
Dissertations and Theses

Summer 2013

The Effects of Sensor Performance as Modeled by Signal The Effects of Sensor Performance as Modeled by Signal

Detection Theory on the Performance of Reinforcement Learning Detection Theory on the Performance of Reinforcement Learning

in a Target Acquisition Task in a Target Acquisition Task

Nate Quirion
Embry-Riddle Aeronautical University - Daytona Beach

Follow this and additional works at: https://commons.erau.edu/edt

 Part of the Aerospace Engineering Commons, and the Cognitive Psychology Commons

Scholarly Commons Citation Scholarly Commons Citation
Quirion, Nate, "The Effects of Sensor Performance as Modeled by Signal Detection Theory on the
Performance of Reinforcement Learning in a Target Acquisition Task" (2013). Dissertations and Theses.
118.
https://commons.erau.edu/edt/118

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted
for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more
information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=commons.erau.edu%2Fedt%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/408?utm_source=commons.erau.edu%2Fedt%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/118?utm_source=commons.erau.edu%2Fedt%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

The Effects of Sensor Performance as Modeled by Signal Detection Theory on the

Performance of Reinforcement Learning in a Target Acquisition Task

by

Nate Quirion

B.S. Embry-Riddle Aeronautical University, 2010

A Graduate Thesis Submitted to the

Department of Human Factors and Systems

in Partial Fulfillment of the Requirement for the Degree of

Master of Science in Human Factors and Systems

Embry-Riddle Aeronautical University

Daytona Beach, Florida

Summer 2013

Acknowledgements

The author thanks Dr. Dahai Liu for his help and guidance in the conceptualization and

realization of this study. The author has learned much from him, and without his help this work

would never have been completed. The author also expresses his gratitude to Dr. Liu as he has

given the author a new professional passion and a large number of new skills.

The author would also like to thank his committee members, Dr. Albert Boquet and Dr.

Andre Ludu, for their tremendous understanding, guidance, and patience during the duration of

this work. No one could ask for a better group of mentors.

The author also wishes to thank his father and mother, David and Valerie Quirion, for all

the life changing guidance and wisdom that have led the author to this point. Thanks are also

given for the author’s grandfather and grandmother, Benoit and Lorraine Quirion, who have

shaped the author’s life and choices in uncountable, incredible, ways. He would not be the same

person without them.

Table of Contents

Abstract ... 1

Introduction ... 2

Literature Review.. 2

Unmanned Aircraft Systems. .. 3

Autonomy. .. 7

Reinforcement learning. .. 12

Sensor systems in UASs. .. 31

Literature Review Summary ... 37

Problem Statement .. 37

Hypotheses .. 38

Method .. 39

Experiment Description .. 39

Experiment variables description. ... 39

The environment. .. 40

Reinforcement Learning Model .. 41

Problem, state, action and reward formulation. .. 41

Markovian model of environment. ... 45

Target placement and interaction. ... 47

RL paradigm formulation. .. 48

Environment interaction.. 52

Metrics .. 54

Agent Behavior. .. 56

Mission Performance. ... 58

TOP Map Comparison. ... 59

Results ... 61

Agent Behavior Results .. 62

Agent Rewards. ... 62

Incorrect Declaration Behavior. .. 69

Mission Performance .. 73

Agent Reward Analysis .. 76

Navigation Agent Reward Analysis.. 76

Search Agent Reward Analysis. ... 82

Incorrect Declaration Behavior. .. 88

Mission Time. ... 98

TOP Grid Comparison. ... 99

Discussion ... 103

Conclusion .. 105

General Remarks ... 105

Future Work .. 106

Closing Remarks ... 107

Appendix A: Mission Time Plots ... 115

List of Figures

Figure 1. The RL architecture ..………………………………………………………………….12

Figure 2. The hierarchical RL interaction diagram …………………………………………...... 26

Figure 3. Example probability density functions of target and noise signal values …………… 34

Figure 4. : Hit Rate and False Alarm rates for constant alpha values………………….………. 36

Figure 5. The overall architecture of the experimental RL system ……………..………...…… 42

Figure 6. The Mission Time plot ……………………………………………….……….……... 45

Figure 7. The transition model for the Search Agent ………………………..………………… 46

Figure 8. The position map ……………………….……………………………………………. 48

Figure 9. An example of a Navigation Agent Reward plot ..………………………………...… 57

Figure 10. Example of the Mission Time performance plot …………………………………… 59

Figure 11. The average reward for the first TD Navigation Agent ..…………………………... 63

Figure 12. All TD Navigation Agent episodic rewards …………………………….…….……. 64

Figure 13. All MC Navigation Agent episodic rewards …..……………………….….……..… 65

Figure 14. All TD Search Agent rewards …………………………..…………………………...66

Figure 15. Smoothed TD Search Agent rewards …………………………...………………….. 67

Figure 16. All MC Search Agent rewards …………….……………………………………….. 68

Figure 17. Smoothed MC Search Agent rewards ……………………..……..………………… 69

Figure 18. Average TD Incorrect Declarations…………………………………………………. 70

Figure 19. Smoothed average TD Incorrect Declarations…….……………………………...… 71

Figure 20. Average MC Incorrect Declarations………………………………………………… 72

Figure 21. Smoothed average MC Incorrect Declarations……….……………………………... 73

Figure 22. Mission Time plot for first TD Agent …………………………...…………………. 75

Figure 23. Box plot of the TD Navigation Agent Rewards ……………………….…………… 77

Figure 24. Box plot of the MC Navigation Agent Rewards …………..…………….…………. 80

Figure 25. Box plot of TD Search Agent average rewards …...………...…………………...… 83

Figure 26. Box plot of TD Search Agent average rewards ……………………….…………… 86

Figure 27. Box plot of TD Agent Incorrect Declarations ………………….…………………... 89

Figure 28. Box plot of MC Agent Incorrect Declarations ………………………..……………. 92

Figure 29. Plot of the TD Agent declaration action values …………………..………………… 96

Figure 30. Plot of the MC Agent declaration action values .………...…………………………. 97

Figure 31. Perfect TD and MC Agent Mission Time plots ………………………...…………... 98

Figure 32. Fourth TD and MC Agent Mission Time Plots ……………………..……………… 99

Figure 33. Perfect TD Agent TOP Maps ….……………...……......…………………………. 100

Figure 34. First TD Agent TOP Map …………………………………………………………. 101

Figure 35. TOP similarity plots ……………………………………...……..………………… 102

List of Tables

Table 1. Possible responses of a sensor with two possible states of the environment ……….... 35

Table 2. Experimental systems and their attributes…………………………..……………..….. 40

Table 3. TOP state threshold definition ……………………………………………………....... 43

Table 4. Sensor characteristic values and descriptions………………………………..……...… 53

Table 5. Conditional probability notation……………………………..………………………... 53

Table 6. Experiment output and format list…………………………………………………….. 56

Table 7. Mission completion rates…………………………………………………………....… 74

Table 8. Average mission time decision step values of last 50 episodes…..………………….... 76

Table 9. TD navigation agent steady-state descriptive data .………………………………...… 77

Table 10. TD navigation agent ANOVA results …………...…………………………………... 78

Table 11. Tukey HSD test results………………………………………………………………. 78

Table 12. MC navigation agent steady-state descriptive data…………………….…………..… 79

Table 13. MC navigation agent ANOVA results……………………………..……………….... 81

Table 14. MC navigation agent Tukey HSD results………………………………..………...… 81

Table 15. TD & MC navigation agent descriptive data…………………………………............ 82

Table 16. TD search agent descriptive data ……………………………………………………. 83

Table 17. TD search agent ANOVA results …………………………………………………… 84

Table 18. TD search agent tukey HSD results………………………………………….............. 84

Table 19. MC search agent descriptive data…………………………………….....................… 85

Table 20. MC search agent ANOVA results………………………………………………….... 86

Table 21. MC search agent Tukey HSD results………………………………………..………. 87

Table 22. TD & MC search agent descriptive data…………………………………………..… 88

Table 23. TD & MC search agent ANOVA results……………………………………….….... 88

Table 24. TD incorrect declaration descriptive data……………………………………...……. 89

Table 25. TD incorrect declaration ANOVA results…………………………………………... 90

Table 26. TD incorrect declaration Tukey HSD results ………………………………………. 90

Table 27. MC incorrect declaration descriptive data………………………………………...… 91

Table 28. MC incorrect declaration ANOVA results …….……………………………….….... 92

Table 29. MC incorrect declaration Tukey HSD results ……………………………................. 93

Table 30. TD & MC incorrect declaration behavior descriptive statistics …………………...... 93

Table 31. TD & MC incorrect declaration behavior ANOVA results ……………………..…... 94

Table 32. Search agent state action values ……………………….………………………... 95

1

Abstract

Author: Nate Quirion

Title: The Effects of Sensor Performance as Modeled by Signal Detection Theory on the

Performance of Reinforcement Learning in a Target Acquisition Task

Institution: Embry-Riddle Aeronautical University

Year: 2013

Unmanned Aerial Systems (UASs) today are fulfilling more roles than ever before.

There is a general push to have these systems feature more advanced autonomous capabilities in

the near future. To achieve autonomous behavior requires some unique approaches to control

and decision making. More advanced versions of these approaches are able to adapt their own

behavior and examine their past experiences to increase their future mission performance. To

achieve adaptive behavior and decision making capabilities this study used Reinforcement

Learning algorithms. In this research the effects of sensor performance, as modeled through

Signal Detection Theory (SDT), on the ability of RL algorithms to accomplish a target

localization task are examined. Three levels of sensor sensitivity are simulated and compared to

the results of the same system using a perfect sensor. To accomplish the target localization task,

a hierarchical architecture used two distinct agents. A simulated human operator is assumed to

be a perfect decision maker, and is used in the system feedback. An evaluation of the system is

performed using multiple metrics, including episodic reward curves and the time taken to locate

all targets. Statistical analyses are employed to detect significant differences in the comparison

of steady-state behavior of different systems.

2

Introduction

 There is a general trend in robotics and the Unmanned Aerial System (UAS) industry in

particular to create systems with more autonomy and conduct a wider variety of missions

(Clough, 2005; Singer, 2009). At present, one of the salient roles of military UASs is that of a

reconnaissance asset (Singer, 2009). An autonomous system for the reconnaissance role would

need to be able to effectively search an environment, maximizing its efficiency to locate targets

given an imperfect sensor suite for target identification. The system would also need to be able

to adapt to any perceived target behavior, especially in military applications. The ability of

future unmanned systems to adapt to their operating environment has been identified as a key

area for future development (Panella, 2008; Singer, 2009; Winnefield & Kendall, 2012). There

are currently few studies on how the performance of a sensor system affects the capabilities of

autonomous UASs. The objective of this study is to investigate the effects of sensor

performance, more specifically, sensor sensitivity, on the ability of autonomous reconnaissance

UASs and vehicles to complete their intended mission. A unique aspect of this study is the

simulation features simulated feedback from a human supervisor. The human supervisor is

modeled as a perfect decision maker in this study. The human decision maker never falsely

confirms a real target nor misses a real target declared by the system.

Literature Review

 The literature review is organized into four general sections. The first section outlines

the capabilities and types of UASs in use today. The section also presents evidence of what is

expected of UASs in the near and mid future, specifically the autonomous aspects that are

expected of those future unmanned systems. The next section discusses the principals behind

autonomy, and what capabilities and characteristics a system must exhibit in order to be

3

classified as an autonomous system. Some examples of rule based systems used to achieve

autonomous control are also presented. The third section of the literature review contains a

review of Reinforcement Learning (RL) algorithms and their mechanics. The section begins

with a general discussion of why and how RL algorithms behave and introduces some standard

methods of implementation. The section ends with a review of RL experiments, simulations, and

studies that implemented RL algorithms for the purpose of navigating a robotic vehicle in an

environment without a priori information. The fourth section discusses current studies and

experiments on sensors used in vehicles for autonomous task performance. The fourth section

also introduces the Signal Detection Theory technique used to model the general behavior of a

sensor in this research.

Unmanned Aircraft Systems.

 Unmanned Aircraft Systems (UASs) can be applied to many different roles. Perhaps the

most prominent and well known application of these systems is in the military. Less well known

one is the fact that UASs could be used for civil and commercial purposes. Some possible civil

applications are forest fire detection and tracking, search and rescue, and law enforcement. A

potentially large and far reaching commercial application is the agricultural industry (Ackerman,

2013; Madrigal, 2009). A brief overview of the possible application and benefits of autonomous

UASs in each of these areas is described as follows.

Military UAS applications.

 Military UASs generally do the tasks that are too tedious or dangerous for human pilots.

An example of such a task is surveillance and reconnaissance, where an aircraft operates over an

area to detect and track targets or other elements of interest for typically long stretches of time

4

(Panella, 2008). Manned aircraft have an endurance problem largely caused by their human

crews’ susceptibility to fatigue. Unmanned systems do not have this problem. Current

unmanned intelligence, surveillance, and reconnaissance (ISR) aircraft conduct missions

“already beyond the effective endurance of a pilot in a manned aircraft” (Lake, 2012). The

ability of UAS platforms to stay on mission for long periods of time has driven a growth in the

number and types of platforms used by the US military services. This is reflected in the number

of flight hours that have been collectively flown by these systems, which has increased

dramatically since 2003. It is reported that this growth is expected to continue in the future as

the capabilities of these systems increase (Winnefield & Kendall, 2012). One drawback of these

ISR systems is that they create a large need for trained operators and data analysts (Shachtman,

2008). The reason for this drawback is that the systems are not capable of flying, managing, or

analyzing mission data themselves.

 Current UAS systems, such as the MQ-9B Reaper and MQ-1 Predator, fall into the

category of remotely piloted vehicles, and therefore are not autonomous. These aircraft require a

human being to constantly supervise the system and command it to take certain actions, such as

selecting an area to search or engaging a target. Remotely piloted aircraft are mostly controlled

from ground stations (Panella, 2008). These ground stations are critical for the mission

capability of the vehicle, and the control signals may have to be relayed, causing a delay. A

UAS control system that relies on input from a ground station runs the risk of losing its link

through accidental relay loss, corruption or enemy action. Additionally, a UAS may be able to

stay in the air for more than a day at a time but the operators need to be switched out for rest,

which means there is no reduction in the number of operators required. In fact, given that the

UASs are mechanically able to operate longer than the system operators’ endurance, these

5

systems can possibly increase the need for personnel. Another weakness with using remotely

piloted UASs is that humans are needed to analyze the information that is collected by the sensor

systems. Currently vehicles like the Reaper and Predator require a crew of two to conduct a

reconnaissance mission. A possible solution to this human endurance and information overload

problem is the use of autonomous systems.

 Autonomous systems are capable of avoiding many of the problems found in remotely

piloted vehicles. An autonomous system does not require a constant link to a control station or

human operator (Singer, 2009). Autonomous systems are capable of simply being given an

objective and the system determines the best way to accomplish the objective. Some systems

that are partially autonomous in this way are already in use today. Excellent examples are the

defense systems mounted on naval warships that shoot down incoming cruise missiles and

aircraft (Singer, 2009). These systems, when turned on in a specific mode will automatically

target enemy equipment (i.e. missiles and vehicles) and destroy it if it is perceived to be a threat

to the ship, friendly forces, or is merely within range. Another such system is the modern naval

mine. Some current mines are capable of identifying a passing military ship and launching an

attack on it (Canning, 2006). These vehicle based systems do not require human operation other

than to be activated and given a task. They are not susceptible to the same limitations as the

remotely piloted vehicles mentioned earlier.

 A drawback of a fully autonomous system is that they cannot always make the best

decisions in a complex real-world environment. Computer algorithms will not always be able to

determine the difference between military personnel or combatants and civilians. Currently, it is

envisaged that autonomous systems would target only enemy equipment, not personnel (Canning,

2006). This avoids the possibility of a machine automatically targeting human beings.

6

Autonomous systems could also take a purely observational role in the mission space. The

systems could notify a human supervisor of likely enemy activity, but require permission from

the supervisor before attacking (Singer, 2009). A major drawback to this method is that human

decisions take time to complete and the system is still dependent upon a communication link to

be fully effective (Singer, 2009).

Agricultural UAS applications.

 One prospective application for the widespread use of autonomous systems is in the

agricultural industry. Farmers can benefit from information gathered by UASs to estimate crop

yields and health. They can also be used to cheaply apply pesticides and fertilizer to crops, as

well as control weeds. In Japan, this application of UASs has already been undertaken, with a

dramatic reduction in area that was sprayed by manned aircraft (Ackerman, 2013). Two

examples of these agricultural systems are the RMAX helicopter crop duster by Yamaha and the

CropCam small UAS (Ackerman, 2013). Both systems are examples of remotely piloted

vehicles, with the implication that trained operators are required for the systems to be efficient or

effective. These operators would need to be paid, resulting in a long term recurring cost for the

duration of use. An autonomous system would not require a trained operator, and therefore

eliminates this recurring cost.

 Some research on autonomous agricultural systems has been done in recent years. Many

of these systems are designed for weeding applications. Many of these autonomous weeding

systems rely on computer vision algorithms to differentiate between weeds and crops (Slaughter,

Giles, & Downey, 2008). These systems are designed to operate without human intervention and

save the farmers money. Autonomous weeding systems could even offer the possible advantage

7

of eliminating the use of herbicides, as the autonomous systems could remove the weeds through

mechanical or electrical means (Blasco, Aleixos, Roger, Rabatel, & Molto, 2002; Slaughter, et

al., 2008).

Forest fire detection and containment.

Forest fire detection is another application of UASs that could benefit from autonomous

technology. The reduced risk to human life and the effectiveness of the systems would be major

benefits for this application. Research has been conducted on how UAS platforms could detect

fires automatically and also interface with other vehicles and systems with the same mission

(Casbeer, Beard, McLain, Li, & Mehra, 2005; Merino, Caballero, Martinez-de-Dois, & Ollero,

2005; Orello, Arrue, Martinez, & Murillo, 1993). The systems described in Merino, Caballero,

Martinez-de-Dois, & Ollero, (2005) and Casbeer, Beard, McLain, Li, & Mehra, (2005) are

autonomous in the sense that they complete their designed mission without human instruction.

These systems could be used in conjunction with vehicle platforms to augment or replace

manned aircraft that currently perform the same mission.

Autonomy.

The nature of autonomy.

 Panella (2008) states that autonomous systems are systems that “can change their

behavior in response to unanticipated events.” Another definition is that “autonomy is

characterized by the concept of learning through the use of own experience (Ribeiro, 2002).” A

common theme in both of these descriptions is that autonomous systems are typically

programmed to achieve a goal, but are not explicitly instructed on how to achieve that goal. They

require no outside intervention to accomplish a task other than to be assigned the task. “An

8

autonomous system is self-directed by choosing the behavior it follows to reach a human-

directed goal” (Winnefield & Kendall, 2012). These definitions all describe the same general

philosophy that a given autonomous control system is capable of some degree of optimization

and/or useful decision making. The types of control systems most often found in the literature of

autonomous search tasks can be placed into two general categories: rule based systems and

machine learning systems. Rule based systems rely on preprogrammed behavior to take action

in a given situation. Often the desired behavior is achieved through the use of a scoring function.

