
train = [trainFile(:,1),trainFile(:,2), trainFile(:,3), trainFile(:,4)]; 

  
%% Change NNPro output to idx 
% q=2;p=2; 
[r0 c0] = size(readFileName.textdata.Sheet1); 
for fileInc = 1:r0 
    fileNN = strcat(readFileName.textdata.Sheet1(fileInc,1)) 
    readNNOutputFile = xlsread (str2mat(fileNN)); 
    [r1 c1] = size(readNNOutputFile); 
    numClust = c1 - 5; 
    idxR = 1; 
    for inc1 = 1:r1 
        if numClust >= 1 
            if readNNOutputFile(inc1, 6) == 1 
                idx(idxR,1) = 1; 
                idxR = idxR +1; 
            end 
        end 
        if numClust >= 2 
            if readNNOutputFile(inc1, 7) == 1 
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                idx(idxR,1) = 2; 
                idxR = idxR +1; 
            end 
        end 
        if numClust >= 3 
            if readNNOutputFile(inc1, 8) == 1 
                idx(idxR,1) = 3; 
                idxR = idxR +1; 
            end 
        end 
        if numClust >= 4 
            if readNNOutputFile(inc1, 9) == 1 
                idx(idxR,1) = 4; 
                idxR = idxR +1; 
            end 
        end 
        if numClust >= 5 
            if readNNOutputFile(inc1, 10) == 1 
                idx(idxR,1) = 5; 
                idxR = idxR +1; 
            end 
        end 
        if numClust >= 6 
            if readNNOutputFile(inc1, 11) == 1 
                idx(idxR,1) = 6; 
                idxR = idxR +1; 
            end 
        end 
        if numClust >= 7 
            if readNNOutputFile(inc1, 12) == 1 
                idx(idxR,1) = 7; 
                idxR = idxR +1; 
            end 
        end 
    end 
    fileInc; 
    idxSave(:,fileInc) = idx; 
end  
%% Sihouette Criterion 
k =7; 
for num=2:k 
    Sx1=0; 
    idx = idxSave(:,num-1); 
    for i=1:num 
        D=train(idx==i,:); 
        ctrs(i,:)=mean(D) 
    end 
    for i=1:num 
        D=train(idx==i,:); 
        ctrs(i,:)=mean(D); 
        A=size(train(idx==i,:)); 
        T(i,1)=A(1,1); 
        for g=1:T(i,1) 
            N1=0; 
            N=(norm(D(g,:)-ctrs(i,:)))/(num-1); 
            Nsum(i,g)=N; 
            Nsum2(i,g)=inf; 
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            for h=1:num 
                if (h~=i) 
                    N3=0; 
                    N2=(norm(D(g,:)-ctrs(h,:)))/(num-1); 
                    N3=N2+N3; 
                    Nsum2(i,g)=min(Nsum2(i,g),N3); 
                end 
            end 
            Sx=(Nsum2(i,g)-Nsum(i,g))/max(Nsum2(i,g),Nsum(i,g)); 
            Sx1=Sx1+Sx; 
        end 
    end 
    SWc(num-1,1)=Sx1/sum(T(:,1)) 
    cluster_num(num-1,1)=num; 
end 
%% Plot Silhouette verfication 
SWc; 
cluster_num; 
figure(1) 
plot(cluster_num,SWc) 
set(gca,'xtick',2:7) 
title([fileName,' ','Verification Plot'],'fontsize',12,'fontweight','b'); 
xlabel('Number of Clusters','fontsize',12,'fontweight','b'); 
ylabel('Silhouette Value','fontsize',12,'fontweight','b'); 
filename1 = strcat(fileName, '_','_Verification.jpg'); 
saveas(1,str2mat(filename1)) 
%% excel file output Silhouette value  
fileNameRvalue = strcat(fileName,'_SWcVALUE.xlsx'); 
xlswrite(fileNameRvalue,SWc) 
%% excel file output of KSOM idx 
fileNameExIDX = strcat(fileName,'_IDXKSOM.xlsx'); 
xlswrite(fileNameExIDX,idxSave) 

  
fprintf('\n\nEND of PROGRAM') 
beep 
pause(0.25) 
beep 
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Appendix E. MATLAB Code for Kohonen SOM: Tou_FromKSOMnnpro.m 
%%% File Name: Thesis023_Tou_FromKSOMnnpro.m 
%%% Date: 11/7/2012 
%%% Programmer: JUN SHISHINO 
%%% SHM&NDE Lab ERAU LB184 
% This Thesis023_Tou_FromKSOMnnpro.m converts the NNpro result  
% of the binary numbers into index numbers. 
% Than, from the index number of the each cluster, 
% it performs the Tou Criterion. 
% Input is the (1)AE input parameters and (2)different excel files with  
% NNpro results. 
% Output is (1)Tou Criterion plot and (2)excel file of Tou criterion 
% values. 
clc; close all; clear all; 

  
%% Read KSOM NNPro Result Excel 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % CHANGE  DATE % % % % % % % % % % %  
% read excel file that has name of all excel file from 2 cluster to 7 
readFileName = importdata('listFileNameForKSOMVerification.xls'); 
% Files that has AE input for analysis 
trainFile = xlsread ('DEAF_10_18_all.xlsx'); 
% Name of the output file 
fileName = strcat('10-18-DEAF-KSOM-Tou'); 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 

  
%% Normalization of input data 
% trainFile = tansig(trainFile); 
% for i=1:4 
%     trainFile(:,i)=tanh(trainFile(:,i));     
% %     trainFile(:,i)=log(trainFile(:,i)); 
% end 
for i=1:4 
    trainFile(:,i)=(trainFile(:,i)-mean(trainFile(:,i)))/std(trainFile(:,i)); 
end 
train = [trainFile(:,1),trainFile(:,2), trainFile(:,3), trainFile(:,4)]; 

  
%% Change NNPro output to idx 
% q=2;p=2; 
[r0 c0] = size(readFileName.textdata.Sheet1); 
for fileInc = 1:r0     
    fileNN = strcat(readFileName.textdata.Sheet1(fileInc,1)) 
    readNNOutputFile = xlsread (str2mat(fileNN)); 
    [r1 c1] = size(readNNOutputFile);     
    numClust = c1 - 5; 
    idxR = 1; 
    for inc1 = 1:r1 
        if numClust >= 1 
            if readNNOutputFile(inc1, 6) == 1 
                idx(idxR,1) = 1; 
                idxR = idxR +1; 
            end 
        end 
        if numClust >= 2 
            if readNNOutputFile(inc1, 7) == 1 
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                idx(idxR,1) = 2; 
                idxR = idxR +1; 
            end 
        end 
        if numClust >= 3 
            if readNNOutputFile(inc1, 8) == 1 
                idx(idxR,1) = 3; 
                idxR = idxR +1; 
            end 
        end 
        if numClust >= 4 
            if readNNOutputFile(inc1, 9) == 1 
                idx(idxR,1) = 4; 
                idxR = idxR +1; 
            end 
        end 
        if numClust >= 5 
            if readNNOutputFile(inc1, 10) == 1 
                idx(idxR,1) = 5; 
                idxR = idxR +1; 
            end 
        end 
        if numClust >= 6 
            if readNNOutputFile(inc1, 11) == 1 
                idx(idxR,1) = 6; 
                idxR = idxR +1; 
            end 
        end 
        if numClust >= 7 
            if readNNOutputFile(inc1, 12) == 1 
                idx(idxR,1) = 7; 
                idxR = idxR +1; 
            end 
        end 
    end 
    fileInc; 
    idxSave(:,fileInc) = idx; 
end 
%% Tou Criterion 
k=7; 
for num=2:k 
    idx = idxSave(:,num-1);     
    for i=1:num 
        N0=0; 
        A=size(train(idx==i,:)); 
        T(i,1)=A(1,1); %number of elements in cluster i, Ti 
        D=train(idx==i,:); 
        ctrs(i,:)=mean(D) 
        for l=1:T(i,1) 
            N=(norm(D(l,:)-ctrs(i,:))).^2; 
            N0=N0+N; 
        end 
        N1(i,1)=N0; 
        S(i,1)=(2*(N0/T(i,1))).^0.5; %Si          
    end 
    S; 
    S1=max(S); 
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    for i=1:num 
        for j=1:num 
            M(i,j)=norm(ctrs(i,:)-ctrs(j,:)); 

             
        end 
        M(i,i)=inf; 
    end 
    M; 
    min(M); 
    N=min(min(M));     
    To(num-1,1)=N/S1; 
    cluster_num(num-1,1)=num; 
end 
%% Plot Tou verfication  
To; 
cluster_num; 
figure(1); 
plot(cluster_num,To) 
set(gca,'xtick',2:7) 
title([fileName,' ','Verification Plot'],'fontsize',12,'fontweight','b'); 
xlabel('Number of Clusters','fontsize',12,'fontweight','b'); 
ylabel('Tou Value','fontsize',12,'fontweight','b'); 
filename1 = strcat(fileName, '_','_Verification.jpg'); 
saveas(1,str2mat(filename1)); 
%% excel file output Tou value  
fileNameRvalue = strcat(fileName,'_TouVALUE.xlsx'); 
xlswrite(fileNameRvalue,To) 
%% excel file output of KSOM idx 
fileNameExIDX = strcat(fileName,'_IDXKSOM.xlsx'); 
xlswrite(fileNameExIDX,idxSave) 

