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Abstract 

Author:  Nate Quirion 

Title:  The Effects of Sensor Performance as Modeled by Signal Detection Theory on the 

Performance of Reinforcement Learning in a Target Acquisition Task 

Institution: Embry-Riddle Aeronautical University 

Year: 2013 

Unmanned Aerial Systems (UASs) today are fulfilling more roles than ever before.  

There is a general push to have these systems feature more advanced autonomous capabilities in 

the near future.  To achieve autonomous behavior requires some unique approaches to control 

and decision making.  More advanced versions of these approaches are able to adapt their own 

behavior and examine their past experiences to increase their future mission performance.  To 

achieve adaptive behavior and decision making capabilities this study used Reinforcement 

Learning algorithms.  In this research the effects of sensor performance, as modeled through 

Signal Detection Theory (SDT), on the ability of RL algorithms to accomplish a target 

localization task are examined.  Three levels of sensor sensitivity are simulated and compared to 

the results of the same system using a perfect sensor.  To accomplish the target localization task, 

a hierarchical architecture used two distinct agents.  A simulated human operator is assumed to 

be a perfect decision maker, and is used in the system feedback.  An evaluation of the system is 

performed using multiple metrics, including episodic reward curves and the time taken to locate 

all targets.  Statistical analyses are employed to detect significant differences in the comparison 

of steady-state behavior of different systems. 
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Introduction 

 There is a general trend in robotics and the Unmanned Aerial System (UAS) industry in 

particular to create systems with more autonomy and conduct a wider variety of missions 

(Clough, 2005; Singer, 2009).  At present, one of the salient roles of military UASs is that of a 

reconnaissance asset (Singer, 2009).  An autonomous system for the reconnaissance role would 

need to be able to effectively search an environment, maximizing its efficiency to locate targets 

given an imperfect sensor suite for target identification.  The system would also need to be able 

to adapt to any perceived target behavior, especially in military applications.  The ability of 

future unmanned systems to adapt to their operating environment has been identified as a key 

area for future development (Panella, 2008; Singer, 2009; Winnefield & Kendall, 2012).  There 

are currently few studies on how the performance of a sensor system affects the capabilities of 

autonomous UASs.  The objective of this study is to investigate the effects of sensor 

performance, more specifically, sensor sensitivity, on the ability of autonomous reconnaissance 

UASs and vehicles to complete their intended mission.  A unique aspect of this study is the 

simulation features simulated feedback from a human supervisor.  The human supervisor is 

modeled as a perfect decision maker in this study.  The human decision maker never falsely 

confirms a real target nor misses a real target declared by the system. 

Literature Review 

 The literature review is organized into four general sections.  The first section outlines 

the capabilities and types of UASs in use today.  The section also presents evidence of what is 

expected of UASs in the near and mid future, specifically the autonomous aspects that are 

expected of those future unmanned systems.  The next section discusses the principals behind 

autonomy, and what capabilities and characteristics a system must exhibit in order to be 
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classified as an autonomous system.  Some examples of rule based systems used to achieve 

autonomous control are also presented.  The third section of the literature review contains a 

review of Reinforcement Learning (RL) algorithms and their mechanics.  The section begins 

with a general discussion of why and how RL algorithms behave and introduces some standard 

methods of implementation.  The section ends with a review of RL experiments, simulations, and 

studies that implemented RL algorithms for the purpose of navigating a robotic vehicle in an 

environment without a priori information.  The fourth section discusses current studies and 

experiments on sensors used in vehicles for autonomous task performance.  The fourth section 

also introduces the Signal Detection Theory technique used to model the general behavior of a 

sensor in this research. 

Unmanned Aircraft Systems. 

 Unmanned Aircraft Systems (UASs) can be applied to many different roles.  Perhaps the 

most prominent and well known application of these systems is in the military.  Less well known 

one is the fact that UASs could be used for civil and commercial purposes.  Some possible civil 

applications are forest fire detection and tracking, search and rescue, and law enforcement.  A 

potentially large and far reaching commercial application is the agricultural industry (Ackerman, 

2013; Madrigal, 2009).  A brief overview of the possible application and benefits of autonomous 

UASs in each of these areas is described as follows. 

Military UAS applications. 

 Military UASs generally do the tasks that are too tedious or dangerous for human pilots.  

An example of such a task is surveillance and reconnaissance, where an aircraft operates over an 

area to detect and track targets or other elements of interest for typically long stretches of time 
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(Panella, 2008).  Manned aircraft have an endurance problem largely caused by their human 

crews’ susceptibility to fatigue.  Unmanned systems do not have this problem.  Current 

unmanned intelligence, surveillance, and reconnaissance (ISR) aircraft conduct missions 

“already beyond the effective endurance of a pilot in a manned aircraft” (Lake, 2012).  The 

ability of UAS platforms to stay on mission for long periods of time has driven a growth in the 

number and types of platforms used by the US military services.  This is reflected in the number 

of flight hours that have been collectively flown by these systems, which has increased 

dramatically since 2003.  It is reported that this growth is expected to continue in the future as 

the capabilities of these systems increase (Winnefield & Kendall, 2012).   One drawback of these 

ISR systems is that they create a large need for trained operators and data analysts (Shachtman, 

2008).  The reason for this drawback is that the systems are not capable of flying, managing, or 

analyzing mission data themselves. 

 Current UAS systems, such as the MQ-9B Reaper and MQ-1 Predator, fall into the 

category of remotely piloted vehicles, and therefore are not autonomous.  These aircraft require a 

human being to constantly supervise the system and command it to take certain actions, such as 

selecting an area to search or engaging a target.  Remotely piloted aircraft are mostly controlled 

from ground stations (Panella, 2008).  These ground stations are critical for the mission 

capability of the vehicle, and the control signals may have to be relayed, causing a delay.  A 

UAS control system that relies on input from a ground station runs the risk of losing its link 

through accidental relay loss, corruption or enemy action.  Additionally, a UAS may be able to 

stay in the air for more than a day at a time but the operators need to be switched out for rest, 

which means there is no reduction in the number of operators required.  In fact, given that the 

UASs are mechanically able to operate longer than the system operators’ endurance, these 
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systems can possibly increase the need for personnel.  Another weakness with using remotely 

piloted UASs is that humans are needed to analyze the information that is collected by the sensor 

systems.  Currently vehicles like the Reaper and Predator require a crew of two to conduct a 

reconnaissance mission.  A possible solution to this human endurance and information overload 

problem is the use of autonomous systems.   

  Autonomous systems are capable of avoiding many of the problems found in remotely 

piloted vehicles.  An autonomous system does not require a constant link to a control station or 

human operator (Singer, 2009).  Autonomous systems are capable of simply being given an 

objective and the system determines the best way to accomplish the objective.  Some systems 

that are partially autonomous in this way are already in use today.  Excellent examples are the 

defense systems mounted on naval warships that shoot down incoming cruise missiles and 

aircraft (Singer, 2009).  These systems, when turned on in a specific mode will automatically 

target enemy equipment (i.e. missiles and vehicles) and destroy it if it is perceived to be a threat 

to the ship, friendly forces, or is merely within range.  Another such system is the modern naval 

mine.  Some current mines are capable of identifying a passing military ship and launching an 

attack on it (Canning, 2006). These vehicle based systems do not require human operation other 

than to be activated and given a task.  They are not susceptible to the same limitations as the 

remotely piloted vehicles mentioned earlier. 

 A drawback of a fully autonomous system is that they cannot always make the best 

decisions in a complex real-world environment.  Computer algorithms will not always be able to 

determine the difference between military personnel or combatants and civilians.  Currently, it is 

envisaged that autonomous systems would target only enemy equipment, not personnel (Canning, 

2006).  This avoids the possibility of a machine automatically targeting human beings.  
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Autonomous systems could also take a purely observational role in the mission space.  The 

systems could notify a human supervisor of likely enemy activity, but require permission from 

the supervisor before attacking (Singer, 2009).  A major drawback to this method is that human 

decisions take time to complete and the system is still dependent upon a communication link to 

be fully effective (Singer, 2009). 

Agricultural UAS applications. 

 One prospective application for the widespread use of autonomous systems is in the 

agricultural industry.  Farmers can benefit from information gathered by UASs to estimate crop 

yields and health.  They can also be used to cheaply apply pesticides and fertilizer to crops, as 

well as control weeds.  In Japan, this application of UASs has already been undertaken, with a 

dramatic reduction in area that was sprayed by manned aircraft (Ackerman, 2013).  Two 

examples of these agricultural systems are the RMAX helicopter crop duster by Yamaha and the 

CropCam small UAS (Ackerman, 2013).  Both systems are examples of remotely piloted 

vehicles, with the implication that trained operators are required for the systems to be efficient or 

effective.  These operators would need to be paid, resulting in a long term recurring cost for the 

duration of use.  An autonomous system would not require a trained operator, and therefore 

eliminates this recurring cost. 

 Some research on autonomous agricultural systems has been done in recent years.  Many 

of these systems are designed for weeding applications.  Many of these autonomous weeding 

systems rely on computer vision algorithms to differentiate between weeds and crops (Slaughter, 

Giles, & Downey, 2008).  These systems are designed to operate without human intervention and 

save the farmers money.  Autonomous weeding systems could even offer the possible advantage 
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of eliminating the use of herbicides, as the autonomous systems could remove the weeds through 

mechanical or electrical means (Blasco, Aleixos, Roger, Rabatel, & Molto, 2002; Slaughter, et 

al.,  2008). 

Forest fire detection and containment. 

Forest fire detection is another application of UASs that could benefit from autonomous 

technology.  The reduced risk to human life and the effectiveness of the systems would be major 

benefits for this application.  Research has been conducted on how UAS platforms could detect 

fires automatically and also interface with other vehicles and systems with the same mission 

(Casbeer, Beard, McLain, Li, & Mehra, 2005; Merino, Caballero, Martinez-de-Dois, & Ollero, 

2005; Orello, Arrue, Martinez, & Murillo, 1993).  The systems described in Merino, Caballero, 

Martinez-de-Dois, & Ollero, (2005) and Casbeer, Beard, McLain, Li, & Mehra, (2005) are 

autonomous in the sense that they complete their designed mission without human instruction.  

These systems could be used in conjunction with vehicle platforms to augment or replace 

manned aircraft that currently perform the same mission. 

Autonomy. 

The nature of autonomy. 

 Panella (2008) states that autonomous systems are systems that “can change their 

behavior in response to unanticipated events.”  Another definition is that “autonomy is 

characterized by the concept of learning through the use of own experience (Ribeiro, 2002).”  A 

common theme in both of these descriptions is that autonomous systems are typically 

programmed to achieve a goal, but are not explicitly instructed on how to achieve that goal. They 

require no outside intervention to accomplish a task other than to be assigned the task.  “An 
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autonomous system is self-directed by choosing the behavior it follows to reach a human-

directed goal” (Winnefield & Kendall, 2012). These definitions all describe the same general 

philosophy that a given autonomous control system is capable of some degree of optimization 

and/or useful decision making.  The types of control systems most often found in the literature of 

autonomous search tasks can be placed into two general categories: rule based systems and 

machine learning systems.  Rule based systems rely on preprogrammed behavior to take action 

in a given situation.  Often the desired behavior is achieved through the use of a scoring function.  

A scoring function is built using metrics that the system programmer deems relevant to the 

effective performance of the system’s designed mission, such as the relative worth of one target 

over another, the value of the vehicle itself, etc.  These systems will always behave roughly the 

same in a given environment, and require a priori knowledge of their mission performance 

metrics to be effective.  What differentiates machine learning systems from rule based ones is 

that machine learning systems are able to update and adapt themselves based upon previous 

experience and interaction with the environment.   They are able to perceive patterns and trends 

in data, and then use this information to increase future performance (Alpaydin, 2010).  This 

feedback mechanism is a critical component of machine learning systems, as it gives rise to the 

possibility that the autonomous system may be able to reach optimal performance without the 

need of the extensive human initialization found in rule based systems. In the following sections, 

the basic concepts of rule based systems and machine learning systems are reviewed. 

Rule-based system experiments and simulations. 

 There are several approaches, methods, and algorithms that are used to achieve some 

level of autonomous operation in simulations.  Rule-based systems have prebuilt decision-

making algorithms and modes that direct the actions and behavior of the UAS.  However, they 
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do not have the ability to optimize their operations and behaviors to the environment.  That is, 

rule based systems do not have any form of feedback so that they may change their behavior and 

increase their performance over time.  The rule based system approach has been widely studied 

in a number of simulations and experiments to control the actions of a team of vehicles in search 

and tracking tasks.  For example, in Cooperative Real-Time Task Allocation among Groups of 

UAVs (Jin, Polycarpou, & Minai, 2004) a system was designed to control multiple UAVs in the 

same operational space.  Individual vehicles were assigned to missions that most suited their 

capabilities.  One hundred runs were completed, with each run refreshing a randomized target 

placement.  The UAVs flew in paths that were deemed optimal to reach assigned targets and 

search sectors.  Vehicles were given tasks based upon their distance from an available 

assignment and their individual capability. The UAVs updated a global probability map using an 

imperfect sensor based upon Bayes’ Rule.  The performance of the sensor was not supplied and 

there was no analysis comparing system efficiencies at different sensor performance levels.  No 

statistics or reports on the number of false positives are provided.  It also seems that the value of 

alpha was computed in a simple ratio format.  This study used two distinct metrics to analyze the 

performance of the system.  The first of these is the target neutralization time.  This was the time 

needed to complete all a priori tasks.  The second metric was the time needed for every sector in 

the environment to be searched.  The system used Jin et al. does not increase its performance 

over time (i.e. it does not learn from past experience) and the system would not be able to react 

to unanticipated stimuli, such as a new threat.  To correctly interpret the new stimuli in terms of 

its impact on mission performance, the system designer would have to add a new set of rules to 

accommodate the new stimulus. 
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 Another example of a programmed system can be found in Yanli, Minai, and 

Polycarpou’s Decentralized Cooperative Search by Networked UAVs in an Uncertain 

Environment (2004).  The method of control used in this experiment had UASs share 

information and plan their paths over a set number of future steps.  This method is very similar in 

general architecture to that found in Jin et al. (2004), although the method found in the work of 

Yanli et al. (2004) includes other elements such as enemy defenses.  Each UAS selects a path 

that maximizes a scoring function.  The score function is made up of other separate functions.  

These functions each address different aspects of a proposed path: coordination, target 

confirmation, environment exploration, and threat avoidance.  The problem with this approach is 

that the system will not improve its performance over time.  If the threat function, for example, is 

set too low then the UAS control algorithm will not adjust this function to minimize future losses.  

The system in Yanli et al. is initialized with a given threat map and specified probabilities of 

survival for each location in the map.  There is no feedback in this approach where the system 

can adjust its behavior based upon encountering new information in the environment, such as a 

higher than expected threat levels or new threat profile.  This information would have to be 

entered into the system by a human operator. 

 Yet another example of these systems relies upon a network structure to coordinate the 

actions of a swarm of vehicles.  The work of Nygard, Chandler, and Pachter (2001) used such a 

network that was solved through a linear programming format.  All vehicles shared a common 

map of the environment.  Every time the status of this map changes the linear programming 

optimization is performed to reassign units to tasks in the most efficient way possible.  One of 

the major weaknesses of this study’s approach is that “there is a large burden on being able to 

accurately specify cost functions (Nygard, Chandler, & Pachter, 2001)”.  This weakness is 
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present in the other rule-based system studies as well.  Nygard et al., also envisaged that the 

machines would be able to share all map information instantaneously.  The study assumes that 

imaging systems are used to detect and classify targets.  The article does not mention how this 

recognition system behaves at a detailed level and does not supply the actual values used for 

thresholds or sensor performance. 

Machine learning systems. 

Unlike rule-based systems that use pre-defined rules and lack of adaptation based 

feedback, machine learning systems increase their performance over time by identifying and 

examining the effects of their past behavior or example data (Alpaydin, 2010).  They can adapt 

to new situations through their interaction with the environment.  Some general machine learning 

methods that have been used for control of autonomous robots are Genetic Algorithms (GA), 

Neural Networks (NN), and Reinforcement Learning (RL) (Panella, 2008).  All of these 

approaches can be categorized as machine learning systems, and can be applied to the search 

problem with varying degrees of difficulty and limitations. 