A scoring function is built using metrics that the system programmer deems relevant to the

effective performance of the system’s designed mission, such as the relative worth of one target

over another, the value of the vehicle itself, etc. These systems will always behave roughly the

same in a given environment, and require a priori knowledge of their mission performance

metrics to be effective. What differentiates machine learning systems from rule based ones is

that machine learning systems are able to update and adapt themselves based upon previous

experience and interaction with the environment. They are able to perceive patterns and trends

in data, and then use this information to increase future performance (Alpaydin, 2010). This

feedback mechanism is a critical component of machine learning systems, as it gives rise to the

possibility that the autonomous system may be able to reach optimal performance without the

need of the extensive human initialization found in rule based systems. In the following sections,

the basic concepts of rule based systems and machine learning systems are reviewed.

Rule-based system experiments and simulations.

 There are several approaches, methods, and algorithms that are used to achieve some

level of autonomous operation in simulations. Rule-based systems have prebuilt decision-

making algorithms and modes that direct the actions and behavior of the UAS. However, they

9

do not have the ability to optimize their operations and behaviors to the environment. That is,

rule based systems do not have any form of feedback so that they may change their behavior and

increase their performance over time. The rule based system approach has been widely studied

in a number of simulations and experiments to control the actions of a team of vehicles in search

and tracking tasks. For example, in Cooperative Real-Time Task Allocation among Groups of

UAVs (Jin, Polycarpou, & Minai, 2004) a system was designed to control multiple UAVs in the

same operational space. Individual vehicles were assigned to missions that most suited their

capabilities. One hundred runs were completed, with each run refreshing a randomized target

placement. The UAVs flew in paths that were deemed optimal to reach assigned targets and

search sectors. Vehicles were given tasks based upon their distance from an available

assignment and their individual capability. The UAVs updated a global probability map using an

imperfect sensor based upon Bayes’ Rule. The performance of the sensor was not supplied and

there was no analysis comparing system efficiencies at different sensor performance levels. No

statistics or reports on the number of false positives are provided. It also seems that the value of

alpha was computed in a simple ratio format. This study used two distinct metrics to analyze the

performance of the system. The first of these is the target neutralization time. This was the time

needed to complete all a priori tasks. The second metric was the time needed for every sector in

the environment to be searched. The system used Jin et al. does not increase its performance

over time (i.e. it does not learn from past experience) and the system would not be able to react

to unanticipated stimuli, such as a new threat. To correctly interpret the new stimuli in terms of

its impact on mission performance, the system designer would have to add a new set of rules to

accommodate the new stimulus.

10

 Another example of a programmed system can be found in Yanli, Minai, and

Polycarpou’s Decentralized Cooperative Search by Networked UAVs in an Uncertain

Environment (2004). The method of control used in this experiment had UASs share

information and plan their paths over a set number of future steps. This method is very similar in

general architecture to that found in Jin et al. (2004), although the method found in the work of

Yanli et al. (2004) includes other elements such as enemy defenses. Each UAS selects a path

that maximizes a scoring function. The score function is made up of other separate functions.

These functions each address different aspects of a proposed path: coordination, target

confirmation, environment exploration, and threat avoidance. The problem with this approach is

that the system will not improve its performance over time. If the threat function, for example, is

set too low then the UAS control algorithm will not adjust this function to minimize future losses.

The system in Yanli et al. is initialized with a given threat map and specified probabilities of

survival for each location in the map. There is no feedback in this approach where the system

can adjust its behavior based upon encountering new information in the environment, such as a

higher than expected threat levels or new threat profile. This information would have to be

entered into the system by a human operator.

 Yet another example of these systems relies upon a network structure to coordinate the

actions of a swarm of vehicles. The work of Nygard, Chandler, and Pachter (2001) used such a

network that was solved through a linear programming format. All vehicles shared a common

map of the environment. Every time the status of this map changes the linear programming

optimization is performed to reassign units to tasks in the most efficient way possible. One of

the major weaknesses of this study’s approach is that “there is a large burden on being able to

accurately specify cost functions (Nygard, Chandler, & Pachter, 2001)”. This weakness is

11

present in the other rule-based system studies as well. Nygard et al., also envisaged that the

machines would be able to share all map information instantaneously. The study assumes that

imaging systems are used to detect and classify targets. The article does not mention how this

recognition system behaves at a detailed level and does not supply the actual values used for

thresholds or sensor performance.

Machine learning systems.

Unlike rule-based systems that use pre-defined rules and lack of adaptation based

feedback, machine learning systems increase their performance over time by identifying and

examining the effects of their past behavior or example data (Alpaydin, 2010). They can adapt

to new situations through their interaction with the environment. Some general machine learning

methods that have been used for control of autonomous robots are Genetic Algorithms (GA),

Neural Networks (NN), and Reinforcement Learning (RL) (Panella, 2008). All of these

approaches can be categorized as machine learning systems, and can be applied to the search

problem with varying degrees of difficulty and limitations.

Among these approaches, RL is perhaps the most popular approach for adapting the

behavior of a robot to an environment. A number of studies have been conducted on the

suitability of RL in robot navigation. Many of these experiments take the form of maze

experiments or feature the agent vehicle navigating through hallways (Martinez-Marin &

Rodriguez, 2007; Sutton & Barto, 1998). These examples typically contain one goal state with a

corresponding reward. Other applications include job shop scheduling, network optimization,

and effector control (Sutton & Barto, 1998). Before reviewing the experiments that utilize RL as

a means of navigation control in a robotic vehicle it is necessary to undergo an introductory

review of RL methods, concepts, analyses, and terms, as described in the next section.

12

Reinforcement learning.

 Reinforcement Learning (RL) is a name given to a category of machine learning

algorithms that “learn” about their operating environment through experience. The origin of RL

algorithms is the concept that a living entity learns through experience and interaction with its

environment (Sutton & Barto, 1998). For engineering and control applications, the overall

concept of RL is that RL is able to learn using rewards that are generated by its operating

environment. RL controlled entities take an action that changes the environment. The

environment may then change from the perspective, of the RL controlled system and also receive

a reward from the environment. The reward is an indicator of the usefulness of the action taken

by the system. This reward is used to reinforce the likelihood of taking the action again. A

diagram demonstrating this dynamic is shown below in Figure 1.

Figure 1: The RL architecture. A diagram of the basic interactions that are

necessary for a RL implementation. Rewards are conceptually generated from the

environment as they drive the controller’s action selection and performance.

Reproduced from “Reinforcement Learning: An Introduction” by Sutton and Barto

1998.

13

The core mechanic in RL is that it must balance exploration with exploitation. During

exploration the RL algorithm takes actions and transitions to states in way that features some

degree of randomness. This enables the RL system to eventually explore its entire environment

in the limit of an infinite number of exploratory steps. The exploration mechanic is a primary

contributor to the utility of RL algorithms as it enables unsupervised learning. Unsupervised

machine learning methods can be initialized in a completely unknown environment and are still

able to reach an optimum level of performance, based on the reward received from the action

taken. That is, they do not need to be trained or extensively initialize with behavior information

to eventually become effective. The other side of RL is its ability to exploit the information it

has gained. Exploitation relies upon the RL algorithm’s past experiences acquired through

exploration to maximize or minimize a given reward function. The strategies and methods used

to carry out this mechanic are described in more detail below. It is worth noting that Sutton and

Barto’s 1998 text, Reinforcement Learning: an Introduction, seems to be a common resource for

the studies discussed in this section. Additional information can be found in Alpaydin’s 2010

Introduction to Machine Learning. Therefore these two texts are the main resources for

discussion on the structure and behavior of the common RL algorithms in this section. The

section ends with a review of studies and simulations of RL algorithms implemented in a

navigation task. All RL algorithms feature some common components and mechanics. The

decision of how these components and mechanisms function and interact with each other largely

depends on the specific application (Krothapalli, Wagner, & Kumar, 2011; Sutton & Barto,

1998). The basic elements of a typical RL system are; the agent, the environment, states,

rewards, the value function, the policy function, and the exploration mechanic.

14

The agent.

 The agent is the decision-maker in the RL system. “An agent is the entity that

communicates with and tries to control external processes by taking appropriate actions”

(Ribeiro, 2002). The agent makes its decisions based upon policy functions and value functions.

Value functions are methods that map the rewards that the agent has experienced to specific

states and/or actions that it has tested. Policy functions dictate to what state the agent should

move or what action it should select when presented with a given situation. A simple and often

used policy is to select the state or state action pair that has the highest value (Whitehead &

Long-Jin, 1995). Policies are also capable of incorporating other information not directly linked

or processed by the value function (Costa & Gouvea, 2010). Policies can also be stochastic in

nature, which aids in exploration (Sutton & Barto, 1998). In robotic applications the agent does

not necessarily correspond to the robotic vehicle. One example of how an agent controlled robot

can represent part of the environment is the energy or fuel level of the robot. The agent may or

may not need to be aware of these parameters to achieve the desired performance in the

application.

State construction and environment representation.

 The agent perceives its environment through the use of states. A state is an instance of

environmental parameters that an agent can perceive and act upon. A state provides a point to

which an agent can associate information, and therefore enable decision making (Sutton & Barto,

1998). Position, fuel level, time remaining, threats, and distance traveled are only a few

examples of environment parameters that can be represented through the use of states. A state in

RL algorithms is usually denoted by s. One state represents one condition, or instance, of the

15

environment. One of the major disadvantages of the state encoding process is commonly

referred to as the curse of dimensionality (Kaelbling, Littman, & Moore, 1996; Krothapalli et al.,

2011; Ribeiro, 2002; Sutton & Barto, 1998). This arises as the designer of the system tries to

increase the performance of the RL algorithm by including more state dimensions or increasing

the resolution of existing dimensions. A state dimension is a set of states that are used to

perceive the current situation. While this increases the amount and precision of information the

agent receives at any one time, it also greatly increases the number of states exponentially. The

addition of a new state dimension results in, at minimum, a doubling of the number of possible

states that the agent will likely have to explore. It is easy to generate a state architecture that

features thousands or more states.

 The consequences of this explosion of state combinations is that the agent now needs

more decision time or runs to explore the state space to determine an optimum policy. The

problem is further compounded if states and actions are considered separate entities in the value

functions, also known as state-action values. An action is usually denoted as a, and RL

algorithms that use states and actions are called state-action implementations. In state-action RL

implementations possible actions are indexed in the same manner as an additional state

dimension. The state action RL architecture is a common paradigm used in robotic control

(Smart & Kaelbling, 2002; Sutton & Barto, 1998). The reason for the action selection mechanic

is that a robot can have multiple choices of action in a given state, and the resulting state can be

the same, but the rewards received are different. A specific state and action in RL algorithms are

denoted as st and at, respectively. The notation t represents a state st or action at that is taken at

time t. Future states or actions are noted as st+i and at+i, respectively.

16

 An important aspect in the application of RL algorithms to decision-making and control

problems is that operating space must be Markovian. The principle concern with the Markov

property in RL is that the states that the agent can explore must contain all relevant decision

making information (Sutton & Barto, 1998). Such decision problems are called Markov

Decision Processes (MDPs). A process exhibits the Markov property if the future probabilistic

outcomes of the process depend only on the current state and action selected by the agent

(Alpaydin, 2010). The past states of a MDP do not have any bearing on the process in the future.

The Markov property is sometimes referred to as the independence of path property. Non-

Markov problems that rely on previous state and action information can be made Markov in

nature through further state encoding being supplied to the agent, but this usually results in large

and complex dimensionality problems (Ribeiro, 2002). Some success has been reported with the

application of RL to hidden state MDPs, called Partially Observable Markov Decision Process or

POMDPs (Sutton & Barto, 1998). It is worth mentioning that at the time of this writing the

methods used to accomplish these tasks do not seem to be widely used and can vary widely in

their performance (Sutton & Barto, 1998; Whitehead & Long-Jin, 1995).

Rewards and value functions.

 The environment is the source of rewards (Sutton & Barto, 1998). Rewards, once

mapped via value functions, provide the impetus to the RL algorithm to constantly improve its

performance. Rewards indicate to an agent how desirable its current situation is. Rewards are

received by the agent and processed into state or state action values by the agent’s value function.

It is possible for an agent to receive a negative reward, and is typically referred to as a penalty

(Ribeiro, 2002; Sutton & Barto, 1998; Whitehead & Long-Jin, 1995). The reward and penalty

system is one source of “design freedom” when implementing RL algorithms (RLA), and

17

requires careful consideration. In algorithm formulation, a reward is usually denoted as r. If

penalties are overly large relative to their actual severity then the agent may avoid a path or

action sequence that would yield better real world results. The inverse is true for rewards.

Therefore it is best to set reward and penalty values to levels that reflect the relative desirability

of target states and actions.

 In order to operate the agent must link states or state-action pairs to the rewards or

penalties that they generate. Furthermore, states and state action pair values must also indicate if

they have access to future rewards or penalties. The agent accomplishes this through the use of

value functions. A value function calculates a numerical indicator of how “good” it is for the

RLA to be in a given state or select a given action (Sutton & Barto, 1998), and is referred to as a

state value or state-action value, depending on the implementation. When calculating the value

of a state or action the agent is backing up the reward received from that state or action,

essentially assigning “credit” for a given reward. The particular method used to accomplish the

backup gives rise to different types of RL algorithms. The state or state-action values are

typically stored as an index, where the RLA “looks up” its current state and the available actions

that can be taken in that state. In the exploitation paradigm, the RLA would select the action that

had the highest value. Typically for an agent using only states the value function is denoted as �

and for a state action implementation as � (Sutton & Barto, 1998; Kaelbling et al., 1996). The

exact structure of a value function depends largely on a designer’s choice and the specific task

that the RL controller is meant to accomplish. When indicating the state value of a given state

the term ���� is used for a state value and ���, �� is used for a state-action value.

 Depending on the value function paradigm a backup operation can be carried out online

or offline. Online updates tend to produce better results as the agent has access to acquired

18

information instantly, as opposed to waiting for the end of an episode or play before the value

function map is updated (i.e. offline updating). Two of the most often used value function

paradigms of RL used are Monte Carlo (MC) methods and Temporal Difference (TD) methods.

Monte Carlo methods update state values iteratively through multiple sweeps of a state-space

and wait until the end of an episode or play to update the state values. The updates generated by

the Monte Carlo methods depend entirely on the reward generated by the current state and the

rewards of states visited latter in the sweep (Sutton & Barto, 1998). For long episodes or

continuing tasks future rewards generated during one sweep of the state space can be discounted

(Alpaydin, 2010; Sutton & Barto, 1998; Whitehead & Long-Jin, 1995). The discount parameter,

�, is a value used to weight rewards based upon how many steps in the future they are expected

to occur. The discount parameter allows rewards that occur in the future to be linked to the

currently occupied state or tested state-action pair. Rewards that occur sooner are given a higher

value than rewards that occur later. The discount parameter has a value somewhere between

zero and one depending on the designer and application. A state encountered by the agent is

given partial credit for any rewards encountered by the agent in the future through the

discounting mechanic. The amount of partial credit given to a particular state is dependent upon

the discount parameter raised to a power equal to the number of steps in the future the reward

occurred. This discounting of future rewards forms a target for the value function of the current

state. The target value is defined as R, and the specific state and action that the reward is

assigned to is noted as R(st, at). The target calculation for the MC paradigm is given below in

Equation 1.

19

	
��
, �
� � ���
��
�� (1)

 Here t is the current time step and s is the current state. The value i is the number of steps

in future that the reward r has occurred, and may take a value between zero and one. The value

of r can take any real value, positive or negative. When r is negative, it is frequently referred to

as a penalty. T is the maximum number of steps into the future that the reward function is

allowed to consider. This reward value calculation serves as a target for the value of the state or

state action pair. The value of the state is then incremented towards this target by an update

relation given in Equation 2. The value ���′
, �
�� is the new value of the state action pair s and

a at time t.

���′
, �′
� � 	���
, �
� � 	��	
��
, �
� � 	���
, �
�� (2)

 The new value is calculated every time the state �
 is encountered. The value of � is

adjusted according to the number of visits to a specific state action pair that have occurred,

usually referring to the number of times that a given state or state-action pair has been

encountered. This method is used for static tasks. For dynamic tasks and environments the

value of � can be held constant. For static tasks the value of alpha is determined by Equation 3.

� � 	 1��,� (3)

 Here ��,� is the number of times a given state action pair has been experienced. This

value is initialized to one and is incremented without limit. The calculation of ��,� requires a

separate list with the same dimensions of the state-action value index and is incremented by one

20

for every visit to the state action value. In this way the value of the state or state action pair

converges to its discounted true value. The process for implementing this method in a state

action formulation is provided below (Kaelbling et al., 1996; Sutton & Barto, 1998):

For every state s and action a encountered by the agent at the end of the episode:

Determine the discounted reward received by using the equation:

	��
, �
� � ���
��
��

Update the number of visits to pair s, a by incrementing the table K: ���, �� � ���, �� � 	1

Update the value of the state action pair s, a by using the equation ���′
, �′
� � 	���
, �
� � 	��	
 � 	���
, �
��
Repeat until state action list is exhausted

 The method of state value updating in Temporal Difference (TD) learning contains an

additional element when backing up its state values. The Temporal Difference method uses the

estimated value of the next state instead of actual future rewards in its calculation of the state

value. The difference between the estimated value and experienced value is calculated and the

new value is incremented toward the experienced value (Conn & Peters, 2007; Sutton & Barto,

1998). The total reward of a given state in the TD method is the reward received in that state and

the perceived value of the next state. In a state-action pair implementation the maximum value

of all available actions in the next state serves as the estimate target. The next state or state-

action pair’s value is usually discounted to allow for bias towards more immediate rewards. This

allows states and actions that are far from the high reward yield states to have a lower value than

those states that are closer. In the case of state-action pair implementation the highest value of

the next state action pair is used. The method used to calculate the difference for a one step

state-action implementation is given below in Equation 4 (Sutton & Barto, 1998, p. 149).

21

 ���
, �
� � �
 � 	�	max��	���
�$, �
�$�� � ���
, �
� (4)

 Once the difference has been calculated then the state-action value is incremented by a

portion of this difference. An increment is used to accomplish this in the same way as the MC

method (Alpaydin, 2010). The increment � is calculated in the same manner for the TD

implementation as it is for the MC methods. Therefore the formula for the update is shown in

Equation 5.

���′
, �′
� � ���
, �
� � 	�� ���
, �
�� (5)

 If the formulation is fully expanded then the result is Equation 6.