  
fprintf('\n\nEND of PROGRAM') 
beep 
pause(0.25) 
beep 
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Appendix F. MATLAB Code for Kohonen SOM: vPlotKSOM.m 
%%% File Name: Thesis024_vPlotKSOM.m  
%%% Date: 11/7/2012  
%%% Programmer: JUN SHISHINO  
%%% SHM&NDE Lab ERAU LB184 
% This vPlotKSOM.m file input the all three criterion values 
% and then plots them while normalizing them between -1 to 1. 
% Then the rank of each point is found and assigned a points 
% in k*2 scale from the highest peak. Where k is number of clusters 
% analized. 
% This rank plot is plotted as well as showing the 1st and 2nd 
% peak in the voting plot. 
% Plot is saved as JPEG. 
% THIS IS FOR KSOM FOR FILE NAME SIMPLICITY 
%-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
clc; clear all, close all; 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % CHANGE  DATE % % % % % % % % % % %  
fileName = ('10-18-DEAF-KSOM') 
RijValueFile = xlsread ('10-18-DEAF-KSOM-Rij_RVALUE.xlsx'); 
SihouetteValueFile = xlsread ('10-18-DEAF-KSOM-Sihouette_SWcVALUE.xlsx'); 
TouValueFile = xlsread ('10-18-DEAF-KSOM-Tou_TouVALUE.xlsx'); 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
x =[2;3;4;5;6;7]; 
%% Rank the three criterion results 
[vsR, viR] = sort(RijValueFile); 
[xR, vrR] = sort(viR); 
[vsS, viS] = sort(SihouetteValueFile); 
[xS, vrS] = sort(viS); 
[vsT, viT] = sort(TouValueFile); 
[xT, vrT] = sort(viT); 
VotingValue = 2*vrR + 2*vrS + 2*vrT 
VVmax = max(VotingValue); 
VVplot = VotingValue / VVmax; 
[aa, bb]=sort(VVplot); 
[cc,dd] = sort(bb); 
vRank(:,1)= VVplot; 
vRank(:,2)= dd; 
%% have criterion results between -1 to 1 
[Rmax, Ri] = max(abs(RijValueFile)); 
Smax = max(abs(SihouetteValueFile)); 
Tmax = max(abs(TouValueFile)); 
Rvalue(:,1) = RijValueFile / Rmax; 
Svalue(:,1) = SihouetteValueFile / Smax; 
Tvalue(:,1) = TouValueFile / Tmax; 
%% plot verification plot 
figure(1) 
plot(x,Rvalue,'r', 'LineWidth', 3) 
hold on 
plot(x,Svalue,'g', 'LineWidth', 3) 
hold on 
plot(x,Tvalue,'b', 'LineWidth', 3) 
hold on 
plot(x,VVplot,':k', 'LineWidth', 3) 
hold on 
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%% plot the dot on 1st and 2nd highest peak 
for inc = 1:6 
    if vRank(inc,2) == 6 
        hold on 
        plot(inc+1,vRank(inc,1), '*m','LineWidth', 8)         
    elseif vRank(inc,2) == 5 
        hold on 
        plot(inc+1,vRank(inc,1), '*c','LineWidth', 8) 

         
    end 
end 
ylim([-1.25 1.25]) 
set(gca,'xtick',2:7) 
set(gca,'linewidth',2) 
set(gca, 'FontWeight', 'bold') 
legend('Rij','Sihouette','Tou','Voting Value', 'Location','SouthWest') 
title([fileName,' ','Verification Criterion'], 'FontWeight', 'bold') 
xlabel('Number of Clusters', 'FontWeight', 'bold') 
ylabel('Index', 'FontWeight', 'bold') 
filename = strcat(fileName,'_vPlot.jpg'); 
saveas(1,str2mat(filename)); 

  
fprintf('END of PROGRAM\n\n') 
beep 
pause(0.25) 
beep 
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Appendix G. MATLAB Code for K-mean: Kmeans.m 
%%% File Name: Thesis03_Kmeans.m  
%%% Date: 11/7/2012  
%%% Programmer: JUN SHISHINO  
%%% SHM&NDE Lab ERAU LB184 
% This Thesis03_Kmeans.m performs k-mean analysis of the data set. 
% Input is (1)excel file with AE input for analysis  
% and (2)excel file with all AE parameters. 
% Output is (1)excel file that contains centroids for each cluster (2)AE Plot 
% (3) index number cluster by kmean. 
clc; clear all; close all; 

  
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% Files that has input for analysis 
trainFile = xlsread ('10_18_DEAF_KNN.xls');  
% File that has original AE parameters  
readOFile = xlsread ('10_18_DEAF_KNN_original.xls'); 
% Name of the output file 
fileName = strcat('10-18-DEAF-Kmean') 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 

  
% Normalization of input data 
for i=1:4 
trainFile(:,i)=log(trainFile(:,i)) 
end 
train = [trainFile(:,1),trainFile(:,2), trainFile(:,3), trainFile(:,4)]; 

  
q=2;p=2;k=7; 
for num=2:k 
    %% k-mean and save centroids 
    [idx,ctrs,sumd] = kmeans 

(train,num,'replicates',100,'display','final','maxiter',7500); 
    fileNameCtrsIDX = strcat(fileName,'_',num2str(num),'_CtrsKmean.xlsx'); 
    xlswrite(fileNameCtrsIDX,ctrs);      
    idxSave(:,num-1) = idx;     
    %% Separate each AE parameter into class 
    clusterNum = num2str(num); 
    c1count = 1;c2count = 1;c3count = 1;c4count = 1;c5count = 1;c6count = 

1;c7count = 1; 
    [r c] = size(idx); 
    % A       |B      |C          |D      |E          |F 
    % Counts    |Energy |Duration   |Amp    |Avg Freq   |idx 
    % 1       |2      |3          |4      |5          |6 
    for inc = 1:r 
        if num >=2 
            if idx(inc,1) == 1 
                class1(c1count,:) = [readOFile(inc,1), readOFile(inc,2), 

readOFile(inc,3), readOFile(inc,4), readOFile(inc,5), idx(inc,1)]; 
                c1count = c1count+1; 
            elseif idx(inc,1) == 2 
                class2(c2count,:) = [readOFile(inc,1), readOFile(inc,2), 

readOFile(inc,3), readOFile(inc,4), readOFile(inc,5), idx(inc,1)]; 
                c2count = c2count+1; 
            end 
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        end 
        if num>=3 
            if idx(inc,1) == 3 
                class3(c3count,:) = [readOFile(inc,1), readOFile(inc,2), 

readOFile(inc,3), readOFile(inc,4), readOFile(inc,5), idx(inc,1)]; 
                c3count = c3count+1; 
            end 
        end 
        if num>=4 
            if idx(inc,1) == 4 
                class4(c4count,:) = [readOFile(inc,1), readOFile(inc,2), 

readOFile(inc,3), readOFile(inc,4), readOFile(inc,5), idx(inc,1)]; 
                c4count = c4count+1; 
            end 
        end 
        if num>=5 
            if idx(inc,1) == 5 
                class5(c5count,:) = [readOFile(inc,1), readOFile(inc,2), 

readOFile(inc,3), readOFile(inc,4), readOFile(inc,5), idx(inc,1)]; 
                c5count = c5count+1; 
            end 
        end 
        if num>=6 
            if idx(inc,1) == 6 
                class6(c6count,:) = [readOFile(inc,1), readOFile(inc,2), 

readOFile(inc,3), readOFile(inc,4), readOFile(inc,5), idx(inc,1)]; 
                c6count = c6count+1; 
            end 
        end 
        if num==7 
            if idx(inc,1) == 7 
                class7(c7count,:) = [readOFile(inc,1), readOFile(inc,2), 

readOFile(inc,3), readOFile(inc,4), readOFile(inc,5), idx(inc,1)]; 
                c7count = c7count+1; 
            end 
        end 
    end 
    %% Plot AE Plot 
    figure(2) 
    %% Duration3 vs. Counts2 
    subplot(2,2,1) 
    if num>=2 
        plot(class1(:,1),class1(:,3),'.r') 
        hold on 
        plot(class2(:,1),class2(:,3),'.g') 
        hold on 
    end 
    if num>=3 
        plot(class3(:,1),class3(:,3),'.b') 
        hold on 
    end 
    if num>=4 
        plot(class4(:,1),class4(:,3),'.y') 
        hold on 
    end 
    if num>=5 
        plot(class5(:,1),class5(:,3),'.m') 
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        hold on 
    end 
    if num>=6 
        plot(class6(:,1),class6(:,3),'.c') 
        hold on 
    end 
    if num>=7 
        plot(class7(:,1),class7(:,3),'.k') 
        hold on 
    end 
    title({[fileName,' ',clusterNum, ' clusters'];[' Counts vs. 

Duration']},'fontsize',12,'fontweight','b') 
    xlabel('Counts','fontsize',12,'fontweight','b') 
    ylabel('Duration (µs)','fontsize',12,'fontweight','b') 
    axis([0 600 0 30000]) 
    %% Energy2 vs. Amplitude4 
    subplot(2,2,2) 
    if num >=2 
        plot(class1(:,4),class1(:,2),'.r') 
        hold on 
        plot(class2(:,4),class2(:,2),'.g') 
        hold on 
    end 
    if num>=3 
        plot(class3(:,4),class3(:,2),'.b') 
        hold on 
    end 
    if num>=4 
        plot(class4(:,4),class4(:,2),'.y') 
        hold on 
    end 
    if num>=5 
        plot(class5(:,4),class5(:,2),'.m') 
        hold on 
    end 
    if num>=6 
        plot(class6(:,4),class6(:,2),'.c') 
        hold on 
    end 
    if num==7 
        plot(class7(:,4),class7(:,2),'.k') 
        hold on 
    end 
    title(['Energy vs. Amplitude'],'fontsize',12,'fontweight','b') 
    xlabel('Amplitude (dB)','fontsize',12,'fontweight','b') 
    ylabel('Energy','fontsize',12,'fontweight','b') 
    axis([45 80 0 4000]) 
    %% Duration3 vs. Amplitude4 
    subplot(2,2,3) 
    if num >=2 
        plot(class1(:,4),class1(:,3),'.r') 
        hold on 
        plot(class2(:,4),class2(:,3),'.g') 
        hold on 
    end 
    if num>=3 
        plot(class3(:,4),class3(:,3),'.b') 
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        hold on 
    end 
    if num>=4 
        plot(class4(:,4),class4(:,3),'.y') 
        hold on 
    end 
    if num>=5 
        plot(class5(:,4),class5(:,3),'.m') 
        hold on 
    end 
    if num>=6 
        plot(class6(:,4),class6(:,3),'.c') 
        hold on 
    end 
    if num==7 
        plot(class7(:,4),class7(:,3),'.k') 
        hold on 
    end 
    title(['Duration vs. Amplitude'],'fontsize',12,'fontweight','b') 
    xlabel('Amplitude (dB)','fontsize',12,'fontweight','b') 
    ylabel('Duration (µs)','fontsize',12,'fontweight','b') 
    axis([45 80 0 30000]) 
    % Save AE plot to JPEG 
    filename = strcat(fileName, '_',clusterNum,'_Subplot.jpg'); 
    saveas(2,str2mat(filename)); 
    clearvars inc class1 class2 class3 class4 class5 class6 class7 figure(2) 
    close all 
    c1count = 1;c2count = 1;c3count = 1;c4count = 1;c5count = 1;c6count = 

1;c7count = 1; 
end 

  
% Save k-mean index number to JPEG 
fileNameExIDX = strcat(fileName,'_IDXKmean.xlsx'); 
xlswrite(fileNameExIDX,idxSave); 

