
Dissertations and Theses

9-2011

Nonholonomic Feedback Control Among Moving Obstacles Nonholonomic Feedback Control Among Moving Obstacles

Stephen Gregory Armstrong
Embry-Riddle Aeronautical University - Daytona Beach

Follow this and additional works at: https://commons.erau.edu/edt

 Part of the Automotive Engineering Commons

Scholarly Commons Citation Scholarly Commons Citation
Armstrong, Stephen Gregory, "Nonholonomic Feedback Control Among Moving Obstacles" (2011).
Dissertations and Theses. 17.
https://commons.erau.edu/edt/17

This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted
for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more
information, please contact commons@erau.edu.

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1319?utm_source=commons.erau.edu%2Fedt%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/edt/17?utm_source=commons.erau.edu%2Fedt%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu

NONHOLONOMIC FEEDBACK CONTROL AMONG MOVING

OBSTACLES

By

Stephen Gregory Armstrong

A Thesis Submitted to the

Physical Sciences Department

In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering Physics

Embry-Riddle Aeronautical University

Daytona Beach, Florida

September 2011

c© Copyright by Stephen Gregory Armstrong 2011

All Rights Reserved

ii

Abstract

A feedback controller is developed for navigating a nonholonomic vehicle in an area

with multiple stationary and possibly moving obstacles. Among other applications

the developed algorithms can be used for automatic parking of a passenger car in a

parking lot with complex configuration or a ground robot in cluttered environment.

Several approaches are explored which combine nonholonomic systems control based

on sliding modes and potential field methods.

Acknowledgments

I would like to thank my advisor, Dr. Drakunov for more than two years of help

and guidance. I also have benefited from frequent advice from my other committee

members, Dr. Berhane, and Dr. Reyhanoglu. I also would like to thank my committee

members for their efforts in reviewing the draft copy of this thesis. Donna Fremont,

and Susan Adams helped me schedule and reschedule my defence. I would like to

thank the Physical Science Department for employing me while I did my studies and,

in the last few months, while I have been writing this. To my parents, thank you

so much for all of your support over the last seven years as I was a student. I will

always be grateful. I used an edited version of a latex style file written by a previous

graduate student, Nathan Haluska. I am grateful to my wonderful girlfriend, Trang

Ta for keeping me focused and cooking nearly every meal that I have eaten over the

last four months. I would also like to thank my friends for staying my friends, even

though I have nearly ignored them since January.

i

Contents

List of Figures v

1 Problem Description 1

1.1 Problem Statement . 1

1.2 Research Scope . 2

1.3 Possible Applications . 3

2 Theory of Systems with Nonholonomic Constraints 4

2.1 Nonholonomic Constraints and Systems 4

2.1.1 Informal Introduction with Examples 4

2.1.2 Formal Definition . 5

2.1.3 Mathematical Preliminaries 6

2.1.4 Degrees of Nonholonomy . 9

2.1.5 Brockett’s Theorem . 10

2.2 Examples of Nonholonomic Systems 12

2.2.1 Nonholonomic Vehicle Model 12

2.2.2 Extension to N Trailers . 14

3 Nonholonomic Control Systems 17

3.1 Nonholonomic Path Planning with Obstacles 17

3.2 Nonholonomic Feedback Control . 20

3.2.1 The Heisenberg System . 20

3.2.2 Bloch-Drakunov Controller . 24

3.3 Feedback Control for Systems with Obstacles 38

ii

CONTENTS iii

3.3.1 Tracking . 38

3.3.2 Example: Tracking in the Heisenberg System 39

4 Optimal Control 43

4.1 Pontryagin’s Maximum Principle . 43

4.1.1 The General Case . 43

4.1.2 The Time-Optimal Case . 47

4.2 Applying Maximum Principle in Configuration Space 48

4.3 Applying Maximum Principle in Heisenberg Space 50

4.3.1 Control Derivation . 50

4.3.2 Optimal Control as Partial Feedback 51

5 Variable Structure Feedback Control for Nonholonomic Systems 54

5.1 Chained-Form Controller, Example: The Car 55

5.2 Hybrid Chain-form and Bloch-Drakunov type Heisenberg System Con-

troller . 58

5.3 Simulink Model of Altered Controller 61

6 Potential Field Methods and Their Applications to Nonholonomic

Systems 69

6.1 Potential Field Method for Obstacle Avoidance in Robotic Systems . 69

6.2 Potential Field Method for Obstacle Avoidance in Systems Without

Nonholonomic Constraints . 70

6.2.1 Simulated Gradient of 2D Potential Field with Image Processing 71

6.3 Transforming Potentials into Heisenberg Space with Paraboloidal Slid-

ing Surface . 73

6.4 Wrapping a Potential Field on a Sliding Manifold Using Geodesic Dis-

tance . 74

6.5 Including Potential in the Lyapunov Function for Obstacle Avoidance 78

6.6 Combined Potential Fields and Sliding Modes 81

6.7 Combined Potential Fields and Sliding Modes (A New Approach) . . 82

CONTENTS iv

7 Conclusions 84

8 Matlab Code 85

8.1 The Main File . 85

8.2 Animating the Car to Demonstrate Simulink Models 89

8.3 Image Processing and Potential Field Functions 91

8.3.1 Image Processing to Find Obstacles 91

8.3.2 Placing Charges on Obstacles and Goal Position 92

8.3.3 Creating the Potential Field 93

8.4 Transformation to Heisenberg Space 94

8.4.1 Putting Obstacles in Heisenberg Space 94

8.4.2 Adding in a Sample Paraboloid 96

Bibliography 97

List of Figures

1.1 Nonholonomic vehicle in a configuration space with moving obstacles 2

1.2 Combining nonholonomic constraints and moving obstacles 3

2.1 Lie bracket motion . 7

2.2 Single car . 12

2.3 Car with N-trailers Murray and Sastry [1993] 15

3.1 The two possible shapes of Dubins Curves. LaValle [2006] 19

3.2 Classic nonholonomic car model . 21

3.3 Bloch-Drakunov controller modeled with Simulink: main window . . 27

3.4 Bloch-Drakunov controller modeled with Simulink: state transformation 28

3.5 Bloch-Drakunov controller modeled with Simulink: variable structure

control Algorithm . 29

3.6 Bloch-Drakunov controller modeled with Simulink: switching condition 30

3.7 Bloch-Drakunov controller modeled with Simulink: controllers a & b . 31

3.8 Bloch-Drakunov controller modeled with Simulink: control transfor-

mation . 32

3.9 Vehicle model . 33

3.10 Model of Bloch-Drakunov controller with initial conditions (0,−20, π/8)

(x and y convergence) . 34

3.11 Model of Bloch-Drakunov controller with initial conditions (0,−20, π/8)

(φ convergence) . 34

v

LIST OF FIGURES vi

3.12 Model of Bloch-Drakunov controller with initial conditions (0,−20, π/8)

(x1, x2 and x3 convergence) . 35

3.13 Model of Bloch-Drakunov controller with initial conditions (0,−20, π/8)

(u1 and u2 convergence) . 35

3.14 Model of Bloch-Drakunov controller with initial conditions (20,−20, π/2)

(x and y convergence) . 36

3.15 Model of Bloch-Drakunov controller with initial conditions (20,−20, π/2)

(φ convergence) . 36

3.16 Model of Bloch-Drakunov controller with initial conditions (20,−20, π/2)

(x1, x2 and x3 convergence) . 37

3.17 Model of Bloch-Drakunov controller with initial conditions (20,−20, π/2)

(u1 and u2 convergence) . 37

3.18 Model of car stabilized by Bloch-Drakunov controller with initial con-

ditions (20,−20, π/2) . 38

5.1 Geometric phase technique . 55

5.2 Classic nonholonomic car model . 56

5.3 Altered Bloch-Drakunov controller modeled with Simulink: main window 61

5.4 Altered Bloch-Drakunov controller modeled with Simulink: control al-

gorithm . 62

5.5 Altered Bloch-Drakunov controller modeled with Simulink: controllers

a & b . 63

5.6 Model of Drakunov-Armstrong controller with initial conditions (20, 0, π/2)

(x and y convergence) . 64

5.7 Model of Drakunov-Armstrong controller with initial conditions (20, 0, π/2)

(φ convergence) . 64

5.8 Model of Drakunov-Armstrong controller with initial conditions (20, 0, π/2)

(x1, x2 and x3 convergence) . 65

5.9 Model of Drakunov-Armstrong controller with initial conditions (20, 0, π/2)

(u1 and u2 convergence) . 65

LIST OF FIGURES vii

5.10 Model of Drakunov-Armstrong controller with initial conditions (−15,−24, π)

(x and y convergence) . 66

5.11 Model of Drakunov-Armstrong controller with initial conditions (−15,−24, π)

(φ convergence) . 66

5.12 Model of Drakunov-Armstrong controller with initial conditions (−15,−24, π)

(x1, x2 and x3 convergence) . 67

5.13 Model of Drakunov-Armstrong controller with initial conditions (−15,−24, π)

(u1 and u2 convergence) . 67

6.1 Producing a 2-dimensional potential field; the image processing steps 72

6.2 Simulated 2-D. obstacles transformed into Heisenberg space 73

6.3 Original β
2α

(x2
1 + x2

2) = |x3| paraboloid drawing from Bloch and Drakunov

[1996] . 75

6.4 Wrapping potential field on to sliding manifold for feedback switching

conditions . 76

Chapter 1

Problem Description

1.1 Problem Statement

To accurately model the movement of most systems in nature, such as human walking

and the rolling of a seed, one has to consider non-integrable velocity constraints.

These types of constraints (known as nonholonomic constraints) are also prevalent

in many manmade mechanical systems, including wheeled vehicles. The control of

these inherently nonlinear systems has received much attention over the past twenty

or so years, because many other systems in nature, for example quantum mechanical

systems, demonstrate similar behavior.

Practical control problems often have both nonholonomic constraints (described

more thoroughly in the next chapter), and holonomic constraints, (constraints on the

configuration space).

The goal of this thesis is to:

Investigate robust methods of feedback control for nonholonomic systems, and to

find a state dependent controller for a nonholonomic system, where certain areas of

the state-space must be avoided. These areas may be time-dependant and in this case,

they are represented as moving obstacles

Additional effort was made towards optimality.

The following cartoon illustrates the problem statement:

1

CHAPTER 1: PROBLEM DESCRIPTION 2

Figure 1.1: Nonholonomic vehicle in a configuration space with moving obstacles

1.2 Research Scope

A lot of research has gone into developing controls for nonholonomic systems, Non-

holonomic systems in configurations spaces with obstacles and systems with mov-

ing obstacles. There has also been a lot of research into feedback nonholonomic

controllers. The aim of this research, and what would be a new contribution, is a

controller which combines all three: - Nonholonomic - Feedback - Obstacles

A diagram is presented to better illustrate the goal.

CHAPTER 1: PROBLEM DESCRIPTION 3

Figure 1.2: Combining nonholonomic constraints and moving obstacles

1.3 Possible Applications

A successful solation to this problem would have applications in many practical prob-

lems. Here are a couple of examples:

I More robust satellite docking algorithms for satellites controlled by momentum

wheels

II A car automatically parking in a parking lot among other moving cars and people

Chapter 2

Theory of Systems with

Nonholonomic Constraints

In this chapter we define nonholonomic systems and give some important theorems

related to nonholonomic control. Some of the math involved is also reviewed. The

goal of the chapter is to introduce the main concepts for the reader that does not have

a background in nonholonomic systems control or differential geometry, to follow.

2.1 Nonholonomic Constraints and Systems

2.1.1 Informal Introduction with Examples

This thesis deals with systems that have nonholonomic constraints, which (for me-

chanical systems) can be intuitively interpreted as constraints on the ways an object

can move, but not on where it can move. To be a little more precise, they constrain

the types of movements allowed to get an object into a specific configuration (loca-

tion and orientation), without constraining the allowed configurations. Consider for

example a six-sided die, on a flat table, with the number two facing up. Now imagine

that the die is allowed to role but not to slide, and it is desired to have the die two

dice-lengths to the right with the number two facing up. If the die were to simply role

twice to the right, it would be in the desired position, but the wrong orientation. (It

4

CHAPTER 2: THEORY OF SYSTEMS WITH NONHOLONOMIC
CONSTRAINTS 5

would have the number five on top.) In order to get the die into the desired position

and orientation, a more complicated series of maneuvers would be required. In this

example, the nonholonomic constraint is the constraint that the dice not be allowed

to slide. Another example of a nonholonomic system (and one which is refereed to

frequently in this text) is that of a car in a parking lot. The car may move forwards

or backwards, and may turn the front wheels, but it may not simply move sideways.

These two examples involve an object which is allowed to role on a plane without

sliding. For a different example of a nonholonomic system, consider a falling cat. If a

cat is dropped from sufficient hight, it will reorient itself so that its legs are pointed

towards the ground. The cat has no direct control on its orientation, but by swinging

its legs it can effect its angular momentum around its midsection.

2.1.2 Formal Definition

A formal definition of a nonholonomic system is a system which has non-integrable

velocity constraints.

The type of nonholonomic constraints that we are concerned with are of the form,

ωj(x)ẋ = 0 j = 1, · · · , k, (2.1)

where x represents the configuration of the system in phase space PS, and each ωj(x)

is a row vector in Rn.

Not all constraints of the form (2.1) are non-integrable. To demonstrate, we will

integrate, and see what we get.

∫ tf

0

ω(x)
dx

dt
dt = 0 (2.2)

This becomes a path integral. ∫ xf

xi
ω(x)dx. (2.3)

It is worth pointing out that ω is an n × k-matrix and x is an n-element vector.

This type of integral is called a Pfaffian System Frobenius [1877].

CHAPTER 2: THEORY OF SYSTEMS WITH NONHOLONOMIC
CONSTRAINTS 6

If the path integral is path-independent i.e. it’s equal to h(xf) − h(xi) for some

function h(x), then the constraints are holonomic and can be expressed as h(x) =

const. Otherwise, the constraint (2.1) is nonholonomic.

2.1.3 Mathematical Preliminaries

This section aims at familiarizing the reader with some vocabulary and theorems

which are very useful when discussing nonholonomic control. Much of the content in

this section is taken from (Murray and Sastry Murray and Sastry [1993]).

