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Abstract

Author: Stephen Stegall
Title: Formation Feedback Control of UAV Flight
Instituion: Embry-Riddle Aeronautical University
Degree: Masters of Science in Aerospace Engineering
Year : 2009

This thesis is a study of formation control with autonomous unmanned aerial vehicles
using the formation as feedback. There is also an investigation of formation meth-
ods presenting insight into di�erent algorithms for formations. A rigid formation is
achieved using a proportional-derivative virtual structure with a formation feedback
controller. There is an emphasis on stick controlled aerodynamics. The rigid forma-
tion is veri�ed by a simulation of a longitudinal model. Formation control ideas are
presented for rigid formations.
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Chapter 1

Introduction

Integrating and automating many aspects of our lives greatly improves e�ciency in

carrying out tasks. When implemented e�ectively, these systems reduce the required

stochastic interactions that create a more robust and predictable system reducing or

removing the possibilities of introducing errors. One of the greatest challenges in

creating such integrated and automated systems are in identifying and developing a

method of overcoming limitations. This thesis focuses on speci�c limitations for aerial

intelligence, surveillance and reconnaissance (ISR) platforms.

These limitations are slowly fading as Unmanned Aerial Vehicles (UAVs) are being

phased in. These UAVs range from smaller systems used by groups such as police

forces and Army battalions to larger systems used for higher altitude and longer en-

durance applications in military and scienti�c ISR missions. This bird's eye view

provides real-time information to ground forces enabling them to e�ectively accom-

plish missions, send data to locations regarding threats, and monitor situations. This

constant need to monitor typically results in these longer �ights which fatigue pilots.

The FAA recommends a maximum of an eight hour �ight time for fear the pilots will

become fatigued [21].

An additional improvement in ISR platforms is to lower the overall cost by using

cheaper sensors without sacri�cing the quality of the data. Systems being developed

to obtain detailed information typically have an extremely high cost. More detailed

information about an area of interest could be obtained by synthesizing or fusing the

information obtained by multiple sensors spread among the formation; thus, creating

a more cost e�ective system.[8, 9, 12] This is essentially splitting the sensors from

1
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one agent to multiple agents. This fusion technique also provides redundancy in

information if any sensor(s) would become degraded.

Splitting sensors among agents will also create an increased aperture size. The

increased number of agents and their ability to hold a rigid formation allows the

formation to act as a mobile platform for aperture synthesis. Similar applications are

already implemented in various sites around the world, such as the Very Large Array

(VLA) in New Mexico.

Figure 1.0-1: Re-tasking UAVs in a formation to cover areas of interest.

Currently, the common implementation is one UAV per area of interest. In times

of con�ict, some of these UAVs could be at risk. In such an array, the formation can

stay further away from such riskier areas to perform a mission and generate a similar

or greater quality in data. The one to one implementation also requires long delays

if the aircraft is re-tasked to another area of interest. In a large array formation, re-

tasking is as simple as rotating the formation so that the aperture focuses on the new

area of interest, a maneuver that would be very di�cult to accomplish with human

pilots. Figure 1.0-1 displays the di�erence between the two di�erent scenarios. This

thesis discusses the control, navigation and guidance of a system of these large array

formations.

There are three main aspects addressed within this thesis regarding multi-agent

autonomous navigation. These aspects are the control of each agent to formulate a

formation, the control of the formation (an entity of agents), and the communication

amongst agents and controlling entities. There are many methods to approach these

aspects. The remainder of this chapter discusses these methods then concludes with

a method suited to address these aspects. The resulting conclusion is an adapted
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formation feedback method which reduces the communications while signi�cantly

decreasing the agents' deviation from its desired location in the formation.

When generating a formation of mobile agents, the agents settle to a position

within the formation. This position is the agents' desired state or position within the

formation. When the formation, from an external command, is forced to change its

trajectory, the agents commonly fall out of formation until each agent settles back

into its desired state. In some instances, this is acceptable and even desirable. In

applications like remote sensing and large array surveillance, the structure of the

formation is critical to the quality of data. In such instances, the agents cannot

deviate far from its desired position.

This phenomena is heavily evaluated for spacecraft formation in a planetary orbital

environment and deep space. A good overview for spacecraft formation control is

given by Scharf and collaborators [24, 25]. This problem, however, has not found a

large following in aircraft formation control. This is in part due to the expense and

rarity of High Altitude Long Endurance (HALE) aircraft or desired use with small

unmanned aerial vehicles (SUAV).

This document investigates a method to resolving the aforementioned problems

in aircraft formations. This method involves using a centralized formation to create a

virtual structure so the entire formation can act as a rigid body (for more information

on formations or the rigid body, see sections 1.2 or 3.1 respectively). Then, the agents'

deviation from its desired position within the structure is used as feedback to control

the rates in which the structure transitions from its previous commanded position to

its new commanded position (a more detailed study is presented in Chapter 3).

Beard et al. have implemented this method using simple mobile robots [31] and

spacecraft [18]. In all instances, it successfully reduced the agents' deviation from it

desired locations. Donepudi extended this method in detail for spacecraft �ying in

deep space with simulations in Satellite Toolkit (STK). [6]

This document investigates Beard's control method for agents whose dynamics are

following a simple aircraft model. This model is based on a simple electric powered

SUAV. The basic dynamics between a HALE, SUAV, and most aerial ISR platforms;

therefore, this method can expand as a control system for almost any aircraft based

ISR platform. This investigation is based on a very simple error based formation feed-

back proportional derivative controller. The formation feedback method mentioned
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above creates a more rigid formation decreasing the agent's deviation from its desired

state.

1.1 Topics Covered in This Thesis

This thesis covers most of the common topics in the simulation of aerospace vehicles.

In section 1.3, background material is presented on linear algebra, a description of

Euler angles, and quaternions (which is the current approach in handling rotations).

Chapter 2 develops the non-linear aircraft dynamic model for a six degree of freedom

aircraft. It also develops a few simple subsystems, one of which provides a method

to model the aerodynamics of an aircraft. Chapter 3 discusses a formation feedback

method developed by Beard et al. with respect to aircraft formations and the required

changes to allow this method to control a formation of aircraft. Chapter 4 simpli�es

the six degree of freedom model to a three degree of freedom longitudinal model and

provides results of simulating this model. Chapter 5 discusses some ways that can

improve the overall method and mentions some areas of future work.

1.1.1 Assumptions Made in This Thesis

This thesis develops a model su�cient to simulate a formation while providing merit

to further research methods which create dynamic but rigid formations. In order to

do this in an e�cient manner, simpli�ed models are used. A three degree of freedom

model along with external implementations are su�cient to validate the algorithm is

suitable for a full implementation.

A few assumptions to simplify the aircraft's controls and reduce the complexity

of the system are quickly detailed. The aerodynamics of the aircraft can be modeled

by the drag polar equations. There is an inner loop trimming the aircraft All forces

and moments act on the center of gravity with no height displacement and the torque

from the engine is negligible while cruising and maneuvering.

1.2 Formation Categories and Methods

A formation is a set of entities following rules or conditions that control the agents

into developing some larger form, structure, or unit. The entities within this forma-
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tion are called agents which could represent a �eet of ships, gathering animals or some

other set of mobile objects. Controlling these agents in a formation requires synchro-

nized movements and coordinated control. This section details di�erent categories of

formations and methods to develop a formation.

There are two main categories of formations. Centralized formations are those

where the agents relate their location from a uni�ed center location. These are rarely

found, if at all, in nature. This category is for arti�cial purposes and is used to

simplify the control of a formation. This has the advantage of easily creating and

describing a formation.

The other main category of formations is a decentralized formation. A decentral-

ized formation is one where each individual agent bases its location from a di�erent

source. Most formations found in nature are decentralized. In a �ock of birds, each

bird relates its position based on those around them. A soldier in marching army

relates its position relative to those who are adjacent. Similar behavior is found in

schools of �sh. The formation's development is formulated with each agent basing

it's control on a non-uniform position inside the formation. This formulation is the

opposite of the centralized scheme where all of the agents in the formation base its

control on a uniform position.

To develop a formation, a method of controlling the agents is required. There

are many methods to formulate a formation, but the three main methods found

throughout literature are discussed. The popular biological inspired formulations

are the leader-follower and behavioral methods. The third method, virtual structure

formations, is a popular method for arti�cial formations. These three methods are

discussed with emphasis on the uses, structures of the formation, and methods of

communication.

Inspiration for the behavior method comes from attempts to comprehend and

reason nature's systems. In this method, each agent is provided a set of primitive rules

called behaviors, and based on these rules, a formation is formed. Some extraordinary

complex and robust formations are formed using some really simple rules.

One example of the behavioral method is a herd of animals. The agent needs to

stay close to the formation for fear of its demise, while at the same time, keeping a

fresh source of food. This search for food controls the movement of the formation. As

the food source is depleted, the agents go out in search of a fresh source (searching



6

is another large area of research [5, 7, 10]). Other examples include schools of �sh,

swarms of migrating butter�ies, or colonies of ants.

The behavioral method is the most dynamic and fault tolerant of the formations

mentioned.[23, 28] The robustness of this method makes it an excellent method for

distributed sensors. This creates a large redundant array of independent sensors.

This redundancy of sensors allows cheaper sensors to be used, thus decreasing the

cost to produce each agent. This method is probably most useful in controlling a

large swarms of agents, such as micro aerial vehicles or nano-sized robots, nano-bots.

However, because of this complexity and the formation's dynamic roots, it is di�cult

to obtain consistent, and thus, predictable formation results.

Behavioral communication is localized to the agent's neighbors. Only a small por-

tion of the formation is required to receive a new command. These agents can then

distribute the command to neighboring agents. This delay in formation communica-

tions also delays in controlling these agents to create a rigid formation suitable for

remote sensing or large array collection.

The next popular biological inspired formation method is called the leader-follower

method. This involves, as the name implies, one agent, the follower, following another

agent, the leader. Formations are created by a series of leader-follower connections.

This method is very popular for its simple control algorithm while providing the

ability to hold rigid formations. This is the same method that �ghter jets or aerobatic

aircraft use when �ying in formation.

An example of the leader-follower method is a formation of birds. The aerody-

namics of birds (or any winged object in �ight) create a wingtip vortex on the left and

right wing tips of the bird. Another bird can �y on this vortex, a desired position, to

reduces the amount of lift that it is required to produce. This e�ect has the additional

bene�t of saving energy on the leader as well. [2]

Using the leader-follower method is very easy to generate formations. Each agent

contains a simple control. The problem with a leader-follower formation for the

desired application is the error of the desired location. This error is propagated

through the formation. The longer the chain of leader-followers, the greater the error

could be. Another problem is encountered if one of the leading agents is unable to

keep formation. When one of the leaders is unable to keep its desired position, then

the remainder of the formation is no longer rigid.
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Communication within the leader-follower formation contains the simplest com-

munication. Only the leader communicates with its followers. This means that the

command signal for the formation is only given to the leader(s) of the formation. An

example of a decentralized leader-follower formation control is found in reference [27].

For another method of satellite formation control using the leader-follower, please see

reference [22].

A common method of formulating an arti�cial formation is to de�ne virtual nodes

based on a central location. These virtual nodes, then, create a rigid virtual structure.

This rigid structure, through transformations, is then treated as a single entity. Later

sections will go into further details of the virtual structure dynamics, but this method

essentially takes these smaller entities and transforms their dynamics into one larger

entity.

The primary reason to using a virtual structured formation is the formation is well

de�ned. The agents' dynamics and the behavior of the formation are predictable. A

disadvantage of this method is the rigidness of the formation. This prevents the

formation from being used in more dynamic environments where constant varying

formations are required. These constant changes might cause anomalies in some

applications. Though this main disadvantage is reason in choosing it for the desired

applications.

Communication in a virtual structure is only between the agent and the controlling

entity. All the agents within the formation are referenced from a single point, while

only changes to this reference point are required to be sent to all of the agents. The

communication overhead is the least favorable characteristic of this method, especially

when passing through a SATCOM.

Adding a formation feedback adds another channel of communication amongst

the agents. So now, communication is amongst each agent and the controlling unit.

This overhead might restricts its use in larger formations. It can be reduced by a

few simple methods. The command can be sent through a multi-cast communication

channel, meaning the agents receive the same commanded position from one origi-

nating packet. A similar method can be implemented amongst the agents. Methods

of communication, however, are not within the scope of this paper.

The control possibilities with the rigid formation of a virtual structure are some

of its greatest attributes. With a virtual structure, communication between all the

agents allow for feedback methods. This also allows the formation to know when it is
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no longer in formation or when an agent within is unable to keep formation. Di�erent

methods accounting for these are not within the scope, but are brie�y discussed later.

Some other recent work in formation control, found in reference [4], involves an

investigation of aerodynamics of aircraft in formation. This investigation displays

energy savings and other aerodynamic advantages of aircrafts �ying in formation.

A leader-follower formation might exploit these characteristics more than a virtual

structure. Willis et al. investigated the formation �ight of �apping wings in [30]. Zou

et al. describe a distributed formation �ight control using constraint forces in [33]

which allows scalability of formations.

1.3 Background Material

This section covers the basic concepts required to understand the remainder of this

thesis. Linear algebra is the base of all mathematics contained within and section

1.3.1 only brie�y describes unfamiliar concepts. The next topic on Eulerian angles is

for historical and comprehensive purposes. Though Euler angles are not used in the

simulations, their description compares them to their modern equivalent, the quater-

nion. The quaternion describes the rotational states and removes sinusoidal functions

from the rotational equations. Its implementation has many bene�ts. Section 1.3.3

discusses quaternions and covers these bene�ts.

1.3.1 Background in Matrix Operations

The nature of this work relies on a strong matrix and linear algebra background.

There are many reference books that contain an in-depth discussion and the remainder

of this section will refresh some topics that some readers might not be too familiar

with.

Matrix notations usually reduce the complexity of a series of equations. Matri-

ces also represent a vectored notation that is simpli�ed to a matrix. One common

conversion from vectors is the cross product of two vectors. Let vector ω represent a

vector containing angular velocities as

ω =
[
p q r

]T
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and let v represent the translational velocity as,

v =
[
u v w

]T
The cross product is then represented by a matrix multiplication as

ω × v =
[
ω×
]
v

=

 0 −r q

r 0 −p
−q p 0


uv
w

 (1.3.1)

This matrix is used throughout the text among a few other simple matrix reductions.

More importantly then the matrices are a few matrix de�nitions. Knowing the

properties associated with these de�nitions are more bene�cial in understanding and

simplifying equations. The matrix in equation (1.3.1) is skew-symmetric matrix. A

symmetric matrix is a matrix where it is equal to its transpose. A skew-symmetric

matrix is equal to the negative of its transpose.

A = AT symmetric (1.3.2)

A = −AT skew-symmetric (1.3.3)

Another common de�nition is an orthogonal matrix. An orthogonal matrix is matrix

in which each column or row is orthogonal, which is where it derives its name.

A−1 = AT orthogonal (1.3.4)

A well known property of this matrix is the inverse of the matrix is equal to its

transpose.

The above identities are useful in manipulating linear algebraic equations within.

There are many more properties and de�nitions for matrices, like a positive or simi-

positive de�nite matrix, but these will not be discussed. The material provided

hopefully acts as a reminder to comprehend the material presented later.
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1.3.2 Background in Euler Angles

Euler angles are named after Leonard Euler's (1707-1783) theorem on relating two

di�erent oriented reference frames by a sequence of angles. Euler angles are a sequence

of rotations about the body's axis representing the angles of the rigid body's rotation

from an inertial axis or reference frame to a new reference frame. This rotation in

three dimensions will be described later in this section. First, to obtain a better grasp

of rotations, a discussion on rotation and angle representation in two dimensions.

