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Abstract 

  

Researcher: Ragini Ramachandran 

Title:  Surface Structure and Its Effect on Reducing Drag 

Institution: Embry-Riddle Aeronautical University 

Degree: Master of Science in Aerospace Engineering 

Year:  2015 

 

A miniature subsonic open return wind tunnel was designed and fabricated to measure 

drag on small test models at low Reynolds numbers. The wind tunnel featured a sensitive 

strain gauge type load cell. The average drag coefficient of sphere and cube test models 

were used to validate the miniature wind tunnel, and the values obtained were consistent 

with published results over the range of Reynolds numbers tested. These initial results 

gave confidence that the tunnel could be used to study the effects of surface finish on the 

drag of various models. Several fabrics with differing ribbed surface structures, including 

a Fastskin® FSI swimsuit fabric, were adhered to NACA 0012 wing models to access 

their effectiveness in reducing drag at zero incidence. A similar wing model with an 

aircraft aluminum alloy skin with boundary layer trip strip served as a baseline for drag 

comparisons. The Fastskin® FSI swimsuit fabric and those with similar rib patterns 

tended to reduce drag below that of the baseline and the trend was maintained with 

increasing Reynolds number. Possible future research and drag reduction applications are 

also discussed. 
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Chapter 1 

Introduction 

  

 The issue of drag is important for any body that moves through a fluid, including 

most classes of flight vehicles. A significant component of total drag is the shear stress or 

skin friction drag on the surface of the body, which is related to the velocity gradients in 

the flow in the boundary layer near the surface. For a laminar flow, the skin friction is 

obtained using Newton’s formula, i.e., 

 

0→









=

n

w
dn

dV
µτ          (1) 

 

where wτ is the shear stress exerted on the wall, µ  is the dynamic viscosity of a fluid, and 

dndV is the velocity gradient where V is the flow velocity and n is the height above the 

surface [1]. For a turbulent flow, there are additional turbulent terms that contribute to 

skin friction. Generally, to minimize drag on a body, it is more desirable to have larger 

regions of laminar flow. However, in practice laminar boundary layers are typically only 

obtained over short downstream distances and at most operating conditions bodies are 

covered with turbulent boundary layers. Therefore, to reduce net drag requires either 

encouraging the boundary layer to remain laminar to a greater downstream distance or to 

try to decrease the drag associated with the effects of the turbulent boundary layer. The 

work reported in this thesis examines the latter, and the effect of surface skin materials on 

skin friction drag. 
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1.1 Boundary Layer Flows 

 The flow of air along a surface often begins in laminar form, in which there is very 

little mixing between the layers of the fluid. Laminar flows exert low skin friction on 

surfaces. As the flow proceeds downstream, a laminar flow will generally transition to a 

turbulent flow, in which there is greater mixing between the fluid layers, steeper velocity 

gradients near the wall, and so higher skin friction drag. In this case, the drag force on a 

body will increase [2]. Figure 1.1 shows a diagram of laminar and turbulent boundary 

layers. Figure 1.2 shows a flow visualization of the laminar to turbulent transition on a 

flat plate. Figure 1.3 shows skin friction drag and pressure drag on blunt bodies and 

streamlined bodies. The drag on streamlined bodies is dominated by skin friction drag. 

 

 

Figure 1.1. Laminar and Turbulent Boundary Layers [1]. 
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Figure 1.2. Laminar to Turbulent Flow Transition over a Flat Plate [3]. 

 

 

Figure 1.3. Skin Friction Drag and Pressure Drag [1]. 
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 The transition point to turbulent flow can be instigated by surface roughness, 

exterior disturbance sources, and adverse pressure gradients [2]. The first and second 

effects may be minimized by the fabrication of smooth surfaces and a non-turbulent free-

stream flow environment. The effect of adverse pressure gradient is more difficult to 

overcome, in that pressure gradients are a function of the body shape and flight condition 

and can only be minimized by careful design [2]. Methods of drag reduction in the case 

of turbulent boundary layers also include mechanisms to remove the growing boundary 

layer, such as surface suction. Other mechanisms of drag reduction include so-called 

riblets. Traditional riblets are manufactured films or “skins” with small V-shaped grooves 

that are then applied over surfaces with their grooves aligned in the downstream 

direction. At the boundary layer level, riblets produce ordered modifications of the wall 

surface that affect the near-wall turbulent flow structures and are oriented in such a way 

that fluid mixing and the production of turbulence and the associated stresses is slowed 

[4]. The study of drag reduction using riblets has been an area of extensive research. 

 

1.2 Drag Reduction Techniques in Nature 

 Nature has also created ways of reducing drag in fluid flows. This has been 

observed by the efficient movement of fish such as sailfish, marlins, and sharks, as well 

as bats, birds, insects and so on [5]. The V-shaped protrusions on the skin of a sailfish 

were investigated by Sagong et al. using Direct Numerical Simulation (DNS) [6]. Sailfish 

are the fastest marine animals that can reach speeds of 110 km h-1 [6]. Sagong et al. 

estimated a 5% reduction in skin friction drag from the skin but concluded that the 
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pressure drag on these protrusions lead to an increase in total drag [6]. Figure 1.4 shows a 

sailfish and the protrusions on its skin. 

 

 

Figure 1.4. Sailfish (left) and V-Shaped Protrusions (right) [6]. 

 

 Bullen and McKenzie [7] measured aspects of the head and body pelage of 23 

species of Western Australian bats. They found a functionally appropriate relationship 

between the normal flight speeds and foraging strategy of the bats at three levels of 

geometric consideration: the overall fur texture, individual hair length, and cuticular scale 

attributes (outer layer of the hair). It was concluded that the species that utilize high-

speed and aerodynamically efficient flight had fur within the non-dimensional height 

range of 158 << +
h , where ν/huh =+  is the scaling based on a characteristic height 

(height of the fur of bats in this case) [7], h is the fur (or riblet) height, u is the flow 

velocity, and ν is the kinematic viscosity. Figure 1.5 shows the coronal scale pattern of 

bat hair, which is actually similar to manufactured riblets. 
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Figure 1.5. Coronal Scale Pattern of Bat Hair [8].  

 

 The skin of fast swimming sharks reduces drag and also protects the shark against 

biofouling (accumulation of microorganisms, plants, algae, or animals on wetted 

surfaces) as they swim through water [5]. The tiny scales covering the skin of sharks, 

known as dermal denticles (i.e., scales), are often shaped like small riblets and aligned in 

the direction of fluid flow [5]. The cross-sectional shape of the shark skin riblets greatly 

varies, even at different locations on the same shark [5]. Figure 1.6 shows the riblet 

patterns on the skin of several different fast-swimming sharks. Figure 1.7 shows a SEM 

(Scanning Electron Microscope) image of shark denticles. 

 

 

 

 

 



7  

 
 

 

Figure 1.6. Riblet Patterns on the Skin of Fast-Swimming Sharks [5]. 
Size scale bar is 0.5 mm. 

 

 

Fig. 1.7. SEM Image of Shark Denticles [9]. 
Size scale bar is 20 µm. 
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 The small denticles or riblets on the surface of these sharks are believed to reduce 

the increased drag associated with turbulent flows in two ways: 1) Impeding the cross-

stream translation of the streamwise eddies in the sublayer and 2) Elevating the stronger 

eddies further above the surface, thereby reducing the shear stress and momentum 

transfer [5]. The first mechanism, in which the riblets interact with and impede the 

translation of eddies is complex, and the behavior is not yet fully understood. On a 

practical level, impeding the movement of eddies reduces the occurrence of ejections into 

the outer parts of the boundary layers, thereby decreasing momentum transfer caused by 

the tangling and twisting of eddies in the outer boundary layers [5]. Figure 1.8 shows the 

flow visualization performed on a flat plate and on a riblet surface. 