Among these approaches, RL is perhaps the most popular approach for adapting the 

behavior of a robot to an environment. A number of studies have been conducted on the 

suitability of RL in robot navigation.  Many of these experiments take the form of maze 

experiments or feature the agent vehicle navigating through hallways (Martinez-Marin & 

Rodriguez, 2007; Sutton & Barto, 1998).  These examples typically contain one goal state with a 

corresponding reward.  Other applications include job shop scheduling, network optimization, 

and effector control (Sutton & Barto, 1998).  Before reviewing the experiments that utilize RL as 

a means of navigation control in a robotic vehicle it is necessary to undergo an introductory 

review of RL methods, concepts, analyses, and terms, as described in the next section. 
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Reinforcement learning. 

 Reinforcement Learning (RL) is a name given to a category of machine learning 

algorithms that “learn” about their operating environment through experience.  The origin of RL 

algorithms is the concept that a living entity learns through experience and interaction with its 

environment (Sutton & Barto, 1998).  For engineering and control applications, the overall 

concept of RL is that RL is able to learn using rewards that are generated by its operating 

environment.  RL controlled entities take an action that changes the environment.  The 

environment may then change from the perspective, of the RL controlled system and also receive 

a reward from the environment.  The reward is an indicator of the usefulness of the action taken 

by the system.  This reward is used to reinforce the likelihood of taking the action again.  A 

diagram demonstrating this dynamic is shown below in Figure 1. 

 

Figure 1: The RL architecture.  A diagram of the basic interactions that are 

necessary for a RL implementation.  Rewards are conceptually generated from the 

environment as they drive the controller’s action selection and performance.  

Reproduced from “Reinforcement Learning: An Introduction” by Sutton and Barto 

1998. 
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The core mechanic in RL is that it must balance exploration with exploitation.  During 

exploration the RL algorithm takes actions and transitions to states in way that features some 

degree of randomness.  This enables the RL system to eventually explore its entire environment 

in the limit of an infinite number of exploratory steps.  The exploration mechanic is a primary 

contributor to the utility of RL algorithms as it enables unsupervised learning.  Unsupervised 

machine learning methods can be initialized in a completely unknown environment and are still 

able to reach an optimum level of performance, based on the reward received from the action 

taken.  That is, they do not need to be trained or extensively initialize with behavior information 

to eventually become effective.  The other side of RL is its ability to exploit the information it 

has gained.  Exploitation relies upon the RL algorithm’s past experiences acquired through 

exploration to maximize or minimize a given reward function.  The strategies and methods used 

to carry out this mechanic are described in more detail below.  It is worth noting that Sutton and 

Barto’s 1998 text, Reinforcement Learning: an Introduction, seems to be a common resource for 

the studies discussed in this section.  Additional information can be found in Alpaydin’s 2010 

Introduction to Machine Learning.  Therefore these two texts are the main resources for 

discussion on the structure and behavior of the common RL algorithms in this section.  The 

section ends with a review of studies and simulations of RL algorithms implemented in a 

navigation task.  All RL algorithms feature some common components and mechanics.  The 

decision of how these components and mechanisms function and interact with each other largely 

depends on the specific application (Krothapalli, Wagner, & Kumar, 2011; Sutton & Barto, 

1998).  The basic elements of a typical RL system are; the agent, the environment, states, 

rewards, the value function, the policy function, and the exploration mechanic. 



14 

 

The agent. 

   The agent is the decision-maker in the RL system.  “An agent is the entity that 

communicates with and tries to control external processes by taking appropriate actions” 

(Ribeiro, 2002).  The agent makes its decisions based upon policy functions and value functions.  

Value functions are methods that map the rewards that the agent has experienced to specific 

states and/or actions that it has tested.  Policy functions dictate to what state the agent should 

move or what action it should select when presented with a given situation.  A simple and often 

used policy is to select the state or state action pair that has the highest value (Whitehead & 

Long-Jin, 1995).  Policies are also capable of incorporating other information not directly linked 

or processed by the value function (Costa & Gouvea, 2010).  Policies can also be stochastic in 

nature, which aids in exploration (Sutton & Barto, 1998).  In robotic applications the agent does 

not necessarily correspond to the robotic vehicle.  One example of how an agent controlled robot 

can represent part of the environment is the energy or fuel level of the robot.  The agent may or 

may not need to be aware of these parameters to achieve the desired performance in the 

application. 

State construction and environment representation. 

 The agent perceives its environment through the use of states.  A state is an instance of 

environmental parameters that an agent can perceive and act upon.  A state provides a point to 

which an agent can associate information, and therefore enable decision making (Sutton & Barto, 

1998).  Position, fuel level, time remaining, threats, and distance traveled are only a few 

examples of environment parameters that can be represented through the use of states.  A state in 

RL algorithms is usually denoted by s.  One state represents one condition, or instance, of the 
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environment.  One of the major disadvantages of the state encoding process is commonly 

referred to as the curse of dimensionality (Kaelbling, Littman, & Moore, 1996; Krothapalli et al., 

2011; Ribeiro, 2002; Sutton & Barto, 1998).  This arises as the designer of the system tries to 

increase the performance of the RL algorithm by including more state dimensions or increasing 

the resolution of existing dimensions.  A state dimension is a set of states that are used to 

perceive the current situation.  While this increases the amount and precision of information the 

agent receives at any one time, it also greatly increases the number of states exponentially.  The 

addition of a new state dimension results in, at minimum, a doubling of the number of possible 

states that the agent will likely have to explore.  It is easy to generate a state architecture that 

features thousands or more states. 

 The consequences of this explosion of state combinations is that the agent now needs 

more decision time or runs to explore the state space to determine an optimum policy.  The 

problem is further compounded if states and actions are considered separate entities in the value 

functions, also known as state-action values.  An action is usually denoted as a, and RL 

algorithms that use states and actions are called state-action implementations.  In state-action RL 

implementations possible actions are indexed in the same manner as an additional state 

dimension.  The state action RL architecture is a common paradigm used in robotic control 

(Smart & Kaelbling, 2002; Sutton & Barto, 1998). The reason for the action selection mechanic 

is that a robot can have multiple choices of action in a given state, and the resulting state can be 

the same, but the rewards received are different.  A specific state and action in RL algorithms are 

denoted as st and at, respectively.  The notation t represents a state st or action at that is taken at 

time t.  Future states or actions are noted as st+i and at+i, respectively. 
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 An important aspect in the application of RL algorithms to decision-making and control 

problems is that operating space must be Markovian.  The principle concern with the Markov 

property in RL is that the states that the agent can explore must contain all relevant decision 

making information (Sutton & Barto, 1998).  Such decision problems are called Markov 

Decision Processes (MDPs).  A process exhibits the Markov property if the future probabilistic 

outcomes of the process depend only on the current state and action selected by the agent 

(Alpaydin, 2010).  The past states of a MDP do not have any bearing on the process in the future.  

The Markov property is sometimes referred to as the independence of path property.  Non-

Markov problems that rely on previous state and action information can be made Markov in 

nature through further state encoding being supplied to the agent, but this usually results in large 

and complex dimensionality problems (Ribeiro, 2002).  Some success has been reported with the 

application of RL to hidden state MDPs, called Partially Observable Markov Decision Process or 

POMDPs (Sutton & Barto, 1998).  It is worth mentioning that at the time of this writing the 

methods used to accomplish these tasks do not seem to be widely used and can vary widely in 

their performance (Sutton & Barto, 1998; Whitehead & Long-Jin, 1995). 

Rewards and value functions. 

 The environment is the source of rewards (Sutton & Barto, 1998).  Rewards, once 

mapped via value functions, provide the impetus to the RL algorithm to constantly improve its 

performance.  Rewards indicate to an agent how desirable its current situation is.  Rewards are 

received by the agent and processed into state or state action values by the agent’s value function.  

It is possible for an agent to receive a negative reward, and is typically referred to as a penalty 

(Ribeiro, 2002; Sutton & Barto, 1998; Whitehead & Long-Jin, 1995).  The reward and penalty 

system is one source of “design freedom” when implementing RL algorithms (RLA), and 
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requires careful consideration.  In algorithm formulation, a reward is usually denoted as r.  If 

penalties are overly large relative to their actual severity then the agent may avoid a path or 

action sequence that would yield better real world results.  The inverse is true for rewards.  

Therefore it is best to set reward and penalty values to levels that reflect the relative desirability 

of target states and actions. 

 In order to operate the agent must link states or state-action pairs to the rewards or 

penalties that they generate.  Furthermore, states and state action pair values must also indicate if 

they have access to future rewards or penalties.  The agent accomplishes this through the use of 

value functions.  A value function calculates a numerical indicator of how “good” it is for the 

RLA to be in a given state or select a given action (Sutton & Barto, 1998), and is referred to as a 

state value or state-action value, depending on the implementation.  When calculating the value 

of a state or action the agent is backing up the reward received from that state or action, 

essentially assigning “credit” for a given reward.  The particular method used to accomplish the 

backup gives rise to different types of RL algorithms.  The state or state-action values are 

typically stored as an index, where the RLA “looks up” its current state and the available actions 

that can be taken in that state.  In the exploitation paradigm, the RLA would select the action that 

had the highest value.  Typically for an agent using only states the value function is denoted as � 

and for a state action implementation as � (Sutton & Barto, 1998; Kaelbling et al., 1996).  The 

exact structure of a value function depends largely on a designer’s choice and the specific task 

that the RL controller is meant to accomplish.  When indicating the state value of a given state 

the term ���� is used for a state value and ���, �� is used for a state-action value.  

 Depending on the value function paradigm a backup operation can be carried out online 

or offline.  Online updates tend to produce better results as the agent has access to acquired 
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information instantly, as opposed to waiting for the end of an episode or play before the value 

function map is updated (i.e. offline updating).  Two of the most often used value function 

paradigms of RL used are Monte Carlo (MC) methods and Temporal Difference (TD) methods.  

Monte Carlo methods update state values iteratively through multiple sweeps of a state-space 

and wait until the end of an episode or play to update the state values.  The updates generated by 

the Monte Carlo methods depend entirely on the reward generated by the current state and the 

rewards of states visited latter in the sweep (Sutton & Barto, 1998).  For long episodes or 

continuing tasks future rewards generated during one sweep of the state space can be discounted 

(Alpaydin, 2010; Sutton & Barto, 1998; Whitehead & Long-Jin, 1995).  The discount parameter, 

�, is a value used to weight rewards based upon how many steps in the future they are expected 

to occur.  The discount parameter allows rewards that occur in the future to be linked to the 

currently occupied state or tested state-action pair.  Rewards that occur sooner are given a higher 

value than rewards that occur later.  The discount parameter has a value somewhere between 

zero and one depending on the designer and application.  A state encountered by the agent is 

given partial credit for any rewards encountered by the agent in the future through the 

discounting mechanic.  The amount of partial credit given to a particular state is dependent upon 

the discount parameter raised to a power equal to the number of steps in the future the reward 

occurred.  This discounting of future rewards forms a target for the value function of the current 

state.  The target value is defined as R, and the specific state and action that the reward is 

assigned to is noted as R(st, at).  The target calculation for the MC paradigm is given below in 

Equation 1. 
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 Here t is the current time step and s is the current state.  The value i is the number of steps 

in future that the reward r has occurred, and may take a value between zero and one.  The value 

of r can take any real value, positive or negative.  When r is negative, it is frequently referred to 

as a penalty.  T is the maximum number of steps into the future that the reward function is 

allowed to consider.  This reward value calculation serves as a target for the value of the state or 

state action pair.  The value of the state is then incremented towards this target by an update 

relation given in Equation 2.  The value ���′
, �
�� is the new value of the state action pair s and 

a at time t. 

���′
, �′
� � 	���
, �
� � 	��	
��
, �
� � 	���
, �
�� (2) 

 The new value is calculated every time the state �
 is encountered.  The value of � is 

adjusted according to the number of visits to a specific state action pair that have occurred, 

usually referring to the number of times that a given state or state-action pair has been 

encountered.  This method is used for static tasks.  For dynamic tasks and environments the 

value of � can be held constant.  For static tasks the value of alpha is determined by Equation 3. 

� � 	 1��,� (3) 

 Here ��,� is the number of times a given state action pair has been experienced.  This 

value is initialized to one and is incremented without limit.  The calculation of ��,�  requires a 

separate list with the same dimensions of the state-action value index and is incremented by one 
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for every visit to the state action value.  In this way the value of the state or state action pair 

converges to its discounted true value.  The process for implementing this method in a state 

action formulation is provided below (Kaelbling et al., 1996; Sutton & Barto, 1998): 

For every state s and action  a encountered by the agent at the end of the episode: 

Determine the discounted reward received by using the equation: 

	��
, �
� � ���
��
��  

Update the number of visits to pair s, a by incrementing the table K: ���, �� � ���, �� � 	1 

Update the value of the state action pair s, a by using the equation ���′
, �′
� � 	���
, �
� � 	��	
 � 	���
, �
�� 
Repeat until state action list is exhausted 

 The method of state value updating in Temporal Difference (TD) learning contains an 

additional element when backing up its state values.  The Temporal Difference method uses the 

estimated value of the next state instead of actual future rewards in its calculation of the state 

value.  The difference between the estimated value and experienced value is calculated and the 

new value is incremented toward the experienced value (Conn & Peters, 2007; Sutton & Barto, 

1998).  The total reward of a given state in the TD method is the reward received in that state and 

the perceived value of the next state.  In a state-action pair implementation the maximum value 

of all available actions in the next state serves as the estimate target.  The next state or state-

action pair’s value is usually discounted to allow for bias towards more immediate rewards.  This 

allows states and actions that are far from the high reward yield states to have a lower value than 

those states that are closer.  In the case of state-action pair implementation the highest value of 

the next state action pair is used.  The method used to calculate the difference for a one step 

state-action implementation is given below in Equation 4 (Sutton & Barto, 1998, p. 149). 
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 Once the difference has been calculated then the state-action value is incremented by a 

portion of this difference.  An increment is used to accomplish this in the same way as the MC 

method (Alpaydin, 2010).  The increment � is calculated in the same manner for the TD 

implementation as it is for the MC methods.  Therefore the formula for the update is shown in 

Equation 5. 

���′
, �′
� � ���
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� � 	�� ���
, �
�� (5) 

 If the formulation is fully expanded then the result is Equation 6. 
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 This formulation is one specific instance of a class of algorithms collectively referred to 

as TD(&).  & is the degree to which the temporal difference method relies upon the estimated 

values of the future states.  It is separate from a discount parameter as it assigns the credit of 

current rewards backwards through recently visited states.  A value of zero signifies that the 

method relies only upon the current reward and the estimated value for the next state, whereas a 

value of unity is equal to the MC formulation (Sutton & Barto, 1998).  The previous formulation 

is a one step method, which can also be called TD(0), meaning that it uses the current reward and 

the next step’s value (Alpaydin, 2010).  This pattern can be extrapolated further as	& moves 

towards one until the equation becomes the MC implementation.  The & parameter is used as a 

weight to determine the degree to which a state should be backed up based upon previous 

estimates and actual rewards (Alpaydin, 2010; Sutton & Barto, 1998).  The value functions allow 
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RL algorithms to relate rewards to states and actions.  Value functions converge as the number of 

visits to a given state or state action pairs goes to infinity.  The MC and TD methods converge to 

different values.  Value functions thus allow a RL agent to exploit its knowledge of the 

environment.  However, to gain this knowledge, especially in applications with completely 

unknown environments or dynamics it is necessary for the agent to explore. 

Exploration strategies. 

 RL algorithms work between two modes of operation.  One is known as exploration.  The 

other is exploitation.  In its exploitative mode a Reinforcement Learning Agent (RLA) simply 

takes an action that is estimated to yield the most reward or least penalty.  In the explorative 

mode the agent chooses from among a given set of actions that are available in the present state.  

The method used to select the explorative action is generally up to the designer of the algorithm.  

The most common versions are widely referred to as (-greedy and Softmax exploration 

(Alpaydin, 2010; Sutton & Barto, 1998). 

 The (-greedy function is a simple method used to select between exploitation and 

exploration.  Every decision step, a random number is generated.  If the number is greater than 

the value of ( the agent selects the exploitative mode of operation to determine the next action.  

