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Abstract 

Researcher: Christopher Lloyd Kennedy 
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This thesis presents the development of an exteroceptive sensor suite for real-time 

detection and classification of navigational markers on Unmanned Surface Vessels. Three 

sensors were used to complete this task: a 3D LIDAR and two visible light cameras. 

First, all LIDAR points were transformed from the sensor’s reference frame to the local 

frame using a Kalman filter to estimate instantaneous vehicle pose. Next, objects were 

chosen from the LIDAR data to be classified using either Multivariate Gaussian or 

Parzen Window Classifiers. Both produce 96% accuracy or better, however, multivariate 

Gaussian ran considerably faster than the Parzen and was simpler to implement and was 

therefore chosen as the final classifier. Additionally, regions of interest images based on 

the Multivariate Gaussian classification were extracted from the full camera images to 

improve marker knowledge. This sensor suite and set of algorithms underwent extensive 

testing on Embry-Riddle’s Maritime RobotX and RoboBoat platforms and greatly 

improves the ability to quickly and accurately identify multiple navigational markers, 

which is paramount to the success of any Unmanned Surfaces Vessel. 
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Chapter I 
 

Introduction 
 

 Every unmanned surface vessel (USV) or autonomous surface vessel (ASV) has a 

sensor suite on board tailored to the needs of its mission and environment. These sensors 

either transmit data back to a “ground station” to be interpreted by a human operator, or 

to a computer, where pre-coded algorithms make decisions based on the incoming data. 

In either case a software paradigm is selected deriving from the robotic primitives Sense, 

Plan, and Act. USVs will Sense, relay the gathered information to an operator who Plans 

and sends Act commands back to the vessel. Humans are very quick to interpret well-

formed data, but ASVs can interpret complicated data much more efficiently. The key to 

moving from USVs to ASVs is the ability to sense and classify the information.  Creating 

a sensor suite allowing USVs to quickly and correctly interpret data to act or relay 

interpretations to an operator is desirable in order to improve efficiency and reduce the 

cognitive load on human operators.  

 There are currently no commercial ASVs capable of completing all maritime 

navigational challenges. There are, however, many USVs being used to perform dull, 

dirty, and dangerous tasks. Removing humans from these situations is of particular 

interest to the Department of Defense where USVs and ASVs are in development for 

multiple applications including Mine Counter-Measure (MCM), harbor patrol, automated 

fleet protection and long endurance surveillance. With the appropriate sensor suite, an 

ASV can sweep vast areas day and night, searching for mine like objects or suspicious 

vessels with minimal supervision. For such a task, a USV/ASV has multiple types of 
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cameras, a GPS and usually a surface RADAR [1] to track and occasionally 

autonomously classify other vessels using machine learning.   

 In the commercial sector, shipping and oil and gas companies are driving the 

technology to create ASVs. Shipping companies want to remove crew to open more 

space for goods, and reduce manual control to mitigate the treat of piracy. Oil and gas 

companies are interested in inspecting pipelines and searching the seafloor for potential 

drilling locations. USVs and ASVs for both of these industries work closely around 

docks, drilling platforms, and harbor areas but current sensor payloads usually only 

involve a camera and GPS. Such limited sensing does not allow an ASV to make 

intelligent decisions, and puts both ASVs and USVs at greater risk. 

To be effective, ASVs need to be able to perform the same tasks as a crewed 

vessel, with similar or better speed, efficiency and accuracy. Much like the challenges 

facing driverless cars today, it is not good enough to just know where you are, but also 

that there are objects around you, and that these objects have meanings. A buoy, for 

instance, can have meanings from lane keeping, to marking underwater obstacles to speed 

markers, and the vessel must also be able to interpret what it sees. Current USVs and 

ASVs do not have the ability to comprehend what they sense beyond whether it is static 

or dynamic and where it is. With the limited number of sensors, these vessels are cheaper 

than what they could be but they are also slower, less adaptable and therefore require 

more supervision. Since more operators are needed, ASVs are limited to simpler tasks.    

 Developing a sensor suite that can quickly and accurately decipher raw data for 

decision making is key to making ASVs and USVs much more effective.  As there are 

advantages to using some sensors over others in maritime environments this paper will 
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present one sensor suite and robust classifying techniques that can improve an 

USV/ASV’s ability to Plan and Act. This will be done by organizing 3D LIDAR sensed 

objects, collecting feature information about each one and running the feature vector 

through a classifier. The results are published to a global map, and subscribed to by the 

cameras. An algorithm creates regions of interest (ROI) around the LIDAR objects in 

view, and collects more data on the object of interest which is then published back to a 

global map 

This thesis will focus on the development of an exteroceptive sensor suite for 

unmanned surface vessels which autonomously classifies navigational markers in real-

time. The methods developed were implemented and tested on a vessel called Minion, 

developed at Embry-Riddle Aeronautical University (ERAU) for the Association for 

Unmanned Vehicle Systems International (AUVSI) Foundation’s Maritime RobotX 

Challenge (MRC). The sensor suite was also implemented for testing on FloatingPoint, 

ERAU’s entry into the 2014 AUVSI Foundation’s RoboBoat completion, in Virginia.  

 

Figure 1: Minion ASV, during a test in the Halifax river in Daytona Beach, FL.  
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The MRC competition field in Singapore was broken into multiple segments or 

challenges designed to not only increase in complexity but also evaluate specific areas of 

an autonomous platform’s capability. These challenges range from channel navigation, to 

light sequence recognition, and to a gated obstacle course. [2] 

The first task of the MRC had the Minion platform autonomously navigate to a 

pair of 10 meter wide buoys (“gates”) separated by an unknown distance, shown in 

Figure 2. Minion then navigated a linear course between the starting and ending pair of 

gates, requiring the team to highlight the degree of navigation, control and repeatability 

inherent in the platform, and was required before any other aspect of the MRC could be 

attempted. [2] 

 
Figure 2: Task one (navigation) at the 2014 MRC. [3] 

 

The Craft Docking and Target Identification Task, required Minion to 

successfully identify one of three marked docking bays using the provided signage 

designated by the judges before the competition run for that day. Once the docking bay 
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had been located, the vessel must maneuver to enter the correct dock, come to a stop, and 

leave the dock before moving on to the next task. [2] 

 

 In the Detection and Avoidance of Obstacles Task,  

, Minion must autonomously navigate to the pre-designated entry gate (1, 2, or 3), travel 

autonomously through a field of floating, stationary obstacle buoys varying in size and 

color. Completion of this task requires successful traversal of the obstacle field and exit 

through the designated exit gate (X, Y, or Z) without contacting any of the buoys. [2] 

Figure 4: Task five, detection and avoidance. [3]  

Figure 3: Three 5m bays are identified by three different signs in task three. [3] 
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Chapter II 
 

Review of the Relevant Literature 

 

 Classification in a maritime domain has been done with multiple sensors and 

techniques. Most literature on maritime classification is interested in determining the 

class of ships. Cameras, LIDAR and RADAR are the most common sensors used. There 

is no published work on autonomously classifying navigational markers. However the 

ship identification algorithms can be applied to many maritime scenarios and objects. 