In two dimensions, rotating a vector by some angle is represented by the matrix

operation

ai =

[
cos θ − sin θ

sin θ cos θ

]
ab (1.3.5)

This is easily represented by rotating two vectors and observing the behavior of the

equations. The �rst vector on the x-axis, represented by the vector a, and the other

on the y-axis represented by the vector b.



b

a


yi
yb

xb

xi

Figure 1.3-1: Visualization of a Two dimensional Rotation of a Vector



11

It is apparent that the following two equations represent the rotations of each

respective vector from one frame to the other.[
axi

ayi

]
=
[
R
] [axb
ayb

]

=

[
cos θ − sin θ

sin θ cos θ

][
axb

0

]
(1.3.6)

[
bxi

byi

]
=
[
R
] [bxb
byb

]

=

[
cos θ − sin θ

sin θ cos θ

][
0

byb

]
(1.3.7)

This example displays the rotation of an independent component of each vector.

Taking the respective independent components from equations (1.3.6) and (1.3.7),

a new composited vector is formulated, vector cb = [ axb byb ]T . The components of

this vector represent the two previous vectors, ab and bb. One can then rotate a

complete vector from the body frame, b, to inertial frame, i, by simply adding the

two equations.

ci = ai + bi

= [R] ab + [R] bb

=

[
cos θ − sin θ

sin θ cos θ

][
axb

0

]
+

[
cos θ − sin θ

sin θ cos θ

][
0

byb

]

=

[
cos θ − sin θ

sin θ cos θ

]([
axb

0

]
+

[
0

byb

])

=

[
cos θ − sin θ

sin θ cos θ

][
axb

byb

]
= [R] cb

This displays the transition of a vector from the body frame, b, to the inertial frame, i.

The inverse of this rotation matrix R−1 is used to transition in the reverse direction.
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This inverse matrix also represents a rotation through −θ. This is derives from the

fact that this is a skew-symmetric matrix.

In order to rotate a point between the body to inertial frames, the inverse is also

used. [
axi

byi

]
=

[
cos θ sin θ

− sin θ cos θ

][
axb

byb

]
(1.3.8)

The actual reference frame is in rotation instead of the vector. This represents a

rotation, relative from the point, through −θ though the actual rotation is through

θ. For more details on the distinction, please refer to [11].

Representing rotations in three dimensions, as stated earlier, is represented by a

certain sequence of rotations about each axis. The only sequence of interest is the

aerospace rotation sequence. For a more detailed study or other sequences, please

refer to [11]. The aerospace rotation sequence involves a rotation about the z-axis

called the yaw, ψ. Then a rotation about the y-axis called the pitch, θ. Then a �nal

rotation about the x-axis called the roll, φ. To formulate the rotation matrix, each

angle is represented in two dimensions and then multiplied together to formulate a

�nal and complete rotation matrix. The respective locations within the matrices are

[R] =

1 0 0

0 cosφ sinφ

0 − sinφ cosφ


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ


 cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (1.3.9)

Details of expanding this equation are found in [3] and [32]. The resulting expanded

equation, (1.3.18), is part of the discussion in the next section.

1.3.3 Explanation of Quaternions

These next few sections provide a quick overview of quaternions, their current uses

in simulation and control, and reasons for their use. Modern rotational control uses

quaternions for rotations over the older de-facto use of Euler or Tait-Bryan angles

for a few reasons. The signi�cance advantage is a 40% increase in computationally

e�ciency.[16] These details and advantages are described throughout these next few

sections.
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Another important advantage are quaternions have no singularities causing gim-

bol lock. In Euler rotations, because of the sinusoidal functions, singularities exists

in the azimuth directions. In these problematic areas, more computational code is re-

quired to avoid gimbal locking. Quaternions are singularity free. For a more detailed

discussion, please refer to the referenced book [11] or similar books.

Quaternions were introduced byWilliam Hamilton in 1843 to exploit the rotational

results in the multiplication properties of complex numbers in three dimensions. To

display the rotational properties of complex numbers, commence with the well known

Euler's Formula

eiθ = cos(θ) + i sin(θ)

= (cos(θ), sin(θ))

The product of two unit complex numbers results in an addition of the angle.

eiθeiα = ei(θ+α) (1.3.10)

This property is part of Euler's Identity and Formula. The multiplication of a unit

complex conjugate results in the subtraction of the represented angle.

To portray the rotational properties of complex numbers, take the complex num-

bers,
(√

3/2, 1/2
)
and (0, 1). According to Euler's equation, these represent an angle

of π/3 and π/2 radians or 60 and 90 degrees respectively. Taking the product of these

two complex numbers provides(√
3

2
+

1

2
i

)
(i) = −1

2
+

√
3

2

which is the initial complex number rotated by π/2 or 90 degrees, resulting in a

�nal rotation of 5π/6 or 150 degrees. This can quickly be checked by using equation

(1.3.10). This displays that in order to satisfy a desired rotation angle, a complex

number that represents half of that angle is to be used.

One can already see the advantage of complex numbers over the previous two

dimensional rotation matrix. There are no evaluations of sinusoidal functions, there

is only simple multiplications and additions. In simulations and control, the numerical

savings are extraordinary.
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Quaternions will now be extrapolated from this example, but �rst, a quick overview

of the construction of a quaternion. Quaternions are comprised of two components

like complex number. A scalar component and an imaginary component. For quater-

nions, there are three imaginary components represented by the vector q. The nota-

tion of subscript numbers vary throughout the texts, but the overall standard seems

to allow q0 represent the scalar component with q1, q2, and q3 representing the vector

components. The vector component is represented with components of i, j, and k

respectively where

i2 = j2 = k2 = i j k = −1

Using the notation above, the quaternion is constructed as follows.

q =


q0

q1

q2

q3

 =


q0

q

 (1.3.11)

Relating it to Euler's equations,

q = cos(θ/2) + e sin(θ/2) (1.3.12)

where e is the unit Euler axis vector. The Euler axis is de�ned as the axis in which

the rotation occurs.

Letting two quaternions, for instance p and a, represent two di�erent orientations,

the product of quaternions is

q =

[
q0

q

]
=

[
p0a0 − p · a

p0a + a0p + p× a

]
(1.3.13)

This equation is a simpli�cation of expanding the multiplication of the four terms

of the two quaternions. Notice that, because of the cross product, the quaternion

product is non-commutative, meaning

p a 6= a p

when p and a are quaternions.
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When using quaternions for rotational dynamics, the importance of the quaternion

be unit ensures that the rotations do not introduce errors into the resulting quantity.

The constraint for the unit quaternion is

q2
0 + q2

1 + q2
2 + q2

3 = q2
0 + qTq = 1 (1.3.14)

Equation 1.3.14 is used in the next section to ensure unity in numerical simulations.

Another important de�nition for quaternions is the conjugate. The conjugate

provides a means for �nding angles between quaternions. The conjugate of q is

represented as q∗ and is de�ned as

q = q0 + q

q∗ = q0 − q (1.3.15)

Examples of quaternions in simulations are also used are in references [26, 32]

for aircraft, and [14, 18, 29] for spacecraft. More details on quaternions are always

available in reference [11] or similar books. The next two sections provide more detail

in an overview fashion for two of the main aspects of quaternions in simulations. The

�rst is rotations with quaternions and the second is the quaternion derivative.

1.3.4 Rotations with Unit Quaternions

The whole purpose of quaternions, in this thesis, is to represent rotations. There

are many advantages to using quaternions for rotations. The main purpose of using

quaternions over the cosine rotational matrix is the computational gains in simulations

and controllers. According to [16], the number of multiplications is reduced by 15

and additions reduced by 4. This is a signi�cant decrease, reducing the computation

requirements by 40%. Another reason is the removal of singularities causing gimbal

lock and the ability to smoothly control rotations.

Before a detailed discussion on rotating vectors in three dimensions, �rst look at

a simple rotation about a two dimensional axis. In this example, the desired angle

is between the inertial axis and body axis of the aircraft, de�ned as the pitch of the

aircraft. From the instruments on the aircraft, the only two known axises are the

one the aircraft is moving about, the wind axis, and the axis in the global frame,

the inertial axis. The inertial to wind axis is represented by ψ and the wind to body
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is represented by α, or the angle of attack. All of these rotations are about the j

Eulerian axis. This problem can be simpli�ed to the basic complex equations covered

earlier in this section, but to display quaternions, the full quaternions are used. In

order to develop the rotational quaternion for the body axis, we will do a quaternion

multiplication on the inertial to wind axis

qα = a =


cos (α/2)

0

sin (α/2)

0


and angle of attack

qψ = q =


cos (ψ/2)

0

sin (ψ/2)

0


to obtain the resulting quaternion representing the pitch of the aircraft.

qψ = p = q a =

[
p0

p

]
=

[
q0a0 − q · a

q0a + a0q + q× a

]
(1.3.16)

This explains how to �nd the quaternion representing the summation of two angles

using quaternions. In order to �nd the quaternion representing the di�erence between

two angles, say the inertial to wind and inertial to body, the conjugate is used.

a = p q∗ (1.3.17)

The resulting quaternion represents the angle of attack. This is enough quaternion

review to �nd the quaternion representing angles between two quaternion.

Now an example to derive rotations using quaternions. This is useful for when an

object has a certain trajectory, and a vector is always expressed in another frame. One

obvious instance is the weight of an object. This is always expressed in the inertial

frame, but components in the body frame are more useful for control and simulation

purposes. Starting with a forcing vector, f , provided in the inertial frame, ending with

the desired e�ects concerning the dynamics the body frame. The standard method of
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rotating vectors is to use the cosine rotation method. This method involves numerous

computationally expensive sinusoidal functions.

fi =

 CθCψ CθSψ −Sθ
−CφSψ + SφSθCψ CφCψ + SφSθSψ SφCθ

SφSψ + CφSθCψ −SφCψ + CφSθSψ CφCθ

 fb (1.3.18)

The shorthand notation of Cθ represents cos(θ) and Sθ represents sin(θ) and so on for

the other angles. The quaternion rotation does not contain these sorts of functions.

In order to formulate the quaternion equivalent of the above matrix, a quaternion

representing each rotation angle is multiplied together in the correct sequence order.

The quaternions are represented as

qroll =


cos (φ/2)

sin (φ/2)

0

0

 , qpitch =


cos (θ/2)

0

sin (θ/2)

0

 , qyaw =


cos (ψ/2)

0

0

sin (ψ/2)

 (1.3.19)

These show the relationship between Euler angles and quaternions, but not the rela-

tionship between the �nal quaternion and the Euler angle. This relationship is found

by setting the resulting quaternion matrix equal to the cosine rotation matrix, equa-

tion (1.3.18) to the quaternion rotation matrix, equation (1.3.20) and solving for each

respective component. The results and derivations are in [11] as well as additional

relationships.

The respective rotation matrix for quaternions is

fi =

1− 2(q2
2 + q2

3) 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) 1− 2(q2
1 + q2

3) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) 1− 2(q2
1 + q2

2)

 fb (1.3.20)

This rotation matrix is orthogonal. The above matrix is also mathematically repre-

sented in sesquilinear form as

fi = qfbq
∗

= (q0 + q) fb (q0 − q)

=
(
2q2

0 − 1
)

fb + 2 (fb · q) q + 2q0 (fb × q)

(1.3.21)
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Equation (1.3.21) is derived in [11, 16] or almost any other document containing

a detailed discussion of quaternions. If the �nal portion of (1.3.21) is expanded,

equation (1.3.20) is uncovered. The resulting fi vector set equal to the fi in the cosine

rotation matrix from equation (1.3.18). After solving for the respective components,

the matrix in (1.3.20) is uncovered.

1.3.5 The Derivative of a Quaternion

The derivative is important when simulating rotations, control, and other kinematics.

This section will not go through the quaternion derivative derivation, but simply

provide the relevant results. Please see the reference [11] or a similar reference on

deriving this equation.
q̇0

q̇1

q̇2

q̇3

 =
1

2


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx

ωz ωy −ωx 0



q0

q1

q2

q3

 (1.3.22)

In a condensed form, equation (1.3.22) simpli�es to[
q̇0

q̇

]
=

[
0 −ωT

ω ω×

][
q0

q

]
(1.3.23)

This is a skew-symmetric matrix.

It is important to note that during numerical calculations, such as simulations, the

inherent nature of approximating these non-linear equations will introduce error into

the system. In order to satisfy q be unit, a couple methods can be used. Letting the

original calculated quaternion calculated above be represented by qorig, either of the

following methods enforce the quaternion to be unit. These methods are not required

for short simulations or high order numerical methods. These corrections will only

add unneeded computations, but their discussion here is for completeness.

One method scales the components to unity. This method and more detail can

be found in [20] as well as some more advanced topics in quaternions. Taking the
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de�nition of the unit quaternion, equation (1.3.14), and di�erentiating with respect

to time

δq = q0q̇0 + q1q̇1 + q2q̇2 + q3q̇3 (1.3.24a)

If the quaternion is unit, then δq is zero. This scalar is then multiplied by the quater-

nion to drive the quaternion back to unity.

q̇0 = q̇0orig − δq q0 (1.3.25a)

q̇1 = q̇1orig − δq q1 (1.3.25b)

q̇2 = q̇2orig − δq q2 (1.3.25c)

q̇3 = q̇3orig − δq q3 (1.3.25d)

Representing this in a more basic form

q̇ =
1

2
Ωq − δqq (1.3.26)

An additional method described in [32] uses a proportional gain to drive the

equation to unity.

q̇ =
1

2
Ωq + kλ (1.3.27)

The gain is de�ned as

λ = 1− ‖q‖2 (1.3.28)

with limits of

λ∆t < 1 (1.3.29)

Both methods will drive the quaternion back to unity and reduce error. In smaller

high order simulations, the error is negligible and these correction factors are not

required.



Chapter 2

Modeling an Aircraft

Creating a model is abstracting a system in such a way that the results provided

from this model describe the system. Modeling is to understand and describe the

underlying phenomena driving or controlling the system in such a way that the results

adequately represent the actual system. Depending on the required �nal information,

the details, or �delity, in a model can signi�cantly vary. The more detailed and

accurate the model, the more information one can obtain from the model. The

trade o� of an accurate model usually results in an increase in the computational

requirements. The details of a model should be su�cient to make conclusions about

the underlying phenomena or to merit further investigations into the model.

Modeling a system is a cost e�ective means to test and predict performance char-

acteristics. It saves time on building a prototype that might fail or a controller that

might be unstable. With a model, the unforeseen failures or instabilities are typ-

ically uncovered. Models provide an overview of the entire system, so when these

unforeseen events do surface, they are easily identi�ed and a resolution removing or

avoiding these events can be quickly established without the risk of damage or lose

of resources.

There are various methods to create and test a model. Mathematically, most

methods take a set of di�erential equations representing the model and integrated

these over time. There are some programs that abstract the creation of these equa-

tions like Simulink, FlowDesigner or Scicos.

This thesis uses a fundamental model of an aircraft to test if a control algorithm

is able to drive a formation of aircraft as a rigid formation. The purpose of this model

is to merit further investigation into the model. It attempts to validate the algorithm

20
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described in section 3 on a simple model of an aircraft using Matlab's ode45 function.

This function is a Runge-Kutta fourth order ordinary di�erential equations solver.

These sections will derive the models to run the simulation. This includes an air

model, a complete six degrees-of-freedom aircraft model, and an aerodynamic model.

The �rst model derived is the kinematic model describing the dynamics of an aircraft.

Then the subsystem models to accompany this model are derived. The details of these

subsystem models will provide more accurate results in the simulations and only basic

models are used to provide an example of the feedback.

2.1 Complete Dynamical Model

This section derives the kinematic model for each individual aircraft. There are thir-

teen state variables for each aircraft. Three for the position, translational velocities,

and angular velocities while there are four states for the quaternion representing the

rotation. The equations derived in the subsequent sections are in the body axis. The

other important axis for aircraft is the wind axis and the transformation between

these two axis is fairly trivial. The de�nition of the wind axis is the axis in which the

total velocity component is along the x-axis.