Consider a set of k non-integrable velocity constraints of the form:

ωTj (x)ẋ = 0 j = 1, · · · , k (2.4)

x ∈ PS ⊂ Rn, (2.5)

where the ωj’s are linearly independent and smooth, and where x represents the

configuration of the system in phase space PS. Suppose we want to drive the system

from initial configuration x(0) = xi to a final goal configuration xf . A control system

is then expressed in the form,

Σ: ẋ = g0(x) + g1(x)u1 + · · ·+ gm(x)um x ∈ PS u ∈ PS ⊂ Rm (2.6)

gi(x) ∈ Rn, i = 1, · · · , n− k (2.7)

where the gi’s are smooth and linearly independent vector fields, g0 is a drift term,

and the ui’s are elements of the control space, U ⊂ Rm.

Here’s a quick summary of our notation to this point,

PS ∈ Rn, phase space

U ∈ Rm, control space

ω ∈ Rn×k, nonholonomic constraints

k +m ≤ n

Imagine a path along the gradient of a scalar field, this is called a flow φft . A more

CHAPTER 2: THEORY OF SYSTEMS WITH NONHOLONOMIC
CONSTRAINTS 7

formal definition is that a flow is an integration along a vector field. The cyclical

series of infinitesimal motions φgiε along vector fields g1 and g2 Murray and Sastry

[1993],

φ−g1ε ◦ φ−g2ε ◦ φg1ε ◦ φg2ε (x0) (2.8)

is depicted in the following diagram from a paper by Murray and Sastry Murray and

Sastry [1993].

Figure 2.1: Lie bracket motion

Notice that the net motion is nonzero. This nonzero net motion is a physical

interpretation of a non-commuting Lie bracket [g1, g2] of two vector fields g1 and g2.

i.e.

[g1, g2] 6= 0 (2.9)

This brings us to Lie brackets. A Lie bracket of two vector fields f and g is defined

as

[f, g] =
∂g

∂x
f − ∂f

∂x
g (2.10)

Some important properties of Lie brackets are the Jacobi identity,

[f, [g, h]] + [g, [h, f]] + [h, [f, g]] = 0, (2.11)

CHAPTER 2: THEORY OF SYSTEMS WITH NONHOLONOMIC
CONSTRAINTS 8

and skew-symmetry,

[f, g] = −[g, f]. (2.12)

Let us now define the distribution, ∆ such that

∆ = span{g1, · · · , gm}. (2.13)

A distribution is said to be involutive if Lie brackets of all of the tangent vectors, as

well as the tangent vectors themselves, are elements of the distribution. i.e. Murray

and Sastry [1993],

∆ involutive ⇐⇒ ∀f, g ∈ ∆, [f, g] ∈ ∆. (2.14)

Now imagine that a distribution ∆ was not involutive, but a larger distribution was

chosen, which contained [f, g] as well as f and g, such that it was involutive. An

involutive closure, ∆̄ is the smallest distribution, containing the original distribution

which is involutive.

Definition:

A Lie algebra A is a space, or distribution which is closed on [f, g] for all f, g ∈ A,

which also satisfies the properties of Jacobi identity and skew-symmetry.

Definition:

A Lie group is a set of all transformations inside a Lie algebra.

The reason for all of this discussion of distributions is that there is a nice theorem

which relates controllability of nonlinear systems to distributions.

Chow’s theorem states that if, ∆̄x = Rn ∀x ∈ PS, then the system is controllable

on PS, where ∆̄x is ∆̄ evaluated at x.

Chow’s Theorem is given in a useful format in Murray and Sastry [1993]:

φ−fε ◦ φ−gε ◦ φfε ◦ φgε (x0) = ε2[f, g](x0) + o(ε2) (2.15)

Chow’s Theorem is similar to Frobenius’ Theorem, which states that a distribution

CHAPTER 2: THEORY OF SYSTEMS WITH NONHOLONOMIC
CONSTRAINTS 9

is integrable if and only if it is involutive,

∆ involutive ⇐⇒ ∆ integrable. (2.16)

2.1.4 Degrees of Nonholonomy

Suppose we have a nonholonomic system such that ∆ = span{g1, · · · , gm} and ∆ 6= ∆̄.

Let us define the following distributions,

G1 = ∆, (2.17)

G2 = G1 + span{[X, Y]|X ∈ G1, Y ∈ G1}, (2.18)

G3 = G2 + span{[X, Y]|X ∈ G1, Y ∈ G2}. (2.19)

G2 will not equal G1 since the system was nonholonomic, i.e. G1 was involutive.

Therefore,

dim (G2) = dim (G1) + 1 = m+ 1, (2.20)

Depending on the degree of nonholonomy, G3 may or may not equal G2. If we continue

in this manor until we find some distribution Gk∗ = Gk−1, then Gk∗ = ∆̄. That is to

say,Murray and Sastry [1993]

G1 = ∆, (2.21)

Gk = Gk−1 + span{[X, Y]|X ∈ G1, Y ∈ Gk−1}, (2.22)

Gk∗ = Gk−1, (2.23)

Gk∗ = ∆̄. (2.24)

The set of all of these distributions (G1, G2, · · · , Gk∗) is called the filtration. As

long as the rank of the distributions does not depend on x, i.e. rank(Gi(x)) =

rank(Gi(x0)) ∀x ∈ PS, then the filtration is said to be regular, and k∗ − 1 is the

degree of nonholonomy.

CHAPTER 2: THEORY OF SYSTEMS WITH NONHOLONOMIC
CONSTRAINTS 10

2.1.5 Brockett’s Theorem

Brockett’s necessary stability conditions, Brockett [1983], state that for state- de-

pendant nonholonomic control we must use discontinuous or time-varying smooth

control.

To sumarize his this part of his paper:

There exists no continuous control law (u,v) = (u(x,y,z), v(x,y,z)), which makes

the origin asymptotically stable for

ẋ = u (2.25)

ẏ = v (2.26)

ż = xv − yu (2.27)

Brockett showed this condition for the specific example above, (a third order

nonholonomic system called the Heisenberg system), but this same condition can be

extended to a generalized Heisenberg system. This is especially useful, since in his

previous work, Brockett [1981], Brockett showed that any system of the form,

ẋ = B(x)u, (2.28)

u ∈ Rm, x ∈ Rn, n = m(m+ 1)/2 (2.29)

can be transformed to the generalized Heisenberg system,

ẋ = u (2.30)

Ẏ = xuT − uxT . (2.31)

Here, x, u ∈ Rm, Y ∈ o(m), where o(m) is the set of m × m, skew symmetric

matrices. In terms of indices, the generalized Heisenberg system can be expressed as,

ẋi = ui, i = 1, 2, · · · ,m (2.32)

Ẏij = xiuj − ujxi, i, j = 1, 2, · · · ,m. (2.33)

CHAPTER 2: THEORY OF SYSTEMS WITH NONHOLONOMIC
CONSTRAINTS 11

For instance, consider a system, of the form ẋ = B(x)u, where there are 4 inde-

pendent controls and 10 state variables. In this example, n = 10 and m = 4. After

verifying that the system meets the condition that n = m(m + 1)/2, we know we

should be able to convert it to the generalized Heisenberg system,

ẋ =

ẋ1

ẋ2

ẋ3

ẋ4

 =

u1

u2

u3

u4

 (2.34)

Ẏ =

0 u1x2 − u2x1 −Y3,1 u1x4 − u4x1

−Y1,2 0 u2x3 − u3x2 −Y4,2

u3x1 − u1x3 −Y2,3 0 u3x4 − u4x3

−Y1,4 u4x2 − u2x4 −Y3,4 0

 . (2.35)

An even further generalization expresses the Brockett, or Heisenberg system on

Lie groups, and in doing so, drops the requirement for x and u to be vectors, Bloch

[2003]

ẋ = u (2.36)

ẏ = [x, u]. (2.37)

The Heisenberg system more formally introduced and discussed in the following

chapter.

Aside: For those not familiar with controls, systems are generally described to fit

one of three forms, ẋ = Ax + Bu, ẋ = B(x)u or ẋ = f(x, u), where the first form is

linear, the second, may or may not be linearizable, and the third is the most general.

In regards to the problem statement of this thesis, Brockett’s condition for asymp-

totic stability indicates the problem will have to be solved with discontinuous controls.

Let us now consider an example to put some of these theorems into practice.

CHAPTER 2: THEORY OF SYSTEMS WITH NONHOLONOMIC
CONSTRAINTS 12

2.2 Examples of Nonholonomic Systems

In this section an example is given which comes from (Murray and Sastry,Murray and

Sastry [1993]). The notation is changed to match the rest of this thesis, and some

additional steps are given.

2.2.1 Nonholonomic Vehicle Model

Let us consider a simplified car model (depicted in Figure 2.2).

>

=

I

i

`
φ

θ

-

6

x

y

Figure 2.2: Single car

The equations of motion are given as follows:

ẋ = v cosφ, (2.38)

ẏ = v sinφ, (2.39)

θ̇ = ω, (2.40)

φ̇ =
v

`
tan θ, (2.41)

where the coordinates (x,y) are taken from the center of the rear axle and the orien-

tation θ is the angle between the x-axis and a line crossing the center of both front

and rear axles, ` is the distance between the two axles, v is the speed, which can be

CHAPTER 2: THEORY OF SYSTEMS WITH NONHOLONOMIC
CONSTRAINTS 13

negative for backing up, u is the steering turning rate.

Let us make the substitutions into state variables, configuration (x, y, θ, φ)T =

(x1, x2, x3, x4)T = x, and controls (v, ω) = (u1, u2)T = u. With these variable changes,

our equations of motion become,

ẋ1 = u1 cosx4, (2.42)

ẋ2 = u1 sinx4, (2.43)

ẋ3 = u2, (2.44)

ẋ4 =
u1

`
tanx3. (2.45)

Notice that this system could be expressed the form ẋ = B(x)u, where x is a

matrix and, ẋ and u are column vectors,
ẋ1

ẋ2

ẋ3

ẋ4

︸ ︷︷ ︸

ẋ

=

cosx4 0

sinx4 0

0 1
1
`

tanx3 0

︸ ︷︷ ︸

B(x)

[
u1

u2

]
︸ ︷︷ ︸

u

(2.46)

In section (2.1.5) we stated that any system of this form, ẋ = B(x)u can be ex-

pressed as a generalized Heisenberg system, and can be controlled with discontinuous

feedback control.

For the purpose of this example though, it will be more useful to express the

system as a single vector with basis elements given by (∂
∂x1
, · · · , ∂

∂xn
), i.e.

ẋ =

(
ẋ1

∂

∂x1

+ ẋ2
∂

∂x2

+ · · ·+ ẋn
∂

∂xn

)
. (2.47)

Specifically,

ẋ =

(
u1 cosx4

∂

∂x1

+ u1 sinx4
∂

∂x2

+ u2
∂

∂x3

+
u1

`
tanx3

∂

∂x4

)
. (2.48)

By grouping the terms and factoring out the controls, we can find our vector fields,

CHAPTER 2: THEORY OF SYSTEMS WITH NONHOLONOMIC
CONSTRAINTS 14

({g1(x), · · · , gm(x)}),

ẋ =

(
cosx4

∂

∂x1

+ sinx4
∂

∂x2

+
1

`
tanx3

∂

∂x4

)
︸ ︷︷ ︸

g1

u1 +

(
ẋ3

∂

∂x3

)
︸ ︷︷ ︸

g2

u2. (2.49)

We then find our filtration using Lie brackets: Murray and Sastry [1993]

g1 = cos x4
∂
∂x1

+ sinx4
∂
∂x2

+ 1
`

tanx3
∂
∂x4

g2 = ∂
∂x3

g3 = [g1, g2] = −1
` cos2 x3

∂
∂x4

g4 = [g1, g3] = − sinx4
` cos2 x3

∂
∂x1

+ cosx4
` cos2 x3

∂
∂x2

g5 = [g2, g3] = −2 tanx3
` cos2 x3

∂
∂x4

(2.50)

As can be shown, the vector fields, g1, g2, g3 and g4 span the entire tangent space

(isomorphic to R4). This means that the system is controllable. Since two additional

vector fields were produced in the filtration to span the involutive distribution, the

degree of nonholonomy is 2.

2.2.2 Extension to N Trailers

The N-trailer extension is done by adding N two-wheeled trailers each one attached

and pivoting at the center of the preceding trailer or car. The bar connecting the i’th

trailer to the (i − 1)’th axel is denoted, di. The orientation of the i’th trailer is φi.

See figure, 2.3.

CHAPTER 2: THEORY OF SYSTEMS WITH NONHOLONOMIC
CONSTRAINTS 15

>

=

I

i

`

θ

-

6

x

y
=

}

φ0

φ2

φ1

3

+

d2

j

Y

d1

Figure 2.3: Car with N-trailers Murray and Sastry [1993]

The equations of motion for the first car remain the same as in the one car example,

ẋ = v0 cosφ0, (2.51)

ẏ = v0 sinφ0, (2.52)

θ̇ = ω, (2.53)

φ̇0 =
v0

`
tan θ, (2.54)

but the orientation is now denoted φ0, and speed, as v0.

The speed of each trailer has two components, the speed parallel to its wheels, vi,

and the speed perpendicular to its wheels, φ̇i. We can write the speed of each trailer

as a function of the speed of the trailer or car which is pulling it.

φ̇i =
1

di
sin(φi−1 − φi)vi−1, (2.55)

vi = cos(φi−1 − φi)vi−1 (2.56)

CHAPTER 2: THEORY OF SYSTEMS WITH NONHOLONOMIC
CONSTRAINTS 16

Let us find the perpendicular speed of the first three trailers,

φ̇1 =
1

d1

sin(φ0 − φ1)v0, (2.57)

v1 = cos(φ0 − φ1)v0, (2.58)

φ̇2 =
1

d2

sin(φ1 − φ2) cos(φ0 − φ1)v0, (2.59)

v2 = cos(φ1 − φ2) cos(φ0 − φ1)v0, (2.60)

φ̇3 =
1

d3

sin(φ2 − φ3) cos(φ1 − φ2) cos(φ0 − φ1)v0. (2.61)

From these results we can see that the perpendicular speed of the i’th trailer is

given by,

φ̇i =
1

di

(
i−1∏
j=1

cos(φj−1 − φj)

)
sin(φi−1 − φi)v0 (2.62)

In our state-variables, where the configuration, (x, y, θ, φ0, · · · , φN) is denoted

(x1, x2, x3, x4, · · · , xN+4), and the controls, (v0, ω) are written as (u1, u2). The equa-

tions of motion describing the N-trailer system, in state variables is then,

ẋ1 = u1 cosx4, (2.63)

ẋ2 = u1 sinx4, (2.64)

ẋ3 = u2, (2.65)

ẋ4 =
u1

`
tanx3, (2.66)

ẋi+4 =
1

di

(
i+3∏
j=5

cos(xj−1 − xj)

)
sin(xi+3 − xi+4)u1. (2.67)

For higher numbers of N , it is obvious that finding the filtration would be very

tedious. In Laumond [1990] it was shown that the degree of nonholonomy is N + 2.