If it is less than the value of ( the agent randomly selects any other action other than the one 

perceived to generate the best reward (Alpaydin, 2010, Sutton & Barto, 1998).  The range, and 

thus the probability, that triggers exploratory actions can be reduced relative to the number of 

decision steps made in an episode (Sutton & Barto, 1998).  This lets the algorithm explore more 

often at the start of an episode while increasing its exploitative behavior (i.e. behaves more 

greedily) near the end of the simulation.  The general process for ( greedy action selection and 

implementation is given below (Alpaydin, 2010; Sutton & Barto, 1998). 
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Initialize s and a for entire set of states S and actions A 

Initialize ( 

For every step in episode: 

Generate a random number n 

If n is greater than (: 

Take the highest valued action 

Once the action is complete update the value of the state 

Else if n is less than ( 

Take an exploratory action 

Repeat until the end of the episode 

 Another class of strategies for choosing an exploratory action is the use of the softmax 

methods.  The softmax methods take all possible actions in a given state and normalizes them 

relative to the estimated yield of the rewards those actions may generate if selected.  Thus, more 

profitable actions have a higher probability of being selected and possibly yielding new optimal 

strategies for task completion (Kaelbling et al., 1996).  A commonly used version of softmax 

exploration is called the Gibbs distribution.  The Gibbs distribution normalizes the probabilistic 

selection by setting the state or state-action values as exponents (Sutton & Barto, 1998).  The 

result is that actions with higher values have a much larger probability of being selected.  The 

Gibbs method features a temperature variable that is used to adjust the relative probability of 

selecting less valued actions over time or the length of an episode.  This is also referred to as 

simulated annealing in RL literature (Alpaydin, 2010).  When the temperature variable is very 

large the probability of selecting any given action in an action set is relatively uniform.  As the 

temperature variable ) decreases the relative differences of the estimated rewards between 

actions become more acute.  A disadvantage with softmax methods appears when the perceived 

values of the next best action are relatively close.  Multiple high state values result in a high 

probability of selecting the second best exploratory action throughout the course of the 

simulation.  The formula for the Gibbs distribution is given below (Alpaydin, 2010; Sutton & 

Barto, 1998).  The method generates the probability of selecting action �in state s is shown in 

Equation 7. 
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Page 31 of Sutton and Barto (1998) states that “whether softmax action selection or (-

greedy action selection is better is unclear and may depend on the task and on human factors”.  

The use of “human factors” in this context seems to refer to the fact that people would find it 

easier to understand the implications of changing values of ( in the (-greedy function (Sutton & 

Barto, 1998). 

The behavior and performance of a RL algorithm also depends on how the state or state 

action value sets are initialized.  If states or state action values are initialized with a high value 

then the agent will tend to visit unexplored states even while in an exploitative mode of operation 

(Sutton & Barto, 1998).  Matignon, Laurent, and Fort-Piat (2006) demonstrated that an 

advantage to this behavior is that the agent can rapidly explore its environment.  A possible 

disadvantage is that an agent may visit previously unvisited states or state action pairs latter in 

the simulation, likely producing suboptimal results.  On the other hand, if the initial values are to 

low then the agent can perceive a truly undesirable state as a good state simply because these 

states were updated on a previous run.  This mode of initialization effectively results in the agent 

visiting the same states or state-action pairs repeatedly (Matignon, Laurent, & Fort-Piat, 2006).  

Further work in Matignon et al. (2006) also demonstrated initializing state value functions in a 

manner that would enable the agent to quickly move towards more useful states and minimize 

the time and computational cost of exploration.  A Gaussian curve was used when initializing the 

rewards in a maze task that allowed the agent to more quickly discover the goal state.  A similar 

application of these “progress indicators” can be applied to state value functions in such a way as 

to mitigate the effects of a reward “sparse” environment mentioned in Kaelbling et al. (1996).  

The approach of Matignon et al. (2006) could possibly increase the learning rate of the RL 
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controller.  A disadvantage here is that initializing the values of states at or near the goal requires 

a priori knowledge of the operating environment.  Therefore, the unsupervised learning aspect 

and advantage of RL controllers is mitigated. 

State and complexity reduction in reinforcement learning. 

A prevalent obstacle with RL implementation in real-world application is that many 

parameters and measures essential to the efficient operation of the robot are continuous in nature.  

To perfectly model a real world environment would often require a prohibitive number of states.  

Compounding this issue is that an individual state often represents values of multiple dimensions.  

Techniques and methods used to combat this issue have been explored in various simulations and 

experiments.  It is possible to truncate the state-space so that a continuous function is 

approximated (Buck, Beetz, & Schmitt, 2002; Sutton & Barto, 1998).  The truncation mechanism 

operates on the similarity between adjacent states.  States that are operationally similar (e. g. two 

adjacent positions are free of obstacles) are combined to create a single state.  The reverse of this 

operation can also be done where the agent subdivides a state given that the sensor readings or 

rewards from that state are not homogenous (i.e. a large amount of variance in the reward is 

encountered in a given state). 

Yet another method is the use of the hierarchical agent architecture (Sutton & Barto, 

1998; Yen & Hickey, 2004).  Hierarchical control operates on the assumption that a single, 

possibly complex task can be decomposed into smaller subtasks.  These hierarchical structures 

are essentially multiple RL controllers operating in “tandem” on a problem.  A simple 

hierarchical setup is shown below in Figure 2. 
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 The high level controller in the hierarchical framework works on the larger, overall 

objectives of a problem.  A good example of this is a navigation task where the environment is 

extremely cluttered with obstacles.  The high level controller may not perceive the layout of the 

vehicle’s immediate surroundings, but only decide on the general direction it should go.  Once 

the decision about intended direction of travel has been made the low level controller works out a 

way to navigate through the obstacles (Yen & Hickey, 2004).  The hierarchical architecture 

allows each controller to reduce the number of state dimensions that it must explore.  The 

hierarchical method seems to have a drastic effect on the performance of the algorithms when the 

size of the environment is large (Sutton & Barto, 1998, p. 260).  Thus the amount of 

Figure 2: The hierarchical reinforcement learning interaction diagram.  Both the low level and high level control 

receive state information directly from the environment.  The low level controller also receives information in 

the form of a desired action from the high level controller.  In this way the high and low level controllers are able 

to work on different state dimensions, thereby reducing the computational effort of the problem.  This diagram is 

a work of the author. 
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computational effort spent on exploring the state space is reduced, increasing the speed of 

learning. 

Example applications of reinforcement learning. 

 Reinforcement Learning can be applied to many different problems and environments.  

One of these was the control of robotic vehicles with novel effectors.  Effectors are the physical 

constructs that robots use to interact with their environments.  Some examples of complex and/or 

nontraditional effectors studied with Reinforcement Learning control were; biologically inspired 

limbs and methods of movement (Lin, Xie, & Shen, 2009), reconfigurable vehicles (Valasek, 

Doebbler, Tandale, & Meade, 2008), and sensor interpretation (Stafylopatis & Blekas, 1998).  

One particular example of RL in nontraditional and complex effector control was the use of 

biologically inspired undulating fins to steer a submersible vehicle (Lin, Xie, & Shen, 2009).  

The fins were independently controlled and could operate at different frequencies.  A RL 

algorithm was implemented to determine the best combination of frequencies to keep the robot 

oriented at a desired heading.  The states used in this case were the current heading and rate of 

change of the heading.  The action set that the agent could explore were different frequencies at 

which the fins could operate.  81 actions were selectable by the agent representing every 

combination of the control frequencies at which the undulating fins could operate.  An (-greedy 

action selection strategy was used to instigate exploratory behavior.  It was concluded by the 

authors that the experiment successfully resulted in a policy to control the vehicle in every given 

state (Lin, Xie, & Shen, 2009).  It should be noted that the (-greedy strategy that was used 

resulted in a large amount of noise in the steady-state performance.  This could have been 

mitigated by reducing the value of ( over the simulation time. 
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Another application for RL can be found in the work of Balakrishna, Ganesan, and 

Sherry (2010).  This work applied RL methods to the task of predicting the time needed for 

aircraft to taxi out to their assigned runway at a major Unites States airport.  The state variables 

used to make the predictions were performance measures that are usually obtained for queuing 

and processing systems (Blanchard & Fabrycky, 2011).  Time of day was also used as a state 

dimension.  The outputs of the algorithm were predictions of the time needed by individual 

flights and the average time needed for all flights to taxi out to the runway.  The results of the 

experiment showed that the algorithm was able to predict taxi out times with an accuracy of 90%.  

An accurate prediction was assessed as being within 90 seconds of actual observed behavior.  

This work is a prime example of how RL algorithms can be applied to problems outside robot 

control. 

Reinforcement learning applications in navigation control. 

  The utilization of RL algorithms to control robots navigating in an uncertain 

environment is not a new concept (Sutton & Barto, 1998).  Many RL experiments take the form 

of an agent navigating a maze or moving around discrete obstacles to reach a goal position 

(Kaelbling et al., 1996).  The mazes used vary in complexity based upon designer choice and 

computational limitations.  Some maze applications have obstacles and traps that get the agent 

“stuck” or send it away from the goal position.  One experiment features a cliff where the agent 

is sent back to the start if it falls into a set of penalty positions (Sutton & Barto, 1998). 

 Tian, Yang, Qi, and Yang (2009) conducted an RL experiment where multiple learners 

were present in the same space to complete a task.  The uses of multiple robots simultaneously 

lead to the application of multiple agents in the same state space.  A major advantage of this 

mode of operation was that the individual agents would be able to exchange information between 
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each other, increasing the rate at which the state space was explored.  Logically, the performance 

of such a system would be increased if the agents were initialized relatively far from each other 

in the state space.  In Tian et al. (2009) simulated robots carried sensors to determine if a task 

was present at a given position and if the task was already being serviced by another machine.  

The machines had to travel to the task location and cooperate to complete at least one of the tasks 

in the simulation.  No detail on if the performance of the sensors was supplied.  Performance 

metrics were collected based upon the total amount of reward generated by the system and the 

amount of time needed to reach an optimal solution. 

The work of Yen and Hickey (2004) investigated the capabilities of RL algorithms in 

dynamic environments.  RL algorithms traditionally do not perform well in dynamic 

environments as learned state values become obsolete as the environment changes.  In order to 

reduce the dimensionality of the problem the hierarchical agent architecture was employed.  A 

similar approach can be found in the work of Perron, Hogan, Moulin, Berger, and Belanger 

(2008).  For the operation of the RL algorithm in the dynamic environment a “forgetting” 

function was employed.  This function was simply a coefficient with a value between zero and 

unity that drove the value of a given state action pair back to its initial value over time.  The 

study proposed that the benefits of a distributed control are more efficient in larger environments 

as well as dynamic environments.  The study also introduces a separate work where a user’s 

input can be integrated into the system and change the systems behavior. 

 Another example of RL algorithms used in navigation can be found in the work of Costa 

and Gouvea (2010).  The task of the agent in this experiment was to arrive at a certain location 

on a map while expending the least amount of energy to get there.  The map in question was a 

simulation of three-dimensional terrain with peaks placed in random locations.  What was unique 
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in this simulation was that the exact position of the agent vehicle was not used as a state.  The 

nearby terrain features were presented in a combinatorial fashion.  Possible movements 

corresponded to grid locations.  The agent’s action choice consisted of the available vertical 

movements present in the current state (i.e. travel uphill, downhill, or maintain altitude).  The 

policy used by the agent fused heuristics with the standard state action value formulation.  This 

heuristic calculated the future distance of the agent vehicle from the goal position given a 

proposed action.  In this way, the policy takes into account both the energy conservation metric 

and the distance metric. 

Another application of RL in navigation can be found in Krothapalli, Wagner, and Kumar 

(2011).  In this work, an experiment was run where the agent subdivided the state space on its 

own, which was called “variable grid sizing”.  Specifically, the agent vehicle was navigating a 

simple maze to a goal position.  The agent created large states for operating regions with the 

same general characteristics.  If a state was found to contain an obstacle then the state was split 

into smaller states and these are explored.  No mention of the reliability of the sensor is made in 

this experiment.   The study concluded that the variable grid sizing method was able to reduce 

the computational requirements of the traditional RL methods while still yielding optimal 

performance. 

 A study that attempted to shed light on the robustness of RL algorithms in dynamic 

environments can be found in Conn and Peters (2007).  In this study, a TD algorithm was used to 

pilot a real-world robot through an environment.  The environment also sometimes contained 

obstacles.  The study investigated the reliability of the RL algorithm to complete its mission and 

how robust the RL controller was when operating in a dynamic environment.  No mention of 

sensor performance or effects thereof is given in the work.  A variable manipulated in this study 



31 

 

was the step increment between the current state action value and the perceived value by the 

agent.  The study concluded that an alpha value of 0.9 provided the best results when considering 

the number of episodes in which the agent made it to the goal state. 

 All of these studies show that RL can be applied to high level control problems.  

However, none of the experiments featured above address the impact of sensor performance on 

the capability of the system.  Future UASs and other autonomous systems will require advanced 

sensor systems to operate in congested airspace or identify and track mission objectives and 

targets of interest.  To study the problem of sensor performance in autonomous UASs requires 

some examination of current sensor technology and a mathematical framework to describe a 

sensor’s characteristics. 

Sensor systems in UASs. 

 Current sensor technologies that have been studied for use in autonomous systems for 

collision avoidance are active radar and electro-optical (EO) systems (Fasano, Forlenza, Tirri, 

Accardo, & Moccia, 2011; Lai, Ford, Mejias, & O'Shea, 2012; Luongo, S., Vito, V. D., Fasano, 

G., Accardo, D., Forlenza, L., & Moccia, A. 2011).  Reliability of the sensor and control system 

for autonomous UASs has been identified as a critical area of research (Clough, 2005).  , G., 

Accardo, D., Forlenza, L., & Moccia, A. (2011) showed that EO sensing systems feature 

probabilities of reporting false targets.  The false alarm rate was reported to be 1.6%, but was 

originally as high as 10%.  Another study by Jacques (2003) featured the possibility of false 

targets being picked up by swarming vehicles and being attacked.  Sinopoli, Micheli, Donato, 

and Koo (2001) developed a system that relied on vision (i.e. eletro-optical) sensors to develop a 

lowest risk path to a preplanned target.  The work concluded that imperfect sensor performance 

should be expected and taken into consideration when designing autonomous control systems.  
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Outside of UASs, a large amount of research in image recognition and classification is 

specifically targeted at identifying road vehicles as a way to monitor traffic systems.  This type 

of research provides some hard numbers for the hit rate that can be expected in autonomous 

sensing and targeting systems.  Artificial Neural Networks (ANNs) have been used in a number 

of experiments to classify vehicles based upon the vehicle’s geometry.  This approach has 

yielded recognition hit rates of over 90% when simply trying to detect vehicles (Gupte, Masoud, 

Martin, & Papanikolopoulos, 2002; Wei, Zhang, & Wang, 2001).  Other research has generated 

detection and classification rates as high as 97% (Takeo, Yoshiki, & Ichiro, 2002).  No reports 

were made regarding the false alarm rate or correct rejection rate of these experiments.  The 

vehicle recognition research does suggest that a hit rate of 90% or above is possible.  Research 

findings in the area of the sensor performance provides a basis for a Signal Detection Theory 

(SDT) model to be applied in the image based sensing system. 

 The current literature on sensor characteristics in autonomous UASs and other detection 

applications demonstrated that an investigation into the impacts of sensor reliability on 

autonomous systems behavior would be useful.  The numerous types of sensor systems that can 

be used in autonomous UASs indicate that an abstract, high level model that can systematically 

address the effect of sensor characteristics on the agent performance is needed.  The model 

should be able to capture the most salient aspects of the imperfect sensor systems described in 

the brief review above.  Namely, the modeled sensor should feature hits, misses, and false alarms, 

and a unifying mathematical model that relates these possible outcomes.  This will provide an 

abstract way to compare and quantify the performance of different sensor systems, regardless of 

their means of detection.  One such model that does this is Signal Detection Theory (SDT). 
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Signal detection theory. 

 The origins of Signal Detection Theory (SDT) are rooted in psychology.  SDT is 

considered to have originated from the work by Green and Swets (1966), Signal Detection 

Theory in Psychophysics (Macmillan & Creelman, 1991).  The text derives a way to describe the 

ability of a decision maker or sensor, referred to as a “receiver”, to distinguish between different 

stimuli and noises.  The fundamental mechanic behind SDT is that a signal is separate from noise.  