In the wind axis, the variables of interest are the total velocity, VT , the sideslip

angle, β, and the angle of attack, α. The sideslip angle is the angle in which the

aircraft is �ying sideways An angle of ninety degrees means the aircraft's right wing is

�ying completely sideways and negative ninety is when the left wing is �ying sideways.

The angle of attack is the di�erence between the pitch of the aircraft and the velocity

component projected onto the xz-plane. These values are de�ned as

VT = u2
B + v2

B + w2
B (2.1.1a)

β = sin−1

(
u

VT

)
(2.1.1b)

α = tan−1
(w
u

)
(2.1.1c)

The variables of interest in the body axis are the components of the velocity vector.

The two axises are related by a rotation matrix between the two axises. Most of

the aerodynamic characteristics derived are a function of the two angles. Because of



22

this, it is not practical to develop a quaternion representation, despite the quaternion's

bene�ts. The standard rotation matrices are

[Rb→w] =

 cos(α) 0 sin(α)

0 1 0

− sin(α) 0 cos(α)


 cos(β) sin(β) 0

− sin(β) cos(β) 0

0 0 1

 (2.1.2)

resulting in a �nal matrix of

[Rb→w] =

 cos(α) cos(β) sin(β) sin(α) cos(β)

− cos(α) sin(β) cos(β) − sin(α) sin(β)

− sin(α) 0 cos(α)

 (2.1.3)

This matrix is an orthogonal matrix. The following relationship relates the body and

wind axises.uBvB
wB

 =

 cos(α) cos(β) sin(β) sin(α) cos(β)

− cos(α) sin(β) cos(β) − sin(α) sin(β)

− sin(α) 0 cos(α)


−1 VT0

0



=

cos(α) cos(β) − cos(α) sin(β) − sin(α)

sin(β) cos(β) 0

sin(α) cos(β) − sin(α) sin(β) cos(α)


VT0

0


(2.1.4)

This equation simpli�es to these relationships.

uB = VT cos(β) cos(α) (2.1.5a)

vB = VT sin(β) (2.1.5b)

wB = VT cos(β) sin(α) (2.1.5c)

In simulations, the change of a quantity over time is more useful. So, taking the

time derivative and the de�nition of each component, one �nds equations suitable
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for modeling. These equations are only useful when modeling in the body reference

frame.

V̇T =
uBu̇B + vB v̇B + wBẇB

VT
(2.1.6a)

β̇ =
v̇BVT − vBV̇T
V 2
T cos(β)

(2.1.6b)

α̇ =
ẇBuB − wBu̇B
u2
B + w2

B

(2.1.6c)

Equation (2.1.6a) is a direct di�erentiation of equation 2.1.1a. Equation (2.1.6b),

di�erentiate equation (2.1.5b) and then substitute equation (2.1.5b) back into the

di�erentiated equation to obtain the �nal solution. Equation (2.1.6c) is di�erentiated

directly from equation (2.1.1c) and requires some simpli�cation.

In the simulations provided later, these equations are only used for post processing

purposes. The next �ve sections derive and explain the dynamic model used. These

equations describe the motion of the aircraft through time.

2.1.1 Modeling the Aircraft's Position

The position of the aircraft is calculated by taking the rotation matrix and applying

it to the velocity vector, and integrating over time.

ṙ = [QOi] v (2.1.7)

in doing so, it expands toẋearthẏearth

żearth

 =

1− 2(q2
2 + q2

3) 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) 1− 2(q2
1 + q2

3) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) 1− 2(q2
1 + q2

2)


uBvB
wB

 (2.1.8)

and expands even further to

ẋearth = (1− 2(q2
2 + q2

3))uB + 2(q1q2 − q0q3)vB + 2(q1q3 + q0q2)wB (2.1.9a)

ẏearth = 2(q1q2 + q0q3)uB + (1− 2(q2
1 + q2

3))vB + 2(q2q3 − q0q1)wB (2.1.9b)

żearth = 2(q1q3 − q0q2)uB + 2(q2q3 + q0q1)vB + (1− 2(q2
1 + q2

2))wB (2.1.9c)
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However, to make use of the quaternions, it is more e�cient to represent the

quaternion rotation as:

ṙ = qvq∗ (2.1.10)

where

q = q0 + q (2.1.11)

and q∗ is the conjugate of q

q∗ = q0 − q (2.1.12)

However, the notation in (2.1.8) is used throughout the remainder of this thesis to

represent these rotations.

2.1.2 Modeling Acceleration Using Newton's Equations

This section derives the acceleration components of the model in the body frame.

This controls the motion of the aircraft. Starting with Newton's Equation within a

rotating frame

F =
d

dt
(mv)

]
B

+ ω ×mv (2.1.13)

The mass is constant and solving for acceleration, v̇

V̇ = ω × v +
F

m
(2.1.14)

Letting

v =
[
u v w

]T
(2.1.15)

ω =
[
ωx ωy ωz

]T
(2.1.16)

equation (2.1.14) expands to

u̇B = ωr,BvB − ωy,BwB +
Fx
m

(2.1.17a)

v̇B = ωx,BwB − ωr,BuB +
Fy
m

(2.1.17b)

ẇB = ωy,BuB − ωx,BvB +
Fz
m

(2.1.17c)



25

These equations are able to model most bodies in motion. In order for these to model

an aircraft, the forces need to be those similar to an aircraft.

There are three main forces acting on the aircraft. These forces are the thrust,

weight and aerodynamic forces each represented respectively by T, W and R.

F = T + W + R (2.1.18)

Each of the forces above might be dependent on additional states of the aircraft. For

instance, if the thrust is modeled as a propeller based thrust, it could be a function

of the aircrafts velocity. For the thrust, the only assumptions are that the force only

acts in the x-axis direction. Thus, the thrust can be modeled as

T =

FT0
0

 (2.1.19)

where FT represents the thrust from the engine model,

The aerodynamic forces are related to the coe�cients by the dynamic pressure

and the surface area of the wing.

R =

X̄Ȳ
Z̄

 = q̄S

CXtotCYtot

CZtot

 = q̄SC̄ (2.1.20)

The coe�cients, CXtot , CYtot and CZtot , are the total aerodynamic coe�cients in the

body axis and are a function of the control surfaces, angle of attack and sideslip

angle. It will be assumed the only active control a�ecting the aircraft are the �aps,

which provide control by increasing the lift and drag. All other controls control the

aircraft by apply a moment on the aircraft. These controls have indirect e�ects on

these coe�cients.

The only remaining force is the weight of the aircraft. This is dependent on

the gravity model used, G. The model used here is a constant model, where g =

−9.81 m/s2. The gravity is always in the z-axis direction in the inertial frame, but
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the equations are derived in the body axis. A rotation between these two axises is

required.

W =
[
QOi

]
mG =

[
QOi

] 0

0

mg



=

1− 2(q2
2 + q2

3) 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) 1− 2(q2
1 + q2

3) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) 1− 2(q2
1 + q2

2)


 0

0

mg



=

2(q1q3 − q0q2)

2(q2q3 + q0q1)

1− 2(q2
1 + q2

2)

mg (2.1.21)

Equation (2.1.21) represents the weight in the body frame.

Substituting equations (2.1.19), (2.1.20), and (2.1.21) into equation (2.1.17) results

in �nal equations representing the accelerations of an aircraft.

u̇B = ωr,BvB − ωy,BwB +
X̄ + FT
m

+ 2(q1q3 − q0q2)g +
q̄S

m
CXtot (2.1.22a)

v̇B = ωx,BwB − ωr,BuB +
Ȳ

m
+ 2(q2q3 + q0q1)g +

q̄S

m
CYtot (2.1.22b)

ẇB = ωy,BuB − ωx,BvB +
Z̄

m
+ (1− 2(q2

1 + q2
2))g +

q̄S

m
CZtot (2.1.22c)

These equations in matrix form are

v̇ =
[
ω×
]
v + [QOi] G +

q̄S

m
C̄ +

E

m
(2.1.23)

This is the �nal equation representing the aircraft's motion.

2.1.3 Angular Velocity with Quaternions

When using quaternions, the quaternion derivative is required to monitor the attitude

over time. The derivation for the quaternion used here for kinematics can be found
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on page 124 of [32] and on page 264 of [11]. There is a discussion in section 1.3.5

covering more details of this equation. The quaternion derivative is
q̇0

q̇1

q̇2

q̇3

 =
1

2


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx

ωz ωy −ωx 0



q0

q1

q2

q3

 (2.1.24)

and in expanded form

q̇0 = 1/2 (−ωx,Bq1 − ωy,Bq2 − ωr,Bq3) (2.1.25a)

q̇1 = 1/2 ( ωx,Bq0 + ωr,Bq2 − ωy,Bq3) (2.1.25b)

q̇2 = 1/2 ( ωy,Bq0 − ωr,Bq1 + ωx,Bq3) (2.1.25c)

q̇3 = 1/2 ( ωr,Bq0 + ωy,Bq1 − ωx,Bq2) (2.1.25d)

The quaternion derivative is represented as

q̇ =
1

2
Ωq (2.1.26)

in basic matrix form.

The simulations presented in this thesis are short. This coupled with the use of

the Runge-Kutta forth order approximation, the numerical correction terms will not

increase the accuracy of the simulation, but only increase the required computations

to obtain the �nal result. A more detailed discussion of this is found in reference [16].

The simulations written in Matlab and Simulink, by default, use Matlab's ode45

function for numerical integrations, which is a modi�ed Runge-Kutta fourth order

ordinary di�erential equations solver.

2.1.4 Angular Accelerations Using Euler's Equations

There is only one more step to go in developing the kinematic equations. This �nal

step will develop the angular rates using Euler's Equation. It starts with the de�nition

of momentum with simpli�cations are made to develop the �nal equations.
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Euler's rotational equation is used to describe the rotational dynamics of a rigid

body. Euler's equation in matrix form is

l̇ + ω × l = m

d

dt
(Jω) + ω × (Jω) = m

Jω̇ + ω × (Jω) = m

The equation above assumes that the moment of inertia, J is aligned with the principle

axis.

The �nal equation, after solving for the angular accelerations, is

ω̇ = J−1 (−ω × J ω + m) (2.1.27)

The equation in basic matrix form is

ω̇ = J−1
(
−
[
ω×
]

J ω + m
)

(2.1.28)

Now that the equations for rotations are established, they have to represent an air-

craft. The only moments acting on the aircraft are due to the aerodynamic moments

and control surfaces. LM
N

 =

 L̄M̄
N̄

 (2.1.29)

These moments are the main controls of the aircraft The aerodynamic moments are

L̄ = q̄SbCltot (2.1.30a)

M̄ = q̄Sc̄Cmtot (2.1.30b)

N̄ = q̄SbCntot (2.1.30c)

It is important to model these as accurately as possible. These terms play a large roll

in determining the �delity of a model.
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An aircraft is symmetric about the xz-plane, simplifying the inertial matrix to

J =

Jxx Jxy Jxz

Jxy Jyy Jyz

Jxz Jyz Jzz

 =

Jxx 0 Jxz

0 Jyy 0

Jxz 0 Jzz



In order to obtain equations optimized for simulation, Euler's equation needs to

expanded. In expanded matrix form

ω̇xω̇y
ω̇z

 =


Jxx 0 Jxz

0 Jyy 0

Jxz 0 Jzz



−1

(2.1.31)

−
 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0



Jxx 0 Jxz

0 Jyy 0

Jxz 0 Jzz


ωxωy
ωz

+

lR0
0


+

LM
N




The term lR represents the internal moments. In this case, the only component used

is the torque from the engine. The �nal model makes the assumption that the engine

torque is negligible, but is left in this derivation to be complete. The equation then

expands into these three equations

ω̇x =
1

JxxJzz − J2
xz

(((
JyyJzz − I2

zz − I2
xz

)
ωz − Jxz (Jzz + Jxx − Jyy)ωx − JxzlR

)
ωy

+JzzL− JxzN) (2.1.32a)

ω̇y =
1

Jyy

(
((Jzz − Jxx)ωx − lR)ωz + Jxz

(
ω2
x − ω2

z

)
+M

)
(2.1.32b)

ω̇z =
1

JxxJzz − J2
xz

(((
−JxxJyy + J2

xx + J2
xz

)
ωx + Jxz (JzzJxx − Jyy)ωz + JxxlR

)
ωy

+JxxN − JxzL) (2.1.32c)

In these equations, there are many redundant multiplications. To simplify this further

for computational purposes, let

Γ = JxxJzz − J2
xz (2.1.33)
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Simplifying calculation save time and have the additional bene�t to limit errors in

transcribing into some programming languages. Continuing in this manner, de�ne

the following coe�cients as

C1 =
(Jyy − Jzz)Jzz − JxzJxz

Γ
C6 =

Jxz
Jyy

C2 =
(Jxx − Jyy + Jzz)Jxz

Γ
C7 =

1

Jyy

C3 =
Jzz
Γ

C8 =
Jxx(Jxx − Jyy) + J2

xz

Γ

C4 =
Jxz
Γ

C9 =
Jxx
Γ

C5 =
Jzz − Jxx

Jyy

Using these coe�cients, equations (2.1.32) now becomes

ω̇x,B = (C1ωr,B + C2ωx,B)ωy,B + C3L̄+ C4N̄ (2.1.34a)

ω̇y,B = C5ωx,Bωr,B − C6(ω2
x,B − ω2

r,B) + C7M̄ (2.1.34b)

ω̇r,B = (C8ωx,B − C2ωr,B)ωy,B + C4L̄+ C9N̄ (2.1.34c)

This equation is far easier to debug and write in code than the original.

For lower level code, equation (2.1.34) is recommended. Matlab handles matrix

well, so equation (2.1.28) is used for the simulations in this thesis.

2.1.5 Summary of Complete Kinematic Model

The complete dynamical model is provided by the equations (2.1.8), (2.1.14), (2.1.26),

and (2.1.28). In a vector and basic matrix form, these equations represent the air-

craft's dynamics. This system is represented by the di�erential set of equations
ṙ

v̇

q̇

ω̇

 =


[QOi] v

[ω×] v + [QOi] G + q̄S
m

C̄ + E
m

1
2
Ω q

J−1 (− [ω×] J ω + m)

 (2.1.35)
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This system is open; therefore, it is not controlled. A control method should be

developed to control the aircraft to a desired state. The closed loop controls are

developed inside the aircraft's moments, m, and the thrust model, E.

2.2 Modeling the Atmosphere with ISA

The atmosphere we live in is not consistent nor constant. It changes with location,

time of year and altitude. Even these changes are not constant nor consistent. An

accepted model resulted in modeling the atmosphere in layers. There are many layers

in our atmosphere due to the various elements present. Institutes spend large amounts

of resources in developing detailed models of our atmosphere. In order to correctly

obtain aerodynamic information, a decent model of the atmosphere is required.

The International Standard Atmosphere (ISA) model is de�ned in [13] and a

summary is presented here. This model provides acceptable accuracy for modeling

an aircraft.

The atmospheric model used will be limited to h ≤ 11000 m, which is the end of

the lowest layer. This model is de�ned by the following equations

T = T0 − 0.0065h (2.2.1a)

ρ = ρ0 exp

(
−g h
RT

)
(2.2.1b)

a =
√
γ RT (2.2.1c)

(2.2.1d)

where T0 = 288.15 K, R = 287.05 J/kg K, ρ0 = 1.225 kg/m3, and γ = 1.4.

2.3 Simple Model of Aircraft Aerodynamics

An aerodynamic model of an aircraft de�nes the aerodynamic forces to model the

actual performance of an aircraft. This section does not cover details of aerodynamic

aircraft design, but restates some of the basic concepts that provide su�cient results.