Each algorithm has advantages, but few work well for 3D object classification in real-

time. To improve the quality of classification, sensor fusion has been employed on cars in 

multiple forms aiding in traffic and pedestrian identification and avoidance.  

Using a high fidelity 3D LIDAR, [4], was able to compress the 3D point clouds of 

ships into a 2D grey scale matrix with intensity representing the height of points on the 

objects. Displaying the grey scale matrix creates an image of the targets. Using a BP 

neural network algorithm and Support Vector Machine (SVM) algorithm [4] was able to 

achieve greater than 95% accuracy on real targets of interest. However, this process is 

computationally intensive and requires detailed 3D models of the targets to be accurate, 

which is not generally available for all maritime objects. For these reasons it is unsuitable 

for real-time classification. 

 Ref. [5] uses a 2D LIDAR on an ASV for harbor and port protection. The authors 

were able to recognize that objects were near then, but with limited data, were not able to 

classify them. This meant that the ASV needed to have predefined actions for any object 

it encountered, and was not able to adapt or make decisions on its own. Ref. [5] also 

found the LIDAR was very limited in its range and resolution, and they were therefore 
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only able to classify objects as dynamic and static.  The information was able to be run in 

real-time allowing for good obstacle avoidance in dynamic environments. 

 In [6], infrared cameras were used to discover small ships, irrelevant objects and 

clutter. With a three part support vector machine (SVM) algorithm, they were able to 

classify the small ships with 97% accuracy. They used 18 features, which they discovered 

had the greatest separation, over the two stages of the SVM, extracting each feature line 

by line or pixel by pixel. However, this process is very slow and means that the algorithm 

is only good for very low resolution images, or in post processing. 

  An earlier form of naval classification was demonstrated by [7]. Narrow beam 

RADAR was swept across targets to gain enough size information to guess what type of 

ship it was. These techniques are also slow, and can easily be deterred by constructive 

and destructive interference, reflections from the water, and the surface shape of the 

target. The authors were able to produce decent classification with limited data sets but 

acknowledged that similar size ships, even with different shapes would most likely fool 

the classification process, which relied on neural networks.   

Ref. [8] researched a sensorial-cooperative system to detect, track and classify 

entities for intelligent vehicles, using a LIDAR and a monocular camera to detect and 

classify pedestrians and cars. The detection and tracking was performed solely by the 

single plane scanning LIDAR and classification was accomplished by both the LIDAR, 

using a Gaussian Mixture Model classifier, and the camera, using an AdaBoost classifier. 

The results were combined using a Bayesian sum decision rule, creating a more reliable 

object classification with a combined accuracy of 82.9% with 6% false positives. The 

authors were able to create a real-time system to implement on a small ground vehicle.    
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Ref. [9] created an object classification system designed around a camera and an 

automotive radar. The system uses a radar to find objects in front of a car, then uses a 

camera to classify the objects into two classes, vehicle or “other object”. Four classifiers 

were explored in their research: a Multilayer In-place Learning Network, a k-Nearest 

Neighbor, a Support Vector Machine, and an Incremental Hierarchical Discriminant 

Regression. All four classifiers performed with an overall accuracy of 93% or greater. 

They found that Support Vector Machines ran the fastest and stored the least amount of 

data, k-Nearest Neighbor ran the slowest was the least accurate and stored the most data, 

and their Multilayer In-place Learning Network ran fast enough and was the most 

accurate.  

 In conclusion, there has been a fair amount of research into classification, and 

developing systems to perform information gathering. Using, cameras, RADAR and 

LIDAR, multiple systems have performed some type of classification, whether it was as 

simple as dynamic vs static, or as advanced as pedestrian identification. Multivariate 

Gaussian, Support Vector Machines and Neural Networks are the most common 

classifiers used for active ranging systems while speed, expandability and accuracy all 

vary depending on the application. Little to no research has gone into autonomously 

identifying navigational markers in a maritime environment, and for ASVs to be more 

proficient, the ability to quickly and accurately identify multiple markers is paramount. 
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Chapter III 
 

Methodology 
 

 For the MRC, two sensing modalities were used to provide Minion with the 

required above water exteroceptive sensing capabilities. These modalities consisted of 

visual imagery using two Microsoft LifeCam Studio web cameras and active ranging via 

a Velodyne HDL-32E LIDAR, which gave Minion the ability to use visual discrimination 

of objects and accurately detect object presence and range in the ASV’s coordinate 

system. These sensors were mounted to an anodized bent aluminum mast above Minion’s 

deck as seen in Figure 5. Each sensor was positioned with at a specific height and angle 

to yield the desired field of view as discussed below. The sensor’s inputs were then 

analyzed to discern relevant information about the competitions navigational markers and 

all classified objects were sent to a global mapper module used on Minion, which will be 

detailed in a subsequent publication.  

Figure 5: Minion’s exteroceptive sensor suite 
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The main sensor for this suite was the Velodyne and at 10 Hz uses 32 class 1 eye-

safe lasers to scan ~10 degrees above and ~30 degrees below horizontal in a complete 

revolution around the ASV. Positioned 1.85 meters above the water and slightly behind 

the center of Minion, the Velodyne is able to see an unobstructed view fully around the 

ASV. The most downward laser fires first, followed by the interleaved firings from the 

lower and upper “banks” of 16 lasers, as follows: [10] 
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Table 1: Firing order of lasers on a Velodyne HDL-32E [10] 

 

The interleaving firing pattern is designed to avoid potential ghosting caused 

primarily by retro-reflectors. [10] 

Figure 6 shows the beam pattern out to 30m away from the center of the vessel. 