Both the signal and noise are often modeled as Gaussian curves.  The noise and the target signal 

elements of the environment do not coexist at the same time for any given state of nature (i.e. 

only one curve is present at a given time).  A signal, whether generated from noise or from the 

target, will generate a value probabilistically.  If this value is above a predefined threshold then 

the receiver indicates a target is present and vice versa.  If a receiver becomes more sensitive, 

that is if the threshold is lowered so that the trigger value is more likely, then the receiver is more 

likely to mistake the noise signal for the true signal.  An ideal observer in SDT is defined as a 

receiver whose threshold is set in such a way as the probability of generating a false signal is the 

same for the two possible states of nature (Macmillan & Creelman, 1991).  An example plot of 

the noise and true signal probability distributions are provided below in Figure 2. 
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 Given a two set discrimination task (i.e. two possible outcomes for two possible states of 

nature) there are four possible conditions.  The first of the correct responses is when a receiver 

indicates that a target is present and the target is truly present.  This is referred to as a “hit”.  The 

second possible condition is the sensor truly indicating the absence of a target and is termed a 

“correct rejection”.  The first of the false readings is when a target is present but the receiver 

reports no target present and is called a “miss”.  The last condition is when a receiver reports a 

target when one is not truly present.  This is referred to as a “false alarm”.  Table 1 illustrates the 

possible states and responses. 
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cross determines the liklihood of generating false signals.
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Table 1 

Possible responses of a sensor with two possible states of the environment 

 Receiver Response 

State of Environment Report Target Present 
Report Target Not 

Present 

Target Present Hit (H) Miss (M) 

Target Not Present False Alarm (F) Correct Rejection (C) 

 A core concept in SDT is the Receiver Operating Characteristic (ROC).  A receiver ROC 

curve is often determined by a difference of the probabilities of these responses.  Another way to 

represent a ROC curve’s “score” is in a ratio format, which is the preferred method of 

classification used in this study.  The numerator of the ratio is the combined probability the 

receiver returns a true reading.  The denominator of the ratio is the probability that the receiver 

returns a false reading.  A higher ratio is associated with a receiver better able to return a correct 

reading for a given state of nature.  The ratio, in Choice Theory, is often referred to as “α” 

(Macmillan & Creelman, 1991).  A ratio of unity indicates a receiver that is as likely to return a 

true reading as a false reading given an equally random true state of the environment (Green & 

Swets, 1966; Macmillan & Creelman, 1991).  The probability of a hit or the sensor declaring that 

a target is present when a target is truly present is denoted as 2�3�.  The probability of a false 

alarm or the sensor declaring a target is present when there is no target present is labeled as 2�4�.  
The equation for determining the ratio is given below: 

� � 52�3��1 � 2�4��52�4��1 � 2�3�� 
 

(8) 

 The cumulative probability of all the responses to each state of nature must equal unity.  

Thus the probability of a “Hit” is the complement of the probability of a “Miss”.  This 
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relationship is also present for the probability of a “False Alarm” and a “Correct Rejection”.  In 

this way, the ROC can be determined with only the Hit and False Alarm Rates being known. 

 A given alpha can return any number of possible combinations of 2�3� and 2�4�.  For 

example, a 2�3� of 0.6 and a 2�4�	of 0.2 results in an alpha of approximately 2.45.  If the 2�3� 
is 0.8 and the 2�4�	is 0.4 then the same alpha is also computed.  The sensitivity between the two 

pairs has not changed, but the bias for a positive response is greater in the second instance.  

These features give rise to the concept of the ROC curves.  All possible combinations of Hit and 

False Alarm Rates for a given alpha can be plotted as a curved line (Green & Swets, 1966; 

Macmillan & Creelman, 1991).  These lines are referred to as isobars as all points on the curve 

indicate the same receiver sensitivity.  Figure 3 displays these curves at some selected alpha 

levels. 
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Literature Review Summary 

 The previous studies showed that RL, in general, provides system designers a simple yet 

powerful way to shape the control functions and behaviors of a system in a complicated 

environment.  However, RL is limited by the ability of the agent to perceive its environment and 

thus deduce its true state.  Very little research has been done regarding the effects of a sensor’s 

performance on the performance of the RL algorithms due to the fact that there is lack of 

theoretical model available to address the sensor characteristics.  SDT provides a mathematical 

framework to effectively implement a model of the sensor behavior.  SDT also provides a useful 

tool to abstractly and efficiently describe the performance of different types of sensors.  Previous 

studies show that sensing mechanisms can produce Hit Rates as high as 90% or greater.  The Hit 

Rate can be implemented in an SDT model and the sensitivity of the sensor can be adjusted to 

determine the effect it has on the performance of the system.  Through implementing SDT within 

an RL simulation this research could benefit future designers of robotic systems that are 

governed and optimized through the use of RL algorithms. 

Problem Statement 

 The objective of this research is to investigate the effects of sensor performance on the 

ability of an autonomous Unmanned Aerial System (UAS) controlled by a Reinforcement 

Learning (RL) algorithm to accomplish a target acquisition task.  Little work has been conducted 

to assess the impact of sensor performance deterioration on the capabilities of autonomous 

systems using reinforcement learning algorithms.  The reviewed methods and algorithms used to 

achieve autonomy for searching UASs often feature a simulated imperfect sensing or control 

mechanism, but to the author’s knowledge, no reinforcement learning controlled systems studies 

have generated data where the sensor performance was explicitly changed and the resulting 
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system behavior analyzed or compared.  Some simulations simply do not incorporate an 

uncertain sensing mechanism.  Even some real world experiments, such as hallway navigation, 

feature well defined environments so that a sensor can be assumed to behave perfectly.  The 

performance of the sensor in this work was modeled through Signal Detection Theory (SDT).  

After the simulation was been run, an analysis of the individual systems’ behavior was 

conducted to reach conclusions on the effects, if any, on the ability and efficiency of the systems 

to complete their objectives.  The two commonly used forms of RL implementation, Temporal 

Difference and Monte Carlo methods were used to control the system. Conclusions were reached 

about the differences in system performance. 

Hypotheses 

 There are two main hypotheses that are the focus of this study.  The first hypothesis is 

that the systems with higher sensor sensitivity will locate targets more quickly and efficiently 

than the other systems during steady-state performance.  In other words, it is believed that a 

sensor with a higher Receiver Operating Characteristic will locate targets faster.  To test this 

hypothesis a number of metrics and figures of merit must be compiled to fully describe the 

system’s mission performance.  These metrics and figures of merit are described in more detail 

in the Metrics section of this study.  The second hypothesis is that the systems using the TD 

methods will yield higher performance results than those that rely on MC methods.  This 

hypothesis will be tested using some of the same data used to test the first hypothesis.  More 

information on how the data is used to test the hypotheses is provided in the Metrics section of 

this study. 
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Method 

Experiment Description 

Experiment variables description. 

 The experiment featured two independent variables (IVs).  One of the IVs was the 

performance of the sensor.  The performance was manipulated through the value of � defined in 

SDT.  There were four sensitivity values (i.e. levels of the IV) used in this study.  Three of the 

systems simulated imperfect sensor equipment with alpha values of 4, 7, and 10.   The hit rate of 

the systems equipped with imperfect sensor systems was set at a value of 0.9.  The fourth system 

had a perfect sensor, implying an alpha value of infinity.  The perfect sensor had a perfect hit rate 

and never generated a false alarm.  The second IV was the form of RL algorithm applied.  Two 

RL methods will make up the levels of this IV.  The first method is the Monte Carlo method.  

The other method is the one step TD(0) method.  Table 2 shows the layout of all the simulated 

systems. 
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Table 2 

Experimental systems and their attributes 

System Agent Type Sensor Alpha Hit Rate False Alarm Rate 

System 1 TD(0) 4 0.9 0.36 

System 2 TD(0) 7 0.9 0.1552 

System 3 TD(0) 10 0.9 0.0826 

System 4 TD(0) Infinity 1 0 

System 5 MC 4 0.9 0.36 

System 6 MC 7 0.9 0.1552 

System 7 MC 10 0.9 0.0826 

System 8 MC Infinity 1 0 

  

There were three dependent variables (DVs) in this study.  The first metric was the total 

episodic reward acquired by the Navigation Agents.  The second metric was the total reward per 

trial acquired by the Search Agents.  The third DV was the number of incorrect declarations that 

each system generates per trial when the system reached steady-state performance.   Another 

metric that was used to support the findings found from the DVs was the mission completion rate 

of the agents.  How these variables were used to quantitatively assess the performance of the 

systems is described in more detail in the Metrics section of this study.  The TOP map was also 

compared across episodes of a given trial to see how the agents may have behaved differently. 

The environment. 

 The simulation was carried out in a discrete environment consisting of a 6	 7 6 grid.  

Each point on the grid represented a position that the agent vehicle could move to and search.  
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The grid was populated by three targets.  Targets were placed randomly in specific regions in the 

environment and target regions did not overlap.  Each position on the grid had a corresponding 

Target Occupancy Probability (TOP) value.  The TOP changed when a position on the map grid 

was scanned.  The change to the TOP value was changed using Bayes’ Rule with the values 

supplied by SDT as the inputs.  The TOP map was reinitialized between episodes and trials.  At 

the start of each episode, the agent started in the same position and was presented with a uniform 

TOP map of 0.5, indicating that the status of the map is completely unknown.  The agent was 

expected, after an initial learning period, to learn the simple behavior pattern of the targets 

present in the target regions. 

Reinforcement Learning Model 

Problem, state, action and reward formulation. 

 The RL architecture used in this study featured two agents operating in tandem, forming 

a hierarchical agent structure.  Each agent was assigned to carry out a different aspect of the 

search task.  One agent was referred to as the Search Agent.  This agent decided if a position 

should be declared occupied by a target.  The other agent was the Navigation Agent.  The 

Navigation Agent determined where the vehicle should move and how it should get to that 

position.  The Search Agent operated only on the TOP value of the current position and the 

Navigation Agent operated on the physical position in the environment.  The problem was 

presented to the agents in the form of trials and episodes.  Each trial is made up of a certain 

number of episodes.  The locations of the target regions change every trial, but were static during 

episodes.  The location of the targets in these target regions changed every episode.  Multiple 

trials were conducted to eliminate the effects of exceptionally good or bad target placement in 

the system performance analysis. 
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 Each agent operated on different state dimensions.  The Search Agent operated on the 

TOP at any given position.  There were a total of 11 possible TOP states that the agent could 

encounter.  Ten of these states corresponded to different levels of TOP.  The thresholds for each 

level were distributed in a non-uniform manner and are specified in Table 3.  The eleventh state 

was used by the declarative agent to determine that a position can no longer be searched. 

  

Figure 5: The overall architecture of the experimental RL system.  The Search Agent works only on the TOP 

states.  The Navigation Agent works on the position of the agent vehicle.  The Search Agent decides when the 

Navigation Agent is allowed to move.  Every movement by the Navigation Agent results in the Navigation 

Agent receiving a reward of -0.5.  The “Order” signal tells the Navigation Agent to change its position. 
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Table 3 

TOP state threshold definition 

TOP State TOP Range 

10 0 - 0.01 

9 0.01 – 0.05 

8 0.05 – 0.1 

7 0.1 – 0.3 

6 0.3 – 0.5 

5 0.5 – 0.7 

4 0.7 – 0.9 

3 0.9 -0.95 

2 0.95 – 0.99 

1 0.99 –1.00 

11 1 or 0 

 The Search Agent could choose from three different actions.  The first of these was the 

“Declare” action.  The Declare action was a way for the agent to confirm the presence of a target.  

The reward given by this action was determined by the veracity of the declaration.  The second 

type of action was the “Move” action.  This action selection was passed to the Navigation Agent 

and allows the Navigation Agent to select its next action.  The last Search Agent action was 

referred to as “Loiter”.  This action disables the Navigation Agent’s ability to move. The Search 

Agent was thus able to continue to scan a given position.  When a position was in the eleventh 

TOP state the Search Agent is only able to select the “Move” action.  The total number of state-

action pairs that can be visited by the Search Agent is 33.  The disabled eleventh state removes 2 

possible state action pairs from the problem, resulting in a total of 31 operational state action 
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pairs.  The Search Agent’s value function mapping was not reinitialized between trials or 

episodes. 

 The Navigation Agent moved the agent vehicle from cell to cell in the position grid.  The 

vehicle was able to move in four directions; north, east, west, south.  This agent’s architecture 

used only state values as opposed to state-action values.  The reason that the agent did not use 

state-action pairs was that the agent’s interaction with the environment was deterministic, and 

had no other action other than to move to a different position.  The adaptation of the Temporal 

Difference and Monte Carlo methods to a state value implementation is straight forward.  The 

state-action value terms in the two paradigms are replaced with the state values.  The Navigation 

Agent directed the vehicle to move in one of the allowed directions.  Therefore if the agent 

wished to move from one cell to the next it could do so using only the position state information, 

with certainty that the agent would move to the intended position.  The state map for the 

navigation function was reinitialized between trials, but not episodes. 

 The application of reward schemes has a large effect on the performance and “risk 

adversity” of reinforcement learning systems.  These quantities needed to be carefully chosen so 

as the system did not unnecessarily avoid or take risks.  The reward scheme chosen for this 

Search Agent was as follows; +5 for correctly declaring a target position, -1 for incorrectly 

declaring a target position, and -0.5 for moving or loitering.  The reward scheme for the 

Navigation Agent was +5 for a position that contains a target and -0.5 for movement actions.  

This reward scheme was chosen after an initial reward scheme was used and the temperature 

variable was decreased across episodes.  Figure 4 shows how the mission completion time for the 

Monte Carlo system with a perfect sensor varied across episodes. 
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The time needed to locate all targets in a given episode was minimized when the 

temperature variable had a value of two, indicating that the reward scheme should be factored by 

half.  This resulted in the minimum steady-state time to locate targets across episodes. 

Markovian model of environment. 

 Two Markovian models were present in this simulation and allowed the RL architecture 

to function properly.  The first of these is the TOP state model, which was what the Search Agent 

in Figure 4 interacts with to achieve its objective.  The Markov property was present in this 

model as the Search Agent based its decisions purely on the level of TOP in a given position.  

The sequencing or number of previous scans did not matter.  Bayes’ Rule was used to update the 

TOP of the current position using a “likelihood” value provided by SDT.  The application of 
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Figure 6: The Mission Time plot.  A plot showing the time to mission completion for an initial 

reward scheme of 10 for finding a real target, -2 for an incorrect declaration, and -1 for all 

other outcomes.  The time to locate all targets decreases for the system up to about episode 4 

or 5, then it rises and attains a worse steady-state performance.  The best performance was 

achieved when the temperature was equal to about two, indicating that the overall reward 

scheme should be factored by half to attain the best steady-state performance. 
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Bayes’ Rule resulted in a new, updated probability (TOP).  Thus, the TOP level was the product 

of previous scans.  The TOP level at a given position therefore encapsulated all necessary 

information for the Search Agents to make an “informed” decision.  A partial example of how 

the agent can transition through the Markov Chain is given below in Figure 5. 

 

 The other Markov model present in this study was the navigation model.  This model was 

Markovian and was frequently used to achieve maze and object navigation in simulations.  The 

agent vehicle did not need to perceive the path it took to arrive at its current position.  Its current 

position was known and that was all the information the agent vehicle needed to make effective 

decisions to navigate through its environment. 

Figure 7:  The transition model for the Search Agent.  The Search Agent is able to select one of 

three actions for a non-declared position; Move (M), Loiter (L), and Declare (D).  If the agent 

chooses to declare a given position is occupied the agent is then only able to move from that 

position.   The other two actions result in a second choice with the same options as before. 
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Target placement and interaction. 

 The zones for target placement were placed in the map at the beginning of every trial.  At 

the beginning of every episode one of the targets was randomly placed in each of these zones.  

The effect of this implementation was that randomization was limited to certain areas of the map.  

Therefore these areas of the map were expected to be valued higher than others, thus the 

navigation agent would give these positions a higher value than other positions, enabling it to 

move to these areas rapidly.  For the Navigation Agent areas far from where targets were 

typically found are less desirable than those closer to the other target zones.  To maintain track of 

the targets that have been discovered three separate position state value maps were accessed and 

modified by the agent.  Each position state value map corresponded to one target, and the value 

maps were updated only while that target had yet to be found (i.e. is “active”).  Each map 

corresponded to the reward received by a different target.  The current value of a position state 

was determined through the summation of all the state maps that corresponded to active targets.   

The target regions each consisted of 4 adjacent positions.  An example of the environment with 

the target regions highlighted is shown in Figure 6.  These target regions were placed randomly 

on the map at the beginning of every trial. 
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 During an episode, when a target was found the corresponding position state value map 

was eliminated from the agent’s future consideration.  Therefore all rewards relating to the 

discovery of a particular target no longer impacted the agents’ decision making process.  This 

mechanic allowed the agent to base its future decisions only on the results of the past episodes’ 

experience with the targets that had not been found in the current episode. 

RL paradigm formulation. 

The Monte Carlo method. 

 There were two implementations of RL that were studied in this experiment.  The first of 

these was a Monte Carlo mode of operation.  As the agent moved through the state action space a 

step list was maintained.  Once the agent had met its objectives or the episode had otherwise 

Figure 8: The position map.  Example target regions 

highlighted.  The location of the regions changes every trial.  