Chapter 3

Nonholonomic Control Systems

The methods of nonholonomic path planning have become very well developed. Through

iterative methods, people are able to steer complicated shapes through complicated

environments. Examples of some very impressive path planners are (LaValle [2006],

Sekhavat et al. [1998], & Srinivasan et al. [2005]). For the purpose of this thesis,

not much research was made into the area of iterative path planners, because of the

perceived difficulty to apply them to closed loop control.

3.1 Nonholonomic Path Planning with Obstacles

Control by Constant Radius turns and Straight Lines

Some of the earliest attempts in nonholonomic path planning were by combining

a minimal number of constant radius turns and straight lines. For the car example,

this is equivalent to limiting the steering angle to either full right (φmax), full left

(−φmax), or straight (φ = 0). This approach was first developed by L.E.Dubins. In

his 1957 paper Dubins [1957], he found the optimal paths under these constant radius

constraints. Dubins also restricted the system to forward movement.

Later Reeds and Shepp, expanded on this research to allow reversing. If both for-

ward and backward motion is allowed, the trajectories are called Reeds-Shepp Curves.

If only forward motion is allowed the trajectories created are called Dubins Curves,

17

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 18

and if the time that it takes to rotate the robot body around a central axis (for differ-

ential drive systems) is included in the cost functional, then the trajectories created

are called Balkcom-Mason curves. LaValle [2006].

Dubins Curves

In 1957 L.E. Dubins published a paper Dubins [1957] on what he called an R-

geodesic, and what has come to be known as a Dubins curve. The Idea was to find a

path of minimum length between two points and orientations but with the limitation

that the path must only be composed of straight lines and curves of some constant

radius R. In two dimensional space Dubins curves are constructed as combinations

of straight lines (denoted L) and curved paths (denoted C), so that a particular path

could be denoted as type CLC, LCL or CCC. In this paper Dubins showed that no R-

geodesic will be composed of more than three segments. An easily read and expanded

description of the use of Dubins curves is provided in LaValle [2006]. In LaValle’s

description the path segments described above are denoted; ”R” for right turn, ”L”

for left turn or ”S” for straight. The subscripts ”α” and ”γ” are used to denote the

angle traversed for right and left paths respectively, and the subscript ”d” denotes

the distance for straight lines. Figure 3.1 which was taken from LaValle [2006], shows

two possible Dubins Curves.

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 19

Figure 3.1: The two possible shapes of Dubins Curves. LaValle [2006]

Reeds-Shepp Curves

In their paper Reeds and Shepp [1990], J. Reeds and L. Shepp, expanded on the

Dubins curves by allowing for reversal in directions. In this paper they showed that

the shortest path composed solely of straight lines, constant radius turns and direc-

tion reversals, can be described by one of 48 possible combinations, and no more than

five segments.

Balkcom-Mason Curves

The next extension along this line was to consider the time it takes to reverse

direction, when picking an optimal path. This was done by D. Balkcom and M.

Mason in their paper Balkcom and Mason [2002].

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 20

3.2 Nonholonomic Feedback Control

3.2.1 The Heisenberg System

The kinematic model for nonholonomic systems called the nonholonomic integrator or

Heisenberg system has been studied extensively. The name of this system is borrowed

from quantum mechanics, because the Lie algebra for these systems is identical to

one of a like named quantum mechanical system.

The idea is to transform the three state variables into a form where two of them

can be controlled in such a way that the third reaches the origin prior to either of the

two controlled variables. The most commonly cited form of the Heisenberg system is

as follows as described by Brockett [1983].

ẋ1 = u1, (3.1)

ẋ2 = u2, (3.2)

ẋ3 = x1u2 − x2u1, (3.3)

where:

u1, u2 controls,

x1, x2, x3 state variables.

Nonholonomic Vehicle Example

A commonly sited example of a nonholonomic system is a simple four-wheel car.

Consider the simplified car model depicted in figure, (3.2), and described by equations,

(3.4, 3.5 and 3.6).

ẋ = v cosφ, (3.4)

ẏ = v sinφ, (3.5)

ω = φ̇ =
v

`
tan θ (3.6)

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 21

Figure 3.2: Classic nonholonomic car model

Where, the coordinates (x,y) are taken from the center of the rear axle and the

orientation, θ, is the angle between the x-axis and a line crossing the center of both

front and rear axles. ` is the distance between the two axles.

The controls considered are (1) the steering angle, φ, with respect to the car and

(2) the speed, v, (which can be forwards or reverse).

Another common system for this type of problem which is kinematically equivalent

is a three-wheeled car with only one wheel in the front. Although this simplification

may be slightly easier to visualize, it changes none of math, so one could consider

either case interchangeably. For an example of a paper using this form see: LaValle

[2006]

The above system is not integrable because θ and φ as functions of time are

unknown.

This model transformed to Heisenberg space as follows.
x1

x2

x3

 = T (φ)

x

y

φ

 , (3.7)

The transformation from the configuration space, CS to the Heisenberg space, H,

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 22

is given by the following: Bloch [2003]

T (φ) =

0 0 1

cosφ sinφ 0

φ cosφ− 2 sinφ φ sinφ+ 2 cosφ 0

 (3.8)

We need to find the transformed controls. To do this, lets find the time derivative

of the transformation of our system. If we use the notation [x, y, φ]T = x, then we

can find the derivative using the product rule. I.e. d
dt

(Tx) = Ṫx + T ẋ or,

d

dt

x1

x2

x3

 =
dT (φ)

dt

x

y

φ

+ T (φ)

ẋ

ẏ

ω

 (3.9)

Let’s look at the time derivative of the transformation matrix,

d

dt

x1

x2

x3

 =

0 0 0

−ω sinφ ω cosφ 0

−ω cosφ− ωφ sinφ −ω sinφ+ ωφ cosφ 0

 ·

x

y

φ

+

0 0 1

cosφ sinφ 0

φ cosφ− 2 sinφ φ sinφ+ 2 cosφ 0

 ·

v cosφ

v sinφ

ω

(3.10)

ẋ1

ẋ2

ẋ3

 =

0

−xω sinφ+ yω cosφ

−xω cosφ− xωφ sinφ− yω sinφ+ yωφ cosφ

+

ω

v

vφ

 (3.11)

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 23

which leads to,

ẋ1 = ω (3.12)

ẋ2 = −xω sinφ+ yω cosφ+ v (3.13)

ẋ3 = −ω(x cosφ+ y sinφ) + φ(−xω sinφ+ yω cosφ+ v︸ ︷︷ ︸
ẋ2

). (3.14)

Now, let’s look at the transformation of our system, x = Tx, to see if it will help

to eliminate the configuration space variables, (x, y, φ).

x1 = φ (3.15)

x2 = x cosφ+ y sinφ (3.16)

x3 = xφ cosφ− 2x sinφ+ yφ sinφ+ 2y cosφ (3.17)

Notice that,

2
ẋ2 − v
ω

= x3 − x1x2 (3.18)

and

ẋ3 = −ωx2 + x1ẋ2 (3.19)

This leads to,

ẋ1 = ω (3.20)

ẋ2 = ω
(x3

2
− x1x2

2

)
+ v (3.21)

ẋ3 = −ωx2 + x1ẋ2 (3.22)

where ω = v
`

tan θ.

If we define the controls as follows,

u1 = ω,

u2 = ω
(x3

2
− x1x2

2

)
+ v,

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 24

we obtain the Heisenberg System,

ẋ1 = u1 (3.23)

ẋ2 = u2 (3.24)

ẋ3 = x1u2 − x2u1 (3.25)

In the next sections we will discuss ways to control this system.

3.2.2 Bloch-Drakunov Controller

Several sliding mode controllers were developed by Bloch and Drakunov Bloch and

Drakunov [1996] in the 1990’s, which are capable of stabilizing nonholonomic systems

to the origin.

The derivation of these controllers is well presented in several sources including,

Bloch and Drakunov [1996], Bloch [2003]. This derivation is shown again here, be-

cause in later chapters of this thesis, this same procedure is followed, but with various

alterations. It is believed that having a full derivation here will provide context needed

for later chapters.

Consider the following controller from Bloch and Drakunov [1996].

u1 = −αx1 + βx2sign(x3) (3.26)

u2 = −αx2 − βx1sign(x3) (3.27)

Where α and β are positive constants.

Bloch and Drakunov picked a Lyapunov function, V , which only depends on two

of the state variables:

V =
1

2
(x2

1 + x2
2). (3.28)

Notice that for the Heisenberg system, x3 must be stabilized at the same time as, or

before x1 and x2. The conditions for this to happen will be discussed later, but to

start let’s differentiate the Lyapunov function, 3.28, to test for asymptotic stability

on x1 and x2, i.e. on the plains of constant x3, (from here on the notation H2 (x1) is

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 25

used to refer to these planes).

V̇ = x1ẋ1 + x2ẋ2 (3.29)

= −αx2
1 + βx1x2 sign (x3)− αx2

2 − βx1x2 sign (x3) (3.30)

= −2αV (3.31)

For positive values of α, V̇ < 0, which is a necessary condition for asymptotic stability.

The expression for V̇ < 0 also has a very fortunate and useful result that the equation

V̇ = −2αV, (3.32)

has a very handy solution

V (t) = V (0)e−2αt. (3.33)

We will use this later, but for now let us check what it takes to stabilize x3.

ẋ3 = x1u2 − x2u1 (3.34)

= −αx1x2 + βx2
1 sign (x3) + αx1x2 + βx2

2 sign (x3) (3.35)

= −2βV sign (x3) (3.36)

Integrating both sides of the equation

x3(t)− x3(0) = −2β

∫ t

0

V dτ sign(x3) (3.37)

x3(t) = x3(0)︸ ︷︷ ︸
a

−2β sign(x3)

∫ t

0

V dτ︸ ︷︷ ︸
b

(3.38)

Notice that part a and part b of the above equation, are of opposite signs. If

the x3(0) is negative, part (b) will approach |x3(0)| as τ → t. Note that sign(x3) =

sign(x3(0)) because x3 will not cross the x3 = 0 plane before time t. If x3(0) is

positive, part (b) will be initially negative, and will equal −x3(0) at time t. From

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 26

this we have the condition that

2β

∫ ∞
0

V dτ ≥ |x3(0)|. (3.39)

This shows as expected that the stability of x3 depends on V . If V goes to zero

before x3, control of x3 is lost. The condition that x3 reaches zero before (or at the

same time as) V , and therefor x1 and x2 is given by the integral, (3.37). Recall that

due to the convenient result of differentiating the Lyapunov function, we have an

expression for V (t), (3.33), which can be integrated.

2β

∫ ∞
0

(V (0)e−2ατ) dτ ≥ |x3(0)| (3.40)

β

α
V (0) ≥ |x3(0)| (3.41)

β

2α

(
x2

1(0) + x2
2(0)

)
≥ |x3(0)| (3.42)

for state dependant control, we may simply take the present time t, to be the initial

time t0. This gives us the condition for stability by controllers, (3.26):

β

2α

(
x2

1 + x2
2

)
≥ |x3| (3.43)

In the event that our system state lies inside the paraboloid defined by

β

2α

(
x2

1 + x2
2

)
= |x3|, (3.44)

a different set of controllers can be used to push the system state back out of this

paraboloid. An example of controls which would do this would be

ẋ1 = αx1 (3.45)

ẋ2 = αx2. (3.46)

If the system is not initially inside or on the paraboloid defined by equation, (3.44),

it will arrive at the plane given by x3 = 0 before x1 and x2 are zero. When this

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 27

happens, a more simplified controller can be used to drive the system to the origin

along this plane:

ẋ1 = −αx1 (3.47)

ẋ2 = −αx2 (3.48)

A Simulink model of the system with this controller

The control scheme that was described in the previous section modeled in Matlab

and Simulink. Here we will present that model and an example output. The model

does stabilize the system.

Here is the main window of the Simulink model

BLOCK-DRAKUNOV SLIDING-MODE CONTROLER FOR
HEISENBERG-TYPE NONHOLONOMIC SYSTEMS

Simulink model by Sergey Drakunov and Stephen Armstrong

If converting alpha and beta to
alpha(x) and beta(x), Click on
their boxes and change the
value in "Limit data points to

last:" to "inf", It is "1" for const.
alpha and beta. remember to

alter m-file also.

When it is finished running

Click Here

To Run stevesthesis.m

Clear All
Close All

vehicle

w

v

x

y

phi

control algorithm

x1

x2

x3

alpha

beta

u1

u2

beta

1

alpha

1

To workspace,

Scopes & 3-D plot

phi

y

x

x1

x2

x3

v

w

To Workspace2

L

To Workspace1

beta

To Workspace

alpha

State Transformation1

L

64

Control Transformation

x

y

phi

L

u1

u2

w

v

printed 08-Jul-2011 11:41 page 1/1

BD_HSMC

P:\Thesis SP10\StevesThesis\BD_HSMC.mdl

Figure 3.3: Bloch-Drakunov controller modeled with Simulink: main window

Here is the State transformation Block.

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 28

x3

L

y_tilde

x_tilde

x1

x2

phi

y

x

x3

3

x2

2

x1

1

cos

sin

sin

cos

cos

sin

2

2

1

2

phi

4

y

3

x

2

L

1

printed 08-Jul-2011 11:46 page 1/1

BD_HSMC/State Transformation1

P:\Thesis SP10\StevesThesis\BD_HSMC.mdl

Figure 3.4: Bloch-Drakunov controller modeled with Simulink: state transformation

The state transformation is where the transformation from the configuration space

CS to the Heisenberg space H takes place
x1

x2

x3

 = T (φ)

x

y

φ

 , (3.49)

T (φ) =

0 0 1

cosφ sinφ 0

φ cosφ− 2 sinφ φ sinφ+ 2 cosφ 0

 (3.50)

The controllers and switching conditions are shown next. The variable-control

system depends on the system state in the Heisenberg space, namely whether it is

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 29

inside or outside the paraboloid defined by, β
2α

(x2
1 + x2

2) ≥ |x3|.