  
%% END PROGRAM 
fprintf('\nEND OF PROGRAM') 
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Appendix H. MATLAB Code for K-mean: Rij_FromKmeanIDX 
%%% File Name: Thesis031_Rij_FromKmeanIDX.m 
%%% Date: 11/7/2012  
%%% Programmer: JUN SHISHINO  
%%% SHM&NDE Lab ERAU LB184 
% This Thesis031_Rij_FromKmeanIDX.m code is used to obtain the Rij critrion 

result. 
% The input is (1)excel file with AE input for analysis, (2)excel file with  
% all AE parameters, (3)excel file that has cluster index numbers. 
% The output is (1)Rij Criterion plot and (2)excel file of Rij criterion 
% values. 
clc; clear all; close all; 

  
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % CHANGE  DATE % % % % % % % % % % %  
% Files that has input for analysis 
trainFile = xlsread ('10_18_DEAF_KNN.xls'); 
% File that has original AE parameters  
readOFile = xlsread ('10_18_DEAF_KNN_original.xls'); 
% File that has cluster index number 
readIDX = xlsread('10-18-DEAF-Kmean_IDXKmean.xlsx'); 
% Name of the output file 
fileName = strcat('10-18-DEAF-Kmean-Rij') 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 

  
%% Normalization of input data 
for i=1:4 
trainFile(:,i)=log(trainFile(:,i)); 
end 
train = [trainFile(:,1),trainFile(:,2), trainFile(:,3), trainFile(:,4)]; 

  
%% Rij Analysis 
q=2;p=2;k=7; 
for num=2:k 
    idx = readIDX(:,num-1); 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % CHANGE  DATE % % % % % % % % % % %  
ctrsExcel = strcat('10-18-DEAF-Kmean_',num2str(num),'_CtrsKmean.xlsx'); 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
    readCtrs = xlsread(ctrsExcel);     
    for i=1:num 
        N0=0; 
        A=size(train(idx==i,:)); 
        T(i,1)=A(1,1); %number of elements in cluster i, Ti 
        D=train(idx==i,:); 
        readCtrs(i,:); 
        for l=1:T(i,1) 
            N=(norm(D(l,:)-readCtrs(i,:)))^q; 
            N0=N0+N; 
        end 
        N1(i,1)=N0; 
        S(i,1)=(N0/T(i,1))^(1/q); %Si 
    end 
    S; 
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    for i=1:num 
        for j=1:num 
            M(i,j)=(sum((((readCtrs(i,:)-

readCtrs(j,:)).^2).^(1/2)).^p))^(1/p); 
        end 
    end 
    M; 
    for i=1:num 
        for j=1:num 
            R1(i,j)=(S(i,1)+S(j,1))/M(i,j); 
        end 
        R1(i,i)=0; 
    end 
    R1; 
    for i=1:num 
        C(i,1)=max(R1(i,:)); 
    end 
    C; 
    R(num-1,1)=(sum(C(:,1))./num); 
    cluster_num(num-1,1)=num; 
end 
%% Plot Rij verfication  
newdata = R'; 
cluster_num; 
figure(1) 
plot(cluster_num,R.^-1); 
set(gca,'xtick',2:7); 
title([fileName,' ','Verification Plot'],'fontsize',12,'fontweight','b'); 
xlabel('Number of Clusters','fontsize',12,'fontweight','b'); 
ylabel('Rij Value','fontsize',12,'fontweight','b'); 
filename1 = strcat(fileName, '_','_Verification.jpg'); 
saveas(1,str2mat(filename1)); 

  
%% excel file output out Rij value  
fileNameRvalue = strcat(fileName,'_RVALUE.xlsx'); 
xlswrite(fileNameRvalue,R.^-1) 

  
fprintf('\n\nEND of PROGRAM') 
beep 
pause(0.25) 
beep 
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Appendix I. MATLAB Code for K-mean: Silhouette_FromKmeanIDX.m 
%%% File Name: Thesis032_Silhouette_FromKmeanIDX.m 
%%% Date: 11/7/2012  
%%% Programmer: JUN SHISHINO  
%%% SHM&NDE Lab ERAU LB184 
% This Thesis032_Silhouette_FromKmeanIDX.m code is used to obtain  
% the Silhouette critrion result. 
% The input is (1)excel file with AE input for analysis, (2)excel file with  
% all AE parameters, (3)excel file that has cluster index numbers. 
% The output is (1)Silhouette Criterion plot and (2)excel file of  
% Silhouette criterion values. 
clc; clear all; close all; 

  
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % CHANGE  DATE % % % % % % % % % % %  
% Files that has input for analysis 
trainFile = xlsread ('10_18_DEAF_KNN.xls'); 
% File that has original AE parameters  
readOFile = xlsread ('10_18_DEAF_KNN_original.xls'); 
% File that has cluster index number 
readIDX = xlsread('10-18-DEAF-Kmean_IDXKmean.xlsx'); 
% Name of the output file 
fileName = strcat('10-18-DEAF-Kmean-Silhouette')  
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 

  
%% Normalization of input data 
for i=1:4 
    trainFile(:,i)=log(trainFile(:,i)); 
end 
train = [trainFile(:,1),trainFile(:,2), trainFile(:,3), trainFile(:,4)];  

  
%% Silhouette Analysis 
k=7; 
for num=2:k 
    Sx1=0;     
    idx = readIDX(:,num-1);     
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % % CHANGE  % % % % % % % % % % % % % 
% ctrsExcel = strcat('09-07-DEAF-Kmean_',num2str(num),'_CtrsKmean.xlsx'); 
ctrsExcel = strcat('10-18-DEAF-Kmean_',num2str(num),'_CtrsKmean.xlsx'); 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
    readCtrs = xlsread(ctrsExcel);     
    for i=1:num 
        D=train(idx==i,:); 
        A=size(train(idx==i,:)); 
        T(i,1)=A(1,1); 
        for g=1:T(i,1) 
            N1=0; 
            N=(norm(D(g,:)-readCtrs(i,:)))/(num-1); 
            Nsum(i,g)=N; 
            Nsum2(i,g)=inf; 
            for h=1:num 
                if (h~=i) 
                    N3=0; 
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                    N2=(norm(D(g,:)-readCtrs(h,:)))/(num-1); 
                    N3=N2+N3;                     
                    Nsum2(i,g)=min(Nsum2(i,g),N3); 
                end                 
            end 
            Sx=(Nsum2(i,g)-Nsum(i,g))/max(Nsum2(i,g),Nsum(i,g)); 
            Sx1=Sx1+Sx; 
        end 
    end 
    SWc(num-1,1)=(Sx1/sum(T(:,1))); 
    cluster_num(num-1,1)=num; 
end 
%% Plot Silhouette verfication  
newdata = SWc'; 
cluster_num; 
figure(1) 
plot(cluster_num,SWc) 
set(gca,'xtick',2:7) 
title([fileName,' ','Verification Plot'],'fontsize',12,'fontweight','b'); 
xlabel('Number of Clusters','fontsize',12,'fontweight','b'); 
ylabel('Silhouette Value','fontsize',12,'fontweight','b'); 
filename1 = strcat(fileName, '_','_Verification.jpg'); 
saveas(1,str2mat(filename1)) 

  
%% excel file output out Silhouette value   
fileNameRvalue = strcat(fileName,'_SWcVALUE.xlsx'); 
xlswrite(fileNameRvalue,SWc) 

  
fprintf('\n\nEND of PROGRAM') 
beep 
pause(0.25) 
beep 
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Appendix J. MATLAB Code for K-mean: Tou_FromKmeanIDX.m 
%%% File Name: Thesis033_Tou_FromKmeanIDX.m 
%%% Date: 11/7/2012 
%%% Programmer: JUN SHISHINO 
%%% SHM&NDE Lab ERAU LB184 
% This Thesis033_Tou_FromKmeanIDX.m code is used to obtain the Tou critrion 

result. 
% The input is (1)excel file with AE input for analysis, (2)excel file with  
% all AE parameters, (3)excel file that has cluster index numbers. 
% The output is (1)Tou Criterion plot and (2)excel file of Tou criterion 
% values. 
clc; clear all; close all; 

  
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % CHANGE  DATE % % % % % % % % % % %  
% Files that has input for analysis 
trainFile = xlsread ('10_18_DEAF_KNN.xls'); 
% File that has original AE parameters  
readOFile = xlsread ('10_18_DEAF_KNN_original.xls'); 
% File that has cluster index number 
readIDX = xlsread('10-18-DEAF-Kmean_IDXKmean.xlsx'); 
% Name of the output file 
fileName = strcat('10-18-DEAF-Kmean-Tou') 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 

  
%% Normalization of input data 
for i=1:4 
    trainFile(:,i)=log(trainFile(:,i)); 
end 
train = [trainFile(:,1),trainFile(:,2), trainFile(:,3), trainFile(:,4)]; 