This allows a better understanding of the general behavior of the 

systems. 
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terminated the reward function was propagated back through this list to update the state-action 

values.  The agent was initialized in the same position for all simulation runs.  The discount rate 

was set at 0.9, a value commonly used in other autonomous vehicle RL studies.  This discount 

rate was used in both the Search and Navigation Agent implementations.  Thus the update 

equation, once the episode ends, takes the following form: 

���′
, �′
� � ���
, �
� � 	8�	
 � 	���
, �
�� (9) 

 	
 is the summation of the discounted future rewards.  Note that the step size parameter 

is represented by	8, so as to avoid confusion with the �	parameter used in SDT.  For the Search 

Agent the value was incremented by the number of times a state-action pair had been visited.  

The value of 8 was based upon the standard equation: 

8 � 	 1��,� (10) 

 The value of 8 for the Navigation Agent was fixed at 0.1.  This fixed value allowed the 

Navigation Agent to cope with the somewhat dynamic aspects of the target positions across 

episodes.  The result of a fixed 8 is that the position state values would never fully converge to a 

fixed value, but were allowed to constantly adapt according to their latest findings. 

   The MC methods require that an episode finish before an update is allowed to take place.  

For large problem spaces, a condition that triggers the end of an episode may not occur, 

especially in early episodes where the value functions are still relatively uniform.  Limiting the 

number of decision steps and the inclusion of a negative reward for every step taken eliminates 

this problem.  If the decision time runs out at the end of an episode and the agent has not located 
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any targets then the state-action values of that operating region were decreased.  The system will 

then be less likely to visit those state spaces in the next episode.  The pseudo code for 

implementation is provided below: 

For every decision step t in the episode: 

Record the state and action taken and the received reward from 

that state action pair: 

9
�
 �
 �
�
�$ �
�$ �
�$⋮�� 				�� �� ; 

At the end of an episode update the value of “Q(s, a)t” starting at 

the top of the list and using the equation: 

	
 	� �
 �	�	�
�$ �	�<�
�<…	�>�
�> 

Until t + k equals T and then update using: 

���′
, �′
� � ���
, �
� � 	8�	
 � 	���
, �
�� 
repeat for the entire list 

Repeat for every episode 

The Temporal Difference method. 

 The other method that was implemented is the one-step Temporal Difference method.  

The method updated a state-action pair with the reward received from that state-action pair and 

the maximum state-action pair available from the next given state.  The term ����, ��� is the 

value of the next state and action pair encountered.  The formulation and implementation is given 

below: 

���′
, �′
� � ���
, �
� � 8��
 � �	max���
�$, �
�$� � ���
, �
�� (11) 
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For every decision step t in an episode: 

Record the reward rt received from being in st and taking action at and 

update the value function by: 

���′
, �′
� � ���
, �
� � 8��
 � �	max���
�$, �
�$� � ���
, �
�� 
Where �
 is the current state action pair’s reward 

Continue until the end of the episode 

Repeat for every episode 

The exploration mechanic. 

 For an exploration mechanic, all of the agents used a softmax method that is commonly 

referred to as the Gibbs distribution.  The temperature variable was used to enable early 

exploration and later exploitation.  This produced the effect that the agent, at the end of the trial 

for the search agent and episodes for the navigation agent, greatly favors the state action pairs 

that were perceived to have a higher value.  The Gibbs distribution function is repeated below for 

convenience: 

p��� � 	 +,��,�-�//∑ +,��,�-�//1�$  (12) 

 The temperature variable for both the Search Agent and Navigation Agents for all of the 

systems was decreased in a nonlinear fashion over all of the episodes and trials.  The initial 

temperature value equaled 100.  The temperature variable decreased exponentially, and equaled 

unity in about the first 20 episodes.  This provided the agents with an early set of trials and 

episodes where the agents had a higher rate of exploration.  The temperature variable for the 
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Search Agents was decreased across trials and the Navigation Agents was decreased across 

episodes. 

Environment interaction. 

 The Search Agent interacted with and changed its environment through the Target 

Occupancy Probability (TOP) map.  The concept of the TOP map was taken directly from 

Cooperative Real-Time Task Allocation among Groups of UAVs (Jin, Polycarpou, & Minai, 

2004).  The TOP map was made up of a 10 by 10 array of cells.  The TOP map was initialized at 

the beginning of each trial as a uniform distribution with a value of 0.5.  The TOP of a given cell 

was the current probability that the cell contains a target as perceived by the sensor.  Thus the 

initial value reflected the assumption that every cell had an equal probability of being occupied 

or empty.  The TOP of a cell is adjusted by Bayes’ Rule and determines the probability of 

actions taken by the Search Agent.  The TOP update equations are given in Equation 15.  The 

variable � represents the reliability measure of the sensors.  To build the update functions, the 

sensor characteristics must be determined.  These were found through the sensitivity equation 

from the SDT.  The equation is repeated below for convenience. 

� � 52�3��1 � 2�4��52�4��1 � 2�3�� (13) 

 Through the use of this equation, if the sensitivity of a sensor system and the hit or miss 

rate is known, then all of the sensor’s abstract performance characteristics can be determined.  

The notation for these characteristics, their certainty complements, and a description of each is 

given in Table 4 below. 
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Table 4 

Sensor characteristic values and descriptions 

Characteristic Complement Description 

2�3� 2�?� Probability that the sensor returns a hit when a 

target is truly present 

2�?� 2�3� Probability that the sensor falsely indicates 

that no target is present 

2�4� 2�@� Probability that the sensor returns a hit when a 

target is not truly present 

2�@� 2�4� Probability that the sensor correctly indicates 

that a target is not present 

2�A� 2�B� Probability that a target is present, is equal to 

TOP 

2�B� 2�A� Probability that a target is not present 

 

 With these characteristics it is possible to build the Bayes’ Rule equations dependent 

upon the conditional probabilities.  Table 5 lists these conditional probabilities, their computed 

equivalences found in Table 4, and their descriptions. 

Table 5 

Conditional probability notation 

Conditional 

Probability 

Table 4 

Equivalence 
Description 

2�3|A� 2�3� Probability that the sensor returns a hit when a 

target is truly present 

2�	|A� 2�?� Probability that the sensor falsely indicates 

that no target is present 

2�3|B� 2�4� Probability that the sensor returns a hit when a 

target is not truly present 

2�	|B� 2�@� Probability that the sensor correctly indicates 

that a target is not present 

 

 Note that in Table 5 all conditions are based upon the current state of nature and the 

return given by the sensor.  Furthermore, the probability that the cell is unoccupied is the 
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certainty complement of the occupancy probability.  Thus, the conditional probabilities and the 

mechanics required for the implementation of the Bayes’ Rule were fulfilled.  The result is two 

equations.  Each is actualized purely based upon the returned report from the sensor. 

 If the sensor indicated that a target was present: 

2�A|3� � 2�3|A�2�A�2�3|A�2�A� � 2�3|B��1 � 2�A�� (14) 

 If the sensor indicated that a target was not present: 

2�A|	� � 2�	|A�2�A�2�	|A�2�A� � 2�	|B��1 � 2�A�� (15) 

 

 Thresholds for TOP values determined the status and state of a given cell.  Certain 

actions were allowed only if predetermined conditions were met.  If a cell was declared occupied 

the agent received a reward based upon the veracity of the declaration and the TOP of the cell 

was appended to zero or one accordingly.  This method of operation mimicked a real world 

scenario where the autonomous system “flags” a position as a likely target and a human operator 

or supervisor investigated the flag.  The operator then made a decision whether the system has 

found a real target or not.  This feedback mechanic then determines the reward the system 

receives.  These interaction mechanics were not change across the different systems except for 

the value of � used to describe the sensor characteristics, and thus the TOP update mechanic. 

Metrics 

 This section details the metrics that were used to assess the performance of the studied 

systems.  Eight separate systems were simulated in this work.  Four of the systems featured a 

TD(0) implementation for both the Search Agents and the Navigation Agents.  The other four 

systems use the Monte Carlo implementation for both agent types.  A system that has a sensor 
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alpha value of 4, 7, and 10 was present for each type of implementation.  The fourth system of 

each type used a sensor with perfect characteristics.  The systems outlined in Table 2 were 

compared to one another in three major aspects.  The first of these is referred to as Agent 

Behavior.  The Agent Behavior section examines and compares the steady-state reward behavior 

of the Navigation and Search Agents.  Agents that obtain a higher steady-state reward were 

considered superior.  Also in this section is an analysis of the Incorrect Declaration Behavior of 

the systems.  The number of incorrect declarations by each of the systems was tracked for each 

episode and trial.  An analysis similar to that used in the assessment of agent rewards was used to 

compare and analyze the systems’ Incorrect Declaration Behavior. 

 The second measurement was “Mission Performance”.  This metric contains an 

assessment of how well each of the system accomplished their mission objectives in terms of 

completeness and time.   Both the Agent Behavior and Mission Performance sections are 

discussed in more detail below. 

 The final aspect of evaluation was a comparison of the TOP maps across the episodes of 

a given trial.  At the end of an episode, the TOP map was saved and compared to the TOP map 

generated by the perfect version of that system at the end of the trial.  This allows the systems to 

be compared with respect to their effects on their operating environments.  This metric was 

presented as a plot.  Table 6 lists all the results of the experiment, how the outputs were 

displayed, and how these outputs were analyzed. 
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Table 6 

Experiment output and format list 

Simulation Output Output Type Output Format Analysis Method 

Navigation Reward 
Average 

Reward/Episode 
Graph ANOVA 

Search Reward Average Reward/Trial Graph ANOVA 

Incorrect Declaration Average Number/Trial Graph ANOVA 

Mission Time Decision Steps Plot/Table N/A 

Mission Completeness Percentage Complete Table N/A 

TOP Map Behavior Percentage Difference Graph N/A 

Agent Behavior. 

 Following the established protocol found in Sutton and Barto (1998) in assessing the 

performance of RL algorithms, each agent had its total reward recorded with respect to the 

episode and trial number.  Using the amount of reward obtained by an agent over a “play” or 

“sortie” is an effective way to compare the behavior of two different Reinforcement Learning 

systems. The total reward metric was recorded for every trial and episode.  To assess the 

behavior of the Navigation Agents the average reward was calculated using a specific episode of 

all trials.  The Search Agents were assessed in a similar manner, but using the average reward of 

all episodes across trials.  The reason for this approach is that the Navigation Agent only 

improves itself over episodes and is reset every trial; while the Search Agent improves 

throughout the simulation (i.e. the Search Agents’ state-action values are never reset).  Each plot 

was made up of one hundred data points (one hundred episodes for each trial for the Navigation 

Agent, one hundred trials for the Search Agents).    A preliminary analysis of this data was 
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carried out via a plot of the average return of a given episode or trial, depending on the agent.  

The steady-state data was used in an Analysis of Variance (ANOVA) test.  Some noise was 

expected from the differences of each map layout presented in each trial, a constant update 

parameter, and the fact that the agent will not always choose the most optimal action in a given 

situation.  An example of a reward plot is given below in Figure 6.  The reward plot could take a 

negative value due to the presence of penalties.  It should be noted that this particular plot was 

the average of the sum of all the reward encountered by the agent relative to the episode; it did 

not incorporate discounting or otherwise modify the rewards the agent encounters.  This episodic 

reward plot was used to visualize the behavior of the Navigation Agents across episodes.  

Another plot relative to trials was used to visualize the behavior of the Search Agents across 

trials. 
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Figure 9: An example of a Navigation Agent Reward plot.  The plot is the average 

value of the total reward obtained in a given episode, averaged across all trials.  The 

noise of the data is from the Agents' exploration mechanic and the constant increment 

parameter used in the value funciton
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 It is noted that the system architecture studied here was highly coupled.  The performance 

of one agent drastically affects the performance of the other agent.  The reward plots should 

increase across episodes and trials.  Peak performance of the systems is therefore expected 

during the latter episodes of latter trials. 

 This steady-state performance region was the subject of comparative analysis.  A One-

Way ANOVA was applied to determine the presence of significant differences, if any, between 

systems with different sensor performance.  Upon discovery of a significant difference, a 

Tukey’s HSD test was employed to assess the relationship between the systems.  A p value of 

0.05 is used as the significance threshold for both the ANOVA and the Tukey tests. 

Mission Performance. 

 Another aspect of the systems that was compared is the time to complete the mission 

objectives.  The number of steps to correctly declare one, two, and three targets was recorded for 

every episode of every trial.  It was expected that the average time to locate targets will decrease 

over subsequent episodes within every trial due to fact that learning has occurred from previous 

episodes.  The results of every episode are averaged across all trials and the results compared to 

the other systems.    An example of how the data is displayed is provided below in Figure 10.  

This performance metric was not tested for significant differences.  The reason for recording the 

mission time was to draw some conclusions about were differences between the systems lay and 

to reinforce and explain the findings of the Agent Behavior section. 
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TOP Map Comparison. 

 The TOP map comparison was performed for every ten episodes of every ten trials.  The 

value of AD2E,FGEH was the agent’s perceived TOP and the AD2E,F�I
 was the final TOP map 

generated by the system with a perfect sensor.   The process for generating the comparison 

metric is given below.  The results of this data were then plotted across episodes in the same 

manner as the reward plots discussed earlier. 

  

1 2 3

1
11

21
31

41
51

61
71

81
91

Targets Found

T
im

e

Episode

Mission Time

250-300

200-250

150-200

100-150

50-100

0-50

Figure 10: Example of the Mission Time performance plot.  The number of 

targets found is on the depth axis.  This plot is obtained by averaging the 

results across all trials.  If a target is not found in a given episode, the 

epsisode is not used in the calculation of the average.
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At the end of episode “k” for position “x, y” 

Determine the difference by using the following equation: 

JKLL+�+6M+ � 	 NAD2E,FGEH �	AD2E,F�I
N 
Repeat this process for every position “x, y” in the TOP map 

Average the difference across the entire TOP map 

Average the difference metric across all “k” episodes 

 This method generated a value bounded by zero and one, with zero indicating the 

imperfect sensor system operated with the same effects on the TOP grid as the perfect system.  

Positions that had not been visited by either agent were inherently zeroed and eliminated from 

the metric.  A downward trend was expected as the episode number increased.  Correlation 

between the systems of the same Reinforcement Learning implementation was assessed via a 

plot. 
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Results 

This section details the results and behavior outputs of the simulation.  The section is 

organized into two parts.  The first part displays the data that the system generated for every 

metric.  The first subsection also includes the data on Mission Time and Mission Completion.  

The second subsection details the results of the statistical comparisons of the Navigation and 

Search Agent rewards, and the number of Incorrect Declarations each system produced.  Systems 

were compared to one another based upon their sensor performance.  Only systems using the 

same form of RL implementation were compared using sensor performance.  The two types of 

RL implementation was compared using the performance data of all the systems of a given type, 

regardless of sensor performance.  An ANOVA and Tukey post hoc test were used to determine 

significant differences.  To verify that the assumption of homogeneity of variance was not 

violated for any of the comparisons each ANOVA was preceded by a Levene Test.  The 

significance level used to determine the validity of the assumption of homogeneity of variance 

was 0.05. 

The mission performance section details how effective the agents were at locating the 

three targets provided in each episode.  The measures used to evaluate mission performance were 

the number of targets found and the number of steps taken to find targets.  The number of targets 

found for each type of agent was represented by a ratio where a value of 1.0 indicates that all 

targets were found for every episode of every trial.  A value of 0 indicates that no targets were 

ever found (e.g. a value of 0.98 indicates that 98% of all targets were found out of the 30,000 

targets present in the environments from 100 trials and 100 episodes).  This number does not 
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indicate where in the simulation a system failed to detect targets (e.g. at the beginning of trials).  

The number of decision steps taken to find all targets was displayed via a three-dimensional 

color plot.  The decision step metric was composed of how many decision steps were required to 

correctly declare the presence of a target in a given location.  The number of incorrect 

declarations over time was presented in the form of a plot. 

Agent Behavior Results 

Agent Rewards. 

 This section details the results of the simulation from the perspective of the agents that 

make decisions on what the system should do.  The reward acquired by each agent is a useful 

way to measure the effectiveness and efficiency of the RL systems as the reward functions are 

the same for both the TD and MC systems.  The agent rewards are expected to converge to a 

steady-state value across episodes or trials.  The possible rewards that the Search Agents can 

receive are 5, -0.5, and -1.  These rewards occur when the Search Agent correctly declares a 

target, allows the agent to move or loiter, or incorrectly declares a target, respectively.  The 

Navigation Agents can receive a reward of 5 when the Search Agent has found a target in a given 

location, and -0.5 every time it is commanded to move or the Search Agent incorrectly declares a 

target present.  This section does not contain any analyses of the data.  The section only presents 

the results of the simulation.  The analysis of the results can be found in the Agent Reward 

Analysis section. 