 

 

Figure 1.8. Flow Visualization on a Flat Plate (above); Riblet Surface (below) [5]. 
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1.3 Early Work on Riblets 

 An early attempt to reduce drag using riblets and also delay turbulent flow 

transition was reported by Rethorst in 1969 [2]. His invention comprised of a series of 

ridges or waves integrated with a solid surface oriented at some angle to or parallel to the 

free stream velocity vector. These ridges were thought to energize the boundary layer by 

providing paths for utilization of cross flow components and for acceleration of the flow 

relative to the normal surface of the body [2], sometimes called the channeling effect. 

Figure 1.9 and Figure 1.10 show the applications of these ridges on wing sections. 

 

        

Figure 1.9. Three-Dimensional View of Ridges [2]. 
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Figure 1.10. Ridges Applied to the Upper Surface of a Laminar Flow Wing [2]. 

 

 In 1984, Walsh was credited with a system of flow control devices that resulted in 

reduced skin friction on aerodynamic and hydrodynamic surfaces [10]. The development 

was achieved by modifying the surface by micro-geometries [10]. His experimental data 

indicated that the turbulent boundary layer consists of at least three disparate type scales 

of motion. One of these involve large eddies with scales on the order of the boundary 

layer thickness exist in the outer region and comprise the vortical or non-vortical 

interface of the boundary layer with the inviscid freestream flow [10]. Figure 1.11 shows 

the riblet geometry and its location on the surface of a wing. Figure 1.12 shows the V-

shaped riblets. 

 



11  

 
 

                  

                                  Figure 1.11. Riblets on the Surface of a Wing [10]. 

 

                               

                                              Figure 1.12. V-Shaped Riblets [10]. 
                               Riblet dimensions lie between 0.1 mm and 0.5 mm. 

 

 More recent riblets can also be U-shaped, as shown in Figure 1.13 [4]. Experiments 

conducted by Walsh and Weinstein [11] and Liu et al. [12] reported reductions in burst 

frequency (frequency of breakup of vertical eddies). Bechert et al. [13], Choi [14] and 

others, have reported small amounts of total drag reduction up to 4% and skin friction 

drag reduction up to 10% by varying the geometry and the orientation of the riblets with 

respect to the airflow [15]. It should be noted that skin friction drag is only a fraction of 

the total drag. Because total drag is the sum of skin friction drag and pressure drag, 
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reductions of drag may only be possible under certain conditions such as at low angles of 

attack. 

 

 

Figure 1.13. Typical Riblet Geometries [4]. 

 

1.4 Commercial Applications of Riblets 

 Riblets with symmetric V-grooves (height equal to spacing) with adhesive backed 

film manufactured by the 3M Company have been widely investigated and the results 

have shown good consistency with regard to the degree of drag reduction as well as 

certain aspects of the flow structure [15]. Maximum skin friction drag reduction in the 

range of 4−8 % has been measured on a variety of two-dimensional flows with zero or 

mild pressure gradients [15]. Studies using 3M riblets have shown that the most favorable 

drag reduction occurs in the h+ range of 8−15. Some of the earlier studies at low speeds 

have focused attention on optimizing riblet geometry and skin friction drag reduction as 

high as 10% have been reported [15]. Figure 1.14 shows an airfoil with the 3M          

riblet film. 
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      Figure 1.14. 3M Riblet Film on an Airfoil [16]. 

 

 Inspired by the surface pattern on fast-swimming sharks, Speedo International Ltd. 

developed and then manufactured swimsuits to reduce skin friction drag on the body of 

swimmers [17]. The Fastskin® FSI utilizes a form of riblets on their swimsuits. Speedo® 

examined the texture of shark skins and their movement through water [18]. They found 

that there are more denticles covering some parts of the shark’s body and in some places 

they are much longer or shorter (see Fig. 1.6). These denticles are slanted towards its tail, 

directing the flow of water around the shark’s body, thereby reducing form or pressure 

drag [18]. Because of this, the shark can cruise the water silently. Speedo® recreated the 

function of these denticles by replicating the V-shaped ridges on the surface of the suit 

[18]. The Fastskin® FSI fabric consists of lycra/polyester fabric that has V-shaped ridges 

and a denticle surface print [18]. Figure 1.15 shows a SEM image of the Fastskin® FSI 

fabric. 
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Fig. 1.15. SEM Image of the Fastskin® FSI Swimsuit [5]. 
Scale bar is 1.0 mm. 

 

1.5 Experiments on Airfoils and Wing Models With Riblets 

 Despite research during the last decades, the detailed mechanisms by which riblets 

reduce the wall shear stress are not clearly understood, even in a zero-pressure gradient 

boundary layer flow [15]. In recent years, measurements of both mean velocity and some 

turbulence statistics in the grooves have become available using machine cut riblets (of 

much larger size dimensions than the 3M riblets). These results indicate the wall shear 

stress is increased near the groove peaks and appreciably reduced in the valley so that net 

drag reduction results despite the increased wetted area of the grooves [15].  



15  

 
 

 More practical applications tend to involve situations with both pressure gradients 

and three-dimensionality. The boundary layer on an airfoil is subjected to the combined 

influence of streamwise pressure gradients and surface curvature. Measurements on 

airfoils at zero incidence have generally revealed drag reduction comparable to those on 

zero-pressure gradient flows; however, in very few of the investigations, the effect of 

airfoil incidence has been addressed [15].  

 Coustols and Cousteix [19] assessed the drag reduction on a LC100D airfoil at low 

speed when using 3M riblets. With riblets covering only the airfoil upper surface (or 

suction surface), drag measurements were made using a wake survey over an incidence 

range of 0−6°. They reported total drag reduction of about 2% at α = 0o and 2°, where α 

is angle of attack, and no drag reductions were observed at higher values of α [19]. The 

corresponding skin friction drag reduction was observed to be 7% [19]. The poor 

performance of riblets at higher α was attributed partly to possible effects of boundary 

layer thickening and flow separation [19].  

 The effectiveness of 3M riblets on a CAST 7 supercritical airfoil at transonic 

speeds was reported by Coustols and Schmitt [20]. These authors showed total drag 

reduction of about 3.5% and a skin friction drag reduction of about 7−8% at h+ in the 

range of 12−16 [20]. For realistic configurations, solving the flow details at the riblet 

level is beyond the capabilities of present computers [4]. Therefore, a riblet submodel is 

needed to account for riblets in practical computations [3]. Table 1.1 summarizes several 

different experiments performed on airfoils with riblets and their measurement     

methods [15]. 
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 The velocity distribution around a solid cylinder covered with various fabrics 

(knitted, tweed, flannel, and denim) was studied experimentally in a wind tunnel by T. 

Watanabe, T. Kato, and Y. Kamata using hot-wire anemometry [21]. They explained that 

flow field can be divided into three regions: 1) The outer field of the fabric layer; 2) The 

field in the fabric; 3) The field between the inner surface of the fabric and the surface 

[21]. They concluded that the velocity in the inner flow field increases proportionally to 

the permeability of the fabric and by piling the fabrics, the penetration of airflow could be 

minimized [21].  