Controls β
2α

(x2
1 + x2

2) ≥ |x3| β
2α

(x2
1 + x2

2) < |x3| x3 = 0

u1 −αx1 + βx2 sign(x3) αx1 −αx1

u2 −αx2 − βx1 sign(x3) αx2 −αx2

Table 3.1: Bloch-Drakunov stabilizing controller

α
2
 x

1

-α x
1
+ βx

2
sign(x

3
)

α2 x
2

-αx
2
- βx

1
sign(x

3
)

x
1

2
+x

2

2
 - 2|x

3
|α / β

Bloch - Drakunov Controller Type 1
(for Heisenberg-Space N.H. Syst.)

Inside or on Paraboloid given by α & β: outside Paraboloid:

u
1
 = -αx

1
+ βx

2
sign(x

3
) u

1
 = α2 x

1

u
2
 = -αx

2
- βx

1
sign(x

3
) u

2
 = α

2
 x

2

.

u2

2

u1

1

Switch1

Switch

Subsystem1

x1

x2

x3

alpha

beta

u1a

u1b

u2a

u2b

Subsystem

x1

x2

x3

alpha

beta

Switching Condition

beta

5

alpha

4

x3

3

x2

2

x1

1

printed 08-Jul-2011 11:47 page 1/1

BD_HSMC/control algorithm

P:\Thesis SP10\StevesThesis\BD_HSMC.mdl

Figure 3.5: Bloch-Drakunov controller modeled with Simulink: variable structure

control Algorithm

The switching condition block calculates the value of β
2α

(x2
1 + x2

2).

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 30

x1

x2

x1*x1+x2*x2 = 2V

2 |x3| alpha / beta

x
1

2
+x

2

2
 - 2|x

3
|α / β

Switching Condition

1

Abs

|u| 2

beta

5

alpha

4

x3

3

x2

2

x1

1

printed 08-Jul-2011 11:47 page 1/1

BD_HSMC/control algorithm/Subsystem

P:\Thesis SP10\StevesThesis\BD_HSMC.mdl

Figure 3.6: Bloch-Drakunov controller modeled with Simulink: switching condition

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 31

sign(x3)

alpha

alpha x1

x2 beta sign(x3)

alpha

x2

x1

x2

alpha

beta sign(x3)

x2 alpha

x1 beta sign(x3)

beta sign(x3)

alpha
α

2
 x

1

-αx
1
+ βx

2
sign(x

3
)

α
2
 x

2

-αx
2
 - βx

1
sign(x

3
)

u2b

4

u2a

3

u1b

2

u1a

1

beta

5

alpha

4

x3

3

x2

2

x1

1

printed 08-Jul-2011 11:48 page 1/1

BD_HSMC/control algorithm/Subsystem1

P:\Thesis SP10\StevesThesis\BD_HSMC.mdl

Figure 3.7: Bloch-Drakunov controller modeled with Simulink: controllers a & b

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 32

v/L

L

v

2

w

1

cos

sin

u2

6

u1

5

4

phi

3

y

2

x

1

x_tilde

y_tilde

printed 08-Jul-2011 11:50 page 1/1

BD_HSMC/Control Transformation

P:\Thesis SP10\StevesThesis\BD_HSMC.mdl

Figure 3.8: Bloch-Drakunov controller modeled with Simulink: control transforma-

tion

The controls were transformed back to state space with,

v = u1

ω = u2 −
(x3

2
− x1x2

2

)
u1

In the vehicle window is where the initial conditions are selected (by changing the

initial conditions of the integrator blocks).

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 33

x_dot

y_dot

phi

3

y

2

x

1
cos

sin

1

s

1

s

1

s

v

2

w

1

printed 08-Jul-2011 11:50 page 1/1

BD_HSMC/vehicle

P:\Thesis SP10\StevesThesis\BD_HSMC.mdl

Figure 3.9: Vehicle model

Simulation Results

This control scheme works perfectly for unobstructed paths. In the diagram below, a

simulated car is steered to the origin. Notice that there are two steps. First the car

moves to the sliding surface in the Heisenberg Space, where it is then driven to the

origin.

Here we show the convergence of two different simulations.

The first simulation had initial conditions: (x, y, phi)T = (0,−20, π
8
)T .

The first two plots are of the convergence of the system states in configuration

space.

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 34

Figure 3.10: Model of Bloch-Drakunov controller with initial conditions (0,−20, π/8)

(x and y convergence)

Figure 3.10 shows the convergence of the location (x, y) in the configuration space.

Figure 3.11: Model of Bloch-Drakunov controller with initial conditions (0,−20, π/8)

(φ convergence)

Figure 3.11 shows the convergence of the orientation φ in the configuration space.

The next two plots show the convergence of the system states in Heisenberg space

and the Transformed controls in Heisenberg space.

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 35

Figure 3.12: Model of Bloch-Drakunov controller with initial conditions (0,−20, π/8)

(x1, x2 and x3 convergence)

Figure 3.12 shows the convergence of the configuration (x1, x2, x3) in Heisenberg

space.

Figure 3.13: Model of Bloch-Drakunov controller with initial conditions (0,−20, π/8)

(u1 and u2 convergence)

Figure 3.13 shows the convergence of the controls (u1, u2) in Heisenberg space.

The second simulation had initial conditions: (x, y, phi)T = (20,−20, π
2
)T .

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 36

Again, the first two plots for this simulation are of the convergence of the system

states in configuration space.

Figure 3.14: Model of Bloch-Drakunov controller with initial conditions (20,−20, π/2)

(x and y convergence)

Figure 3.14 shows the convergence of the location (x, y) in the configuration space.

Figure 3.15: Model of Bloch-Drakunov controller with initial conditions (20,−20, π/2)

(φ convergence)

Figure 3.15 shows the convergence of the orientation φ in the configuration space.

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 37

The next two plots show the convergence of the system states in Heisenberg space

and the Transformed controls in Heisenberg space.

Figure 3.16: Model of Bloch-Drakunov controller with initial conditions (20,−20, π/2)

(x1, x2 and x3 convergence)

Figure 3.16 shows the convergence of the configuration (x1, x2, x3) in Heisenberg

space.

Figure 3.17: Model of Bloch-Drakunov controller with initial conditions (20,−20, π/2)

(u1 and u2 convergence)

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 38

Figure 3.17 shows the convergence of the controls (u1, u2) in Heisenberg space.

The next figure, Figure 3.18 is of a simulation of a car following the path produced

by the configuration states (x, y, φ).

Figure 3.18: Model of car stabilized by Bloch-Drakunov controller with initial condi-

tions (20,−20, π/2)

3.3 Feedback Control for Systems with Obstacles

3.3.1 Tracking

In the examples given so far in this thesis, all of them have been to drive the system

to the origin of the configuration space. This is often done because it simplifies the

math. If the intention of a controls problem is to drive the system to some point x∗,

then we could always make the following state transformation,

x̄ = x− x∗. (3.51)

The configuration x∗ which we are trying to reach could be stationary in which

the problem is called a stabilization problem. The target configuration could also be

moving x∗ = x∗(t). This type of control problem is called a tracking problem. In a

tracking problem we try to drive x̄ to zero, which causes the configuration x to stay

on trajectory x∗(t).

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 39

3.3.2 Example: Tracking in the Heisenberg System

Here we will follow an example tracking problem. This is from the same paper Bloch

and Drakunov [1996] where Bloch and Drakunov first published their controllers for

the Heisenberg system. It tracks some trajectory in Heisenberg space, while using

the Bloch-Drakunov controller which we described previously.

Let x∗(t) = [x∗1(t), x∗2(t), x∗3(t)]T be a smooth curve in the Heisenberg system state

space R3. We define a variable x̂3 as

x̂3(t) = x3(t)− x∗1(t)x2(t) + x∗2(t)x1(t). (3.52)

Differentiating, and using (3.3) we get

˙̂x3(t) = ẋ3 − ẋ∗1x2 − x∗1ẋ2 + ẋ∗2x1 + x∗2ẋ1, (3.53)

= x1u2 − x2u1 − ẋ∗1x2 − x∗1u2 + ẋ∗2x1 + x∗2u1, (3.54)

˙̂x3(t) = (x1 − x∗1)︸ ︷︷ ︸
x̄1

(u2 − ẋ2
∗)︸ ︷︷ ︸

ū2

− (x2 − x∗2)︸ ︷︷ ︸
x̄2

(u1 − ẋ∗1)︸ ︷︷ ︸
ū1

+ 2(x1ẋ
∗
2 − ẋ∗1x2)︸ ︷︷ ︸
ḡ

+ ẋ∗1x
∗
2 − ẋ∗2x∗1︸ ︷︷ ︸
ẋ∗3

.

(3.55)

Let us define a new variable g such that

g(t, x1, x2) = 2x1ẋ
∗
2 − ẋ∗2x∗1 − 2x2ẋ

∗
1 + ẋ∗1x

∗
2, (3.56)

and ḡ such that ḡ = g− ẋ∗3. Let us also use notation standard for tracking problems,

x̄i = xi − x∗i , i = 1, · · · n. For the controls we make the substitutions, ūj = uj − ẋ∗j ,
i, j = 1, · · · m. With this notation, ˙̂x3 can be expressed as,

˙̂x3(t) = x̄1ū2 − x̄2ū1 + ḡ + ẋ∗3︸ ︷︷ ︸
g

. (3.57)

If we define, ˙̂x3 = ˙̄x3 + ẋ∗3, we get the the Heisenberg system but with tracking

variables except for one important difference; The ˙̄x3 has a drift term ḡ. In terms of

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 40

this new variable, we can write ˙̂x3 as,

˙̄x1 = ū1, (3.58)

˙̄x2 = ū2, (3.59)

˙̄x3 = x̄1ū2 − x̄2ū1 + ḡ, (3.60)

The Bloch-Drakunov controller (see Bloch and Drakunov [1996] and section 3.2.2)

in terms of our tracking variables is

ū1 = −αx̄1 + βx̄2 sign(x̄3), (3.61)

ū2 = −αx̄2 − βx̄1 sign(x̄3), (3.62)

and the new system of equations is

˙̄x1 = −αx̄1 + βx̄2 sign(x̄3), (3.63)

˙̄x2 = −αx̄2 − βx̄1 sign(x̄3), (3.64)

˙̄x3 = −β(x̄2
1 + x̄2

2) sign(x̄3) + ḡ. (3.65)

If we now used the same switching conditions, (equations, 3.44, 3.45, 3.47) as in

section, 3.2.2, to complete the control scheme, we would be able to drive the system

to x∗, but once there, the controls would stop. Since this is a tracking problem, the

target configuration x∗ is continuously changing.

In sliding mode control, the system state is confined the sliding manifold by rapidly

switching between two controllers, which steer the system state to the manifold from

either side. In addition to driving the system state to the sliding manifold, the

controllers should also drive the system in the direction of the target position. With

the above control scheme, from one side of the manifold, (outside the paraboloid)

the system is driven with directional components pointing both towards the manifold

and towards the target position, but from the other side of the manifold, (inside the

paraboloid) the system state is only driven to the sliding manifold.

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 41

Table 3.2: Bloch-Drakunov Tracking Controller

Controls β
2α

(x̄2
1 + x̄2

2) ≥ |x̄3| β
2α

(x̄2
1 + x̄2

2) < |x̄3| x̄3 = 0

ū1 −αx̄1 + βx̄2 sign(x̄3) αx̄1 −αx̄1

ū2 −αx̄2 − βx̄1 sign(x̄3) αx̄2 −αx̄2

A more robust control scheme can be obtained by steering the configuration x to

some ε-neighborhood of our desired path x∗. In this way, we may chose an ε which

confines our system sufficiently close to our path.

The controls are the same as in the stabilizing controller (and Table 3.1) until the

system is inside the ε-neighborhood. After that, the controls switch as described in

table, (3.3).

Table 3.3: Bloch-Drakunov Tracking Controller

Controls x̄2
1 + x̄2

2 > ε2, x̄2
1 + x̄2

2 ≤ ε2,

ū1 −αx̄1 + βx̄2 sign(x̄3) αx̄1 + βx̄2 sign(x̄3)

ū2 −αx̄2 − βx̄1 sign(x̄3) αx̄2 − βx̄1 sign(x̄3)

Once the system state has reached the ε-neighborhood of the path, the controls

will switch between two conditions, and by choosing the value of ε we can effect the

rate at which the system chatters. Larger values of ε produce slower chatter, but

larger deviations from the path.

Again, we will check for convergence. Let us take the Lyapunov function as

V = x̄2
1 + x̄2

2, which has the derivatives,

V̇ =

{
−4αV if V > ε2

4αV if V ≤ ε2,
(3.66)

In the first case, where the system is outside the ε-neighborhood of x∗, the system is

Lyapunov stable, in the case where it is inside, the controls drive V to ε2. Therefore

the system has two sliding surfaces, first it has a paraboloidal sliding manifold in the

(x̄1, x̄2, x̄3). Then once it has reached tube around x∗(t) defined by x̄2
1 + x̄2

2 = ε2 it

will slide along this tube as it follows the path x∗(t)

CHAPTER 3: NONHOLONOMIC CONTROL SYSTEMS 42

Once this second sliding manifold is reached, V becomes constant V = ε2, and

equation (3.65) becomes

˙̄x3 = −βε2 sign(x̄3) + ḡ. (3.67)

Therefore x̄3 will converge if a value for β is chosen such that βε2 > |ḡ|.

Chapter 4

Optimal Control

4.1 Pontryagin’s Maximum Principle

4.1.1 The General Case

Pontryagin’s Maximum Principle is used to find an optimal control when the control

is bounded (as opposed to calculus of variations which also gives optimal control but

cannot accept bounded control space)Pontryagin et al. [1962].

The term optimal control for the sake of this paper is defined as the control which

maximizes a cost functional in the form

J =

∫ tf

ti
f 0 (x(t), u(t)) dt (4.1)

when steering x from an initial state xi = x(ti) to a final state xf = x(tf) in the time

interval t ∈ [ti, tf], where u(t) is the applied control.

Notice that this is the same as maximizing the performance index given by

J = −
∫ tf

ti
f 0 (x(t), u(t)) dt. (4.2)

Note also, that u ∈ U , where U is the set of admissible controls, and x is the

43

CHAPTER 4: OPTIMAL CONTROL 44

n-dimensional state variable, such that:

u(t) = [u1(t), u2(t), ... , ur(t)]
T , (4.3)

x(t) = [x1(t), x2(t), ... , xn(t)]T . (4.4)

A set of state functions relate the state variables and the control variables:

dxi
dt

= f i(x1(t), x2(t), ... , xn(t), u1(t), u2(t), ... , ur(t)), i = 1, 2, ... n (4.5)

If the integral (4.1) is split into two integrals where, the first part is integrated

from time ti = 0 to time, t, and the second part is integrated from time, t to time,

tf , then both parts become time dependant.