���′
, �′
� � ���
, �
� � 	���
 � 	�max%���
�$, �
�$� � 	���
, �
�� (6)

 This formulation is one specific instance of a class of algorithms collectively referred to

as TD(&). & is the degree to which the temporal difference method relies upon the estimated

values of the future states. It is separate from a discount parameter as it assigns the credit of

current rewards backwards through recently visited states. A value of zero signifies that the

method relies only upon the current reward and the estimated value for the next state, whereas a

value of unity is equal to the MC formulation (Sutton & Barto, 1998). The previous formulation

is a one step method, which can also be called TD(0), meaning that it uses the current reward and

the next step’s value (Alpaydin, 2010). This pattern can be extrapolated further as	& moves

towards one until the equation becomes the MC implementation. The & parameter is used as a

weight to determine the degree to which a state should be backed up based upon previous

estimates and actual rewards (Alpaydin, 2010; Sutton & Barto, 1998). The value functions allow

22

RL algorithms to relate rewards to states and actions. Value functions converge as the number of

visits to a given state or state action pairs goes to infinity. The MC and TD methods converge to

different values. Value functions thus allow a RL agent to exploit its knowledge of the

environment. However, to gain this knowledge, especially in applications with completely

unknown environments or dynamics it is necessary for the agent to explore.

Exploration strategies.

 RL algorithms work between two modes of operation. One is known as exploration. The

other is exploitation. In its exploitative mode a Reinforcement Learning Agent (RLA) simply

takes an action that is estimated to yield the most reward or least penalty. In the explorative

mode the agent chooses from among a given set of actions that are available in the present state.

The method used to select the explorative action is generally up to the designer of the algorithm.

The most common versions are widely referred to as (-greedy and Softmax exploration

(Alpaydin, 2010; Sutton & Barto, 1998).

 The (-greedy function is a simple method used to select between exploitation and

exploration. Every decision step, a random number is generated. If the number is greater than

the value of (the agent selects the exploitative mode of operation to determine the next action.

If it is less than the value of (the agent randomly selects any other action other than the one

perceived to generate the best reward (Alpaydin, 2010, Sutton & Barto, 1998). The range, and

thus the probability, that triggers exploratory actions can be reduced relative to the number of

decision steps made in an episode (Sutton & Barto, 1998). This lets the algorithm explore more

often at the start of an episode while increasing its exploitative behavior (i.e. behaves more

greedily) near the end of the simulation. The general process for (greedy action selection and

implementation is given below (Alpaydin, 2010; Sutton & Barto, 1998).

23

Initialize s and a for entire set of states S and actions A

Initialize (

For every step in episode:

Generate a random number n

If n is greater than (:

Take the highest valued action

Once the action is complete update the value of the state

Else if n is less than (

Take an exploratory action

Repeat until the end of the episode

 Another class of strategies for choosing an exploratory action is the use of the softmax

methods. The softmax methods take all possible actions in a given state and normalizes them

relative to the estimated yield of the rewards those actions may generate if selected. Thus, more

profitable actions have a higher probability of being selected and possibly yielding new optimal

strategies for task completion (Kaelbling et al., 1996). A commonly used version of softmax

exploration is called the Gibbs distribution. The Gibbs distribution normalizes the probabilistic

selection by setting the state or state-action values as exponents (Sutton & Barto, 1998). The

result is that actions with higher values have a much larger probability of being selected. The

Gibbs method features a temperature variable that is used to adjust the relative probability of

selecting less valued actions over time or the length of an episode. This is also referred to as

simulated annealing in RL literature (Alpaydin, 2010). When the temperature variable is very

large the probability of selecting any given action in an action set is relatively uniform. As the

temperature variable) decreases the relative differences of the estimated rewards between

actions become more acute. A disadvantage with softmax methods appears when the perceived

values of the next best action are relatively close. Multiple high state values result in a high

probability of selecting the second best exploratory action throughout the course of the

simulation. The formula for the Gibbs distribution is given below (Alpaydin, 2010; Sutton &

Barto, 1998). The method generates the probability of selecting action �in state s is shown in

Equation 7.

24

p��� � 	 +,��,�-�//∑ +,��,�-�//1�$ (7)

Page 31 of Sutton and Barto (1998) states that “whether softmax action selection or (-

greedy action selection is better is unclear and may depend on the task and on human factors”.

The use of “human factors” in this context seems to refer to the fact that people would find it

easier to understand the implications of changing values of (in the (-greedy function (Sutton &

Barto, 1998).

The behavior and performance of a RL algorithm also depends on how the state or state

action value sets are initialized. If states or state action values are initialized with a high value

then the agent will tend to visit unexplored states even while in an exploitative mode of operation

(Sutton & Barto, 1998). Matignon, Laurent, and Fort-Piat (2006) demonstrated that an

advantage to this behavior is that the agent can rapidly explore its environment. A possible

disadvantage is that an agent may visit previously unvisited states or state action pairs latter in

the simulation, likely producing suboptimal results. On the other hand, if the initial values are to

low then the agent can perceive a truly undesirable state as a good state simply because these

states were updated on a previous run. This mode of initialization effectively results in the agent

visiting the same states or state-action pairs repeatedly (Matignon, Laurent, & Fort-Piat, 2006).

Further work in Matignon et al. (2006) also demonstrated initializing state value functions in a

manner that would enable the agent to quickly move towards more useful states and minimize

the time and computational cost of exploration. A Gaussian curve was used when initializing the

rewards in a maze task that allowed the agent to more quickly discover the goal state. A similar

application of these “progress indicators” can be applied to state value functions in such a way as

to mitigate the effects of a reward “sparse” environment mentioned in Kaelbling et al. (1996).

The approach of Matignon et al. (2006) could possibly increase the learning rate of the RL

25

controller. A disadvantage here is that initializing the values of states at or near the goal requires

a priori knowledge of the operating environment. Therefore, the unsupervised learning aspect

and advantage of RL controllers is mitigated.

State and complexity reduction in reinforcement learning.

A prevalent obstacle with RL implementation in real-world application is that many

parameters and measures essential to the efficient operation of the robot are continuous in nature.

To perfectly model a real world environment would often require a prohibitive number of states.

Compounding this issue is that an individual state often represents values of multiple dimensions.

Techniques and methods used to combat this issue have been explored in various simulations and

experiments. It is possible to truncate the state-space so that a continuous function is

approximated (Buck, Beetz, & Schmitt, 2002; Sutton & Barto, 1998). The truncation mechanism

operates on the similarity between adjacent states. States that are operationally similar (e. g. two

adjacent positions are free of obstacles) are combined to create a single state. The reverse of this

operation can also be done where the agent subdivides a state given that the sensor readings or

rewards from that state are not homogenous (i.e. a large amount of variance in the reward is

encountered in a given state).

Yet another method is the use of the hierarchical agent architecture (Sutton & Barto,

1998; Yen & Hickey, 2004). Hierarchical control operates on the assumption that a single,

possibly complex task can be decomposed into smaller subtasks. These hierarchical structures

are essentially multiple RL controllers operating in “tandem” on a problem. A simple

hierarchical setup is shown below in Figure 2.

26

 The high level controller in the hierarchical framework works on the larger, overall

objectives of a problem. A good example of this is a navigation task where the environment is

extremely cluttered with obstacles. The high level controller may not perceive the layout of the

vehicle’s immediate surroundings, but only decide on the general direction it should go. Once

the decision about intended direction of travel has been made the low level controller works out a

way to navigate through the obstacles (Yen & Hickey, 2004). The hierarchical architecture

allows each controller to reduce the number of state dimensions that it must explore. The

hierarchical method seems to have a drastic effect on the performance of the algorithms when the

size of the environment is large (Sutton & Barto, 1998, p. 260). Thus the amount of

Figure 2: The hierarchical reinforcement learning interaction diagram. Both the low level and high level control

receive state information directly from the environment. The low level controller also receives information in

the form of a desired action from the high level controller. In this way the high and low level controllers are able

to work on different state dimensions, thereby reducing the computational effort of the problem. This diagram is

a work of the author.

27

computational effort spent on exploring the state space is reduced, increasing the speed of

learning.

Example applications of reinforcement learning.

 Reinforcement Learning can be applied to many different problems and environments.

One of these was the control of robotic vehicles with novel effectors. Effectors are the physical

constructs that robots use to interact with their environments. Some examples of complex and/or

nontraditional effectors studied with Reinforcement Learning control were; biologically inspired

limbs and methods of movement (Lin, Xie, & Shen, 2009), reconfigurable vehicles (Valasek,

Doebbler, Tandale, & Meade, 2008), and sensor interpretation (Stafylopatis & Blekas, 1998).

One particular example of RL in nontraditional and complex effector control was the use of

biologically inspired undulating fins to steer a submersible vehicle (Lin, Xie, & Shen, 2009).

The fins were independently controlled and could operate at different frequencies. A RL

algorithm was implemented to determine the best combination of frequencies to keep the robot

oriented at a desired heading. The states used in this case were the current heading and rate of

change of the heading. The action set that the agent could explore were different frequencies at

which the fins could operate. 81 actions were selectable by the agent representing every

combination of the control frequencies at which the undulating fins could operate. An (-greedy

action selection strategy was used to instigate exploratory behavior. It was concluded by the

authors that the experiment successfully resulted in a policy to control the vehicle in every given

state (Lin, Xie, & Shen, 2009). It should be noted that the (-greedy strategy that was used

resulted in a large amount of noise in the steady-state performance. This could have been

mitigated by reducing the value of (over the simulation time.

28

Another application for RL can be found in the work of Balakrishna, Ganesan, and

Sherry (2010). This work applied RL methods to the task of predicting the time needed for

aircraft to taxi out to their assigned runway at a major Unites States airport. The state variables

used to make the predictions were performance measures that are usually obtained for queuing

and processing systems (Blanchard & Fabrycky, 2011). Time of day was also used as a state

dimension. The outputs of the algorithm were predictions of the time needed by individual

flights and the average time needed for all flights to taxi out to the runway. The results of the

experiment showed that the algorithm was able to predict taxi out times with an accuracy of 90%.

An accurate prediction was assessed as being within 90 seconds of actual observed behavior.

This work is a prime example of how RL algorithms can be applied to problems outside robot

control.

Reinforcement learning applications in navigation control.

 The utilization of RL algorithms to control robots navigating in an uncertain

environment is not a new concept (Sutton & Barto, 1998). Many RL experiments take the form

of an agent navigating a maze or moving around discrete obstacles to reach a goal position

(Kaelbling et al., 1996). The mazes used vary in complexity based upon designer choice and

computational limitations. Some maze applications have obstacles and traps that get the agent

“stuck” or send it away from the goal position. One experiment features a cliff where the agent

is sent back to the start if it falls into a set of penalty positions (Sutton & Barto, 1998).

 Tian, Yang, Qi, and Yang (2009) conducted an RL experiment where multiple learners

were present in the same space to complete a task. The uses of multiple robots simultaneously

lead to the application of multiple agents in the same state space. A major advantage of this

mode of operation was that the individual agents would be able to exchange information between

29

each other, increasing the rate at which the state space was explored. Logically, the performance

of such a system would be increased if the agents were initialized relatively far from each other

in the state space. In Tian et al. (2009) simulated robots carried sensors to determine if a task

was present at a given position and if the task was already being serviced by another machine.

The machines had to travel to the task location and cooperate to complete at least one of the tasks

in the simulation. No detail on if the performance of the sensors was supplied. Performance

metrics were collected based upon the total amount of reward generated by the system and the

amount of time needed to reach an optimal solution.

The work of Yen and Hickey (2004) investigated the capabilities of RL algorithms in

dynamic environments. RL algorithms traditionally do not perform well in dynamic

environments as learned state values become obsolete as the environment changes. In order to

reduce the dimensionality of the problem the hierarchical agent architecture was employed. A

similar approach can be found in the work of Perron, Hogan, Moulin, Berger, and Belanger

(2008). For the operation of the RL algorithm in the dynamic environment a “forgetting”

function was employed. This function was simply a coefficient with a value between zero and

unity that drove the value of a given state action pair back to its initial value over time. The

study proposed that the benefits of a distributed control are more efficient in larger environments

as well as dynamic environments. The study also introduces a separate work where a user’s

input can be integrated into the system and change the systems behavior.

 Another example of RL algorithms used in navigation can be found in the work of Costa

and Gouvea (2010). The task of the agent in this experiment was to arrive at a certain location

on a map while expending the least amount of energy to get there. The map in question was a

simulation of three-dimensional terrain with peaks placed in random locations. What was unique

30

in this simulation was that the exact position of the agent vehicle was not used as a state. The

nearby terrain features were presented in a combinatorial fashion. Possible movements

corresponded to grid locations. The agent’s action choice consisted of the available vertical

movements present in the current state (i.e. travel uphill, downhill, or maintain altitude). The

policy used by the agent fused heuristics with the standard state action value formulation. This

heuristic calculated the future distance of the agent vehicle from the goal position given a

proposed action. In this way, the policy takes into account both the energy conservation metric

and the distance metric.

Another application of RL in navigation can be found in Krothapalli, Wagner, and Kumar

(2011). In this work, an experiment was run where the agent subdivided the state space on its

own, which was called “variable grid sizing”. Specifically, the agent vehicle was navigating a

simple maze to a goal position. The agent created large states for operating regions with the

same general characteristics. If a state was found to contain an obstacle then the state was split

into smaller states and these are explored. No mention of the reliability of the sensor is made in

this experiment. The study concluded that the variable grid sizing method was able to reduce

the computational requirements of the traditional RL methods while still yielding optimal

performance.

 A study that attempted to shed light on the robustness of RL algorithms in dynamic

environments can be found in Conn and Peters (2007). In this study, a TD algorithm was used to

pilot a real-world robot through an environment. The environment also sometimes contained

obstacles. The study investigated the reliability of the RL algorithm to complete its mission and

how robust the RL controller was when operating in a dynamic environment. No mention of

sensor performance or effects thereof is given in the work. A variable manipulated in this study

31

was the step increment between the current state action value and the perceived value by the

agent. The study concluded that an alpha value of 0.9 provided the best results when considering

the number of episodes in which the agent made it to the goal state.

 All of these studies show that RL can be applied to high level control problems.

However, none of the experiments featured above address the impact of sensor performance on

the capability of the system. Future UASs and other autonomous systems will require advanced

sensor systems to operate in congested airspace or identify and track mission objectives and

targets of interest. To study the problem of sensor performance in autonomous UASs requires

some examination of current sensor technology and a mathematical framework to describe a

sensor’s characteristics.

Sensor systems in UASs.

 Current sensor technologies that have been studied for use in autonomous systems for

collision avoidance are active radar and electro-optical (EO) systems (Fasano, Forlenza, Tirri,

Accardo, & Moccia, 2011; Lai, Ford, Mejias, & O'Shea, 2012; Luongo, S., Vito, V. D., Fasano,

G., Accardo, D., Forlenza, L., & Moccia, A. 2011). Reliability of the sensor and control system

for autonomous UASs has been identified as a critical area of research (Clough, 2005). , G.,

Accardo, D., Forlenza, L., & Moccia, A. (2011) showed that EO sensing systems feature

probabilities of reporting false targets. The false alarm rate was reported to be 1.6%, but was

originally as high as 10%. Another study by Jacques (2003) featured the possibility of false

targets being picked up by swarming vehicles and being attacked. Sinopoli, Micheli, Donato,

and Koo (2001) developed a system that relied on vision (i.e. eletro-optical) sensors to develop a

lowest risk path to a preplanned target. The work concluded that imperfect sensor performance

should be expected and taken into consideration when designing autonomous control systems.

32

Outside of UASs, a large amount of research in image recognition and classification is

specifically targeted at identifying road vehicles as a way to monitor traffic systems. This type

of research provides some hard numbers for the hit rate that can be expected in autonomous

sensing and targeting systems. Artificial Neural Networks (ANNs) have been used in a number

of experiments to classify vehicles based upon the vehicle’s geometry. This approach has

yielded recognition hit rates of over 90% when simply trying to detect vehicles (Gupte, Masoud,

Martin, & Papanikolopoulos, 2002; Wei, Zhang, & Wang, 2001). Other research has generated

detection and classification rates as high as 97% (Takeo, Yoshiki, & Ichiro, 2002). No reports

were made regarding the false alarm rate or correct rejection rate of these experiments. The

vehicle recognition research does suggest that a hit rate of 90% or above is possible. Research

findings in the area of the sensor performance provides a basis for a Signal Detection Theory

(SDT) model to be applied in the image based sensing system.

 The current literature on sensor characteristics in autonomous UASs and other detection

applications demonstrated that an investigation into the impacts of sensor reliability on

autonomous systems behavior would be useful. The numerous types of sensor systems that can

be used in autonomous UASs indicate that an abstract, high level model that can systematically

address the effect of sensor characteristics on the agent performance is needed. The model

should be able to capture the most salient aspects of the imperfect sensor systems described in

the brief review above. Namely, the modeled sensor should feature hits, misses, and false alarms,

and a unifying mathematical model that relates these possible outcomes. This will provide an

abstract way to compare and quantify the performance of different sensor systems, regardless of

their means of detection. One such model that does this is Signal Detection Theory (SDT).

33

Signal detection theory.

 The origins of Signal Detection Theory (SDT) are rooted in psychology. SDT is

considered to have originated from the work by Green and Swets (1966), Signal Detection

Theory in Psychophysics (Macmillan & Creelman, 1991). The text derives a way to describe the

ability of a decision maker or sensor, referred to as a “receiver”, to distinguish between different

stimuli and noises. The fundamental mechanic behind SDT is that a signal is separate from noise.

Both the signal and noise are often modeled as Gaussian curves. The noise and the target signal

elements of the environment do not coexist at the same time for any given state of nature (i.e.

only one curve is present at a given time). A signal, whether generated from noise or from the

target, will generate a value probabilistically. If this value is above a predefined threshold then

the receiver indicates a target is present and vice versa. If a receiver becomes more sensitive,

that is if the threshold is lowered so that the trigger value is more likely, then the receiver is more

likely to mistake the noise signal for the true signal. An ideal observer in SDT is defined as a

receiver whose threshold is set in such a way as the probability of generating a false signal is the

same for the two possible states of nature (Macmillan & Creelman, 1991). An example plot of

the noise and true signal probability distributions are provided below in Figure 2.

34

 Given a two set discrimination task (i.e. two possible outcomes for two possible states of

nature) there are four possible conditions. The first of the correct responses is when a receiver

indicates that a target is present and the target is truly present. This is referred to as a “hit”. The

second possible condition is the sensor truly indicating the absence of a target and is termed a

“correct rejection”. The first of the false readings is when a target is present but the receiver

reports no target present and is called a “miss”. The last condition is when a receiver reports a

target when one is not truly present. This is referred to as a “false alarm”. Table 1 illustrates the

possible states and responses.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 2 4 6 8 10 12 14

P
ro

b
a

b
il

it
y

 o
f

O
cc

u
re

n
ce

Occurence

Noise

Target

Figure 3: Example probability density functions of target and noise signal

values. The regions where the two density functions cross and how much they

cross determines the liklihood of generating false signals.