 

1.6 Present Research 

 In the present research, surface finishes or skins have been studied in an effort to 

reduce the drag force on small models. First, a small wind tunnel was designed and 

fabricated featuring a high fidelity strain gauge load cell to measure the drag force acting 

on the test models. Next, NACA 0012 wing models were covered with various skins or 

fabrics and tested at zero incidence in the wind tunnel. A smooth and rough wing model 

was used as a baseline for comparison of drag force with the fabric test models, the 

objective being to determine the effects of the fabrics on the boundary layer skin friction 

drag. The overall objective of the study was to determine if there was any drag reduction 

benefits that could be produced by the addition of the fabrics, at least over the operational 

conditions allowed by the constraints of the wind tunnel. 
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Chapter 2 

Fundamental Experiments 

  

This chapter describes the experiments that were conducted, including the design of the 

miniature wind tunnel, the balance, and the data acquisition system. This chapter 

concludes with a description of measurements made for standard test articles to validate 

the experimental setup. 

 

2.1 Miniature Wind Tunnel  

 A miniature, open-return subsonic wind tunnel was designed, fabricated and used 

for the purpose of measuring the effectiveness of the drag reduction on bodies and wing 

models covered with different fabrics or “skins”. A sensitive strain gauge type load cell 

was used to measure the drag on the bodies. The components of the wind tunnel are 

discussed in this section. 

 The entrance or intake was made of PVC (polyvinyl chloride) DWV pipe having 

dimensions of 7.6 cm (3 in) x 15.2 cm (6 in) [22]. The settling chamber present in the 

intake consisted of one honeycomb and two plain square woven screens on either side. 

The first screen, which was placed before the honeycomb, was a 10 x 10 mesh corrosion-

resistant type 304 stainless steel wire cloth with an opening size of 0.196 cm (0.077 in), 

open area of 59%, and wire diameter of 0.058 cm (0.023 in) [23]. An aluminum 

honeycomb having a hexagonal core was used as a flow straightener and turbulence 

reducer in the wind tunnel. The length and cell hydraulic diameter are key factors in the 

selection of honeycombs [24]. The type used had an average cell size of 0.64 cm (0.25 in) 
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and length of 7.62 cm (3 in). Figure 2.1 shows typical specifications of hexagonal 

honeycombs. The second screen, present immediately after the honeycomb, was a 15 x 

15 mesh corrosion-resistant type 304 stainless steel wire cloth having an opening size of 

0.145 cm (0.057 in), open area of 73%, and wire diameter of 0.025 cm (0.01 in) [25]. 

 

 

             Figure 2.1. Honeycomb Specifications [26]. 

 

 The test section was made of an impact-resistant polycarbonate round tube with an 

OD (Outer Diameter) of 8.9 cm (3.50 in), an ID (Inner Diameter) of 7.6 cm (3 in), with 

corresponding wall thickness of 0.64 cm (0.25 in), and a length of 61.0 cm (24 in) [42]. 

The polycarbonate tube is also resistant to wear and maintains good clarity [27]. 

 The end assembly was a PVC pipe having dimensions of 5.1 cm (2 in) x 7.6 cm (3 

in) [22]. Another PVC pipe having a length of 5.1 cm (2 in) was present after the end 

assembly containing a hole for the sting and mounting holes for the load cell.  The 

terminology “end assembly” is used rather than “diffuser” because the diameter is 

actually smaller than the test section. A valve was used to control the flow rate in the 

wind tunnel to obtain different flow velocities. The body and ball were PVC and the seal 

was EPDM (ethylene propylene diene monomer, M-class) [28]. 
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 The fan used for operating the tunnel was the type LL600 [29]. A vacuum hose was 

used to connect the vacuum to the end assembly of the wind tunnel. This fan on its own 

was able to generate a maximum velocity of about 18 m s-1. Velocities up to about         

35 m s-1 were achieved by connecting two more similar fans in parallel. 

 The force measurement device was an Instron 2530-439 high fidelity strain gauge 

load cell with maximum capacity of ±5 N was used for measuring drag force. Instron 

load cells are precision force transducers consisting of strain gauges bonded to the 

internal load bearing structures [30]. When the load cell is stressed mechanically, the 

electrical resistance of the strain gauge varies which in turn changes the output signal. 

The load cell structure has high axial stiffness, which reduces the stored energy that could 

otherwise transfer to the specimen thereby giving errors [30]. Increased lateral stiffness 

reduces measurement errors from off axis loading that are found when performing 

compression and flexural tests. These load cells are designed for both tension and 

compression. Figure 2.2 shows a photograph of the load cell. 

 

 

Figure 2.2. Load Cell. 

 

Load Cell 

Sorbothane® 

Sting 
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 The drag force was recorded using a FastTrack 8800 data acquisition system. The 

measured force was displayed in gf (gram-force), where 1 gf = 0.00981 N. The data were 

captured at a rate of 0.1 kS s-1 and plotted in real time using Instron DAX V9.1 software. 

The load cell was mounted outside the wind tunnel to avoid interference from the airflow. 

To dampen vibrations from the walls of the wind tunnel, the load cell mount was placed 

on two layers of Sorbothane® [31]. Both layers had a thickness of 0.64 cm (0.25 in). 

Sorbothane® is known for attenuating shock, isolating vibrations, and damping noise 

[32]. The average accuracy of the load cell was about 0.01 g (by running average) over 

the range of interest was verified by orienting the sting vertically, and then weighing 1, 2, 

5, 10 and 20 g Class S-1 and 100 g Class F precision calibration weights. 

 The sting for mounting the test articles (models) was a solid anodized aluminum 

rod. It was a 6063-T5 type aluminum rod with an OD of 0.64 cm (0.25 in) and had a 

length of approximately 38.1 cm (15 in) [33]. The sting was carefully bent (no heat 

treatment was necessary) and inserted into the load cell. The forces generated on the 

models were transmitted to the load cell through the sting. 

 A pitot-static probe with manometer measured upstream differential pressure. 

Manometer accuracy to 0.001 kPa was verified using a shared pressure source and a 

pressure calibrator. Figure 2.3 shows a photograph of the miniature wind tunnel and 

Table 2.1 gives a list of the fabrication components. 
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             Figure 2.3. Miniature Wind Tunnel. 
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Table 2.1. Miniature Wind Tunnel Fabrication Components. 

Component  Specification  Manufacturer/Supplier 

Entrance 
 Sch 40 PVC, 3 x 6 in Pipe Increaser-

Reducer 
 Charlotte Pipe and Foundry 

(Charlotte, NC) 

Honeycomb 
 Al alloy, 3 in thick, ¼ in cell, 0.0025 

in wall 
 

- 

Screens 
 304 stainless steel, 10 x 10 mesh 

(0.023 in wire) and 15 x 15 mesh 
(0.010 in wire) 

 
McMaster-Carr Supply Co. 

(Elmhurst, IL) 

 

Test Section 

 Impact resistant polycarbonate, 3 ½  
x 3 x 24 in 

 McMaster-Carr Supply Co. 
(Elmhurst, IL) 

End Assembly 
 Sch 40 PVC, 2 x 3 in Pipe Increaser-

Reducer, 2 in Pipe, 2 x  1 ½ x 2 in 
Reducing Tee, 1 ½ in Pipe 

 
Charlotte Pipe and Foundry 

(Charlotte, NC) 

Valve 
 

PVC Gate Valve, 1 ½ in socket weld 
 King Bros. Industries         

(Valencia, CA) 

Fan 
 

Model LL600, 6.0 peak HP 
 Shop-Vac Corp. (Williamsport, 

PA ) 

Sting 
 

Anodized 6063-T5, ¼ in DIA 
 The Hillman Group         

(Cincinnati, OH) 

Load Cell 
 2530-439, ±5 N capacity, high 

fidelity strain gauge 
 

Instron (Norwood, MA) 

Mount 
 

304 stainless, 3/16 x 2 ½ in 
 McMaster-Carr Supply Co. 

