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ABSTRACT 

Researcher:                            Xiang Li 

Title:                                      Structural Damage Classification using Support Vector 

Machine 

Institution:                             Embry-Riddle Aeronautical University 

Degree:                                  Master of Science in Aerospace Engineering 

Year:                                      2012 

In this research, a methodology to classify crack and corrosion metallic damages 

using a time-frequency representation method and support vector machines is 

investigated. Piezoelectric ceramic actuators are utilized to generate guided wave signals 

on a set of aluminum beam coupons with different damage features, such as types, 

locations, and thicknesses. The short-time Fourier transform is applied to analyze the 

measured signals.  For damage classification, the spectrograms obtained from finite 

element models are employed to train a two-class support vector machine learning 

classifier. The classifier is able to correctly classify different types of damages based 

upon the measured signals collected from the unknown damage sources. A multiple-class 

classifier is also generated to predict the damage extent of crack samples. 
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Chapter 1 

1. Introduction 

In the past decades, developments in the transportation, infrastructure, and 

manufacturing industries have brought great advantages to humanity. However, 

catastrophic incidents of structural failure, such as bridge collapses and aircraft crashes, 

have caused huge losses of human lives and significant impacts to the economy. Figure 1 

(a) depicts the decompression of the Aloha Airlines Flight 243 fuselage due to structural 

failure, and Figure 1 (b) shows a collapsed bridge due to a poorly controlled construction 

process in Harbin, a city of China, in August 24
th

, 2012. Such incidents have emphasized 

the importance of structural safety and promoted the development of damage detection 

and identification methods. One of these methods is nondestructive evaluation (NDE).
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Figure 1. Catastrophic accidents due to structural failures (a) the decompression of Aloha 

Airlines Flight 243 fuselage [1] (b) a collapsed bridge in China due to poorly controlled 

construction process [2] 

Nondestructive evaluation, as it turns out, is the examination of an object using 

technology without affecting the object’s future usefulness [3]. An application of 

nondestructive evaluation in everyday life is the examination of a watermelon’s ripeness. 

By visually inspecting flaws on the rind and listening to the acoustic response by tapping 

the surface, the ripeness of a watermelon can be judged without cutting it open. Some 

widely utilized nondestructive evaluation methods include visual inspection, acoustic 

emission, penetrant testing, magnetic field methods, radiography, eddy-current methods, 

and thermal field methods. 

Since nondestructive evaluation methods can be conducted without affecting the 

tested objects’ future functions, they are widely used in the construction, manufacturing, 

and transportation industries. However, the evaluation reliability can be affected by 

various factors. These factors include the physical and mental attributes of the inspector, 

working environment, and inevitable human errors introduced by the inspector. To 



3 
 

 

overcome these shortages of NDE, a novel damage identification approach called 

structural health monitoring has been developed. 

1.1 Structural Health Monitoring 

Structural health monitoring (SHM) is commonly defined as a process of 

implementing damage detection strategies for engineering infrastructures [4].  The 

development of SHM is generally motivated by economic and life-safety requirements. 

As a multidisciplinary research field, SHM involves various classical areas such as 

structural vibration, nondestructive evaluation, materials science, signal processing, 

sensor technology, etc. An SHM technique is generally integrated with sensors, data 

transmission, computational power, and processing ability inside the tested structures. 

The objective of SHM is to provide real time information and diagnosis about the state of 

safety and reliability of a structure during its lifetime [5]. Figure 2 (a) shows an SHM 

system integrated on a composite wing that calculates the residual fatigue life of the wing. 

Figure 2 (b) shows the Jindo bridge in South Korea which is equipped with one of the 

largest civil infrastructure SHM systems. 

 

Figure 2. Structural health monitoring applications (a) a composite wing [6] (b) the Jindo 

bridge in South Korea [7] 
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SHM can be generally classified as passive or active.  In passive SHM, a tested 

structure is equipped with sensors. The interaction between the tested structure and the 

surrounding environment is monitored by these sensors. On the contrary, in active SHM, 

a tested structure is equipped with both sensors and actuators. The actuators are used to 

generate perturbations to the tested structure, and the responses of the structure to these 

perturbations are monitored by the sensors. An active SHM method is applied in this 

research.  

The development of SHM was primarily motivated by its economic potential and 

safety features. By applying SHM techniques, human errors induced by traditional 

damage detection methods can be eliminated. This improves the safety and reliability of 

the tested structures. Also, structure offline time and human labor involvement during 

maintenance can be minimized, and the maintenance cost reduced. In addition to this, the 

maintenance procedure of structural systems can be switched from conventional 

schedule-driven to condition-based.  

1.1.1 Process of Structural Health Monitoring 

SHM is commonly described as a process involving damage detection, diagnosis, 

and prognosis [8]. In the first step, existence and location of damage are evaluated. In the 

second step, damage type and damage extent are assessed. In the third step, the remaining 

useful life of a structural system is predicted. 

Conjointly SHM can furthermore be described in terms of a four-step process. In 

the first step, also known as the operational evaluation step, the life-safety and economic 

criteria for performing SHM are evaluated to check if performing SHM to the system is 
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necessary. Damage is defined for the investigated system, and the most concerned 

damage types are determined for multiple damage cases. 

In the second step, the excitation method, sensor type, number of sensors, sensor 

locations, data acquisition, data storage, and transmittal hardware are selected. Measured 

data from the sensors under various operational and environmental conditions are 

normalized and cleansed for further processing. 

In the third step, data features that can be used to distinguish between undamaged 

and damaged structures are extracted. Since SHM diagnosis and prognosis technologies 

involve considerably more data than traditional damage detection methods, data 

condensation and reduction techniques are also required in this step. 

In the final step, a statistical model is established to quantify the damage state of 

structures by implementing statistical pattern recognition algorithms. Pattern recognition 

algorithms are generally divided into two categories. The first category is known as 

supervised learning. In this category, samples from both undamaged and damaged state 

of a structure are available. In the second category, also known as unsupervised learning, 

samples of the damaged state in a structure are unknown. In this research, a supervised 

pattern recognition algorithm named support vector machines is utilized for damage 

classifications.  

1.1.2 Challenges for Structural Health Monitoring 

In recent years, SHM has become an attractive research topic in aerospace, civil and 

mechanical engineering. However, some challenges have been posed to the future 

development of SHM. The first challenge to the development of SHM is the difficulty in 
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capturing low-frequency responses of a system. Properties of a structural system, 

including the changes of stiffness, mass, or energy dissipation properties, can be altered 

by damages in the structure. The changes in the dynamic response of the structural 

system caused by these damages generally do not have a significant influence over the 

global response of the structure. 

 The second challenge is the difficulty in identifying damages in a system. Many 

SHM systems are based on an unsupervised learning mode, in which the samples of the 

damaged state are unknown. Damages may accumulate or evolve in a long-term 

monitoring process. It is challenging to precisely detect and track damages in long-term 

monitoring. 

 The third challenge comes from the requirement that the sensor network in a SHM 

system should be fail-safe. It implies that sensors should not get damaged after being 

deployed in a structure. Alternatively, if sensors are allowed to get damaged, a 

redundancy algorithm is supposed to be introduced to adapt to the new sensor network 

once one or several sensors are damaged. 

Although difficulties are posed to the future developments of SHM technology, 

many SHM methods have been investigated and developed. 

1.2 Structural Health Monitoring Methods 

Various structural health monitoring methods have been developed in the past two 

decades. The impedance based method, the vibration based method, and the guided wave 

based method are some of the extensively investigated SHM approaches. The 

development of the vibration based method is based on the assumption that structural 
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modal parameters are functions of physical parameters [9-11]. Changes of physical 

parameters, such as mass, stiffness caused by damages, consequently alter the dynamic 

responses of the tested structure. These changes in the structural dynamic responses are 

used to identify damages in the tested structure. The drawback of the vibration based 

method is the modal parameters’ low sensitivity to small flaws in a structure. In the 

impedance based method, physical changes in a tested structure induce changes in 

mechanical impedance of the tested structure [12-14]. These mechanical impedance 

changes are sensed by changes in the electro-mechanical coupling of transducers. In this 

research, an SHM method based on the guided wave method is utilized. To understand 

this method, an understanding of a guided wave is first required. 

1.2.1 Guided Wave 

Guided waves are commonly defined as stress waves that are forced to propagate 

along a path defined by the material boundaries of a structure [15-17]. A guided wave can 

be generally classified into two categories. The first category of guided wave is known as 

the surface acoustic wave (SAW). It was first discovered by Lord Rayleigh in 1885 [3]. A 

surface acoustic wave can propagate on the surface of an object for a very long distance, 

and its amplitude decays exponentially with the depth of the object. Different types of 

surface acoustic waves are defined according to the material nature at the interfaces. For 

example, a Rayleigh wave propagates along an interface between a semi-infinite solid 

medium and air; a Scholte wave travels along a boundary between water and a solid 

medium. Other types of surface acoustic waves include Stoneley waves, Love waves, and 

longitudinal creeping waves. 
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The second category of guided wave is known as the bounded wave because these 

waves are bounded between the boundaries of the finite medium. A bounded wave in a 

multilayer structure is defined as a plate wave, and bounded waves propagating in a 

single layer structure are referred as Lamb waves.  

The shear wave mode and the longitudinal wave mode are the two modes that exist 

in ultrasonic guided waves. In the shear wave mode, motions of the medium’s particles 

are perpendicular to the direction of wave propagation. In the longitudinal mode, the 

particles in the medium move parallel to the direction of wave propagation. 

Guided waves can be generated using an angle beam transducer or a combo 

transducer [13-15]. In a plate structure, a longitudinal wave is generated by a transducer 

and hits the top surface of the plate. A longitudinal and a shear wave are reflected from 

the top surface. Four other waves (two longitudinal waves and two shear waves) are 

reflected when these two waves reach the bottom surface. This process is repeated, and 

infinite reflected waves interfere with each other to generate a resonant wave named the 

bounded wave. A bounded wave can either be symmetric or anti-symmetric about the 

center line of the plate structure. Figure 3 (a) describes a symmetric Lamb wave, while 

Figure 3 (b) shows an anti-symmetric Lamb wave.  
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Figure 3. Symmetric and anti-symmetric bounded waves (a) a symmetric Lamb wave (b) 

an anti-symmetric Lamb wave [18] 

Two wave modes that exist in guided waves are group velocity and phase velocity. 

Group velocity represents the speed of a wave packet that contains several individual 

waves. Phase velocity indicates the speed of an individual wave. Imagine that a group of 

people in a marathon race start the race from the same starting point at the same time. It 

appears that all of these runners are running at the same speed in the beginning. As time 

goes on, the group would stretch out because each individual runner is running at a 

different speed. The speed of an individual runner can be regarded as the phase velocity, 

and the group velocity could be regarded as the speed of the entire group of runners.  

Group velocity represents the velocity of energy propagation and is essentially used for 

damage detection in guided wave SHM. 

Infinite numbers of symmetric wave modes xS and anti-symmetric wave modes xA

exist in a bounded wave. Different wave modes have different group and phase velocity 
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characteristics. The velocity of bounded waves is related to the wave frequency, thickness 

of the plate medium, the properties of the medium material, and the wave mode. 

Velocities of various wave modes can be determined using dispersion curves. 

Dispersion curves relate the velocity v and the product of plate thickness t and the 

wave frequency f. Figure 4 shows dispersion curves (phase and group velocity) of Lamb 

waves in an aluminum plate. It can be observed from the dispersion curves that at least 

two modes of waves can propagate at any frequency. In Figure 4 (b), waves with 

frequencies in the range of 0-10 MHz are more preferable for guided wave SHM because 

only two fundamental wave modes, 0S and 0A , exist in this region. The fundamental 

symmetric wave mode
0S is mostly employed to detect surface cracks in metallic 

materials. The fundamental anti-symmetric mode 0A is sensitive to delamination and is 

often used to detect damages in composites materials. 

 

Figure 4. Dispersion curves for lamb waves in an aluminum plate of thickness = 0.15-mm 

(a) phase velocity (b) group velocity [19] 
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1.2.2 Guided Wave Structural Health Monitoring  

The guided wave (GW) based method is a well-established technology in traditional 

non-destructive evaluation [12]. It is more appropriate for far-field damage detection 

since the guided waves can be excited and propagated over a long distance with very 

little loss of amplitude. This feature gives the GW based SHM method the capability of a 

rapid global inspection of the structural health [17]. In the past two decades, the guided 

wave based method has been widely applied for damage detection in long structures, such 

as tubes, pipes, and plate structures.  

In the guided wave SHM, an actuator is excited by a high frequency pulse signal to 

stimulate guided waves. When the guided waves encounter a structural discontinuity 

(such as damage or boundary in the structure), they are scattered in all directions. A 

sensor collocated with the actuator is utilized to sense echoes of the pulse signal reflected 

by the structural discontinuity (or damage). The excited signal is eliminated from the 

echoes to obtain the pure component of the damage signal. After that, damage sensitive 

features are extracted by applying some signal-processing algorithm. Finally, a pattern 

recognition technique is utilized to identify the damage type and extent. 