35

Table 1

Possible responses of a sensor with two possible states of the environment

 Receiver Response

State of Environment Report Target Present
Report Target Not

Present

Target Present Hit (H) Miss (M)

Target Not Present False Alarm (F) Correct Rejection (C)

 A core concept in SDT is the Receiver Operating Characteristic (ROC). A receiver ROC

curve is often determined by a difference of the probabilities of these responses. Another way to

represent a ROC curve’s “score” is in a ratio format, which is the preferred method of

classification used in this study. The numerator of the ratio is the combined probability the

receiver returns a true reading. The denominator of the ratio is the probability that the receiver

returns a false reading. A higher ratio is associated with a receiver better able to return a correct

reading for a given state of nature. The ratio, in Choice Theory, is often referred to as “α”

(Macmillan & Creelman, 1991). A ratio of unity indicates a receiver that is as likely to return a

true reading as a false reading given an equally random true state of the environment (Green &

Swets, 1966; Macmillan & Creelman, 1991). The probability of a hit or the sensor declaring that

a target is present when a target is truly present is denoted as 2�3�. The probability of a false

alarm or the sensor declaring a target is present when there is no target present is labeled as 2�4�.
The equation for determining the ratio is given below:

� � 52�3��1 � 2�4��52�4��1 � 2�3��

(8)

 The cumulative probability of all the responses to each state of nature must equal unity.

Thus the probability of a “Hit” is the complement of the probability of a “Miss”. This

36

relationship is also present for the probability of a “False Alarm” and a “Correct Rejection”. In

this way, the ROC can be determined with only the Hit and False Alarm Rates being known.

 A given alpha can return any number of possible combinations of 2�3� and 2�4�. For

example, a 2�3� of 0.6 and a 2�4�	of 0.2 results in an alpha of approximately 2.45. If the 2�3�
is 0.8 and the 2�4�	is 0.4 then the same alpha is also computed. The sensitivity between the two

pairs has not changed, but the bias for a positive response is greater in the second instance.

These features give rise to the concept of the ROC curves. All possible combinations of Hit and

False Alarm Rates for a given alpha can be plotted as a curved line (Green & Swets, 1966;

Macmillan & Creelman, 1991). These lines are referred to as isobars as all points on the curve

indicate the same receiver sensitivity. Figure 3 displays these curves at some selected alpha

levels.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
it

 R
a

te

False Alarm Rate

α=10

α=5

α=2

Figure 4: Hit Rate and False Alarm rates for constant alpha values. The constant

alpha values are referred to as sensitivity isobars. As the alpha of the receiver

increases, the performance of the receiver also increases.

37

Literature Review Summary

 The previous studies showed that RL, in general, provides system designers a simple yet

powerful way to shape the control functions and behaviors of a system in a complicated

environment. However, RL is limited by the ability of the agent to perceive its environment and

thus deduce its true state. Very little research has been done regarding the effects of a sensor’s

performance on the performance of the RL algorithms due to the fact that there is lack of

theoretical model available to address the sensor characteristics. SDT provides a mathematical

framework to effectively implement a model of the sensor behavior. SDT also provides a useful

tool to abstractly and efficiently describe the performance of different types of sensors. Previous

studies show that sensing mechanisms can produce Hit Rates as high as 90% or greater. The Hit

Rate can be implemented in an SDT model and the sensitivity of the sensor can be adjusted to

determine the effect it has on the performance of the system. Through implementing SDT within

an RL simulation this research could benefit future designers of robotic systems that are

governed and optimized through the use of RL algorithms.

Problem Statement

 The objective of this research is to investigate the effects of sensor performance on the

ability of an autonomous Unmanned Aerial System (UAS) controlled by a Reinforcement

Learning (RL) algorithm to accomplish a target acquisition task. Little work has been conducted

to assess the impact of sensor performance deterioration on the capabilities of autonomous

systems using reinforcement learning algorithms. The reviewed methods and algorithms used to

achieve autonomy for searching UASs often feature a simulated imperfect sensing or control

mechanism, but to the author’s knowledge, no reinforcement learning controlled systems studies

have generated data where the sensor performance was explicitly changed and the resulting

38

system behavior analyzed or compared. Some simulations simply do not incorporate an

uncertain sensing mechanism. Even some real world experiments, such as hallway navigation,

feature well defined environments so that a sensor can be assumed to behave perfectly. The

performance of the sensor in this work was modeled through Signal Detection Theory (SDT).

After the simulation was been run, an analysis of the individual systems’ behavior was

conducted to reach conclusions on the effects, if any, on the ability and efficiency of the systems

to complete their objectives. The two commonly used forms of RL implementation, Temporal

Difference and Monte Carlo methods were used to control the system. Conclusions were reached

about the differences in system performance.

Hypotheses

 There are two main hypotheses that are the focus of this study. The first hypothesis is

that the systems with higher sensor sensitivity will locate targets more quickly and efficiently

than the other systems during steady-state performance. In other words, it is believed that a

sensor with a higher Receiver Operating Characteristic will locate targets faster. To test this

hypothesis a number of metrics and figures of merit must be compiled to fully describe the

system’s mission performance. These metrics and figures of merit are described in more detail

in the Metrics section of this study. The second hypothesis is that the systems using the TD

methods will yield higher performance results than those that rely on MC methods. This

hypothesis will be tested using some of the same data used to test the first hypothesis. More

information on how the data is used to test the hypotheses is provided in the Metrics section of

this study.

39

Method

Experiment Description

Experiment variables description.

 The experiment featured two independent variables (IVs). One of the IVs was the

performance of the sensor. The performance was manipulated through the value of � defined in

SDT. There were four sensitivity values (i.e. levels of the IV) used in this study. Three of the

systems simulated imperfect sensor equipment with alpha values of 4, 7, and 10. The hit rate of

the systems equipped with imperfect sensor systems was set at a value of 0.9. The fourth system

had a perfect sensor, implying an alpha value of infinity. The perfect sensor had a perfect hit rate

and never generated a false alarm. The second IV was the form of RL algorithm applied. Two

RL methods will make up the levels of this IV. The first method is the Monte Carlo method.

The other method is the one step TD(0) method. Table 2 shows the layout of all the simulated

systems.

40

Table 2

Experimental systems and their attributes

System Agent Type Sensor Alpha Hit Rate False Alarm Rate

System 1 TD(0) 4 0.9 0.36

System 2 TD(0) 7 0.9 0.1552

System 3 TD(0) 10 0.9 0.0826

System 4 TD(0) Infinity 1 0

System 5 MC 4 0.9 0.36

System 6 MC 7 0.9 0.1552

System 7 MC 10 0.9 0.0826

System 8 MC Infinity 1 0

There were three dependent variables (DVs) in this study. The first metric was the total

episodic reward acquired by the Navigation Agents. The second metric was the total reward per

trial acquired by the Search Agents. The third DV was the number of incorrect declarations that

each system generates per trial when the system reached steady-state performance. Another

metric that was used to support the findings found from the DVs was the mission completion rate

of the agents. How these variables were used to quantitatively assess the performance of the

systems is described in more detail in the Metrics section of this study. The TOP map was also

compared across episodes of a given trial to see how the agents may have behaved differently.

The environment.

 The simulation was carried out in a discrete environment consisting of a 6	 7 6 grid.

Each point on the grid represented a position that the agent vehicle could move to and search.

41

The grid was populated by three targets. Targets were placed randomly in specific regions in the

environment and target regions did not overlap. Each position on the grid had a corresponding

Target Occupancy Probability (TOP) value. The TOP changed when a position on the map grid

was scanned. The change to the TOP value was changed using Bayes’ Rule with the values

supplied by SDT as the inputs. The TOP map was reinitialized between episodes and trials. At

the start of each episode, the agent started in the same position and was presented with a uniform

TOP map of 0.5, indicating that the status of the map is completely unknown. The agent was

expected, after an initial learning period, to learn the simple behavior pattern of the targets

present in the target regions.

Reinforcement Learning Model

Problem, state, action and reward formulation.

 The RL architecture used in this study featured two agents operating in tandem, forming

a hierarchical agent structure. Each agent was assigned to carry out a different aspect of the

search task. One agent was referred to as the Search Agent. This agent decided if a position

should be declared occupied by a target. The other agent was the Navigation Agent. The

Navigation Agent determined where the vehicle should move and how it should get to that

position. The Search Agent operated only on the TOP value of the current position and the

Navigation Agent operated on the physical position in the environment. The problem was

presented to the agents in the form of trials and episodes. Each trial is made up of a certain

number of episodes. The locations of the target regions change every trial, but were static during

episodes. The location of the targets in these target regions changed every episode. Multiple

trials were conducted to eliminate the effects of exceptionally good or bad target placement in

the system performance analysis.

42

 Each agent operated on different state dimensions. The Search Agent operated on the

TOP at any given position. There were a total of 11 possible TOP states that the agent could

encounter. Ten of these states corresponded to different levels of TOP. The thresholds for each

level were distributed in a non-uniform manner and are specified in Table 3. The eleventh state

was used by the declarative agent to determine that a position can no longer be searched.

Figure 5: The overall architecture of the experimental RL system. The Search Agent works only on the TOP

states. The Navigation Agent works on the position of the agent vehicle. The Search Agent decides when the

Navigation Agent is allowed to move. Every movement by the Navigation Agent results in the Navigation

Agent receiving a reward of -0.5. The “Order” signal tells the Navigation Agent to change its position.

43

Table 3

TOP state threshold definition

TOP State TOP Range

10 0 - 0.01

9 0.01 – 0.05

8 0.05 – 0.1

7 0.1 – 0.3

6 0.3 – 0.5

5 0.5 – 0.7

4 0.7 – 0.9

3 0.9 -0.95

2 0.95 – 0.99

1 0.99 –1.00

11 1 or 0

 The Search Agent could choose from three different actions. The first of these was the

“Declare” action. The Declare action was a way for the agent to confirm the presence of a target.

The reward given by this action was determined by the veracity of the declaration. The second

type of action was the “Move” action. This action selection was passed to the Navigation Agent

and allows the Navigation Agent to select its next action. The last Search Agent action was

referred to as “Loiter”. This action disables the Navigation Agent’s ability to move. The Search

Agent was thus able to continue to scan a given position. When a position was in the eleventh

TOP state the Search Agent is only able to select the “Move” action. The total number of state-

action pairs that can be visited by the Search Agent is 33. The disabled eleventh state removes 2

possible state action pairs from the problem, resulting in a total of 31 operational state action

44

pairs. The Search Agent’s value function mapping was not reinitialized between trials or

episodes.

 The Navigation Agent moved the agent vehicle from cell to cell in the position grid. The

vehicle was able to move in four directions; north, east, west, south. This agent’s architecture

used only state values as opposed to state-action values. The reason that the agent did not use

state-action pairs was that the agent’s interaction with the environment was deterministic, and

had no other action other than to move to a different position. The adaptation of the Temporal

Difference and Monte Carlo methods to a state value implementation is straight forward. The

state-action value terms in the two paradigms are replaced with the state values. The Navigation

Agent directed the vehicle to move in one of the allowed directions. Therefore if the agent

wished to move from one cell to the next it could do so using only the position state information,

with certainty that the agent would move to the intended position. The state map for the

navigation function was reinitialized between trials, but not episodes.

 The application of reward schemes has a large effect on the performance and “risk

adversity” of reinforcement learning systems. These quantities needed to be carefully chosen so

as the system did not unnecessarily avoid or take risks. The reward scheme chosen for this

Search Agent was as follows; +5 for correctly declaring a target position, -1 for incorrectly

declaring a target position, and -0.5 for moving or loitering. The reward scheme for the

Navigation Agent was +5 for a position that contains a target and -0.5 for movement actions.

This reward scheme was chosen after an initial reward scheme was used and the temperature

variable was decreased across episodes. Figure 4 shows how the mission completion time for the

Monte Carlo system with a perfect sensor varied across episodes.

45

The time needed to locate all targets in a given episode was minimized when the

temperature variable had a value of two, indicating that the reward scheme should be factored by

half. This resulted in the minimum steady-state time to locate targets across episodes.

Markovian model of environment.

 Two Markovian models were present in this simulation and allowed the RL architecture

to function properly. The first of these is the TOP state model, which was what the Search Agent

in Figure 4 interacts with to achieve its objective. The Markov property was present in this

model as the Search Agent based its decisions purely on the level of TOP in a given position.

The sequencing or number of previous scans did not matter. Bayes’ Rule was used to update the

TOP of the current position using a “likelihood” value provided by SDT. The application of

1 2 3

1
11

21
31

41
51

61
71

81
91

Targets Found

Episode

Agent Mission Time

250-300

200-250

150-200

100-150

50-100

0-50

Figure 6: The Mission Time plot. A plot showing the time to mission completion for an initial

reward scheme of 10 for finding a real target, -2 for an incorrect declaration, and -1 for all

other outcomes. The time to locate all targets decreases for the system up to about episode 4

or 5, then it rises and attains a worse steady-state performance. The best performance was

achieved when the temperature was equal to about two, indicating that the overall reward

scheme should be factored by half to attain the best steady-state performance.

46

Bayes’ Rule resulted in a new, updated probability (TOP). Thus, the TOP level was the product

of previous scans. The TOP level at a given position therefore encapsulated all necessary

information for the Search Agents to make an “informed” decision. A partial example of how

the agent can transition through the Markov Chain is given below in Figure 5.

 The other Markov model present in this study was the navigation model. This model was

Markovian and was frequently used to achieve maze and object navigation in simulations. The

agent vehicle did not need to perceive the path it took to arrive at its current position. Its current

position was known and that was all the information the agent vehicle needed to make effective

decisions to navigate through its environment.

Figure 7: The transition model for the Search Agent. The Search Agent is able to select one of

three actions for a non-declared position; Move (M), Loiter (L), and Declare (D). If the agent

chooses to declare a given position is occupied the agent is then only able to move from that

position. The other two actions result in a second choice with the same options as before.

47

Target placement and interaction.

 The zones for target placement were placed in the map at the beginning of every trial. At

the beginning of every episode one of the targets was randomly placed in each of these zones.

The effect of this implementation was that randomization was limited to certain areas of the map.

Therefore these areas of the map were expected to be valued higher than others, thus the

navigation agent would give these positions a higher value than other positions, enabling it to

move to these areas rapidly. For the Navigation Agent areas far from where targets were

typically found are less desirable than those closer to the other target zones. To maintain track of

the targets that have been discovered three separate position state value maps were accessed and

modified by the agent. Each position state value map corresponded to one target, and the value

maps were updated only while that target had yet to be found (i.e. is “active”). Each map

corresponded to the reward received by a different target. The current value of a position state

was determined through the summation of all the state maps that corresponded to active targets.

The target regions each consisted of 4 adjacent positions. An example of the environment with

the target regions highlighted is shown in Figure 6. These target regions were placed randomly

on the map at the beginning of every trial.

48

 During an episode, when a target was found the corresponding position state value map

was eliminated from the agent’s future consideration. Therefore all rewards relating to the

discovery of a particular target no longer impacted the agents’ decision making process. This

mechanic allowed the agent to base its future decisions only on the results of the past episodes’

experience with the targets that had not been found in the current episode.

RL paradigm formulation.

The Monte Carlo method.

 There were two implementations of RL that were studied in this experiment. The first of

these was a Monte Carlo mode of operation. As the agent moved through the state action space a

step list was maintained. Once the agent had met its objectives or the episode had otherwise

Figure 8: The position map. Example target regions

highlighted. The location of the regions changes every trial.

This allows a better understanding of the general behavior of the

systems.

49

terminated the reward function was propagated back through this list to update the state-action

values. The agent was initialized in the same position for all simulation runs. The discount rate

was set at 0.9, a value commonly used in other autonomous vehicle RL studies. This discount

rate was used in both the Search and Navigation Agent implementations. Thus the update

equation, once the episode ends, takes the following form:

���′
, �′
� � ���
, �
� � 	8�	
 � 	���
, �
�� (9)

 	
 is the summation of the discounted future rewards. Note that the step size parameter

is represented by	8, so as to avoid confusion with the �	parameter used in SDT. For the Search

Agent the value was incremented by the number of times a state-action pair had been visited.

The value of 8 was based upon the standard equation:

8 � 	 1��,� (10)

 The value of 8 for the Navigation Agent was fixed at 0.1. This fixed value allowed the

Navigation Agent to cope with the somewhat dynamic aspects of the target positions across

episodes. The result of a fixed 8 is that the position state values would never fully converge to a

fixed value, but were allowed to constantly adapt according to their latest findings.

 The MC methods require that an episode finish before an update is allowed to take place.

For large problem spaces, a condition that triggers the end of an episode may not occur,

especially in early episodes where the value functions are still relatively uniform. Limiting the

number of decision steps and the inclusion of a negative reward for every step taken eliminates

this problem. If the decision time runs out at the end of an episode and the agent has not located

50

any targets then the state-action values of that operating region were decreased. The system will

then be less likely to visit those state spaces in the next episode. The pseudo code for

implementation is provided below:

For every decision step t in the episode:

Record the state and action taken and the received reward from

that state action pair:

9
�
 �
 �
�
�$ �
�$ �
�$⋮�� 				�� �� ;

At the end of an episode update the value of “Q(s, a)t” starting at

the top of the list and using the equation:

	
 	� �
 �	�	�
�$ �	�<�
�<…	�>�
�>

Until t + k equals T and then update using:

���′
, �′
� � ���
, �
� � 	8�	
 � 	���
, �
��
repeat for the entire list

Repeat for every episode

The Temporal Difference method.

 The other method that was implemented is the one-step Temporal Difference method.

The method updated a state-action pair with the reward received from that state-action pair and

the maximum state-action pair available from the next given state. The term ����, ��� is the

value of the next state and action pair encountered. The formulation and implementation is given

below:

���′
, �′
� � ���
, �
� � 8��
 � �	max���
�$, �
�$� � ���
, �
�� (11)

51

For every decision step t in an episode:

Record the reward rt received from being in st and taking action at and

update the value function by:

���′
, �′
� � ���
, �
� � 8��
 � �	max���
�$, �
�$� � ���
, �
��
Where �
 is the current state action pair’s reward

Continue until the end of the episode

Repeat for every episode

The exploration mechanic.

 For an exploration mechanic, all of the agents used a softmax method that is commonly

referred to as the Gibbs distribution. The temperature variable was used to enable early

exploration and later exploitation. This produced the effect that the agent, at the end of the trial

for the search agent and episodes for the navigation agent, greatly favors the state action pairs

that were perceived to have a higher value. The Gibbs distribution function is repeated below for

convenience:

p��� � 	 +,��,�-�//∑ +,��,�-�//1�$ (12)

 The temperature variable for both the Search Agent and Navigation Agents for all of the

systems was decreased in a nonlinear fashion over all of the episodes and trials. The initial

temperature value equaled 100. The temperature variable decreased exponentially, and equaled

unity in about the first 20 episodes. This provided the agents with an early set of trials and

episodes where the agents had a higher rate of exploration. The temperature variable for the

52

Search Agents was decreased across trials and the Navigation Agents was decreased across

episodes.

Environment interaction.

 The Search Agent interacted with and changed its environment through the Target

Occupancy Probability (TOP) map. The concept of the TOP map was taken directly from

Cooperative Real-Time Task Allocation among Groups of UAVs (Jin, Polycarpou, & Minai,

2004). The TOP map was made up of a 10 by 10 array of cells. The TOP map was initialized at

the beginning of each trial as a uniform distribution with a value of 0.5. The TOP of a given cell

was the current probability that the cell contains a target as perceived by the sensor. Thus the

initial value reflected the assumption that every cell had an equal probability of being occupied

or empty. The TOP of a cell is adjusted by Bayes’ Rule and determines the probability of

actions taken by the Search Agent. The TOP update equations are given in Equation 15. The

variable � represents the reliability measure of the sensors. To build the update functions, the

sensor characteristics must be determined. These were found through the sensitivity equation

from the SDT. The equation is repeated below for convenience.