This is close to the theoretical maximum distance that the MRC markers will have 
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enough returns to be classified which is 35m. This is limited by the angular resolutions 

which is ~0.16 degrees horizontally and ~1.33 degrees vertically. In one second, the 

Velodyne can return up to 700,000 points, however in a maritime environment that 

number is greatly reduced because the 905nm wavelength is mostly absorbed by the 

water. Therefore, only non-water objects have returns. 

 
Figure 6: Velodyne 32E beam pattern section-cut out to 30m. 

 

Figure 7 shows a top down view of the sensor’s field of view out to 30 meters at the 

water’s surface with red indicating the ground intercept of the Velodyne and green, the 

camera’s field of view. The overlap in sensors allows them to work in support of each 

other and ensures there are no blind spots in a potential direction of travel.  

 
Figure 7: Top down view of sensor coverage. Red is the beam pattern for the Velodyne 

32E and green represents the field of view of the Microsoft LifeCams.  
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Each Microsoft LifeCam camera captures 1920x1080 pixels at 30fps. Mounted 

1.7m above water level, the cameras were rotated approximately 33 degrees away from 

Minion’s center, and approximately 16 degrees down from horizontal. The result was a 

ten degree horizontal overlap between the two cameras directly in front of Minion and a 

122 degree field of view. The bottom of the image started directly in front of the ASV 

and the top of the image was set to see slightly above a 2m object 40 meters away. The 

cameras were only sampled at 5fps to decrease the processing load. This was deemed 

acceptable because, even at full speed, Minion would only move 2m, or less than half a 

hull length, and rotate up to 36 degrees between captures.  

 

3.1 Kalman Filter Angular Corrections for Velodyne 

 

Every Velodyne return corresponds to a point in Minion’s local frame that needs 

to be mapped in the global frame of reference.  If Minion were constantly level, the 

points could be easy translated by subtracting the local position from the global position 

of the ASV. However, wave disturbances cause Minion to pitch and roll, the range data 

from the Velodyne needs to be transformed with a rotation and translation.  To transform 

the points, the pitch and roll during the scan must be determined. For this purpose, the 

Velodyne has 6 internal accelerometers and 3 gyroscopes are included inside the casing 

shown in Figure 8.  
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Figure 8: The Velodyne has six accelerometers and three gyroscopes oriented in line and 

around each axis respectively. [10] 

 

The accelerometers, which are reasonable and accurate for a short period and 

work well under low acceleration conditions, can be used alone to estimate the 

orientation of the Velodyne. Two angle estimations can be made per axis due to the two 

accelerometers along each.  The gyroscopes measure the rate of rotation about each axis.  

Under dynamic conditions, the accelerometer and gyroscope measurements are 

extremely noisy. Therefore one Kalman filter for roll and another for pitch, were utilized 

to combine the accelerometer and gyroscope measurements to create a more stable and 

accurate state estimation. The procedure began by calculating two angles using just the 

accelerometers. This is simply done by taking the atan2 of the vertical and directional 

acceleration components. As Minion accelerates, the measurements will become less 
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accurate because the directional acceleration will change, even if there is no tilt. 

Gyroscopes do not have this problem, and are therefore ideal to combine with the 

accelerometer estimates in a Kalman filter. These equations are found in [15] 

 Equation (1) predicts the current state, �� = [Ѳ, Ѳ� , Ѳ� ]
 (angle, angular velocity, 

angular acceleration), of the Velodyne using the previous state and the state transition 

model. This is the estimation for what should have happened between the previous and 

current sensor readings.  

���|�� = �����|�� (1) 

Where:  

���|��= Current predicted state given the previous state. 

F = State transition model. 

����|��= Previous predicted state given the previous state.  

 

Error estimate using previous error and process noise. 

��|�� = ����|���
 + �� (2) 

Where: 

��|��= Priori error covariance matrix.  

���|��= Previous error covariance matrix.  

Qk = Process noise. 

 

Find difference between measurements �� and estimated priori state 

��� = �� − ����|�� (3) 

Where: 
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��� = Innovation. 

zk = Measurements. 

H = Observation model. 

���|�� = Current predicted state.  

 

Predict how much to trust the measurement  

�� = ���|���
 + � (4) 

Where: 

��	= Innovation covariance. 

R = Measurement covariance matrix.  

 

Update Kalman Gain 

�� = ��|���
��� (5) 

Where: 

 Kk = Kalman gain. 

 

Update state 

���|� = ���|�� + ���� (6) 

Where:  

���|� = Updated current predicted state. 

��� = Priori error covariance matrix. 

 

Update error covariance 
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��|� = (� − ���)��|�� (7) 

Where:  

��|� = Updated priori error covariance matrix. 

I = Identity matrix. 

��|�� = Priori error covariance matrix. 

 

The values of F, R, Q and H were determined based on the measurements, or found 

empirically, and were the same value for the roll and the pitch Kalman filters. 

State transition model, F, multiplied the “known” value of the angle plus the 

rotation rate multiplied by the time between updates minus the angular acceleration times 

the time between updates.  

� =  � !. !!# −!. !!#! � !! ! � $ 
R, the measurement covariance matrix, can be determined by recording multiple 

samples from each sensor in a steady state, then finding the variance in the data. The two 

accelerometers had low variance when in steady state. However, when the system 

accelerated the estimated angle would change even when there was no rotation. R was 

tuned until sharp linear accelerations stopped effecting the filter.   

� =  �!!!!! ! !! �!!!!! !! ! !. !!!�#$ 
Q is the process noise, which dictates how much the measurements should be 

trusted. The larger the values, the less trust is placed on the measurement. Here, the two 

accelerometer angle measurements are trusted less than the gyroscope measurement. The 
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values were found empirically by an iterative procedure and verifying the response of the 

filter. 

� =  !. !� ! !! !. !� !! ! !. !!!�$ 
 H is the observation model. Any sensor that measures one of the states is 

indicated here. The Velodyne sensor gives two angle, one angular rate, and no angular 

acceleration measurements. Therefore, there are two ones in the angle column, and one in 

the rate column. The order in which the sensors are labeled in H is the same order as the 

measurement vector z. 