(Elmhurst, IL) 

Vibration Damper 
 Sorbothane®, ¼ in thick, 70 OO 

durometer 
 

Sorbothane, Inc. (Kent, OH) 

Velocity Probe 

 407123 Heavy Duty Hot Wire 
Thermo-Anemometer, 20+ m/s and 
50oC capacity, 0.1 m/s and 0.1oC 

resolution, digital 

 
Extech Instruments              

(Nashua, NH) 

Pitot-Static Probe 
 PAA-8-KL, 1/16 in stem diameter, 

Teflon® ferrule, 1/8 NPT connector 
 United Sensor Corp.(Amherst, 

NH) 

Tubing 
 White silicone, 3/16 in OD, 1/32 in 

wall 
 Small Parts Inc., operated by 

Amazon.com (Seattle, WA) 

Manometer 

 HD 755 Differential Pressure 
Manometer (0.5 psi), ±3.447 kPa 
capacity, 0.001 kPa resolution, 

digital 

 
Extech Instruments              

(Nashua, NH) 

Stand 
 

PVC sheet, ½ in thick 
 Small Parts Inc., operated by 

Amazon.com (Seattle, WA) 

Feet 
 

Al alloy, 1/16 x 1 in 
 The Hillman Group         

(Cincinnati, OH) 

Bolts, Locknuts, 
and Washers 

 18-8 stainless, M3-0.5 (load 
cell/mount), 10-32 (stand/feet) 

 McMaster-Carr Supply Co. 
(Elmhurst, IL) 
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2.2 Drag Force Measurement 

 To verify the performance of the wind tunnel, drag forces of fundamental shapes 

were measured. The models were a sphere and a cube. The tests were conducted as 

follows:  

1. The models were first carefully mounted to the sting and placed inside the test 

section. 

2. Next, the end assembly and the valve were tightly slid on to the other end of the 

test section. 

3. The test models were checked for proper alignment with respect to the center 

line of the test section. The pitch and yaw angle of the models was also 

corrected if not zero. 

4. The hot-wire anemometer probe was inserted into the anemometer hole, which 

was 7.5 cm from one end of the test section. 

5. The pitot-static probe, which was 7.5 cm from the center of the anemometer 

hole, was lowered and connected to the manometer. Figure 2.4 shows the 

drawing of the pitot-static probe. 

6. The fan was switched on and the velocity of the airflow was checked using both 

probes. Bernoulli’s equation was used to confirm the differential pressure 

readings. 

7. After this, the fan was turned off momentarily and both probes were raised to 

avoid affecting the flow on the test models. 

8. The data acquisition software was started, the fan was turned on, and data was 

collected. 



25  

 
 

9. Details of a typical test involved starting the data acquisition, waiting for 15 s, 

turning the fan on for 60 s, turning off the fan, waiting for another 15 s, and 

stopping the data acquisition. 

 

 

Figure 2.4 Drawing of Pitot-Static Probe [34]. 

 

 A sphere and cube was chosen for performance verification testing. Figure 2.5 

shows a photograph of the test models. The cube was sanded using a 320 grit SiC 

sandpaper to unify and smoothen the sides. A 6.35 mm (0.25 in) hole was drilled into 

each test model as needed for mounting onto the sting. The mounting holes for the sphere 

and cube were centrally located. Test model dimensions were measured using a 

Pittsburgh® 6 in Digital Caliper. Further test model details are listed in Table 2.2 where S 

is the reference area. 
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Figure 2.5. Test Models (a) Sphere and (b) Cube. 
The models are 2.54 cm (1 in). 

 

Table 2.2. Test Model Details.  

Test 
Model 

 
Specification 

 
Manufacturer/Supplier 

 Measured 
Dimension(s) (cm) 

 
S (cm2) 

Sphere  
Wood, Round 

Ball Knob, 1 in 
 

The Hillman Group 
(Cincinnati, OH) 

 2.54                           
(diameter) 

 5.07 

Cube  
Wood, Square 

Cube, 1 in 
 

The Hillman Group 
(Cincinnati, OH) 

 2.57                           
(side) 

 6.60 

 

 On the day of the initial tests, the reported atmospheric pressure was 102.133 kPa. 

The lab temperature was 295.7 K measured using a type K thermocouple. The ideal gas 

law was used to calculate ambient air density as ρ = 1.20 kg m-3. All testing days 

exhibited similar ambient conditions so these values will be used throughout this work. 

The Reynolds number was calculated using the equation, µρ /Re VL= where V is the 

mean velocity of an object relative to air, L is the characteristic length, and 
51079.1 −= xµ

kg m-1 s-1. is the dynamic viscosity of air. For the cube, L was the side of the cube. For the 

sphere, the Reynolds number equation is defined as µρ /Re Vd= , where d is the 

diameter of the sphere. 

 Velocity profiles of the test section in the miniature wind tunnel were measured by 

using the pitot-static probe and differential pressure manometer. Before the tests, 15 

          (a)                        (b) 



27  

 
 

divisions, with 5 mm spacing, were marked on the probe. The pitot-static probe was then 

lowered into the test section and the total and static pressure ports were connected to the 

differential pressure manometer using silicone tubing. Before the test, the approximate 

value of the expected differential pressure for a desired velocity was calculated using the 

Bernoulli’s equation, which was done for all velocities.  The fan was then turned on and 

the differential pressure readings were noted for each velocity at different section 

locations by moving the probe vertically using the markings on the probe for reference. 

The hot-wire anemometer was also used at the same time to confirm the readings 

displayed on the differential pressure manometer up to the capacity of the anemometer 

which was 20+ m s-1. A typical upstream velocity profile with the miniature wind tunnel 

operating at 20 m s-1 is shown in Figure 2.6. 

 

 

Figure 2.6. Velocity Profile of Test Section at 20 m s-1. 
At the pitot-static probe location, velocities were relatively constant through the center 

portion of the section.  
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 Drag coefficient ( DC ) estimates were made using the equation 

 

SV

D
CD 2

2
1

∞

=
ρ

     (2) 

 

where D is the drag force in gf and ∞V is the freestream velocity in m s-1. The calculated S 

for Sphere and Cube were shown in Table 2.2. Actual test model drag was found by 

subtracting the tare using the “Sting only” drag from the “Sting + Model” drag. The tests 

were performed according to the steps discussed earlier. Typical drag measurements with 

the wind tunnel operating at 20 m s-1 are shown in Figs. 2.7 to 2.9. The running average 

of the data, 101 point moving average, is shown in blue. Because the drag force data has 

been obtained by running average, the drag for all test objects are averaged values of D 

over a period of T = 50 seconds beginning at 20 seconds. The equation for average drag   

( D ) is given as 

 

( ) dttD
T

D
T

∫=
0

1
    (3) 

 

where t is time.  The average drag coefficient for each test model is then obtained as 

follows 

 

SV

D
CD 2

2
1

∞

=
ρ

       (4) 
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           Figure 2.7.  Sting at 20 m s-1. 

 

 

          Figure 2.8.  Sting + Sphere at 20 m s-1. 
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           Figure 2.9.  Sting + Cube at 20 m s-1. 

 

Example DC Calculations 

 The D  value of the Sting was subtracted from the D  value of Sting-Model 

configuration to estimate the corrected average drag force of both test models. An 

example average drag coefficient calculation is shown below for 20 m s-1.  