Temporal Difference Navigation Agent Rewards. 

 The average episodic reward for the first TD(0) Navigation Agent (with a sensor 

sensitivity of 4) is presented in Figure 11.  This system used an imperfect sensor with an alpha 
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value of 4.  It can be seen by inspection that the Navigation Agent shown did increase its reward 

over episodes.  The agent appeared to achieve steady state performance within the first 60 

episodes for a given trial. 

 

 Figure 12 below shows a plot of all the TD Navigation Agents’ averaged episodic reward.  

All the Temporal Difference Navigation Agents managed to achieve steady state performance 

after about 60 or 70 episodes.  Agents 1, 2, and 3 are equipped with imperfect sensors with alpha 

values of 4, 7, and 10, respectively.  Agent 4 is equipped with a perfect sensor.  It can be seen 

that by inspection that systems using better sensors do seem to achieve higher steady-state 

performance than others.  This preliminary observation was further tested using statistical 

methods to verify if there was a significant difference within this data.  It was also noted from 
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Figure 11:  The average reward for the first TD Navigation Agent.  This plot is 

formed by taking average episodic reward across all trials.  The Navigation Agent's 

state value maps are rebuilt every trial as the regions of target occupancy change.  

Within a trial the Navigatoin Agent's state value map is constantly being updated and 

refined.
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the plot that the system equipped with the perfect sensor (Agent 4) with a sensor alpha level of 

infinity) achieved the highest steady-state reward. 

 

Monte Carlo Navigation Agent Rewards. 

The MC Navigation Agents also exhibited a characteristic learning curve.  The total 

reward obtained by the agents was also less than that obtained by the TD methods.  Convergence 

seemed to occur within the first 60 episodes, the same as the TD methods.  The results of all the 

MC Search Agents are plotted in Figure 12.  Agents 1, 2, 3, and 4 use sensors that have an alpha 

levels of 4, 7, 10, and infinity, respectively.  Again, Agent 4 (the system with a perfect sensor) 

clearly yields greater performance, converging to an average value of approximately -100.  On 

first inspection, the systems equipped with sensors with a performance of 7 and 10 seem to be 

approaching the rewards obtained by the perfect system.  Agent 1, with the worst sensor, clearly 
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Figure 12: All TD Navigation Agent episodic rewards.  The system equipped with a 

perfect sensor, Agent 4, has the highest reward.  The worst agent, Agent 1, attains the 

lowest reward of all the systems.  All agents seem to converge within 60 episodes.  

Agent 4 and Agent 1 attain a steady-state reward of about -30 and -50, respectively.
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gained the least reward per episode in the last 20 episodes or so.  What was less clear here was if 

the system with a perfect sensor (Agent 4) has significantly higher performance than Systems 2 

and 3 (sensor alphas of 7 and 10, respectively).  The Monte Carlo Navigation Agents do not gain 

as high a reward as the Temporal Difference Agents.  This indicates the Monte Carlo Agents are 

“wandering” more than the Temporal Difference Agents.  At this point in the analysis it was not 

clear if the increase in “wandering” behavior is caused by the Monte Carlo Agents’ inherent 

inability to update online or if the drop in performance was due to the way the Monte Carlo 

Search Agents behave. 

 

Temporal Difference Search Agent Rewards. 

 The TD Search Agents also performed as expected, increasing their rewards over trials.  

The increase in reward over early trials is likely due to the temperature variable used in the 
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Figure 13: All MC Navigation Agent episodic rewards.  The systems equipped with 

less sensitive sensors performed worse, mirroring the trend seen in the TD Navigation 

Agents' plots.  Examination shows that the MC Navigation Agents, in general, have 

higher steady-state variance than the TD Agents.
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softmax exploration mechanic.    They also feature a lot more noise as the location of targets 

changes from trial to trial.  The Search Agent takes as many as 400 scans per episode, so learning 

would occur rapidly in the Search Agent system, and therefore most learning would take place 

within the first trial.    It is difficult to see visually any differences or average reward per trial 

within the systems in Figure 14.  A moving average function was applied to the data to help 

identify trends.  The moving average subset size is 5 units, and is shown in Figure 15.  The 

reason that the moving average subset size was 5 units was that this size adequately separates the 

data within the plots, while still leaving enough detail to see the variation in performance across 

different trials. 

 

 The TD Search Agents’ rewards seem to fluctuate widely dependent upon the trial, as 

expected.  It was clear that Agent 4 has the highest overall performance, which reinforces the 
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Figure 14: All TD Search Agent rewards.  The plot shows that the agents tracked one 

another consistently.  The large fluctuations in the data are due to the difference in the 

distances between the targets between trials.  It is hard to identify trends in this data 

due to the variance between trials.
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findings from the navigation section.  It was also seen that the system equipped with the least 

sensitive sensor is performing the worst out of all the other agents.  Of the imperfect systems, 

Agents 2 and 3, with their higher performance sensors, seemed to perform the best. 

 

Monte Carlo Search Agent Rewards. 

 Repeating the procedure found in the TD Search Agent Rewards section, the combined 

data for all of the MC Search Agents was plotted below for comparison.  Looking at the raw data, 

in Figure 16, it seems that the perfect MC system performs better than the imperfect systems, but 

due to the high level of variance, other observations cannot be made.  A moving average using a 

5 unit subset was applied to more clearly display any trends in the reward data in Figure 17. 
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Figure 15: Smoothed TD Search Agent rewards.  The data shows a trend that more 

sensitive sensors performed better across trials.  The Agent with the perfect sensor 

attains a higher average reward than the other Agents.
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 The superior performance of the perfect system was reinforced by examination of the 

moving average data in Figure 17.  Among the imperfect systems, it seems that the worst system 

achieved much lower performance.  The other two imperfect systems, however, do not clearly 

distinguish themselves from one another.  Further analysis of the MC and TD Search Agent 

Rewards can be found in the Agent Reward Analysis section of this study. 
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Figure 16: All MC Search Agent rewards.  The data features the large variance found 

in the TD Search Agent data.  Examination reveals that the rewards seem to be lower 

than those obtained by the TD Search Agents.
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Incorrect Declaration Behavior. 

TD Search Agent Incorrect Declaration Behavior. 

 All systems managed to decrease the number of incorrect declarations over the course of 

the simulation.  It was noted that the Search Agents seem to increase their performance only 

within the first few trials, and was probably caused by the application of the temperature variable 

in the exploration mechanic.  This behavior was shown in the plots in Figure 18 and Figure 19.  

The data in Figure 18 was smoothed using a moving average method.  The smoothing shows the 

differences between the agent performances more clearly.  The subset size used for the moving 

average is 5. 
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Figure 17: Smoothed MC Search Agent rewards.  The data shows that the perfect 

system clearly did better than the imperfect systems.  The system with the least 

sensitive sensor seems to function with a much higher rate fo variance and a lower 

average reward than the other systems.
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 The systems equipped with a more sensitive sensor appear to perform better, with the 

system equipped with a perfect sensor clearly being superior to the other systems.   The average 

number of incorrect declarations per trial seems to converge to a value of 15 to 20 for the perfect 

system, and about 20 to 24 for the imperfect systems.  The systems equipped with sensors with a 

sensitivity of 7 and 10 seemed to have the same performance.  A further analysis of the incorrect 

declaration behavior can be found in the Agent Reward Analysis section of this study. 
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Figure 18:  Average TD Incorrect Declarations. The TD Incorrect Declaration 

behavior exhibits the same high correlation relative to trials found in the Search Agent 

behaviors.  As longer travel times between target areas offer more opportunities for 

incorrect declarations this behvior makes sense.  We also see the early learning 

behavior.  This learning period is of short duration, which corresponds to the 

observations of the Search Agents.
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MC Search Agent Incorrect Declaration Behavior. 

 The MC Incorrect Declaration data was also recorded and analyzed.  The perfect MC 

system yields a steady-state average declaration number of about 17, with the imperfect systems 

generating about 20 incorrect declarations per episode in a given trial.  Figure 19 showed that the 

perfect system again exhibits superior performance.    All Agents’ incorrect declaration counts 

depended heavily on the trial being conducted.  The smoothing method is applied to better see 

any differences between the systems equipped with imperfect sensors. 
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Figure 19: Smoothed average TD Incorrect Declarations.  The smoothed data in this 

plot backs up the system ranking observations made in the Search Agent section.  The 

systems with a sensor sensitivity of 7 and 10 are very similar in their performance, 

also following the trend seen in the Search Agent section.  The perfect system appears 

to generate 2 to 3 less rewards than these systems, on average.
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 The results of the smoothing method are shown in Figure 21.  The perfect MC system 

differentiates itself from the other systems clearly in this data.  Again, the systems with a sensor 

sensitivity value of 7 and 10 (Agents 2 an 3, respectively) seem to achieve the same level of 

performance.  The system with sensor sensitivity of 4 (Agent 1) performs the worst out of all the 

systems. 
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Figure 20: Average MC Incorrect Declarations. The data for the Incorrect Declaration 

behavior of the MC systems.  The systems exhibit a period of early learning, but of 

short duration, the same as the TD systems.  High correlation among the agents is 

present.
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Mission Performance 

Mission Objective. 

 All agents were able to locate all targets 90 % of the time.  The average Mission 

Completion results are displayed below in Table 7.  A value of unity indicated that the agent was 

able to find all the targets every episode for each trial.  Examination reveals that the Monte Carlo 

methods produced noticeably lower results than the TD implementations.  It is also noted that the 

systems equipped with a perfect sensor did not greatly increase the ability of the systems to 

locate targets.  The difference between the values of the TD and MC systems is most likely due 

to the fact that the TD agent learns the target behavior faster, resulting in a larger number of 

found targets in the early episodes. 
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Figure 21: Smoothed average MC Incorrect Declarations.  The smoothed data for the 

MC incorrect declarations shows the same general trends as that found in the TD 

system data.  The perfect system generates the least number of incorrect declarations, 

while the most sensitive system generates the most.
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Table 7 

Mission completion rates 

Alpha 4 7 10 Inf 

TD 0.9794 0.9820 0.9827 0.9844 

MC 0.9084 0.9252 0.9288 0.9379 

 A ceiling effect was almost certainly present here as the maximum number of targets the 

agents could possibly find was limited to three.  Once all three targets had been located in a 

given episode the simulation ends.  If the environment was further saturated with targets greater 

differences in performance could possibly have emerged.  To accomplish this task would require 

a larger mission space and more targets. 

Mission Time. 

The time to locate all targets, as measured by the number of steps, decayed for all agents.  

After the fortieth episode of every trial the system begins to consistently achieve its mission 

objectives (i.e. identifying all the targets) in a minimum amount of time.  The average time to 

locate the targets is plotted in Figure 21 for the TD Agent 1 (alpha equals 4).  The plot shows the 

average time taken to find each to the targets across all trials.  If an agent did not locate the 

required number of targets in a given episode the episode was not used in calculation of the 

average.  The graphs of the other systems’ mission performance can be found in Appendix A.  

Since it appears that mission performance plateaus after fifty episodes for all systems, the 

remaining episodes will be used to reach conclusions on the steady state behavior and 

performance of the systems. 
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 The averages of the last fifty episodes across all trials for all systems are displayed in 

Table 8. It can be seen that the TD implementations routinely achieved a lower mission 

completion time.  It also appears that the perfect sensor systems for both the TD and MC 

implementation complete their missions quicker than the systems with imperfect sensors.  

Additionally, it can be seen that systems with a higher sensor performance metric achieved 

quicker target location times. 
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Figure 22: Mission Time plot for first TD Agent.  The mission completion time 

decayed for all agents.  Examination shows that after 50 episodes the time to 

complete the mission objectives is minimized and a steady-state behavior is achieved.   

Mission Time refers to the number of steps needed to locate 1,2, and 3 targets.   Plots 

of the other systems can be found in Appendix A.
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Table 8 

Average mission time decision step values of last 50 episodes 

Alpha Number of Targets 4 7 10 Inf 

TD 

1 23.23 20.06 18.85 18.51 

2 47.91 41.58 39.12 36.26 

3 87.83 76.60 72.46 67.11 

MC 

1 33.39 29.62 27.71 26.32 

2 75.10 66.20 60.91 56.89 

3 136.39 125.16 119.24 110.45 

Agent Reward Analysis 

Navigation Agent Reward Analysis. 

 The last 20 data points for the average episodic reward for the TD Navigation Agents are 

used to compare the steady-state performance of the systems to one another (i.e. systems 

equipped with sensors with different alpha levels were compared).  The last twenty data points 

used in the analyses of the Navigation and Search Agents are used as the effects of the 

temperature variables are minimal during these simulations and the Agents have acquired enough 

experience where their behavior is governed by relatively stable state and state-action values.  

The results of the different systems are compared to determine if the differences in sensor 

performance significantly affected the average episodic reward of the Navigation Agents. A 

significance value of 0.05 or less (i.e. the p value) is used to determine significance.  SPSS was 

used to analyze the data.  The descriptive data of this set is shown in Table 9. 
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Table 9 

TD navigation agent steady-state descriptive data 

� N Mean 
Std. 

Deviation 

Std. 

Error 

95% Confidence Interval for Mean 

Lower Bound Upper Bound 
Inf 20 -29.9030 3.86921 .86518 -31.7138 -28.0922 

4 20 -50.4600 4.98323 1.11428 -52.7922 -48.1278 

7 20 -39.4865 3.86040 .86321 -41.2932 -37.6798 

10 20 -34.6580 3.58166 .80088 -36.3343 -32.9817 

Total 80 -38.6269 8.66796 .96911 -40.5558 -36.6979 

 

Figure 23:  Box plot of the TD Navigation Agent Rewards.  The populations used for the plot are the averages of the 

last 20 of all the episodes.  The Alpha value of “.00” on the X-axis represents the output of the agent with the perfect 

sensor.  The error bars represent the first and third quartile points.  The whiskers show the values of the highest and 

lowest entries in the data set. 

 It can be seen that the mean decreased as the sensor performance increased, it is also 

noted that the standard deviation within each group is similar across groups.  A significant 

difference was found in the imperfect sensor data sets.  The results of the one-way ANOVA are 
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shown in Table 10.  A Levene statistic was calculated to test for the homogeneity of variance 

assumption required of an ANOVA.  The Levene statistic showed that the homogeneity of 

variance assumption was valid as it was greater than 0.05 (p = 0.737). 

Table 10 

TD navigation agent ANOVA results 

 
Sum of 

Squares 
df Mean Square F Sig. 

Between Groups 4652.395 3 1550.798 91.853 .000 

Within Groups 1283.151 76 16.884   

Total 5935.546 79    

 The ANOVA revealed that there was a significant difference between the groups (p < 

0.001).  It is therefore concluded that the type of sensor system does have an effect on the reward 

that the Navigation Agents receive.  A Tukey’s HSD test is used to assess the significance 

relationship between the different systems. 

Table 11 

Tukey HSD test results 

Alpha Alpha 
Mean 

Difference 
Std. Error Sig. 

Inf 

4 20.55700
*
 1.29937 .000 

7 9.58350
*
 1.29937 .000 

10 4.75500
*
 1.29937 .003 

4 

Inf -20.55700
*
 1.29937 .000 

7 -10.97350
*
 1.29937 .000 

10 -15.80200
*
 1.29937 .000 

7 

Inf -9.58350
*
 1.29937 .000 

4 10.97350
*
 1.29937 .000 

10 -4.82850
*
 1.29937 .002 

10 

Inf -4.75500
*
 1.29937 .003 

4 15.80200
*
 1.29937 .000 

7 4.82850
*
 1.29937 .002 
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 The Tukey’s test reveals that all the systems are significantly different from one another.  

Based upon the results of the Tukey’s HSD test and the descriptive data found in Table 7, it is 

concluded that the Navigation Agent episodic reward is highly sensitive to sensor performance. 

 The method used to compare the performance of the MC systems mirrors that used for 

the TD systems.  The last 20 episodes are used for steady-state analysis.  Significantly higher 

steady state rewards are considered to be superior systems. 

Table 12 

MC navigation agent steady-state descriptive data 

 N Mean Std. Deviation 
Std. 

Error 

95% Confidence Interval for Mean 

Lower Bound Upper Bound 
Inf 20 -99.0835 8.49811 1.90023 -103.0607 -95.1063 

4 20 -139.6030 9.21330 2.06016 -143.9150 -135.2910 

7 20 -109.2790 8.07733 1.80615 -113.0593 -105.4987 

10 20 -101.4005 8.27120 1.84950 -105.2715 -97.5295 

Total 80 -112.3415 18.31005 2.04713 -116.4162 -108.2668 
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Figure 24:  Box plot of the MC Navigation Agent Rewards.  The populations used for the plot are the averages of 

the last 20 of all the episodes.  The Alpha value of “.00” on the X-axis represents the output of the agent with the 

perfect sensor.  The error bars represent the first and third quartile points.  The whiskers show the values of the 

highest and lowest entries in the data set. 