In this research, a guided wave SHM method based on Lamb waves is utilized. A 

time-frequency representation technique is chosen to process damage signals. A pattern 

recognition algorithm named Support Vector Machine is applied for damage diagnosis. 

These techniques will be scrutinized in Chapter 2, 3, and 4. 
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1.3 Transducer Technology 

Guided wave signals are generated by transducers from other forms of signals. For 

example, the piezoelectric transducer is used to transform electrical signals to guided 

wave signals, and the fiber optics transducer is used transform optical signals to guided 

wave signals. Some common materials used for producing transducers are piezoelectric 

ceramics, fiber composites, magnetostrictive materials, and so on. Piezoelectric 

transducers are the most extensively used transducers nowadays for generating and 

detecting guided waves. A specific type of piezoelectric transducer made from lead 

zirconate titanate (PZT) is used in this research. To understand the mechanisms of the 

piezoelectric transducer, the piezoelectric effect is investigated.  

1.3.1 Piezoelectric Effect 

The word “piezeo” comes from the Greek word “piezeion”, which means to press 

or squeeze. The piezoelectric effect was first discovered by Jacques and Pierre Curie in 

1880. They found that certain types of crystalline minerals became electrically polarized 

when subjected to mechanical stresses. The piezoelectric effect is generally known as the 

linear interaction between mechanical and electrical states. The molecular model of a 

piezoelectric material is depicted in Figure 5 to demonstrate this effect. The gravity 

centers of the positive and negative charges coincide before an external stress is exerted, 

as shown in Figure 5 (a), and the molecule appears electrically neutral. A separation of 

the gravity centers of positive and negative charges is caused by exerting an external 

stress, as shown in Figure 5 (b), and a dipole is generated. The neighboring dipoles inside 

a material cancel each other, and the charges on the material surfaces generate an electric 

field, as shown in Figure 5 (c). The material is polarized and an electric field is generated. 
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Figure 5. Molecule models for the piezoelectric effect (a) an unstressed molecule (b) a 

molecule exerted upon by an external stress (c) the polarizing effect of the material 

As illustrated in Figure 6 (a) and (b), electric charges accumulate on material 

surfaces when piezoelectric ceramic materials are mechanically strained or deformed by 

external stresses. The polarities of the electric charges are reversed correspondingly if the 

external stress is reversed (from compression to tension) [20], as shown in Figure 6 (c). 

This phenomenon is called the direct piezoelectric effect. 

 

Figure 6. Direct piezoelectric effect demonstrated by a piezoelectric material (a) the 

material in original shape (b) the material compressed (c) the material stretched 



14 
 

 

In contrast to the direct effect, piezoelectric materials exhibit strain when placed in 

an electric field or when charges are applied. This phenomenon is called the converse 

piezoelectric effect. In Figure 7 (a), the material is stretched when the applied voltage 

polarity is same as the material polarity. In Figure 7 (b), the material compresses when 

the applied voltage’s polarity is opposite to that of the material. 

 

Figure 7. Converse piezoelectric effect demonstrated by a piezoelectric material (a) 

applied voltage of the same polarity as the material (b) applied voltage of the opposite 

polarity of the material 

1.3.2 Piezoelectric Materials 

Materials that exhibit the piezoelectric effect are named piezoelectric materials. 

Some naturally occurring piezoelectric materials include quartz, tourmaline, and sodium 
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potassium tartarate. Some common synthetic piezoelectric materials include piezoelectric 

ceramics and polyvinylidene fluoride (PVDF) [21]. 

One of the most widely utilized piezoelectric ceramic materials is lead zirconate 

titanate, also known as PZT. It was first created in the Tokyo Institute of Technology 

around the year 1952. The PZT material is made by combining lead and zirconium using 

a chemical compound called titanate. Compared to traditional piezoelectric materials, 

PZT exhibits greater sensitivity and a higher operating temperature. PZTs are widely 

used in ultrasonic nondestructive testing applications and accurate inspection of 

infrastructure and aerospace products [22]. 

Some new piezoelectric materials include single crystal and relaxor [22].  Single 

crystals can be produced using lead magnesium niobate, lead zirconate niobate, lithium 

niobate, and quartz. Some popular relaxor materials include lead magnesium niobate and 

lead nickel niobate. Relaxor materials are not sensitive to temperature, have high 

electromechanical coupling factors and are widely utilized to produce piezoelectric 

transducers. 

1.4 Literature Review 

Damage detection and identification methods using machine learning methods have 

been extensively investigated by researchers. Liu and Meng [23] developed a structural 

health monitoring system to detect approximate damage locations in beam structures 

using a vibration-based damage detection technique and a machine learning algorithm 

called Support Vector Machines (SVM). Their system was further developed to predict 

the damage location more accurately using support vector regression. Esterline et al. [24] 
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classified the acoustic emission signals generated by different sources, such as damage 

growth, using Support Vector Machines. Das et al. [25] developed an SHM system to 

classify damage signatures in composite structures. The system detected responses of 

surface-mounted piezoelectric transducers and used them to establish a classifier based 

on one-class support vector machines algorithm. Ying et al. [26] investigated a reliable 

SHM application to monitor damages within a pipeline using three classification 

algorithms including adaptive boosting, SVM, and a method called AdaSVM that 

combines the two methods. The system was robust enough to resist interferences like 

changes of internal air pressure in a pipe. The analysis result showed the AdaSVM 

algorithm achieved the best classification accuracy. Michaels and Michaels [27] studied a 

method to determine the exact location and the area extent of corrosion in an aluminum 

plate using Lamb waves generated by a sparse array of ultrasonic transducers. Dua et al. 

[28] developed a classification method to classify impact-induced damages in composite 

plates using the finite element analysis technique and artificial neural networks. Kim and 

Philen
 

[29] investigated a damage classification method that classifies crack and 

corrosion using spectrogram and Adaboost. Their method was able to classify two 

different damages of crack and corrosion and showed confidence levels of each testing 

sample. Garpinteri et al. [30] investigated a methodology to identify damage in reinforced 

concrete structures and masonry buildings using acoustic emissions. They also developed 

a method to predict damage evolution status based upon fracture mechanics concepts. 

Yuan and Chu [31] developed a method for fault diagnosis of turbo-pump rotors. Their 

method utilized the Support Vector Machine “one against other” algorithm to classify 

vibration signals generated by different fault modes of rotors. Wang et al. [32] utilized 
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the least square support vector machine and acoustic signal to develop a damage signal 

classification method. Their method exhibited good performance in classifying different 

types of damage activities over oil transmission pipelines, such as drilling, hammering, 

and excavating. Widodo and Yang [33] investigated a method that can correctly diagnose 

faults in an induction machine based on transient current signals. The wavelet transform, 

Support Vector Machine, and feature extraction methods were utilized in their research. 

Banerjee and Das [34] developed a motor fault diagnosis method based on short time 

Fourier transforms and Support Vector Machine. Their method incorporated information 

collected from multiple sensors to detect and identify motor faults. Nguyen et al. [35] 

investigated a damage identification method for composite structures based on the 

distributed sensor network and the Bayesian network. In their method, the damage 

features used for identification include damage location, dimension, area, and damage 

signal characteristics.  Coelho et al. [36] developed a methodology to classify the extent 

of growing cracks in lug joints that incorporated Support Vector Machine and guided-

wave. In the method, matching pursuit algorithm is utilized to extract feature vectors 

from raw signals. Vines-Cavanaugh et al. [37] investigated a method to detect the 

abnormal status of a cable-stayed bridge in Zhanjiang, China based upon parameters 

collected from various sensors attached to the bridge. Their method utilized a Support 

Vector Machine algorithm called SVM20 for status classification and a finite element 

tool named ANSYS for generating training samples. Farooq et al. [38] developed a 

damage identification strategy for carbon fiber reinforced polymer composite materials. 

In their method, static strains sensed at predefined locations are measured in different 

damage scenarios and utilized as features in feature vectors. Support Vector Machine and 
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artificial neural networks are both employed to examine the classification accuracies. 

Xiao and Qu [39] investigated a damage detection method based on vibration based 

structural health monitoring and Support Vector Machine. Different damage states and 

positions were correctly identified in their method by analyzing vibration signals in 

different damage scenarios.  Matic et al. [40] developed a system for broken bar detection 

in an electrical induction machine by analyzing current signals generated by the motor. 

The system was able to correctly identify the damage extent of the broken bar using 

Support Vector Machine and Hilbert transform. Xie [41] proposed a damage detection 

method for composite laminated plates. Least square support vector machine, guided-

wave method, and Hilbert transform are utilized in his method. Yang [42] investigated a 

damage identification method using Support Vector Machine and the vibration based 

method. Random noises were added into training samples to obtain finite element models 

for consistency with the real testing sample. Damage location and its extent were able to 

be predicted by this method. 

1.5 Damage Types in Metallic Materials 

Damage is generally defined as changes introduced to a structural system that 

adversely affects its current or future performance [4]. Two common damage types 

within metallic materials are crack and corrosion. The presence of a crack in aerospace 

structures is often caused by cyclic loading, such as pressurizations and depressurizations 

of a fuselage or cyclic impact loadings on the landing gear. Catastrophic consequences 

are usually incurred if an initial crack evolves to a critical size. Therefore, crack detection 

is vital for the aerospace industry. 
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Corrosion within a metallic material usually involves reactions between the material 

and the environment. The corrosion process in nature is usually an electrical process. The 

cause of corrosion in nature is because an unstable refined metal tends to transform to a 

stable compound. The common types of corrosion include uniform, pitting, localized, 

intergranular, galvanic erosion, and fretting. 

As previously mentioned, crack detection is vital to flight safety in the aerospace 

industry, while corrosion generally accounts for a large portion of the maintenance cost. 

Therefore, a reliable damage classification method for distinguishing between a crack and 

corrosion exhibits great potential value in the aerospace industry. 

1.6 Research Objective 

A great amount of research has been conducted on damage detection and diagnosis 

in various materials. Many of these researches have investigated various methods to 

distinguish different types of damages. Some researchers developed approaches to 

determine damage locations. Some others investigated methods to monitor the initiation 

of damage. However, it appears that not much attention has been paid to damage extent 

evaluation using guided-wave based SHM method and multiple-class SVM classification 

algorithms. As previously mentioned, damage diagnosis, including classification and 

extent estimation, is an important step in structural health monitoring. In this step, vital 

information is extracted for predicting the remaining life of structures. Hereby, the first 

objective of this research is to explore and develop a robust damage identification method 

that can be used to correctly classify crack and corrosion in metallic materials. The 

second objective is to extend the method to evaluate crack evolution extent.  
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The method can be described as a 5-step process. In the first step, the guided-wave 

based structural health monitoring method is used. The guided wave excited by PZT 

actuators propagates along an aluminum beam. Some portions of the guided wave are 

reflected by damage on the beam, and the reflected damage signal is collected by 

measuring the in-plane displacement of a fixed location on the beam. In the second step, 

the raw damage signal is processed using a short time Fourier transform to generate a 

time-frequency representation image. The third step is about feature extraction. In this 

step, STFT images generated in various damage scenarios are scanned and processed to 

generate training and testing data. In the fourth step, training data are utilized to construct 

a support vector machine classifier. In the final step, the testing data is validated using the 

classifier, and the performance and accuracy of the classifier is examined. The damage 

diagnosis method presented in the thesis is schematically outlined in Figure 8. 
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Figure 8. Schematic outline of the method presented in the research 

1.7 Thesis Outline 

The thesis consists of 5 chapters that are organized as follows. In the first chapter, 

background knowledge about structural health monitoring is introduced. Literature 

reviews about damage detection and diagnosis using SHM methods are presented. 

In the second chapter, theory about two-class and multiple-class support vector 

machine classification has been comprehensively discussed.  

In the third chapter, several time-frequency analysis methods, including short time 

Fourier transform, Wigner-Ville distribution, Wavelet transform, and Matching Pursuit 

are investigated. The time-frequency plots using different methods are compared with 

one another.  
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In the fourth chapter, damage samples simulated in finite element analysis software 

named ABAQUS
®
 are presented. The damage signals obtained from ABAQUS

® 

simulations are transformed into time-frequency representations. A two-class damage 

classification program is developed to predict damage type (crack or corrosion). A 

multiple-class damage classification method is also investigated to estimate crack 

evolution extent. The performance and accuracy of these classification methods are 

examined.  

Finally, the fifth chapter summarizes the research and presents recommendations 

for future work. 
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Chapter 2 

2. Support Vector Machines 

In human history, a huge number of inventions have been created to mimic human 

or animal behavior. However, very few inventions have been created to simulate the 

function of the human brain because of its extremely complex working mechanism. 