 

a) 
DC of Sphere at 20 m s-1 

 D of Sting-Sphere configuration = 32.28 gf 

 D of Sting = 26.71 gf 

 D of Sphere ≈ 32.28 gf – 26.71 gf 

             ≈ 5.57 gf 

                              ≈ 0.0546 N 
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 SphereDC  ≈ 0.44 

 

b) 
DC of Cube at 20 m s-1 

 D of Sting-Cube configuration = 44.79 gf 

 D of Sting = 26.71 gf 

 D of Cube ≈ 44.79 gf – 26.71 gf 

                           ≈ 18.08 gf 

                           ≈ 0.1773 N 
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==
ρ

 

 CubeDC  ≈ 1.12 

 

Tables 2.3 and 2.4 show the average drag coefficients of Sphere and Cube for a range of 

Reynolds numbers. 
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Table 2.3. Average Drag Coefficient of Sphere. 

Reynolds number ( eR ) Average Drag Coefficient (
DC ) 

8.5x103 0.53 

1.7x104 0.49 

2.5x104 0.44 

3.4x104 0.44 

4.2x104 0.48 

5.1x104 0.46 

 

Table 2.4. Average Drag Coefficient of Cube. 

Reynolds number ( eR ) Average Drag Coefficient (
DC ) 

8.6x103 1.40 

1.7x104 1.27 

2.6x104 1.23 

3.5x104 1.12 

4.3x104 1.19 

5.2x104 1.25 

 

 The drag coefficients for the Sphere and Cube were close to published values of 

0.47 and 1.05 shown in Figure 2.10. A plot of Average Drag Coefficient versus Reynolds 

number is shown in Figure 2.11. The measured DC  of the Sphere closely follows the 

published values as shown in Figure 2.12. 
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Figure. 2.10. Drag Coefficients of Various Shapes [35]. 
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Figure 2.11. Average Drag Coefficient of Sphere and Cube Versus Reynolds number. 

 

 

Figure. 2.12. Drag Coefficient of Smooth Sphere [36].  
The red dots on the graph indicate the measured drag coefficient values of the Sphere test 

model in the miniature wind tunnel. 
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 Small fluctuations in the differential pressure manometer readings showed that the 

airflow was essentially smooth and turbulence free. The Sphere and Cube dimensions 

were chosen to be small to avoid flow interference with the test section walls and/or 

interaction with the boundary layer, which can lead to erroneous results.  

  Compared to wind tunnels with rectangular test sections, the cylindrical geometry 

was much easier to fabricate for a quality flow. Although, during fabrication, difficulties 

were encountered when trying to minimize “aerodynamic noise”, which was sensed by 

the high fidelity load cell (strain gauge type instruments can be very sensitive to dynamic 

fluctuations).  

  The overall fabrication cost (excluding the load cell and data acquisition system) 

was in the neighborhood of $1,000. Many readily available parts were used. Miniature 

wind tunnels of this type are simple and easy to use, require low power, and employ 

small test models that can be purchased or quickly made, possibly through rapid 

prototyping or other means. 

 The average drag coefficient of Sphere and Cube were used to validate the 

miniature wind tunnel, and the values were consistent with the published results over the 

range of test Reynolds numbers. Therefore, the results obtained lend confidence that the 

tunnel can be used to study the effects of the surface finish on the drag of various models 

at low speeds. 

  



36  

 
 

Chapter 3 

Ribbed Fabric Experiments 

 

 The current chapter describes the results from the experiments that were performed. 

The goals of the experiments were to test NACA 0012 wing models at zero incidence 

with fabrics as surface finishes or “skins” so as to determine the effects, if any, on 

boundary layer skin friction drag. First, a preliminary series of tests was conducted over a 

limited range of wind speeds and chord Reynolds numbers on fourteen different fabrics; 

three fabrics were chosen for further study based on the outcome that they showed the 

lowest drag force values. Wing models with a smooth surface and with a boundary layer 

trip were used as a baseline for comparisons of the drag force with the fabric test models. 

Second, a series of tests was conducted over a wider range of Reynolds numbers and the 

drag coefficients of the fabrics were compared with the baseline cases to determine any 

drag reduction. 

 

3.1  Preliminary Fabric Test 

 Grooved or “riblet” like surface structures similar to those on Speedo® Fastskin® 

FSI swimsuit fabric were investigated. A total of fourteen different fabric types, each 

having distinct riblet like patterns, was purchased. A Speedo® Fastskin® FSI swimsuit 

was also purchased for comparison. Although used in water, this fabric is hydrophobic, 

often contacts air, thus creating a variety of boundary layer conditions. 

 To fabricate the test models for drag measurement, an EPS (expanded polystyrene) 

foam wing of NACA 0012 configuration with 15.2 cm chord (6 in) and total span of 
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182.9 cm (72 in) was obtained. Several wing test models were dry cut using a sectioning 

machine to obtain wingspans that were approximately 5.1 cm (2 in). Slightly less than 

0.25 in diameter holes were drilled into each small wing, through the chord line, starting 

from the trailing edge. A round brass tube with 9/32 in OD and 0.253 in ID was pressed 

into the drilled hole for mounting onto the sting. The exit of the tube was compressed in a 

screw driven machine between aluminum blocks to fit within the trailing edge. Foam fill 

was sprayed into the depression created by the sting mounting tube, allowed to cure, and 

then sanded to maintain the NACA 0012 profile shape. 

 Each fabric was cut to a length of about 30.5 cm (12 in) and width of about 5.1 cm 

(2 in). Spray adhesive was applied on the upper and lower surfaces of the wing model. 

After waiting for about 1 min, the fabric was carefully laid on the entire surface of the 

model and smoothed by hand to ensure that no bubbles were present between the fabric 

and underlying EPS. This method was repeated for all of the fourteen wing test models. 

Figure 3.1 shows the wing models with fabric skins. Figures 3.2 to 3.15 show details of 

the weave pattern for each fabric; the direction of airflow is from top to bottom.  
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Figure 3.1. NACA 0012 Wing Models with Fabrics. 
(a) Navy Blue; (b) Fastskin® FSI; (c) Purple; (d) Pattern; (e) Beige Thin; (f) Diamond; 

(g) Sky Blue; (h) Black; (i) Light Pink; (j) Corduroy; (k) Beige Thick; (l) Herringbone; 

(m) Gold; (n) Purple Stripe. 

  

  (a)                 (b)                (c)                (d)                (e)                 (f)                 (g) 

      (h)                (i)                (j)               (k)                (l)              (m)                (n) 

25 mm 
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Figure 3.2. Navy Blue. 

 

        

Figure 3.3. Fastskin® FSI. 

 

        

Figure 3.4. Purple. 

 

1 mm 0.5 mm 
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0.5 mm 

1 mm 
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Figure 3.5. Pattern. 

 

        

Figure 3.6. Beige Thin. 

 

        

Figure 3.7. Diamond. 

1 mm 0.5 mm 

0.5 mm 1 mm 

1 mm 0.5 mm 
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Figure 3.8. Sky Blue. 

 

        

Figure 3.9. Black. 

 

        

Figure 3.10. Light Pink. 

 

0.5 mm 1 mm 

0.5 mm 1 mm 

1 mm 0.5 mm 
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Figure 3.11. Corduroy. 

 

        

Figure 3.12. Beige Thick. 

 

        

Figure 3.13. Herringbone. 

 
 

0.5 mm 1 mm 

0.5 mm 1 mm 

1 mm 0.5 mm 
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Figure 3.14. Gold. 

 

        

Figure 3.15. Purple Stripe.  

 

 All fourteen wing models with fabric skins were tested. These tests were performed 

to eliminate fabrics that had much higher 
DC values so as to choose the best fabrics for a 

final set of more detailed tests. The chord Reynolds number was calculated using the 

equation  µρ /Re Vc= where c is the chord of the wing model. Average drag coefficient 

of each fabric was calculated for all wind speeds using the average drag force for each 

wing model and the average drag coefficient equation, i.e., Eqns. (3) and (4). Table 3.1 

shows the 
DC  for all fourteen fabric skin wing models at 5 m s-1, 10 m s-1 and 15 m s-1.  