  
%% Tou Analysis 
k=7; 
for num=2:k 
    idx = readIDX(:,num-1); 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % CHANGE  DATE % % % % % % % % % % %  
ctrsExcel = strcat('10-18-DEAF-Kmean_',num2str(num),'_CtrsKmean.xlsx'); 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
    readCtrs = xlsread(ctrsExcel); 
    for i=1:num 
        N0=0; 
        A=size(train(idx==i,:)); 
        T(i,1)=A(1,1); %number of elements in cluster i, Ti 
        D=train(idx==i,:); 
        for l=1:T(i,1) 
            N=(norm(D(l,:)-readCtrs(i,:))).^2; 
            N0=N0+N; 
        end 
        N1(i,1)=N0; 
        S(i,1)=(2*(N0/T(i,1))).^0.5; %Si 
    end 
    S1=max(S); 
    for i=1:num 
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        for j=1:num 
            M(i,j)=norm(readCtrs(i,:)-readCtrs(j,:)); 
        end 
        M(i,i)=inf; 
    end 
    M; 
    min(M); 
    N=min(min(M));     
    To(num-1,1)=N/S1; 
    cluster_num(num-1,1)=num; 
end 
%% Plot Tou verfication  
newdata = (To)'; 
cluster_num; 
figure(1); 
plot(cluster_num,To) 
set(gca,'xtick',2:7) 
title([fileName,' ','Verification Plot'],'fontsize',12,'fontweight','b'); 
xlabel('Number of Clusters','fontsize',12,'fontweight','b'); 
ylabel('Tou Value','fontsize',12,'fontweight','b'); 
filename1 = strcat(fileName, '_','_Verification.jpg'); 
saveas(1,str2mat(filename1)); 
%% excel file output out Tou value   
fileNameRvalue = strcat(fileName,'_TouVALUE.xlsx'); 
xlswrite(fileNameRvalue,To) 

  
fprintf('\n\nEND of PROGRAM') 
beep 
pause(0.25) 
beep 
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Appendix K. MATLAB Code for K-mean: vPlotKmean.m 
%%% File Name: Thesis034_vPlotKmean.m  
%%% Date: 11/7/2012  
%%% Programmer: JUN SHISHINO  
%%% SHM&NDE Lab ERAU LB184 
% This Thesis034_vPlotKmean.m  file input the all three criterion values 
% and then plots them while normalizing them between -1 to 1. 
% Then the rank of each point is found and assigned a points 
% in 10 scale from the highest peak. 
% This rank plot is plotted as well as showing the 1st and 2nd 
% peak in the voting plot. 
% Plot is saved as JPEG. 
% THIS IS FOR K-MEAN FOR FILE NAME SIMPLICITY 
%-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
clc; clear all, close all;clear 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % CHANGE  DATE % % % % % % % % % % %  
fileName = ('10-18-DEAF-Kmean') 
RijValueFile = xlsread ('10-18-DEAF-Kmean-Rij_RVALUE.xlsx'); 
SihouetteValueFile = xlsread ('10-18-DEAF-Kmean-Silhouette_SWcVALUE.xlsx'); 
TouValueFile = xlsread ('10-18-DEAF-Kmean-Tou_TouVALUE.xlsx'); 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
x =[2;3;4;5;6;7]; 
%% Rank the three criterion results 
[vsR, viR] = sort(RijValueFile); 
[xR, vrR] = sort(viR); 
[vsS, viS] = sort(SihouetteValueFile); 
[xS, vrS] = sort(viS); 
[vsT, viT] = sort(TouValueFile); 
[xT, vrT] = sort(viT); 
VotingValue = 2*vrR + 2*vrS + 2*vrT 
VVmax = max(VotingValue); 
VVplot = VotingValue / VVmax; 
[aa, bb]=sort(VVplot); 
[cc,dd] = sort(bb); 
vRank(:,1)= VVplot; 
vRank(:,2)= dd; 
%% have criterion results between -1 to 1 
[Rmax, Ri] = max(abs(RijValueFile)); 
Smax = max(abs(SihouetteValueFile)); 
Tmax = max(abs(TouValueFile)); 
Rvalue(:,1) = RijValueFile / Rmax; 
Svalue(:,1) = SihouetteValueFile / Smax; 
Tvalue(:,1) = TouValueFile / Tmax; 
%% plot verification plot 
figure(1) 
plot(x,Rvalue,'r', 'LineWidth', 3) 
hold on 
plot(x,Svalue,'g', 'LineWidth', 3) 
hold on 
plot(x,Tvalue,'b', 'LineWidth', 3) 
hold on 
plot(x,VVplot,':k', 'LineWidth', 3) 
hold on 
%% plot the dot on 1st and 2nd highest peak 
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for inc = 1:6 
    if vRank(inc,2) == 6 
        hold on 
        plot(inc+1,vRank(inc,1), '*m','LineWidth', 8)         
    elseif vRank(inc,2) == 5 
        hold on 
        plot(inc+1,vRank(inc,1), '*c','LineWidth', 8) 

         
    end 
end 
ylim([-1.25 1.25]) 
set(gca,'xtick',2:7) 
set(gca,'linewidth',2) 
set(gca, 'FontWeight', 'bold') 
legend('Rij','Sihouette','Tou','Voting Value', 'Location','SouthWest') 
title([fileName,' ','Verification Criterion'], 'FontWeight', 'bold') 
xlabel('Number of Clusters', 'FontWeight', 'bold') 
ylabel('Index', 'FontWeight', 'bold') 
filename = strcat(fileName,'_vPlot.jpg'); 
saveas(1,str2mat(filename)); 

  
fprintf('END of PROGRAM\n\n') 
beep 
pause(0.25) 
beep 
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Appendix L. MATLAB Code for GMM: GMM.m 
%%% File Name: Thesis040_GMM.m 
%%% Date: 11/7/2012 
%%% Programmer: JUN SHISHINO 
%%% SHM&NDE Lab ERAU LB184 
% This Silhouette_GMM.m does GMM analysis and Silhouette Criterion 
% of the data set. 
% Shows the AE Plot and later will conpute the Silhouette Criterion 
% All of the cetroid, cluster index and Silhouette value will be saved 
% in excel. 
clc; clear all; close all; 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% Files that has input for analysis 
trainFile = xlsread ('10_18_DEAF_KNN.xls');  
% File that has original AE parameters  
readOFile = xlsread ('10_18_DEAF_KNN_original.xls'); 
% Name of the output file 
fileName = strcat('10-18-DEAF-GMM') 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 

  
% Normalization of input data 
for i=1:4 
    trainFile(:,i)=log(trainFile(:,i)); 
end 
train = [trainFile(:,1),trainFile(:,2), trainFile(:,3), trainFile(:,4)]; 

  
k=7; 
options = statset('Display','final','maxiter',7500); 
for num=2:k 
    %% GMM   
    gm = 

gmdistribution.fit(train,num,'Options',options,'Regularize',0.01,'Replicates'

,100); 

     
    Sx1=0; 

     
    idx = cluster(gm,train); 
    idxSave(:,num-1) = idx; 
    %% Separate each AE parameter into class       
    clusterNum = num2str(num);   
    c1count = 1;c2count = 1;c3count = 1;c4count = 1;c5count = 1;c6count = 

1;c7count = 1; 
    [r c] = size(idx); 
    % A       |B      |C          |D      |E          |F 
    % Counts    |Energy |Duration   |Amp    |Avg Freq   |idx 
    % 1       |2      |3          |4      |5          |6 
    for inc = 1:r 
        if num >=2 
            if idx(inc,1) == 1 
                class1(c1count,:) = [readOFile(inc,1), readOFile(inc,2), 

readOFile(inc,3), readOFile(inc,4), readOFile(inc,5), idx(inc,1)]; 
                c1count = c1count+1; 
            elseif idx(inc,1) == 2 
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                class2(c2count,:) = [readOFile(inc,1), readOFile(inc,2), 

readOFile(inc,3), readOFile(inc,4), readOFile(inc,5), idx(inc,1)]; 
                c2count = c2count+1; 
            end 
        end 
        if num>=3 
            if idx(inc,1) == 3 
                class3(c3count,:) = [readOFile(inc,1), readOFile(inc,2), 

readOFile(inc,3), readOFile(inc,4), readOFile(inc,5), idx(inc,1)]; 
                c3count = c3count+1; 
            end 
        end 
        if num>=4 
            if idx(inc,1) == 4 
                class4(c4count,:) = [readOFile(inc,1), readOFile(inc,2), 

readOFile(inc,3), readOFile(inc,4), readOFile(inc,5), idx(inc,1)]; 
                c4count = c4count+1; 
            end 
        end 
        if num>=5 
            if idx(inc,1) == 5 
                class5(c5count,:) = [readOFile(inc,1), readOFile(inc,2), 

readOFile(inc,3), readOFile(inc,4), readOFile(inc,5), idx(inc,1)]; 
                c5count = c5count+1; 
            end 
        end 
        if num>=6 
            if idx(inc,1) == 6 
                class6(c6count,:) = [readOFile(inc,1), readOFile(inc,2), 

readOFile(inc,3), readOFile(inc,4), readOFile(inc,5), idx(inc,1)]; 
                c6count = c6count+1; 
            end 
        end 
        if num==7 
            if idx(inc,1) == 7 
                class7(c7count,:) = [readOFile(inc,1), readOFile(inc,2), 

readOFile(inc,3), readOFile(inc,4), readOFile(inc,5), idx(inc,1)]; 
                c7count = c7count+1; 
            end 
        end 
    end 
    %% Plot AE Plot 
    figure(2) 
    %% Duration3 vs. Counts2 
    subplot(2,2,1) 
    if num >=2 
        plot(class1(:,1),class1(:,3),'.r') 
        hold on 
        plot(class2(:,1),class2(:,3),'.g') 
        hold on 
    end 
    if num>=3 
        plot(class3(:,1),class3(:,3),'.b') 
        hold on 
    end 
    if num>=4 
        plot(class4(:,1),class4(:,3),'.y') 
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        hold on 
    end 
    if num>=5 
        plot(class5(:,1),class5(:,3),'.m') 
        hold on 
    end 
    if num>=6 
        plot(class6(:,1),class6(:,3),'.c') 
        hold on 
    end 
    if num==7 
        plot(class7(:,1),class7(:,3),'.k') 
        hold on 
    end 
    title([fileName,' ',clusterNum,' Counts vs. 

Duration'],'fontsize',12,'fontweight','b') 
    xlabel('Counts','fontsize',12,'fontweight','b') 
    ylabel('Duration (µs)','fontsize',12,'fontweight','b') 
    axis([0 600 0 30000]) 
    %% Energy2 vs. Amplitude4 
    subplot(2,2,2) 
    if num >=2 
        plot(class1(:,4),class1(:,2),'.r') 
        hold on 
        plot(class2(:,4),class2(:,2),'.g') 
        hold on 
    end 
    if num>=3 
        plot(class3(:,4),class3(:,2),'.b') 
        hold on 
    end 
    if num>=4 
        plot(class4(:,4),class4(:,2),'.y') 
        hold on 
    end 
    if num>=5 
        plot(class5(:,4),class5(:,2),'.m') 
        hold on 
    end 
    if num>=6 
        plot(class6(:,4),class6(:,2),'.c') 
        hold on 
    end 
    if num==7 
        plot(class7(:,4),class7(:,2),'.k') 
        hold on 
    end 
    title(['Energy vs. Amplitude'],'fontsize',12,'fontweight','b') 
    xlabel('Amplitude (dB)','fontsize',12,'fontweight','b') 
    ylabel('Energy','fontsize',12,'fontweight','b') 
    axis([45 80 0 4000]) 
    %% Duration3 vs. Amplitude4 
    subplot(2,2,3) 
    if num >=2 
        plot(class1(:,4),class1(:,3),'.r') 
        hold on 
        plot(class2(:,4),class2(:,3),'.g') 
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        hold on 
    end 
    if num>=3 
        plot(class3(:,4),class3(:,3),'.b') 
        hold on 
    end 
    if num>=4 
        plot(class4(:,4),class4(:,3),'.y') 
        hold on 
    end 
    if num>=5 
        plot(class5(:,4),class5(:,3),'.m') 
        hold on 
    end 
    if num>=6 
        plot(class6(:,4),class6(:,3),'.c') 
        hold on 
    end 
    if num==7 
        plot(class7(:,4),class7(:,3),'.k') 
        hold on 
    end 
    title(['Duration vs. Amplitude'],'fontsize',12,'fontweight','b') 
    xlabel('Amplitude (dB)','fontsize',12,'fontweight','b') 
    ylabel('Duration (µs)','fontsize',12,'fontweight','b') 
    axis([45 80 0 30000]) 
    % Save AE plot to JPEG     
    filename = strcat(fileName, '_',clusterNum,'_Subplot.jpg'); 
    saveas(2,str2mat(filename)) 
    clearvars inc class1 class2 class3 class4 class5 class6 class7 figure(2) 
    close all 
    c1count = 1;c2count = 1;c3count = 1;c4count = 1;c5count = 1;c6count = 