� � 52�3��1 � 2�4��52�4��1 � 2�3�� (13)

 Through the use of this equation, if the sensitivity of a sensor system and the hit or miss

rate is known, then all of the sensor’s abstract performance characteristics can be determined.

The notation for these characteristics, their certainty complements, and a description of each is

given in Table 4 below.

53

Table 4

Sensor characteristic values and descriptions

Characteristic Complement Description

2�3� 2�?� Probability that the sensor returns a hit when a

target is truly present

2�?� 2�3� Probability that the sensor falsely indicates

that no target is present

2�4� 2�@� Probability that the sensor returns a hit when a

target is not truly present

2�@� 2�4� Probability that the sensor correctly indicates

that a target is not present

2�A� 2�B� Probability that a target is present, is equal to

TOP

2�B� 2�A� Probability that a target is not present

 With these characteristics it is possible to build the Bayes’ Rule equations dependent

upon the conditional probabilities. Table 5 lists these conditional probabilities, their computed

equivalences found in Table 4, and their descriptions.

Table 5

Conditional probability notation

Conditional

Probability

Table 4

Equivalence
Description

2�3|A� 2�3� Probability that the sensor returns a hit when a

target is truly present

2�	|A� 2�?� Probability that the sensor falsely indicates

that no target is present

2�3|B� 2�4� Probability that the sensor returns a hit when a

target is not truly present

2�	|B� 2�@� Probability that the sensor correctly indicates

that a target is not present

 Note that in Table 5 all conditions are based upon the current state of nature and the

return given by the sensor. Furthermore, the probability that the cell is unoccupied is the

54

certainty complement of the occupancy probability. Thus, the conditional probabilities and the

mechanics required for the implementation of the Bayes’ Rule were fulfilled. The result is two

equations. Each is actualized purely based upon the returned report from the sensor.

 If the sensor indicated that a target was present:

2�A|3� � 2�3|A�2�A�2�3|A�2�A� � 2�3|B��1 � 2�A�� (14)

 If the sensor indicated that a target was not present:

2�A|	� � 2�	|A�2�A�2�	|A�2�A� � 2�	|B��1 � 2�A�� (15)

 Thresholds for TOP values determined the status and state of a given cell. Certain

actions were allowed only if predetermined conditions were met. If a cell was declared occupied

the agent received a reward based upon the veracity of the declaration and the TOP of the cell

was appended to zero or one accordingly. This method of operation mimicked a real world

scenario where the autonomous system “flags” a position as a likely target and a human operator

or supervisor investigated the flag. The operator then made a decision whether the system has

found a real target or not. This feedback mechanic then determines the reward the system

receives. These interaction mechanics were not change across the different systems except for

the value of � used to describe the sensor characteristics, and thus the TOP update mechanic.

Metrics

 This section details the metrics that were used to assess the performance of the studied

systems. Eight separate systems were simulated in this work. Four of the systems featured a

TD(0) implementation for both the Search Agents and the Navigation Agents. The other four

systems use the Monte Carlo implementation for both agent types. A system that has a sensor

55

alpha value of 4, 7, and 10 was present for each type of implementation. The fourth system of

each type used a sensor with perfect characteristics. The systems outlined in Table 2 were

compared to one another in three major aspects. The first of these is referred to as Agent

Behavior. The Agent Behavior section examines and compares the steady-state reward behavior

of the Navigation and Search Agents. Agents that obtain a higher steady-state reward were

considered superior. Also in this section is an analysis of the Incorrect Declaration Behavior of

the systems. The number of incorrect declarations by each of the systems was tracked for each

episode and trial. An analysis similar to that used in the assessment of agent rewards was used to

compare and analyze the systems’ Incorrect Declaration Behavior.

 The second measurement was “Mission Performance”. This metric contains an

assessment of how well each of the system accomplished their mission objectives in terms of

completeness and time. Both the Agent Behavior and Mission Performance sections are

discussed in more detail below.

 The final aspect of evaluation was a comparison of the TOP maps across the episodes of

a given trial. At the end of an episode, the TOP map was saved and compared to the TOP map

generated by the perfect version of that system at the end of the trial. This allows the systems to

be compared with respect to their effects on their operating environments. This metric was

presented as a plot. Table 6 lists all the results of the experiment, how the outputs were

displayed, and how these outputs were analyzed.

56

Table 6

Experiment output and format list

Simulation Output Output Type Output Format Analysis Method

Navigation Reward
Average

Reward/Episode
Graph ANOVA

Search Reward Average Reward/Trial Graph ANOVA

Incorrect Declaration Average Number/Trial Graph ANOVA

Mission Time Decision Steps Plot/Table N/A

Mission Completeness Percentage Complete Table N/A

TOP Map Behavior Percentage Difference Graph N/A

Agent Behavior.

 Following the established protocol found in Sutton and Barto (1998) in assessing the

performance of RL algorithms, each agent had its total reward recorded with respect to the

episode and trial number. Using the amount of reward obtained by an agent over a “play” or

“sortie” is an effective way to compare the behavior of two different Reinforcement Learning

systems. The total reward metric was recorded for every trial and episode. To assess the

behavior of the Navigation Agents the average reward was calculated using a specific episode of

all trials. The Search Agents were assessed in a similar manner, but using the average reward of

all episodes across trials. The reason for this approach is that the Navigation Agent only

improves itself over episodes and is reset every trial; while the Search Agent improves

throughout the simulation (i.e. the Search Agents’ state-action values are never reset). Each plot

was made up of one hundred data points (one hundred episodes for each trial for the Navigation

Agent, one hundred trials for the Search Agents). A preliminary analysis of this data was

57

carried out via a plot of the average return of a given episode or trial, depending on the agent.

The steady-state data was used in an Analysis of Variance (ANOVA) test. Some noise was

expected from the differences of each map layout presented in each trial, a constant update

parameter, and the fact that the agent will not always choose the most optimal action in a given

situation. An example of a reward plot is given below in Figure 6. The reward plot could take a

negative value due to the presence of penalties. It should be noted that this particular plot was

the average of the sum of all the reward encountered by the agent relative to the episode; it did

not incorporate discounting or otherwise modify the rewards the agent encounters. This episodic

reward plot was used to visualize the behavior of the Navigation Agents across episodes.

Another plot relative to trials was used to visualize the behavior of the Search Agents across

trials.

-400

-350

-300

-250

-200

-150

-100

-50

0

0 10 20 30 40 50 60 70 80 90 100

A
v

e
ra

g
e

 E
p

is
o

d
ic

 R
e

w
a

rd

Episode

Episodic Reward Plot

TD Agent 1

Figure 9: An example of a Navigation Agent Reward plot. The plot is the average

value of the total reward obtained in a given episode, averaged across all trials. The

noise of the data is from the Agents' exploration mechanic and the constant increment

parameter used in the value funciton

58

 It is noted that the system architecture studied here was highly coupled. The performance

of one agent drastically affects the performance of the other agent. The reward plots should

increase across episodes and trials. Peak performance of the systems is therefore expected

during the latter episodes of latter trials.

 This steady-state performance region was the subject of comparative analysis. A One-

Way ANOVA was applied to determine the presence of significant differences, if any, between

systems with different sensor performance. Upon discovery of a significant difference, a

Tukey’s HSD test was employed to assess the relationship between the systems. A p value of

0.05 is used as the significance threshold for both the ANOVA and the Tukey tests.

Mission Performance.

 Another aspect of the systems that was compared is the time to complete the mission

objectives. The number of steps to correctly declare one, two, and three targets was recorded for

every episode of every trial. It was expected that the average time to locate targets will decrease

over subsequent episodes within every trial due to fact that learning has occurred from previous

episodes. The results of every episode are averaged across all trials and the results compared to

the other systems. An example of how the data is displayed is provided below in Figure 10.

This performance metric was not tested for significant differences. The reason for recording the

mission time was to draw some conclusions about were differences between the systems lay and

to reinforce and explain the findings of the Agent Behavior section.

59

TOP Map Comparison.

 The TOP map comparison was performed for every ten episodes of every ten trials. The

value of AD2E,FGEH was the agent’s perceived TOP and the AD2E,F�I
 was the final TOP map

generated by the system with a perfect sensor. The process for generating the comparison

metric is given below. The results of this data were then plotted across episodes in the same

manner as the reward plots discussed earlier.

1 2 3

1
11

21
31

41
51

61
71

81
91

Targets Found

T
im

e

Episode

Mission Time

250-300

200-250

150-200

100-150

50-100

0-50

Figure 10: Example of the Mission Time performance plot. The number of

targets found is on the depth axis. This plot is obtained by averaging the

results across all trials. If a target is not found in a given episode, the

epsisode is not used in the calculation of the average.

60

At the end of episode “k” for position “x, y”

Determine the difference by using the following equation:

JKLL+�+6M+ � 	 NAD2E,FGEH �	AD2E,F�I
N
Repeat this process for every position “x, y” in the TOP map

Average the difference across the entire TOP map

Average the difference metric across all “k” episodes

 This method generated a value bounded by zero and one, with zero indicating the

imperfect sensor system operated with the same effects on the TOP grid as the perfect system.

Positions that had not been visited by either agent were inherently zeroed and eliminated from

the metric. A downward trend was expected as the episode number increased. Correlation

between the systems of the same Reinforcement Learning implementation was assessed via a

plot.

61

Results

This section details the results and behavior outputs of the simulation. The section is

organized into two parts. The first part displays the data that the system generated for every

metric. The first subsection also includes the data on Mission Time and Mission Completion.

The second subsection details the results of the statistical comparisons of the Navigation and

Search Agent rewards, and the number of Incorrect Declarations each system produced. Systems

were compared to one another based upon their sensor performance. Only systems using the

same form of RL implementation were compared using sensor performance. The two types of

RL implementation was compared using the performance data of all the systems of a given type,

regardless of sensor performance. An ANOVA and Tukey post hoc test were used to determine

significant differences. To verify that the assumption of homogeneity of variance was not

violated for any of the comparisons each ANOVA was preceded by a Levene Test. The

significance level used to determine the validity of the assumption of homogeneity of variance

was 0.05.

The mission performance section details how effective the agents were at locating the

three targets provided in each episode. The measures used to evaluate mission performance were

the number of targets found and the number of steps taken to find targets. The number of targets

found for each type of agent was represented by a ratio where a value of 1.0 indicates that all

targets were found for every episode of every trial. A value of 0 indicates that no targets were

ever found (e.g. a value of 0.98 indicates that 98% of all targets were found out of the 30,000

targets present in the environments from 100 trials and 100 episodes). This number does not

62

indicate where in the simulation a system failed to detect targets (e.g. at the beginning of trials).

The number of decision steps taken to find all targets was displayed via a three-dimensional

color plot. The decision step metric was composed of how many decision steps were required to

correctly declare the presence of a target in a given location. The number of incorrect

declarations over time was presented in the form of a plot.

Agent Behavior Results

Agent Rewards.

 This section details the results of the simulation from the perspective of the agents that

make decisions on what the system should do. The reward acquired by each agent is a useful

way to measure the effectiveness and efficiency of the RL systems as the reward functions are

the same for both the TD and MC systems. The agent rewards are expected to converge to a

steady-state value across episodes or trials. The possible rewards that the Search Agents can

receive are 5, -0.5, and -1. These rewards occur when the Search Agent correctly declares a

target, allows the agent to move or loiter, or incorrectly declares a target, respectively. The

Navigation Agents can receive a reward of 5 when the Search Agent has found a target in a given

location, and -0.5 every time it is commanded to move or the Search Agent incorrectly declares a

target present. This section does not contain any analyses of the data. The section only presents

the results of the simulation. The analysis of the results can be found in the Agent Reward

Analysis section.

Temporal Difference Navigation Agent Rewards.

 The average episodic reward for the first TD(0) Navigation Agent (with a sensor

sensitivity of 4) is presented in Figure 11. This system used an imperfect sensor with an alpha

63

value of 4. It can be seen by inspection that the Navigation Agent shown did increase its reward

over episodes. The agent appeared to achieve steady state performance within the first 60

episodes for a given trial.

 Figure 12 below shows a plot of all the TD Navigation Agents’ averaged episodic reward.

All the Temporal Difference Navigation Agents managed to achieve steady state performance

after about 60 or 70 episodes. Agents 1, 2, and 3 are equipped with imperfect sensors with alpha

values of 4, 7, and 10, respectively. Agent 4 is equipped with a perfect sensor. It can be seen

that by inspection that systems using better sensors do seem to achieve higher steady-state

performance than others. This preliminary observation was further tested using statistical

methods to verify if there was a significant difference within this data. It was also noted from

-350

-300

-250

-200

-150

-100

-50

0

0 10 20 30 40 50 60 70 80 90 100

A
v

e
ra

g
e

 E
p

is
o

d
ic

 R
e

w
a

rd

Episode

TD Nav Agent 1 Episodic Reward Plot

TD Agent 1

Figure 11: The average reward for the first TD Navigation Agent. This plot is

formed by taking average episodic reward across all trials. The Navigation Agent's

state value maps are rebuilt every trial as the regions of target occupancy change.

Within a trial the Navigatoin Agent's state value map is constantly being updated and

refined.

64

the plot that the system equipped with the perfect sensor (Agent 4) with a sensor alpha level of

infinity) achieved the highest steady-state reward.

Monte Carlo Navigation Agent Rewards.

The MC Navigation Agents also exhibited a characteristic learning curve. The total

reward obtained by the agents was also less than that obtained by the TD methods. Convergence

seemed to occur within the first 60 episodes, the same as the TD methods. The results of all the

MC Search Agents are plotted in Figure 12. Agents 1, 2, 3, and 4 use sensors that have an alpha

levels of 4, 7, 10, and infinity, respectively. Again, Agent 4 (the system with a perfect sensor)

clearly yields greater performance, converging to an average value of approximately -100. On

first inspection, the systems equipped with sensors with a performance of 7 and 10 seem to be

approaching the rewards obtained by the perfect system. Agent 1, with the worst sensor, clearly

-350

-300

-250

-200

-150

-100

-50

0

0 10 20 30 40 50 60 70 80 90 100

T
o

ta
l

E
p

is
o

d
ic

 R
e

w
a

rd

Episode

Average Episodic TD Nav Agent Reward

Nav Agent (TD) 1

Nav Agent (TD) 2

Nav Agent (TD) 3

Nav Agent (TD) 4

Figure 12: All TD Navigation Agent episodic rewards. The system equipped with a

perfect sensor, Agent 4, has the highest reward. The worst agent, Agent 1, attains the

lowest reward of all the systems. All agents seem to converge within 60 episodes.

Agent 4 and Agent 1 attain a steady-state reward of about -30 and -50, respectively.

65

gained the least reward per episode in the last 20 episodes or so. What was less clear here was if

the system with a perfect sensor (Agent 4) has significantly higher performance than Systems 2

and 3 (sensor alphas of 7 and 10, respectively). The Monte Carlo Navigation Agents do not gain

as high a reward as the Temporal Difference Agents. This indicates the Monte Carlo Agents are

“wandering” more than the Temporal Difference Agents. At this point in the analysis it was not

clear if the increase in “wandering” behavior is caused by the Monte Carlo Agents’ inherent

inability to update online or if the drop in performance was due to the way the Monte Carlo

Search Agents behave.

Temporal Difference Search Agent Rewards.

 The TD Search Agents also performed as expected, increasing their rewards over trials.

The increase in reward over early trials is likely due to the temperature variable used in the

-400

-350

-300

-250

-200

-150

-100

-50

0

0 10 20 30 40 50 60 70 80 90 100

T
o

ta
l

E
p

is
o

d
ic

 R
e

w
a

rd

Episode

Average Episodic MC Nav Agent Reward

Agent 1

Agent 2

Agent 3

Agent 4

Figure 13: All MC Navigation Agent episodic rewards. The systems equipped with

less sensitive sensors performed worse, mirroring the trend seen in the TD Navigation

Agents' plots. Examination shows that the MC Navigation Agents, in general, have

higher steady-state variance than the TD Agents.

66

softmax exploration mechanic. They also feature a lot more noise as the location of targets

changes from trial to trial. The Search Agent takes as many as 400 scans per episode, so learning

would occur rapidly in the Search Agent system, and therefore most learning would take place

within the first trial. It is difficult to see visually any differences or average reward per trial

within the systems in Figure 14. A moving average function was applied to the data to help

identify trends. The moving average subset size is 5 units, and is shown in Figure 15. The

reason that the moving average subset size was 5 units was that this size adequately separates the

data within the plots, while still leaving enough detail to see the variation in performance across

different trials.

 The TD Search Agents’ rewards seem to fluctuate widely dependent upon the trial, as

expected. It was clear that Agent 4 has the highest overall performance, which reinforces the

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0 10 20 30 40 50 60 70 80 90 100

A
v

e
ra

g
e

 T
ri

a
l

R
e

w
a

rd

Trial

Average TD Search Agent Rewards

TD Agent 1
TD Agent 2
TD Agent 3

TD Agent 4

Figure 14: All TD Search Agent rewards. The plot shows that the agents tracked one

another consistently. The large fluctuations in the data are due to the difference in the

distances between the targets between trials. It is hard to identify trends in this data

due to the variance between trials.

67

findings from the navigation section. It was also seen that the system equipped with the least

sensitive sensor is performing the worst out of all the other agents. Of the imperfect systems,

Agents 2 and 3, with their higher performance sensors, seemed to perform the best.

Monte Carlo Search Agent Rewards.

 Repeating the procedure found in the TD Search Agent Rewards section, the combined

data for all of the MC Search Agents was plotted below for comparison. Looking at the raw data,

in Figure 16, it seems that the perfect MC system performs better than the imperfect systems, but

due to the high level of variance, other observations cannot be made. A moving average using a

5 unit subset was applied to more clearly display any trends in the reward data in Figure 17.

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0 10 20 30 40 50 60 70 80 90 100

A
v

e
ra

g
e

 T
ri

a
l

R
e

w
a

rd

Trial

Average TD Search Agent Rewards

TD Agent 1

TD Agent 2

TD Agent 3

Figure 15: Smoothed TD Search Agent rewards. The data shows a trend that more

sensitive sensors performed better across trials. The Agent with the perfect sensor

attains a higher average reward than the other Agents.

68

 The superior performance of the perfect system was reinforced by examination of the

moving average data in Figure 17. Among the imperfect systems, it seems that the worst system

achieved much lower performance. The other two imperfect systems, however, do not clearly

distinguish themselves from one another. Further analysis of the MC and TD Search Agent

Rewards can be found in the Agent Reward Analysis section of this study.