� =  � ! !� ! !! � !$ 
 The angle from the output ���|� is used in a rotation matrix and multiplied by each 

return, to translate the each return from the Velodyne frame to the local frame. The 

Velodyne’s frame originating at the lens, with forward opposite side the cable seen in 

Figure 8 and down positive vertical. It should be noted that this equation does not 

account for the change in displacement of the Velodyne that would occur due to roll and 

pitch, as the small angular changes and short distance between the Velodyne and point of 

rotation are deemed to be insignificant.  
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3.2 Classification 

 

As previously stated, the Velodyne can produce up to 700,000 data points per 

second, which creates difficulties in processing the data in real time. To help with this 

challenge, a novel way of storing, sorting and quickly accessing data was created by 

combining many common techniques. To begin, the occupancy grid and multiple arrays 

equal in size to the occupancy grid were created, with the occupancy grid holding return 

data only and the five arrays storing return information about each grid cell including 

number of LIDAR returns, average intensity of returns above 100, average intensity of 

return below 100, highest ring number and lowest ring number. The grid size was set to 

0.1m x 0.1m for 30m on either side of Minion creating 361,201 cells in a 601x601 

element array. The grid size can be finer or coarser without changing the featured data, 

depending on the needs and computing power of the ASV. An example of the generated 

occupancy grid can be seen in Figure 10 where the red circle is the ASV’s location, and 

every white pixel is a grid cell that had at least one return. The other grids were not 

intended for visual representation, but instead to allow for easy positional representation 

of collected data.  

Figure 9: Raw data points of a dock form the Velodyne visualized in VeloView on the 

left, and a Google Maps view of the same dock on the right. [16] 
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Figure 10: Initial occupancy grid showing the docks and shore on the right of the image, 

spurious data returns around the ASV, indicated by a red circle, and returns from the 

chase boat below the ASV. 

 

The large number of returns seen close to Minion in Figure 10 are due to white 

caps and the platform’s wake, which are not objects of interest and therefore needed to be 

removed from the occupancy grid. To do this, only data points that returned an intensity 

value above a threshold were stored. The threshold was found by plotting a histogram of 

the intensity value of all returns as seen in Figure 11.  
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Figure 11: Histogram of intensity values from a single LIDAR scan. 

 

Sixty percent of the one-thousand eleven returns were below an intensity value of eight. 

A simple threshold was applied at 8 reducing the saved values to 409. The filtered data 

can be seen compared to the initial occupancy grid in Figure 12. 

 

  

Figure 12: Non-filtered vs filtered occupancy grid. The red circle is the vessel’s position. 

This is a scan with the dock the right and a small craft below Minion.  
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In order to extract objects of interest from the raw occupancy grid, the entire 

binary array, as shown in Figure 12, is treated as an image. This allowed the use of the 

entire and computationally efficient OpenCV image processing library for filtering 

objects from the raw data. The first step in this filtering process was to clean up the grid 

further by running a Gaussian blur (Size(3,3)), then a dilate (Size(9,9))on the image to 

connect close components, and an erode (Size(5,5)) to eliminate elements and reduce the 

number of cells to check. Finally a threshold is run on the image resulting in a binary 

array. All remaining non-zero connected components are then said to be objects of 

interest, whether they are navigational markers, other vessels, docks, or the shoreline. 

Figure 13 shows an example of these operations. The top right is similar to what a dock 

or the shore looked like, the larger point that takes up four pixels is similar to a buoy, and 

the lone point is spurious data. After the operations, it is desired to have the “dock” as 

one object, the spurious point removed and the “buoy” remaining.  

 

Figure 13: Visualization of occupancy grid manipulations. From left to right 1. Original 

occupancy grid 2. After Gaussian blur operation 3. After dilate operation 4. After erode 

operation 5. Final occupancy grid after threshold 

 

To determine which, if any, of the objects of interest are navigational markers, a 

feature vector for each object must be created and passed through a classifier to estimate 

class. Using OpenCV’s findContours, as show in Figure 14, each object is separated into 

its connected components and using the contour bound as an array index, each feature 

array can be accessed quickly to pull out the features of the object. To find the markers 
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for MRC three features were identified as being the most distinguishing: the Range to the 

object %, number of returns from an object &, and number of rings that comprise the 

observed returns '. 

 

Figure 14: Example of findContours and the bounding box created 

 

 

To understand the benefits of these features, first consider that range alone is not a 

distinguishing feature of navigational markers as it depends on navigation and control of 

the vehicle. However, range will determine the number of returns and number of rings 

that would be expected from the MRC navigational markers. Number of returns gives an 

idea of the frontal area of any object seen, which again is only true when associated with 

range data. The number of rings essentially gives the height of the navigational markers. 

Thus, when used with both range and number of hits, different shaped and sized objects, 

yield distinct feature sets. Additional features considered here include intensity, radius, 

curvature and height variance and while not used for classification due to ineffectiveness, 

may be beneficial for navigational markers not seen in MRC. 

The three values are placed in a feature vector ( = [% ' &] which can be used 

for classification. To accommodate classification of objects from both known and 

unknown classes, the use of probability density functions was pursued. This enabled the 
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use of a minimum conditional probability in order to deem the observed object as known. 

Two types of probabilistic classifiers were explored for this thesis, Multivariate Gaussian 

(MVG) and Parzen Window Estimation. MVGs are a conventional classifier that assumes 

a Gaussian distribution of underlying features. [11] Although range is not expected to 

have Gaussian distribution (more likely uniform), the remaining two features were. It was 

assumed that the effect of one uniform distribution would not adversely affect the results 

of the MVG with two strong Gaussian features, because the affect would be expected to 

be small enough to justify the relatively fast implementation of MVGs.   

An MVG works by parameterizing each class’s mean and covariance matrix; a 

test sample of which is then said to be from the class with the greatest estimated 

conditional probability )(*+,--|.). [11] The performance of an MVG decreases if it is 

under-trained (too few training samples) or the actual distribution does not follow an 

MVG. The Parzen Window Estimator, on the other hand, is a non-parametric density 

estimation classifier that makes no assumptions on the underlying feature distribution. It 

utilizes a Gaussian kernel function with a smoothing coefficient as an activation function 

and classifies by summing the feature vector’s weighted distance from all training data. 

Its performance degrades if the training data is limited, or is too great. [11] The equations 

for the Parzen Window Estimator can be found later in this thesis.  