1;c7count = 1;     
end 

  
% Save Swc index number to JPEG 
fileNameExIDX = strcat(fileName,'_IDXGMM.xlsx'); 
xlswrite(fileNameExIDX,idxSave) 

  
beep 
pause(0.25) 
beep 
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Appendix M. MATLAB Code for GMM: Rij_FromGMMIDX.m 
%%% File Name: Thesis041_Rij_FromGMMIDX.m 
%%% Date: 11/7/2012  
%%% Programmer: JUN SHISHINO  
%%% SHM&NDE Lab ERAU LB184 
% This Thesis041_Rij_FromGMMIDX.m code is used to obtain the Rij critrion 

result. 
% The input is (1)excel file with AE input for analysis and (2)excel file 

with  
% all AE parameters. 
% The output is (1)Rij Criterion plot and (2)excel file of Rij criterion 
% values. 
clc; clear all; close all; 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % CHANGE  DATE % % % % % % % % % % %  
% Files that has input for analysis 
trainFile = xlsread ('10_18_DEAF_KNN.xls'); 
% File that has original AE parameters  
readOFile = xlsread ('10_18_DEAF_KNN_original.xls'); 
% File that has cluster index number 
readIDX = xlsread('10-18-DEAF-GMM_IDXSilhouette.xlsx'); 
% Name of the output file 
fileName = strcat('10-18-DEAF-GMM-Rij') 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 

  
%% Normalization of input data 
for i=1:4 
    trainFile(:,i)=log(trainFile(:,i)); 
end 
train = [trainFile(:,1),trainFile(:,2), trainFile(:,3), trainFile(:,4)]; 

  
%% Rij Analysis 
q=2;p=2;k=7; 
for num=2:k     
    idx = readIDX(:,num-1);     
    for i=1:num 
        N0=0; 
        A=size(train(idx==i,:)); 
        T(i,1)=A(1,1); 
        D=train(idx==i,:); 
        ctrs(i,:)=mean(D); 
        for l=1:T(i,1) 
            N=(norm(D(l,:)-ctrs(i,:)))^q; 
            N0=N0+N; 
        end 
        N1(i,1)=N0; 
        S(i,1)=(N0/T(i,1))^(1/q); 
    end 
    S; 
    for i=1:num 
        for j=1:num 
            M(i,j)=(sum((((ctrs(i,:)-ctrs(j,:)).^2).^(1/2)).^p))^(1/p); 
        end 
    end 
    M; 
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    for i=1:num 
        for j=1:num 
            R1(i,j)=(S(i,1)+S(j,1))/M(i,j); 
        end 
        R1(i,i)=0; 
    end 
    R1; 
    for i=1:num 
        C(i,1)=max(R1(i,:)); 
    end 
    C; 
    R(num-1,1)=(sum(C(:,1))./num) 
    cluster_num(num-1,1)=num; 
end 
%% Plot Rij verfication  
newdata = R'; 
cluster_num; 
figure(1) 
plot(cluster_num,R.^-1); 
set(gca,'xtick',2:7); 
title([fileName,' ','Verification Plot'],'fontsize',12,'fontweight','b'); 
xlabel('Number of Clusters','fontsize',12,'fontweight','b'); 
ylabel('Rij Value','fontsize',12,'fontweight','b'); 
filename1 = strcat(fileName, '_','_Verification.jpg'); 
saveas(1,str2mat(filename1)); 

  
%% excel file output out Rij value  
fileNameRvalue = strcat(fileName,'_RVALUE.xlsx'); 
xlswrite(fileNameRvalue,R.^-1) 

  
fprintf('\n\nEND of PROGRAM') 
beep 
pause(0.25) 
beep 
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Appendix N. MATLAB Code for GMM: Silhouette_FromGMMIDX.m 
%%% File Name: Thesis042_Silhouette_FromGMMIDX.m 
%%% Date: 11/7/2012  
%%% Programmer: JUN SHISHINO  
%%% SHM&NDE Lab ERAU LB184 
% This Thesis042_Silhouette_FromGMMIDX.m code is used to obtain  
% the Silhouette critrion result. 
% The input is (1)excel file with AE input for analysis and (2)excel file 

with  
% all AE parameters. 
% The output is (1)Silhouette Criterion plot and (2)excel file of  
% Silhouette criterion values. 

  
clc; clear all; close all; 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % CHANGE  DATE % % % % % % % % % % %  
% Files that has input for analysis 
trainFile = xlsread ('10_18_DEAF_KNN.xls'); 
% File that has original AE parameters  
readOFile = xlsread ('10_18_DEAF_KNN_original.xls'); 
% File that has cluster index number 
readIDX = xlsread('10-18-DEAF-GMM_IDXSilhouette.xlsx'); 
% Name of the output file 
fileName = strcat('10-18-DEAF-GMM-Silhouette')  
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 

  
%% Normalization of input data 
for i=1:4 
    trainFile(:,i)=log(trainFile(:,i));%10%9invers 
end 
train = [trainFile(:,1),trainFile(:,2), trainFile(:,3), trainFile(:,4)]; %10 

  
%% Silhouette Analysis 
k=7; 
for num=2:k 
    Sx1=0; 
    idx = readIDX(:,num-1); 
    for i=1:num 
        D=train(idx==i,:); 
        ctrs(i,:)=mean(D); 
    end 
    for i=1:num 
        D=train(idx==i,:); 
        ctrs(i,:)=mean(D); 
        A=size(train(idx==i,:)); 
        T(i,1)=A(1,1); 
        for g=1:T(i,1) 
            N1=0; 
            N=(norm(D(g,:)-ctrs(i,:)))/(num-1); 
            Nsum(i,g)=N; 
            Nsum2(i,g)=inf; 
            for h=1:num 
                if (h~=i) 
                    N3=0; 
                    N2=(norm(D(g,:)-ctrs(h,:)))/(num-1); 
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                    N3=N2+N3; 
                    Nsum2(i,g)=min(Nsum2(i,g),N3); 
                end                 
            end 
            Sx=(Nsum2(i,g)-Nsum(i,g))/max(Nsum2(i,g),Nsum(i,g)); 
            Sx1=Sx1+Sx; 
        end 
    end 
    SWc(num-1,1)=Sx1/sum(T(:,1)); 
    cluster_num(num-1,1)=num; 
end 
%% Plot Silhouette verfication  
newdata = SWc'; 
cluster_num; 
figure(1) 
plot(cluster_num,SWc) 
set(gca,'xtick',2:7) 
title([fileName,' ','Verification Plot'],'fontsize',12,'fontweight','b'); 
xlabel('Number of Clusters','fontsize',12,'fontweight','b'); 
ylabel('Silhouette Value','fontsize',12,'fontweight','b'); 
filename1 = strcat(fileName, '_','_Verification.jpg'); 
saveas(1,str2mat(filename1)) 

  
%% excel file output out Silhouette value   
fileNameRvalue = strcat(fileName,'_SWcVALUE.xlsx'); 
xlswrite(fileNameRvalue,SWc) 

  
fprintf('\n\nEND of PROGRAM') 
beep 
pause(0.25) 
beep 
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Appendix O. MATLAB Code for GMM: Tou_FromGMMIDX.m 
%%% File Name: Thesis043_Tou_FromGMMIDX.m 
%%% Date: 11/7/2012  
%%% Programmer: JUN SHISHINO  
%%% SHM&NDE Lab ERAU LB184 
% This Thesis043_Tou_FromGMMIDX.m code is used to obtain the Tou critrion 

result 
% from GMM idx result. 
% The input is (1)excel file with AE input for analysis and (2)excel file 

with  
% all AE parameters. 
% The output is (1)Tou Criterion plot and (2)excel file of Tou criterion 
% values. 
clc; clear all; close all; 

  
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % CHANGE  DATE % % % % % % % % % % %  
% Files that has input for analysis 
trainFile = xlsread ('10_18_DEAF_KNN.xls'); 
% File that has original AE parameters  
readOFile = xlsread ('10_18_DEAF_KNN_original.xls'); 
% File that has cluster index number 
readIDX = xlsread('10-18-DEAF-GMM_IDXSilhouette.xlsx'); 
% Name of the output file 
fileName = strcat('10-18-DEAF-GMM-Tou') 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 

  
%% Normalization of input data 
for i=1:4 
    trainFile(:,i)=log(trainFile(:,i)); 
end 
train = [trainFile(:,1),trainFile(:,2), trainFile(:,3), trainFile(:,4)]; 