-140

-120

-100

-80

-60

-40

-20

0

0 10 20 30 40 50 60 70 80 90 100

A
v

e
ra

g
e

 T
ri

a
l

R
e

w
a

rd

Trial

Average MC Search Agent Rewards

MC Agent 1
MC Agent 2
MC Agent 3
MC Agent 4

Figure 16: All MC Search Agent rewards. The data features the large variance found

in the TD Search Agent data. Examination reveals that the rewards seem to be lower

than those obtained by the TD Search Agents.

69

Incorrect Declaration Behavior.

TD Search Agent Incorrect Declaration Behavior.

 All systems managed to decrease the number of incorrect declarations over the course of

the simulation. It was noted that the Search Agents seem to increase their performance only

within the first few trials, and was probably caused by the application of the temperature variable

in the exploration mechanic. This behavior was shown in the plots in Figure 18 and Figure 19.

The data in Figure 18 was smoothed using a moving average method. The smoothing shows the

differences between the agent performances more clearly. The subset size used for the moving

average is 5.

-120

-100

-80

-60

-40

-20

0

0 10 20 30 40 50 60 70 80 90 100

A
v

e
ra

g
e

 T
ri

a
l

R
e

w
a

rd

Trial

Average MC Search Agent Rewards

MC Agent 1

MC Agent 2

MC Agent 3

MC Agent 4

Figure 17: Smoothed MC Search Agent rewards. The data shows that the perfect

system clearly did better than the imperfect systems. The system with the least

sensitive sensor seems to function with a much higher rate fo variance and a lower

average reward than the other systems.

70

 The systems equipped with a more sensitive sensor appear to perform better, with the

system equipped with a perfect sensor clearly being superior to the other systems. The average

number of incorrect declarations per trial seems to converge to a value of 15 to 20 for the perfect

system, and about 20 to 24 for the imperfect systems. The systems equipped with sensors with a

sensitivity of 7 and 10 seemed to have the same performance. A further analysis of the incorrect

declaration behavior can be found in the Agent Reward Analysis section of this study.

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

In
co

rr
e

ct
 D

e
cl

a
ra

ti
o

n
s

Trials

TD Search Agent Incorrect Declaration Count

TD Agent 1

TD Agent 2

TD Agent 3

TD Agent 4

Figure 18: Average TD Incorrect Declarations. The TD Incorrect Declaration

behavior exhibits the same high correlation relative to trials found in the Search Agent

behaviors. As longer travel times between target areas offer more opportunities for

incorrect declarations this behvior makes sense. We also see the early learning

behavior. This learning period is of short duration, which corresponds to the

observations of the Search Agents.

71

MC Search Agent Incorrect Declaration Behavior.

 The MC Incorrect Declaration data was also recorded and analyzed. The perfect MC

system yields a steady-state average declaration number of about 17, with the imperfect systems

generating about 20 incorrect declarations per episode in a given trial. Figure 19 showed that the

perfect system again exhibits superior performance. All Agents’ incorrect declaration counts

depended heavily on the trial being conducted. The smoothing method is applied to better see

any differences between the systems equipped with imperfect sensors.

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

In
co

rr
e

ct
 D

e
cl

a
ra

ti
o

n
s

Trials

TD Search Agent Incorrect Declaration Count

TD Agent 1

TD Agent 2

TD Agent 3

TD Agent 4

Figure 19: Smoothed average TD Incorrect Declarations. The smoothed data in this

plot backs up the system ranking observations made in the Search Agent section. The

systems with a sensor sensitivity of 7 and 10 are very similar in their performance,

also following the trend seen in the Search Agent section. The perfect system appears

to generate 2 to 3 less rewards than these systems, on average.

72

 The results of the smoothing method are shown in Figure 21. The perfect MC system

differentiates itself from the other systems clearly in this data. Again, the systems with a sensor

sensitivity value of 7 and 10 (Agents 2 an 3, respectively) seem to achieve the same level of

performance. The system with sensor sensitivity of 4 (Agent 1) performs the worst out of all the

systems.

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

In
co

rr
e

ct
 D

e
cl

a
ra

ti
o

n
s

Trials

MC Search Agent Incorrect Declaration Count

MC Agent 1

MC Agent 2

MC Agent 3

MC Agent 4

Figure 20: Average MC Incorrect Declarations. The data for the Incorrect Declaration

behavior of the MC systems. The systems exhibit a period of early learning, but of

short duration, the same as the TD systems. High correlation among the agents is

present.

73

Mission Performance

Mission Objective.

 All agents were able to locate all targets 90 % of the time. The average Mission

Completion results are displayed below in Table 7. A value of unity indicated that the agent was

able to find all the targets every episode for each trial. Examination reveals that the Monte Carlo

methods produced noticeably lower results than the TD implementations. It is also noted that the

systems equipped with a perfect sensor did not greatly increase the ability of the systems to

locate targets. The difference between the values of the TD and MC systems is most likely due

to the fact that the TD agent learns the target behavior faster, resulting in a larger number of

found targets in the early episodes.

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

In
co

rr
e

ct
 D

e
cl

a
ra

ti
o

n
s

Trials

MC Search Agent Incorrect Declaration Count

MC Agent 1

MC Agent 2

MC Agent 3

MC Agent 4

Figure 21: Smoothed average MC Incorrect Declarations. The smoothed data for the

MC incorrect declarations shows the same general trends as that found in the TD

system data. The perfect system generates the least number of incorrect declarations,

while the most sensitive system generates the most.

74

Table 7

Mission completion rates

Alpha 4 7 10 Inf

TD 0.9794 0.9820 0.9827 0.9844

MC 0.9084 0.9252 0.9288 0.9379

 A ceiling effect was almost certainly present here as the maximum number of targets the

agents could possibly find was limited to three. Once all three targets had been located in a

given episode the simulation ends. If the environment was further saturated with targets greater

differences in performance could possibly have emerged. To accomplish this task would require

a larger mission space and more targets.

Mission Time.

The time to locate all targets, as measured by the number of steps, decayed for all agents.

After the fortieth episode of every trial the system begins to consistently achieve its mission

objectives (i.e. identifying all the targets) in a minimum amount of time. The average time to

locate the targets is plotted in Figure 21 for the TD Agent 1 (alpha equals 4). The plot shows the

average time taken to find each to the targets across all trials. If an agent did not locate the

required number of targets in a given episode the episode was not used in calculation of the

average. The graphs of the other systems’ mission performance can be found in Appendix A.

Since it appears that mission performance plateaus after fifty episodes for all systems, the

remaining episodes will be used to reach conclusions on the steady state behavior and

performance of the systems.

75

 The averages of the last fifty episodes across all trials for all systems are displayed in

Table 8. It can be seen that the TD implementations routinely achieved a lower mission

completion time. It also appears that the perfect sensor systems for both the TD and MC

implementation complete their missions quicker than the systems with imperfect sensors.

Additionally, it can be seen that systems with a higher sensor performance metric achieved

quicker target location times.

1 2 3

1
11

21
31

41
51

61
71

81
91

Targets Found

M
is

si
o

n
 T

im
e

Episode

TD Agent 1 Mission Time

250-300

200-250

150-200

100-150

50-100

0-50

Figure 22: Mission Time plot for first TD Agent. The mission completion time

decayed for all agents. Examination shows that after 50 episodes the time to

complete the mission objectives is minimized and a steady-state behavior is achieved.

Mission Time refers to the number of steps needed to locate 1,2, and 3 targets. Plots

of the other systems can be found in Appendix A.

76

Table 8

Average mission time decision step values of last 50 episodes

Alpha Number of Targets 4 7 10 Inf

TD

1 23.23 20.06 18.85 18.51

2 47.91 41.58 39.12 36.26

3 87.83 76.60 72.46 67.11

MC

1 33.39 29.62 27.71 26.32

2 75.10 66.20 60.91 56.89

3 136.39 125.16 119.24 110.45

Agent Reward Analysis

Navigation Agent Reward Analysis.

 The last 20 data points for the average episodic reward for the TD Navigation Agents are

used to compare the steady-state performance of the systems to one another (i.e. systems

equipped with sensors with different alpha levels were compared). The last twenty data points

used in the analyses of the Navigation and Search Agents are used as the effects of the

temperature variables are minimal during these simulations and the Agents have acquired enough

experience where their behavior is governed by relatively stable state and state-action values.

The results of the different systems are compared to determine if the differences in sensor

performance significantly affected the average episodic reward of the Navigation Agents. A

significance value of 0.05 or less (i.e. the p value) is used to determine significance. SPSS was

used to analyze the data. The descriptive data of this set is shown in Table 9.

77

Table 9

TD navigation agent steady-state descriptive data

� N Mean
Std.

Deviation

Std.

Error

95% Confidence Interval for Mean

Lower Bound Upper Bound
Inf 20 -29.9030 3.86921 .86518 -31.7138 -28.0922

4 20 -50.4600 4.98323 1.11428 -52.7922 -48.1278

7 20 -39.4865 3.86040 .86321 -41.2932 -37.6798

10 20 -34.6580 3.58166 .80088 -36.3343 -32.9817

Total 80 -38.6269 8.66796 .96911 -40.5558 -36.6979

Figure 23: Box plot of the TD Navigation Agent Rewards. The populations used for the plot are the averages of the

last 20 of all the episodes. The Alpha value of “.00” on the X-axis represents the output of the agent with the perfect

sensor. The error bars represent the first and third quartile points. The whiskers show the values of the highest and

lowest entries in the data set.

 It can be seen that the mean decreased as the sensor performance increased, it is also

noted that the standard deviation within each group is similar across groups. A significant

difference was found in the imperfect sensor data sets. The results of the one-way ANOVA are

78

shown in Table 10. A Levene statistic was calculated to test for the homogeneity of variance

assumption required of an ANOVA. The Levene statistic showed that the homogeneity of

variance assumption was valid as it was greater than 0.05 (p = 0.737).

Table 10

TD navigation agent ANOVA results

Sum of

Squares
df Mean Square F Sig.

Between Groups 4652.395 3 1550.798 91.853 .000

Within Groups 1283.151 76 16.884

Total 5935.546 79

 The ANOVA revealed that there was a significant difference between the groups (p <

0.001). It is therefore concluded that the type of sensor system does have an effect on the reward

that the Navigation Agents receive. A Tukey’s HSD test is used to assess the significance

relationship between the different systems.

Table 11

Tukey HSD test results

Alpha Alpha
Mean

Difference
Std. Error Sig.

Inf

4 20.55700
*
 1.29937 .000

7 9.58350
*
 1.29937 .000

10 4.75500
*
 1.29937 .003

4

Inf -20.55700
*
 1.29937 .000

7 -10.97350
*
 1.29937 .000

10 -15.80200
*
 1.29937 .000

7

Inf -9.58350
*
 1.29937 .000

4 10.97350
*
 1.29937 .000

10 -4.82850
*
 1.29937 .002

10

Inf -4.75500
*
 1.29937 .003

4 15.80200
*
 1.29937 .000

7 4.82850
*
 1.29937 .002

79

 The Tukey’s test reveals that all the systems are significantly different from one another.

Based upon the results of the Tukey’s HSD test and the descriptive data found in Table 7, it is

concluded that the Navigation Agent episodic reward is highly sensitive to sensor performance.

 The method used to compare the performance of the MC systems mirrors that used for

the TD systems. The last 20 episodes are used for steady-state analysis. Significantly higher

steady state rewards are considered to be superior systems.

Table 12

MC navigation agent steady-state descriptive data

 N Mean Std. Deviation
Std.

Error

95% Confidence Interval for Mean

Lower Bound Upper Bound
Inf 20 -99.0835 8.49811 1.90023 -103.0607 -95.1063

4 20 -139.6030 9.21330 2.06016 -143.9150 -135.2910

7 20 -109.2790 8.07733 1.80615 -113.0593 -105.4987

10 20 -101.4005 8.27120 1.84950 -105.2715 -97.5295

Total 80 -112.3415 18.31005 2.04713 -116.4162 -108.2668

80

Figure 24: Box plot of the MC Navigation Agent Rewards. The populations used for the plot are the averages of

the last 20 of all the episodes. The Alpha value of “.00” on the X-axis represents the output of the agent with the

perfect sensor. The error bars represent the first and third quartile points. The whiskers show the values of the

highest and lowest entries in the data set.

 The data for the MC systems shows a lower reward average across the board. It also

features higher variance levels. Again the standard deviation within each group is similar. The

One-Way ANOVA shows that there is a significant difference (p < 0.001) between the MC

systems. The Levene statistic revealed that the homogeneity of variance assumption was not

violated (p = 0.811).

81

Table 13

MC navigation agent ANOVA results

Sum of

Squares
df Mean Square F Sig.

Between Groups 20960.967 3 6986.989 96.121 .000

Within Groups 5524.414 76 72.690

Total 26485.381 79

 A Tukey’s HSD test is used to identify the source of significant differences found by the

One-Way ANOVA. The results of this procedure are found below in Table 14. The analysis

reveals that all systems were significantly different from one another except for the systems with

a sensor sensitivity value of 10 and the perfect system. This result seems to indicate that the MC

Navigation Agents were somewhat less sensitive to changes in sensor performance. Interestingly,

this hints that there is most likely a diminishing return as a sensor approaches the infinite alpha

value.

Table 14

MC navigation agent Tukey HSD results

Alpha Alpha
Mean

Difference
Std. Error Sig.

Inf

4 40.51950
*
 2.69610 .000

7 10.19550
*
 2.69610 .002

10 2.31700 2.69610 .826

4.00

Inf -40.51950
*
 2.69610 .000

7 -30.32400
*
 2.69610 .000

10 -38.20250
*
 2.69610 .000

7.00

Inf -10.19550
*
 2.69610 .002

4 30.32400
*
 2.69610 .000

10 -7.87850
*
 2.69610 .023

10.00

Inf -2.31700 2.69610 .826

4 38.20250
*
 2.69610 .000

7 7.87850
*
 2.69610 .023

 The last comparison is between the collective steady-state rewards of the MC and TD

agents. The descriptive data for this comparison is found in Table 15. A homogeneity of

82

variance test carried out in SPSS generated a significant Levene Statistic (p < 0.001). An

ANOVA test carried out on this data would therefore not be valid. It can be seen in Table 15,

however, that the combined TD Navigation Agents’ episodic reward is much greater than that of

the combined MC Navigation Agents. The difference in standard deviation between these two

groups, while great enough to violate the assumption of homogeneity of variance, is not so great

as lead to the conclusion that the Agents’ episodic rewards are very likely the insignificantly

different.

Table 15

TD & MC navigation agent descriptive data

 N Mean Std. Deviation
Std.

Error

95% Confidence Interval for Mean

Lower Bound Upper Bound
TD 80 -38.6269 8.66796 1.90023 -40.5558 -36.6979

MC 80 -112.3415 18.31005 1.84950 -116.4162 -108.2668

Total 160 -75.4842 39.63471 2.04713 -81.6726 -69.2957

Search Agent Reward Analysis.

 The Search Agents were analyzed in a similar way as the Navigation Agents. The

average reward across the last 20 trials was used to determine if there were any steady-state

performance differences within the imperfect systems. The results for the TD Search Agents are

shown below in Table 16.

83

Table 16

TD search agent descriptive data

 N Mean
Std.

Deviation

Std.

Error

95% Confidence Interval for

Mean

Lower Bound Upper Bound
Inf 20 -45.6103 12.78464 2.85873 -51.5936 -39.6269

4 20 -60.5410 15.58965 3.48595 -67.8372 -53.2448

7 20 -53.1910 13.83779 3.09422 -59.6673 -46.7147

10 20 -50.5940 12.45740 2.78556 -56.4242 -44.7638

Total 80 -52.4841 14.51087 1.62236 -55.7133 -49.2548

Figure 25: Box plot of TD Search Agent average rewards. Again, the whiskers represent the highest and lowest

values found in a given set of data. The “.00” category depicts the results of the system with a perfect sensor.

The results of the ANOVA are shown in Table 12. A significant difference between the

systems was found (p = 0.009). As before, a Tukey’s HSD test is performed to determine what

84

the relationship between the systems. The homogeneity of variance assumption was not violated

(p = 0.850).

Table 17

TD search agent ANOVA results

Sum of

Squares
df Mean Square F Sig.

Between Groups 2324.713 3 774.904 4.116 .009

Within Groups 14309.951 76 188.289

Total 16634.664 79

 The Tukey’s test revealed that only the worst system (with an alpha of 4) and perfect

system exhibited a significant difference in their steady-state scores (p = 0.005). This is

interesting as it signifies that the imperfect Search Agents seem to be able to mitigate the effects

of sensors with different levels of performance. It also breaks from the pattern found in the TD

Navigation Agent analysis.

Table 18

TD search agent tukey HSD results

Alpha Alpha
Mean

Difference
Std. Error Sig.

Inf

4 14.93075
*
 4.33923 .005

7 7.58075 4.33923 .307

10 4.98375 4.33923 .661

4.00

Inf -14.93075
*
 4.33923 .005

7 -7.35000 4.33923 .334

10 -9.94700 4.33923 .109

7.00

Inf -7.58075 4.33923 .307

4 7.35000 4.33923 .334

10 -2.59700 4.33923 .932

10.00

Inf -4.98375 4.33923 .661

4 9.94700 4.33923 .109

7 2.59700 4.33923 .932

85

 The analysis of the MC Search Agent rewards was carried out in the same manner as with

the TD methods. The last 20 trials were used to compare the rewards of the MC Search Agents.

The descriptive data is shown below in Table 19. As in the Navigation Agent Analysis section

the MC Agents seem to feature lower mean performance values.

Table 19

MC search agent descriptive data

 N Mean
Std.

Deviation

Std.

Error

95% Confidence Interval for

Mean

Lower Bound Upper Bound
Inf 20 -72.0033 15.51416 3.46907 -79.2641 -64.7424

4 20 -93.2130 18.53801 4.14522 -101.8891 -84.5369

7 20 -83.1368 16.19789 3.62196 -90.7176 -75.5559

10 20 -82.8978 11.35186 2.53835 -88.2106 -77.5849

Total 80 -82.8127 17.07709 1.90928 -86.6130 -79.0124

86

Figure 26: Box plot of the MC Search Agent average rewards. The “.00” category represents the data of the system

with the perfect sensor. The whiskers represent the highest and lowest entries in the data.

The ANOVA for the MC Search Agent shows that there is a significant difference

between the systems (p = 0.001). A Tukey’s test is used to determine the specifics of the

relations between the groups. Using the Levene test, the homogeneity of variance assumption

was determined to not have been violated (p = 0.211).

Table 20

MC search agent ANOVA results

Sum of

Squares
df Mean Square F Sig.

Between Groups 4502.454 3 1500.818 6.154 .001

Within Groups 18536.080 76 243.896

Total 23038.534 79

87

 A significant difference was found between the perfect Search Agent and the Search

Agent with a sensor sensitivity of 4 (p < 0.001). The first result mirrors that found in the TD

Search Agent Analysis, the systems with sensor sensitivity ratings of 7 and 10 are not

significantly different from one another or from the perfect system in regard to steady-state

performance. This result again points to the conclusion that the RL architecture, in this case the

MC system, is able to mitigate the effects of different sensor performance levels.