 Two classes were used for the MRC. The first was the PolyForm A-3 and the 

second was the Taylor Made Products Sur-Mark Can Buoy as seen in Figure 15. MVG 

and Parzen classifiers require data about a class to train or run against. Minion therefore 

collected data on the two buoys and completed the required setup for each classifier in 

Matlab. MVG requires a mean vector and covariance matrix for every class so hundreds 
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of recordings were analyzed to extract enough well distributed data to create these two 

values. Parzen requires many feature vectors and the known class for each to compare 

against. As stated before, if there are not enough data points, then the classification is 

poor. If there are too many, then the processing becomes slow. Each classifier was 

prototyped in Matlab, to quickly determine the accuracy and speed. From testing, it was 

decided that MVGs were to be was further developed in OpenCV and implemented on 

Minion. 

 

 

Figure 15: A red PolyForm A-3 [13] and a green Taylor Made Sur-Mark Can [14] 
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 The classification procedure then executes as follows. First, every object within 

the occupancy grid with a radius of less than a meter has a feature vector x assembled. 

This feature vector is sent to the two MVGs whose parameters were trained a priori. The 

MVG implementation found in this thesis was found in [17].  The MVG is defined by:  

/ =	−(� − μ)1� ∗ (� − μ)
3  
(8) 

Where: 

 / = Mahalanobis distance between x and μ 

 x = Feature vector 

 1 = Maximum likelihood estimate of Covariance matrix 

 μ = Maximum likelihood estimate of Mean vector 

4 =	 5/
(36)7/3|1|�/3 

(9) 

Where: 

 N = Output. 

p = Number of features. 

The covariance matrix and mean vector for each class was found form collected data of 

each class; 144 samples from the Taylor Made and 115 samples from the PolyForm A-3 

buoys. 

PolyForm A-3 

 μ = 	  �9. 3#�. :3;�:. <;$ 

 1 = 	  !. !:!; !. 33;# !. !!;9!. 33;# 3#. �9 −!. =;:�!. !!;9 −!. =;:� !. !;;# $ 
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Taylor Made Sur-Mark Can 

 μ = 	  �#. !<;. �#;�=. !;$ 

 1 = 	  !. �;#= !. <#>> −!. !��9!. <#>> �3. <� −!. =9<;−!. !��9 −!. =9<; !. !9>: $ 
The order of the mean vector is range, number of rings then number of returns.  

  

Finally the output of each class’s probability density function is compared to one 

another. The highest value over an empirically found threshold of 0.000001 was declared 

the winning class. If neither of the outputs exceeded the threshold, the object was 

declared unknown.  

The Parzen Window Estimator was implemented in Matlab with 115 samples of 

the PolyForm A-3 and 144 samples of the Taylor Made Sur-Can. A random 60% of the 

samples were used for training and the other 40% for testing. The training samples were 

not simplified to a covariance matrix and mean vector like with the MVG and were 

instead stored to be compared to test feature vectors. Each training sample has the class it 

belonged too associated to it and the distance from the feature vector to every training 

sample was found. Then using equation (10) the discriminate function value,	?@(�), for 

each class, j, was found for test feature vector x. [18] The discriminant function value 

?@(�) is proportional to 7(�|@).  

?@(�) = �A@ B5‖���‖D3
A@

�E�
 

(10) 

Where: 
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 ?@(�) = The conditional probability distribution 

 A@ = Number of test samples per class 

 D = Smoothing function 

 

The smoothing function was found experimentally by increasing it by 0.1 from 

0.1 to 1 and running through all of the test samples to check the accuracy. It was 

determined that the best value for the smoothing function was 0.6. The class that was 

closest to the input feature vector was then selected as the winning class with a threshold 

of 0.00001 applied to distinguish when objects where unknown. 

As the conditional probability distribution produced by MVGs and Parzen 

Window Estimation can only be plotted when using two or fewer features, Figure 16 

through Figure 21 show the conditional probability distribution these methods produce 

on each pair of features. These figures clearly show that both MVGs and Parzen window 

estimation produce distinct decision boundaries between the two classes. As previously 

discussed, the MVG distributions, when compared to the Parzen window estimation 

distribution show the Gaussian assumption is violated due to the range feature and the 

discretization of number of rings F. However, it can also be seen that the decision 

boundaries for both implementations lie in nearly the same location. As MVGs are more 

computationally efficient than Parzen Window Estimation, only MVGs were 

implemented in real-time on Minion’s hardware. 
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Figure 16: MVG probability, for number of rings (r) and number of hits (n). Red are 

short round buoys and blue are the tall buoys. 

 

 

 
Figure 17: Parzen discriminant function output, for number of rings (r) and number of 

hits (n). Red are short round buoys and blue are the tall buoys. The tall peak is related to 

the number of samples at taken at that point. 
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Figure 18: MVG probability for number of rings (r) and range (d). Red are short round 

buoys and blue are the tall buoys. 

 

Figure 19: Parzen discriminant function output for number of rings (r) and range (d). Red 

are short round buoys and blue are the tall buoys. 
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Figure 20: MVG probability for range (d) vs number of hits (n). Red are short round 

buoys and blue are the tall buoys. 

 

Figure 21: Parzen discriminant function output for range (d) vs number of hits (n). Red 

are short round buoys and blue are the tall buoys. 

 

 An instantaneous scan around an ASV will look like Figure 22. Each class of 

marker has been colorized based on the classification from three classes. This scan is of 

the start gate and entrance to the obstacle field at the 2014 AUVSI RoboBoat completion, 
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which required classification of 3 classes of buoys. This particular scan had 100% 

accuracy.  

 

Figure 22: Instantaneous scan of three classes of buoy. Green (Taylor Made), Pink 

(PolyForm A-3) and Blue (PolyForm A-0). The cyan circle is the ASV, the pink ring is 

an interior exclusion zone, and the light green ring represents the maximum scan area. 

 

Every classified object, whether it is a navigational marker, dock or unknown is 

sent to a global map. This map stores a time history of the instantaneous scans of the 

Velodyne classifier, cameras, and other sensors, to be used by other systems on Minion. 

A visual representation of the map can be seen in Figure 23. This is a more complete 

picture of the RoboBoat competition field. 
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Figure 23: Plot of three classes of buoys stored in mapper. Green (Taylor Made), Pink 

(PolyForm A-3), Blue (PolyForm A-0) and Red (N/A). The cyan circle is the ASV, the 

pink ring is an interior exclusion zone, and the light green ring represents the maximum 

scan area.  