0.5 mm 1 mm 

0.5 mm 1 mm 
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From Table 3.1 it can been seen that the fabric identified as Navy Blue generally had the 

lowest values of DC (indicated as dark green), and the fabric identified by Purple Stripe 

generally had the highest values of DC (indicated as bright red). For the final fabric test, 

Fastskin® FSI was selected as its DC  values were consistently low for all wind speeds. 

The fabric identified as Beige Thin was also chosen for the final fabric test as its DC

value was the lowest at 15 m s-1. The Herringbone was also of interest as this is a 

common composite reinforcement weave. For the final fabric test, models with the 

chosen fabric skins as well as a smooth 2024-T3 aluminum skin were carefully fabricated 

using a slightly different approach.  

 

3.2  Final Fabric Test 

 To confirm the above preliminary results, four EPS foam wing models of NACA 

0012 configuration were dry cut to obtain wingspans of 7.6 cm (3 in). The holes were 

drilled and the sting mounting tube was inserted into the models by the same procedure 

as described earlier. A sheet of 0.030 cm (0.012 in) thick 2024-T3 aluminum was cut to a 

length that was more than 30.5 cm (12 in) and width of 7.6 cm (3 in). The sheet was then 

carefully bent to obtain the leading edge curvature of the NACA 0012 wing 

configuration. Two part epoxy adhesive was mixed and uniformly applied onto the EPS 

core, then the aluminum sheet was laid onto the core starting with the leading edge and 

applying pressure to cover the entire surface. Maintaining pressure, the epoxy was 

allowed to cure overnight, and then the model was carefully wet (tap water) cut using the 

sectioning machine to obtain a wingspan of very close to 5.1 cm (2 in). This wet cut 
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process cooled and washed away any extra pieces of aluminum sticking to the wing 

model and ensured that both sides were smooth.  

 Models with Fastskin® FSI, Beige Thin, and the Herringbone were also prepared in 

a similar way using spray adhesive however these were dry cut so that the fabrics would 

not be contaminated. Figure 3.16 shows the final 2024-T3 aluminum, Fastskin® FSI, 

Beige Thin, and Herringbone wing test models. 

 

 

Fig. 3.16. Final Wing Test Models. 
(a) 2024-T3 aluminum; (b) Fastskin® FSI; (c) Beige Thin; (d) Herringbone. 

 

 All of the wing test models were mounted in the wind tunnel and tested at wind 

speeds of 5 m s-1, 10 m s-1, 15 m s-1, 20 m s-1, 25 m s-1, and 30 m s-1. Representative drag 

measurement plots for the sting only and the four wing test models with the wind tunnel 

operating at 30 m s-1 are shown in Figs. 3.17 to 3.21. 

 

 

      (a)                       (b)                          (c)                       (d) 

25 mm 
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          Figure 3.17. Sting at 30 m s-1. 

 

 

          Figure 3.18. Sting + Aluminum at 30 m s-1. 
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           Figure 3.19. Sting + Fastskin® FSI at 30 m s-1. 

 

 

            Figure 3.20. Sting + Beige Thin at 30 m s-1. 
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           Figure 3.21. Sting + Herringbone at 30 m s-1. 

 

 Average drag coefficient of four wing models was calculated for all six velocities. 

Table 3.2 shows the DC data for the final fabric test. 

 

Table 3.2. Average Drag Coefficient of Final Fabric Test. 

   
DC    

V 

(m/s) 
Re Aluminum 

Fastskin 

FSI 

Beige 

Thin 

Herring 

bone 

5 5.11x104 0.0802 0.0741 0.0731 0.1032 

10 1.02x105 0.0484 0.0521 0.0497 0.0998 

15 1.53x105 0.0451 0.0423 0.0442 0.0881 

20 2.04x105 0.0386 0.0423 0.0476 0.0918 

25 2.55x105 0.0304 0.0403 0.0441 0.0847 

30 3.07x105 0.0360 0.0402 0.0416 0.0837 
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 From Table 3.2, it can be seen that the smooth aluminum surface had the lowest 

value of DC (indicated as dark green) and Herringbone had the highest value of DC

(indicated as bright red) at all wind speeds. Fastskin® FSI performed slightly better than 

Beige Thin and much better than Herringbone. Note the presence of vibrations with the 

aluminum skinned model as compared to the others. Some researchers have mentioned a 

beneficial quieting effect with riblets. Walsh [10] discusses noise, vibration and flutter 

caused by turbulence and suggests the use of riblets as a means of damping. 

 The aluminum wing model used in this test was smooth and at the low chord 

Reynolds number test range, can be expected to have extensive regions of laminar flow 

on its surface. However, the roughness of the skins or riblet-like materials will generally 

cause almost immediate transition from the laminar to a turbulent boundary layer profile, 

so the best basis for comparison is a smooth airfoil but with a turbulent boundary layer 

over its entire surface from leading edge to trailing edge. At the low Reynolds numbers of 

the present tests, it is not possible to generate a turbulent boundary layer of prescribed 

thickness by relying on natural transition. However, the use of a boundary layer leading 

edge trip is common experimental practice [37] and the trip causes transition to 

turbulence at low Reynolds number while increasing the boundary layer thickness by the 

thickness of the wake downstream of the trip. The idea of the trip is simulate the 

development of a naturally developing turbulent boundary layer, although caution needs 

to be used so that the trip does not cause separation of the laminar boundary layer or the 

creation of an artificially thick turbulent boundary layer. 

 First, the smooth aluminum wing model was modified by standardizing the 

roughness on its surface. Both the upper and lower surface of the wing model was dry 
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sanded in a chordwise direction using 600 grit SiC sandpaper. Second, a boundary layer 

trip strip was applied at the leading edge of the airfoil on both the upper and lower 

surfaces.  

 The trips were made first by using two strips of tape about 2 mm apart. A thin layer 

of quick-setting epoxy was carefully coated between the strips and Ottawa sand, which is 

mostly spherical sand particles of about 100 microns in diameter, was sprinkled over the 

adhesive. Extra sand particles were brushed off from the surface. After waiting for half-

hour, the tapes were carefully peeled away to expose the boundary layer trip strip, which 

was between 100 and 200 microns thick. The same procedure was followed for the lower 

surface of the wing model.  

 Figures 3.22a and 3.22b show photographs of the aluminum wing model with the 

boundary layer trip strip. The wing model was tested in the wind tunnel at the same wind 

speeds. Figure 3.23 shows the drag measurement plot for the aluminum wing model with 

the boundary layer trip strip. Table 3.3 shows the average drag coefficient data. 

 

 

Figure 3.22a. Aluminum Wing Model with Boundary Layer Trip Strip (side view). 

For the wing model, the span is ∼5.1 cm (2 in) and the chord is ∼15.2 cm (6 in).  
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 Figure 3.22b. Aluminum Wing Model with Boundary Layer Trip Strip (front view). 

The span of the wing model is ∼5.1 cm (2 in). 

 

 

        Figure 3.23. Sting + Aluminum + Trip at 30 m s-1. 
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Table 3.3. Average Drag Coefficient of Aluminum + Trip. 

V 

(m/s) 
DC  

Aluminum + Trip 

5 0.0471 

10 0.0484 

15 0.0467 

20 0.0504 

25 0.0513 

30 0.0506 

  

 To compare the performace of the fabric skins with the aluminum wing model with 

boundary layer trip, a difference or “delta” of the average drag coefficient values was 

calculated by using the equation 

 

Trip  AluminumFabric +−=∆ DDD CCC    (5) 

 

DC∆  was calculated for all fourteen fabric wing models in the preliminary fabric test. 