This discussion includes some fundamental characteristics that go into an aircraft

model.
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Most aerodynamic data is based on the Summary of Airfoil Data Report described

by source [1] with additional details regarding the entire aircraft from sources [14,

15, 19]. This section formulates the coe�cients in the wind axis' reference frame and

transforms these into the body's reference frame. Throughout this section, a trimmed

aircraft in steady level �ight will remain in steady level �ight. The only moments or

forces modeled are applied to the to force the aircraft out of its trimmed state.

The forces and moments of an aircraft are modeled by unit-less coe�cients. Co-

e�cients are typically in the form of

CL = CL0 + CLαα + CLββ + CLδf δf + CLδeδe + ... (2.3.1)

where CL0 is the coe�cient of lift at zero angle of attack and no de�ections. The other

terms, in the form CLχ , are the derivatives of CL with respect to χ. The constant CLα
is the change in lift with respect to α. Some of these functions can become complex in

more detailed models, where the coe�cients become functions of multiple variables.

The coe�cient of lift, for example, is de�ned as

CL =
L

qS

where L is the lift, q is the dynamic pressure, and S is the reference surface area. The

lift of an aircraft is not constant, it is dependent on many factors. One factor that

e�ects lift the most is the angle of attack. This changes the basic coe�cient of lift to

be de�ned as

CL = CL0 + CLαα (2.3.2)

where CL0 is the coe�cient of lift at zero angle of attack and no de�ections. Assuming

the aircraft does not travel close to the speed of sound, the change of the coe�cient

with respect to the angle of attack is

CLα =
2π√

1−M2
(2.3.3)

where ρ and a are from the ISA air model in section 2.2. [1]
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The aircraft is �ying in a trimmed state, so the lift produced by an aircraft should

be equal to the weight component of the aircraft in steady �ight. With no angle of

attack, solving the summation of x in the body axis,

0 = CL0qS +mg cos(θ) (2.3.4)

to obtain a CL0 equal to

CL0 =
−mg cos(θ)

qS
(2.3.5)

This is the aircraft's trimmed CL0 . Therefore, the entire CL is

CL = −mg cos(θ)

qS
+

2π√
1−M2

α (2.3.6)

There is another major forcing component to the aircraft's aerodynamics. The

drag force is represented by the coe�cient of drag. The force will be modeled as a

basic drag polar system de�ned as

CL = CL0 + CLαα

CD = CD0 +KC2
L (2.3.7)

where K and CD0 are speci�c to the model.

The dynamics are simulated in the body axis and the aerodynamic forces are

de�ned in the wind axis. In order to use the dynamics equations derived in section

4.1.2, a simple transformation from the wind axis to the body axis is required. The

forces in the y-axis are negligible compared to the lift and drag forces, so its calculation

is left out. Letting the new coe�cients represented as CX , CY and CZ , the rotation

transformation is CXCY
CZ

 = [QR,α,β]

CD0
CL

 (2.3.8)

where QR,α,β is a quaternion rotation matrix, equation (1.3.20) derived in section

1.3.3, rotating through the angle of attack, α, and the sideslip angle, β.

Equation (2.3.8) represents the coe�cients in Newton's Equations, but there are

still four more unknown variables. Three of these are the coe�cients representing the

moment and the last unknown is thrust. The moment coe�cients are represented
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similar to the forcing ones, but contain an additional term. For the pitching moment,

the mean chord of the wing is used to remove the additional term while the span of

the wing is used in the yawing and roll coe�cients.

Cl =
L

q S b
, Cm =

M

q S c̄
, Cn =

N

q S b

The reason for this change is due to the change in references for the moment. On

the x-axis and z-axis, the predominant moments are e�ected by the span of the wing,

while in the y-axis, going down the span of the wing, the predominate moment is

along the chord. The moment coe�cients presented are generic and actual equations

can be far more complex, depending on how detailed the model is required.

For instance, the roll coe�cient, Cl, is dependent on many factors, such as the

span of the wing, the position of the �aps on the wing, aspect ratio, rudder position,

size and many other characteristics. For brevity, these moments will be reduced to a

function of the controlling moments and the angles between the body and wind axis.

For example, the equation to �nd the pitching moment coe�cient is

Cm = Cm0 + Cmeδe + Cmαα (2.3.9)

where Cme and Cme are the e�ects of how the elevator de�ection and angle of attack

e�ect the moment coe�cient, or the derivative of Cm with respect to δe or α. The

aircraft is trimmed, so when there are no perturbations to this level �ight, Cm = 0.

In assigning controls and developing a controller for an aircraft, it is important

to note that an aircraft does not turn solely by using the rudder. The rudder itself

produces very little moment and will reduce the aircraft's performance if it is not used

properly. An aircraft turns by controlling the lift coupling adverse moments with the

rudder and elevator. From these principles, one can develop the remaining moment

coe�cients, leaving the only remaining aerodynamic subsystem to model, the thrust.

There are many models representing di�erent kinds of thrust. There are models

for di�erent propellers or jets. For simplicity, the thrust can be represented by a

simple linear model as

FT = Tmin + Tδtδt (2.3.10)

where Tmin is the minimum thrust and Tδt is the change in thrust to the throttle's

position. The maximum drag will de�ne the maximum value of thrust, the value
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of Tδt . For most models, this will occur at the highest altitude and fastest speed.

Allowing the thrust to be greater then this provides an ability to be maneuverable at

this altitude.



Chapter 3

Feedback and Control of the

Formation

This chapter describes a method to formulate a formation from a group of agents.

As stated before, a virtual structure method is implemented. Due to changes in the

virtual formation, the agents will fall out of formation. The solution to this problem is

using feedback from the agents deviation in the formation, a method called formation

feedback. The agents are modeled as aircraft, so some changes to the generic model

are required.

This chapter describes the formation feedback, �rst by describing the dynamics

of the formation. Then the dynamics of the individual aircrafts inside the formation

in the next section. The last section applies feedback from the formation.

3.1 Dynamics of the Formation

The dynamics of the formation described here in are basic, requiring before hand

knowledge of the formation's dynamics in order to prevent failures of the agents. If

the formation stops and is not rotating, there is no method to keep the aircraft in

�ight. Possible methods to could be an energy conservation; however, this is not in

the scope of this thesis.

36
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The formation is modeled as a rigid body. Letting the states of the formation be

represented by the following state variables:

XF =
[

rF vF qF ωF ξF ξ̇F

]T
where ξ is the expansion and contraction portion of the formation. This expansion

and contraction can change the aperture of the formation. The dynamics of the

formation are 

ṙF

v̇F
˙̄qF

q̇F

ω̇F

ξ̇F

ξ̈F


=



vF

FF/MF

−1
2
ωF · qF

−1
2
ωF × qF + 1

2
q̄ωF

J−1 (−ωF × JωF + mF )

ξ̇F

νF


(3.1.1)

The terms vF , mF , and νF are respectively the virtual force, moment and scaling

controls of the virtual structure. The variables MF and JF are the virtual mass and

inertia of the virtual structure.[18]

For the simulations, the virtual mass and inertia will be of unit length. A simple

PD controller forces the system to its desired states. The following equations are used

for the virtual force, moment and scaling components above to close the loop

FF = v̇dF −Kr

(
rF − rdF

)
−Kv

(
vF − vdF

)
mF = ω̇dF + Kqqe −Kω

(
ωF − ωdF

)
νF = ξ̈

d

F −Kξ

(
ξF − ξdF

)
−Kξ̇

(
ξ̇f − ξ̇

d

F

) (3.1.2)

Equation 3.1.2 successfully drives the formation to the desired states. The gain ma-

trices represented by K are positive semi-de�nite. For simplicity, these gains are the

product of the gain and the identity matrix.
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Substituting the equations in (3.1.2) into equation (3.1.1), the closed loop dynam-

ical equations for the virtual structure are

ẊF =



ṙF

v̇F
˙̄qF

q̇F

ω̇F

ξ̇F

ξ̈F


=



vF

v̇dF −Kr

(
rF − rdF

)
−Kv

(
vF − vdF

)
− 1/2ωF · qF

− 1/2ωF × qF + 1/2 q̄FωF

ω̇dF + Kqqe −Kω

(
ωF − ωdF

)
ξ̇F

ξ̈
d

F −Kξ

(
ξF − ξdF

)
−Kξ̇

(
ξ̇f − ξ̇

d

F

)


(3.1.3)

3.2 Aircraft's Desired Locations

This section develops the equations to determine the desired states of each aircraft

within the formation. Letting the desired states of the aircraft inside the formation

reference frame be represented by

Xd
F i =

[
rdF i vdF i qdF i ωdF i

]T
Then letting the desired states in the inertial frame be represented by

Xd
i =

[
rdi vdi qdi ωdi

]T
The transformation for the desired states in the formations reference frame to the

inertial or global reference are

rdi = rF + COF rdF i (3.2.1a)

vdi = vF + COF vdF i + ωF ×
(
COF rdF i

)
(3.2.1b)

qdi = qF q
d
F i (3.2.1c)

ωdi = ωF + COF ω
d
F i (3.2.1d)
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Adding a scaling factor to the formation, the equation results in the ability to scale

and contract the formation e�ectively changing the aperture. Letting the scaling

factor be represented by

Ξ =

ξx 0 0

0 ξy 0

0 0 ξz

 (3.2.2)

the equation becomes

rdi = rF + COF Ξ rdF i (3.2.3a)

vdi = vF + COF Ξ̇ vdF i + ωF ×
(
COF Ξ rdF i

)
(3.2.3b)

qdi = qF q
d
F i (3.2.3c)

ωdi = ωF (3.2.3d)

The attitude, qdi , represents the desired orientation of the aircraft, however, this

does not represent the desired trajectory of aircraft. The aircraft's desired attitude

needs to represent by a vector towards the desired location, not the desired orientation

in the formation. To accomplish this, we create a unit vector pointing towards the

desired location

p =
rdiF − ri∥∥rdiF − ri

∥∥ (3.2.4)

In expanded form, this is

p =
1√(

xdiF − xi
)2

+
(
ydiF − yi

)2
+
(
zdiF − zi

)2

x
d
iF − xi
ydiF − yi
zdiF − zi

 (3.2.5)

This leaves a vector or pure quaternion. Therefore, the desired quaternion is

qdi = p =

[
0

p

]
(3.2.6)

These equations are used to calculate the desired states of each agent within

the formation. The complete desired states matrix is de�ned, a control system is

developed to control the aircrafts to the desired locations.
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All that is left is develop a control for each individual aircraft to drive the aircraft

to the desired locations. Some simple methods include a state space analysis found

in references [26, 32]. These method will have to be modi�ed in order to account for

the change of the desired location close to the formation. The desired location might

switch to above or below the aircraft very quickly when it is on the desired location.

This problem is addressed in the next chapter and developing an autopilot for an

aircraft is not within the scope of this thesis.

3.3 Formation Feedback

This section, in detail, applies the formation feedback. This involves making the

aircrafts state's error in the formation a function of the states of all the aircraft. More

speci�cally, the errors from the desired states. In doing so, this adds the necessity for

each aircraft to communicate to the other aircrafts its error. This section assumes

that there are no failures in communication and that each aircraft receives the same

formation command, Xd
F .

Starting with the equations from section 3.1, the proportional constant becomes

a function of the aircrafts' state errors. The equations for the formation with the

additional feedback from the formation becomes

ṙF

v̇F
˙̄qF

q̇F

ω̇F

ξ̇F

ξ̈F


=



vF

v̇dF −Kr

(
rF − rdF

)
− ηv

(
vF − vdF

)
− 1/2ωF · qF

− 1/2ωF × qF + 1/2 q̄FωF

ω̇dF + kqqe − ηω
(
ωF − ωdF

)
ξ̇F

ξ̈dF −Kξ

(
ξF − ξdF

)
− ηξ̇

(
ξ̇f − ξ̇dF

)


(3.3.1)

where

ηv = Kv + KFvE
2
v (3.3.2)

ηω = Kω + KFωE
2
ω (3.3.3)

ηξ̇ = Kξ̇ + KF ξ̇E
2
ξ̇

(3.3.4)
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The E's are the feedback function dependent on the states. In this thesis, the error

of the entire states of all entities in the formation is used as the error function. In

the simulation presented, a simple norm of the system represents this E function.

E = Ev = Eω = Eξ̇

=
∥∥XFi − Xd

F i

∥∥
2

(3.3.5)

Beard et al. have developed di�erent methods for the feedback function. The one

presented above is the most basic and simplest form. One method worth investigating

is

E =
∥∥XF − Xd

F

∥∥+
n∑
i=1

∥∥Xi − Xd
i

∥∥ (3.3.6)

for n number of agents. This allows for each agent to only transmit its error to the

other agents instead of its entire states. This e�ectively reduces the communication

among the agents.



Chapter 4

Longitudinal Example

Longitudinal dynamics are the dynamics of an aircraft being limited to its xy-plane.

With this dynamical model, the phugoidal and short term pitch oscillations are ana-

lyzed. This model is also most bene�cial in simulating altitude changes, such as those

involved in collision avoidance.

This chapter serves as an example to the quaternions and describes a basic form

of the feedback method. Section 4.1.1 derives a three degrees-of-freedom model which

is used to simulate the aircraft. It also compares the standard Euler method with

the quaternion method. The next subsection applies the feedback and describes the

stability of the aircraft's motion with this feedback. The �nal section details the

results of the simulation.

The main purpose of this paper is in section 4.2 and the results are discussed in

section 4.3. If you are familiar with the derived longitudinal model and quaternions,

please familiarize yourself with the notation before proceeding to the heart of the

matter.

4.1 Modeling the Systems

This section is divided into three subsections with each subsection describing a dif-

ferent portion of the aircraft model. The �rst subsection, section 4.1.1, derives two

di�erent kinematic models controlling the dynamics of the aircraft. The di�erence in

these two models is the use of Euler angles and quaternion to represent the rotational

attitudes of each aircraft. The models are tested against one-another to verify com-

patibility and the �nal model to be used is a quaternion model for reasons discussed

42
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in chapter 2. Then section 4.1.2 lays out the aircraft's aerodynamic model and the

geometry of the aircraft. The �nal subsection derives a control system that drives the

aircraft to a desired location. These results of the formation feedback applied to the

�nal model are displayed in the next section, section 4.3.

A simple small electric powered unmanned aerial vehicle will be used for this

simulation. The table 4.1 is a summary of the aircraft geometry and key performance

characteristics used in this section where the components are respectively the wing

b 5 m c̄ 0.5 m
S 2.5 m2 Mmax 0.2
m 80 kg Jyy 250 kg m2

Table 4.1: Aircraft Geomentry

span, mean chord, reference wing surface area, maximum Mach Number and the mass

of the aircraft. The remaining performance characteristics are derived throughout this

section.

4.1.1 Kinematic Model

The process in this section simpli�es the model derived in chapter 2 reducing the

equations to the longitudinal modes. Further simpli�cations and analysis can develop

a performance model which can be used to de�ne the �ight envelope of the aircraft.

There are three main frames of reference in dealing with aircraft. The global

frame is from a reference location de�ned on the surface of earth. The body frame is

de�ned as the pilot situated in the aircraft. The �nal frame is wind-axis frame and is

based on the actual velocity of the aircraft. These frames of reference are displayed

in �gure 4.1-1.

Using the force vectors represented in �gure 4.1-1, a nonlinear modeled aircraft

is derived. This will be derived in two steps. First portion is the derivation of the

state variables representing the orientation and position of the aircraft. Then the

derivation of the changes to these states using Newton's and Euler's Equations.

In order to model this system, three independent variables are required. Source

[26] keeps track of the total velocity (VT ), angle of attack (α), and pitch (θ) while

doing post-processing to obtain the other variables. The most comparable to the

quaternions and most logical variables to track are the velocity components, uB and
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Figure 4.1-1: Details of the aircraft in wind-axis and body-axis and the forces acting
on the aircraft.

wB, and the pitch rotation angle, θ, while the remainder are derived from the set of

equations in (4.1.1).