  
%% Tou Analysis 
k=7; 
for num=2:k 
    idx = readIDX(:,num-1); 
    for i=1:num 
        N0=0; 
        A=size(train(idx==i,:)); 
        T(i,1)=A(1,1); %number of elements in cluster i, Ti 
        D=train(idx==i,:); 
        ctrs(i,:)=mean(D) 
        for l=1:T(i,1) 
            N=(norm(D(l,:)-ctrs(i,:))).^2; 
            N0=N0+N; 
        end 
        N1(i,1)=N0; 
        S(i,1)=(2*(N0/T(i,1))).^0.5; %Si 
    end 
    S; 
    S1=max(S); 
    for i=1:num 
        for j=1:num 
            M(i,j)=norm(ctrs(i,:)-ctrs(j,:)); 
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        end 
        M(i,i)=inf; 
    end 
    M; 
    min(M); 
    N=min(min(M)); 
    To(num-1,1)=N/S1; 
    cluster_num(num-1,1)=num; 
end 
%% Plot Tou verfication  
newdata = (To)'; 
cluster_num; 
figure(1); 
plot(cluster_num,To) 
set(gca,'xtick',2:7) 
title([fileName,' ','Verification Plot'],'fontsize',12,'fontweight','b'); 
xlabel('Number of Clusters','fontsize',12,'fontweight','b'); 
ylabel('Tou Value','fontsize',12,'fontweight','b'); 
filename1 = strcat(fileName, '_','_Verification.jpg'); 
saveas(1,str2mat(filename1)); 
%% excel file output out Tou value  
fileNameRvalue = strcat(fileName,'_TouVALUE.xlsx'); 
xlswrite(fileNameRvalue,To) 

  
fprintf('\n\nEND of PROGRAM') 
beep 
pause(0.25) 
beep 
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Appendix P. MATLAB Code for GMM: vPlotGMM.m 
%%% File Name: Thesis044_vPlotGMM.m  
%%% Date: 11/7/2012  
%%% Programmer: JUN SHISHINO  
%%% SHM&NDE Lab ERAU LB184 
% This Thesis044_vPlotGMM.m  file input the all three criterion values 
% and then plots them while normalizing them between -1 to 1. 
% Then the rank of each point is found and assigned a points 
% in 10 scale from the highest peak. 
% This rank plot is plotted as well as showing the 1st and 2nd 
% peak in the voting plot. 
% Plot is saved as JPEG. 
% THIS IS FOR GMM FOR FILE NAME SIMPLICITY 
%-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*- 
clc; clear all, close all; 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % CHANGE  DATE % % % % % % % % % % %  
fileName = ('10-18-DEAF-GMM') 
RijValueFile = xlsread ('10-18-DEAF-GMM-Rij_RVALUE.xlsx'); 
SihouetteValueFile = xlsread ('10-18-DEAF-GMM-Silhouette_SWcVALUE.xlsx'); 
TouValueFile = xlsread ('10-18-DEAF-GMM-Tou_TouVALUE.xlsx'); 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
x =[2;3;4;5;6;7]; 
%% Rank the three criterion results 
[vsR, viR] = sort(RijValueFile); 
[xR, vrR] = sort(viR); 
[vsS, viS] = sort(SihouetteValueFile); 
[xS, vrS] = sort(viS); 
[vsT, viT] = sort(TouValueFile); 
[xT, vrT] = sort(viT); 
VotingValue = 2*vrR + 2*vrS + 2*vrT 
VVmax = max(VotingValue); 
VVplot = VotingValue / VVmax; 
[aa, bb]=sort(VVplot); 
[cc,dd] = sort(bb); 
vRank(:,1)= VVplot; 
vRank(:,2)= dd; 
%% have criterion results between -1 to 1 
[Rmax, Ri] = max(abs(RijValueFile)); 
Smax = max(abs(SihouetteValueFile)); 
Tmax = max(abs(TouValueFile)); 
Rvalue(:,1) = RijValueFile / Rmax; 
Svalue(:,1) = SihouetteValueFile / Smax; 
Tvalue(:,1) = TouValueFile / Tmax; 
%% plot verification plot 
figure(1) 
plot(x,Rvalue,'r', 'LineWidth', 3) 
hold on 
plot(x,Svalue,'g', 'LineWidth', 3) 
hold on 
plot(x,Tvalue,'b', 'LineWidth', 3) 
hold on 
plot(x,VVplot,':k', 'LineWidth', 3) 
hold on 
%% plot the dot on 1st and 2nd highest peak 
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for inc = 1:6 
    if vRank(inc,2) == 6 
        hold on 
        plot(inc+1,vRank(inc,1), '*m','LineWidth', 8)         
    elseif vRank(inc,2) == 5 
        hold on 
        plot(inc+1,vRank(inc,1), '*c','LineWidth', 8) 

         
    end 
end 
ylim([-1.25 1.25]) 
set(gca,'xtick',2:7) 
set(gca,'linewidth',2) 
set(gca, 'FontWeight', 'bold') 
legend('Rij','Sihouette','Tou','Voting Value', 'Location','SouthWest') 
title([fileName,' ','Verification Criterion'], 'FontWeight', 'bold') 
xlabel('Number of Clusters', 'FontWeight', 'bold') 
ylabel('Index', 'FontWeight', 'bold') 
filename = strcat(fileName,'_vPlot.jpg'); 
saveas(1,str2mat(filename)); 

  
fprintf('END of PROGRAM\n\n') 
beep 
pause(0.25) 
beep 
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Appendix Q. MATLAB Code for Visual Verification: AEPlot.m 
%%% File Name: Thesis050_AEPlot.m 
%%% Date: 11/7/2012 
%%% Programmer: JUN SHISHINO 
%%% SHM&NDE Lab ERAU LB184 
% This Thesis050_AEPlot.m is capable of plotting the AE plots with three 
% different plots in subplot. This code has NO capability of plotting 
% multiple sample at the same time. This can be fixed by coding a loop 
% inside. 
% Input for this code are the following. (1) the excle file that has 
% input AE parameters (2) excle file that has cluster index. 
% Output for this code is AE plots with 3 subplots. 
clc; close all, clear all; 

  
ask1 = input('What is cluster number? '); 
while (ask1 < 0 || ask1 > 7) 
    ask1 = input('What is cluster number? '); 
end 
ask2 = input('Enter number for clustering Algorithms. KSOM:[1], Others;[2]'); 
while (ask2 ~= 1 & ask2 ~=3) 
    ask2 = input('Enter number for clustering Algorithms. KSOM:[1], 

Others;[3]'); 
end 
if ask2 == 3 
    ask3 = input('Enter number for clustering Algorithms. KMEAN:[7], 

GMM:[9]'); 
    while (ask3 ~= 7 & ask3 ~=9) 
        ask3 = input('Enter number for clustering Algorithms. KMEAN:[7], 

GMM:[9]'); 
    end 
end 
if ask2 == 1 
    ClusterType = ('KSOM'); 
end 
if ask2 == 3 
    ClusterType = ('Kmean/GMM'); 
end 

  
NumberOfCluster = ask1 
ClusterType 
num = ask1; 

  
%% Input  
if ask2 == 1 
    % For KSOM 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % CHANGE  DATE % % % % % % % % % % %      
    readOFile = xlsread (strcat(num,'_DEAF_10_18.xlsx')); % Change Cluster 

Number 
    indexFile = xlsread('10-18-DEAF-KSOM-Rij_IDX.xlsx'); 
    fileName = strcat('10-18-DEAF-KSOM') 
elseif ask3 == 7 
    % For KMEAN 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % CHANGE  DATE % % % % % % % % % % %      
    readOFile = xlsread ('10_18_DEAF_KNN_original.xls'); 
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    indexFile = xlsread('10-18-DEAF-GMM_IDXKmean.xlsx'); 
    fileName = strcat('10-18-DEAF-Kmean') 
elseif ask3 ==9 
    % For GMM 
% % % % % % % % % % % % % % % % % % % % % % % % % % % % 
% % % % % % % % % % CHANGE  DATE % % % % % % % % % % %      
    readOFile = xlsread ('10_18_DEAF_KNN_original.xls'); 
    indexFile = xlsread('10-18-DEAF-GMM_IDXGMM.xlsx'); 
    fileName = strcat('10-18-DEAF-GMM') 
end 
%% Colors 
% Original 
c1 = '.r';c2 = '.g';c3 = '.b';c4 = '.y';c5 = '.m';c6 = '.c';c7 = '.k'; 
% IF Change needed 
% c1 = '.b'; 
% c2 = '.m'; 
% c3 = '.c'; 
% c4 = '.r'; 
% c5 = '.g'; 
% c6 = '.y'; 
% c7 = '.k'; 
%% Separate AE parameters in different clusters 
idx = indexFile(:,num-1); 
c1count = 1;c2count = 1;c3count = 1;c4count = 1;c5count = 1;c6count = 

1;c7count = 1; 
[r c] = size(idx); 
% A       |B      |C          |D      |E          |F 
% Counts    |Energy   |Duration |Amp    |Avg Freq   |idx 

(xx_xx_DEAF_KNN_original.xls) 
% Counts    |Duration | Energy  | Amp   | Avg Freq  | NN results 

(x_DEAF_10_18.xls) 
% 1         |2        |3        |4      |5          |6 
for inc = 1:r 
    if num >=2 
        if idx(inc,1) == 1 
            class1(c1count,:) = [readOFile(inc,1), readOFile(inc,2), 

readOFile(inc,3), readOFile(inc,4), readOFile(inc,5), idx(inc,1)]; 
            c1count = c1count+1; 
        elseif idx(inc,1) == 2 
            class2(c2count,:) = [readOFile(inc,1), readOFile(inc,2), 

readOFile(inc,3), readOFile(inc,4), readOFile(inc,5), idx(inc,1)]; 
            c2count = c2count+1; 
        end 
    end 
    if num>=3 
        if idx(inc,1) == 3 
            class3(c3count,:) = [readOFile(inc,1), readOFile(inc,2), 

readOFile(inc,3), readOFile(inc,4), readOFile(inc,5), idx(inc,1)]; 
            c3count = c3count+1; 
        end 
    end 
    if num>=4 
        if idx(inc,1) == 4 
            class4(c4count,:) = [readOFile(inc,1), readOFile(inc,2), 

readOFile(inc,3), readOFile(inc,4), readOFile(inc,5), idx(inc,1)]; 
            c4count = c4count+1; 
        end 
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    end 
    if num>=5 
        if idx(inc,1) == 5 
            class5(c5count,:) = [readOFile(inc,1), readOFile(inc,2), 

readOFile(inc,3), readOFile(inc,4), readOFile(inc,5), idx(inc,1)]; 
            c5count = c5count+1; 
        end 
    end 
    if num>=6 
        if idx(inc,1) == 6 
            class6(c6count,:) = [readOFile(inc,1), readOFile(inc,2), 

readOFile(inc,3), readOFile(inc,4), readOFile(inc,5), idx(inc,1)]; 
            c6count = c6count+1; 
        end 
    end 
    if num==7 
        if idx(inc,1) == 7 
            class7(c7count,:) = [readOFile(inc,1), readOFile(inc,2), 

readOFile(inc,3), readOFile(inc,4), readOFile(inc,5), idx(inc,1)]; 
            c7count = c7count+1; 
        end 
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% For KSOM 
% 1         |2        |3        |4      |5          |6 
% Counts    |Duration | Energy  | Amp   | Avg Freq  | NN results 

(x_DEAF_10_18.xls) 
if ask2 == 1 
    %% Duration2 vs. Counts1 (KSOM) 
    figure(2) 
    subplot(2,2,1) 
    if num >=2 
        plot(class1(:,1),class1(:,2),c1) 
        hold on 
        plot(class2(:,1),class2(:,2),c2) 
        hold on 
    end 
    if num>=3 
        plot(class3(:,1),class3(:,2),c3) 
        hold on 
    end 
    if num>=4 
        plot(class4(:,1),class4(:,2),c4) 
        hold on 
    end 
    if num>=5 
        plot(class5(:,1),class5(:,2),c5) 
        hold on 

         
        plot(class4(:,1),class4(:,2),c4) 
        hold on 
    end 
    if num>=6 
        plot(class6(:,1),class6(:,2),c6) 
        hold on 
    end 
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    if num==7 
        plot(class7(:,1),class7(:,2),c7) 
        hold on 
    end 
    title({[fileName,' ',num2str(num),' clusters'];[' Counts vs. 