Figures 3.23a to 3.23e shows the plot of delta average drag coefficient (
DC∆ ) versus 

Reynolds number ( eR ). 
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      Figure 3.24a. Delta Average Drag Coefficient of Preliminary Fabric Test. 

 

 

       Figure 3.24b. Delta Average Drag Coefficient of Preliminary Fabric Test. 
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         Figure 3.24c. Delta Average Drag Coefficient of Preliminary Fabric Test. 

 

       

          Figure 3.24d. Delta Average Drag Coefficient of Preliminary Fabric Test. 
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          Figure 3.24e. Delta Average Drag Coefficient of Preliminary Fabric Test. 

 

 The plot of the average drag coefficient of the aluminum wing model and 

aluminum wing model with boundary layer trip is shown in Fig. 3.24. 
DC∆  was 

calculated for the wing models with fabric skins in the final fabric test. Figure 3.25 shows 

the plot of delta average drag coefficient versus Reynolds number. This plot shows the 

net effect of the fabrics on drag reduction and will be compared to the 
DC  of the 

aluminum wing model with the boundary layer trip. 
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Figure 3.25. Average Drag Coefficient of Aluminum Wing Model (with/without trip). 
The trip strip smoothened the curve. 

 
 
 

 
 

    Figure 3.26. Delta Average Drag Coefficient of Final Fabric Test.  
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 From Fig. 3.25, it can now be seen that the average drag coefficient of aluminum 

wing model with boundary layer trip is higher than the 
DC  of the aluminum wing model, 

which is expected. Therefore, the boundary layer trip has been effective in producing a 

turbulent boundary layer over the surface of the airfoil at these low chord Reynolds 

numbers.  

 Notice from the results in Fig. 3.26 that the 
DC∆  of the wing models with the 

fabric skins is relatively high at the lowest value of 5105.0Re x= . This outcome is 

because the boundary layer at very low Reynolds number, separates from the surface into 

a thicker wake [1]. The flow becomes reversed at the separation point and the shear stress 

there is zero [1]. The boundary layer does not reattach at the rear of the wing model, as 

shown in Fig. 3.27. 

 

 

Figure 3.27. Laminar and Turbulent Boundary Layers on an Airfoil [38]. 

 

 From Fig. 3.26, notice that the wing model with Fastskin® FSI and Beige Thin 

fabric had mostly negative values of Delta Average Drag Coefficient when compared to 
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the aluminum wing model with the boundary layer trip. The Fastskin® FSI and Beige 

Thin tends to reduce drag, and the trend seems to maintain with increasing Reynolds 

number. 

 The weave pattern of Fastskin® FSI and Beige Thin fabric has been shown in     

Figs. 3.3 and 3.6. In this research, the fabrics were oriented in the streamwise direction of 

the airflow. Notice that the Fastskin® FSI swimsuit fabric had well-defined ribs 

throughout the farbic and the riblets or weaves have a certain height, h+. The ribs in the 

case of Beige Thin fabric were not as deep as those present in the Fastskin® FSI swimsuit 

fabric. The riblets were at a certain height, h+ in the case of Beige Thin fabric. The 

concept of protrusion height of riblets in the viscous regime has been discussed by 

Jimenez [39], in his review on turbulent flows over rough walls.  

 Define the streamwise, wall-normal and spanwise coordinates by x, y and z; and the 

corresponding velocity components be u, v and w [39]. There is a thin near-wall region in 

turbulent flows over smooth walls where viscous effects are dominant. If there are small 

protrusions in this layer, in this case the riblet height of the fabric, the outer flow of air 

can be represented as having a uniform shear. If the spacing of the ribs in the fabric is 

small, the flow would still behave as having uniform shear, otherwise, the riblets tend to 

destroy this uniformity near the wall region [39]. Because the riblets are uniform in the 

streamwise direction, the shear stress varies very slowly in the x coordinate with respect 

to the dimensions of the riblets. As a consequence of this slight variation, it is likely that 

there is less skin friction drag and so the Fastskin® FSI swimsuit fabric and Beige Thin 

fabric were able to reduce the drag. 



60  

 
 

 The effect of adverse pressure gradients on riblets was first reviewed by Walsh 

[40]. The skin friction of adverse pressure gradient boundary layers tend to be low [39]. 

He [40] found that the performance of the riblets improved under adverse pressure 

gradient conditions. From Fig. 3.26, it is seen that the 
DC∆  of Fastskin® FSI swimsuit 

fabric and Beige Thin fabric were relatively low with increasing Reynolds number. The 

data tend to indicate that the surface patterns in the fabrics drive the separation point 

rearward, keeping the flow attached on the surface and maintaining a thinner wake region 

at the rear end of the wing model with fabric skins. The flow could be accelerated relative 

to the surface by the ribs, which is believed to channelize the airflow [40].  

 For an incompressible flow, the flow velocity is split into a mean part and a 

fluctuating part using Reynolds decomposition [41] which for the x component is      

given as 

 

uuu ′+=      (6) 

 

where, u is the flow velocity vector, u  is the mean velocity that is determined by time 

averaging and u′  is the fluctuating part of the velocity vector [41]. The equation is 

similar for the v and w velocity components. Bhushan [5] and Jiminez [39] explain that 

the streamwise eddies are displaced away from the wall when the airflow interacts with 

the riblets and the turbulent mixing of streamwise momentum is reduced. This mixing 

leads to higher local shear stress near the wall but the reduced mixing results in lower 

skin friction drag [39]. The fabrics are beileved to stablize the fluctuating part of the 

velocity component.  
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 From Fig. 3.26, it is seen that the Herringbone fabric could not reduce drag because 

the spacing of ribs and the height of the riblets were very large when compared to the 

Fastskin® FSI swimsuit fabric and Beige Thin fabric. In the case of Herringbone, the ribs 

were also not aligned. Furthermore, a large amount of “fuzzyiness” was present in this 

fabric and it was also porous. The porosity in fabrics decreases the airflow velocity [21].  

 In conclusion, fabrics with certain riblet height and spacing between the ribs appear 

to reduce drag. Rough surfaces can be used as a drag reduction technique. The next 

chapter discusses the conclusions of this research, potential applications and future work. 
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Chapter 4 

Conclusions 

 

 In this research, NACA 0012 wing models with fabric skins were tested at low 

Reynolds numbers (104 to 105 range) at zero incidence to assess their effectiveness in 

reducing drag. A similar wing model with an aircraft aluminum alloy skin and a 

boundary layer trip strip served as a baseline for drag comparison. The wing models with 

riblets aligned in the streamwise direction of airflow were tested in a small subsonic wind 

tunnel and drag force measurements were made. The following conclusions have been 

drawn from the study: 

1. It was observed that the delta average drag coefficient of the Fastskin® FSI 

swimsuit fabric and Beige Thin fabric were lower than that of the aluminum wing 

model with the boundary layer trip strip and the trend was maintained with 

increasing Reynolds number.  

2. In the case of Herringbone, the drag was substantially higher. The ribs were not 

aligned with the streamwise direction of airflow, a large amount of “fuzziness” 

was present in the fabric, and it was porous.   

3. It was noticed that the fabrics with certain riblet height and spacing of ribs, 

similar to Fastskin® FSI exhibited the least drag.  

4. From the tests performed on fabric skins, it was observed that certain ribbed 

surface structures can reduce drag. 
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4.1 Future Work  

 A shorter, smaller diameter sting would help reduce sting only drag and 

aerodynamic “fluctuations” leading to cleaner drag measurements dominated by model 

drag. In the future, it is suggested to adhere fabric skins to larger wing models and test 

them in larger wind tunnels. This would help evaluate fabric performance at higher 

Reynolds numbers. Flow visualization at the microscopic scale is needed to increase the 

understanding of riblets and their effect on reducing drag. 