However, the invention of the first computer system in 1945 made the simulation of the 

human brain possible for the first time. Since then, artificial intelligence has been 

extensively used in almost every field. Machine learning is a branch of artificial 

intelligence. It is a system that learns from experience, training, and analytic observation, 

and it continuously self-improves [43]. Some popular machine learning algorithms 

include decision tree learning, artificial neural networks, and Bayesian networks.  

In a machine learning-pattern classification problem, a classifier is developed to 

correctly classify an object with promising accuracy. Inputs to the classifier are called 

features, and outputs from the classifier are called class labels. Features are discreetly 

chosen so that they represent data of different classes distinguishably. In other words, 

features are chosen such that data belonging to different classes are well separated in the 

feature space. 
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The essence of a pattern classification problem is to solve for the decision function. 

Determination of the decision function using input and output pairs is called training. 

Predicting the output or class label of an input using the decision function is called testing. 

The input-output pairs utilized to determine the decision function are called training 

samples and the data that are input to the decision function are called testing samples. 

As mentioned in Section 1.2.2, a pattern recognition technique is utilized in a 

guided wave structural health monitoring method. In this research, a specific pattern 

recognition algorithm named Support Vector Machine (SVM) is utilized. The underlying 

theory of SVM was introduced by Cortes and Vapnik based upon the statistical learning 

theory [43].  SVM has been extensively applied to pattern classification and regression. It 

has several obvious advantages compared to conventional pattern classification methods. 

First, SVM classification can be conducted based on a very small amount of training 

samples [44]. Also, the feature space of SVM can be high dimensional, and SVM 

exhibits excellent generalization performance and high accuracy over a wide range of 

classification problems [45]. Finally, unlike some traditional classification methods, 

SVM does not suffer from problems like over-fitting and local minimization. Since SVM 

outperforms conventional pattern classification methods, it is chosen as the classification 

algorithm for this research. The fundamentals of SVM classification are illustrated in the 

following sections. 

2.1 Support Vector Machine Classification 

As previously mentioned, a classifier is generated using input-output pairs in 

machine learning pattern classification. For SVM classification, an input is also known as 
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a feature vector, and an output is known as a class label. A feature vector describes an 

object in each dimension of the feature space. In other words, the feature of an object is 

used to characterize the particular object from other objects. The label of an object, on the 

other hand, represents the class that the object belongs to. 

A simple example is shown here to demonstrate the SVM classification. In this 

example, a classifier is generated to classify two types of fruits: apples and oranges. The 

classification is a two-step process that includes training and prediction. In the training 

step, the feature vectors and the class labels of training fruits are utilized to generate a 

classifier. The features of a fruit would include shape, size, color, weight, and smell. The 

Label of a fruit is either “apple” or “orange”. In the testing step, the feature vector of an 

unknown fruit is given as the input to the classifier. The classifier predicts whether this 

fruit is an apple or an orange. 

 2.2 Two-Class Support Vector Machine Classification 

As discussed in the previous section, a SVM classifier is generated using training 

samples. Each training sample is represented by a feature vector and a class label. A 

decision function is generated using the feature vectors and class labels of the training 

samples. The class label of an unknown sample can be obtained by inputting its feature 

vector into the decision function. In this section, the underlying theory of SVM 

classification is investigated. Furthermore, the procedures to solve the decision function 

are demonstrated in detail.  
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2.2.1 Linearly Separable Support Vector Machine 

The equations of SVM classification are commonly derived from a Euclidean point 

of view, as shown in Figure 9.  

In the figure, training samples (circles and triangles) are distributed in a three 

dimensional feature space. The features of the training sample are its x, y, and z axis 

coordinates. The objective of SVM classification is to find a separating plane that fully 

separates all the circles from the triangles. 

 

Figure 9. Circles and triangles in an n-dimensional feature space  

In an n-dimensional space, each training sample has n number of feature elements 

in feature vector: 1 2{ , ,..., }i nx x xx  ( 1,...,i l ). “ l ” is the amount of training samples. 

The scalar “ ix ” in the feature vector represents the 
thi axis coordinate of the training 

sample. Each training sample is assigned with a class label iy . 
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Figure 10. Linearly separable training data 

For simplicity, a two-dimensional problem is considered as shown In Figure 10. In 

the figure, circles are defined as Class 1, and triangles are defined as Class 2. The label of 

each class is defined as follows: 

1iy   for Class 1 (circles) 

1iy    for Class 2 (triangles) 

The objective of SVM classification is to find a separating straight line that fully 

separates all the circles from the triangles. The separating straight line in a two-dimension 

feature space satisfies  

0T b  w x                                                    (2.1) 
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In this equation, w is a two-dimensional vector called “weight”, and “ b ” is a scalar 

called bias. Mathematically, w  is a vector normal to the straight line, and 
b

w
is the 

distance from the straight line to the origin. Tw is the transposed vector ofw . x is a vector 

called the feature vector, which contains all the features of a training sample. 

Since circles are in the upper right region to the separating straight line in Figure 10, 

they should satisfy Eq. (2.2). 

0T b  w x                                                    (2.2) 

Similarly, the triangles in the lower left region of the separating straight line satisfy 

Eq. (2.3), 

0T b  w x                                                     (2.3) 

Therefore, Eq. (2.2) and Eq. (2.3) can be written in a more compact form as below. 

0T b  w x for circles                                             (2.4) 

0T b  w x for triangles                                          (2.5) 

As previously mentioned, the label of a circle is 1iy  , and the label of a triangle is

1iy   . Therefore, Eq. (2.4) and Eq. (2.5) can be modified as shown below. 

0 if 1T

ib y   w x                                              (2.6) 

0 if 1T

ib y    w x                                             (2.7) 
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Furthermore, Eq. (2.6) and (2.7) can be combined into one equation as shown in Eq. 

(2.8). 

( ) 0 ( 1,..., ) ( 1 1)T

i ib y i l y or      w x                                   (2.8) 

The original separating straight line is named H. H is moved in a parallel direction 

towards the circles until it meet a circle. This new line is named as
1H , as shown in 

Figure 11 (a). The equation of
1H  is expressed in Eq. (2.9). 

1

T b k  w x                                                   (2.9) 

 

Figure 11.The original separating straight line moving towards two directions (a) towards 

the circles (b) towards the triangles 

Similarly, the straight line H is moved towards the triangles in parallel until it 

touches the first triangle. This straight line is named as 2H , as shown in Figure 11 (b). 

The equation of 2H  is given by Eq. (2.9). 

2

T b k  w x                                                     (2.9) 
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In these two equations, 
1k and 

2k  are constant scalars. By constraining the straight 

line H in the middle of 
1H  and

2H , 
1k and 

2k  are forced to be equal to each other. 

1 2k k k                                                    (2.10) 

Then, Eq. (2.8) and Eq. (2.9) are modified as shown  

1

2

 for 

 for 

T

T

b k H

b k H

  

   

w x

w x
                                        (2.11) 

By dividing both sides by k, Eq. (2.11) is transformed.  

1

2

' 1 for 

' 1 for 

T

T

b H

b H

  

   

w' x

w' x
                                      (2.12) 

The difference between Eq. (2.11) and Eq. (2.12) is just a matter of scaling. 

Therefore, the equations for the straight lines 1H and 2H  are simplified as  

1

2

1 for 

1 for 

T

T

b H

b H

  

   

w x

w x
                                       (2.13) 

The circles or triangles falling on 1H and  2H
 
are called support vectors. To ensure 

that all circles are in the upper region of 1H , a circle xmust satisfy the constraint in Eq. 

(2.14) 

1 if 1T

ib y   w x                                          (2.14) 

Similarly, to ensure all triangles are in the lower region of 2H , a triangle xmust 

satisfy Eq. (2.15) 
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1 if 1T

ib y     w x                                          (2.15) 

Eq. (2.14) and Eq. (2.15) are combined as a single equation, as shown in Eq. (2.16). 

( ) 1 ( 1,..., ) ( 1 1)T

i ib y i l y or      w x                           (2.16) 

Eq. (2.16) is known as the constraint of a SVM classifier. As previously mentioned, 

the objective of a SVM classification is to find a separating straight line which fully 

separates all the training instances. However, there exists more than one separating 

straight line that fully separates all the circles from the triangles. For example, both the 

solid line and the dashed line in Figure 12 fully separate the triangles from the circles. 

Therefore, the optimal separating line needs to be determined.  

 

Figure 12. Both the solid line and the dashed line fully separate all training samples 

To decide the optimal separating line, the concept of margin is introduced. The 

distance between the separating line and its nearest training sample is called a margin. 

More concisely, the margin is defined as the distance between the lines 1H and 2H , as 
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shown in Figure 13. The margin in a linearly-separable SVM classifier is also known as a 

hard margin. A contrast between a hard margin and a soft margin will be given in the 

next section. 

 

Figure 13. Definition of the margin for a SVM classifier 

A random point 1x  on 1H and a random point 2x on 2H are chosen, as shown in 

Figure 14. Due to 1x  being on the 1H , it should satisfy the equation of 1H   

1 1T b  w x                                                (2.17) 
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Figure 14. Projection of vector 
1 2( )x x to the perpendicular direction of the separating 

line 

Similarly, 3x should satisfy the equation of 1H  

3 1T b   w x
                                                

 (2.18) 

Assume the distance between 1H and 2H (or the margin) is m . Vector 3 2( )x x is 

perpendicular to the straight line H, and it is the product of the margin m and the normal 

vector ofw . Therefore, the equation of vector 3 2( )x x  is m
w

w
. Vector 3x is obtained 

by adding vector 2x and vector 3 2( )x x  

3 2 3 2 2( ) m    
w

x x x x x
w

                                (2.19) 
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By substituting Eq. (2.19) into Eq. (2.18)
 

 3 2 2( ) 1T T T Tb m b b m           
w w

w x w x w x w =
w w

           (2.20) 

Due to
2x  being on the

2H , it should satisfy 2 1T b   w x . By substituting this 

equation into Eq. (2.20) 

1 1

2

2 2 2 2

T

T

T

T T T

m

m

m

   

 


   

  

w
w =

w

w
w =

w

w w w

w w w w ww w

                        (2.21) 

As previously illustrated, the objective of the SVM classifier is to maximize the 

margin. It is equivalent to minimize the reciprocal of the margin, as shown in Eq. (2.22) 

2
reciprocal of

2 2

T 
 
w w w

w
                                 (2.22) 

Minimizing 
2

T w w
is equivalent to minimizing

2

T w w
. Therefore, the objective 

of the SVM classifier in Eq. (2.22) can be transformed to 

min ( )
2

T





w w

w                                            (2.23) 

Thus, the optimization problem for the SVM classifier, as shown in Eq. (2.24), is 

obtained by combining the constraint in Eq. (2.16) and the objective in Eq. (2.23). 
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1
min

2

subject to ( ) 1( 1,..., ) ( 1 1)

T

T

i i iy b y i l y or



      

w w

w x

                   (2.24) 

The decision function ( )f x can be obtained by solving for w and b from Eq. (2.24).  

( ) sgn( )Tf b  x w x                                                (2.25) 

The “sgn” function in Eq. (2.55) is called the sign function. The class label of an 

unknown sample ux can be determined by substituting ux into the decision function in Eq. 

(2.25). A positive value returned from the decision function indicates that the unknown 

sample ux is above the optimal separating line H, as shown in Eq. (2.26). This implies that 

ux is classified as a circle by the classifier.  

0T

u b  w x                                               (2.26) 

Similarly, an unknown sample is classified to be a triangle if the decision function 

returns a negative value, i.e. 

0T

u b  w x                                               (2.27) 

So far, the linearly-separable two-class SVM classifier has been illustrated in a 

Euclidean point of view. A more complicated case called non-linearly separable SVM is 

introduced.  

2.2.2 Non-linearly Separable Support Vector Machines 

As mentioned in the previous section, training samples of a linearly separable SVM 

classifier can be fully separated by a separating line. In the real world, however, training 
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samples are not often linearly separable. An example of linearly non-separable training 

samples in a two-dimensional feature space is shown in Figure 15. In the figure, the 

triangles are generally distributed within the group of circles. Therefore, it is not possible 

to simply use a straight line to fully separate the circles from the triangles. A solution to 

completely separate those samples is by using a curve, as illustrated in Figure 15 (b). 

 

Figure 15. Linearly non-separable training samples in a two-dimensional space (a) the 

training samples cannot be separated by a straight line (b) the training samples fully 

separated by a curve 

Obviously, the SVM classifier for such training samples cannot be solved using the 

linear-separable solution demonstrated in the previous section. Two strategies are 

introduced for solving this type of classifier.  

The first strategy is mapping data samples in a low-dimensional feature space to a 

high-dimensional feature space. By doing so, linearly non-separable data samples in the 

low-dimensional space are likely to become linearly-separable in the high-dimensional 

feature space. They are hence called a nonlinearly separable sample.  
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An example of mapping is illustrated here. Data sample x is in a three-dimensional 

feature space ( 3Rx ). The vector x has three components, as shown in Eq. (2.28).  