VT =
√
u2
B + w2

B (4.1.1a)

α = tan−1

(
wB
uB

)
(4.1.1b)

ψ = θ − α (4.1.1c)

Using either set of variables, the trajectory of an aircraft can be determined.

Continue by using the standard method, it is obvious that the following changes

in position for this model are as follows.[
Ẋ

Ż

]
=

[
cos(θ) sin(θ)

sin(θ) − cos(θ)

][
uB

wB

]
(4.1.2)
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Simply by de�nition, we let the pitch angle's rotation rate de�ned as:

θ̇ = ωy,B (4.1.3)

This is a quick summary of the basics for the Euler Angle method for the longitudinal

model.

Deriving the quaternion model, it is best to start with the quaternion rates. For

the quaternion model, instead of just the pitch angle, the quaternion components

derived in section 1.3.3, equation (1.3.22), are used. Setting the respective angular

velocities components to zero, p and r, two independent systems representing the

quaternions exists. The system with q0 and q2 and the system with q1 and q3. To

keep matters simple, the q0 and q2 system is used. This simpli�es equation 1.3.22 to[
q̇0

q̇2

]
=

1

2

[
0 −ωy,B

ωy,B 0

][
q0

q2

]
(4.1.4)

This derives the rates for the longitudinal quaternion model.

Implementing the previous results into the rotation matrix in equation (1.3.20),

the equation simpli�es toẋearthẏearth

żearth

 =

1− 2(q2
2) 0 2(q0q2)

0 1 0

−2(q0q2) 0 1− 2(q2
2)


uBvB
wB

 (4.1.5)

The system is independent of y. This simpli�es further to:[
ẋearth

żearth

]
=

[
Ẋ

Ż

]
=

[
1− 2(q2

2) 2(q0q2)

−2(q0q2) 1− 2(q2
2)

][
uB

wB

]
(4.1.6)

Deriving the rates of velocities is not complicated. The basic equations are the

same between the Euler and quaternion models. The only model that di�ers is the

one derived in the wind-axis found in source [26]. Starting with Newton's equation,

F =
d

dt
(mv)

]
B

+ ω ×mv (4.1.7)



46

and letting the translation and angular velocities equal

v =
[
uB 0 wB

]T
(4.1.8)

ω =
[
0 ωx,B 0

]T
(4.1.9)

and expanding equation 4.1.7 to

Fx = m (u̇B + ωy,BwB) (4.1.10a)

Fz = m (ẇB − ωy,BuB) (4.1.10b)

Solving for the accelerations to obtain

u̇B = −ωy,BwB +
Fx
m

(4.1.11a)

ẇB = ωy,BuB +
Fz
m

(4.1.11b)

In a more matrix compact form, the above equations become

v̇ = ω × v +
F

m
(4.1.12)

Equation (4.1.12) is generic for any rigid body dynamics. The forcing functions

give these equations the dynamics of an aircraft.

Letting the forces acting on the aircraft equal

F = T + W + R (4.1.13)

where T, W and R are the thrust vector, weight and aerodynamic force factors

respectively. De�ne thrust and aerodynamic forces as

T =

[
FT

0

]
(4.1.14)

R =

[
X̄

Z̄

]
= q̄S

[
CXtot

CZtot

]
(4.1.15)
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where S is the surface area of the wing and q is the dynamic pressure de�ned as

q̄ =
1

2
ρ(Ma)2 (4.1.16)

In de�ning the weight is another area where the quaternion and Euler models

begin to di�er. The only di�erence is the representation of the rotational matrix. For

the Euler model, these forces are de�ned as follows:

W =
[
CR

] [ 0

mg

]
=

[
cos(θ) sin(θ)

sin(θ) − cos(θ)

][
0

mg

]

=

[
− sin(ψ)

cos(ψ)

]
mg (4.1.17)

where g is -9.81, taking care of the negative values. For the quaternion model, these

forces are de�ned as follows:

W =
[
QR

] [ 0

mg

]
=

[
1− 2(q2

2 2(q0q2)

−2(q0q2) 1− 2(q2
2)

][
0

mg

]

=

[
2(q0q2)

1− 2(q2
2)

]
mg (4.1.18)

These forces applied to Newton's Equation start to model an aircraft.

The remaining aspect is the aircraft's ability to change the pitch. This is how the

aircraft is able to increase or decrease its altitude. To �nd the pitch rate, substitute

into Euler's equations the correct components

ω̇x,Bω̇y,B

ω̇r,B

 =


Jxx 0 Jxz

0 Jyy 0

Jxz 0 Jzz



−1

(4.1.19)

−
 0 0 ωy,B

0 0 0

−ωy,B 0 0



Jxx 0 Jxz

0 Jyy 0

Jxz 0 Jzz


 0

ωy,B

0

+

0

0

0


+

 0

M̄

0




which simpli�es to

ω̇y,B = θ̇ =
M̄

Jyy
(4.1.20)
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This term is the same for both, the Euler and quaternion models. The aerodynamic

moment is de�ned as

M̄ = q̄ScCm (4.1.21)

where Cm is described in section 4.1.2.

The functions derived in this section can be combined to describe the system

representing a three degree of freedom or longitudinal model of an aircraft. The

non-linear system of equations using the Euler Angles is

Ẋ = cos(θ)uB + sin(θ)wB (4.1.22)

Ẏ = − sin(θ)uB + cos(θ)wB (4.1.23)

θ̇ = ωy,B (4.1.24)

ω̇y,B =
M̄

Jyy
(4.1.25)

u̇B = −ωy,BwB − sin(θ)g +
FT + X̄

m
(4.1.26)

ẇB = ωy,BuB + cos(θ)g +
Z̄

m
(4.1.27)

The more computationally e�cient quaternion angle representation model is:

Ẋ =
(
1− 2q2

2

)
uB + (2q0q2)wB (4.1.28)

Ẏ = − (2q0q2)uB +
(
1− 2q2

2

)
wB (4.1.29)

q̇0 = − 1/2 ωy,Bq2 (4.1.30)

q̇2 = 1/2 ωy,Bq0 (4.1.31)

ω̇y,B =
M̄

Jyy
(4.1.32)

u̇B = −ωy,BwB − (2q0q2)g +
FT + X̄

m
(4.1.33)

ẇB = ωy,BuB + (1− 2q2
2)g +

Z̄

m
(4.1.34)

The Aerodynamics forces are given by equation (4.1.15) and moments by (4.1.21).
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4.1.2 Modeling Aerodynamic Forces and Moments

The aerodynamics of an aircraft can be extremely complicated. There is a discussion

of this in more detail in chapter 2. This section takes this discussion and simpli�es

the concepts to the longitudinal model.

The lift coe�cient de�ned in 2.3.2 is

CL = CL0 + CLαα

Assuming an inner loop trims the aircraft and the aircraft does not travel close to the

speed of sound, this equation becomes

CL = −mg cos(θ)

qS
+

2π√
1−M2

α (4.1.35)

The drag is modeled by a basic drag polar system de�ned as 2.3.7

CL = CL0 + CLαα

CD = CD0 +KC2
L

where K and CD0 are speci�c to the model. For the model used in this example, K =

0.06 and CD0 = 0.3. The model is simulated in the body axis and the aerodynamic

forces are de�ned in the wind axis. Therefore, a simple transformation from the wind

axis to the body axis is required. Letting the new boxy axis coe�cients represented

as CX and CZ , the rotation transformation looks like:[
CX

CZ

]
= [QR,α]

[
CD

CL

]
(4.1.36)

where QR,α is a simpled 2-D quaternion rotation matrix, equation (1.3.20) derived in

section 1.3.3, rotating through the angle of attack, α.

Now that the forces are de�ned, the moments of the aircraft are derived. These

are the entities that control the direction that the aircraft travels in and is there for

important to model these as accurately as possible. For instance, the aircraft increases

and decreases its pitching angle to change its altitude. The pitching coe�cient, Cm is



50

either de�ned in per radians or per degrees. Per radians are used here. The equation

to �nd the moment coe�cient used here is

Cm = Cm0 + Cmeδe + Cmαα (4.1.37)

where Cme and Cme are the e�ects of how the elevator de�ection and angle of attack

e�ect the moment coe�cient, or the derivative of Cm with respect to δe or α. The

aircraft is trimmed, so when there are no perturbations to this level �ight, Cm = 0.

Values used in this simulation are Cme = −0.02 and Cmα = −0.0003.

The only remaining aerodynamic subsystem to model is the thrust. The thrust is

represented by a simple linear model as

FT = Tmin + Tδtδt (4.1.38)

where Tmin is the minimum thrust and Tδt is the change in thrust to the throttle's

position. For brevity, Tmin = 0 so that all the thrust is controllable. The maximum

drag will de�ne the maximum value of thrust, the value of Tδt . For most models,

this will occur at the highest altitude and fastest speed. The desired ceiling and the

max speed of this aircraft is 5000 m and a Mach Number of 0.2 respectively. Using

the above equations and the geometry de�ned in the introduction, q̄ = 1 127 Pa

giving an aerodynamic drag in the body axis as X̄ = −3 681 N. The thrust must be

able to provide this much thrust to achieve this altitude. Allowing the thrust to be

greater then this provides an ability to be maneuverable at this altitude. A value of

Tδt = 4 000 N should be su�cient to meet these requirements.

CD0 0.3 Cm0 0 Tmin 0
K 0.06 Cmα −0.0003 Tδt 4000N

Cmδe −0.02

Table 4.2: Aerodynamic Characteristics

Table 4.2 summarizes the constants derived throughout this section. Aside from

the control inputs, the aerodynamic model is only dependent on the Mach Number,

angle of attack, and pitch angle. Other outside factors that a�ect the forces are the

air density and speed of sound.
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4.1.3 Non-Optimal PD Control with Limits

There are several types of control. The most common method to develop a control

is pole placement with state space analysis. Such analysis can be found in detail in

[17, 26, 32]. There are some problems that might arise from using these methods

directly. As a result, this section derives a quick method taking into account some of

these problems.

This section will detail a proportional-derivative control. As section 4.3 shows,

this control provides su�cient control to display the advantage of formation feedback.

There are various methods to optimize the gains in a PD controller. For the sake of

brevity, these methods are not covered here.

This section details an autopilot control for the aircraft's attitude using only

the throttle and elevator. As previously mentioned, this system is independent of

the trimming of the aircraft and will assume there is an inner control trimming the

aircraft to steady level �ight. This means the control developed adds to this inner

loop. The controls of the aircraft are dependent on the performance requirements

and geometry of the aircraft.

The inputs to the individual aircraft's system, δt and δe, cannot exceed certain

limits, as in a real aircraft. It is not practical to have 130% throttle or an elevator

de�ection of 90 degrees. To make the problem practical, these will be limited by

sigmoidal functions.

Enforcing limits on δt by using the sigmoid function of

δt =
1

1 + e−δtc
(4.1.39)

This limits the control input to 0 ≤ δt ≤ 1. Figure 4.1-2 shows this graphically and

is useful in choosing initial gains later. On a note, it is good to remember this graph

is almost linear form (−2, 0) to (2, 1).

A similar sigmoid function is used to control the constraints of the elevator de-

�ection, δe.

δe =
π

9

(
1

1 + e−δec

)
− π

18
(4.1.40)

This function limits the elevator de�ection to positive and negative 10 degrees. The

control for this is δec.
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Figure 4.1-2: Plot of limiting the control input range δtc to the limits of δt

Now that that limits are placed on the inputs, the controls for these need to be

developed. The control δtc a will drive the velocity while δte will drive the altitude.

The �rst controller derived is for the elevator. Notice that the quantity

q0,e = cos(θ/2) (4.1.41)

does not change sign when theta is in the correct direction and the quantity

q2,e = sin(θ/2) (4.1.42)

changes if it above or below the desire state. The quantity q2,e is ideal for feedback

while q0,e is ideal for deciding if the aircraft is traveling in the correct direction.
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The base control is chosen as

δtc = −Kt,z z̃ −Kt,xx̃−Kt,vṼT (4.1.43)

δec,1 = −Ke,rz̃ −Ke,ωω̃ −Ke,vṼT −Ke,q0q2,e (4.1.44)

This drives the system to the desired states. When it is in the vicinity of the desired

states, the system becomes very sensitive to the direction of the desired location. The

desired state is behind, below, above the aircraft, causing the system to destabilize.

A simple way to handle this is to make the control a function the distance from the

desired location such as

Ke,q2 =
(

1− e−100(‖r‖−‖rd‖ )
2)
|qd0 | (4.1.45)

This turns the �nal control for the elevator into

δec = Ke,q2δec,1 (4.1.46)

This successfully drives the aircraft to the desired altitude. The actual values used

in the simulations are in section 4.3.2.

4.2 Formation Feedback for Longitudinal

Model

The feedback derived in chapter 3 will now be simpli�ed for the longitudinal model.

First the dynamics and a basic control for the formation are derived. Then the control

for the aircraft is de�ned. Lastly, the formation's feedback is applied.
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Letting the virtual mass be zero, MF = 0, and the inertia be unit, J = I, the

dynamics for the formation are

ẊF =



ẋF

żF

u̇F

ẇF

q̇0F

q̇2F

q̇F

ξ̇

ξ̈


=



uF

wF

FXF

FZF
1
2
q0q

−1
2
q0q2

mmF

ξ̈F

νF


(4.2.1)

where MXF , MZF , mmF , and νF are used to develop the control of the formation.

Applying a simple PD as the controlling elements of the formation:

FXF = u̇dF −KRx̃F −KvũF (4.2.2a)

FZF = ẇdF −KRz̃F −Kvw̃F (4.2.2b)

mmF = ω̇dF − kqq2eF −Kωω̃F (4.2.2c)

νF = ξ̈dF −Kξ ξ̃F −Kξ̇
˜̇ξF (4.2.2d)

where the notation of χd represents the desired state from the commanding entity

and χ̃ represents the error de�ned as the di�erence between the actual and desired

states

ũF = uF − udF (4.2.3)

The quaternion's error de�ned as the angle di�erence between the formation and

desired rotation of the formation

qeF = q∗F q
d
F (4.2.4)
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The controls of the formation will not include desired accelerations in the trans-

lational, rotational nor contractional directions. This simplify the feedback to

FXF = −KRz̃F −KvũF (4.2.5a)

FZF = −KRz̃F −Kvw̃F (4.2.5b)

mmF = −kqq2eF −Kωω̃F (4.2.5c)

νF = −Kξ ξ̃F −Kξ̇
˜̇ξF (4.2.5d)

This closes the feedback loop for the formation, equation (4.2.1) This equation now

becomes

ẊF =



ẋi

żi

u̇i

ẇi

q̇0i

q̇2i

q̇i


=



ui

wi

−KRx̃F −KviũF

−KRz̃F −Kviw̃F
1
2
q0q2

−1
2
q0q2

−kqq2eF −Kωω̃F


(4.2.6)

The above system does not include the feedback from the formation. In order

to do so, the desired locations for each agent needs to be de�ned. The system for

the individual aircraft is derived in section 3.2 for a complete six degree of freedom

model. To simplify this equation to the three degree of freedom model here, let

COF =

1− 2(q2
2F ) 0 2(q0F q2F )

0 1 0

2(q0F q2F ) 0 1− 2(q2
2F )

 (4.2.7)

and because the rotational attitude is only represented in this model in q0 and q2, the

pure quaternion rotational method cannot be used directly. Therefore, we rede�ne

the desired quaternion as

θd = tan−1

(
zdiF − zi
xdiF − xi

)
[
qd0i

qd2i

]
=

[
cos
(
θd/2

)
sin
(
θd/2

)] (4.2.8)
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Though this method defeats the purpose of quaternions. In a full model, this quantity

is the quaternion product of the unit vector, represented as a pure quaternion, towards

the desired state and the quaternion representing the orientation of the aircraft. This

equations and the assumptions for the longitudinal model reduce equation 3.2.1to the

desired states

Xd
i =



xdi

zdi

udi

wdi

qd0i

qd2i

qdi


=



xF + (1− 2q2
2F )ξxx

d
F i + (2q2F q0F )ξzz

d
F i

zF + (2q2F q0F )ξxx
d
F i + (1− 2q2

2F )ξzz
d
F i

uF + (1− 2q2
2F )ξ̇xu

d
F i + (2q2F q0F )ξ̇zw

d
F i

+q
[
(2q2F q0F )ξxx

d
F i + (1− 2q2

2F )ξzz
d
F i

]
wF + (2q2F q0F )ξ̇xu

d
F i + (1− 2q2

2F )ξ̇zw
d
F i

−q
[
(1− 2q2

2F )ξxx
d
F i + (2q2F q0F )ξzz

d
F i

]
cos
(
θd/2

)
sin
(
θd/2

)
wF


(4.2.9)

Now the desired positions of the formation are developed, the formation feedback

can now be simpli�ed to the longitudinal model. The equations (3.3.2), (3.3.3), and

(3.3.4), are simpli�ed to

ηv = Kv +Kηv

∥∥X− Xd
∥∥ (4.2.10)

ηω = Kω +Kηω

∥∥X− Xd
∥∥ (4.2.11)

ηξ = Kξ +Kηξ

∥∥X− Xd
∥∥ (4.2.12)

where

X =



XF

X1

X2

...