J =

∫ t

0

f 0 (x(τ), u(τ)) dτ +

∫ tf

t

f 0 (x(τ), u(τ)) dτ (4.6)

Let the first integral in equation (4.6) be defined as x0(t), such that

x0(t) =

∫ t

ti
f 0 (x(τ), u(τ)) dτ, (4.7)

J = x0(t)

∫ tf

t

f 0 (x(τ), u(τ)) dτ. (4.8)

Even though both terms in equation (4.6) are now time dependant, their sum J

remains a constant. If equation (4.7) is differentiated, the result is an equation very

similar to the state equations:

dx0

dt
= f 0(x1(t), x2(t), ... , xn(t), u1(t), u2(t), ... , ur(t)) (4.9)

The state equations can be rewritten to include equation (4.9).

dxi
dt

= f i(x1(t), x2(t), ... , xn(t), u1(t), u2(t), ... , ur(t)) i = 0, 1, 2, ... n (4.10)

CHAPTER 4: OPTIMAL CONTROL 45

In terms of state variables x and u equations (4.10) can be written in the form

dxi
dt

= f i(x(t), u(t)) i = 0, 1, 2, ... n. (4.11)

Whenever possible the state-variable notation will be used to improve readability.

dx

dt
= f(x(t), u(t)). (4.12)

For readability define f i ≡ f i(x(t), u(t)). A set of auxiliary functions,

ψ = [ψ0(t), ψ1(t), ψ2(t), ..., ψn(t)]T , (4.13)

are now defined such that:

1. Their time derivatives are given by the following equation.

dψi
dt

= −
n∑

α=0

∂fα

∂xi
ψα, i = 0, 1, ..., n. (4.14)

2. They are continuous and have continuous derivatives ψ ∈ C2 almost every-

where. (They will have a finite number of point discontinuities, where the controls

switch.) Notice that the differential in equation 4.14 can be pulled out of the sum-

mation:
n∑

α=0

∂fα

∂xi
ψα =

n∑
α=0

∂

∂xi
(fαψα) =

∂

∂xi

(
n∑

α=0

fαψα

)
(4.15)

Let H be defined such that

H(ψ, x, u) =
n∑

α=0

fαψα. (4.16)

This permits equation 4.14 to be expressed in terms of H as

dψi
dt

= −∂H
∂xi

, i = 0, 1, ..., n. (4.17)

CHAPTER 4: OPTIMAL CONTROL 46

Notice that
∂

∂ψi
(ψαf

α) =

{
f 0, α 6= i

f i, α = i
(4.18)

Therefore by differentiating equation (4.16) and using equation (4.11)

dxi
dt

=
∂H
∂ψi

, i = 0, 1, ..., n. (4.19)

Pontryagin’s Maximum Principle, provides the means to find this Hamiltonian

function. Pontryagin’s Maximum Principle:

Here is Pontryagin’s Maximum Principle from a translated version of his book

Pontryagin et al. [1962]. (The notation has been changed to be consistent with that

of this thesis.)

Let u(t), ti ≤ t ≤ tf , be an admissible control such that the corresponding trajectory

x(t) [see (4.19)] which begins at the point xi at the time ti passes, at some time tf ,

through a point on line 2. In order that u(t) be optimal it is necessary that there exist a

nonzero continuous vector function ψ = (ψ0(t), ψ1(t), ψ2(t), ..., ψn(t)) corresponding

to u(t) and x(t) [see (4.17)], such that

1o for every ti ≤ t ≤ tf , the function H(ψ(t), x(t), u) of the variable u ∈ U

attains its maximum at the point u = u(t):

H(ψ(t), x(t), u) = M(ψ(t), x(t)); (4.20)

2o at the terminal time tf the relations

ψ0(tf) ≤ 0, M(ψ(ti), x(tf)) = 0 (4.21)

are satisfied.

The optimal controls, u∗, are those which maximize the Hamiltonian, in the control

space, u ∈ U .

M(ψ, x) = sup
u∈U
H(ψ, x, u) = H(ψ, x, u∗) (4.22)

CHAPTER 4: OPTIMAL CONTROL 47

4.1.2 The Time-Optimal Case

In equation (4.1) the function f 0 (x(t), u(t)) determines the quantity that is to be

minimized for optimality. If time is to be minimized, J represents the minimal time

for the state of the system to transition from xi to xf . (If we are thinking in terms

of maximizing, we are maximizing the quantity ti − tf .) In this case J = tf − ti, i.e:

∫ tf

ti
f 0 (x(t), u(t)) dt = tf − ti (4.23)

which implies,

f 0(x(t)u(t)) = 1. (4.24)

There is no reason why the first term of H can’t be pulled out of the sum. In this

case, notice that f 0 is equal to one, and H can be expressed as follows.

H(ψ, x, u) = ψ0 +
n∑

α=1

fαψα. (4.25)

The point of this is to find a Hamiltonian that can be maximized over the control

space. Since ψ0 does not depend on the controls, having ψ0 added on to the end of

the sum in the Hamiltonian, serves as no aid to the purpose of finding the appropriate

controls. Therefor, (for this more simplified form of Pontryagin’s Maximum Theorem,

which is the time optimal case) a simpler form of the Hamiltonian can be defined which

does not depend on ψ0. Traditionally, the simplified functions from Pontryagin’s

Maximum Principle, which are only relevant to the time optimal case, are defined

with non-curvy letters. The following is the hamiltonian for the time optimal case.

H(ψ, x, u) =
n∑
ν=1

f νψν . (4.26)

Likewise to find the auxiliary equations, the first term of equation (4.14) is not needed:

dψi
dt

= −
n∑

α=1

∂fα

∂xi
ψα, i = 1, 2, ..., n. (4.27)

CHAPTER 4: OPTIMAL CONTROL 48

also

dψi
dt

= −∂H
∂xi

, i = 1, 2, ..., n (4.28)

dxi
dt

=
∂H

∂ψi
, i = 1, 2, ..., n. (4.29)

and

M(ψ, x) = sup
u∈U

H(ψ, x, u) = H(ψ, x, u∗). (4.30)

4.2 Applying Maximum Principle in Configuration

Space

In this section, the Pontryagin’s Maximum Principle for time-optimal control is ap-

plied to the same car model described earlier. Just as a reminder, here is the example

that will be used:

ẋ = v cosφ (4.31)

ẏ = v sinφ (4.32)

φ̇ =
v

`
tan θ (4.33)

The control space, for simplicity, will be defined by u1 = v and u2 = tan θ
`

, and

constrained as follows;

|u1| ≤ η, |u2| ≤ ζ, (4.34)

where η, and ζ are constants which depend on the specifics of the vehicle.

Let the following notation be used, x1 = x, x2 = y and x3 = φ.

In terms of these controls, the state functions are:

ẋ1 = f 1 = u1 cosx3 (4.35)

ẋ2 = f 2 = u2 sinx3 (4.36)

ẋ3 = f 3 = u1u2 (4.37)

CHAPTER 4: OPTIMAL CONTROL 49

The auxiliary functions from equation, (4.27), are given by

ψ̇1 = −∂f
1

∂x1

ψ1 −
∂f 2

∂x1

ψ2 −
∂f 3

∂x1

ψ3, (4.38)

ψ̇2 = −∂f
1

∂x2

ψ1 −
∂f 2

∂x2

ψ2 −
∂f 3

∂x2

ψ3, (4.39)

ψ̇3 = −∂f
1

∂x3

ψ1 −
∂f 2

∂x3

ψ2 −
∂f 3

∂x3

ψ3. (4.40)

These evaluate to,

ψ̇1 = 0, (4.41)

ψ̇2 = 0, (4.42)

ψ̇3 = u1 sin (x3)− u1 cos (x3) = ẋ2 − ẋ1. (4.43)

The hamiltonian given by equation, (4.26), is

H(ψ, x, u) = u1 cosx3ψ1 + u2 sinx3ψ2 + u1u2ψ3. (4.44)

The auxiliary states, ψ1 - ψ3, are found by integrating equations, (4.41 - 4.43).

ψ1 = ψ(t = 0) ≡ ψ10, , (4.45)

ψ2 = ψ(t = 0) ≡ ψ20, (4.46)

ψ3 = x2 − x1 + ψ20 − ψ10 + ψ30. (4.47)

Where ψ10, ψ20 and ψ30 are initial conditions. Substituting the results from equations,

(4.45 - 4.47), into the Hamiltonian, equation (4.44), produces

H(ψ, x, u) = u1 cosx3ψ10 + u2 sinx3ψ20 + u1u2 (x2 − x1 + ψ20 − ψ10 + ψ30) . (4.48)

CHAPTER 4: OPTIMAL CONTROL 50

4.3 Applying Maximum Principle in Heisenberg

Space

4.3.1 Control Derivation

Here we will take the minimum time approach, therefore J = tf−ti and f 0(x(t)u(t)) =

1 and by equation (4.11), we can obtain the set of differential equations;

ẋ0 = f 0 = 1, (4.49)

ẋ1 = f 1 = u1, (4.50)

ẋ2 = f 2 = u2, (4.51)

ẋ3 = f 3 = x1u2 − x2u1. (4.52)

We may obtain the axillary set of equations with the help of equation, (4.14).

They are the following:

ψ̇0 = 0, (4.53)

ψ̇1 = −u2ψ3, (4.54)

ψ̇2 = −u1ψ3, (4.55)

ψ̇3 = 0. (4.56)

Applying equation, (4.26), we obtain the Hamiltonian:

H = ψ1u1 + ψ2u2 + ψ3 (x1u2 − x2u1) . (4.57)

Alternatively, the Hamiltonian can be written in this way:

H = u1 (ψ1 − ψ3x2) + u2 (ψ2 + ψ3x1) . (4.58)

CHAPTER 4: OPTIMAL CONTROL 51

The controls are found which maximize the function,H.

M = max(H) = max(u1 (ψ1 − ψ3x2) + u2 (ψ2 + ψ3x1)). (4.59)

We can consider a normalized control manifold such that, |u1| ≤ 1, |u2| ≤ 1. Notice

that H is at its maximal when controls are chosen such that

M = |ψ1 − ψ3x2|+ |ψ2 + ψ3x1| . (4.60)

Which happens when, |u1| = 1, |u2| = 1, and leads to the controls:

u1 = sign (ψ1 − ψ3x2), (4.61)

u2 = sign (ψ2 + ψ3x1). (4.62)

Notice, that this is an example of bang-bang control which is always produced when

the time-optimal condition is applied with Pontryagin’s Maximum Principle and the

assumption that condition, (4.24) is made.

4.3.2 Optimal Control as Partial Feedback

Controls, (4.62) can be expressed as

u1 = sign

(
ψ3

(
ψ1

ψ3

− x2

))
, (4.63)

u2 = sign

(
ψ3

(
ψ2

ψ3

+ x1

))
. (4.64)

Given two arbitrary numbers, a and b, notice that sign ab = sign a sign b. Therefore

we can pull the φ3 out as follows,

u1 = sign (ψ3) sign

(
ψ1

ψ3

− x2

)
, (4.65)

u2 = sign (ψ3) sign

(
ψ2

ψ3

+ x1

)
. (4.66)

CHAPTER 4: OPTIMAL CONTROL 52

Now, notice that ψ̇3 = 0 therefor ψ3 is a constant and ψ3 = ψ3(t = 0). In other

words, ψ3 is an initial condition. As a reminder that ψ3 is a constant and an initial

condition, the following definition is made: ψ3 = ψ3(0) ≡ ψ30. The control laws now

become:

u1 = sign (ψ30) sign

(
ψ1

ψ30

− x2

)
, (4.67)

u2 = sign (ψ30) sign

(
ψ2

ψ30

+ x1

)
. (4.68)

Also note:

ψ̇1 = −u2ψ30, (4.69)

ψ̇2 = u1ψ30. (4.70)

Recall that u1 = ẋ1 and u2 = ẋ2. Thus equations, (4.70), can be rearranged and

integrated as follows: ∫
d

dt

(
ψ1

ψ30

)
dt =

∫
−ẋ2 dt, (4.71)∫

d

dt

(
ψ2

ψ30

)
dt =

∫
ẋ1 dt, (4.72)

Evaluated, these integrals become:

ψ1

ψ30

= −x2 + c1, (4.73)

ψ2

ψ30

= x1 + c2. (4.74)

Combining equations, (4.68), and (4.74) produces a new set of controls which are

dependant on the integration constants, c1 and c2.

u1 = sign (ψ30) sign (c2 − 2x2), (4.75)

u2 = sign (ψ30) sign (c2 + 2x1). (4.76)

CHAPTER 4: OPTIMAL CONTROL 53

Again as in the previous example, the control laws which were produced depend

on initial conditions, and therefore cannot be used to create purely state dependent

control.

Chapter 5

Variable Structure Feedback

Control for Nonholonomic Systems

In this Chapter, an alternative solution to the problem described in section 3.2.1 will

be described. In this case the same vehicle is driven to the origin, but rather than

using the Heisenberg system, a geometric-phase based technique. After this method

is described, Similarities between these two methods will be pointed out. It will be

shown that the Heisenberg system approach can be converted into chained form using

a geometric-phase based technique. By doing so, a new perspective can be had as to

the solution of this system. With this new perspective, a new controller is developed

to solve the Heisenberg system. The goal is to find a new controller which solves this

same system, but which can more easily be altered to incorporate the obstacles in

the problem statement.

The geometric phase technique is a way to effect a phase shift in some direction,

by integrating along (or following) a closed path in a subspace which is normal to the

direction of the desired shift Bloch et al. [1992].

54

CHAPTER 5: VARIABLE STRUCTURE FEEDBACK CONTROL FOR
NONHOLONOMIC SYSTEMS 55

6

/

-

x2

x1

x3

)

�

q

q

-

�
�

7

6

?

δx3

Γ

Figure 5.1: Geometric phase technique

Here is the path integral.

δx3 =

∮
Γ

ẋ3(t) dt (5.1)

Where δx3 is the distance to be traversed in the x3 direction. It should equal the

initial value of x3 if driving x to origin. Γ is a closed path in x1 and x2 which traverses

δx3 in the whole phase space. In other words, the projection of the path, Γ, on to the

(x1, x2) plane would be a closed path, but in the three-dimensional Heisenberg space,

the two ends of Γ are separated by a distance, δ.