 

3.3 Region of interest 

 

 There are characteristics of markers that the Velodyne does not have the 

capability to determine. The most important of these is Color, which determines the 

meaning of navigational markers. To distinguish between the green, red and white buoys 

for MRC, the previously described cameras are utilized. It is complicated, processing 

intensive, and inaccurate to use cameras to search for markers within an image using only 

computer vision techniques. For instance, consider that under normal circumstances a 

majority of an image is not of interest, but still needs to be analyzed. Minion’s sensor 

suite uses the cameras as an enhancement instead of a critical device. Using the map 
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objects discovered by the Velodyne, small rectangular regions of interest (ROI) around 

the markers are created from the large image which are then used to determine object 

color. 

 The implementation comes from the idea that the camera has a certain horizontal 

and vertical field of view, and that a ray traced from the center of the camera to a point, 

will have an angle from the top and side of the field of view. If the pixels are evenly 

spaced, then it would be easy to correlate a pixel to point. Because of the limited 

knowledge about the cameras used, some measurements were taken to estimate the field 

of view, which was found to be ~66 degrees horizontal and ~33 degrees vertical. This 

technique does not require knowledge about the size of the sensor or focal length, just the 

size of the image and the field of view, making it easier to implement with any camera. 

Having a low distortion lens, like the Microsoft LifeCams, eliminates the need to correct 

for distortion at the edge of the image, although it can be implemented in this algorithm.  

To find the four corner pixels to make up the rectangular ROI, it was necessary to 

find these points in the global frame. The mapped object’s location is at the center of the 

object and at its base (7GHIJ = [KL, ML]). To find the points on either side of the object, 

a vector was found from Minion’s origin to the object.  

[/�, /�	] = [KL, ML] − [KN�O, MN�O] (11) 

Where: 

 [/�,/�	] = Vector from ASV to object. 

 [KL, ML] = Object position in the global frame. 

[KN�O, MN�O] = ASV’s position in the global frame. 
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The perpendicular angle to this vector is calculated. This was done by changing 

[/�,/�	] to polar then adding π to the polar angle to get the right side point and -π to get 

the left side point. The polar points were then changed back to Cartesian points 

PKQ5RJ, MQ5RJS and PKFH?TJ, MFH?TJS. Height is determined by the type of object as classified 

by the Velodyne. The new points are copied, and given appropriate height information. 

One set moves up above the maximum height of the object, and the other set moves 

slightly below resulting in four points. These local locations are shown below in Figure 

24. 

PKQ5RJ, MQ5RJ, UVGJJGAS 
PKQ5RJ, MQ5RJ, UJG7S 

PKFH?TJ, MFH?TJ, UVGJJGAS 
PKFH?TJ, MFH?TJ, UJG7S 

 

 

Figure 24: Example of the two points being created on either side of an object. 
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After the four points are determined, they need to be rotated into the ASVs frame 

of reference. Remember, since the �/�, /�		 vector was used to calculate the location of 

the four ROI points, instead of the original �KL, ML	, the points are already translated into 

the local frame ��Q, �Q, �Q	. Therefore a rotation matrix can rotate the points individually 

into the local frame, using the ASV’s current roll, pitch and yaw [α,β,γ].  

 �GJ =
	WXGY�Z�[\]	�^� XGY�Z� ]_`�a� ]_`�^� − [\]�a� ]_`	�Z� YHI�Z� ]_`�a� + [\]�Z� ∗ [\]�a� ∗ [\]	�^�[\]�^� ]_`	�Z� [\]�Z� ∗ [\]�a� + ]_`�Z� ]_`�a� ]_`	�^� [\]�a� ]_`�Z� ]_`�^� − [\]�Z� ]_`	�a�− ]_`�^� [\]�^� ]_`	�a� [\]�a� [\]	�^� b 

 

��FGH, �FGH, �FGH	 = 	�GJ ∗ ��Q, �Q, �Q	 (12) 

 

Lastly, the points are translated from the center of the vehicle to the cameras by 

subtracting the displacement of the camera from the Minion’s origin.  

 In order to associate the points with pixel locations, the angle from each edge is 

determined. The horizontal is simple, as it is just a subtraction of yaw angle to the left 

side of the camera’s field of view and the yaw angle to the point. The vertical angle is 

determined by the range to the point. 

c7 = �dJdI3�T, e� − f�g (13) 

Where: 

 vp = vertical pixel value. 

 h = height of point. 

 d = range 

 f = maximum vertical camera angle 

 g = vertical pixels/radian 
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 This process always results in the same ROI size in the global frame for the same 

class of objects, but different size ROIs within the image depending on the range to the 

object e. This technique idea was used for the Taylor Made, PolyForm and the light 

tower. Each marker had its own ROI size as shown in Table 2.  

Table 2: Region of Interest size parameters 

 Taylor Made PolyForm Light Tower 

Z bottom -0.2m -0.2m 1.2m 

Z top 1.3m 0.5m 1.9m 

Width 0.8m 0.8m 0.9m 

 

The light tower ROI was focused just around the panel, to aid in color matching. 

A simple color recognition algorithm was run on the ROIs to gather data for the mapped 

objects, or the light sequence. It should be noted, that the ROI process used here can be 

implemented with any camera as long as the targets location is known. Additionally, this 

method has an advantage over ground plane interpolation, because it requires less 

knowledge of the camera specifications.  

 



47 

47 

Chapter IV 
 

Results and Discussion 

 

4.1 Kalman Filter Angular Corrections for Velodyne Results 

 

The developed Kalman filter was found to be highly successful with several tests 

done to show its effectiveness. The first showed that the roll and pitch corrections were 

decoupled and was done by slowly rotating the Velodyne about one axis at a time. Figure 

25 shows a time plot of pitch, on top, and roll, on the bottom. It can be observed that as 

one angle changed the other stayed at approximately the same angle.  

 

Figure 25: The left side shows pitching without rolling, and the right two graphs show 

pitching without rolling 

 

The other major test made sure Q and R were tuned correctly. If they were not, 

then when the Velodyne was rotated sharply, or accelerated in a direction, the rotation 

estimates would drift (due to gyroscope integration) or over rotate (due to acceleration 

spikes). Acceleration spikes can be seen in Figure 26 where the plot shows angle vs time 

of the accelerometer’s estimate of pitch (Red) and the Kalman filter’s estimate (White). 
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In this case the Velodyne was not rotated, but translated linearly to change the magnitude 

of the accelerometer output without changing the rotation rate measured by the 

gyroscope.  