Xn


(4.2.13)
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for n number of aircraft states. This leaves the �nal formation feedback controller for

a longitudinal model as using the norm of the states as the feedback for the formation

as

ẊF =



ẋi

żi

u̇i

ẇi

q̇0i

q̇2i

q̇i

ξ̇

ξ̈


=



ui

wi

−KRx̃F − ηvũF
−KRz̃F − ηvw̃F

1
2
q0q2

−1
2
q0q2

−kqq2eF − ηωω̃F
ξ̇

−Kξ

(
ξ − ξd

)
− ηξ

(
ξ̇ − ξ̇d

)



(4.2.14)

4.3 Simulation and Results

Next few sections discuss the simulation. They describes the setup of the simulation

and the results obtained from simulating the longitudinal model. They brie�y cover

the code and how the simulation is setup. More detail of the code and the code are

found in Appendix A,

The maneuver simulated is an altitude change of 50 meters, from 1200 meters

to 1250 meters. Finally a comparison of the two di�erent models, the standard PD

formation control and the formation control with formation feedback, displaying that

the formation feedback decreases the agents error by a mean of 16.6%.

4.3.1 Description of the Simulation

The simulation is comprised of two parts. The �rst part being the outer control loop

which controls the formation and the agents' desired location. The second part is

the inner control loop, the autopilot, which controls the stick positions to drive the

aircraft to the desired location calculated by the outer loop.

Figure 4.3-1 represents a visual �ow pattern of calculations from the previous

sections. The �ow of the code starts with the initial values. Then it takes these

and integrates on top of them over time. It �rst �nds the new formation position,

from which it calculates the desired positions for each agent. These desired positions
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Figure 4.3-1: Flow pattern of calculations for simulation

are then used to �nd the states of each agent. Then the errors are calculated and

multiplied by the feedback to obtain controls.

Translational PD Rotational PD Rotational Miscellaneous
Kt,z 0.0207 Ke,q2 -180 Ke,z -0.104
Kt,x 0.267
Kt,v 1.28 Ke,ω -6857 Ke,v -0.245

Ke,w -0.0358

Table 4.3: List of Gains Used in the Simulation

The gains used for the simulation are in tables 4.3 and 4.4. The gains in table 4.3

started with initial value and were ran through Matlab's fminsearch function using

the total error for the standard feedback method as the cost for a few iterations. The

gains in table 4.4 are calculated in a similar manner with the formation feedback as

the base to obtain the error.

FF Gains
ηv 0.6005
ηω 0.1659
ηξ̇ 0.1905

Table 4.4: List of Gains Used for the Formation Feedback
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4.3.2 Results of the Simulation

The formation feedback method increases the rigidity of the formation. This is evident

from the formation feedback method's error being less than the standard method.
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(a) Standard Feedback
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Figure 4.3-2: Trajectories

Figure 4.3-2 displays the trajectories of the respective formation control laws. The

values used are non-optimal, but a few trends are noticeable.

The �rst trend is the formation feedback takes longer to achieve the desired lo-

cation after the command is issued. This could be due to many factors, including

non-optimal control. Even the formation feedback method overshoots the commanded

altitude, despite it taking longer to achieve that altitude.

The second trend is the formation feedback keeps a more rigid formation. In the

standard feedback method, all the agents overshoot the desired locations, falling out

of a controlled formation. After a couple minutes, the agents converge to its respective

position.

In �gure 4.3-2a, the agents might still be in formation because of the overshoot,

but this formation is no longer controlled. This will cause issues in the lateral or more

complete models. Even more so in more complicated maneuvers.

Figure 4.3-3 displays the required stick movements. The formation feedback

method requires less stick movements, which might also reduce the stresses on the

aircraft.
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Figure 4.3-3: Stick controls

Table 4.5 displays the errors of each agent in the formation. The error is calculated

as
tf∑
t=t1

∥∥ri(t)− rdi (t)∥∥ (4.3.1)

where t1 is the time when the agents received the new commanded altitude and tf is

the time that all the agents settled back into a controlled formation. This is basically

the integral over time of the errors after the agents are perturbed from their new

commanded position.

Agent 1 Agent 2 Agent 3
Standard Feedback 17662 16752 17448
Formation Feedback 14749 14076 14419
Percent Di�erence 16.5% 16.0% 17.4%

Table 4.5: Summation of the distance from the desired locations of each agent.

Table 4.5 shows that the formation feedback is able to maintain a more rigid

controllable formation. The mean percent di�erence is 16.6%.



Chapter 5

Concluding Remarks and

Possible Improvements

Now that this method is shown to work with a simpli�ed aircraft model, there are

many areas into which this method can expand. This chapter reiterates many of the

shortcomings mentioned throughout this thesis while summarizing possible areas for

improvement. Also provided are additional topics for future research in formation

feedback control.

Shortcomings of the current method are found in both the lower level, such as

the autopilot, and higher level, such as controlling the formation, of controls within

this formation feedback method. Lower level improvements would require a more

robust autopilot, an enhanced aero-performance model, and/or an increased degree-

of-freedom model. Experimenting with higher level controls can evaluate the impact

lower level controls would have on the formation.

The autopilot developed here is very rudimentary and investigations into di�erent

autopilots might produce interesting results. An investigation into a state space au-

topilot or more advanced methods, such as linearization feedback or the sliding mode

method, could also increase the performance of each agent. A thorough investigation

of coupling the feedback controller and autopilot controller might uncover additional

bene�ts when developing a autopilot formation feedback controller.

A more encompassing aero-performance kinematic model could expand the forma-

tion feedback method into a larger variety of applications than just altitude changes.

For instance, a �ve degree of freedom model simulates the latitudinal motion, allowing

investigations into way-point navigation. A complete six degrees-of-freedom model
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can simulate both the altitude changes and way-point navigation. It can also provide

means to investigate aperture synthesis of targets on the ground or in deep space.

One method of implementing a controller for an aperture synthesis formation is by

de�ning a plane for the formation and using the normal vector of this plane to vector

and focus the aperture of the formation. Quaternions are excellent for tracking a

position and reference [11]. Whether the position is some remote star, galaxy or a

point on the ground, this rigid structure will be able to focus its aperture on that

location.

Another area of interest is fault tolerance within a formation. One can devise a

method to determine when one of the agents are unable to hold its position and if

there is some way to apply a feedback to the other agents to allow the formation to

keep its rigidity. One instance is when navigating around a way-point, one of agents

on the inner turn might drop below its stall speed. A method should be developed

requiring the other aircraft to compensate for this UAV's required increase in speed.

Another instance is when the desired location of the formation is no longer moving.

The formation feedback should then start rotating the formation to compensate for

the aircrafts' need to produce lift. One method could be to deploy some �minimum

energy� requirement for the formation.

Hopefully this thesis has provided an insight into formation control. This chapter

has provided many additional routes for furthering research into rigid formations.

There are many references which can shed light into many details of interests.
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Appendix A

Matlab Code for the

Longitudinal Model

This is the main code that runs the model. Figure A.0-1 visually shows the structure
of the code.

main_3dof_model

sub_main_3dof_plot

fn_3dof

For each agent

fn_3dof_quaternion

ode45

get_ISA

get_aero

get_thrust

fn_3dof_formation_commands

Figure A.0-1: Flow of the MATLAB source code

Some �les are not shown, such as savefig, and are freely available from Matlab's
support site. The main_3dof_model needs to be ran twice, once with

1 formation_feedback = 0;
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and again with

1 formation_feedback = 1;

in order to successfully run plot_comparison. This will compare the two methods
and generate the plots.

A.1 main_3dof_model

1 % clear everything
2 clear; close all; clear global;
3 % clc;
4

5 % for fn_3dof_quaternion
6 global g m J_yy S barc;
7 % for global lengths partaining to the agent
8 global formation_length agent_length agent_number agent_desires;
9 % for gains

10 global K_f K_i K_t K_e kdr_k;
11 % for controlling which code to use
12 global euler_method;
13 global formation_feedback;
14 % in ploting
15 global plotting;
16

17 tic_entire_code = tic;
18 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 % Enable the Euler representation of the angles
20 euler_method = 0;
21

22 % Enable Formation Feedback
23 for formation_feedback = [ 1 0]
24 % formation_feedback = 1;
25 close all;
26

27 % filename change
28 file_change='_tri_1150_x2'; % Diff between different runs
29

30 % Final Time
31 time_final = 400;
32

33 % Aircraft constants
34 m = 80; % kg −− mass
35 J_yy = 250; % kg/m^2
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36 S = 2.5; % m^2
37 barc = .5; % m
38

39 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40 % Use Existing Files for commands
41

42 if exist(['fn_3dof_formation_commands' file_change '.m'],'file') == 2
43 fprintf('copying file formation_commands\n')
44 copyfile(['fn_3dof_formation_commands' file_change '.m'],...
45 'fn_3dof_formation_commands.m');
46 % else
47 % error('No Command File')
48 end
49

50 if exist(['fn_3dof_formation_initialization' file_change ...
'.m'],'file') == 2

51 fprintf('copying file initialization commands\n')
52 copyfile(['fn_3dof_formation_initialization' file_change '.m'],...
53 'fn_3dof_formation_initialization.m');
54 % else
55 % error('No Init File')
56 end
57

58 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
59 % Gains
60

61 load('optimized_k');
62 % control surface gains ( blindly choosen... and a few
63 % iterations throught matlab's fminsearch)
64 K_t.z = optimized_k(1);
65 K_t.x = optimized_k(2);
66 K_t.v = optimized_k(3);
67

68 K_e.z = optimized_k(4);
69 K_e.v = optimized_k(5);
70 K_e.w = optimized_k(6);
71 K_e.q2 = optimized_k(7);
72 K_e.q = optimized_k(8);
73 K_e.q0m = optimized_k(9); % min−max theta
74

75 % reduce the unstable behavior
76 kdr_k = optimized_k(10);
77

78 % formation gains
79 K_f.z = 0.03; % K_r
80 K_f.v = 0.40; % K_v
81 K_f.q2 = 0.05; % K_q
82 K_f.q = 0.32; % K_\omega
83 K_f.x = 0.01; % K_\xi
84 K_f.d = 0.25; % K_{\dot \xi}
85
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86 % formation feedback gains
87 load('optimized_nu')
88 K_f.nuv = nu(1);
89 K_f.nuw = nu(2);
90 K_f.nud = nu(3);
91

92 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
93 % time span
94 TSPAN = 0:1:time_final;
95

96 % Global constants
97 g = −9.81;
98

99 % initial command for the formation
100 X0F = fn_3dof_formation_commands(0);
101

102 % Initial states for each agent
103 [ X0i agent_desires ] = fn_3dof_formation_initialization();
104

105 % some globals for the formation
106 formation_length=size(X0F,1);
107

108 % some globals for these agents
109 agent_length = size(X0i,2);
110 agent_number = size(X0i,1);
111

112 % For data analysis later
113 if (formation_feedback == 0)
114 ff_string = '_nf';
115 else
116 ff_string = '_ff';
117 end
118

119 agent_labeling = { 'X'
120 'Z'
121 'u_{body}'
122 'w_{body}'
123 'q_0'
124 'q_2'
125 '\omega_q'
126 '\delta_t'
127 '\delta_e'};
128

129 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
130 % Formulate the entire initial state vector
131 X0(1:formation_length) = X0F;
132

133 for inc = 1:agent_number
134 agent_start=formation_length + (inc−1)*agent_length + 1;
135 X0(agent_start:agent_start+agent_length−1) = X0i(inc,:);
136 end
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137

138 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
139 %% Run the Simulation
140 clear T Xf;
141

142 fprintf('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n');
143 fprintf('Running %s %s\n',ff_string(2:3), ...
144 file_change(2:length(file_change)));
145

146 odeopts = odeset('Stats','on','OutputFcn',@odeplot,'OutputSel',[8]);
147 tic_ode = tic;
148 [ T ,Xf ] = ode45('fn_3dof', TSPAN, X0 ,odeopts);
149 toc(tic_ode)
150

151 close
152

153 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
154 %% Misc helpers for after anaylsis...
155 % (not used anywhere, but is nice to have while debugging)
156 [ Temp rho a ] = get_ISA(1200);
157 M=.12 ;
158 v = M*a ;
159 q = .5*rho*v^2 ;
160 qS = q*S ;
161 if euler_method == 1;
162 [ barX barZ barM] = get_3dof_aero(M, 0, 0, 0, a, rho);
163 else
164 [ barX barZ barM] = get_3dof_aero(M, [1 0 0 0], 0,0, a, rho);
165 end
166

167 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
168 %% Which Plots to Plot
169 plotting.traces = 1;%
170 plotting.controls = 1;%
171 plotting.ele_gain = 0;
172

173 % for the errors plot (need to find a faster way of calcluating these)
174 plotting.calerror = 1;
175 plotting.errors = 0;
176 plotting.all_rot = 0;
177

178 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
179 %% Make life easier, formulate the agents
180 clear agent; pause(1);
181

182 for inc = 1:agent_number
183 agent_start=formation_length + (inc−1)*agent_length + 1;
184 agent(inc).Xf(:,:) = ...