1 2 3{ , , }x x x x                                                   (2.28) 

A mapping function ( ) x  is defined in Eq. (2.29). After mapping, the vector x is 

transformed to a new vector 'x . The new vector 'x  is in a 6-dimensional feature space, 

and it has 6 components. In the new feature space, features of the original data samples 

are combined to generate new features. This is because a single feature may not provide 

sufficient information for solving a SVM classifier. However, by combining features 

together, it may provide more feature information to separate all the training samples. 

6

1 2 3 1 2 1 3 2 3' ( ) { 2 3 , , , }( ' )R  x x x , x , x x x x x x x x
                        (2.29) 

By mapping, all the data samples are mapped into a higher-dimensional feature 

space. The SVM classifier can now be solved in the new feature space. As previously 

mentioned, Eq. (2.24) is the optimization problem for solving the SVM classifier. By 

introducing a mapping function ( )x , Eq. (2.24) is transformed into a new optimization 

problem in a high-dimensional feature space, as illustrated in Eq. (2.30).  

min ( )
2

subject to ( ( ) ) 1( 1,..., )

T

T

i iy b y i l








   

w w
w

w x

                      (2.30) 

As discussed in the previous section, training samples are linearly-separable in 

hard-margin support vector machines. In the real world, however, training samples may 

still be not separable even though they are transferred to a high-dimensional feature space. 
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It implies that no feasible solution of a SVM classifier can be obtained by using a hard 

margin. Therefore, the second strategy is to introduce a soft margin and allow training 

errors. 

A hard margin is illustrated in Figure 16. In the figure, most circles are in the upper-

right region to
1H , except for “Circle1”. Similarly, triangles are in the lower-left region to 

2H , with the exemption of “Triangle1”. Obviously, Circle 1 and Triangle 1 do not satisfy 

Eq. (2.31). Therefore, Circle 1 and triangle 1 are known as training errors. It implies that 

a hard-margin classifier does not correctly separate all the training samples.  

( ( ) ) 1T

i ib y  w x                                             (2.31) 

 

Figure 16. Definition of slack variables 

To allow training errors, nonnegative slack variables i are introduced. In Figure 16, 

slack variable 1 indicates the distance from the 1H  to Circle 1. 2  
represents the 
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distance between
2H and Triangle 1. By doing so, Triangle 1 and Circle 1 are accepted as 

support vectors, as demonstrated by the filled circles and triangles in Figure 17. 

To ensure Circle 1 and Triangle 1 are correctly separated by the classifier, they 

must satisfy the constraint of the optimization problem. Hence, the original constraint in 

Eq. (2.31) is modified to Eq. (2.32).  

( ( ) ) 1T

i i ib y    w x                                        (2.32) 

As shown in Figure 16, the filled circles and triangles represent the support vectors 

of the classifier. For a hard margin case, all the filled circles (or triangles) are distributed 

on the classifier’s boundaries. Therefore, the margin of the classifier appears to be hard 

and solid. In a soft margin case, as shown in Figure 17, the support vectors are distributed 

in a curved-surface, and the margin appears to be soft. 

 

Figure 17. The support vectors on a soft margin 
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As previously mentioned, slack variables are introduced to allow training errors. 

However, not too many training errors are expected in a SVM classifier because most of 

the training samples are supposed to be correctly separated by the classifier. Therefore, 

the optimization problem in Eq. (2.30) is transformed into Eq. (2.33) by adding the 

summation of the slack variables. 

, ,

1

1
min ( )

2

l
T

w b i

i

C  


  w w w+

                                  

 (2.33) 

In Eq. (2.33), the constant C is called the penalty term. It is a trade-off between the 

maximization of the classifier margin and the minimization of the training errors. By 

changing the value of C, the extent of allowable training errors can be adjusted. As 

previously discussed, the objective of a SVM classifier is to minimize the function ( ) w  

in Eq. (2.33). If C is adjusted to a large value, most of the slack variables i  should be 

very small to ensure 
1

1
( )

2

l
T

i

i

C 


  w w w+ in Eq. (2.33) is minimized. In contrast, if 

the penalty term C is adjusted to a relatively small number, slack variables are allowed to 

become relatively large.  

Up to now, the optimization problem in Eq. (2.33) and the constraint in Eq. (2.32) 

could be combined to solve the SVM classifier, as shown in Eq. (2.34). 

, ,

1

1
min

2

subject to ( ( ) ) 1 ( 0, 1,..., )

l
T

w b i

i

T

i i i i

C

y b i l

 

  





     

w w+

w x

                   (2.34) 
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This Eq. (2.34) is also known as the primal problem of a SVM classifier. Oncew

and b are solved from Eq. (2.34), they are substituted into Eq. (2.35) to construct the 

decision function.  

( ) sgn( ( ) )Tf b  x w x                                    (2.35) 

2.2.3 Dual problem 

As previously discussed, the decision function of a SVM classifier in Eq. (2.35) can 

be obtained by solving for w and b from the primal problem in Eq. (2.34). However, 

solving the primal problem is not an easy task. This is because the training samples in Eq. 

(2.34) are mapped into a high-dimensional feature space using a mapping function ( ) x . 

Therefore, the vectorw has the same dimension as the new feature space. Commonly, the 

dimension of the vectorw is too high to conduct any traditional optimization method to 

solve it from Eq. (2.34). So, the primal problem in Eq. (2.34) is usually transformed to a 

dual problem. Then, w and b are solved from the dual problem to generate a decision 

function. 

For simplicity, the derivation of the dual problem is based on the primal problem 

without the slack variables 

,

1
min

2

subject to ( ( ) ) 1( 1,..., )

T

w b

T

i iy b y i l



   

w w

w x

 

A new equation is obtained by moving the right hand side of the second equation 

given above to the left hand side, as shown in Eq. (2.37) 
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( ( ) ) 1 0T

i iy b   w x                                          (2.36) 

To derive the dual problem, the Lagrange dual is introduced as shown in Eq. (2.37). 

The Lagrange dual is generated by subtracting the first equation in Eq. (2.35) by the left 

hand side of Eq. (2.36). 

2

1

1
( , , ) ( ( ( ) ) 1)( 0)

2

l
T

i i i i

i

L b y b  


    w α w w x                      (2.37) 

In Eq. (2.37),w and b are the weight vector and the bias from the original primal 

problem in Eq. (2.34) where 
i is called the nonnegative Lagrange multiplier. According 

to the Karush-Kuhn-Tucker (KKT) conditions, the minimum of the primal problem 

( , ,

1
min

2

T

b  w w w ) can be solved in a two-step process. In the first step, the minimum of 

the Lagrange dual is found with respect tow andb . In the second step, the maximum of 

Lagrange dual is found with respect to the Lagrange multiplier . This criterion is 

illustrated in Eq. (2.38).   

 
 , , 0 ,

1
min max min ( , , )

2

T

b b L b  w α ww w w α                          (2.38) 

First Step 

In the first step for solving Eq. (2.38),  is assumed to be a fixed constant. The 

Lagrange dual in Eq. (3.37) is transformed to Eq. (2.39) by eliminating the parentheses. 

2

1

2

1 1 1

1
( , , ) ( ( ( ) ) 1)

2

1
( )

2

l
T

i i i

i

l l l
T

i i i i i i

i i i

L b y b

y b y

 

   



  

   

   



  

w α w w x

w w x

                         (2.39) 
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If 
1

l

i i

i

y


 >0, the Lagrange dual in Eq. (2.39) is equal to  by makingb   . If

1

l

i i

i

y


 <0, the Lagrange dual in Eq. (2.39) is also equal to  by making b   , as 

shown in Eq. (2.40) 

,

1

min ( , , )  if 0
l

w b i i

i

L w b y 


                              (2.40) 

Then, a more complicated case is considered if
1

0
l

i i

i

y


 . In this case, it can be 

observed that the term
1

l

i i

i

b y


 in Eq. (2.39) is equal to 0. The minimum of the Lagrange 

dual with respect tow and b (Lagrange multiplier is assumed to be fixed) in Eq. (2.39) 

can be simplified, as shown in Eq. (2.41). 

2

, ,

1 1

,

1

1
min ( , , ) min ( )

2

1
min ( ( ) 1)

2

l l
T

b b i i i i

i i

l
T T

b i i i

i

L b y

y

  

 

 



  

   

 



w w

w

w w w x

w w w x



                 (2.41) 

Now, the minimization of the Lagrange dual can be written in a new form as shown 

in Eq. (2.42). 

  , ,

1

1
min ( , , ) min ( ( ) 1)

2

l
T T

b b i i i

i

L b y 


   w ww w w w x              (2.42) 
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The Lagrange dual ( , , )L bw   in Eq. (2.41) is a strict convex function about the 

vector w . It implies ,min ( , , )b L bw w   can be obtained when the partial derivative of 

( , , )L bw   with respect to w is equal to 0, as shown in Eq. (2.43). 

( , , ) 0L b





w
w

                               (2.43) 

Eq. (2.43) is expanded as  

1

1
( , , ) 2 ( ) 0

2

l

i i i

i

L b y 



   


w w x

w
                         (2.44) 

The value of vectorw  can be obtained by solving Eq. (2.44) 

1

( )
l

i i i

i

y 


w x                                          (2.45) 

Eq. (2.45) implies that w is a linear combination of the training instances ( ix and iy ) 

and the Lagrange multiplier ( i ). Till now, the two conditions for
1

l

i i

i

y


 >0 and
1

l

i i

i

y




<0 have both been investigated. By substituting the expression ofw in Eq. (2.45) into the 

right hand side of Eq. (2.42), the Lagrange dual can be simplified as shown in Eq. (2.46). 

1

1 1 1 1 1

1 , 1
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2

1
( ) ( )

2

l
T T

i i i

i

l l l l l
T T

i i i i i i i i i i i i i
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w w x

x x x x

x x

   (2.46) 
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By combining Eq. (2.40) and (2.46), Eq. (2.38) can be rewritten as shown in Eq. 

(2.47).  

 0 ,max min ( , , )b L b w w   

    ≥0 
1 , 1 1

1
( ) ( ) if 0

2

l l l
T

i i j i j i j i i

i i j i

y y y    
  

   x x               
1

 if 0
l

i i

i

y


        

(2.47) 

Second Step 

In the second step for solving Eq. (2.38) or Eq. (2.47), the maximum of the 

Lagrange dual needs to be found with respect to the Lagrange multiplierα . In Eq. (2.47), 

minus infinity is obviously not the maximum of the dual problem. Therefore, the 

maximum of the Lagrange dual problem occurs only if
1

0
l

i i

i

y


 , as illustrated in Eq. 

(2.48). 

 0 , 0

1 , 1 1

1
max min ( , , ) max ( ) ( ) if 0

2

l l l
T

b i i j i j i j i i

i i j i

L b y y y     

  

 
   

 
  w α

w x x 

(2.48) 

For simplicity, 
1

l

i i

i

y


 is converted into vector form, as shown in Eq. (2.49). 

1

l
T

i i

i

y


  y                                                  (2.49) 

Then, Eq. (2.48) is simplified by substituting Eq. (2.49), as shown in Eq. (2.50).  
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1 , 1

1
max ( ) ( )

2

subject to 0( 0, 1,..., )

l

l l
T

i i j i j i jR
i i j

T

i

y y

i l


   




 

 
 

 

   

  x x

y 

                      (2.50) 

To further simplify Eq. (2.50), a unit vector is defined in Eq. (2.51). 

[1,...,1]Te                                  
(2.51)  

Then, 
1

l

i

i




 can be written as the product of e and  in vector form, as shown in Eq. 

(2.52). 

1

l

i

i




  e                                         (2.52) 

A matrix Q is defined as shown in Eq. (2.53). 

( ) ( )T

ij i j i jQ y y   x x                                     (2.53) 

The Lagrange dual can be simplified by substituting Eq. (2.51), Eq. (2.52), and Eq. 

(2.53) into Eq. (2.50), as shown in (2.54). 

1 , 1

1
max ( ) ( )

2

1
max

2

1
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l

l

l
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i i j i j i jR
i i j

T
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T
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  x x

e

e

  

  

                          (2.54) 

The final format of the SVM dual problem after all simplifications is shown in Eq. 

(2.55). 
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1
min

2

subject to 0 ( 0, 1,..., )

l

T

R

T

i

Q

i l






 

   

e

y

  



                                (2.55) 

As mentioned at the beginning of this section, slack variables 
i and the penalty 

term are neglected in the derivations. The final form of the dual problem is shown in Eq. 

(2.56) considering all these terms.  

1
min

2

subject to 0 (0 , 1,..., )

l

T

R

T

i

Q

C i l






 

    

e

y

  



                    (2.56) 

The Lagrange multipliers i can be solved from Eq. (2.56). The method for solving 

Lagrange multipliers will be illustrated in next section. Once the Lagrange multipliers are 

obtained, they are substituted into the Eq. (2.45) to generate the weightw . 