Table 21

MC search agent Tukey HSD results

Alpha Alpha
Mean

Difference
Std. Error Sig.

Inf

4 21.20975
*
 4.93858 .000

7 11.13350 4.93858 .118

10 10.89450 4.93858 .131

4

Inf -21.20975
*
 4.93858 .000

7 -10.07625 4.93858 .183

10 -10.31525 4.93858 .166

7

Inf -11.13350 4.93858 .118

4 10.07625 4.93858 .183

10 -.23900 4.93858 1.000

10

Inf -10.89450 4.93858 .131

4 10.31525 4.93858 .166

7 .23900 4.93858 1.000

 A comparison of the TD and MC systems’ collective Search Agent rewards was

completed using an ANOVA. The descriptive statistics used for this analysis are provided in

Table 22. A homogeneity of variance test was completed before the ANOVA was conducted,

and revealed that the homogeneity of variance assumption is valid for this data (p = 0.360). The

results of the ANOVA shown in Table 23 indicated that there is a significant difference (p <

0.001) between the rewards obtained by the different Search Agent implementations.

88

Table 22

TD & MC search agent descriptive data

 N Mean
Std.

Deviation

Std.

Error

95% Confidence Interval for

Mean

Lower Bound Upper Bound
TD 80 -52.4841 14.51087 1.62236 -55.7133 -49.2548

MC 80 -82.8127 17.07709 1.90928 -86.6130 -79.0124

Total 160 -67.6484 21.92988 1.73371 -71.0724 -64.2243

Table 23

TD & MC search agent ANOVA results

Sum of

Squares
df Mean Square F Sig.

Between Groups 36793.020 1 36793.020 146.530 0.000

Within Groups 39673.198 158 251.096

Total 76466.218 159

Incorrect Declaration Behavior.

 The Incorrect Declaration Behavior of the Search Agent was assessed in the same manner

as the reward data. The last 20 trials were used as data points to examine the effects, if any, of

the sensor sensitivity on the number of incorrect declarations occurring in a given trial. It is

expected that the same general trends that were found in the Search Agent analysis section will

be present in the Incorrect Declaration behavior.

 The descriptive data for the TD incorrect declaration behavior is displayed in Table 24. It

can be seen that the Agents using a higher performance sensor have a lower average number of

incorrect declarations than the other agents. Again, the within group standard deviation is

relatively uniform.

Table 24

89

TD incorrect declaration descriptive data

N Mean

Std.

Deviation

Std.

Error

95% Confidence Interval for

Mean

 Lower Bound Upper Bound
Inf 20 16.8175 3.70344 .82811 15.0842 18.5508

4 20 23.0265 4.85729 1.08612 20.7532 25.2998

7 20 20.2955 4.34889 .97244 18.2602 22.3308

10 20 19.3830 3.90774 .87380 17.5541 21.2119

Total 80 19.8806 4.70971 .52656 18.8325 20.9287

Figure 27: Box plot of TD Agent Incorrect Declarations. The “.00” category represents the data of the system

using a perfect sensor. The whiskers represent the highest and lowest entries in each data set.

 An insignificant Levene statistic was generated for the TD Incorrect Declaration data (p =

0.708), allowing an ANOVA test to be used to determine significant differences. The ANOVA

test revealed a significant difference between the system data (p < 0.001). A Tukey’s HSD test

90

will be used to further analyze the systems’ behavior in the same manner as the reward analyses.

The results of the Tukey’s test are shown in Table 25.

Table 25

TD incorrect declaration ANOVA results

Sum of

Squares
df Mean Square F Sig.

Between Groups 393.980 3 131.327 7.348 .000

Within Groups 1358.347 76 17.873

Total 1752.327 79

 The Tukey HSD test results are displayed in Table 26. A significant difference is found

between the perfect system and the worst system (the agent with an alpha value of 4). This

reinforces the analysis found in the TD Search Agent section. Interestingly though, there is a

significant difference between the systems with sensor performance values of 4 and 10 as well.

This relationship was not found in the TD Search Agent analysis. It is also found that there is no

significant difference between the systems with higher sensor performance.

Table 26

TD incorrect declaration Tukey HSD results

Alpha Alpha
Mean

Difference
Std. Error Sig.

Inf

4 -6.20900
*
 1.33690 .000

7 -3.47800 1.33690 .053

10 -2.56550 1.33690 .229

4.00

Inf 6.20900
*
 1.33690 .000

7 2.73100 1.33690 .182

10 3.64350
*
 1.33690 .039

7.00

Inf 3.47800 1.33690 .053

4 -2.73100 1.33690 .182

10 .91250 1.33690 .903

10.00

Inf 2.56550 1.33690 .229

4 -3.64350
*
 1.33690 .039

7 -.91250 1.33690 .903

91

 The descriptive data for the MC Agents is displayed in Table 27. The data reveals that

the MC Search Agents, on average, did not generate a much larger number of incorrect

declarations than the TD agents.

Table 27

MC incorrect declaration descriptive data

 N Mean
Std.

Deviation

Std.

Error

95% Confidence Interval for

Mean

Lower Bound Upper Bound
Inf 20 17.6685 3.72033 .83189 15.9273 19.4097

4.00 20 23.1920 4.66682 1.04353 21.0079 25.3761

7.00 20 20.6725 4.21187 .94180 18.7013 22.6437

10.00 20 19.9625 3.48436 .77913 18.3318 21.5932

Total 80 20.3739 4.43647 .49601 19.3866 21.3612

92

Figure 28: Box plot of MC Agent Incorrect Declarations. The “.00” category represents the output of the perfect

system. The whiskers of each plot show the highest and lowest entries in the data set.

A Levene test was applied to the data and revealed that the assumption of homogeneity of

variance was not violated (p = 0.806). The ANOVA results indicate that there is a significant

difference between the numbers of incorrect declarations made by each system, dependent upon

the performance of the sensor it uses (p = 0.001). A Tukey’s HSD test is used to identify the

source of the differences. The results of the ANOVA can be found Table 28.

Table 28

MC incorrect declaration ANOVA results

Sum of

Squares
df Mean Square F Sig.

Between Groups 310.386 3 103.462 6.318 .001

Within Groups 1244.512 76 16.375

Total 1554.897 79

93

 The test reveals that the significant difference is caused by the performance differences of

the system with the sensor sensitivity of 4 and the perfect system (p < 0.001). This result mirrors

the analysis found in the MC Search Agent section.

Table 29

MC incorrect declaration Tukey HSD results

Alpha Alpha
Mean

Difference
Std. Error Sig.

Inf

4 -5.52350
*
 1.27965 .000

7 -3.00400 1.27965 .096

10 -2.29400 1.27965 .285

4

Inf 5.52350
*
 1.27965 .000

7 2.51950 1.27965 .209

10 3.22950 1.27965 .064

7

Inf 3.00400 1.27965 .096

4 -2.51950 1.27965 .209

10 .71000 1.27965 .945

10

Inf 2.29400 1.27965 .285

4 -3.22950 1.27965 .064

7 -.71000 1.27965 .945

 An analysis of the incorrect declaration behavior between the Temporal

Difference and Monte Carlo systems was also completed. The descriptive statistics for this

analysis are provided below in Table 30. Examination of the data shows that the means for the

two results are very close.

Table 30

TD & MC incorrect declaration behavior descriptive statistics

 N Mean
Std.

Deviation

Std.

Error

95% Confidence Interval for

Mean

Lower Bound Upper Bound
MC 80 20.374 4.43647 0.49601 19.3866 21.3612

TD 80 19.881 4.70971 0.52656 18.8325 20.9287

Total 160 20.127 4.56742 0.36109 19.4141 20.8404

94

An ANOVA was conducted on this data. The results of the ANOVA are shown in Table

31. An analysis for the homogeneity of variance in SPSS resulted in a Levene Statistic of 0.491,

indicating that the homogeneity of variance assumption for the ANOVA was valid (p = 0.484).

The ANOVA reveals that there were no significant differences in the collective number of

incorrect declarations by the systems (p = 0.496).

Table 31

TD & MC incorrect declaration behavior ANOVA results

Sum of

Squares
df Mean Square F Sig.

Between Groups 9.732 1 9.732 0.465 0.496

Within Groups 3307.225 158 20.932

Total 3316.957 159

The state-action value map of the Search Agents provided another way to view the

behavior of the systems in terms of the number of incorrect declarations. The value mapping for

all the Search Agents is found in Table 32. All TD agents seemed to converge to the same value

for the declaration action, especially for the lower TOP states. TD Agents 3 and 4 sometimes

have zeros for the declaration value of intermediate states. The cause of this was that the agent

with a higher sensor performance tended to “skip” through the TOP ranges due to the nature of

Bayes’ Rule for updating the TOP. The MC Agents also seem to converge to similar TOP state

values, especially for lower TOP values.

95

Table 32

Search agent state action values

 TOP State

Agent Action 1 2 3 4 5 6 7 8 9 10

TD 1

Move -0.695 -0.741 -0.690 -0.799 -0.880 -0.764 -0.803 -0.761 -0.783 -0.744

Loiter 4.803 3.532 2.870 -0.453 -0.868 -0.800 -1.262 -1.289 -1.277 -1.274

Declare 5.489 4.665 3.485 0.437 -0.771 -0.206 -0.957 -1.033 -1.090 -1.102

TD 2

Move -0.761 -0.893 -1.264 -0.883 -0.998 -0.841 -0.873 -0.818 -0.857 -0.790

Loiter 4.675 3.753 2.858 0.917 -0.993 -0.885 -1.361 -1.290 -1.322 -1.315

Declare 5.315 4.169 4.176 1.408 -0.801 -0.585 -1.029 -1.014 -1.099 -1.108

TD 3

Move -0.921 -0.500 -0.959 0.000 -0.932 0.000 -0.848 -0.882 -0.848 -0.805

Loiter 4.395 0.000 1.988 -1.256 -0.854 0.000 -1.361 -1.371 -1.371 -1.369

Declare 5.221 0.000 2.515 0.000 -0.377 0.000 -0.962 -1.033 -1.099 -1.110

TD 4

Move -1.072 0.000 0.000 0.000 -1.050 0.000 0.000 0.000 0.000 -0.736

Loiter 4.999 0.000 0.000 0.000 -1.000 0.000 0.000 0.000 0.000 -1.294

Declare 5.555 0.000 0.000 0.000 -0.821 0.000 0.000 0.000 0.000 -1.111

MC 1

Move -3.178 -2.785 -3.107 -4.209 -4.518 -4.508 -4.639 -4.750 -4.727 -4.791

Loiter -1.190 -0.127 -1.247 -3.845 -4.668 -4.452 -4.792 -4.888 -4.902 -4.967

Declare 2.030 0.932 -0.578 -3.570 -4.761 -4.409 -4.967 -5.165 -5.130 -5.226

MC 2

Move -2.393 -2.698 -4.429 -3.720 -4.232 -4.406 -4.448 -4.636 -4.563 -4.702

Loiter 0.573 -0.325 -2.020 -2.879 -4.419 -4.442 -4.668 -4.788 -4.792 -4.888

Declare 1.756 0.406 0.844 -2.553 -4.543 -4.575 -4.857 -5.024 -5.002 -5.130

MC 3

Move -2.688 0.074 -3.278 0.000 -4.174 0.000 -4.552 -4.345 -4.518 -4.641

Loiter 0.590 0.000 -1.814 0.000 -4.143 0.000 -4.708 -4.594 -4.724 -4.831

Declare 1.678 0.000 -1.312 5.000 -4.192 0.000 -4.843 -4.790 -4.961 -5.086

MC 4

Move -2.703 0.000 0.000 0.000 -3.785 0.000 0.000 0.000 0.000 -4.314

Loiter 1.127 0.000 0.000 0.000 -4.015 0.000 0.000 0.000 0.000 -4.567

Declare 2.232 0.000 0.000 0.000 -4.193 0.000 0.000 0.000 0.000 -4.793

 A plot of the declaration action values for the TD methods can be found in Figure 29.

The plot reveals the TD agents are much more likely to declare the presence of a target if the

TOP is greater than 0.5. The higher the TOP, the more likely the agent will declare the presence

of a target. It is noted in Table 32 that the “Declare” value never gets substantially lower than

the other action values for a given state. This means that at these low TOP values there remains

a relatively high probability of that action being selected, increasing the number of false

96

declarations. The number of false declarations would also inherently be greater for situations

where the agent vehicle had to travel farther. To travel farther the agent would have to traverse

more empty space, possibly selecting the “Declare” action. As value functions derive their

values from the reward scheme used by an RL algorithm, the number of incorrect declarations

could possibly be reduced by increasing the penalty for a false declaration or eliminating the

ability of the Search Agents to declare target presence while in these TOP states.

 It is seen in Figure 29 that the state-action values for the Declaration action converge to

the same number for all of the TD Search Agents. The parts of the value map that equal zero are

states that were never encountered by a given system. The TD Agent 1 system seems to have the

smoothest overall profile as it visited most of the states many times, allowing its value function

to converge.

-2

-1

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

D
e

cl
a

ra
ti

o
n

 A
ct

io
n

 V
a

lu
e

TOP State

TD Declaration Action Value Plot

TD Agent 1

TD Agent 2

TD Agent 3

TD Agent 4

Figure 29: Plot of the TD Agent declaration action values. The plot shows that

higher TOPs are more valued with respect to the declaration action. The perfect agent

only experiences 3 operational TOP states, the highest, the lowest, and the once in

which the agent is initialized at the beginning of every episode.

97

 The same general trends are found in the MC Search Agent value maps. Figure 30 shows

that the MC systems converged to the same values, although different values than those found in

the TD Search Agent data. Again, the first agent, with the lowest sensor performance, has the

smoothest curve due to the fact that it visited all of the states multiple times. A spike is present

at TOP State 4 for the third system. Examination of the data reveals that this state was

encountered only twice over the course of the entire simulation for this system. It is theorized

that in order to generate a TOP in this state the system would have to generate a particular set of

returns on an occupied position, with at least one return being a true result. The fact that this so

rarely happens likely means that the position is occupied, thus resulting in the high value. This

state value should thus be ignored as it was so rarely encountered.

-6

-4

-2

0

2

4

6

1 2 3 4 5 6 7 8 9 10

D
e

cl
a

ra
ti

o
n

 A
ct

io
n

 V
a

lu
e

TOP State

MC Declaration Action Value Plot

MC Agent 1

MC Agent 2

MC Agent 3

MC Agent 4

Figure 30: The plot of MC declaration values shows similar behavior to that found in

the TD values. The states that have a value of zero have never been experienced by

their respective systems, and therefore are never updated.

98

Mission Time.

 The time to mission completion decreased over the course of a given trial through

repeated episodes. The rate of convergence for the minimization of target completion time was

different between the TD and MC agents. The mission times for the TD and MC agents

equipped with a sensor � value of 4 are shown below in Figure 31.

Figure 31: First (alpha = 4) TD and MC Agent Mission Time plots. The MC Agent’s plot features an early period

of rapid learning that lasts for the first 10 episodes, and then converges more slowly to a steady state value. The TD

agent has a more gradual and longer learning period, and ultimately converges to a steady state mission time that is

visibly lower than the MC system’s result.

 The graphs show mission times for the TD and MC agents with the worst sensor used in

this study, but this behavior is typical of all the systems, including the perfect systems. The MC

agents initially learn at an extremely high rate, which is seen in Figure 31. The TD agents learn

more gradually, but eventually complete their missions much sooner than the MC agents. The

results of the perfect systems are shown in Figure 32.

1 2 3

1
11 21 31 41 51 61 71 81 91

Targets Found

D
e

te
ct

io
n

 T
im

e

Episode

TD Agent 1 Mission Time

250-300

200-250

150-200

100-150

50-100

1 2 3

1
11

21 31 41
51 61

71 81
91

Targets Found

D
e

te
ct

io
n

 T
im

e

Episode

MC Agent 1 Mission Time

250-300

200-250

150-200

100-150

50-100

99

Figure 32: Perfect TD and MC Agent Mission Time Plots. The same trends as seen in the first systems are present

in the perfect systems. The MC agent exhibits a period of rapid learning, but ultimately converges to a steady-state

mission time that is higher than the results of the TD agent.

 As can be seen in Figure 32, the initial rate of convergence for the perfect MC system is

still faster than the equivalent TD system, even with a perfect sensor. Both systems show that

the initial time to complete a mission is reduced compared to the imperfect systems.

Additionally, the steady state performance of the perfect systems also improved compared to the

imperfect systems. All system mission performance plots can be found in Appendix A of this

study.

TOP Grid Comparison.

 A TOP map comparison was performed on selected trials for all agents. The comparison

is shown in Figure 35. The systems’ TOP maps are compared to the map of the perfect system

of a given agent type. Examples of the TOP plots are shown in Figure 33 and Figure 34. The

1 2 3

1
11 21 31 41 51 61 71 81 91

Targets Found

D
e

te
ct

io
n

 T
im

e

Episode

TD Agent 4 Mission Time

200-250

150-200

100-150

50-100

0-50

1 2 3

1
11 21 31 41 51 61 71 81 91

Targets Found
D

e
te

ct
io

n
 T

im
e

Episode

MC Agent 4 Mission Time

250-300

200-250

150-200

100-150

50-100

0-50

100

plots were generated by the TD system with a perfect sensor (Agent 4) and the TD system with

the worst sensor performance (Agent 1).

Figure 33: Perfect TD Agent TOP Map. The plot shows three spikes,

which are equal to one, indicating that the agent found all the targets in

this episode. A large portion of the map has a TOP value of zero. By

episode 50, the agent rapidly travels to the likely target locations.

101

Figure 34: First TD Agent TOP Map. The TOP map generated by the

TD system equipped with a sensor with a Hit Rate of 0.9 and a False

Alarm Rate of 0.36. The agent finds all targets in both episodes, the

same as the perfect system, but by episode 50 the agent hasn’t reach

the same efficiency with moving about the environment as the TD

system with the perfect sensor.

The plots seem to suggest that the agents are reducing mission time by more quickly

traveling to higher probability target locations. The perfect system generates a map with either a

TOP of zero or one, with three spikes indicating target locations, showing zero False Alarm

effects. The imperfect system’s TOP map shows the results of the imperfect sensor on the TOP

102

environment with TOP values between zero and one. To compare the systems more generally a

procedure was devised where all of the systems were compared to the end result of their perfect

versions across multiple trials. This procedure can be found in the TOP Map Comparison

subsection of the Metrics section of this report.

Each map of a given system at a specific episode is compared to the map generated by

the perfect system during the final episode. The results of this comparison are shown in Figure

35. The plots in Figure 35 are generated from the episodes of 10 trials averaged together.

Figure 35: TOP similarity plots. The plot of the TOP map comparison data shows that, in general, the difference in

the TOP maps decrease over the course of a trial. Interestingly, the TD agents seem to maintain very similar

difference metric values over the course of the trial. The MC agents feature a large amount of variability in their

metrics.