In this section we first examine an example from a literature Bloch et al. [1992].

Next, by comparing this method with the our method of using the Bloch-Drakunov

controller, we will develop a hybrid control algorithm which combines the geometric

phase technique and the Heisenberg system. The aim of this exercise is that the new

technique will lend itself more easily to obstacle avoidance.

5.1 Chained-Form Controller, Example: The Car

The following is an example of a chained-form controller to same car described in

figure 3.2. This example is from Bloch et al. [1992], and Al-Ragib.

CHAPTER 5: VARIABLE STRUCTURE FEEDBACK CONTROL FOR
NONHOLONOMIC SYSTEMS 56

Figure 5.2: Classic nonholonomic car model

The equations of motion are equivalent to (equations, 3.4-3.6), but they are ex-

pressed in a way typical of chained form systems.

ẋ = v cosφ (5.2)

ẏ = v sinφ (5.3)

φ̇ = ω =
v

`
tan θ (5.4)

v̇ = v1 (5.5)

ω̇ = v2 (5.6)

The transformation into phase space is different than the one given for the exam-

ples in Heisenberg space. Bloch et al. [1992]

x1 = x cosφ+ y sinφ (5.7)

x2 = φ (5.8)

x3 = −x sinφ+ y cosφ (5.9)

x4 = ẋ cosφ+ ẏ sinφ− ω(x sinφ− y cosφ) (5.10)

x5 = ω (5.11)

Then we differentiate the phase space variables to try to get a system of equations

CHAPTER 5: VARIABLE STRUCTURE FEEDBACK CONTROL FOR
NONHOLONOMIC SYSTEMS 57

that is completely in phase space. We will use the nonholonomic constraint for this

system: ẋ sinφ− ẏ cosφ = 0.

ẋ1 = ẋ cosφ+ ẏ sinφ− xω sinφ+ yω cosφ︸ ︷︷ ︸
x4

(5.12)

ẋ2 = ω (5.13)

ẋ3 = −ẋ sinφ+ ẏ cosφ︸ ︷︷ ︸
=0 (nonholonomic constraint)

−xω cosφ− yω sinφ︸ ︷︷ ︸
−x1x5

(5.14)

ẋ4 = ẋ4 (5.15)

ẋ5 = ω̇ (5.16)

This system simplifies as:

ẋ1 = x4 (5.17)

ẋ2 = x5 (5.18)

ẋ3 = −x1x5 (5.19)

ẋ4 = ẍ1 (5.20)

ẋ5 = ẍ2 (5.21)

Or if we use the following notation, u1 = ẍ1, u2 = ẍ2 Then we have the system:

ẍ1 = u1 (5.22)

ẍ2 = u2 (5.23)

ẋ3 = −x1x5 (5.24)

which is very similar to the Heisenberg system but not symmetric.

For the rest of this example the author used used one controller to drive the system

to the origin of the (x1, x2) plane and a bang-bang control scheme to subsequently

CHAPTER 5: VARIABLE STRUCTURE FEEDBACK CONTROL FOR
NONHOLONOMIC SYSTEMS 58

drive x3 to the origin. The projection of Γ onto the (x1, x2) plane was a square.

A solution to the N-car stabilization problem via. the chained form method is

presented in Sordalen and Wichlund [1993] and Sordalen [1993]

5.2 Hybrid Chain-form and Bloch-Drakunov type

Heisenberg System Controller

In the previous section we noticed that the chained form used was very similar to the

Heisenberg system. In this section we will follow the same procedure for chained form

stabilizers but we will replace that system of equations with the Heisenberg system.

Let us define the variable

V = x2
1 + x2

2 (5.25)

Chained form systems work by first driving V to zero, for example with some

simple controls: ẋ1 = −αx1, ẋ2 = −αx2. Once the system is at the origin of some

(x1, x2) plane, it is then steered to follow a closed path, Γ on the (x1, x2) plane,

which causes x3 to go to zero. This works because we have complete control over the

variables, x1 and x2. The challenge is to find a suitable path Γ, Suitability of a path

is checked with the integral described above, in equation (5.1).

Recall from the Heisenberg system, (3.3), the expression for ẋ3, ẋ3 = x1ẋ2−x2ẋ1.

Applying this to equation, 5.1,

δx3 =

∮
Γ

ẋ3(t) dt (5.26)

CHAPTER 5: VARIABLE STRUCTURE FEEDBACK CONTROL FOR
NONHOLONOMIC SYSTEMS 59

we have

δx3 =

∮
Γ

(x1ẋ2 − x2ẋ1) dt (5.27)

=

∮
Γ

x1dẋ2 dt−
∮
Γ

x2dẋ1 dt (5.28)

=

∮
Γ

x1dx2 −
∮
Γ

x2dx1. (5.29)

Therefore,

x3(tf) = x3(ti) +

∮
Γ

x1dx2 −
∮
Γ

x2dx1. (5.30)

If we stabilize to the origin, such that x3(tf) = 0, we have,

x3(ti) =

∮
Γ

x2dx1 −
∮
Γ

x1dx2. (5.31)

Let Γ be the circle described by

x1(s)2 + x2(s)2 = R2 (5.32)

Where R is the radius and s is the distance traveled along the circular path Γ in the

three dimensional phase space

Note that Bang-Bang control, obtained by applying the Pontryagin’s Maximum

Principle for the time-optimal case, often produces a rectangular Γ. A rectangular

path is perfectly acceptable as well, but for this example we chose to use a circular

path for simplicity. Bang-Bang controllers and Pontryagin’s Maximum Principle are

discussed in the optimal control chapter.

Using the following trigonometric substitutions, x1 = R sin s and x2 = R cos s and

CHAPTER 5: VARIABLE STRUCTURE FEEDBACK CONTROL FOR
NONHOLONOMIC SYSTEMS 60

integrating equation, (5.31), we get

x3(ti) =

∮
Γ

R2 cos2 s ds+

∮
Γ

R2 sin2 s ds (5.33)

x3(ti) =

∮
Γ

R2(cos2 s+ sin2 s) ds, (5.34)

x3(ti) = R2sf , (5.35)

where sf is the length of Γ. We obtained the relation between the phase shift we

require, δx3, in our case just x3(ti), and the Radius of the circular path to follow on

the (x1, x2) plane.

This was assuming that we only wished to make one full rotation, but if we needed

to, we could have made more than one rotation in that case since Γ is a helix which

traverses 2nπ radians, we find the length of this helix.

sf =
√

(δx3)2 + (2nπR) (5.36)

Controls (x2
2 − x2

1)β sign(x3) ≥ 0 (x2
2 − x2

1)β sign(x3) < 0 x3 = 0

u1 −αx2 + βx1 sign(x3) αx2 − βx1 sign(x3) −αx1

u2 αx1 − βx2 sign(x3) −αx1 + βx2 sign(x3) −αx2

Table 5.1: Altered and Bloch-Drakunov-Heisenberg Controller

CHAPTER 5: VARIABLE STRUCTURE FEEDBACK CONTROL FOR
NONHOLONOMIC SYSTEMS 61

5.3 Simulink Model of Altered Controller

DRAKUNOV-ARMSTRONG S.M. / C.F. CONTROLER FOR
HEISENBERG-TYPE NONHOLONOMIC SYSTEMS

Simulink model by Sergey Drakunov and Stephen Armstrong

If converting alpha and beta to
alpha(x) and beta(x), Click on
their boxes and change the
value in "Limit data points to

last:" to "inf", It is "1" for const.
alpha and beta. remember to

alter m-file also.

When it is finished running

Click Here

To Run stevesthesis.m

Clear All
Close All

vehicle

w

v

x

y

phi

control algorithm

x1

x2

x3

alpha

beta

u1

u2

beta

1

alpha

1

To workspace,

Scopes & 3-D plot

phi

y

x

x1

x2

x3

v

w

To Workspace2

L

To Workspace1

beta

To Workspace

alpha

State Transformation1

L

64

Control Transformation

x

y

phi

L

u1

u2

w

v

printed 06-Jul-2011 17:36 page 1/1

DA_HSMC_Scaled

P:\Thesis SP10\StevesThesis\DA_HSMC_Scaled.mdl

Figure 5.3: Altered Bloch-Drakunov controller modeled with Simulink: main window

CHAPTER 5: VARIABLE STRUCTURE FEEDBACK CONTROL FOR
NONHOLONOMIC SYSTEMS 62

α x
2
 - βx

1
 sign(x

3
)

-α x
2
+ βx

1
 sign(x

3
)

α x
1
 - βx

2
 sign(x

3
)

-α x
1
+ βx

2
 sign(x

3
)

(x
2

2
 - x

1

2
) sign(x

3
)

Drakunov-Armstrong Controller Type 1
(for Heisenberg-Space N.H. Syst.)

(Based on B.D. type1 & Rehanoglu-StudentName Chain-System Controllers)

Between Lines Given by: Otherwise: but when x
3
=0, drive x

1
 & x

2
 directly to 0 with:

(x
2

2
 - x

1

2
) sign(x

3
)>=0

u
1
 = -αx

2
+ βx

1
 sign(x

3
) u

1
 = αx

2
 - βx

1
 sign(x

3
) u

1
 = -αx

1

u
2
 = αx

1
 - βx

2
 sign(x

3
) u

2
 = -αx

1
+ βx

2
 sign(x

3
) u

2
 = -αx

2

.

x
3

- α x
1

- α x
2

u2

2

u1

1

Switch4

Switch3

Switch2

Switch1

Subsystem3

x1

x2

x3

alpha

beta

u1a

u1b

u1c

u2a

u2b

u2c

Subsystem2

x1

x2

x3

beta

Switching Condition

Scope1

Scope

beta

5

alpha

4

x3

3

x2

2

x1

1

printed 06-Jul-2011 17:40 page 1/1

DA_HSMC_Scaled/control algorithm

P:\Thesis SP10\StevesThesis\DA_HSMC_Scaled.mdl

Figure 5.4: Altered Bloch-Drakunov controller modeled with Simulink: control algo-

rithm

CHAPTER 5: VARIABLE STRUCTURE FEEDBACK CONTROL FOR
NONHOLONOMIC SYSTEMS 63

sign(x3)

α x
2

x1 beta sign(x3)

alpha

x2

x1

x1

alpha

beta sign(x3)

αx
1

x2 beta sign(x3)
beta sign(x3)

αx
2
 - βx

1
 sign(x

3
)

-αx
2
+ βx

1
 sign(x

3
)

αx
1
 - βx

2
 sign(x

3
)

-αx
1
 + βx

2
 sign(x

3
)

x2

- αx
2

- αx
1

u2c

6

u2b

5

u2a

4

u1c

3

u1b

2

u1a

1

-1

-1

beta

5

alpha

4

x3

3

x2

2

x1

1

printed 06-Jul-2011 17:42 page 1/1

DA_HSMC_Scaled/control algorithm/Subsystem3

P:\Thesis SP10\StevesThesis\DA_HSMC_Scaled.mdl

Figure 5.5: Altered Bloch-Drakunov controller modeled with Simulink: controllers a

& b

Simulation Results

As with the Bloch Drakunov controller, this control scheme works for unobstructed

paths. Again we will show the convergence of two different simulations.

The first simulation had initial conditions: (x, y, phi)T = (20, 0, π
2
)T .

The first two plots are of the convergence of the system states in configuration

space.

CHAPTER 5: VARIABLE STRUCTURE FEEDBACK CONTROL FOR
NONHOLONOMIC SYSTEMS 64

Figure 5.6: Model of Drakunov-Armstrong controller with initial conditions

(20, 0, π/2) (x and y convergence)

Figure 5.6 shows the convergence of the location (x, y) in the configuration space.

Figure 5.7: Model of Drakunov-Armstrong controller with initial conditions

(20, 0, π/2) (φ convergence)

Figure 5.7 shows the convergence of the orientation φ in the configuration space.

The next two plots show the convergence of the system states in Heisenberg space

and the Transformed controls in Heisenberg space.

CHAPTER 5: VARIABLE STRUCTURE FEEDBACK CONTROL FOR
NONHOLONOMIC SYSTEMS 65

Figure 5.8: Model of Drakunov-Armstrong controller with initial conditions

(20, 0, π/2) (x1, x2 and x3 convergence)

Figure 5.8 shows the convergence of the configuration (x1, x2, x3) in Heisenberg

space.

Figure 5.9: Model of Drakunov-Armstrong controller with initial conditions

(20, 0, π/2) (u1 and u2 convergence)

Figure 5.9 shows the convergence of the controls (u1, u2) in Heisenberg space.

The second simulation had initial conditions: (x, y, phi)T = (−15,−24, π)T .

CHAPTER 5: VARIABLE STRUCTURE FEEDBACK CONTROL FOR
NONHOLONOMIC SYSTEMS 66

Again, the first two plots for this simulation are of the convergence of the system

states in configuration space.

Figure 5.10: Model of Drakunov-Armstrong controller with initial conditions

(−15,−24, π) (x and y convergence)

Figure 5.10 shows the convergence of the location (x, y) in the configuration space.

Figure 5.11: Model of Drakunov-Armstrong controller with initial conditions

(−15,−24, π) (φ convergence)

Figure 5.11 shows the convergence of the orientation φ in the configuration space.

CHAPTER 5: VARIABLE STRUCTURE FEEDBACK CONTROL FOR
NONHOLONOMIC SYSTEMS 67

The next two plots show the convergence of the system states in Heisenberg space

and the Transformed controls in Heisenberg space.

Figure 5.12: Model of Drakunov-Armstrong controller with initial conditions

(−15,−24, π) (x1, x2 and x3 convergence)

Figure 5.12 shows the convergence of the configuration (x1, x2, x3) in Heisenberg

space.

Figure 5.13: Model of Drakunov-Armstrong controller with initial conditions

(−15,−24, π) (u1 and u2 convergence)

CHAPTER 5: VARIABLE STRUCTURE FEEDBACK CONTROL FOR
NONHOLONOMIC SYSTEMS 68

Figure 5.13 shows the convergence of the controls (u1, u2) in Heisenberg space.

This controller converged slower than the Bloch-Drakunov controller, and was not

an improvement.

Chapter 6

Potential Field Methods and Their

Applications to Nonholonomic

Systems

6.1 Potential Field Method for Obstacle Avoid-

ance in Robotic Systems

Potential field method is a classical approach to path planning for robotic systems

among stationary obstacles. By applying a virtual positive charge to each obstacle

and a virtual negative charge to the goal location, the control is then designed in

such a way that, the vehicle can be guided to follow the gradient of the potential field

to the goal location. Orientation is usually ignored because it is assumed that the

vehicle could simply be turned on its axis.