1

( )
l

i i i

i

y 


w x                                  (2.45) 

The new decision function, as shown in Eq. (2.57), is obtained by substituting the 

expression of w into the decision function in Eq. (2.35).  

1

sgn( ( ) )

sgn( ( ) ( ) )

T

l

i i i

i

b

y b



  


 

 

w x

x x
                              (2.57) 

2.2.4 Decomposition Method 

Since it is often difficult to directly solve w from the primal problem, the primal 

problem of SVM classification is transformed to the dual problem. Computer programs 
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are employed to solve the Lagrange multiplier
i  from the dual problem. However, an 

immediate difficulty to solve the dual problem in Eq. (2.56) is that Q is a l l  fully dense 

matrix, as shown in Eq. (2.58). 

( ) ( )( 1,...,  and 1,..., )T

ij i j i jQ y y i l j l   x x                       (2.58) 

As an example, consider that a classification problem has 30,000 training samples 

( 30,000l  ). The Q matrix in this problem is a 30,000 30,000 fully dense matrix. It 

takes 30,000 30,000 8 / 2  bytes (about 3GB) of computer RAM to store this matrix. 

Normal personal computers usually do not have free memory space of this size. 

Therefore, it is difficult to store the matrix Q in a personal computer. 

A solution to overcome this difficulty is the decomposition method. Instead of 

directly solving the entire vector  from the dual problem, the decomposition method 

works only on a subset of the Lagrange multiplier per iteration. In this way, only a few 

columns of the Q matrix are needed per iteration. The indexes of the subset are defined as 

a working set B. The indexes that are not in the working set B are defined as an idle set

{1,..., }N l B  . Using this partition method, the Lagrange multiplier vector   is 

divided into two sub vectors as[ , ]B N  . Similarly, the Q matrix is divided into 4 sub 

matrixes including BBQ , BNQ , NBQ , and NNQ , as shown in Eq. (2.59). 

1
min [ ]

2

Subject to 0 , , 0

B

BB BN B BT T T T

B N B N

NB NN N N

T T

t B B N N

Q Q
e e

Q Q

C t B y y



 
 

 

  

     
       

     

    

              (2.59) 



49 
 

 

An iteration solution is utilized in the decomposition method. At each iteration, the 

Lagrange multipliers in the idle set ( ,k k N  ) are treated as constants. Only those 

Lagrange multipliers in the working set ( ,k k B  ) are treated as variables and solved in 

a sub optimization problem. In this way, Eq. (2.59) can be further simplified to a sub 

problem shown in Eq. (2.60) by merging all the constant terms. 

1
min ( ) constant

2

Subject to 0 , , 0

B

T

B BB B B B BN N

T T

t B B N N

Q e Q

C t B y y

    

  

   

    

                  (2.60) 

In an extreme situation, the working set B contains only two objects: i and j. 

Therefore, only two Lagrange multipliers need to be solved per iteration. Compared with 

the original problem in Eq. (2.56), this sub problem is a much smaller optimization 

problem and can be solved using a common personal computer. Objects in the working 

set B are different per iteration. The iteration process is terminated if all the Lagrange 

multipliers are solved. The composition method exhibits promising convergence and is 

adopted by the SVM classification software. 

2.2.5 Kernel Methods 

As discussed in section 2.2.3, mapping functions are introduced to the SVM 

classification to transfer training and testing samples to a high-dimensional feature space. 

In this section, kernel functions are introduced to replace mapping functions. This is 

because the kernel calculation is more effective than the mapping function. The basic 

format of a kernel is defined in Eq. (2.61). In the equation, the inner product of the two 

mapping functions can be calculated by the kernel function ( , )K x y using only one 
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calculation. Therefore, computing time can be generally saved by using kernels to replace 

mapping functions. 

( , ) ( ) ( )TK  x y x y                                         (2.61) 

The simplest kernel is the linear kernel. The equation of the linear kernel is shown 

in Eq. (2.62). It can be observed that no mapping functions are used on the right hand 

side of Eq. (2.62). Hence, the linear kernel is generally used in the linearly separable 

SVM classification.  

( , ) TK x y x y                                          (2.62) 

An extensively utilized kernel function is called the polynomial kernel, as shown in 

Eq. (2.63). In the equation, d is a natural number called the degree. 

( , ) ( )T dK x y x y+ 1                                    (2.63)  

Another extensively used kernel is the radial basis function kernel (RBF), as shown 

in Eq. (2.64). In the equation,   is a positive parameter of radius controlling. 

2

( , )K e



x- y

x y                                         (2.64) 

Once kernels are introduced, the Q matrix in Eq. (2.53) can be rewritten in the 

kernel form, as shown in Eq. (2.65). In the equation, the inner product of the two 

mappings of the two feature vectors, ( ) ( )T

i j x x , are replaced by the kernel function. 

( ) ( )

( , )

T

ij i j i j

i j i j

Q y y

y y K

 



x x

x x
                                   (2.65) 
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Similarly, the decision function in Eq. (2.57) can be written in a simpler kernel form, 

as shown in Eq. (2.66). By introducing kernel functions, all mapping calculations in the 

dual problem can be replaced by a simple kernel calculation, and the computational 

complexity is therefore reduced.  

1

1

sgn( ( ) )

sgn( ( ) ( ) )

sgn ( )

T

l

i i i

i

l

i i i

i

b

y b

y K b



  







 

 

 
  

 





w x

x x

x , x

                             (2.66) 

Kernel parameters are introduced to SVM if kernel methods are used. For example, 

if the RBF kernel (
2

( , )K e



x- y

x y ) is used, the positive kernel parameter is added to 

the dual problem. Or, if the polynomial kernel is utilized, the kernel parameter d is 

introduced to the dual problem. To solve the dual problem, kernel parameters like and d 

must be assigned with a specific value.  

2.2.6 Parameters Selection 

As demonstrated in the previous section, kernel parameters in the dual problem 

must be assigned with a specific value. For example, the RBF kernel is used in the SVM 

dual problem, as shown in Eq. (2.64). In this case, the value of the kernel parameter

should be determined.  

2

( , ) i j

i jK e



x -x

x x                                            (2.64) 

Besides the kernel parameter, the penalty parameter C in Eq. (2.56) should also be 

assigned with a specific value. The process to determine the parameters like C and in 
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the dual problem is called parameter selection. A method of parameter selection is called 

a grid search (Figure 18). By assigning the parameters C and  with different values, the 

SVM classifier achieves different levels of cross-validation (CV) accuracies. In this 

method, all grid points of ( , )C  are examined to find an optimal point (or a region) that 

returns the highest cross validation accuracy. The C and  values represented by this 

optimal point (or this region) are substituted into the dual problem to generate the final 

classifier. 

 

Figure 18. Parameter selection using grid search [46] 

An example is shown here to illustrate the cross validation accuracy. Here, “people” 

are used as training samples. Features of a sample (or a person) include personal 

information like weight, height, and age. A sample’s class label is represented by the 

person’s gender. 
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Table 1. 10 training samples consisting of 3 features 

Gender Height Weight Age 

M 6'2'' 190 23 

M 6'1'' 198 30 

M 5'8'' 169 15 

M 5'7'' 159 26 

M 4' 135 12 

F 5'11'' 199 52 

F 5'11'' 180 33 

F 5'3'' 152 16 

F 5' 139 25 

F 3'11'' 99 9 

 

A SVM classifier named “Classifier 1” is established based upon the training data 

in Table 1. A two-fold cross validation is conducted here to obtain the cross validation 

accuracy. In the two-fold cross validation, all the training samples are separated into two 

subsets, as shown in Table 2. Each subset contains 5 training samples. 

Table 2. Training samples divided into two subsets 

(a) Subset 1 

Gender Height Weight Age 

M 6'2'' 190 23 

M 6'1'' 198 30 

M 4' 135 12 

F 5'3'' 152 16 

F 5' 139 25 
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(b) Subset 2 

Gender Height Weight Age 

M        M 5'8'' 169 15 

M         F 5'7'' 159 26 

F          F 5'11'' 199 52 

F          F 5'11'' 180 33 

F         M 3'11'' 99 9 

 

In the cross validation, the class labels of the samples in Subset 2 are assumed to be 

unknown. The samples in the Subset 1 are used to train a new SVM classifier named 

“Classifier 2”. Classifier 2 is then utilized to predict the class labels of the samples in 

Subset 2. These labels predicted by Classifier 2 are marked in bold in Table 2 (b). It can 

be observed that the second and fifth samples are incorrectly predicted. Therefore, the 

cross validation accuracy in this case is three out of 5, which is 60%. 

Cross validation accuracy and testing accuracy are not always the same in value. 

However, they are tightly correlated to each other. In general, a classifier with a high 

cross validation accuracy finally achieves a promising testing accuracy. In the same way, 

a classifier with poor cross validation accuracy is more likely to obtain a low testing 

accuracy. Therefore, the parameter combination that achieves the highest cross validation 

accuracy is always preferred in the parameter selection process. 



55 
 

 

2.3 Multiple-Class Support Vector Machine Classification 

In Section 2.2, the solution for the two-class SVM classifier was demonstrated. 

However, a SVM classification problem sometimes has more than two classes of samples. 

This type of problem is known as a multiple-class SVM classification problem. Two 

methods have been developed for solving a multiple-class SVM classifier, and they are 

shown in the following sections.  

2.3.1 One-Against-The-Rest Strategy 

The first method for solving the multi-class support vector machine classifier is 

known as the one-against-the-rest strategy. A k (k>2) class multiple-class classification 

problem is shown here to demonstrate this strategy. 

In the first step of the one-against-the-rest strategy, samples in the entire k classes 

are divided into two sub-classes: Class 1A and Class 1B . Sub-class 1A  contains the original 

Class 1, and Sub-class 1B contains the original Class 2 to Class k, as shown in Figure 19. 

 

Figure 19. The first step to solve a multi-class classifier 
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 A two-class classifier called “Classifier 1” is constructed based on the samples of 

Sub-class
1A  and Sub-class

1B  . The class label of Sub-class
1A  is defined as +1, and the 

label of Sub-class
1B  is defined as -1. The decision function

1d of Classifier 1 is shown in 

Eq. (2.67).  

1 1 1( )Td b  w x                                         (2.67) 

In the second step, samples in the entire k classes are also divided into 2 sub-classes, 

as shown in Figure 20. Sub-class 2A contains the original Class 2. Sub-class 2B contains 

the original Class1, Class 3 and the rest till Class k. 

 

Figure 20. The second step to solve a multi-class classifier 

A second two-class classifier named “Classifier 2” is generated based upon training 

samples in Sub-class 2A and Sub-class 2B  . The decision function 2d of Classifier 2 is 

shown in Eq. (2.68) 

2 2 2( )Td b  w x                                (2.68) 
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Using the same approach, in the last step (or 
thk step), samples in the original k 

classes are divided into Sub-class 
kA  and

kB  , as shown in Figure 20. 

 

Figure 21. The final step to solve a multi-class classifier 

The decision function of the
thk classifier is shown in Eq. (2.69) 

( )T

k k kd b = w x                                 (2.69) 

Therefore, k decision functions are finally obtained, as shown in Eq. (2.70) 

 

             

             

 
             

                                     (2.70) 

A testing sample jx that belongs to the original Class j is substituted into all the 

decision functions in (2.70). Obviously, the 1
st
 decision function 1d returns a negative 

class label because jx does not belong to the original Class 1, as shown in Eq. (2.71) 

1 1( ) 0T

j b  w x                                        (2.71) 
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Similarly, the 2
nd

 decision function
2d also returns a negative class label because jx

does not belong to the original Class 2, as shown in Eq. (2.72) 

2 2( ) 0T

j b  w x                                        (2.72) 

In fact, all other decision functions return negative class labels except the thj

decision functions jd . Decision function jd returns a positive value because jx is in the 

original Class j, as shown in Eq. (2.73). Therefore, it is concluded that the testing sample

jx  belongs to Class j.  

( ) 0T

j j jb  w x                                           (2.73) 

2.3.2 One-Against-One Strategy 

The second method to solve a multiple-class SVM classifier is called the one-

against-one strategy. The principle of this method is to select training samples from only 

two classes at each time, and a two-class classifier is generated based upon these samples. 

In a k-class (k>2) SVM classification problem, 
( 1)

2

k k 
different two-class classifiers 

are generated using this method. Therefore, a total of 
( 1)

2

k k 
 different decision 

functions are generated. For example, in a 4-class SVM problem, 6 two-class SVM 

classifiers are generated based upon sample combinations as shown below. The 6 

decision functions of these 6 two-class classifiers are shown in Table 3. 