 There is an overall downward trend in this data. This leads to the conclusion that the

systems are converging to the final learned behavior exhibited by the perfect systems in each

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 70 80 90 100

A
V

e
ra

g
e

 T
O

P
 D

if
fe

re
n

ce

Episode

TD Similarity Comparison

TD Agent 1

TD Agent 2

TD Agent 3

TD Agent 4

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 70 80 90 100

A
v

e
ra

g
e

 T
O

P
 D

if
fe

re
n

ce

Episode

MC Similarity Comparison

MC Agent 1

MC Agent 2

MC Agent 3

MC Agent 4

103

case. It seems that the TOP maps generated by the TD systems do not vary as much as the MC

systems during their downward trend, meaning that their behavior is more uniform.

Discussion

 The first hypothesis, that systems equipped with higher performance sensors will perform

better than other systems, is confirmed by the evidence presented in this study. This is shown in

the analyses and data of the incorrect declarations, mission time, mission completion, and reward

plots. For the TD methods, the perfect Search Agent was only significantly different from the

Agent with lowest sensor performance of 4, with no other significant differences. For the MC

Search Agents the exact same relationships were found. The incorrect declaration analysis for

the TD Search Agent systems resulted in the same conclusions, but the Search Agent with a

performance of 4 (TD Agent 1) was significantly different from the perfect system and the

system with a sensor performance of 10 (Agent 4 and Agent 3, respectively). These results were

different from those found for the MC Search Agents with only the perfect and worst MC

systems (Agents 4 and 1, respectively) exhibiting a significant difference in the number of

Incorrect Declarations. For the Navigation Agent, all TD systems were significantly different

from one another. The MC Navigation Agents had the same results, except Agents 2 and 3 (with

sensor values of 7 and 10, respectively) where not significantly different. Overall, systems

performed better with better sensors, but there is a diminishing return as the sensor sensitivity

increases. This is shown by the sample means for the Navigation and Search Agent rewards and

the number of incorrect declarations.

The mission times reduced according to the performance of the sensor, confirming the

results of the Navigation Agent reward analysis. Small increases to the mission completion rate

104

were observed, but overall the average mission completion rate was greater than 95% for all TD

systems and 90% for all MC systems. The reduction of mission time as the performance of the

sensor increased also shows that the agents with better sensors found their targets faster,

reducing the number of penalties incurred and therefore increasing the average episodic reward.

 The second hypothesis, that the TD systems would outperform the MC systems was

proven through examination of the descriptive statistics for the Navigation Agents, and

ANOVAs for the Search Agents and Incorrect Declaration Behavior. An ANOVA was not used

for the Navigation Agents as the assumption of homogeneity of variance did not apply. The TD

systems outperformed the MC systems in the Navigation Agent reward analysis by a factor

greater than two. The Search Agent reward analysis also showed a clear superiority in the TD

systems. Interestingly, the TD and MC systems produced similar incorrect declaration counts,

but the mission completion rates for the MC systems were noticeably lower. The TOP map

comparison reveals that both system types minimize the differences between their TOP grids and

the final grid generated by the perfect system. The primary cause of this is believed to be the

systems converging to the same paths between target regions.

 The state-action values created by the Search Agents showed that the systems associated

a higher TOP with greater value, as expected. The “Loiter” action also associates a higher value

with higher TOP states, while the “Move” action values are relatively uniform across all TOP

states. Interestingly, the Search Agents tended to give state-action pairs the same value between

systems with the same implementation methods, regardless of the performance of the sensor that

is used. This finding indicates that a cooperative setup could be used to transfer learning from

one agent to another in a multi-agent operation, regardless of the type of sensor used. These

values also provide a clue as to why both system types produced the same number of incorrect

105

declarations. The values for the “Move” and “Loiter” actions are similar to those found for the

“Declare” action. Since the “Declare” action is valued about the same as the other actions it has

a high probability of being selected, even when in a low TOP states. The chief cause of this

behavior is probably due to the reward scheme used for the simulation. Future work could

change the reward scheme and/or implement a procedure where the Search Agents are not

allowed to declare a target present unless the TOP is over a set value.

Conclusion

General Remarks

 Very few studies have been published regarding the ability of RL systems to achieve

mission goals given decreasing sensor performance. This study attempts to shed some light on

the subject in an abstract way to maximize the potential applicability of its findings. Through the

use of Signal Detection Theory, the sensor performance for the systems is quantified and

described in way that was still applicable to wide variety of real world systems such as radar,

image processing, infrared, and other sensing mechanisms. The use of Bayes’ Rule allows

probabilities of target occupancy to be updated in the simulation, and therefore a tradeoff

mechanism through which the RL systems need to experiment with and learn. The targets were

given a simple, random behavior for which the RL systems needed to adjust. The system worked

with simulated, perfect human feedback to modify its behavior. The RL system was not able to

plan ahead in this study, and had no way of knowing the TOP state of future positions. However,

overall the agents were able to meet their objectives and did show a tendency to reduce the

number of false declarations made by the system.

106

Future Work

 Numerous opportunities for future development in this avenue of research exist. One of

the simplest is to see how the reward scheme affects agent performance. If correct declarations

are given higher values relative to the other rewards, the systems will become more risk tolerant

and vice versa. Another research topic would be to have the systems for some set period take

only the most optimal actions and analyze the behavior, especially for the incorrect declaration

metric.

 More work can be done to make the simulation better reflect real world situations. Target

regions could move over time in some logical fashion. Initial TOP estimates could be made

more realistic and non uniform. Another idea is to have the sensor sensitivity change with

position or time in the environment. A real-world human operator could also be introduced to

examine the effects of human error on the systems’ ability to learn.

 A third area of study could be to incorporate different entities into the environment.

These can take the form of threats, different types of targets, and other allied vehicles. One

possible idea would be to have a fully manned system operating in the environment and have the

unmanned, agent controlled systems “observe” the situations and actions of the operator. Signal

Detection Theory also allows for the possibility of multiple target types being detected.

Combined with unique behavior it would be interesting to see how a RL system could adapt to

the imperfect sensing mechanism in this case. A hybrid system could be built where certain

types of states are updated using Monte Carlo methods in-between sorties and other states are

updated using the Temporal Difference method.

107

Closing Remarks

 This study should provide a good baseline for future developments in the area of

operational systems using Reinforcement Learning algorithms to achieve a flexible and effective

autonomous behavior. Based upon the findings of this research real world Reinforcement

Learning systems will be impacted by the performance of their sensors, but a point of

diminishing returns exists for higher sensor performance. Further research should be undertaken

with more realistic scenarios and more sophisticated algorithms to increase knowledge of these

systems’ behavior is real-world, uncertain environments that will have to interact with a human

supervisor or operator to accomplish a mission. Such research could aid in the development of a

real-world deployable system.

108

References

Ackerman, S. (2013, February 5). Drone boosters say farmers, not cops, are the biggest U.S.

robot market. Wired. Retrieved from: http://www.wired.com/dangerroom/2013/02/drone-

farm/

Alpaydin, E. (2010). Introduction to machine learning. Cambridge, USA: The MIT Press.

Balakrishna, P., Ganesan, R., & Sherry, L. (2010). Accuracy of reinforcement learning

algorithms for predicting aircraft taxi-out times: A case-study of Tampa Bay departures.

Transportation Research, 18(6), 950-962. doi: 10.1016/j.trc.2010.03.003

Blanchard, B., & Fabrycky, W. (2011). Systems engineering and analysis. Upper Saddle River:

Prentice Hall.

Blasco, J., Aleixos, N., Roger, J. M., Rabatel, G., & Molto, E. (2002). Robotic weed control

using machine vision. Biosystems Engineering, 83(2), 149-157. doi:

10.1006/bioe.2002.0109

Buck, S., Beetz, M., & Schmitt, T. (2002). Approximating the value function for continuous

space reinforcement learning in robot control. Proceedings of the 2002 IEEE

International Conference on Intelligent Robots and Systems, Switzerland, 1, 1062-1067.

doi: 10.1109/IRDS.2002.1041532

Canning, J. S. (2006). A concept of operations for armed autonomous systems. 3
rd

 Annual

Disruptive Technology Conference, USA

109

Casbeer, D. W., Beard, R. W., McLain, T. W., Li, S., & Mehra, R. K. (2005). Forest fire

monitoring with multiple small UAVs. Proceedings of the 2005 American Control

Conference, USA, 5, 3530-3535. doi: 10.1109/ACC.2005.1470520

Clough, B. T. (2005). Unmanned aerial vehicles: autonomous control challenges, a researcher's

perspective. 2
nd

 AIAA “Unmanned Unlimited” Systems Technologies, and Operations

Conference, USA, 1, 1-15. doi: 10.1007/0-306-47536-7_3

Conn, K., & Peters, R. A. (2007). Reinforcement learning with a supervisor for a mobile robot in

a real-world environment. Proceedings of the 2007 International Symposium on

Computational Intelligence in Robotics and Automation, USA, 73-78. doi:

10.1109/CIRA.2007.382878

Costa, E., & Gouvea, M. (2010). Autonomous navigation in dynamic environments with

reinforcement learning and heuristic. 2010 Ninth International Conference on Machine

Learning Applications, USA, 37-42. doi: 10.1109/ICMLA.2010.13

Fasano, G., Forlenza, L., Tirri, A., Accardo, D., & Moccia, A. (2011). Multi-sensor data fusion: a

tool to enable UAS integration into civil airspace. 2011 IEEE/AIAA 30
th

 Digital Avionics

Systems Conference, USA, 1-15. doi: 10.1109/DASC.2011.6096082

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York City,

New York: John Wiley and Sons.

Gupte, S., Masoud, O., Martin, R., & Papanikolopoulos, N. (2002). Detection and classification

of vehicles. IEEE Transactions on Intelligent Transportation Systems, 3(1), 37-47. doi:

10.1109/6979.994794

110

Jacques, D. R. (2003). Search, classification and attack decisions for cooperative wide area

search munitions. Cooperative control,: models, applications, and algorithms.,1, 75-93.

doi: 10.1007/978-1-4757-3758-5_5

Jin, Y., Polycarpou, M. M., & Minai, A. A. (2004). Cooperative real-time task allocation among

groups of UAVs. In S. Butenko, R. Murphey, & P. M. Pardalos (Eds.), Recent

Developments in Cooperative Control and Optimization (pp. 207-224). Norwell,

Massachusetts: Kluwer Academic Publishers.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: a survey.

Journal of Artificial Intelligence Research, 4, 237-285. doi: 10.1613/jair.301

Krothapalli, U., Wagner, T., & Kumar, M. (2011). Mobile robot navigation using variable grid

size based reinforcement learning. Infotech at Aerospace 2011, USA 1-11. doi:

10.2514/MIAA11

Lai, J., Ford, J., Mejias, L., & O'Shea, P. (2012). See and avoid using onboard computer vision.

In P. Angelov (Ed.), Sense and avoid in UAS: research and applications (pp. 256-272).

Hoboken: John Wiley & Sons. doi: 10.1002/9781119964049.ch10

Lake, J. (2012, October). The unmanned future: great white hope or impossible dream? Combat

Aircraft Monthly, 13 (10), 58-63.

Li, S.-M., Boskovic, J. D., Seereeram, S., Prasanth, R., Amin, J., & Mehra, R. K. (2002).

Autonomous hierarchical control of multiple unmanned combat air vehicles (UCAVs).

Proceedings of the 2002 American Control Conference, USA, 1, 274-279. doi:

10.1109/ACC.2002.1024816

111

Lin, L., Xie, H., & Shen, L. (2009). Application of reinforcement learning to autonomous

heading control for bionic underwater robots. Proceedings of the 2009 IEEE

Informational Conference on Robotics and Biometrics, USA, 2486-2490. doi:

10.1109/ROBIO.2009.5420445

Luongo, S., Vito, V. D., Fasano, G., Accardo, D., Forlenza, L., & Moccia, A. (2011). Automatic

collision avoidance system: design, development and flight tests. 2011 IEEE/AIAA 30
th

Digital Avionics Systems Conference, USA, 1-10. doi: 10.1109/DASC.2011.6096080

Macmillan, N. A., & Creelman, C. D. (1991). Detection theory: A user's guide. New York, USA:

The Press Syndicate of the University of Cambridge.

Madrigal, A. (2009, October 19). Self-steered tractors and UAVs: Future farming is (finally)

now. Wired. Retrieved from:

http://www.wired.com/wiredscience/2009/10/precisionfarming/all/

Martinez-Marin, T., & Rodriguez, R. (2007). Navigation of autonomous vehicles in unknown

environments using reinforcement learning. 2007 IEEE Intelligent Vehicles Symposium,

Istanbul, 872-876. doi: 10.1109/IVS.2007.4290226

Matignon, L., Laurent, G. J., & Fort-Piat, N. L. (2006). Improving reinforcement learning speed

for robot control. International Conference on Intelligent Robots and Systems, Beijing,

3172-3177. doi: 10.1109/IROS.2006.282341

Merino, L., Caballero, F., Martinez-de-Dois, J. R., & Ollero, A. (2005). Cooperative fire

detection using unmanned aerial vehicles. Proceedings of the 2005 IEEE International

112

Conference on Robotics and Automation, Barcelona, 1884-1889. doi:

10.1109/ROBOT.2005.1570388

Nygard, K., Chandler, P., & Pachter, M. (2001). Dynamic network flow optimization models for

air vehicle resource allocation. Proceedings of the 2001 American Control Conference, 3,

Arlington, VA, 1853-1858. doi: 10.1109/ACC.2001.946006

Orello, A., Arrue, B. C., Martinez, J. R., & Murillo, J. J. (1993). Techniques for reducing false

alarms in infrared forest-fire automatic detection systems. Control Engineering Practice,

7 (1), 123-131. doi: 10.1016/S0967-0661(98)00141-5

Panella, I. (2008). Artificial intelligence methodologies applicable to support the decision-

making capability on board unmanned aerial vehicles. ECSIS Symposium on Bio-inspired

Learning and Intelligent Systems for Security, Edinburgh, 111-118. doi:

10.1109/BLISS.2008.14

Perron, J., Hogan, J., Moulin, B., Berger, J., & Belanger, M. (2008). A hybrid approach based on

multi-agent geosimulation and reinforcement learning to solve a uav patrolling problem.

Winter Simulation Conference, Austin, Texas, 1259-1267. doi:

10.1109/WSC.2008.4736198

Ribeiro, C. (2002). Reinforcement learning agents. Artificial Intelligence Review, 17 (3), 223-

250. doi: 10.1023/A:1015008417172

Shachtman, N. (2008, April 21). More spy drones, less information? Wired. Retrieved from:

www.wired.com/dangerroom/2008/05/defense-secreta/

Singer, P. W. (2009). Wired for war. New York City, New York: Penguin Group.

113

Sinopoli, B., Micheli, M., Donato, G., & Koo, T. J. (2001). Vision based navigation for an

unmanned aerial vehicle. Proceedings of the 2001 IEEE International Conference on

Robotics & Automation, 2, Seoul, South Korea, 1757-1764. doi:

10.1109/ROBOT.2001.932864

Slaughter, D. C., Giles, D. K., & Downey, D. (2008). Autonomous robotic weed control systems:

A review. Computers and Electronics in Agriculture, 61(1), 63-78. doi:

10.1016/j.compag.2007.05.008

Smart, W. D., & Kaelbling, L. P. (2002). Effective reinforcement learning for mobile robots.

Proceedings of the 2002 IEEE International Conference on Robotics & Automation, 4,

Washington, DC, 3404-3410. doi: 10.1109/ROBOT.2002.1014237

Stafylopatis, A., & Blekas, K. (1998). Autonomous vehicle navigation using evolutionary

reinforcement learning. European Journal of Operational Research, 108(2), 306-318. doi:

10.1016/S0377-2217(97)00372-X

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduction. Cambridge: The

MIT Press.

Takeo, K., Yoshiki, N., & Ichiro, M. (2002). Preceding vehicle recognition based on learning

from sample images. IEEE Transactions on Intelligent Transportation Systems, 3(4),

252-260. doi: 10.1109/TITS.2002.804752

Tian, Y.-T., Yang, M., Qi, X., & Yang, Y. (2009). Multi-robot task allocation for fire-disaster

response based on reinforcement learning. 2009 Internation Conference on Machine

Learning and Cybernetics, 4, Baoding, 2312-2317. doi: 10.1109/ICMLC.2009.5212216

114

Valasek, J., Doebbler, J., Tandale, M., & Meade, A. (2008). Improved adaptive-reinforcement

learning control for morphing unmanned vehicles. IEEE Transactions on Systems, Man,

and Cybernetics, 38(4), 1014-1020. doi: 10.1109/TSMCB.2008.922018

Wei, W., Zhang, Q., & Wang, M. (2001). A method of vehicle classification using models and

neural networks. Vehicular Technology Conference, 4, 3022-3026. doi:

10.1109/VETECS.2001.944158

Whitehead, S. D., & Long-Jin, L. (1995). Reinforcement learning of non-Markov decision

processes. Artificial Intilligence,73(1-2), 271-306. doi: 10.1016/0004-3702(94)00012-P

Winnefield, J. A., & Kendall, F. (2012). Unmanned systems integrated roadmap FY2011-2036

(reference number 11-S-36130). Department of Defense.

Yanli, Y., Minai, A. A., & Polycarpou, M. M. (2004). Decentralized cooperative search by

networked UAVs in an uncertian environment. Proceedings of the 2004 American

Control Conference,6,USA, 5558-5563.

Yen, G., & Hickey, T. (2004). Reinforcement learning algorithms for robotic navigation in

dynamic environments. ISA Transactions, 43(2), 217-230. doi: 10.1016/S0019-

0578(07)60032-9

115

Appendix A: Mission Time Plots

1 2 3

1
21

41
61

81

Targets Found

Episode

TD Agent 1 Mission

Time

250-300

200-250

150-200

100-150

50-100

0-50

1 2 3

1
21

41
61

81

Targets Found
Episode

TD Agent 2 Mission

Time

250-300

200-250

150-200

100-150

50-100

0-50

1 2 3

1
21

41
61

81

Targets Found

Episode

TD Agent 3 Mission

Time

250-300

200-250

150-200

100-150

50-100

0-50

1 2 3

1
21

41
61

81

Targets Found

Episode

TD Agent 4 Mission

Time

200-250

150-200

100-150

50-100

0-50

116

1 2 3

1
21

41
61

81

Targets Found

Episode

MC Agent 1 Mission

Time

250-300

200-250

150-200

100-150

50-100

0-50

1 2 3

1
21

41
61

81

Targets Found

Episode

MC Agent 2 Mission

Time

250-300

200-250

150-200

100-150

50-100

0-50

1 2 3

1
21

41
61

81

Targets Found
Episode

MC Agent 3 Mission

Time

250-300

200-250

150-200

100-150

50-100

0-50

1 2 3

1
21

41
61

81

Targets Found

Episode

MC Agent 4 Mission

Time

250-300

200-250

150-200

100-150

50-100

0-50

	The Effects of Sensor Performance as Modeled by Signal Detection Theory on the Performance of Reinforcement Learning in a Target Acquisition Task
	Scholarly Commons Citation

	Microsoft Word - The Effects of Sensor Performance as Modeled by Signal Detection Theory on the Performance of Reinforcement Le