Xf(:,agent_start:(agent_start+agent_length−1));
185 end
186
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187 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
188 %% Recalculate the desired positions
189 if plotting.calerror
190 %%
191 fprintf('Re calculating the desired and related errors ');
192

193 for n = 1:length(T)
194 % of the formation
195 X = Xf(n,1);
196 Z = Xf(n,2); r_F = [ X ; Z]; r_F3 = [ X ; 0; Z];
197 u = Xf(n,3);
198 w = Xf(n,4); v_F = [ u ; w]; v_F3 = [ u ; 0; w];
199 q0 = Xf(n,5);
200 q2 = Xf(n,6); q_F = [ q0 0 q2 0 ];
201 q = Xf(n,7); omega_F = [ 0 ; q ; 0 ];
202 xi = Xf(n,8);
203 xid = Xf(n,9);
204

205 % some constants for scaling and rotations
206 dcm = quat2dcm(q_F);
207

208 C = dcm([1 3],[1 3]);
209

210 Xi = [ xi 0
211 0 xi];
212 Xi3= [ xi 0 0
213 0 xi 0
214 0 0 xi];
215

216 Xid = [ xid 0
217 0 xid];
218 Xid3= [ xid 0 0
219 0 xid 0
220 0 0 xid];
221

222 for i = 1:agent_number
223 r_iF = agent_desires(i,:)';
224 r_iF3 = [ agent_desires(i,1) 0 agent_desires(i,2) ]';
225

226 % Current States
227 % of the agent
228 r_i = agent(i).Xf(n,1:2)';
229 v_i = agent(i).Xf(n,3:4)';
230 r_i3 = [ agent(i).Xf(n,1) 0 agent(i).Xf(n,2)]';
231 v_i3 = [ agent(i).Xf(n,3) 0 agent(i).Xf(n,4)]';
232 q_i = [ agent(i).Xf(n,5) 0 agent(i).Xf(n,6) 0];
233 % omega_i = [ 0 ; agent(i).Xf(n,7) ; 0 ] ;
234

235 r_id3 = r_F3 + dcm*Xi3*r_iF3;
236 % r_id = r_F + C *Xi *r_iF;
237 v_id3 = v_F3 + dcm*Xid3*v_i3 + cross(omega_F,dcm*Xi3*r_iF3);
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238 % v_id = v_F + q*C*(Xi*r_iF);
239

240 r_id = r_id3([1 3]);
241 v_id = v_id3([1 3]);
242

243 % point towards desired location
244 delta_r = r_id − r_i ;
245 cur_theta = atan2(delta_r(2),delta_r(1));
246

247 if euler_method == 1
248 theta_id = cur_theta;
249 theta_er = cur_theta − theta_id;
250 else
251 q_id = [cos(cur_theta/2) 0 sin(cur_theta/2) 0 ];
252 q_ie = quatmultiply(q_i,quatconj(q_id));
253 end
254

255 omega_id = omega_F;
256

257 % store them here...
258 if euler_method == 1
259 agent(i).Xf_d(n,:) = [r_id ; v_id ; theta_id ; 0 ;
260 omega_id(2) ;0 ;0];
261 agent(i).th_e(n) = theta_er;
262 else
263 agent(i).Xf_d(n,:) = [r_id ; v_id ; q_id(1) ; ...

q_id(3) ;
264 omega_id(2) ;0 ;0];
265 agent(i).q_2e(n) = q_ie(3);
266 end
267 agent(i).VT_i(n) = sqrt(v_i' * v_i );
268 agent(i).th_d(n) = cur_theta;
269 agent(i).VT_d(n) = sqrt(v_id'*v_id);
270 end
271

272 end
273

274 % store the errors here...
275 for i = 1:agent_number
276 agent(i).Xf_e = agent(i).Xf_d − agent(i).Xf;
277 end
278 fprintf(' [done]\n');
279 end
280

281 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
282 %% Calculate the total error from its desired location
283 for inc = 1:agent_number
284 eleng = length(agent(inc).Xf(:,1));
285 agent(inc).total_errors = sqrt(...
286 (agent(inc).Xf(1:eleng,1) − agent(inc).Xf_d(1:eleng,1) ).^2 ...

+... x
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287 (agent(inc).Xf(1:eleng,2) − agent(inc).Xf_d(1:eleng,2) ).^2 ...
); % z

288 agent(inc).total_error = sum(agent(inc).total_errors);
289 end
290

291 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
292 %% Plot everything
293

294 sub_main_3dof_plot
295

296 fprintf('−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n');
297 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
298 %% Save the results for later
299 if exist(['agents' file_change '.mat'],'file')
300 fprintf('Loaded file %s\n',['agents' file_change '.mat']);
301 load(['agents' file_change '.mat']);
302 else
303 fprintf('No previous file %s\n',['agents' file_change '.mat']);
304 if formation_feedback == 0
305 agent_ff = agent;
306 else
307 agent_nf = agent;
308 end
309 end
310

311 clear time;
312 time = T;
313

314 if formation_feedback == 0
315 fprintf('Saving nf ');
316 clear agent_nf;
317 agent_nf = agent;
318 else
319 fprintf('Saving ff ');
320 clear agent_ff;
321 agent_ff = agent;
322 end
323

324 % formation = Xf(1:formation_length);
325 pause(1);
326 save(['agents' file_change],'−v7.3','agent_nf','agent_ff',...
327 'time','file_change');
328

329 copyfile('fn_3dof_formation_commands.m',...
330 ['fn_3dof_formation_commands' file_change '.m'] );
331

332 copyfile('fn_3dof_formation_initialization.m',...
333 ['fn_3dof_formation_initialization' file_change '.m'] );
334

335 fprintf(' [Done]\n');
336
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337 end % Ends formation_feedback for loop
338 %%
339

340 plot_comparison_tex(['agents' file_change]);
341

342 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
343 %% Done
344 toc(tic_entire_code)
345 fprintf('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n');

A.2 fn_3dof

1 function dx = fn_3dof(t,x)
2

3 % for fn_3dof_quaternion from befor
4 global m g J_yy S barc;
5 % from here
6 global r_id v_id q_id omega_id theta_id;
7 % for this file
8 global formation_length agent_length agent_number agent_desires;
9

10 % temp
11 global k g_id;
12 global K_f K_i K_t K_e;
13 global formation_feedback euler_method;
14 global kdr_k;
15

16 %% Current state of the formation
17

18 % 1 2 3 4 5 6 7 8 9
19 % x z u w q0 q2 q xi dxi
20 formation = x(1:formation_length);
21

22 X = formation(1);
23 Z = formation(2); r_F = [ X ; Z]; r_F3 = [ X ; 0; Z];
24 u = formation(3);
25 w = formation(4); v_F = [ u ; w]; v_F3 = [ u ; 0; w];
26 q0 = formation(5);
27 q2 = formation(6); q_F = [ q0 0 q2 0 ];
28 q = formation(7); omega_F = [ 0 ; q ; 0 ];
29 xi = formation(8);
30 xid = formation(9);
31

32 %% Desired states of the formation
33 formation_command = fn_3dof_formation_commands(t);
34



75

35 x_desired = X;
36 z_desired = formation_command(2);
37 u_desired = formation_command(3);
38 w_desired = formation_command(4);
39 q0_desired = formation_command(5);
40 q2_desired = formation_command(6);
41 q_desired = formation_command(7);
42 xi_desired = formation_command(8);
43 xid_desired = formation_command(9);
44

45 %% constants for agents' rotations/scaling of desireds
46 dcm = quat2dcm(q_F);
47

48 C = dcm([1 3],[1 3]);
49

50 Xi = [ xi 0
51 0 xi];
52 Xi3= [ xi 0 0
53 0 xi 0
54 0 0 xi];
55

56 Xid = [ xid 0
57 0 xid];
58 Xid3= [ xid 0 0
59 0 xid 0
60 0 0 xid];
61

62 %%
63 for i = 1:agent_number
64 agent_start = formation_length + (i−1)*agent_length + 1;
65 agent(i,:) = x(agent_start:(agent_start + agent_length−1));
66

67 bbx_i(((i−1)*agent_length+1):((i)*agent_length)) = agent(i,:);
68

69 %% Start of the algo
70 %% Desired location w/in the formation
71 r_iF = agent_desires(i,:)';
72 r_iF3 = [ agent_desires(i,1) 0 agent_desires(i,2) ]';
73

74 %% curent states of agent
75 r_i = agent(i,1:2)';
76 v_i = agent(i,3:4)';
77 r_i3 = [ agent(i,1) 0 agent(i,2)]';
78 v_i3 = [ agent(i,3) 0 agent(i,4)]';
79 q_i = [ agent(i,5) 0 agent(i,6) 0]';
80 % omega_i = [ 0 ; agent(i,7) ; 0 ] ;
81

82 %% desired states for agent
83 % state of the formation + rated and scaled location w/in
84 r_id3 = r_F3 + dcm*Xi3*r_iF3;
85 % r_id = r_F + C*(Xi*r_iF);
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86 v_id3 = v_F3 + dcm*Xid3*v_i3 ...
87 + cross(omega_F,dcm*Xi3*r_iF3);
88 % v_id = v_F + q*C*(Xi*r_iF);
89

90 r_id = r_id3([1 3]);
91 v_id = v_id3([1 3]);
92

93 % point towards desired location
94 delta_r = r_id − r_i ;
95 cur_theta = atan2(delta_r(2),delta_r(1));
96

97 if euler_method == 1
98 theta_id = cur_theta;
99 %theta_er = cur_theta − theta_id;

100 else
101 q_id = [cos(cur_theta/2) 0 sin(cur_theta/2) 0 ];
102 % q_ie = quatmultiply(q_i,quatconj(q_id));
103 end
104

105 omega_id = omega_F;
106

107

108 %% update each agent's position (dynamics)
109 dagent(i,:) = fn_3dof_quaternion(t,agent(i,:));
110

111 %% For the error later...
112 if euler_method == 1
113 bbx_id(((i−1)*agent_length+1):((i)*agent_length)) = ...
114 [r_id ; v_id ; theta_id ; 0 ; omega_id(2) ; 0 ; 0];
115 else
116 bbx_id(((i−1)*agent_length+1):((i)*agent_length)) = ...
117 [r_id ; v_id ; q_id(1) ; q_id(3) ; omega_id(2) ; 0 ; 0];
118 end
119 bbx( ((i−1)*agent_length+1):((i)*agent_length)) = agent(i,:);
120

121 end
122

123 %%
124 if formation_feedback == 1
125 enorm = norm(bbx_i−bbx_id);
126 else
127 enorm = 0;
128 end
129

130 K_nu.v = K_f.v + K_f.nuv*enorm;
131 K_nu.w = K_f.q + K_f.nuw*enorm;
132 K_nu.d = K_f.d + K_f.nud*enorm;
133

134 %% Formation's feedback loop (section 3.3)
135 F_XF = − K_f.z * (X − x_desired) ...
136 − K_nu.v * (u − u_desired);
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137 F_ZF = − K_f.z * (Z − z_desired) ...
138 − K_nu.v * (w − w_desired);
139 m_mF = q_desired + K_f.q2 * (q2 − q2_desired) ...
140 − K_nu.w * (q − q_desired) ;
141 nu_F = 0 − K_f.x * (xi − xi_desired) ...
142 − K_nu.d * (xid − xid_desired);
143

144 %% formation dynamics (section 3.3 and 3.1)
145 dX = u;
146 dZ = w;
147 du = F_XF;
148 dw = F_ZF;
149 dq0 = 1/2 * q0 * q2;
150 dq2 = −1/2 * q0 * q2 + 1/2 * q0 * q;
151 dq = m_mF;
152 dxi = xid;
153 dxid = nu_F;
154

155 %%
156 dformation = [ dX dZ du dw dq0 dq2 dq dxi dxid ]';
157

158 dx = dformation;
159 for i=1:agent_number
160 agent_start=formation_length + (i−1)*agent_length + 1;
161 dx(agent_start:(agent_start + agent_length−1)) = dagent(i,:);
162 end

A.3 fn_3dof_formation_commands

1 function cmd = fn_3dof_formation_commands(t)
2

3 % Desc: After 100 seconds, the formation is commaned to decrease ...
altitude

4 % Desc: to 1150 meters and increase scale
5 % Desc:
6

7 % initial formation paramiters
8 V_if = 40;
9 theta_if = 0;

10

11 % x z u w q0 q2 q xi dxi
12 cmd = [ 0 0 0 0 0 0 0 0 0 ]';
13

14

15 % Initial states for the formation
16 x = 50;
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17 z = 1200;
18 u = V_if;
19 w = 0;
20 q0 = cos(theta_if);
21 q2 = sin(theta_if);
22 q = 0;
23 xi = 1;
24 xid = 0;
25

26 if ( t > 100)
27 z = 1150;
28 xi = 1.5;
29 % theta_ff = 2*pi/3;
30 % q0 = cos(theta_ff/2);
31 % q2 = sin(theta_ff/2);
32 % u = 40;
33 end
34

35 % if ( t > 150)
36 % u = 30;
37 % xi=2;
38 % end
39

40 % if ( t > 200)
41 % theta_ff = 2*pi/3;
42 % q0 = cos(theta_ff/2);
43 % q2 = sin(theta_ff/2);
44 % end
45

46 cmd = [ x z u w q0 q2 q xi xid ]';

A.4 fn_3dof_quaternion

1 function dx = fn_3dof_quaternion( t, x )
2

3 global m g J_yy S barc;
4 global r_id v_id q_id omega_id theta_id;
5 global K_t K_e K_i k g_id K_f K_m;
6 global control_method euler_method;
7 global kdr_k;
8

9 % make the states readable
10 X = x(1);
11 Z = x(2); ri = [X Z]';
12 u = x(3);
13 w = x(4);
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14 if euler_method == 1
15 theta = x(5);
16 else
17 q0 = x(5);
18 q2 = x(6);
19 end
20 q = x(7);
21

22 delta_t = x(8);
23 delta_e = x(9);
24

25 % some basic and useful calculations
26 V_T = sqrt(u^2 + w^2);
27 V_Td = sqrt(v_id(1)^2 + v_id(2)^2);
28 aoa = atan(w/u);
29 %phi = theta − alpha;
30

31 % Air model
32 [ T rho a ] = get_ISA( Z );
33 M = V_T / a;
34

35 if ~( euler_method == 1)
36

37 % generate the quaternion for alpha
38 % not the best way, but it works for now
39 q_aoa = [ cos(aoa/2) 0 sin(aoa/2) 0 ];
40

41 % set up the quaternions
42 q_i = [ q0 0 q2 0 ];
43

44 % calculate the quaternion error
45 q_e = quatmultiply(q_i,quatconj(q_id));
46

47 % Stop it from commanding loops...
48 % [qea1 qea2 qea3] = quat2angle(q_e);
49 % fprintf('%8.3f %8.3f %8.3f\n',qea1*180/pi,qea2*180/pi,qea3*180/pi)
50 % if abs(acos(2*q_e(3))) > pi/2
51 % q_e(3) = cos((pi/2 − acos(2*q_e(3)))/2);
52 % end
53 end
54

55 if euler_method == 1
56 Kq = 1;
57 else
58 Kq = abs(q_id(1));
59 end
60

61 Kdr = (1−exp(kdr_k*(sqrt(ri'*ri) − sqrt(r_id'*r_id))^2 )) * Kq;
62

63 % Agent's Feedback
64 % formation (method ad−hocly derived)
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65 delta_t_place = − K_t.z *( Z − r_id(2)) ... altitude
66 − K_t.x *( X − r_id(1)) ... position
67 − K_t.v *( V_T − V_Td ) ;% velocity
68

69 delta_e_place = − K_e.z *( Z − r_id(2)) ... altitude
70 − K_e.q *( q − omega_id(2)) ... angular rate
71 − K_e.v *( V_T − V_Td) ;% velocity
72

73 if euler_method == 1
74 delta_e_place = delta_e_place − K_e.q2 * (theta − theta_id);
75 else
76 delta_e_place = delta_e_place − Kdr * K_e.q2 * q_e(3);
77 end
78

79 % into signmodial functions to obtain respective control inputs
80 delta_t_fb = 1/(1+exp(−delta_t_place));
81 delta_e_fb = pi/9*(1/(1+exp(−delta_e_place)))−pi/18;
82

83 % Required calculations for thrust and aerodynamic forces
84 X_T = get_3dof_thrust(M, Z, delta_t);
85

86 if euler_method == 1
87 [barX barZ barM] = get_3dof_aero(M, aoa, theta, delta_e, a, rho);
88 dcm = angle2dcm(0,theta,0);
89 else
90 [barX barZ barM] = get_3dof_aero(M, q_aoa, q_i, delta_e, a, rho);
91 dcm = quat2dcm(q_i);
92 end
93

94 % calculate the derivatives
95

96 dr = dcm * [ u 0 w]';
97 gravity = dcm * [ 0 0 g]';
98

99 dX = dr(1);
100 dZ = dr(3);
101

102 if ( euler_method == 1)
103 dtheta = q;
104 else
105 dq0 = −1/2*q*q2 ;
106 dq2 = 1/2*q*q0 ;
107 end
108

109 % formation (method ad−hocly derived)
110 dq = barM/J_yy ;
111

112 du = −q*w + (X_T + barX)/m + gravity(1) ;
113 dw = q*u + barZ/m + gravity(3) ;
114