 
Figure 26: Linear acceleration is shown to not affect the Kalman filtered estimate of 

pitch.  

 

 

 This figure shows no appreciable effect of acceleration spikes on the rotation 

estimate when no rotation rate is measured.  The same test was run on the roll filter by 

oscillating the Velodyne linearly left and right. Similar results to the pitch test can be 

seen in Figure 27. Again the Kalman filter was able to adjust for the poor rotation 

estimate measured by the accelerometer.  
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Figure 27: Linear acceleration is shown to not affect the Kalman filtered estimate of roll. 

 

In Figure 28 and Figure 29  the Kalman filter was subjected to multiple steps, 

tracking the delay and estimate. For a full comparison of filter response and delay, 

multiple impulses were applied to the Velodyne in multiple directions individually. In 

Figure 28 the two accelerometer angle estimates (green and red), the integrated estimate 

(blue) and Kalman filter estimate (white) are compared. The plots in Figure 28 show that 

outside of static conditions, the accelerometers experience noise, peaks, and do not settle 

quickly. The gyroscope is much smoother, settles instantly, but drifts significantly. This 

evident in Figure 29, where over the ten seconds shown in the figure, the settling point 

from the gyroscopes dropped 12.5 degrees. It also demonstrates why gyroscopes should 

not, and often cannot be used as a sole source of angle estimation.  
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Figure 28: Step function showing the response of the accelerometer estimate (red and 

green) the gyroscope (blue) and the Kalman filter (white) in pitch. 

 

 

By combining the two into the Kalman filter, an angular estimate that does not 

drift, has smooth transitions, and settles quickly was obtained as seen in Figure 28 and 

Figure 29. 

 

 
Figure 29: Step function showing the response of the accelerometer estimate (red and 

green) the gyroscope (blue) and the Kalman filter (white) in roll. 

  

In a static case, the corrections had an immediate effect. Figure 30 shows a profile 

view of a lab. The floor is colored red, and the ceiling is purple. The ground, in the non-

corrected images show on the left side of Figure 30 as a 3 degree down slope for the 

entire 15 meters length of the room.  
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Figure 30: Static Velodyne before (left) and after corrections (right). Both are a side view 

of a lab. The red points are the ground.  

 

Moreover, as the Velodyne is rotated, the floor “rotates” in the Velodyne’s frame 

when there are no corrections applied as seen in the left image of Figure 31. In the ASV’s 

frame, as seen on the right image in Figure 31, the ground is re-aligned. When compared 

to the static case, the ground is at a similar level and height demonstrating the 

repeatability and reliability of the Kalman filtered corrections. The full length of the room 

is not shown, because the Velodyne was rotated beyond the upper limits it is capable of 

observing. 

 
Figure 31: Rotated Velodyne, without corrections on the left and with corrections on the 

right. 
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4.2 Classification Results 

 

 Both the MVG and Parzen Window Estimation classifiers proved to be effective. 

The results of the accuracy tests are shown in two confusion matrixes. Table 3 shows that 

the MVG was consistent in picking the correct class, with a 93.84% overall accuracy and 

only 10.89% false positives for all tested objects.  

 

Table 3: Multivariate Gaussian confusion matrix 

 Actual 

P
re

d
ic

te
d

  PolyForm A-3  Taylor Made Can Unknown 

PolyForm A-3 100% 0.99% 2.15% 

Taylor Made Can 0 95.55% 7.75% 

Unknown 0 3.46% 90.1% 

 

In Table 3 four hundred thirteen real samples were run against the two classifiers. 

Forty-five PolyForm A-3, two-hundred-two Taylor Made Sur-Can and one-hundred-

sixty-six unknown Objects. For MRC, the objects seen by the Velodyne included both 

Taylor Made Sur-Can and PolyForm A-3 buoys, for which the classifier is trained, and 

only a few, unknown objects such as the chase boat and course border markings. This 

pushed the level of false positives even lower to 0.99%, with a true positive rate of 96.36. 

In fact, the 3.46% of the Taylor Made samples that were false negative were mostly due 

to approaching the theoretical maximum range of classification caused by objects being 

further out. The further out the objects move, the fewer returns received and therefore, 

the harder it is to distinguish between objects.  

With multiple correct classifications of the objects the ASV Mapper, was able to 

build a high level of confidence in the objects being observed. Figure 32 shows an 
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example of how, as the ASV approaches markers, they are detected by the Velodyne and 

quickly and accurately classified as they move further into the classification range. This 

is the map generated by the RoboBoat, using the MVG classifier for a different set of 

classes. Additionally, even in cluttered environments all classifications are completed in 

less than the Velodyne’s scan time of 100ms. 

 

   

Figure 32: Objects are observed by the Velodyne at a greater range than it is able to 

classify, then classified as they come into the theoretical maximum range. Taylor Made 

Sur-Can (green), PolyForm A-3 (pink), PolyForm A-0 (blue) and Unknown (red). 

 

Figure 32 also demonstrates how well this classifier can be expanded. At the 

RoboBoat competition, this algorithm was used with great success to identify three 

different types of buoys. Two of these, PolyForm A-3 and PolyForm A-0 are the same 

shape, but slightly different sizes. The MVG was able to distinguish between all three, 

after being trained for a different height and more classes. This ability gave the ASV 

detailed knowledge about the competition field, an advantage that was apparent when the 

ASV aptly maneuvered through the entire course on its way to a first place finish. A 

video of the final run can be seen at http://www.auvsifoundation.org/competitions/ 

roboboat/videos. [19] 
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The Parzen Window Estimator was found to be highly accurate as well. With an 

overall accuracy of 98.2% and a false positive rate of 0.2%, this is an even more accurate 

way of classifying than MVG. The Taylor Made was never classified as a PolyForm A-3, 

and only had 1.2% false negative classifications. No PolyForm A-3 went unclassified, 

and the only instance was a false positive. No objects of unknown class were tested in the 

initial development phase.  