( 1, 2);( 1, 3);( 1, 4);( 2, 3);( 2, 4);( 3, 4)Class Class Class Class Class Class Class Class Class Class Class Clalss  
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Table 3. 6 two-class decision functions obtained in a 4-class SVM classification 

1st class 2nd class Decision functions 

Class 1 Class 2 
12 12 12( )Tf b  w x  

Class 1 Class 3 
13 13 13( )Tf b  w x  

Class 1 Class 4 
14 14 14( )Tf b  w x  

Class 2 Class 3 
23 23 23( )Tf b  w x  

Class 2 Class 4 
24 24 24( )Tf b  w x  

Class 3 Class 4 
34 34 34( )Tf b  w x  

To predict the class of a testing sample x , it is substituted into the 6 different 

decision functions. The 6 decision functions return 6 predicted class labels, as shown in 

Table 4. 

Table 4. 6 predicted class labels obtained by substituting data x  into the 6 different 

decision functions 

1st class 2nd class Decision function Predicted class 

Class 1 Class 2 
12 12 12( )Tf b  w x  

2 

Class 1 Class 3 
13 13 13( )Tf b  w x  

1 or 3 

Class 1 Class 4 
14 14 14( )Tf b  w x  

1 or 4 

Class 2 Class 3 
23 23 23( )Tf b  w x  

2 

Class 2 Class 4 
24 24 24( )Tf b  w x  

2 

Class 3 Class 4 
34 34 34( )Tf b  w x  

3 or 4 

 

Assume a testing sample x is in Class 2 (but the classifier does not know it). The 

first decision function 12f correctly predicts its class label to be 2. Since the second 



60 
 

 

decision function
13f is generated based on Class 1 and Class 3, 

13f cannot correctly 

predict the class label of sample x . Therefore,
13f predicts its label to be either Class 1 or 

Class 3. Finally, three out of the 6 decision functions,
12f ,

23f , and
24f , correctly predict 

the class label of x . The other three decision functions,
13f ,

14f , and 
34f , simply predict 

some random class labels. However, no matter what class labels they predict, Class 2 

wins the maximum votes the from the 6 decision functions (three out of 6). The class 

label that receives the most votes is chosen to be the class label of the unknown sample. 

Therefore, the unknown sample x is predicted to belong to Class 2. 

2.4 Chapter Recap 

In this chapter, the primal problem of SVM classification was derived from a 

Euclidean point of view. The primal problem was transformed to the dual problem for 

simplicity. A decomposition strategy was introduced for solving the SVM dual problem. 

The parameter selection technique was utilized to determine kernel parameters and the 

penalty parameter. Finally, two multiple-class SVM classification methods were 

discussed. 
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Chapter 3 

3. Time-Frequency Representations 

As mentioned in Section 1.2.2, damage sensitive features are extracted by applying 

signal-processing algorithms in the guided wave SHM method. In this research, the time-

frequency representation (TFR) method is chosen for analyzing the damage signals. In 

this chapter, some common time-frequency representation methods are investigated. 

Time-frequency representations using different methods based upon a damage signal are 

generated and compared. The optimal TFR method is finally chosen for the damage 

signals analyses in this research. 

3.1 TFR methods 

The two classical signal representation methods are the time-domain representation 

and the frequency domain representation. The time-domain representation is not localized 

with respect to frequency. In the time-domain representation, a signal is represented as 

wave amplitude versus time. The time-domain representation is direct and easy to 

understand, but it is not capable of diagnosing complex signals with multiple frequency 

components [47]. The frequency representation is non-localized with respect to time. A 

signal is represented as its amplitude versus its frequency in this representation. The 

frequency-domain analysis is capable of identifying the signal components in complex 

signals, but it doesn’t represent the signal’s time-varying phenomenon [48]. The time-
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frequency representation is developed because of these drawbacks of the time-domain 

and frequency-domain representations. Time-frequency representation describes a signal 

as a function in a two-dimensional (time and frequency) space. Several popular time-

frequency analysis methods including Short Time Fourier Transform, Wigner-Ville 

Distribution, and Wavelet Transform are discussed in the following sections. 

3.1.1 Short Time Fourier Transform 

The Short time Fourier transform (STFT) method is widely used for analyzing time-

varying signals that contain multiple frequency components. The basic idea of this 

method is to break up a signal into small time segments and conduct Fourier analysis 

based upon each time segment to obtain the frequency spectrum in each. By studying the 

spectrum of each time segment, the frequencies that exist in each time segment can be 

observed.  By combing the spectrums in all the small time segments, a frequency 

spectrum varying with time is obtained.  

To study a signal ( )f   around a specific time point t, the original signal is 

modified by multiplying a window function ( )h t . The modified signal is shown in Eq. 

(3.1). 

( ) ( ) ( )tf f h t                                                (3.1) 

In Eq. (3.1), t represents a fixed time point around which the original signal is 

analyzed.  represents the running time. ( )h t  is called the window function, and it 

implies that only a small portion of the original signal is observed, just like only a portion 

of the entire scenery can be seen through a window. The window function ( )h t  keeps the 
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modified signal ( )tf   almost unchanged from the original signal wave ( )f   around the 

fixed time t. But, it converts the original signal ( )f   to 0 in the time regions far from the 

fixed time point t [47]. The modified signal ( )tf   is illustrated in Eq. (3.2). 

       
                                  
0                             

                              (3.2) 

The Fourier transform is applied to the modified signal in Equation (3.1) to obtain 

the frequency distribution around the fixed time point t, as shown in Eq. (3.3). 
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The term ( , )fS t  is known as the STFT in vicinity to the fixed time point t. The 

energy density spectrum spP at the fixed time point t is shown in Eq. (3.4). 
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Using Eq. (3.4), a graph of the energy density spectrum distribution in the entire 

time domain and frequency domain can be generated. This graph is also known as the 

spectrogram [47]. The spectrogram represents how the signal energy density varies with 

respect to time and frequency.  

If the window size is increased too large in the spectrogram, the frequency 

components that change with time cannot be clearly observed. It implies that the time 
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resolution is decreased by increasing the window size. In contrast, the frequency 

resolution is decreased if the windows size is decreased. Therefore, the windows size of 

STFT has to be carefully chosen to obtain both promising time and frequency resolutions.  

3.1.2 Wigner-Ville Distribution 

Due to the resolution limitation of the STFT method, some other time-frequency 

representation methods have been developed. One of the most studied methods is the 

Wigner-Ville distribution (WVD). It was first introduced by Eugene Wigner for an 

application of quantum mechanics in 1932, and it was derived independently by J. Ville 

using a different approach in 1948. WVD has recently been recognized as a powerful tool 

for analyzing time-varying signals.  

The analytic associate of a time-varying signal ( )f t  is described in Eq. (3.5). 

( ) ( ) [ ( )]z t f t jH f t                                         (3.5) 

In Eq. (3.5), [ ( )]H f t  is the Hilbert transform of the real signal ( )f t . In Eq. (3.6), 

 is the Cauchy principal value of the integral. 

( )
[ ( )] ( )

( )

s u
H f t du

t u









                                    (3.6) 

The equation of WVD in terms of a signal ( )z t is described in Eq. (3.7). 

* 2( , ) ( ) ( )
2 2

j fW t f z t z t e d  






                          (3.7) 
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Equivalently, the WVD can be written in terms of the signal’s spectrum ( )F   in Eq. 

(3.8). 

*1
( , ) ( ) ( )

2 2 2

jtW t f F F e d
 

  





                               (3.8) 

To obtain the WVD attribute of a signal at a specific time point t, the signal pieces 

at a past time (
2

t


 ) and a future time (
2

t


 ) are multiplied and added up [48]. 

Therefore, the WVD attribute at a time point t can be simply examined by folding the left 

side of the signal to the right side and see if any overlap exists. The WVD of a signal is 

permanently zero at any time point before the signal starts or after the signal ends. This is 

because nothing overlaps by folding the signal with respect to these time points. 

The WVD is usually nonzero at a time point t where the signal amplitude is zero. 

As an example, a signal is shown in Figure 22. The signal amplitude is zero between the 

time points 1t  
and 2t . The time point 0t is at the center of 1t  

and 2t . Obviously, overlaps 

exist by folding the signal with respect to the time point 0t . Therefore, WVD is not 

usually zero at the time points where no signals exist. This phenomenon is an obvious 

shortcoming of the WVD known as the interference or cross term.   

 

Figure 22. The Wigner-Ville distribution at time 0t  
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3.1.3 Wavelet Transform 

The Wavelet transform (WT) method is extensively used to analyze signals that 

exhibit noisy, aperiodic, intermittent, and transient features [48-49]. The WT analysis 

was first developed to study seismic signals in the middle 1980s. The applications of the 

WT rapidly grew in the beginning of the 1990s. In this method, small wavelike functions 

also known as wavelets, are utilized to analyze signals. Common wavelets are Haar, 

Morlet, and Mexican hat. A Mexican hat is depicted in Figure 23. 

 

Figure 23. A Mexican hat wavelet 

A wavelet can be manipulated in two ways. First, a wavelet can be moved to 

various locations along a signal. As shown in Figure 23, the location of the wavelet is 

dominated by parameter b. Secondly, a wavelet can be stretched or squeezed, and the 

dilation of a wavelet is controlled by the parameter a. The basic idea of the WT method is 

to compare the local matching between the wavelet and the signal. If the wavelet matches 
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the shape of the signal well at a certain location (parameter b) and dilation (parameter a), 

a large wavelet transform value is obtained, as depicted by point 1 in Figure 24. On the 

contrary, if the wavelet and the signal do not match well at a certain location and dilation, 

a low wavelet transform value is obtained, as shown at point 2 in Figure 24. 

 

Figure 24. The basic principle of Wavelet Transform 

To become a wavelet, a function ( )t should meet some requirements. The first 

requirement is that its energy must be finite, as shown in Eq. (3.9). 

2
( )E t dt




                                           (3.9) 

The second requirement is that the function ( )t must satisfy Eq. (3.10).  
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                                         (3.10) 

^

( )f  is the Fourier transform of the wavelet, as shown in Eq. (3.11). 

^
2( ) ( ) i ftf t e dt 





                                      (3.11) 

The WT of a signal is defined as the convolution of the wavelet function and the 

signal. This is illustrated in Eq. (3.12). 

*1
( , ) ( ) ( )

t b
WT a b x t dt

aa







                            (3.12) 

The function ( )t in (3.12) is called the mother wavelet. The energy density of the 

WT is demonstrated in Eq. (3.13).  The plot of the energy density ( , )E a b is also known 

as the scalogram, and it is equivalent to the spectrogram of the STFT. 

2
( , ) ( , )E a b WT a b                                           (3.13) 

3.2 TFR Method Selection 

Three time-frequency analysis methods were illustrated in the previous sections. In 

this section, a damage signal is generated using a finite element analysis tool named 

ABAQUS
®
. The three time-frequency analysis methods are conducted based upon the 

damage signal to generate different time-frequency representations (TFR) graphs. These 

TFR graphs are compared to choose the optimal TFR method. 
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To examine the TFRs of a damage signal, a damage scenario is simulated using a 

finite element analysis tool named ABAQUS
®
. In the ABAQUS

®
 model, a 2-m long 

aluminum beam is simulated. The beam thickness is 3-mm. Two 1-cm by 1-cm PZT 

transducers are attached to the center of the beam. A corrosion of 3-cm wide is made on 

the beam at a distance of 15-cm from the transducers, as shown in Figure 25 (b).  

 

 

Figure 25. Two damage scenarios simulated in ABAQUS
®
 (a) a crack scenario (b) a 

corrosion scenario 

A 50 kHz center frequency, Hanning windowed, tone-burst signal is generated by 

the PZT actuators. As the excited signal travels along the beam, some portions of the 

signal are reflected by the corrosion. The in-plane beam displacement excited by the 

reflected signal is measured at a node close to the PZT actuator on the upper surface of 

the beam, as shown in Figure 26 (a). The sensed signal contains two portions namely, the 

actuating signal and the damage signal reflected by the corrosion. Since only the reflected 

signal is useful for characterizing the damage features, the actuating signal is eliminated 

from the entire sensed signal. Only the corrosion signal is kept for the STFT, as shown in 

Figure 26 (b). The spectrogram of the corrosion signal is depicted in Figure 26 (c). In the 
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spectrogram, different levels of spectrogram intensity represent different levels of energy 

density.  