Duration']},'fontsize',12,'fontweight','b') 
    xlabel('Counts','fontsize',12,'fontweight','b') 
    ylabel('Duration (µs)','fontsize',12,'fontweight','b') 
    axis([0 600 0 30000]) 
    %% Energy3 vs. Amplitude4 (KSOM) 
    subplot(2,2,2) 
    if num >=2 
                plot(class1(:,4),class1(:,3),c1) 
                hold on 
                plot(class2(:,4),class2(:,3),c2) 
                hold on 
    end 
    if num>=3 
                plot(class3(:,4),class3(:,3),c3) 
                hold on 
    end 
    if num>=4 
                plot(class4(:,4),class4(:,3),c4) 
                hold on 
    end 
    if num>=5 
        plot(class5(:,4),class5(:,3),c5) 
        hold on         
    end 
    if num>=6 
        plot(class6(:,4),class6(:,3),c6) 
        hold on 
    end 
    if num==7 
        plot(class7(:,4),class7(:,3),c7) 
        hold on 
    end 
    title(['Energy vs. Amplitude'],'fontsize',12,'fontweight','b') 
    xlabel('Amplitude (dB)','fontsize',12,'fontweight','b') 
    ylabel('Energy','fontsize',12,'fontweight','b') 
    axis([45 80 0 4000]) 
    %% Duration2 vs. Amplitude4 (KSOM) 
    subplot(2,2,3) 
    if num >=2 
        plot(class1(:,4),class1(:,2),c1) 
        hold on 
        plot(class2(:,4),class2(:,2),c2) 
        hold on 
    end 
    if num>=3 
        plot(class3(:,4),class3(:,2),c3) 
        hold on 
    end 
    if num>=4 
        plot(class4(:,4),class4(:,2),c4) 
        hold on         
    end 
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    if num>=5 
        plot(class5(:,4),class5(:,2),c5) 
        hold on         
    end 
    if num>=6 
        plot(class6(:,4),class6(:,2),c6) 
        hold on 
    end 
    if num==7 
        plot(class7(:,4),class7(:,2),c7) 
        hold on 
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% For Kmean & GMM 
if ask2 == 3 
    %% Duration3 vs. Counts2 (Kmean & GMM) 
    figure(2) 
    subplot(2,2,1) 
    if num >=2 
        plot(class1(:,1),class1(:,3),c1) 
        hold on 
        plot(class2(:,1),class2(:,3),c2) 
        hold on 
    end 
    if num>=3 
        plot(class3(:,1),class3(:,3),c3) 
        hold on 
    end 
    if num>=4 

         
        plot(class4(:,1),class4(:,3),c4) 
        hold on 
    end 
    if num>=5 
        plot(class5(:,1),class5(:,3),c5) 
        hold on 
    end 
    if num>=6 
        plot(class6(:,1),class6(:,3),c6) 
        hold on         
    end 
    if num==7 
        plot(class7(:,1),class7(:,3),c7) 
        hold on 
    end 
    title({[fileName,' ',num2str(num),' clusters'];[' Counts vs. 

Duration']},'fontsize',12,'fontweight','b') 
    xlabel('Counts','fontsize',12,'fontweight','b') 
    ylabel('Duration (µs)','fontsize',12,'fontweight','b') 
    axis([0 600 0 30000]) 
    %% Energy2 vs. Amplitude4 (Kmean & GMM) 
    subplot(2,2,2) 
    if num >=2 
        plot(class1(:,4),class1(:,2),c1) 
        hold on 
        plot(class2(:,4),class2(:,2),c2) 
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        hold on 
    end 
    if num>=3 
        plot(class3(:,4),class3(:,2),c3) 
        hold on 
    end 
    if num>=4 
        plot(class4(:,4),class4(:,2),c4) 
        hold on 
    end 
    if num>=5 
        plot(class5(:,4),class5(:,2),c5) 
        hold on         
    end 
    if num>=6 
        plot(class6(:,4),class6(:,2),c6) 
        hold on         
    end 
    if num==7 
        plot(class7(:,4),class7(:,2),c7) 
        hold on 
    end 
    title(['Energy vs. Amplitude'],'fontsize',12,'fontweight','b') 
    xlabel('Amplitude (dB)','fontsize',12,'fontweight','b') 
    ylabel('Energy','fontsize',12,'fontweight','b') 
    axis([45 80 0 4000]) 
    %% Duration3 vs. Amplitude4 (Kmean & GMM) 
    subplot(2,2,3) 
    if num >=2 
        plot(class1(:,4),class1(:,3),c1) 
        hold on 
        plot(class2(:,4),class2(:,3),c2) 
        hold on 
    end 
    if num>=3 
        plot(class3(:,4),class3(:,3),c3) 
        hold on 
    end 
    if num>=4         
        plot(class4(:,4),class4(:,3),c4) 
        hold on 
    end 
    if num>=5 
        plot(class5(:,4),class5(:,3),c5) 
        hold on 
    end 
    if num>=6 
        plot(class6(:,4),class6(:,3),c6) 
        hold on 
    end 
    if num==7 
        plot(class7(:,4),class7(:,3),c7) 
        hold on 
    end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Plot 
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title(['Duration vs. Amplitude'],'fontsize',12,'fontweight','b') 
xlabel('Amplitude (dB)','fontsize',12,'fontweight','b') 
ylabel('Duration (µs)','fontsize',12,'fontweight','b') 
axis([45 80 0 30000]) 
filename = strcat(fileName, '_',num2str(num),'_Subplot.jpg'); 
saveas(2,str2mat(filename)) 
clearvars inc class1 class2 class3 class4 class5 class6 class7 figure(2) 
c1count = 1;c2count = 1;c3count = 1;c4count = 1;c5count = 1;c6count = 

1;c7count = 1; 

  
fprintf('\n\nEND of PROGRAM') 
beep 
pause(0.25) 
beep 
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Appendix R. MATLAB Code for Visual Verification: StatisticalAnalysisIDX.m 

 

%%% File Name: Thesis051_StatisticalAnalysisIDX.m 
%%% Date: 11/7/2012 
%%% Programmer: JUN SHISHINO 
%%% SHM&NDE Lab ERAU LB184 
% This Thesis051_StatisticalAnalysisIDX.m is capable of computing the 
% statistical analysis of the classified data from KMEAN and GMM. This is 
% because it uses the index number generated by the both functions in 
% MATLAB. 

  
clc; clear all; close all; 

  
ask1 = input('What is cluster number? '); 
while (ask1 < 0 || ask1 > 7) 
    ask1 = input('What is cluster number? '); 
end 
ask3 = input('Enter number for clustering Algorithms. KMEAN:[7], GMM:[9]'); 
while (ask3 ~= 7 & ask3 ~=9) 
    ask3 = input('Enter number for clustering Algorithms. KMEAN:[7], 

GMM:[9]'); 
end 

  
clustNumIn = ask1; %User Input 

  
if ask3 == 7 % for Kmean 
    fileName = strcat('10-18-DEAF-Kmean-Rij_',clustNumIn) 
    AEdatafilename = '10_18_DEAF_KNN_original.xls'; % User AE input value 
    clusterIDX =  xlsread('10-18-DEAF-GMM_IDXKmean.xlsx'); % User input value 
elseif ask3 == 9 % for GMM 
    fileName = strcat('10-18-DEAF-GMM-Rij_',clustNumIn) 
    AEdatafilename = '10_18_DEAF_KNN_original.xls'; % User input value 
    clusterIDX =  xlsread('10-18-DEAF-GMM_IDXGMM.xlsx'); % User input value 
end 

  
net_output = xlsread(AEdatafilename); 
clustNum = clustNumIn - 1; 
rowC1 = 1; rowC2 = 1; rowC3 = 1; rowC4 = 1; rowC5 = 1;rowC6 = 1; 

  
% % % % % % % % %  CHECK YOUR VALUES % % % % % % % % % % % 
%CEDAF 
%12345 
for i = 1:length(net_output) 
    if clusterIDX(i,clustNum) == 1 
        E1(rowC1,:) = net_output(i,2); 
        D1(rowC1,:) = net_output(i,3); 
        A1(rowC1,:) = net_output(i,4); 
        rowC1 = rowC1+1; 
    elseif clusterIDX(i,clustNum) == 2 
        E2(rowC2,:) = net_output(i,2); 
        D2(rowC2,:) = net_output(i,3); 
        A2(rowC2,:) = net_output(i,4); 
        rowC2 = rowC2+1; 
    elseif clusterIDX(i,clustNum) == 3 
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        E3(rowC3,:) = net_output(i,2); 
        D3(rowC3,:) = net_output(i,3); 
        A3(rowC3,:) = net_output(i,4); 
        rowC3 = rowC3+1; 
    elseif clusterIDX(i,clustNum) == 4 
        E4(rowC4,:) = net_output(i,2); 
        D4(rowC4,:) = net_output(i,3); 
        A4(rowC4,:) = net_output(i,4); 
        rowC4 = rowC4+1; 
    elseif clusterIDX(i,clustNum) == 5 
        E5(rowC5,:) = net_output(i,2); 
        D5(rowC5,:) = net_output(i,3); 
        A5(rowC5,:) = net_output(i,4); 
        rowC5 = rowC5+1; 
    elseif clusterIDX(i,clustNum) == 6 
        E6(rowC6,:) = net_output(i,2); 
        D6(rowC6,:) = net_output(i,3); 
        A6(rowC6,:) = net_output(i,4); 
        rowC6 = rowC6+1; 
    end 
end 
%% Statistical Analysis of Energy 
StatE1 = [min(E1); max(E1); mean(E1); std2(E1); length(E1)]; 
StatE2 = [min(E2); max(E2); mean(E2); std2(E2); length(E2)]; 
StatE3 = [min(E3); max(E3); mean(E3); std2(E3); length(E3)]; 
StatE4 = [min(E4); max(E4); mean(E4); std2(E4); length(E4)]; 
if clustNumIn >= 5 