Potential field methods are often used in path planning problems, but they can

also be applied to feedback control. For example, a continually updating gradient

field could provide directional control in a closed loop.

A drawback to potential field methods is that they can produce local minima

capable of trapping system. In path planning problems, these local minima can be

avoided using a heuristic approach, by checking each potential path. Unfortunately

69

CHAPTER 6: POTENTIAL FIELD METHODS AND THEIR APPLICATIONS
TO NONHOLONOMIC SYSTEMS 70

heuristic approaches are not practical for feedback control, so for feedback control

with potential field methods, local minima are a real problem.

In this chapter we will attempt to use potential field methods to solve the non-

holonomic feedback problem. To first gain some perspective we will examine a simple

problem with only holonomic constraints. Then we will attempt to alter this method

to work with a nonholonomic system.

A good source for background information on potential field methods is Khosla

and Volpe [1988].

6.2 Potential Field Method for Obstacle Avoid-

ance in Systems Without Nonholonomic Con-

straints

An example solution of the holonomic problem among movable boundaries using the

potential field method is shown below.

In this example, we consider a holonomic mobile robot which moves on a bounded

two dimensional plane. There are obstacles on the plane, and they are not required

to remain stationary. The configuration space CS ∈ R2 is just two dimensional on

the (x, y)-plane. It is assumed that the present location of all objects (obstacles) in

the configuration space is known.

A charge density ρ is applied to the boundaries of all obstacles, O and to the

boundaries of the configuration space. A point charge, c∗ is applied to the goal

configuration, X∗ = (q∗1, q
∗
2), which for this example is just a location is the (x, y)-

plane, where X∗ ∈ CS
The state-dependant equations of motion are as follows,

ẋ = v
∇px
||∇p||

ẏ = v
∇px
||∇p||

(6.1)

where, x, y ∈ CS. The speed v is a constant. p is the potential field caused by the

charge densities, ρ on the boundaries and obstacles and by the point charge c∗ at the

CHAPTER 6: POTENTIAL FIELD METHODS AND THEIR APPLICATIONS
TO NONHOLONOMIC SYSTEMS 71

goal position. ∇px is the x-directional component of the gradient of the potential

field. ||∇p|| magnitude of the gradient of the potential field.

The potential field, p can be calculated as follows,

p(x, y) =

∫∫
CS

ρ(x̃, ỹ)√
(x− x̃)2 + (y − ỹ)2

dx̃dỹ − c∗√
(q∗1 − x)2 + (q∗2 − y)2

(6.2)

6.2.1 Simulated Gradient of 2D Potential Field with Image

Processing

In the above example it was assumed that the knowledge of the location of obstacles

in the configuration space, would come in the form of an image.

An example black and white image was created, where obstacles were represented

as black shapes on a white background. Some simple image processing code was

written which

1. Scales the image to the length and width of the 2-dimensional configuration

space

2. Finds the boundaries of these obstacles

3. Applies a positive charge density to these boundaries

4. Applies a negative point charge at the goal point

5. Calculates a potential field everywhere

6. Calculates the gradient of the potential field everywhere

7. Plots the steps and results.

The image first had to be scaled to the appropriate dimensions of the configu-

ration space. The image scaling caused the edges to blur so then were sharpened.

The sharpening was done by assigning a threshold value on the grayscale and making

everything white or black again. (The image was inverted only because it was conve-

nient for the calculations, dealing with the bitmap file format.) Next the boundaries

were found by searching for pixels where one of the neighboring pixels had a different

value. Positive charges were then assigned to white pixels and a stronger negative

charge was assigned to the goal point. It was found that the negative charge should

CHAPTER 6: POTENTIAL FIELD METHODS AND THEIR APPLICATIONS
TO NONHOLONOMIC SYSTEMS 72

be approximately three times the sum of all positive charges, in order to produce

significant resolution in the potential field gradient. Finally the potential field and

gradient was calculated everywhere in CS.

These steps are depicted figure, 6.1,

Figure 6.1: Producing a 2-dimensional potential field; the image processing steps

The contours of the potential field are shown above. A holonomic vehicle would

follow the gradient of this field from any point to the goal location.

CHAPTER 6: POTENTIAL FIELD METHODS AND THEIR APPLICATIONS
TO NONHOLONOMIC SYSTEMS 73

6.3 Transforming Potentials into Heisenberg Space

with Paraboloidal Sliding Surface

We used the transformation from section (3.2.2) to see what the obstacles from the

previous example, would look like in the Heisenberg Space. Recall that in the this

transformation,
[
x1
x2
x3

]
= T (φ)

[x
y
φ

]
, where, T is given by equation (3.8),

T (φ) =
[

0 0 1
cosφ sinφ 0

φ cosφ−2 sinφ φ sinφ+2 cosφ 0

]
φ becomes x1, so it may be expected that any cross-section of x2 and x3 should

resemble a skewed form of the original image of the obstacles in the (x, y)-plane.

Figure, 6.2 shows what is produced.

Figure 6.2: Simulated 2-D. obstacles transformed into Heisenberg space

CHAPTER 6: POTENTIAL FIELD METHODS AND THEIR APPLICATIONS
TO NONHOLONOMIC SYSTEMS 74

6.4 Wrapping a Potential Field on a Sliding Man-

ifold Using Geodesic Distance

This approach is a modification of the method described by Bloch and Drakunov. In

this approach the Lyapunov function only includes two of the three dimensions of the

transformed (Heisenberg) space; x2 and x3. The controls are chosen to drive x1 to

zero at a rate faster than the Lyapunov function converges to zero. These controls

take on the form of a switching function that maintains the state on a sliding surface.

In the 3D Heisenberg space this sliding surface has the form of a paraboloid. The

transformed obstacles have the effect of cutting areas out of this sliding surface. The

boundaries of the intersection of the transformed obstacles on the sliding surface are

applied with a charge density. The vertex of the paraboloid is also given a charge of

opposite sign.

A two-dimensional electrostatic potential is calculated everywhere on this manifold

by calculating the minimal geodesic distance from each charged point to each point

on the surface.

The aim was to create a sliding mode controller which would keep the state on

this surface while following the gradient of the potential field to the origin. The

variable structure controller would have to have additional controllers to deal with

the situation when the car must back up to go around an obstacle. It would also have

to account for the maximum steering angle constraint.

Let LT be the (x, y)-plane in the configuration space, CS. Then LT ⊂ CS.

let γ(x, y) represent the location of the borders of all obstacles in the (x, y)-

plane, LT . The set γ(x, y) was mapped to the whole configuration space, CS, with

χ(xi, yj, φ) = γ(xi, yj) for all points (xi, yj) ∈ LT and for all φ ∈ CS. I.e.

{χφ ∈ CS} = {γ ∈ LT }∀φ ∈ CS (6.3)

Next, χ(x, y, φ) is mapped to Heisenberg space, H. This is done with the trans-

formation matrix, T equation, (3.8), as follows, µ = Tχ. Where χ 7→ CS and µ 7→ H.

Then two paraboloidal surfaces are created in the Heisenberg space, which share

CHAPTER 6: POTENTIAL FIELD METHODS AND THEIR APPLICATIONS
TO NONHOLONOMIC SYSTEMS 75

a common vertex at the origin of H, and which have the form, β
2α

(x2
1 + x2

2) = |x3|. A

useful depiction of these paraboloids is given in Bloch and Drakunov [1996].

Figure 6.3: Original β
2α

(x2
1 + x2

2) = |x3| paraboloid drawing from Bloch and Drakunov

[1996]

The values of α, and β, which could be functions of the control scheme were, for

the sake of simulations in this thesis, taken to be unity.

A negative point charge c∗ is applied at the origin of Heisenberg space. Figure,

6.2 shows what this looks like for the same obstacles analyzed in section, 6.2.1

Let P be the manifolds defined by β
2α

(x2
1 + x2

2) = |x3|. The potential field was set

up as follows. A positive charge density ρ(x) ∈ H was applied to the intersections

of these paraboloidal surfaces, P and the transformed obstacles, µ. Therefore, ρ =

P
⋂
µ.

Now curves representing charge densities on the surface of two paraboloidal man-

ifolds. Notice that ρ is entirely in P, ρ ∈ P .

We want to create a potential field where the distances considered are along curves

which are on the manifold P, since these distances have to take into account the

curvature of the manifold, we will have to use the minimum geodesic distances.

Here is a picture of what we are trying to accomplish, (figure, 6.4).

CHAPTER 6: POTENTIAL FIELD METHODS AND THEIR APPLICATIONS
TO NONHOLONOMIC SYSTEMS 76

Figure 6.4: Wrapping potential field on to sliding manifold for feedback switching

conditions

A convenient way to simplify geodesic problems is to take advantage of symmetry,

if there is any. In the case of our system, which is just two paraboloids, we have

symmetry around the x3-axis and around the x3 = 0 plane. Let us define a local set

of coordinates on the surface of the manifold, P, We will use the x3 axis, which we

will call ζ as one coordinate and the other coordinate, ψ will represent the counter

clockwise angle around the x3-axis from the positive x2-axis. Therefore we have the

following coordinate transformations, x1 =
√

αζ
β

cosψ, x2 =
√

αζ
β

sinψ, x3 = ζ.

An equation for a minimum geodesic arc length of a surface in three dimensional

CHAPTER 6: POTENTIAL FIELD METHODS AND THEIR APPLICATIONS
TO NONHOLONOMIC SYSTEMS 77

cartesian coordinates is given by the following expression Weinstock [1974].

l =

∫ b

a

√
(dx1)2 + (dx2)2 + (dx3)2 (6.4)

In terms of the local coordinates, (ζ, ψ), expression (6.4) becomes, Weinstock

[1974]

l =

∫ b

a

Ldζ (6.5)

Where L is given by, Weinstock [1974]

L =

√
P + 2Qψ́ +Rψ́2 (6.6)

and

ψ́ =
dψ

dζ
(6.7)

P =

(
∂x1

∂ζ

)2

+

(
∂x2

∂ζ

)2

+

(
∂x3

∂ζ

)2

(6.8)

Q =
∂x1

∂ζ

∂x1

∂ψ
+
∂x2

∂ζ

∂x2

∂ψ
+
∂x3

∂ζ

∂x3

∂ψ
(6.9)

R =

(
∂x1

∂ψ

)2

+

(
∂x2

∂ψ

)2

+

(
∂x3

∂ψ

)2

(6.10)

The integral (6.5) can be solved with the Euler-Lagrange equation,

dL

dψ
− d

dζ

(
L

ψ́

)
= 0 (6.11)

which becomes,Weinstock [1974]

∂P
∂ψ

+ 2∂Q
∂ψ
ψ́ + ∂R

∂ψ
ψ́2

2

√
P + 2Qψ́ +Rψ́2

− d

dζ

 Q+Rψ́√
P + 2Qψ́ +Rψ́2

 = 0 (6.12)

CHAPTER 6: POTENTIAL FIELD METHODS AND THEIR APPLICATIONS
TO NONHOLONOMIC SYSTEMS 78

In the case of our paraboloid we have,

P =
α cos2 ψ

4βζ
+
α sin2 ψ

4βζ
+ 1 = 1 +

α

4βζ
(6.13)

Q = − sinψ

2
√
βζ/α

+
cosψ

2
√
βζ/α

=
cosψ − sinψ

2
√
βζ/α

(6.14)

R =
β

α
ζ cos2 ψ +

β

α
ζ cos2 ψ + 0 =

β

α
ζ (6.15)

For our case, the solution to the Euler-Lagrange equation is given by Weinstock

[1974], as,

ζ − α

β
c2 = ζ(1 + 4c2) sin2

(
ψ − 2 ln k

([
2

√
β

α
ζ − c2 +

√
4
β

α
ζ + 1

)])
, (6.16)

where c and k are constants. The way that each minimum geodesic arc length, l,

is obtained is by first, evaluating equation, (6.16), at both end points, (ζa, ψa) and

(ζb, ψb). Next solve the two equations simultaneously for c, and k

Let us consider the computational requirements to produce a gradient of this

potential field on our manifold. If the charge distribution on the manifold, P, was

resolved with n pixels, then calculating the potential field everywhere, would require,

finding the minimum geodesic distance from each point to each point. This would

take (n−1)2 calculations of minimum geodesic arc length, and all of these calculations

would have to be done before the gradient could be calculated.

Without an analytical solution to this integral, this approach would be too com-

putationally intensive to be practical for a feedback controller.

6.5 Including Potential in the Lyapunov Function

for Obstacle Avoidance

In this attempt, the controls will be taken exactly as they are from Bloch[03 pg.285]

Bloch [2003] but the Lyapunov function will be altered to include the boundaries

of the obstacles. The Lyapunov function is taken as a function of only x1, x2 and

CHAPTER 6: POTENTIAL FIELD METHODS AND THEIR APPLICATIONS
TO NONHOLONOMIC SYSTEMS 79

distance from obstacles on constant x3 plane.

V = a(x2
1 + x2

2)− b
∫∫
H2(x3)

{
(x1 − x̃1)2 + (x2 − x̃2)2} ρ (x̃1, x̃2) dx̃1 dx̃2 (6.17)

Where:

H2 (x3) is a plane of constant x3

(x̃1, x̃2) is an arbitrary point on H2 (x3)

ρ (x̃1, x̃2) is

{
1 if (x̃1, x̃2) lies on the boundary of an obstacle

0 if elsewhere

a is a constant weighing factor or ”charge” of (0, 0, x3)

b is a weighing factor of all combined obstacle charges on H2 (x3)

A necessary condition for asymptotic stability is that the time derivative of the

Lyapunov function must be negative.