 

Figure 26. Plots of the sensed signal, damage signal, and the spectrogram of the damage 

signal (a) the sensed signal (b) the reflected damage signal only (c) the Spectrogram of 

the damage signal 

The same corrosion signal is utilized to conduct the Wigner-Ville distribution, as 

shown in Figure 27. Figure 27 (a) illustrates the sensed signal, and Figure 27 (b) shows 

the corrosion signal only by eliminating the actuating signal. The WVD of the corrosion 

signal is depicted in Figure 27 (c). In this figure, a cross term can be observed. 
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Figure 27. Plots of the sensed signal, damage signal, and the Wigner-Ville distribution of 

the damage signal (a) the sensed signal (b) the reflected damage signal only (c) The 

Wigner-Ville distribution of damage signal 

In Figure 28 (c), the wavelet transform based upon the same signal is shown. It can 

be seen that both the time domain and the frequency domain resolutions are not 

promising compared to the STFT spectrogram. Therefore, the STFT is chosen as the TFR 

method for this research. The Spectrograms of damage signals are used for damage 

classifications, as will be demonstrated in the following chapter. By choosing an 

appropriate window size, the STFT is able to provide good resolutions in both time and 

frequency domains. 
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Figure 28. Plots of the sensed signal, damage signal, and the wavelet transform of the 

damage signal (a) the sensed signal (b) the reflected damage signal only (c) the wavelet 

transform of damage signal 

3.3 Chapter Recap 

In this chapter, several common time frequency representation methods have been 

discussed. Time-frequency representations using different methods are generated and 

compared. Finally, the STFT was chosen for transforming damage signals into the 

Spectrograms. Various damage signals were processed using the STFT to generate 

training and testing data for the SVM classification, as will be discussed in the following 

chapter. 
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Chapter 4 

4. Damage Classification and Result Analysis 

The SVM classification theories and TFR methods were demonstrated in the 

previous chapters. Damage signals are processed using the STFT to generate training and 

testing data. In order to conduct the SVM classification, a certain quantity of training 

samples is required. However, generating a large number of training and testing samples 

in the experimental environment is time and money consuming. Therefore, a finite 

element analysis tool named ABAQUS
® 

is utilized to generate training and testing 

samples in this research. ABAQUS
® 

simulation, feature extraction, and damage 

classification are illustrated in detail in the following sections. 

4.1 Training Samples using ABAQUS
®
 

ABAQUS
®
 is a computer software tool for finite element analysis that was first 

released in 1978. ABAQUS
®
 has been extensively applied in aerospace, automotive, and 

civil engineering due to its strong modeling and simulation capabilities. In this research, 

all damage scenarios are simulated in ABAQUS
®

 V6.12. The computer platform used for 

running ABAQUS
®

 is a Dell PRECISION T6600 workstation equipped with an Intel
®
 

Xeon
®

 E5-2603 CPU, 4 GB RAM, and an AMD
®
 FirePro

®
 V4900 graphic adapter. The 
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operation system is a Windows
® 

7 Enterprise edition. A picture of the workstation is 

shown in Figure 29.
 

 

Figure 29. The workstation utilized for running ABAQUS
®

 

To simulate the damage scenarios in ABAQUS
®
, the outlines of the damages 

should be determined first. Figure 30 (a) shows the cross section outline of a crack in a 

metallic material. In the figure, the cross section of a crack looks like a thin cleft. For this 

reason, a crack is represented as a thin notch in ABAQUS
®
 simulation, as shown in 

Figure 30 (b). Similarly, the cross section of a pitting corrosion in a metallic material is 

depicted in Figure 30 (c). It can be observed that the width of the corrosion is generally 

much larger than that of the crack. Also, the corrosion has the shape of a concave 

depression. Therefore, corrosion is represented as a trapezoidal concave in ABAQUS
®
, as 

shown in Figure 30 (d). 
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Figure 30. Cross sections of a crack and corrosion in a real metallic material and the 

ABAQUS simulations (a) a crack in a metallic material (b) a crack simulated in 

ABAQUS
®
 (c) a piece of corrosion in a metallic material (d) a piece of corrosion 

simulated in ABAQUS
®

 

In a 2-dimensional ABAQUS
®
 model for simulating a crack scenario, two 1-cm by 

1-cm PZT actuators are attached to the center of a thin 2-m long aluminum beam, as 

shown in Figure 31 (a). The thickness of the beam is 3-mm. The positive poles of the 

PZT actuators face the opposite direction to each other. A crack is located at a distance “d” 

from the actuators. The width of a crack is 1mm. The depth “t” of a crack varies from 1/8 

to 1/2 of the beam thickness (3-mm). A corrosion scenario is shown in Figure 31 (b). The 

width of corrosion is 3-cm. The cross section of the corrosion is shaped as a trapezoidal 

channel. The other settings of the corrosion scenario are similar to the crack scenario.  
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Figure 31. ABAQUS
® 

models of a crack and a piece of corrosion (a) a crack (b) a piece 

of corrosion 

A 50 kHz center frequency, Hanning windowed, tone-burst signal is generated by 

the PZT actuators. The signal is depicted in Figure 32. 

 

Figure 32. 50 kHz center frequency, Hanning windowed, tone-burst excited signal 

Figure 33 (a) shows the aluminum beam before the excited signal is applied to the 

PZT actuators. A guided wave is generated after the excited signal is applied, as shown in 

Figure 33 (b). As the excited guided wave propagates along the aluminum beam, some 

portions of the wave are reflected by the crack on the beam, and the residual from the 

wave propagates through the damage, as shown in Figure 33 (c). In these figures, the 
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scale factor of the beam displacement is 600,000. It means the beam displacement in the 

figures is 600,000 times as large as the actual beam displacement.  

The sensed signal is obtained by measuring the in-plane beam displacement at a 

node close to the PZT actuator on the upper surface of the beam. As a result, no PZT 

sensor is used in the ABAQUS
® 

model. The entire model, including the beam and the 

PZT actuators, is meshed using triangular elements. A damage model consists of about 

12,000 mesh elements. It takes the workstation about three hours to complete analyzing a 

single model.  

 

Figure 33. The guided wave propagation in an ABAQUS model (scale: x600,000) (a) a 

crack and PZT actuators (b) the guided wave generated by the PZT actuators (c) the 

reflected wave and the residual of the excited wave 

A crack located at a distance of 15-cm from the PZT actuators (d=15-cm) with a 

depth of 1.125-mm (3/8 of the beam thickness) is shown here as an example. As 

demonstrated in the previous chapter, the spectrogram based on the STFT is chosen to 
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analyze the sensed signal for damage classification. The spectrogram of the entire signal, 

including the excited and the reflected signal, is shown in Figure 34 (a). Both the excited 

signal and the reflected crack signal can be seen in this figure. The reflected crack signal 

begins at around 80 s . The crack signal is longer than the excited signal because the 

crack signal contains both the A0 and S0 modes. The crack signal is marked inside a 

dotted rectangle in Figure 34 (a). The spectrogram of the crack signal is marked inside a 

white rectangle in Figure 34 (b). In this spectrogram, different levels of spectrogram 

intensity represent different levels of energy density. Figure 34 (b) indicates that the 

energy is mostly concentrated within the excited signal. The energy density of the 

reflected signal is “weak” compared to the excited signal. The reflected signal is 

highlighted in the “blurry” and light blue region inside the white rectangle in Figure 34 

(b). 
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Figure 34. The sensed signal and its spectrogram (a) the sensed signal (b) STFT 

spectrogram of the sensed signal (d= 15-cm, 3/8 of the beam thickness) 

Since only the reflected signal from the damage is helpful for characterizing the 

damage, the excited signal is eliminated from the whole signal. Only the reflected signal 

is reserved (the region from 81 s to 372 s  of the original signal), as shown in Figure 

35 (a). The spectrogram of the reflected signal alone is depicted in Figure 35 (b). 
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Figure 35. The reflected damage and its spectrogram (a crack of d= 20-cm, depth=3/8 of 

the beam thickness) (a) the reflected signal (b) the spectrogram of the reflected signal 

Several spectrograms of crack signals are depicted in Figure 36. In the figure, the 

distances between the cracks and the PZT actuators are d=15-cm. The depths of the 

cracks change from 1/8 to 4/8 of the beam thickness. It can be observed that outlines of 

these spectrograms are similar. But, positions of the maximum spectrogram energy 

density in these spectrograms are slightly different. 
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Figure 36. Spectrograms of 4 crack signals of d=15-cm (a) a crack of 1/8 beam thickness 

(b) a crack of 2/8 beam thickness (c) a crack of 3/8 beam thickness (d) a crack of 4/8 

beam thickness 

Figure 37 shows the spectrograms of the crack signals of d=20-cm. The depths of 

these cracks vary from 1/8 to 4/8 of the beam thickness. By comparing Figure 36 and 

Figure 37, it can be observed that the spectrogram outlines in Figure 37 are generally 
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“wider” than Figure 36. This is because the reflected wave signal contains multiple wave 

modes with different frequencies. Different wave modes travel at different velocities. As 

the travelling distance increases, the reflected wave becomes more dispersive.  

 

Figure 37. Spectrograms of 4 crack signals of d=20-cm (a) a crack of 1/8 beam thickness 

(b) a crack of 2/8 beam thickness (c) a crack of 3/8 beam thickness (d) a crack of 4/8 

beam thickness 
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4.2 Feature Extraction 

As previously discussed, the spectrograms of the damage signals are processed to 

generate the training and testing data for the SVM classification. In this section, the 

algorithm to transform spectrograms into training and testing feature vectors is 

demonstrated in detail. 

In this research, the spectrogram of a damage signal is saved as a 24 bit (true color) 

TIFF no compression file. In a spectrogram image, each of the red, green, and blue (RGB) 

color channels has 256 (as 2
8
) levels of color depth. Different colors can be described by 

different combinations of RGB color channel depths. For example, the “black” color is 

represented by Red 0, Green 0, and Blue 0, while the “white” color is represented by Red 

255, Green 255, and Blue 255. A spectrogram image is composed of pixels, and RGB 

color depths can be extracted from any pixel in a spectrogram. For example, Figure 38 (a) 

shows the spectrogram of a sensed signal collected in a corrosion scenario. The region in 

the black rectangle is magnified so that the pixels in this region become visible, as 

illustrated in Figure 38 (b). In the figure, the color channel depth information of the “blue” 

pixel marked by the white square can be extracted as: Red 0, Green 36, and Blue 255. 
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Figure 38. The spectrogram of a corrosion signal and a magnified region from the 

spectrogram (a) the spectrogram (b) a magnified region from the spectrogram 

This process can be used to extract the color depth information of all the pixels in a 

spectrogram. Different spectrograms have different distributions of color channel depth 

information. The difference in the distribution of the color depth information can be used 

to describe the difference between different spectrograms. Therefore, the distribution of 

the RGB color depth in the pixels can be used as “features” to describe a spectrogram. 

Color depth information of all the pixels in a spectrogram can be reorganized to generate 

a feature vector for SVM training and testing. To improve the SVM classification 

accuracy, signal frequencies represented by pixels in a spectrogram are also used as 

additional features in the feature vectors. For example, the pixel in the white rectangle in 

Figure 39 (b) represents a frequency level around 5.1x10
4 

Hz.  

The algorithm for organizing color depth information and frequency information 

and generating a SVM feature vector is demonstrated in Figure 39. In the figure, the color 
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depth and frequency information of all the pixels in a spectrogram are chained together to 

generate a lengthy feature vector. The RGB color depth information of the first pixel in 

the spectrogram (the pixel at the upper left corner) is extracted and placed in the first 

three elements of the feature vector. The frequency represented by the first pixel is 

calculated and placed in the fourth element of the feature vector.  The color depths and 

frequency of the second pixel are stored in the next adjacent 4 elements. This process is 

repeated to all other pixels in the spectrogram until the RGB color depth and the 

frequency of the last pixel is stored in the feature vector. The length of a feature vector is 

related to the size of a spectrogram image. As an example, if the size of a spectrogram is 

500 250 pixels, the length of the features vector is 500  250 4=500000. 

 

 

Figure 39. The generation of a feature vector from a spectrogram 

4.3 Two-Class Classification and Results 

The algorithm for transforming a spectrogram to a feature vector was demonstrated 

in the previous section. Feature vectors of other damage scenarios can be obtained using 

the same algorithm. In this research, 80 damage samples (40 cracks and 40 corrosions) 

have been simulated using ABAQUS
®
. The distances between the damages and the PZT 

actuators of these 80 samples vary from 10-cm to 22-cm. The depths of the damages vary 
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among 1/8, 2/8, 3/8, 4/8 and 6/8 of the beam thickness. In the two-class classification, 64 

out of the 80 samples are used as training samples. The damage types, locations, and 

depths of these training samples are listed in Table 5. 

Table 5. 64 training samples for the SVM two-class classification
 

 

16 out of the 80 damage samples are used as testing sample. The distances from the 

PZT actuators to the damages of these testing samples vary from 10-cm to 22-cm. The 

damage thicknesses of the testing samples are 3/8 of the beam thickness. The damage 

type, location, and depth of these testing samples are listed in Table 6. All the 
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spectrograms of the training and testing samples for the two-class classification are 

shown in Appendix A. 

In the training process of the two-class SVM classification, all the 64 training 

samples are utilized to train a two-class classifier. Cross validation accuracy is checked in 

the training process because high cross validation accuracy is also expected. In the testing 

process, each of the 16 testing samples is predicted by the classifier. The testing sample’ 

predicted label is compared with its original label to examine if the prediction is correct. 