 

Table 4: Parzen Window confusion matrix 

 Actual 

P
re

d
ic

te
d

  PolyForm A-3  Taylor Made Can Unknown 

PolyForm A-3 99.4% 0% N/A 

Taylor Made Can 0.2% 98.8% N/A 

Unknown 0% 1.2% N/A 

 

Using the inherent Matlab classifier, the algorithm ran 166 test samples in 

0.04seconds. This was a promising result, so a version similar to what would be 

developed for OpenCV was created, but struggled to run the same samples in 0.12 

seconds. A slight enhancement in accuracy was achieved over the MVG, but was not 

worth the slow speed and the difficulty of the implementation.  

The Parzen Window classifier never made it out of the testing phase, because of 

the difficultly of creating an OpenCV implementation and the slow processing rate. The 

MVG was chosen for real-time implementation because it was the simplest to implement, 

easily expandable for different classes and the least processor intensive.  With over 100 

hours of testing on ASVs Minion and RoboBoat’s Floating Point, the robustness of this 

classifier has been demonstrated on multiple occasions and has been found to be highly 

reliable.  
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To increase the chance of classifying a marker, it is recommended in future 

implementations to place the Velodyne in a position where the number of returns on 

objects is maximized. This generally occurs when the Velodyne is mounted such that the 

center, zero angle, beam is guaranteed to strike an object. This mounting increases the 

chances of multiple lasers hitting an object at greater ranges, allowing for better 

classification. This was seen at the RoboBoat competition, when the Velodyne was 

placed only 0.6 meters above the water.  

Research was also conducted to find the color of the buoys based on the intensity 

of the returns. Each point could have an intensity of 1-100, or 101-255. The lower range 

was a normal return, and the higher range could only come from a retro-reflector, or a 

surface that causes minimal scattering. With large sets of data, a separable mean value 

could be determined for each color of buoy (red, green and white buoys), but the variance 

in the readings made distinguishing between buoys extremely difficult (µ red = 14, µgreen = 

16.8, µwhite = 12, σred = 68.2, σgreen = 110, σwhite = 6.5). Values above 100, did tell the 

classifiers that that point was from a red or green Taylor Made buoy, since they were the 

only competition items with retro-reflective strips. Unfortunately, this only worked when 

a Velodyne beam hit the small strip on the buoy, making it unreliable, especially at 

longer ranges. Because of this, the feature was removed from the classifier and the ROI 

method had to be used with the color imagery to detect buoy color. 

 

4.3 Region of Interest Results 

 

 The concept of using ROIs to track markers was found to work extremely well. In 

Figure 33 a buoy on either side of Minion is tracked tightly. When Minion moved, the 
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delay between the camera capture and the ASV’s state output was often too large, 

causing the buoy ROIs to shift to one side, or in some cases not be in the ROI at all. Time 

syncing the cameras with the state of the vessel is therefore paramount to successfully 

utilizing ROIs. However, the time delay was not consistent and its length was dependent 

on the size of the ROIs and the number analyzed. On Minion, a delay was placed in the 

code before the request for state information, which worked well in the most situations. 

 Figure 33 shows the user interface to the ROI implementation. The full view of 

the right camera is shown in the top left, and the ROI generated around the red Taylor 

Made buoy is shown in the top right. The smaller ROI image was sent to a color 

identification program to be analyzed. With fewer pixels and less spurious data around 

the markers, the classification was faster and more accurate.  

 

Figure 33: From top left clockwise: Right camera full image. ROI of red buoy found in 

the right camera. ROI of green buoy found in the left camera. Left camera raw image. 
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Another issue with the ROI implementation was a noticeable drift to the top of the 

image as the targets moved further away. This could be caused be many things, including 

inaccurate measurements of the maximum angle (δ), insufficient knowledge of the field 

of view of the camera, or image distortion. To correct for this a gain associated with 

range was added to the vertical pixel location equation.  

 Although the light tower object was not classified by the Velodyne, due to a lack 

of empirical data for training, an ROI was implemented around the panel. The closer the 

bounds of the ROI are to the sides of the panel the better color classifier results will be. 

The images below show a test apparatus that was used to test the ROI and light panel 

detection algorithms. At the MRC, Minion was able to consistently track the light panel 

and on multiple occasions was able to determine the sequence. 
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Figure 34: The light tower sequence as observed through the full camera image on the 

left and the ROI’s on the right. The smaller ROI image surrounded the panel, to decrease 

the size of the image and help the color classifier by reducing the amount of background 

noise.  
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Chapter V 

Conclusions, and Recommendations 

 

 A highly successful sensor suite was developed for unmanned surface vessels to 

find navigational markers. Using and combination of a Velodyne HDL-32E and off the 

shelf web cameras, detailed information was able to be quickly, reliably and accurately 

obtained. Correcting for the disturbances in maritime environments was successfully 

completed using onboard accelerometers and gyroscopes and the fusion of these sensors 

through a Kalman filter enabled the ASV to accurately map the location of objects 

between multiple scans. Adjusting for the speed of the vessel within the scan and 

exploring other filtering techniques could improve the abilities of the sensor suite. 

Classification of objects with a Multivariate Gaussian had a 95.6% accuracy with 

less than 1% false positives for class objects. This was surpassed for accuracy by the 

Parzen Window Estimator which achieved 98.8% accuracy and 0.2% false positives for 

the Taylor Made and PolyForm A-3 buoys classes. Unfortunately the Parzen window was 

not able to run in the allotted time, and never made it past prototype testing. It showed a 

lot of potential, and had the ability to classify more complicated objects with potentially 

bimodal features such as the light tower, because the classifier is non-parametric. This 

however would have required much larger training sets, and would have slowed the 

system down even more. MVG was chosen because of its reliability, accuracy, 

expandability, ability to add more classes with simple data collection, and speed, 

finishing the calculations in under 0.04s. In future works, exploring the use of 3D 

features could vastly improve the USV’s classification ability.  
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With such accurate classification, the cameras were used as a support sensor to 

collect more detailed data for the ASV that the Velodyne did not have the capability to 

ascertain:  primarily the color of objects. Because the Velodyne classification could be 

trusted, customizable regions of interest ROIs could be made to decrease the 

computational load. 

An ASV with this sensor suite has data collection capabilities that give it reliable 

information to make decisions on; a vast improvement over current unmanned maritime 

systems. Minion and Floating Point demonstrated what kind of avoidance and decision 

making can that is made when more, accurate information is available.  

Greater computing power will allow for the more accurate more robust Parzen 

Window classifier to be used. There are also many ways to combine classifiers to be 

more accurate. These options should and will be explored more in the future.  
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