     
    StatE5 = [min(E5); max(E5); mean(E5); std2(E5); length(E5)]; 
end 
if clustNumIn >= 6 

     
    StatE6 = [min(E6); max(E6); mean(E6); std2(E6); length(E6)]; 
end 
%% Statistical Analysis of Duration 
StatD1 = [min(D1); max(D1); mean(D1); std2(D1); length(D1)]; 
StatD2 = [min(D2); max(D2); mean(D2); std2(D2); length(D2)]; 
StatD3 = [min(D3); max(D3); mean(D3); std2(D3); length(D3)]; 
StatD4 = [min(D4); max(D4); mean(D4); std2(D4); length(D4)]; 
if clustNumIn >= 5 
    StatD5 = [min(D5); max(D5); mean(D5); std2(D5); length(D5)]; 
end 
if clustNumIn >= 6 
    StatD6 = [min(D6); max(D6); mean(D6); std2(D6); length(D6)]; 
end 
%% Statistical Analysis of Amplitude 
StatA1 = [min(A1); max(A1); mean(A1); std2(A1); length(A1)]; 
StatA2 = [min(A2); max(A2); mean(A2); std2(A2); length(A2)]; 
StatA3 = [min(A3); max(A3); mean(A3); std2(A3); length(A3)]; 
StatA4 = [min(A4); max(A4); mean(A4); std2(A4); length(A4)]; 
if clustNumIn >= 5 
    StatA5 = [min(A5); max(A5); mean(A5); std2(A5); length(A5)]; 
end 
if clustNumIn >= 6 
    StatA6 = [min(A6); max(A6); mean(A6); std2(A6); length(A6)]; 
end 
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%% clustNumIN is between 4 through 5 since it was the # of cluster  
% wanted to verify. 
if clustNumIn == 4 
    StatE = [StatE1'; StatE2'; StatE3'; StatE4']; 
    StatD = [StatD1'; StatD2'; StatD3'; StatD4']; 
    StatA = [StatA1'; StatA2'; StatA3'; StatA4']; 
elseif clustNumIn == 5 
    StatE = [StatE1'; StatE2'; StatE3'; StatE4'; StatE5']; 
    StatD = [StatD1'; StatD2'; StatD3'; StatD4'; StatD5']; 
    StatA = [StatA1'; StatA2'; StatA3'; StatA4'; StatA5']; 
elseif clustNumIn == 6 
    StatE = [StatE1'; StatE2'; StatE3'; StatE4'; StatE5'; StatE6']; 
    StatD = [StatD1'; StatD2'; StatD3'; StatD4'; StatD5'; StatD6']; 
    StatA = [StatA1'; StatA2'; StatA3'; StatA4'; StatA5'; StatA6']; 
end 
%% Export to excel 
head = {'Min','Max','Average','SD','# of Hits'}; 
fileNameExStat = strcat(fileName,'_Stat.xlsx'); 
xlswrite(fileNameExStat,head,'Energy','A1') 
xlswrite(fileNameExStat,StatE,'Energy','A2') 
xlswrite(fileNameExStat,head,'Duration','A1') 
xlswrite(fileNameExStat,StatD,'Duration','A2') 
xlswrite(fileNameExStat,head,'Amplitude','A1') 
xlswrite(fileNameExStat,StatA,'Amplitude','A2') 
close all; 

  
fprintf('END if PROGRAM\n\n') 
beep 
pause(0.25) 
beep 
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Appendix S. MATLAB Code for Visual Verification: StatisticalAnalysisNNpro.m 
%%% File Name: Thesis052_StatisticalAnalysisNNpro.m 
%%% Date: 11/7/2012 
%%% Programmer: JUN SHISHINO 
%%% SHM&NDE Lab ERAU LB184 
% This Thesis051_StatisticalAnalysisNNpro.m is capable of computing the 
% statistical analysis of the classified data from KSOM using NuralWorks 
% Professional II/Plus. 
clc; clear all; close all; 

  
ask1 = input('What is cluster number? '); 
while (ask1 < 0 || ask1 > 7) 
    ask1 = input('What is cluster number? '); 
end 

  
clustNumIn = ask1; %User Input 

  
fileName = strcat('10-18-DEAF-KSOM-',clustNumIn); 
filename1 = strcat(clustNumIn,'_DEAF_10_18.xlsx'); % User input value 
net_output = xlsread(filename1); 

  
rowC1 = 1; rowC2 = 1; rowC3 = 1; rowC4 = 1; rowC5 = 1;rowC6 = 1; 

  
% % % % % % % % %  CHECK YOUR VALUES % % % % % % % % % % % 
% 1 = Count 
% 2 = Duration 
% 3 = Energy 
% 4 = Amplitude 
% 5 = Avg Freq 

  
for i = 1:length(net_output) 
    hold on; 
    if net_output(i,6) == 1 
        E1(rowC1,:) = net_output(i,3); 
        D1(rowC1,:) = net_output(i,2); 
        A1(rowC1,:) = net_output(i,4); 
        rowC1 = rowC1+1; 
    elseif net_output(i,7) == 1 
        E2(rowC2,:) = net_output(i,3); 
        D2(rowC2,:) = net_output(i,2); 
        A2(rowC2,:) = net_output(i,4); 
        rowC2 = rowC2+1; 
    elseif net_output(i,8) == 1 
        E3(rowC3,:) = net_output(i,3); 
        D3(rowC3,:) = net_output(i,2); 
        A3(rowC3,:) = net_output(i,4); 
        rowC3 = rowC3+1; 
    elseif net_output(i,9) == 1 
        E4(rowC4,:) = net_output(i,3); 
        D4(rowC4,:) = net_output(i,2); 
        A4(rowC4,:) = net_output(i,4); 
        rowC4 = rowC4+1; 
    elseif net_output(i,10) == 1 
        E5(rowC5,:) = net_output(i,3); 
        D5(rowC5,:) = net_output(i,2); 
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        A5(rowC5,:) = net_output(i,4); 
        rowC5 = rowC5+1; 
    elseif net_output(i,11) == 1 
        E6(rowC6,:) = net_output(i,3); 
        D6(rowC6,:) = net_output(i,2); 
        A6(rowC6,:) = net_output(i,4); 
        rowC6 = rowC6+1; 
    end 
end 
%% Statistical Analysis of Energy 
StatE1 = [min(E1); max(E1); mean(E1); std2(E1); length(E1)]; 
StatE2 = [min(E2); max(E2); mean(E2); std2(E2); length(E2)]; 
StatE3 = [min(E3); max(E3); mean(E3); std2(E3); length(E3)]; 
StatE4 = [min(E4); max(E4); mean(E4); std2(E4); length(E4)]; 
if clustNumIn >= 5 

     
    StatE5 = [min(E5); max(E5); mean(E5); std2(E5); length(E5)]; 
end 
if clustNumIn >= 6 

     
    StatE6 = [min(E6); max(E6); mean(E6); std2(E6); length(E6)]; 
end 
%% Statistical Analysis of Duration 
StatD1 = [min(D1); max(D1); mean(D1); std2(D1); length(D1)]; 
StatD2 = [min(D2); max(D2); mean(D2); std2(D2); length(D2)]; 
StatD3 = [min(D3); max(D3); mean(D3); std2(D3); length(D3)]; 
StatD4 = [min(D4); max(D4); mean(D4); std2(D4); length(D4)]; 
if clustNumIn >= 5 
    StatD5 = [min(D5); max(D5); mean(D5); std2(D5); length(D5)]; 
end 
if clustNumIn >= 6 
    StatD6 = [min(D6); max(D6); mean(D6); std2(D6); length(D6)]; 
end 
%% Statistical Analysis of Amplitude 
StatA1 = [min(A1); max(A1); mean(A1); std2(A1); length(A1)]; 
StatA2 = [min(A2); max(A2); mean(A2); std2(A2); length(A2)]; 
StatA3 = [min(A3); max(A3); mean(A3); std2(A3); length(A3)]; 
StatA4 = [min(A4); max(A4); mean(A4); std2(A4); length(A4)]; 
if clustNumIn >= 5 
    StatA5 = [min(A5); max(A5); mean(A5); std2(A5); length(A5)]; 
end 
if clustNumIn >= 6 
    StatA6 = [min(A6); max(A6); mean(A6); std2(A6); length(A6)]; 
end 
%% clustNumIN is between 4 through 5 since it was the # of cluster  
% wanted to verify. 
if clustNumIn == 4 
    StatE = [StatE1'; StatE2'; StatE3'; StatE4']; 
    StatD = [StatD1'; StatD2'; StatD3'; StatD4']; 
    StatA = [StatA1'; StatA2'; StatA3'; StatA4']; 
elseif clustNumIn == 5 
    StatE = [StatE1'; StatE2'; StatE3'; StatE4'; StatE5']; 
    StatD = [StatD1'; StatD2'; StatD3'; StatD4'; StatD5']; 
    StatA = [StatA1'; StatA2'; StatA3'; StatA4'; StatA5']; 
elseif clustNumIn == 6 
    StatE = [StatE1'; StatE2'; StatE3'; StatE4'; StatE5'; StatE6']; 
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    StatD = [StatD1'; StatD2'; StatD3'; StatD4'; StatD5'; StatD6']; 
    StatA = [StatA1'; StatA2'; StatA3'; StatA4'; StatA5'; StatA6']; 
end 
%% Export to excel 
head = {'Min','Max','Average','SD','# of Hits'}; 
fileNameExStat = strcat(fileName,'_Stat.xlsx'); 
xlswrite(fileNameExStat,head,'Energy','A1') 
xlswrite(fileNameExStat,StatE,'Energy','A2') 
xlswrite(fileNameExStat,head,'Duration','A1') 
xlswrite(fileNameExStat,StatD,'Duration','A2') 
xlswrite(fileNameExStat,head,'Amplitude','A1') 
xlswrite(fileNameExStat,StatA,'Amplitude','A2') 
close all; 

  
fprintf('END if PROGRAM\n\n') 
beep 
pause(0.25) 
beep 
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