 The data for the MC systems shows a lower reward average across the board.  It also 

features higher variance levels.  Again the standard deviation within each group is similar.  The 

One-Way ANOVA shows that there is a significant difference (p < 0.001) between the MC 

systems.  The Levene statistic revealed that the homogeneity of variance assumption was not 

violated (p = 0.811). 
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Table 13 

MC navigation agent ANOVA results 

 
Sum of 

Squares 
df Mean Square F Sig. 

Between Groups 20960.967 3 6986.989 96.121 .000 

Within Groups 5524.414 76 72.690   

Total 26485.381 79    

 A Tukey’s HSD test is used to identify the source of significant differences found by the 

One-Way ANOVA.  The results of this procedure are found below in Table 14.  The analysis 

reveals that all systems were significantly different from one another except for the systems with 

a sensor sensitivity value of 10 and the perfect system.  This result seems to indicate that the MC 

Navigation Agents were somewhat less sensitive to changes in sensor performance.  Interestingly, 

this hints that there is most likely a diminishing return as a sensor approaches the infinite alpha 

value. 

Table 14 

MC navigation agent Tukey HSD results 

Alpha Alpha 
Mean 

Difference 
Std. Error Sig. 

Inf 

4 40.51950
*
 2.69610 .000 

7 10.19550
*
 2.69610 .002 

10 2.31700 2.69610 .826 

4.00 

Inf -40.51950
*
 2.69610 .000 

7 -30.32400
*
 2.69610 .000 

10 -38.20250
*
 2.69610 .000 

7.00 

Inf -10.19550
*
 2.69610 .002 

4 30.32400
*
 2.69610 .000 

10 -7.87850
*
 2.69610 .023 

10.00 

Inf -2.31700 2.69610 .826 

4 38.20250
*
 2.69610 .000 

7 7.87850
*
 2.69610 .023 

 The last comparison is between the collective steady-state rewards of the MC and TD 

agents.  The descriptive data for this comparison is found in Table 15.  A homogeneity of 
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variance test carried out in SPSS generated a significant Levene Statistic (p < 0.001).  An 

ANOVA test carried out on this data would therefore not be valid.  It can be seen in Table 15, 

however, that the combined TD Navigation Agents’ episodic reward is much greater than that of 

the combined MC Navigation Agents.  The difference in standard deviation between these two 

groups, while great enough to violate the assumption of homogeneity of variance, is not so great 

as lead to the conclusion that the Agents’ episodic rewards are very likely the insignificantly 

different. 

Table 15 

TD & MC navigation agent descriptive data 

 N Mean Std. Deviation 
Std. 

Error 

95% Confidence Interval for Mean 

Lower Bound Upper Bound 
TD 80 -38.6269 8.66796 1.90023 -40.5558 -36.6979 

MC 80 -112.3415 18.31005 1.84950 -116.4162 -108.2668 

Total 160 -75.4842 39.63471 2.04713 -81.6726 -69.2957 

Search Agent Reward Analysis. 

 The Search Agents were analyzed in a similar way as the Navigation Agents.  The 

average reward across the last 20 trials was used to determine if there were any steady-state 

performance differences within the imperfect systems.  The results for the TD Search Agents are 

shown below in Table 16. 
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Table 16 

TD search agent descriptive data 

 N Mean 
Std. 

Deviation 

Std. 

Error 

95% Confidence Interval for 

Mean 

Lower Bound Upper Bound 
Inf 20 -45.6103 12.78464 2.85873 -51.5936 -39.6269 

4 20 -60.5410 15.58965 3.48595 -67.8372 -53.2448 

7 20 -53.1910 13.83779 3.09422 -59.6673 -46.7147 

10 20 -50.5940 12.45740 2.78556 -56.4242 -44.7638 

Total 80 -52.4841 14.51087 1.62236 -55.7133 -49.2548 

  

 

Figure 25:  Box plot of TD Search Agent average rewards.  Again, the whiskers represent the highest and lowest 

values found in a given set of data.  The “.00” category depicts the results of the system with a perfect sensor. 

The results of the ANOVA are shown in Table 12.  A significant difference between the 

systems was found (p = 0.009).  As before, a Tukey’s HSD test is performed to determine what 
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the relationship between the systems.  The homogeneity of variance assumption was not violated 

(p = 0.850). 

Table 17 

TD search agent ANOVA results 

 
Sum of 

Squares 
df Mean Square F Sig. 

Between Groups 2324.713 3 774.904 4.116 .009 

Within Groups 14309.951 76 188.289   

Total 16634.664 79    

 The Tukey’s test revealed that only the worst system (with an alpha of 4) and perfect 

system exhibited a significant difference in their steady-state scores (p = 0.005).  This is 

interesting as it signifies that the imperfect Search Agents seem to be able to mitigate the effects 

of sensors with different levels of performance.  It also breaks from the pattern found in the TD 

Navigation Agent analysis. 

Table 18 

TD search agent tukey HSD results 

Alpha Alpha 
Mean 

Difference 
Std. Error Sig. 

Inf 

4 14.93075
*
 4.33923 .005 

7 7.58075 4.33923 .307 

10 4.98375 4.33923 .661 

4.00 

Inf -14.93075
*
 4.33923 .005 

7 -7.35000 4.33923 .334 

10 -9.94700 4.33923 .109 

7.00 

Inf -7.58075 4.33923 .307 

4 7.35000 4.33923 .334 

10 -2.59700 4.33923 .932 

10.00 

Inf -4.98375 4.33923 .661 

4 9.94700 4.33923 .109 

7 2.59700 4.33923 .932 
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 The analysis of the MC Search Agent rewards was carried out in the same manner as with 

the TD methods.  The last 20 trials were used to compare the rewards of the MC Search Agents.  

The descriptive data is shown below in Table 19.  As in the Navigation Agent Analysis section 

the MC Agents seem to feature lower mean performance values. 

Table 19 

MC search agent descriptive data 

 N Mean 
Std. 

Deviation 

Std. 

Error 

95% Confidence Interval for 

Mean 

Lower Bound Upper Bound 
Inf 20 -72.0033 15.51416 3.46907 -79.2641 -64.7424 

4 20 -93.2130 18.53801 4.14522 -101.8891 -84.5369 

7 20 -83.1368 16.19789 3.62196 -90.7176 -75.5559 

10 20 -82.8978 11.35186 2.53835 -88.2106 -77.5849 

Total 80 -82.8127 17.07709 1.90928 -86.6130 -79.0124 
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Figure 26:  Box plot of the MC Search Agent average rewards.  The “.00” category represents the data of the system 

with the perfect sensor.  The whiskers represent the highest and lowest entries in the data. 

  

The ANOVA for the MC Search Agent shows that there is a significant difference 

between the systems (p = 0.001).  A Tukey’s test is used to determine the specifics of the 

relations between the groups.  Using the Levene test, the homogeneity of variance assumption 

was determined to not have been violated (p = 0.211). 

Table 20 

MC search agent ANOVA results 

 
Sum of 

Squares 
df Mean Square F Sig. 

Between Groups 4502.454 3 1500.818 6.154 .001 

Within Groups 18536.080 76 243.896   

Total 23038.534 79    
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 A significant difference was found between the perfect Search Agent and the Search 

Agent with a sensor sensitivity of 4 (p < 0.001).  The first result mirrors that found in the TD 

Search Agent Analysis, the systems with sensor sensitivity ratings of 7 and 10 are not 

significantly different from one another or from the perfect system in regard to steady-state 

performance.  This result again points to the conclusion that the RL architecture, in this case the 

MC system, is able to mitigate the effects of different sensor performance levels. 

Table 21 

MC search agent Tukey HSD results 

Alpha Alpha 
Mean 

Difference 
Std. Error Sig. 

Inf 

4 21.20975
*
 4.93858 .000 

7 11.13350 4.93858 .118 

10 10.89450 4.93858 .131 

4 

Inf -21.20975
*
 4.93858 .000 

7 -10.07625 4.93858 .183 

10 -10.31525 4.93858 .166 

7 

Inf -11.13350 4.93858 .118 

4 10.07625 4.93858 .183 

10 -.23900 4.93858 1.000 

10 

Inf -10.89450 4.93858 .131 

4 10.31525 4.93858 .166 

7 .23900 4.93858 1.000 

 A comparison of the TD and MC systems’ collective Search Agent rewards was 

completed using an ANOVA.  The descriptive statistics used for this analysis are provided in 

Table 22.  A homogeneity of variance test was completed before the ANOVA was conducted, 

and revealed that the homogeneity of variance assumption is valid for this data (p = 0.360).  The 

results of the ANOVA shown in Table 23 indicated that there is a significant difference (p < 

0.001) between the rewards obtained by the different Search Agent implementations. 
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Table 22 

TD & MC search agent descriptive data 

 N Mean 
Std. 

Deviation 

Std. 

Error 

95% Confidence Interval for 

Mean 

Lower Bound Upper Bound 
TD 80 -52.4841 14.51087 1.62236 -55.7133 -49.2548 

MC 80 -82.8127 17.07709 1.90928 -86.6130 -79.0124 

Total 160 -67.6484 21.92988 1.73371 -71.0724 -64.2243 

 

Table 23 

TD & MC search agent ANOVA results 

 
Sum of 

Squares 
df Mean Square F Sig. 

Between Groups 36793.020 1 36793.020 146.530 0.000 

Within Groups 39673.198 158 251.096   

Total 76466.218 159    

Incorrect Declaration Behavior. 

 The Incorrect Declaration Behavior of the Search Agent was assessed in the same manner 

as the reward data.  The last 20 trials were used as data points to examine the effects, if any, of 

the sensor sensitivity on the number of incorrect declarations occurring in a given trial.  It is 

expected that the same general trends that were found in the Search Agent analysis section will 

be present in the Incorrect Declaration behavior. 

 The descriptive data for the TD incorrect declaration behavior is displayed in Table 24.  It 

can be seen that the Agents using a higher performance sensor have a lower average number of 

incorrect declarations than the other agents.  Again, the within group standard deviation is 

relatively uniform. 

Table 24 
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TD incorrect declaration descriptive data 

 
N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval for 

Mean 

 Lower Bound Upper Bound 
Inf 20 16.8175 3.70344 .82811 15.0842 18.5508 

4 20 23.0265 4.85729 1.08612 20.7532 25.2998 

7 20 20.2955 4.34889 .97244 18.2602 22.3308 

10 20 19.3830 3.90774 .87380 17.5541 21.2119 

Total 80 19.8806 4.70971 .52656 18.8325 20.9287 

 

 

Figure 27:  Box plot of TD Agent Incorrect Declarations.  The “.00” category represents the data of the system 

using a perfect sensor.  The whiskers represent the highest and lowest entries in each data set. 

 An insignificant Levene statistic was generated for the TD Incorrect Declaration data (p = 

0.708), allowing an ANOVA test to be used to determine significant differences.  The ANOVA 

test revealed a significant difference between the system data (p < 0.001).  A Tukey’s HSD test 
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will be used to further analyze the systems’ behavior in the same manner as the reward analyses.  

The results of the Tukey’s test are shown in Table 25. 

Table 25 

TD incorrect declaration ANOVA results 

 
Sum of 

Squares 
df Mean Square F Sig. 

Between Groups 393.980 3 131.327 7.348 .000 

Within Groups 1358.347 76 17.873   

Total 1752.327 79    

 The Tukey HSD test results are displayed in Table 26.  A significant difference is found 

between the perfect system and the worst system (the agent with an alpha value of 4).  This 

reinforces the analysis found in the TD Search Agent section.  Interestingly though, there is a 

significant difference between the systems with sensor performance values of 4 and 10 as well.  

This relationship was not found in the TD Search Agent analysis.  It is also found that there is no 

significant difference between the systems with higher sensor performance. 

Table 26 

TD incorrect declaration Tukey HSD results 

Alpha Alpha 
Mean 

Difference 
Std. Error Sig. 

Inf 

4 -6.20900
*
 1.33690 .000 

7 -3.47800 1.33690 .053 

10 -2.56550 1.33690 .229 

4.00 

Inf 6.20900
*
 1.33690 .000 

7 2.73100 1.33690 .182 

10 3.64350
*
 1.33690 .039 

7.00 

Inf 3.47800 1.33690 .053 

4 -2.73100 1.33690 .182 

10 .91250 1.33690 .903 

10.00 

Inf 2.56550 1.33690 .229 

4 -3.64350
*
 1.33690 .039 

7 -.91250 1.33690 .903 
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 The descriptive data for the MC Agents is displayed in Table 27.  The data reveals that 

the MC Search Agents, on average, did not generate a much larger number of incorrect 

declarations than the TD agents. 

Table 27 

MC incorrect declaration descriptive data 

 N Mean 
Std. 

Deviation 

Std. 

Error 

95% Confidence Interval for 

Mean 

Lower Bound Upper Bound 
Inf 20 17.6685 3.72033 .83189 15.9273 19.4097

4.00 20 23.1920 4.66682 1.04353 21.0079 25.3761

7.00 20 20.6725 4.21187 .94180 18.7013 22.6437

10.00 20 19.9625 3.48436 .77913 18.3318 21.5932

Total 80 20.3739 4.43647 .49601 19.3866 21.3612
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Figure 28:  Box plot of MC Agent Incorrect Declarations.  The “.00” category represents the output of the perfect 

system.  The whiskers of each plot show the highest and lowest entries in the data set. 

A Levene test was applied to the data and revealed that the assumption of homogeneity of 

variance was not violated (p = 0.806).  The ANOVA results indicate that there is a significant 

difference between the numbers of incorrect declarations made by each system, dependent upon 

the performance of the sensor it uses (p = 0.001).  A Tukey’s HSD test is used to identify the 

source of the differences.  The results of the ANOVA can be found Table 28. 

Table 28 

MC incorrect declaration ANOVA results 

 
Sum of 

Squares 
df Mean Square F Sig. 

Between Groups 310.386 3 103.462 6.318 .001 

Within Groups 1244.512 76 16.375   

Total 1554.897 79    
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 The test reveals that the significant difference is caused by the performance differences of 

the system with the sensor sensitivity of 4 and the perfect system (p < 0.001).  This result mirrors 

the analysis found in the MC Search Agent section. 

Table 29 

MC incorrect declaration Tukey HSD results 

Alpha Alpha 
Mean 

Difference 
Std. Error Sig. 

Inf 

4 -5.52350
*
 1.27965 .000 

7 -3.00400 1.27965 .096 

10 -2.29400 1.27965 .285 

4 

Inf 5.52350
*
 1.27965 .000 

7 2.51950 1.27965 .209 

10 3.22950 1.27965 .064 

7 

Inf 3.00400 1.27965 .096 

4 -2.51950 1.27965 .209 

10 .71000 1.27965 .945 

10 

Inf 2.29400 1.27965 .285 

4 -3.22950 1.27965 .064 

7 -.71000 1.27965 .945 

  An analysis of the incorrect declaration behavior between the Temporal 

Difference and Monte Carlo systems was also completed.  The descriptive statistics for this 

analysis are provided below in Table 30.  Examination of the data shows that the means for the 

two results are very close. 

Table 30 

TD & MC incorrect declaration behavior descriptive statistics 

 N Mean 
Std. 

Deviation 

Std. 

Error 

95% Confidence Interval for 

Mean 

Lower Bound Upper Bound 
MC 80 20.374 4.43647 0.49601 19.3866 21.3612 

TD 80 19.881 4.70971 0.52656 18.8325 20.9287 

Total 160 20.127 4.56742 0.36109 19.4141 20.8404 
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An ANOVA was conducted on this data.  The results of the ANOVA are shown in Table 

31.  An analysis for the homogeneity of variance in SPSS resulted in a Levene Statistic of 0.491, 

indicating that the homogeneity of variance assumption for the ANOVA was valid (p = 0.484).  

The ANOVA reveals that there were no significant differences in the collective number of 

incorrect declarations by the systems (p = 0.496). 

Table 31 

TD & MC incorrect declaration behavior ANOVA results 

 
Sum of 

Squares 
df Mean Square F Sig. 