115 ddelta_t = delta_t_fb − delta_t;



81

116 ddelta_e = delta_e_fb − delta_e;
117

118 if ( euler_method == 1)
119 dx = [ dX dZ du dw dtheta 0 dq ddelta_t ddelta_e]' ;
120 else
121 dx = [ dX dZ du dw dq0 dq2 dq ddelta_t ddelta_e]' ;
122 end

A.5 get_ISA

1 function [ T rho a ] = get_ISA( h )
2 global g;
3

4 if isempty(g) ; g = 9.81 ; end
5

6 T_0 = 288.15;
7 rho_0 = 1.225 ;
8

9 T = T_0 − 0.0065 * h;
10 rho = rho_0 * exp(g*h/(287.05*T));
11 a = sqrt(1.4 * 287.05 * T);

A.6 get_3dof_thrust

1 function X_T = get_3dof_thrust(M, Z, delta_t)
2

3 % T_static = 200;
4 X_T = 1000 .* delta_t;

A.7 get_3dof_aero

1 function [ barX barZ barM] = get_3dof_aero(M,aoa, theta, delta_e, a, ...
rho)

2

3 global m g S barc euler_method;
4
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5 if euler_method == 1
6 aoa_alpha = aoa;
7

8 else
9 aoa_alpha = asin(aoa(3));

10 end
11 qS = 1/2*rho*(M*a)^2*S;
12

13 %%
14 % real basic
15 if euler_method == 1
16 C_L_0 = −m*g*cos(theta)/qS;
17 else
18 C_L_0 = −m*g* theta(1) /qS;
19 end
20 C_D_0 = 0.3;
21

22 C_L_a = 2*pi/sqrt(1−M^2);
23 C_L_a = 0;
24 K = 0.06;
25

26 C_L = C_L_0 + C_L_a*aoa_alpha;
27 C_D = C_D_0 + K.*C_L.^2;
28

29 D = qS .* ( C_D );
30 L = qS .* ( C_L );
31 %%
32

33 if euler_method == 1
34 resultant = angle2dcm(0, aoa, 0) * [−D 0 L]';
35 else
36 resultant = quatrotate(aoa,[−D 0 L]);
37 end
38

39 barX = resultant(1);
40 barZ = resultant(3);
41

42 % in radians
43

44 C_m_e = −0.02;
45 C_m_a = −0.0003;
46 C_m_0 = 0; % aircraft is trimmed ...
47

48 C_m = C_m_0 + C_m_e*delta_e + C_m_a*aoa_alpha;
49 barM = qS * barc * C_m;
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A.8 sub_main_3dof_plot

1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 %% plot the controls, Most can be read from here...
3 if plotting.controls
4 %%
5 plot_data(1).ylabel = '$\delta_t$';
6 plot_data(1).data = [ agent(1).Xf(:,8)'
7 agent(2).Xf(:,8)'
8 agent(3).Xf(:,8)' ];
9 plot_data(1).ylim = [0 1];

10

11 plot_data(2).ylabel = '$\delta_e$';
12 plot_data(2).data = [ agent(1).Xf(:,9)'
13 agent(2).Xf(:,9)'
14 agent(3).Xf(:,9)' ];
15 plot_data(2).ylim = [−pi/18 pi/18];
16

17 plot_this_data(T,plot_data,'Control inputs','time',...
18 ['plot_data' file_change ff_string ]);
19

20 pause(1);
21 end
22

23 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 %% Plot Errors
25 if plotting.errors
26 % function for ploting
27 plot_error(1).ylabel = ['$\tilde{' agent_labeling{5} '}$']; % q_0
28 plot_error(1).data = [ agent(1).Xf_e(:,5)'
29 agent(2).Xf_e(:,5)'
30 agent(3).Xf_e(:,5)' ];
31 plot_error(1).ylim = [];
32

33 plot_error(2).ylabel = ['$\tilde{' agent_labeling{6} '}$']; % q_2
34 plot_error(2).data = [ agent(1).Xf_e(:,6)'
35 agent(2).Xf_e(:,6)'
36 agent(3).Xf_e(:,6)' ];
37 plot_error(2).ylim = [];
38

39 plot_error(3).ylabel = ['$\tilde{' agent_labeling{1} '}$']; % x
40 plot_error(3).data = [ agent(1).Xf_e(:,1)'
41 agent(2).Xf_e(:,1)'
42 agent(3).Xf_e(:,1)' ];
43 plot_error(3).ylim = [];
44

45 plot_error(4).ylabel = ['$\tilde{' agent_labeling{7} '}$']; % omega
46 plot_error(4).data = [ agent(1).Xf_e(:,7)'
47 agent(2).Xf_e(:,7)'
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48 agent(3).Xf_e(:,7)' ];
49 plot_error(4).ylim = [];
50

51 plot_error(5).ylabel = '$\tilde{V_T}$';
52 plot_error(5).data = [ (agent(1).VT_i−agent(1).VT_d)
53 (agent(2).VT_i−agent(2).VT_d)
54 (agent(3).VT_i−agent(3).VT_d) ];
55 plot_error(5).ylim = [];
56

57 plot_this_data(T,plot_error,'Errors of sort','time',...
58 ['plot_error' file_change ff_string ])
59

60 pause(1);
61 end
62

63 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
64 %% Plot Rotations
65 if plotting.all_rot && plotting.errors && plotting.controls
66

67 mypd(1) = plot_data(2);
68

69 mypd(2) = plot_error(1);
70 mypd(3) = plot_error(2);
71 mypd(4) = plot_error(4);
72 mypd(5).ylabel = '$\theta_d$ (deg)';
73 mypd(5).ylim = [ −180 180 ];
74 mypd(5).data = [ agent(1).th_d(:)'
75 agent(2).th_d(:)'
76 agent(3).th_d(:)' ]*180/pi;
77 mypd(6).ylabel = '$\theta$ (deg)';
78 mypd(6).data = [...
79 (asin( agent(1).Xf(:,6))*2)*180/pi,...
80 (asin( agent(2).Xf(:,6))*2)*180/pi,...
81 (asin( agent(3).Xf(:,6))*2)*180/pi];
82 plot_this_data(T,mypd,'Everything to do with rotation','time',...
83 ['mypd' file_change ff_string ])
84 end
85

86 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
87 %% Plot the elevator and its gains (For rotation)
88 if plotting.ele_gain
89 ele_gain(1).ylabel = '$q_1$';
90 ele_gain(1).data = [ agent(1).Xf(:,5)'
91 agent(2).Xf(:,5)'
92 agent(3).Xf(:,5)' ];
93 ele_gain(2).ylabel = '$\delta_{et}$';
94 for inc = 1:agent_number
95 delta_e_place(:,inc) = ...
96 − K_e.z *( agent(1).Xf(:,2)' − agent(1).Xf(:,5)') ... ...

altitude
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97 − K_e.q *( agent(1).Xf(:,7)' − agent(1).Xf(:,7)') ... ...
ang rate

98 − K_e.v *( agent(1).VT_i − agent(1).VT_d ) ;% ...
velocity

99 Kdr = 1./(1+exp(−sqrt((sum(...
100 (agent(inc).Xf(:,1:2).*agent(inc).Xf(:,1:2))')))./4+6));
101 if euler_method == 1
102 delta_e_place(:,inc) = delta_e_place(:,inc) ...
103 − K_e.q2 * (theta − theta_id);
104 else
105 delta_e_place(:,inc) = delta_e_place(:,inc) ...
106 − Kdr' .* K_e.q2 .* agent(inc).q_2e';
107 end
108 end
109

110 ele_gain(2).data = [ delta_e_place ];
111 ele_gain(3).ylabel = '$\delta_e$';
112 ele_gain(3).data = [ agent(1).Xf(:,9)'
113 agent(2).Xf(:,9)'
114 agent(3).Xf(:,9)' ];
115 plot_this_data(T,ele_gain,['Everything for Elevator gains ...

\delta_e'...
116 '= S(\delta_{et}) K_{e,m}'],'time',...
117 [ 'ele_gain' file_change ff_string] );
118 end
119

120 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
121 %% Plot the Paths of each aircraft
122 if plotting.traces
123 %% figure
124 this_figure = figure;
125 if formation_feedback == 1
126 plot(Xf(:,1),Xf(:,2),'c','DisplayName','Command w/ Formation ...

Feedback');
127 else
128 plot(Xf(:,1),Xf(:,2),'c','DisplayName','Command');
129 end
130 hold on;
131

132 data_xt = [];
133 data_xd = [];
134 data_yt = [];
135 data_yd = [];
136 data_c1 = {};
137 data_c2 = {};
138

139 data_ca = { 'b' 'g' 'r' 'm' 'b−−' 'g−−' 'r−−' 'm−−'};
140

141 for inc = 1:agent_number
142 data_xt = [ data_xt agent(inc).Xf( :,2) ];
143 data_xd = [ data_xd agent(inc).Xf_d(:,2)];
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144 data_yt = [ data_yt agent(inc).Xf( :,1)];
145 data_yd = [ data_yd agent(inc).Xf_d(:,1)];
146 data_c1 = { data_c1{:} data_ca{ inc} };
147 data_c2 = { data_c2{:} data_ca{4+inc} };
148 end
149

150 data_x = [ data_xt data_xd ] ;
151 data_y = [ data_yt data_yd ] ;
152 data_c = { data_c1{:} data_c2{:} } ;
153

154 for inc = 1:size(data_y,2)
155 plot( data_y(:,inc), data_x(:,inc) ,data_c{inc},...
156 'DisplayName','Aircraft w/');
157 end
158 % Label
159 xlabel('position');
160 ylabel('altitude');
161 % ylim([1060 1260]) % 1150
162 % ylim([1140 1320]) % 1250
163 title('Trajectories');
164

165 savefig(['../matlab_images/' 'traces' file_change ff_string], ...
166 'pdf','−fonts' );
167 savefig(['../matlab_images/' 'traces' file_change ff_string], ...
168 'png','−fonts' );
169 end

A.9 plot_comparison

1 function plot_comparison(inagent)
2 % clc;
3 % clear;
4

5 fprintf('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n');
6 fprintf('Comparing Models for %s\n', inagent);
7

8 load(inagent)
9 if ~exist('time','var') && exist('T','var')

10 time = T;
11 end
12

13 if isempty('agent_nf') == 1
14 fprintf('Please get agnet_nf\n')
15 return
16 elseif isempty('agent_ff') == 1
17 fprintf('Please get agnet_ff\n')
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18 return
19 end
20

21 if (exist('file_change','var') == 0)
22 file_change = ['_' inagent];
23 end
24

25 agent_number = length(agent_nf);
26

27 maxval = 0;
28

29 for inc = 1:agent_number
30 maxvals = peakdet(agent_nf(inc).total_errors,.1);
31 maxvals = sort(maxvals(:,2),'descend');
32 if ((maxval == 0) || (maxval < maxvals(2)))
33 maxval = maxvals(2);
34 end
35

36 end
37

38 maxval = maxval*1.25 − mod(maxval*1.25,5);
39

40 for inc = 1:agent_number
41 agent_errors(inc).ylim = [ 0 maxval];
42 agent_errors(inc).data = [agent_nf(inc).total_errors' ;...
43 agent_ff(inc).total_errors' ];
44 agent_errors(inc).ylabel = ['agent ' sprintf('%d',inc)];
45

46 end
47

48 legend_in.labels = {'No Formation Feedback'; 'Formation Feedback'};
49 legend_in.position = [0.6724 0.7988 0.2781 0.09641];
50

51 plot_this_data(time, agent_errors,...
52 ['Agents Errors ' sprintf('%s',inagent(8:length(inagent))) ...

],...
53 'time',...
54 ['agent_errors' file_change ], ...
55 legend_in)
56

57 %%
58 changes_at = find(time == 100); % command formation change
59 final_n_time = length(time);
60 end_is_at = final_n_time;
61 for inc = 1:agent_number
62 agd = diff(agent_nf(inc).total_errors);
63

64 for tval = 1:final_n_time
65 if agd(final_n_time − tval) < 1e−4
66 end_is_att = final_n_time−tval;
67 else
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68 end_is_att = length(time);
69 break
70 end
71 end
72

73 if end_is_at > end_is_att
74 end_is_at = end_is_att;
75 end
76

77 end
78

79 % end_is_at = find(T == 200); %length(T);
80 for inc = 1:agent_number
81 err_ff(inc) = sum(agent_ff(inc).total_errors(changes_at:end_is_at));
82 err_nf(inc) = sum(agent_nf(inc).total_errors(changes_at:end_is_at));
83 err(inc) = (err_nf(inc) − err_ff(inc))/err_nf(inc)*100;
84 end
85

86 fprintf('\n ');
87

88 for inc = 1:agent_number
89 fprintf(' %2d ',inc);
90 end
91

92 fprintf('\nNF ');
93 for inc = 1:agent_number
94 fprintf('%6.0f',err_nf(inc));
95 end
96

97 fprintf('\nFF ');
98 for inc = 1:agent_number
99 fprintf('%6.0f',err_ff(inc));

100 end
101

102 fprintf('\ner ');
103 for inc = 1:agent_number
104 fprintf(' %2.1f',err(inc));
105 end
106

107 fprintf('\n\nmean: %2.1f\n\n',mean(err))
108 fprintf('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n');

A.10 plot_this_data

1 function plot_this_data(T,pd,titling,xlabeling,savefile,legend_in)
2 this_figure = figure;
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3 pdl = length(pd);
4

5 set(this_figure,'DefaultAxesColorOrder',[1 0 0;0 1 0;0 0 1],...
6 'DefaultAxesLineStyleOrder','−|:')
7 for inc = 1:pdl
8 subplot(pdl,1,inc)
9 plot(T,pd(inc).data)

10 if exist('pd') && isfield(pd(inc), 'ylim') && ...
~isempty(pd(inc).ylim)

11 ylim(pd(inc).ylim);
12 end
13 if exist('pd') && isfield(pd(inc), 'ylabel') && ...

~isempty(pd(inc).ylabel)
14 ylabel(pd(inc).ylabel,'Interpreter','latex','FontSize',16);
15 end
16 if inc == 1
17 title(titling)
18 end
19 end
20 xlabel(xlabeling)
21

22 if exist('legend_in') && ~isempty(pd(inc))
23 legend1 = legend( legend_in.labels{:} );
24 set(legend1,'Position',legend_in.position);
25 end
26

27 if ischar(savefile)
28 savefig(['../matlab_images/' savefile ], 'pdf','−fonts' );
29 savefig(['../matlab_images/' savefile ], 'png','−fonts' );
30 else
31 set(gcf,'Position',savefile.position)
32 savefig(['../matlab_images/' savefile.name ], 'pdf','−fonts' );
33 savefig(['../matlab_images/' savefile.name ], 'png','−fonts' );
34 end



Appendix B

Additional Sample Runs

This section will provide sample simulations for additional scenarios. In every in-
stance, the Formation Feedback method keeps a rigid formation.
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B.1 Altitude Climb

Agent 1 Agent 2 Agent 3 Agent 4

Standard Feedback 909 888 900 922
Formation Feedback 546 549 538 532
Percent Di�erence 39.9 38.2 40.2 42.3

Table B.1: Mean of Percent Di�erence: 40.1
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Figure B.1-1: Caption of sub�oats
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B.2 Altitude Climb and Increase Scale

Agent 1 Agent 2 Agent 3 Agent 4

Standard Feedback 831 2059 847 1029
Formation Feedback 512 671 705 539
Percent Di�erence 38.5 67.4 16.8 47.6

Table B.2: Mean of Percent Di�erence: 42.6
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B.3 Altitude Descent and Increase Speed

Agent 1 Agent 2 Agent 3 Agent 4

Standard Feedback 860 838 875 898
Formation Feedback 793 783 808 819
Percent Di�erence 7.7 6.6 7.7 8.8

Table B.3: Mean of Percent Di�erence: 7.7
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