Table 6. 16 testing samples for the SVM two-class classification

 

A two-class damage classification algorithm is developed based upon support 

vector machine theory on the MATLAB
® 

platform. The computer utilized to run the 

SVM classification code is a SONY
®
 VPCCW21FX laptop equipped with an INTEL

®
 i3 

2.13 GHz processor and 4 GB RAM. The operation system is a 64-bit Windows 7 

Ultimate Edition. It took the computer 37.49 seconds to complete running the code. The 

cross validation accuracy was 89.06%. All the 16 testing samples are correctly classified. 
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Therefore, it can be concluded this two-class classifier exhibited good generalization 

capability. 

4.4 Multiple-Class Classification and Results 

As mentioned in Chapter 1, crack detection is vital for the aerospace industry 

because catastrophic consequences are usually incurred if an initial crack evolves to a 

critical size. Therefore, a multiple-class damage classification method is developed to 

evaluate the evolution extent of a crack.  

As discussed in the previous section, the damage samples are divided into only two 

classes by the damages’ type in the two-class classification. For the multiple-class 

classification, however, all the damage samples are divided into 4 classes by the damage 

depths. The first class consists of damages with depth of 1/8 of the beam thickness. 

Similarly, the second, third, and fourth class consist of damages with depths of 2/8, 3/8 

and 4/8 of the beam thickness, respectively. In this research, 60 crack samples are used as 

training samples. The damage locations of the 60 samples vary from 10-cm to 27-cm. 

The features of these training samples, including damage type, location, and thickness, 

are listed in Table 7. 



89 
 

 

Table 7. Training samples for the 4-class classification

 

A 4-class classifier is established by training the 60 training samples listed in Table 

7. The 12 damage samples in Table 8 are used as testing samples to examine the 

performance of the classifier. The damage locations of testing samples vary among 13-

cm, 14-cm, and 24-cm. The thicknesses of the testing samples vary among 1/8, 2/8, 3/8, 

and 4/8 of the beam thickness. 
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Table 8. Testing Samples for the 4-class classification

 

 As previously mentioned, the energy density is normalized by the maximum 

energy density in each spectrogram for the two-class classification. It means that the 

maximum energy density in any spectrogram is always normalized to 1, no matter what 

its actual value is. It also implies that the points that represent the maximum energy 

densities in different spectrograms always exhibit the same color (the most intense color), 

no matter how much difference exists among the actual values of the energy densities. 

This is because, for the two-class classification, the outlines of spectrograms are more 

concerning than the energy densities. Figure 40 (a) shows the spectrogram of a crack of 

d=15-cm and depth=1/8 of the beam thickness. Figure 40 (b) shows the spectrogram of a 

crack of d=15-cm and depth=4/8 of beam thickness. Although the maximum energy 
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density in the second crack is considerably larger than the first crack, the maximum 

energy density regions in both spectrograms have the similar “bronzing” color, as 

highlighted inside the white rectangles in Figure 40 (a) and 40 (b). 

 

Figure 40. The locations of the maximum energy densities in two different spectrograms 

for the two-class classification (a) spectrogram of a crack (d=15-cm and depth=1/8 of 

beam thickness) (b) spectrogram of another crack (d=15-cm and depth =4/8 of beam 

thickness) 

 To conduct the multiple-class classification, the energy densities in a spectrogram 

are no longer normalized by the maximum energy density in the spectrogram. Instead, 

they are normalized by some predefined maximum energy densities. This implies that 

points that represent the maximum energy densities in different spectrograms no longer 

have the same intense color. This is because the energy density’s actual values of the 
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reflected signals are essential to distinguish damages with different depths. If the excited 

signals are the same, the signal reflected by a deep (or severe) damage generally has more 

intense energy density than a superficial (or initial) damage.  

The spectrograms normalized by a predefined maximum energy density of 4 crack 

signals are illustrated in Figure 41. In these damage scenarios, the distances between 

cracks and PZT actuators are 15-cm. The depths of cracks vary from 1/8 to 1/2 of the 

beam thickness. It can be observed that the colors in the spectrogram become more 

intense as the crack depth increases. This is because the energy density of the reflected 

signal becomes stronger as the damage depth increases. The spectrograms in Figure 41 

can be compared with the spectrograms (normalized to 1) in Figure 36 to examine the 

differences.  
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Figure 41. Spectrograms of different crack signals (d=15-cm) for the multiple-class 

classification (a) the spectrogram of a crack (1/8 of the beam thickness) (b) the 

spectrogram of a crack (2/8 of the beam thickness) (c) the spectrogram of a crack (3/8 of 

the beam thickness) (d) the spectrogram of a crack (4/8 of the beam thickness) 
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A 4-class classifier is established based upon the training samples in Table 7. The 

classifier is used to classify unknown testing samples into one of the 4 classes. 

Equivalently, the classifier is used to predict the thickness of a crack sample. Just like the 

two-class classification, a multiple-class damage classification algorithm is developed 

based upon Support Vector Machine theory on the MATLAB
® 

platform. The cross 

validation accuracy is examined in the multiple-class classification. It took the computer 

15.83 seconds to run the SVM classification code. The cross validation accuracy was 

70.00%. Only 9 out of the 12 testing samples are correctly classified. It turns out that the 

cross validation accuracy is not satisfying.  

To analyze the reason for the poor cross validation accuracy, the 15 training 

samples of Class 1 in Table 4.3 are taken out from the 60 training samples. The training 

samples of Class 2, Class 3, and Class 4 are used to train a three-class classifier. It took 

the computer 11.23 seconds to run the code. The cross validation of this 3-class classifier 

was 91.11%. All the 9 testing samples were correctly classified 100%. Similarly, more 

combinations of the training samples are used to train some more three-class classifiers, 

and the results are shown in Table 9. 
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Table 9. The cross validation accuracy, ratio of correctly classified testing samples, and 

running time for various training cases 

Case Number Training Sample 

Combination 

Cross Validation 

Accuracy 

Correctly classified 

testing samples  

Code Running 

Time (seconds) 

1 Class 1, 2, 3, 4 70.00% 12/16 15.83 

2 Class 2, 3, 4 91.11% 9/9 11.23 

3 Class 1, 2, 3 62.22% 6/9 12.18 

4 Class 1, 2, 4 66.67% 6/9 12.28 

5 Class 1, 3, 4 91.11% 9/9 11.40 

 

From Table 9, it turns out that the cross validation accuracies are generally low if 

the training samples contain samples from both Class 1 and Class 2, such as Case 1, 3, 

and 4 in Table 9. However, a three-class classifier can provide good cross validation 

accuracy, as long as the samples from Class 1 and Class 2 are not used for training 

simultaneously. For examples, Case 2 and Case 5 in Table 9 exhibit good cross validation 

accuracy.  

To prove this assumption, the cracks with 1/8 of the beam thickness are removed 

from training samples, and the cracks of 6/8 of beam thickness are introduced. The cracks 

with 2/8, 4/8, and 6/8 of the beam thicknesses are used as training samples to conduct 

another three-class damage classification. The features including crack depth, location of 

45 training samples are listed in Table 10.  
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Table 10. The training samples for a three-class classifier including cracks of 2/8, 4/8, 

and 6/8 of the beam thickness

 

 

Nine testing samples used in this three-class classification are listed in Table 11. 

The damage locations of testing samples vary among 13-cm, 14-cm, and 24-cm. The 

depths of testing samples vary among 2/8, 4/8, and 6/8 of the beam thickness. All the 

spectrograms of the training and testing samples for this multiple-class classification are 

shown in Appendix B. 

Table 11. Testing samples for a three-class classifier including cracks of 2/8, 4/8, and 6/8 

of beam thickness 
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This time, it took the computer 10.98 seconds to run the code and generate the 

three-class classifier. The cross validation accuracy was 88.89%. All the samples in Table 

4.5 are correctly classified using this classifier. Therefore, it can be concluded that this 

multiple-class classification method exhibits poor performance if the training samples 

contain more than one class of superficial damages (such as the cracks with depths of 1/8 

or 2/8 of the beam thickness). However, this method exhibits good performance if the 

training samples contain only one class of superficial damage. 
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Chapter 5 

5. Conclusion and Recommendations 

Structural health monitoring is a novel damage detection and identification 

methodology in the aerospace, civil, and mechanical engineering industries. Structural 

health monitoring is generally described by steps including damage detection, diagnosis, 

and prognosis. In the first step, the existence and location of damage are evaluated. In the 

second step, the damage type and extent of damage are assessed. In the third step, the 

remaining useful life of the structural system is predicted. The damage classification in 

the diagnosis step is important because it is a premise to the prediction of the remaining 

life of the structure. Damage classification methods have been extensively investigated 

using various machine learning algorithms. However, not much attention has been paid to 

multiple-class damage classification. In this research, a multiple-class damage 

classification method has been developed based upon the SVM theory and the guided 

wave technique. 

5.1 Summary and conclusion 

To develop the multiple-class damage classification method, the guided wave based 

structural health monitoring method is investigated. In an experiment using the guided 

wave method, PZT actuators are used to excite a guided wave signal that propagates 
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along an aluminum beam. Some portions of the excited signal are reflected by damage on 

the beam. The reflected damage signal is examined by measuring the in-plane 

displacement of the beam at a location close to the PZT actuators. 

Damage signals are transformed to time-frequency representations to better 

understand the characteristics of the signals. Several time-frequency analysis methods 

including short time Fourier transform, Wigner-Ville distribution, and Wavelet transform 

are investigated.  The time-frequency plots using these methods are compared with one 

another. By comparisons, the spectrogram based upon the short time Fourier transform is 

chosen. 

To develop a database for damage signals, a finite element tool named ABAQUS
®   

is used to simulate various damage scenarios. The damage signals obtained from the 

ABAQUS
® 

simulations are transformed into spectrograms using the short time Fourier 

transform. A damage classification algorithm is developed based upon Support Vector 

Machine theory on the MATLAB
® 

platform. Support vector machine classifiers are 

established by inputting training samples to the algorithm. A two-class classifier is 

generated to predict the testing samples’ type. A multiple-class classifier is generated to 

predict the damage extent of cracks. The performance and accuracy of the classifiers are 

finally examined. The two class classifier exhibits good classification accuracy. The 

multiple-class classifier also shows good accuracy as long as the training samples contain 

only one class of superficial damage. 



100 
 

 

5.2 Recommendations 

As demonstrated in Section 4.5, the accuracy of the multiple-class classification is 

affected by superficial damage samples. To solve this problem, a coarse-fine 

classification method is recommended. In the method, a damage signal is first examined 

by a coarse multiple-class classification method to determine the approximate depth of 

the damage. Then, the damage signal is substituted into a finer two-class classification to 

predict the more accurate depth of the damage. 

In this research, only 80 damage samples have been simulated in ABAQUS
®
 due to 

the limitations of time and hardware. However, considerably more training samples are 

utilized in typical Support Vector Machine classifications. Therefore, if possible, more 

damage samples are recommended to be generated and used in the future work, 

As discussed in Section 4.3, the signal frequency and energy density distribution in 

spectrograms are used to generate the training and testing data for the Support Vector 

Machine classification. It is desired that more features are extracted from damage signals 

and supplemented to the training and testing data. By doing so, the classification 

accuracy is suspected to improve. 

In this research, the support vector machine multiple-class classification is utilized 

for evaluating the cracks’ extents. Instead of outputting some discrete class labels, the 

support vector machine regression can be used to output continuous numbers. Therefore, 

for future work, it is recommended to develop a support vector machine regression 

algorithm to predict the actual depths of the cracks. 
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APPENDIX A. Spectrograms of Training and Testing Samples for Two-class 

Classification 

1. Corrosion signal spectrograms of d=10-cm and d=13-cm 
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2. Corrosion signal spectrograms of d=15-cm and d=16-cm
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3. Corrosion signal spectrograms of d=18-cm and d=19-cm 
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4. Corrosion signal spectrograms of d=20-cm and d=22-cm 
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5. Crack signal spectrograms of d=10-cm and d=13-cm 
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6. Crack signal spectrograms of d=15-cm and d=16-cm 
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7. Crack signal spectrograms of d=18-cm and d=19-cm 
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8. Crack signal spectrograms of d=20-cm and d=22-cm 
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APPENDIX B. Spectrograms of Training and Testing Samples for Multiple-class 

Classification 

1. Crack signal spectrograms of d=10-cm, 11-cm, 12-cm, and 13-cm 
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2. Crack signal spectrograms of d=14-cm, 15-cm, 16-cm, and 17-cm 
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3. Crack signal spectrograms of d=18-cm, 19-cm, 20-cm, and 21-cm 
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4. Crack signal spectrograms of d=22-cm, 23-cm, 24-cm, and 25-cm 
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5. Crack signal spectrograms of d=26-cm and 27-cm 
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