 

4.2 Potential Applications and Methods 

 Aerospace and other products where drag reducing fabric based riblet patterns can 

be incorporated are: 

•   As skins and covers for complex aerodynamic and hydrodynamic shapes. 

•   Adhered or impregnated into aerodynamic or hydrodynamic surfaces for drag 

    reduction. 
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Appendix B 

Additional Figures and Tables 

 

 

Figure B1. Test Models. 
Sphere, Cube, Wooden Bird, and F-16 Model (left to right). 

 

 

Figure B2. Wooden Bird with Chart Paper Background.  
The reference area was conveniently found in this way. The smallest squares are 1 mm2 
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Figure B3. Test Models at 15 m s-1. 
The actual data with aerodynamic fluctuations is shown in tan while the 101 point 

moving average is shown in blue. The F-16 model shows the least fluctuations. Similar 

trends for the differing models were seen at all velocities. 
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Figure B4. Average Drag Coefficient of Test Models. 

Dimension used for Reynolds number: Sphere (diameter), Cube (side), Wooden Bird 

(height), F-16 Model (mean chord). 

 

Table B1. Test Model Details. 

Test 
Model 

 
Specification 

 
Manufacturer/Supplier 

 Measured 
Dimension(s) (cm) 

 
S (cm2) 

Sphere  
Wood, Round 

Ball Knob, 1 in 
 

The Hillman Group 
(Cincinnati, OH) 

 2.54                           
(diameter) 

 5.07 

Cube  
Wood, Square 

Cube, 1 in 
 

The Hillman Group 
(Cincinnati, OH) 

 2.57                           
(side) 

 6.60 

Wooden 
Bird 

 
ArtMinds™ 

Wooden Bird 
 

Michaels Stores, Inc. 
(Irving, TX) 

 4.30                           
(height) 

 8.25 

F-16  
In Air®             

F-16 Fighting 
Falcon®, diecast 

 
WowToyz    

(Vergennes, VT) 

 
b/2 = 2.83,                

cr = 2.87, ct = 0.66 
 

9.99          
(wing 
area) 
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Table B2. Product and Equipment Information. 

Product/Equipment  Specification                                            Manufacturer/Supplier 

Data Acquisition 
 8802 Test System with FastTrack 

8800 Controller and DAX V9.1 
 

Instron (Norwood, MA) 

Calibration 
Weights 

 Class S-1 and 100 g Class F 
precision calibration weights 

 
Troemner (Thorofare, NJ) 

Sandpaper  320 and 600 grit SiC  Leco Corp. (St. Joseph, MI) 

Calipers 
 

Pittsburgh® 6 in Digital Caliper 
 Harbor Freight Tools (Camarillo, 

CA) 

Digital Camera 
 EOS Rebel T1i with EF-S 18-135 

f/3.5-5.6 IS STM lens 
 Canon U.S.A., Inc. (Melville, 

NY) 

Thermocouple  Type K with 52 II Thermometer  Fluke Corp. (Everett, WA) 

Pressure Calibrator 
 

PCL341-005 Pressure Calibrator 
 Omega Engineering Inc. 

(Stamford, CT) 

Wing Cores 
 EPS (expanded polystyrene), 

NACA 0012, 6 in chord, round 
leading edge 

 
FlyingFoam (Fort Collins, CO) 

Sectioning 
Machine 

 MSX255 Benchtop Sectioning 
Machine 

 
Leco Corp. (St. Joseph, MI) 

Sting Mount 
 Round C260 brass tube with 9/32 in 

OD and 0.253 in ID 
 Small Parts Inc. (operated by 

amazon.com, Seattle, WA) 

Forming Blocks 
 

6061-T6511 Al alloy, 1 in square 
 McMaster-Carr Supply Co. 

(Elmhurst, IL) 

Screw Driven Test 
Machine 

 Model 290 Lo‐Cap Universal 
Testing Machine 

 Tinius Olsen Testing Machine 
Company (Horsham, PA) 

Foam Fill 
 

Touch ’n Foam Max Fill 
 Convenience Products (Fenton, 

MO) 

Swimsuit 
 

Fastskin® FSI 
 Speedo International Ltd. 

(Nottingham, UK) 

Fabric Adhesive 
 Polystyrene Foam Insulation 78 

Spray Adhesive 
 

3M Company (Saint Paul, MN) 

Al Skin 
 

2024-T3, 0.012 in 
 Kaiser Aluminum (Foothill 

Ranch, CA) 

Al Skin Adhesive 
 SilverTip MetlWeld™ Epoxy 

Adhesive  
 System Three Resins, Inc. 

(Auburn, WA) 

Trip Strip 
Adhesive 

 
Gorilla Epoxy 

 Gorilla Glue Inc. (Cincinnati, 
OH) 

Microscope 
 

Stereomaster® II 
 Thermo Fisher Scientific 

(Pittsburgh, PA) 

Microscope 
Camera 

 PLB623CU, 3 megapixel, Capture 
OEM Release 8.7 software 

 PixeLINK® (Ottawa, Ontario, 
Canada) 

Chart Paper 
 

9270-1024 HP Chart Paper 
 Imaging Products (Chesterland, 

OH) 
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Table B3. Fabric Details. 

Fabric  Identifier(s)  Comment 

Navy Blue 
 

DA 1005;100;163 
 Velvet on one side; feels like 

polyester 

Fastskin® FSI 

 
Barcode: 38950 69359; 705848; 043; 

B10788; LL 

 Grooves possibly added later on by 
some type of pressing or rolling 
process; LYCRA®; ML HI neck 

kneeskin; royal blue 

Purple 
 

Barcode: HAC1000413 24475 8819 103 
 Crimped; transparent; feels like 

polyester  

Pattern  -  Dyed; feels like polyester 

Beige Thin 
 

Barcode: HAB0842329 7051 84278 101; 
Separate Barcode: 5109; FC 

 Manufactured by Sunrise 
Madanlal® Suiting; ribbed on one 

side; feels like polyester 

Diamond 
 Barcode: HAA 0220753 28139 85656 

656; $HL DY + Towel DGN PE 3016 
 Marketed by The Chennai Silks, 

India; looks like artificial silk  

Sky Blue  08745; 90  Dyed; feels like polyester 

Black 

 
Barcode: HBC3259812 22636 84269 

16684; Separate Barcode: 5109; 36639; 
MCM 13 

 Manufactured by HARROLT; 
marketed by The Chennai Silks, 

India; made from filament and spun 
yarn 

Light Pink 
 Barcode: GJD1375355 13080 8807 100; 

DIANA 223888; MCM 40 
 Marketed by The Chennai Silks, 

India; feels like polyester 

Corduroy 
 Barcode: GJA9980657 19404 84291; 

Separate Barcode: 5109; FC 
 Ribbed on one side; feels like 

cotton 

Beige Thick 
 

- 
 Ribbed on one side; feels like 

cotton and polyester 

Herringbone 
 DA3567; 4132/TF-HL 

TOWE/PYRAM/162*; 06; MIA  
 

100% cotton 

Gold 
 

BA3121; 90 
 Velvet on one side; feels like 

polyester 

Purple Stripe 
 CA8004; 01268/TF-Towel/1/GOL/NS; 

05; UI 
 

Feels like cotton 

 

All fabrics except Fastskin® FSI were obtained from local textile shops in India (Trichy, 

Tamil Nadu) during summer 2014. 
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