Between Groups 9.732 1 9.732 0.465 0.496 

Within Groups 3307.225 158 20.932   

Total 3316.957 159    

The state-action value map of the Search Agents provided another way to view the 

behavior of the systems in terms of the number of incorrect declarations.  The value mapping for 

all the Search Agents is found in Table 32.  All TD agents seemed to converge to the same value 

for the declaration action, especially for the lower TOP states.  TD Agents 3 and 4 sometimes 

have zeros for the declaration value of intermediate states.  The cause of this was that the agent 

with a higher sensor performance tended to “skip” through the TOP ranges due to the nature of 

Bayes’ Rule for updating the TOP.  The MC Agents also seem to converge to similar TOP state 

values, especially for lower TOP values. 
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Table 32 

Search agent state action values 

  TOP State 

Agent Action 1 2 3 4 5 6 7 8 9 10 

TD 1 

Move -0.695 -0.741 -0.690 -0.799 -0.880 -0.764 -0.803 -0.761 -0.783 -0.744 

Loiter 4.803 3.532 2.870 -0.453 -0.868 -0.800 -1.262 -1.289 -1.277 -1.274 

Declare 5.489 4.665 3.485 0.437 -0.771 -0.206 -0.957 -1.033 -1.090 -1.102 

TD 2 

Move -0.761 -0.893 -1.264 -0.883 -0.998 -0.841 -0.873 -0.818 -0.857 -0.790 

Loiter 4.675 3.753 2.858 0.917 -0.993 -0.885 -1.361 -1.290 -1.322 -1.315 

Declare 5.315 4.169 4.176 1.408 -0.801 -0.585 -1.029 -1.014 -1.099 -1.108 

TD 3 

Move -0.921 -0.500 -0.959 0.000 -0.932 0.000 -0.848 -0.882 -0.848 -0.805 

Loiter 4.395 0.000 1.988 -1.256 -0.854 0.000 -1.361 -1.371 -1.371 -1.369 

Declare 5.221 0.000 2.515 0.000 -0.377 0.000 -0.962 -1.033 -1.099 -1.110 

TD 4 

Move -1.072 0.000 0.000 0.000 -1.050 0.000 0.000 0.000 0.000 -0.736 

Loiter 4.999 0.000 0.000 0.000 -1.000 0.000 0.000 0.000 0.000 -1.294 

Declare 5.555 0.000 0.000 0.000 -0.821 0.000 0.000 0.000 0.000 -1.111 

MC 1 

Move -3.178 -2.785 -3.107 -4.209 -4.518 -4.508 -4.639 -4.750 -4.727 -4.791 

Loiter -1.190 -0.127 -1.247 -3.845 -4.668 -4.452 -4.792 -4.888 -4.902 -4.967 

Declare 2.030 0.932 -0.578 -3.570 -4.761 -4.409 -4.967 -5.165 -5.130 -5.226 

MC 2 

Move -2.393 -2.698 -4.429 -3.720 -4.232 -4.406 -4.448 -4.636 -4.563 -4.702 

Loiter 0.573 -0.325 -2.020 -2.879 -4.419 -4.442 -4.668 -4.788 -4.792 -4.888 

Declare 1.756 0.406 0.844 -2.553 -4.543 -4.575 -4.857 -5.024 -5.002 -5.130 

MC 3 

Move -2.688 0.074 -3.278 0.000 -4.174 0.000 -4.552 -4.345 -4.518 -4.641 

Loiter 0.590 0.000 -1.814 0.000 -4.143 0.000 -4.708 -4.594 -4.724 -4.831 

Declare 1.678 0.000 -1.312 5.000 -4.192 0.000 -4.843 -4.790 -4.961 -5.086 

MC 4 

Move -2.703 0.000 0.000 0.000 -3.785 0.000 0.000 0.000 0.000 -4.314 

Loiter 1.127 0.000 0.000 0.000 -4.015 0.000 0.000 0.000 0.000 -4.567 

Declare 2.232 0.000 0.000 0.000 -4.193 0.000 0.000 0.000 0.000 -4.793 

 A plot of the declaration action values for the TD methods can be found in Figure 29.  

The plot reveals the TD agents are much more likely to declare the presence of a target if the 

TOP is greater than 0.5.  The higher the TOP, the more likely the agent will declare the presence 

of a target.  It is noted in Table 32 that the “Declare” value never gets substantially lower than 

the other action values for a given state.  This means that at these low TOP values there remains 

a relatively high probability of that action being selected, increasing the number of false 
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declarations.  The number of false declarations would also inherently be greater for situations 

where the agent vehicle had to travel farther.  To travel farther the agent would have to traverse 

more empty space, possibly selecting the “Declare” action.  As value functions derive their 

values from the reward scheme used by an RL algorithm, the number of incorrect declarations 

could possibly be reduced by increasing the penalty for a false declaration or eliminating the 

ability of the Search Agents to declare target presence while in these TOP states. 

 

 It is seen in Figure 29 that the state-action values for the Declaration action converge to 

the same number for all of the TD Search Agents.  The parts of the value map that equal zero are 

states that were never encountered by a given system.  The TD Agent 1 system seems to have the 

smoothest overall profile as it visited most of the states many times, allowing its value function 

to converge. 
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Figure 29: Plot of the TD Agent declaration action values.  The plot shows that 

higher TOPs are more valued with respect to the declaration action.  The perfect agent 

only experiences 3 operational TOP states, the highest, the lowest, and the once in 

which the agent is initialized at the beginning of every episode.
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 The same general trends are found in the MC Search Agent value maps.  Figure 30 shows 

that the MC systems converged to the same values, although different values than those found in 

the TD Search Agent data.  Again, the first agent, with the lowest sensor performance, has the 

smoothest curve due to the fact that it visited all of the states multiple times.  A spike is present 

at TOP State 4 for the third system.  Examination of the data reveals that this state was 

encountered only twice over the course of the entire simulation for this system.  It is theorized 

that in order to generate a TOP in this state the system would have to generate a particular set of 

returns on an occupied position, with at least one return being a true result.  The fact that this so 

rarely happens likely means that the position is occupied, thus resulting in the high value.  This 

state value should thus be ignored as it was so rarely encountered. 

-6

-4

-2

0

2

4

6

1 2 3 4 5 6 7 8 9 10

D
e

cl
a

ra
ti

o
n

 A
ct

io
n

 V
a

lu
e

TOP State

MC Declaration Action Value Plot

MC Agent 1

MC Agent 2

MC Agent 3

MC Agent 4

Figure 30: The plot of MC declaration values shows similar behavior to that found in 

the TD values.  The states that have a value of zero have never been experienced by 

their respective systems, and therefore are never updated.
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Mission Time. 

 The time to mission completion decreased over the course of a given trial through 

repeated episodes.  The rate of convergence for the minimization of target completion time was 

different between the TD and MC agents.  The mission times for the TD and MC agents 

equipped with a sensor � value of 4 are shown below in Figure 31. 

  

Figure 31:  First (alpha = 4) TD and MC Agent Mission Time plots.  The MC Agent’s plot features an early period 

of rapid learning that lasts for the first 10 episodes, and then converges more slowly to a steady state value.  The TD 

agent has a more gradual and longer learning period, and ultimately converges to a steady state mission time that is 

visibly lower than the MC system’s result. 

 The graphs show mission times for the TD and MC agents with the worst sensor used in 

this study, but this behavior is typical of all the systems, including the perfect systems.  The MC 

agents initially learn at an extremely high rate, which is seen in Figure 31.  The TD agents learn 

more gradually, but eventually complete their missions much sooner than the MC agents.  The 

results of the perfect systems are shown in Figure 32. 
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Figure 32: Perfect TD and MC Agent Mission Time Plots.  The same trends as seen in the first systems are present 

in the perfect systems.  The MC agent exhibits a period of rapid learning, but ultimately converges to a steady-state 

mission time that is higher than the results of the TD agent. 

 As can be seen in Figure 32, the initial rate of convergence for the perfect MC system is 

still faster than the equivalent TD system, even with a perfect sensor.  Both systems show that 

the initial time to complete a mission is reduced compared to the imperfect systems.  

Additionally, the steady state performance of the perfect systems also improved compared to the 

imperfect systems.  All system mission performance plots can be found in Appendix A of this 

study. 

TOP Grid Comparison. 

 A TOP map comparison was performed on selected trials for all agents.  The comparison 

is shown in Figure 35.  The systems’ TOP maps are compared to the map of the perfect system 

of a given agent type.  Examples of the TOP plots are shown in Figure 33 and Figure 34.  The 
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plots were generated by the TD system with a perfect sensor (Agent 4) and the TD system with 

the worst sensor performance (Agent 1). 

 

 

Figure 33:  Perfect TD Agent TOP Map.  The plot shows three spikes, 

which are equal to one, indicating that the agent found all the targets in 

this episode.  A large portion of the map has a TOP value of zero.  By 

episode 50, the agent rapidly travels to the likely target locations. 
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Figure 34:  First TD Agent TOP Map. The TOP map generated by the 

TD system equipped with a sensor with a Hit Rate of 0.9 and a False 

Alarm Rate of 0.36.  The agent finds all targets in both episodes, the 

same as the perfect system, but by episode 50 the agent hasn’t reach 

the same efficiency with moving about the environment as the TD 

system with the perfect sensor. 

The plots seem to suggest that the agents are reducing mission time by more quickly 

traveling to higher probability target locations.  The perfect system generates a map with either a 

TOP of zero or one, with three spikes indicating target locations, showing zero False Alarm 

effects.  The imperfect system’s TOP map shows the results of the imperfect sensor on the TOP 
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environment with TOP values between zero and one.  To compare the systems more generally a 

procedure was devised where all of the systems were compared to the end result of their perfect 

versions across multiple trials.  This procedure can be found in the TOP Map Comparison 

subsection of the Metrics section of this report. 

Each map of a given system at a specific episode is compared to the map generated by 

the perfect system during the final episode.  The results of this comparison are shown in Figure 

35.  The plots in Figure 35 are generated from the episodes of 10 trials averaged together. 

  

Figure 35:  TOP similarity plots.  The plot of the TOP map comparison data shows that, in general, the difference in 

the TOP maps decrease over the course of a trial.  Interestingly, the TD agents seem to maintain very similar 

difference metric values over the course of the trial.  The MC agents feature a large amount of variability in their 

metrics. 

 There is an overall downward trend in this data.  This leads to the conclusion that the 

systems are converging to the final learned behavior exhibited by the perfect systems in each 
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case.  It seems that the TOP maps generated by the TD systems do not vary as much as the MC 

systems during their downward trend, meaning that their behavior is more uniform. 

Discussion 

 The first hypothesis, that systems equipped with higher performance sensors will perform 

better than other systems, is confirmed by the evidence presented in this study.  This is shown in 

the analyses and data of the incorrect declarations, mission time, mission completion, and reward 

plots.  For the TD methods, the perfect Search Agent was only significantly different from the 

Agent with lowest sensor performance of 4, with no other significant differences.  For the MC 

Search Agents the exact same relationships were found.  The incorrect declaration analysis for 

the TD Search Agent systems resulted in the same conclusions, but the Search Agent with a 

performance of 4 (TD Agent 1) was significantly different from the perfect system and the 

system with a sensor performance of 10 (Agent 4 and Agent 3, respectively).  These results were 

different from those found for the MC Search Agents with only the perfect and worst MC 

systems (Agents 4 and 1, respectively) exhibiting a significant difference in the number of 

Incorrect Declarations.  For the Navigation Agent, all TD systems were significantly different 

from one another.  The MC Navigation Agents had the same results, except Agents 2 and 3 (with 

sensor values of 7 and 10, respectively) where not significantly different.  Overall, systems 

performed better with better sensors, but there is a diminishing return as the sensor sensitivity 

increases.  This is shown by the sample means for the Navigation and Search Agent rewards and 

the number of incorrect declarations. 

The mission times reduced according to the performance of the sensor, confirming the 

results of the Navigation Agent reward analysis.  Small increases to the mission completion rate 
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were observed, but overall the average mission completion rate was greater than 95% for all TD 

systems and 90% for all MC systems.  The reduction of mission time as the performance of the 

sensor increased also shows that the agents with better sensors found their targets faster, 

reducing the number of penalties incurred and therefore increasing the average episodic reward. 

 The second hypothesis, that the TD systems would outperform the MC systems was 

proven through examination of the descriptive statistics for the Navigation Agents, and 

ANOVAs for the Search Agents and Incorrect Declaration Behavior.  An ANOVA was not used 

for the Navigation Agents as the assumption of homogeneity of variance did not apply.  The TD 

systems outperformed the MC systems in the Navigation Agent reward analysis by a factor 

greater than two.  The Search Agent reward analysis also showed a clear superiority in the TD 

systems.  Interestingly, the TD and MC systems produced similar incorrect declaration counts, 

but the mission completion rates for the MC systems were noticeably lower.  The TOP map 

comparison reveals that both system types minimize the differences between their TOP grids and 

the final grid generated by the perfect system.  The primary cause of this is believed to be the 

systems converging to the same paths between target regions. 

 The state-action values created by the Search Agents showed that the systems associated 

a higher TOP with greater value, as expected.  The “Loiter” action also associates a higher value 

with higher TOP states, while the “Move” action values are relatively uniform across all TOP 

states.  Interestingly, the Search Agents tended to give state-action pairs the same value between 

systems with the same implementation methods, regardless of the performance of the sensor that 

is used.  This finding indicates that a cooperative setup could be used to transfer learning from 

one agent to another in a multi-agent operation, regardless of the type of sensor used.  These 

values also provide a clue as to why both system types produced the same number of incorrect 
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declarations.  The values for the “Move” and “Loiter” actions are similar to those found for the 

“Declare” action.  Since the “Declare” action is valued about the same as the other actions it has 

a high probability of being selected, even when in a low TOP states.  The chief cause of this 

behavior is probably due to the reward scheme used for the simulation.  Future work could 

change the reward scheme and/or implement a procedure where the Search Agents are not 

allowed to declare a target present unless the TOP is over a set value. 

Conclusion 

General Remarks 

 Very few studies have been published regarding the ability of RL systems to achieve 

mission goals given decreasing sensor performance.  This study attempts to shed some light on 

the subject in an abstract way to maximize the potential applicability of its findings.  Through the 

use of Signal Detection Theory, the sensor performance for the systems is quantified and 

described in way that was still applicable to wide variety of real world systems such as radar, 

image processing, infrared, and other sensing mechanisms.  The use of Bayes’ Rule allows 

probabilities of target occupancy to be updated in the simulation, and therefore a tradeoff 

mechanism through which the RL systems need to experiment with and learn.  The targets were 

given a simple, random behavior for which the RL systems needed to adjust.  The system worked 

with simulated, perfect human feedback to modify its behavior.  The RL system was not able to 

plan ahead in this study, and had no way of knowing the TOP state of future positions.  However, 

overall the agents were able to meet their objectives and did show a tendency to reduce the 

number of false declarations made by the system. 
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Future Work 

 Numerous opportunities for future development in this avenue of research exist.  One of 

the simplest is to see how the reward scheme affects agent performance.  If correct declarations 

are given higher values relative to the other rewards, the systems will become more risk tolerant 

and vice versa.  Another research topic would be to have the systems for some set period take 

only the most optimal actions and analyze the behavior, especially for the incorrect declaration 

metric. 

 More work can be done to make the simulation better reflect real world situations.  Target 

regions could move over time in some logical fashion.  Initial TOP estimates could be made 

more realistic and non uniform.  Another idea is to have the sensor sensitivity change with 

position or time in the environment.  A real-world human operator could also be introduced to 

examine the effects of human error on the systems’ ability to learn. 

 A third area of study could be to incorporate different entities into the environment.  

These can take the form of threats, different types of targets, and other allied vehicles.  One 

possible idea would be to have a fully manned system operating in the environment and have the 

unmanned, agent controlled systems “observe” the situations and actions of the operator.  Signal 

Detection Theory also allows for the possibility of multiple target types being detected.  

Combined with unique behavior it would be interesting to see how a RL system could adapt to 

the imperfect sensing mechanism in this case.  A hybrid system could be built where certain 

types of states are updated using Monte Carlo methods in-between sorties and other states are 

updated using the Temporal Difference method. 
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Closing Remarks 

 This study should provide a good baseline for future developments in the area of 

operational systems using Reinforcement Learning algorithms to achieve a flexible and effective 

autonomous behavior.  Based upon the findings of this research real world Reinforcement 

Learning systems will be impacted by the performance of their sensors, but a point of 

diminishing returns exists for higher sensor performance.  Further research should be undertaken 

with more realistic scenarios and more sophisticated algorithms to increase knowledge of these 

systems’ behavior is real-world, uncertain environments that will have to interact with a human 

supervisor or operator to accomplish a mission.  Such research could aid in the development of a 

real-world deployable system. 
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Appendix A: Mission Time Plots 
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