V̇ = 2ax2ẋ1 + 2ax2ẋ2 − b
d

dt

∫∫
H2(x3)

{
(x1 − x̃1)2 + (x2 − x̃2)2} ρ (x̃1, x̃2) dx̃1 dx̃2 (6.18)

= 2a (x1ẋ1 + x2ẋ2)− b
∫∫
H2(x3)

ρ (x̃1, x̃2) (2x1ẋ1 + 2x2ẋ2) dx̃1 dx̃2 (6.19)

= 2a (x1ẋ1 + x2ẋ2)− 2b (x1ẋ1 + x2ẋ2)

∫∫
H2(x3)

ρ (x̃1, x̃2) dx̃1 dx̃2 (6.20)

V̇ = (x1ẋ1 + x2ẋ2) (2a− 2b)

∫∫
H2(x3)

ρ (x̃1, x̃2) dx̃1 dx̃2 (6.21)

Note that
∫∫

H2(x3)

ρ (x̃1, x̃2) dx̃1 dx̃2 is just some constant if the obstacles aren’t moving

and could be continuously normalized to some constant if they are moving. Let this

CHAPTER 6: POTENTIAL FIELD METHODS AND THEIR APPLICATIONS
TO NONHOLONOMIC SYSTEMS 80

constant be defined as:

P def
=

∫∫
H2(x3)

ρ (x̃1, x̃2) dx̃1 dx̃2 (6.22)

Also note that ρ (x̃1, x̃2) ∈ {0, 1
area
} ∀ (x̃1, x̃2) 3−− ρ ≥ 0 ∴ P > 0 if there are any

obstacles and P = 0 if there are none.

=⇒ V̇ = (x1ẋ1 + x2ẋ2) (2a− 2b) (2a− 2bP) (6.23)

=
{
−αx2

1 + βx2x3 signx3 − αx2
2 − βx1x2 signx3

}
(2a− 2bP) (6.24)

V̇ = −2α
(
x2

1 + x2
2

)
(2a− 2bP) (6.25)

∴ a and b can be chosen such that V̇ < 0 (6.26)

Again, as with the Bloch-Drakunov controller, the Lyapunov function was only on

the plane of constant x3, H2 (x3). Also recall that, with the Heisenberg system,

ẋ1 = u1, (6.27)

ẋ2 = u2, (6.28)

ẋ3 = x1u2 − x2u1, (6.29)

x3 must be driven to zero before x1 and x2. because when x1 = x2 = 0, x3 is not

controllable, i.e. ẋ3 = 0.

As we did with the Bloch-Drakunov controller we will differentiate x3.

ẋ3 = x1u2 − x2u1 (6.30)

= −αx1x2 + βx2
1 sign (x3) + αx1x2 + βx2

2 sign (x3) (6.31)

= −2β(x2
1 + x2

2) sign (x3) (6.32)

CHAPTER 6: POTENTIAL FIELD METHODS AND THEIR APPLICATIONS
TO NONHOLONOMIC SYSTEMS 81

Integrating both sides of the equation

x3(t)− x3(0) = −2β

∫ t

0

(x2
1 + x2

2) dτ sign(x3) (6.33)

x3(t) = x3(0)︸ ︷︷ ︸
a

−2β sign(x3)

∫ t

0

(x2
1 + x2

2) dτ︸ ︷︷ ︸
b

(6.34)

Here everything is the same as for the Bloch-Drakunov controller described in

section 3.2.2. Part a and part b of the above equation, are of opposite signs. If

the x3(0) is negative, part (b) will approach |x3(0)| as τ → t. Note that sign(x3) =

sign(x3(0)) because x3 will not cross the x3 = 0 plane before time, t. If x3(0) is

positive, part (b) will be initially negative, and will equal −x3(0) at time, t. From

this we have the condition that

2β

∫ ∞
0

(x2
1 + x2

2) dτ ≥ |x3(0)|. (6.35)

To integrate this, in the case of the simple Lyapunov function described earlier,

V = 1
2
(x2

1 + x2
2) we were able to take advantage of the fact that V (t) = V (0)e−2ατ ,

but for the new Lyapunov function, (equation, 6.17), we don’t V (t). We can try

integrating anyway.

2β

∫ ∞
0

(x2
1 + x2

2) dτ ≥ |x3(0)| (6.36)

We can’t integrate this, so unfortunately we don’t get the stability condition in a

useful form. We will have to try something else

6.6 Combined Potential Fields and Sliding Modes

A method which eliminates the local minima problem and shortens the paths pro-

duced by the potential field method can be found in the literature Hashimoto et al.

[1992]. In this paper, ”Obstacle Avoidance Control in Multi-Dimensional Space Us-

ing Sliding Mode” Hashimoto et al. [1992] potential field path planning was combined

CHAPTER 6: POTENTIAL FIELD METHODS AND THEIR APPLICATIONS
TO NONHOLONOMIC SYSTEMS 82

with a sliding mode approach for the controls. The potential field was set up as fol-

lows. A positive charge density was applied to all obstacles in the configuration space

CS, (labeled as Rn in the following equations). Then a negative point charge c∗ is

applied at the goal point q∗ in the n-dimensional configuration space

(Note that for a robot moving on a two-dimensional plane with configuration space

CS ∈ R3 where q1 and q2 are the x and y directions and q3 is orientation, The charge

densities of the obstacles are constant ∀ q3 but the goal is a single point in R3.

This whole approach is almost exactly the same as the one used in this thesis with

the following differences: 1) The model used in this paper was dynamic, whereas the

model used in this thesis is only kinematic. 2) The model in this thesis is nonholo-

nomic, so the sliding surfaces use a variation of the Heisenberg system, whereas the

sliding surfaces in this paper were purely the force curves on the Laplace electrostatic

potential field.

U(q) =

∫
Rn

c(ξ)(∑n
i=1 (qi − ξi)2) 1

2

dξ − c∗(∑n
i=1 (q∗i − qi)

2) 1
2

(6.37)

∫
Rn

c(ξ)dξ < c∗ (6.38)

Hashimoto et al. [1992]

6.7 Combined Potential Fields and Sliding Modes

(A New Approach)

The potential field could be obtained using the electrostatic potential given by(6.39):

ψ(x1, x2, x3) =

∫
R3

c(x̃1, x̃2, x̃3)[∑3
i=1 (xi − x̃i)2] 1

2

dx̃1 dx̃2 dx̃3 −
c∗[∑3

i=1 (z∗i − xi)
2] 1

2

, (6.39)

CHAPTER 6: POTENTIAL FIELD METHODS AND THEIR APPLICATIONS
TO NONHOLONOMIC SYSTEMS 83

where c∗ > 0 and:

X = (x̃1, x̃2, x̃3) an arbitrary point,

q∗ = (z1, z2, z3) goal point location,

ψ (x1, x2, x3) potential field at point (x1, x2, x3) ,

c∗ charge at goal point,

c(x̃1, x̃2, x̃3) is the density of charges at the obstacles.

To assure that the gradient of the potential field will point towards the goal point,

the sum of the positive charges must be significantly less than the magnitude of the

negative charge at the goal point. i.e.∫
R3

c(x̃1, x̃2, x̃3)dx̃1 dx̃2 dx̃3 < c∗ (6.40)

The desired trajectory (plan) for this form of potential-field directional control is

given by the following equations:

ẋ∗1 = − ∂ψ
∂x1

(x∗1, x
∗
2, x
∗
3) , (6.41)

ẋ∗2 = − ∂ψ
∂x2

(x∗1, x
∗
2, x
∗
3) , (6.42)

ẋ∗3 = − ∂ψ
∂x3

(x∗1, x
∗
2, x
∗
3) (6.43)

Lastly, the tracking algorithm described in section (3.3.2) is used to track the

point x∗ = [x∗1, x
∗
2, x
∗
3]T .

This algorithm was modeled in Matlab / Simulink. The model is given in the next

section.

Chapter 7

Conclusions

The goal of this thesis was to review the nonholonomic systems theory and to design

a stabilizing feedback control algorithm for nonholonomic systems in the situation

when certain areas of the state space should be avoided during the system stabi-

lization. In application to autonomous vehicles this problem can be interpreted as

obstacles avoidance. After reviewing the literature on existing methods, the vari-

able structure/sliding mode control was used as the mathematical tool for designing

nonlinear feedback. Such control approach is known for outstanding robustness prop-

erties. It results in closed loop systems that can operate under extreme uncertainty

and in the presence of strong disturbances. As a method for the obstacle avoidance

the potential field approach was chosen. In contrast with the conventional use of this

approach in robotic systems where the artificial potential field of forces is introduced

in the system’s physical space, it was considered in the state space of the canonical

form of the nonholonomic system. Using Brocketts theorem we considered a gener-

alized Heisenberg system as a canonical form and introduced the artificial potential

field in the Heisenberg space. Several examples from literature were also worked out

to provide insight into possible solutions.

84

Chapter 8

Matlab Code

The code for the various simulations used in this thesis is given here.

8.1 The Main File

There was one main file, which allowed the various functions to be commented or

uncommented, depending on the task.

1 % First run the simulink file,

2 % (BD_HSMC.mdl or other controller that will produce the inputs)

3

4 function StevesThesis(x,y,phi,alpha,beta,L)

5 pix = 128; % # of pixels per demension pick a power of 2 if posible

6 DPS =[L L pi/3]; % (meters & rad) Dimensions of Physical Space

7 pic = imread(’BlocksAndCircle.bmp’);

8 % pic = imread(’BandWlaserView1.bmp’);

9 imshow(pic)

10 %% Setting up the constraints on the x-y plane in physical space

11 [I,BW,BW2]=constraints(L,pic);

12

13 %% Adding goal point to charge map and setting up weighting

14 ChargeMap=ObstacleandGoalCharges(BW2,L);

15

85

CHAPTER 8: MATLAB CODE 86

16 %% Building the Potential Field

17 PField = PotentialField(ChargeMap);

18

19 %% Creating Gradiant Field

20 [px,py] = gradient(PField,100,100);

21 [px2,py2] = gradient(PField,.2,.2);

22

23 %% Putting Obstacles in Heisenberg Space

24 [plotx1,plotx2,plotx3]=TransformedObstacles(BW2,DPS);

25

26 %% Adding in a sample Paraboloid

27 [parabaloidx1,parabaloidx2,parabaloidx3]=SManifold(pix,alpha,beta);

28

29 %% Plotting animated car

30 animatedcar(x,y,phi,DPS,BW2)

31

32 %% Plotting the obstacles with sample paraboloids in Heis-Space

33 %%%

34 % (Working but not scaled Correctly)

35 %

36 figure(2)

37 hold on

38 scatter3(plotx1,plotx2,plotx3,1)

39 xlabel(’x1’)

40 ylabel(’x2’)

41 zlabel(’x3’)

42 scatter3(parabaloidx1,parabaloidx2,parabaloidx3,1)

43 hold off

44 axis([0,8,-1,1,-4,4])

45 title({’Obstacles Transformed into Phase Space’,...

46 ’Shown Intersecting Sliding Surface’})

47 %%%

48

CHAPTER 8: MATLAB CODE 87

49

50 %% Plotting paraboloid in Heisenberg space

51 %%figure(1)

52 % hold on

53 % [j_length,i_length]=size(parabaloid)

54 % i=[1:ncols];

55 % j=[1:mrows];

56 %%scatter3(parabaloidx1,parabaloidx2,parabaloidx3,1)

57 %%axis([-1,1,-40,40,-100,100])

58 % view([-20,-15,20])

59 % mesh(i_length,j_length,parabaloid)

60

61 %% 4-Subplots showing image processing

62 % figure(2)

63 % subplot(2,2,1), imshow(pic)

64 % title(’Simulated sensor data’)

65 % subplot(2,2,2), imshow(I)

66 % title(’Resizing pixel matrix leaves edges blury.’)

67 % subplot(2,2,3), imshow(BW)

68 % title(’Edges sharpened and values reversed’)

69 % subplot(2,2,4), imshow(BW2)

70 % title(’Boundaries found for application of potentials’)

71 % size(PField)

72

73 %% Plotting the potential field

74 figure(3)

75 [ncols, mrows]=size(PField);

76 i=[1:ncols];

77 j=[1:mrows];

78 mesh(i,j,PField(i,j))

79 title(’Potential Field of Boundaries, Negative Potential for Goal’)

80 axis([1,ncols,1,mrows,-300,300])

81 view([-20,-15,20])

CHAPTER 8: MATLAB CODE 88

82 clear i;

83 clear j;

84

85 %% Contour plot of potential field

86 % figure(4)

87 % [ncols, mrows]=size(PField);

88 % i=[1:ncols];

89 % j=[1:mrows];

90 % contour(i,j,PField(i,j),60)

91 % title(’Contour’)

92 % clear i;

93 % clear j;

94

95 %% Showing Gradiant of Potential field

96 [spx11,spx12]=size(px);

97 [spy11,spy12]=size(py);

98

99 figure(5) % one arrow for every data point

100 i=[1:spx12];

101 j=[1:spy11];

102 quiver(i,j,-px2,-py2,5);

103 title({’Gradient of P.field’,’provides steering direction.’})

104 axis([1,spx12,1,spy11])

105 clear i;

106 clear j;

107

108 figure(6) % This has more spaced out arrows

109 arrowscale=7;

110 qtf=3; % Here only the multiples of the qtf’th elements are used

111 % for arrows this is because if an arrow is plotted for every

112 % value, the plot apears too hard to read. The gradiant data is

113 % still retained for every point

114 i=[1:qtf:spx12];

CHAPTER 8: MATLAB CODE 89

115 j=[1:qtf:spy11];

116 px2=px(1:qtf:spx11,1:qtf:spx12);

117 py2=py(1:qtf:spy11,1:qtf:spy12);

118 quiver(i,j,-px2,-py2,arrowscale,’LineWidth’,1);

119 title({’Gradient of P.field’,’provides steering direction.’})

120 axis([1,spx12,1,spy11])

121 clear i;

122 clear j;

123

124 %% The image processing as separate figures

125 % figure(7)

126 % imshow(pic)

127 % title({’Simulated Sensor Image’,’(Assumed Sensory Output)’})

128 %

129 % figure(7)

130 % imshow(I)

131 % title(’Resizing pixel matrix leaves edges blury.’)

132 %

133 % figure(8)

134 % imshow(BW)

135 % title(’Edges sharpened and values reversed’)

136 %

137 % figure(9)

138 % imshow(BW2)

139 % title({’Boundaries found for’,’application of potentials’})

8.2 Animating the Car to Demonstrate Simulink

Models

This code shows the a small rectangle following the path created by the selected controller.

1 function animatedcar(x,y,phi,DPS,BW2)

CHAPTER 8: MATLAB CODE 90

2

3 xmax = (DPS(1)-1)/2;

4 xmin =-1*xmax;

5 ymax = (DPS(2)-1)/2;

6 ymin =-1*ymax;

7 cl=3; %carlength

8 cw=2; %carwidth

9 s=length(x);

10 flx=zeros(1,s);

11 frx=zeros(1,s);

12 brx=zeros(1,s);

13 blx=zeros(1,s);

14 fly=zeros(1,s);

15 fry=zeros(1,s);

16 bry=zeros(1,s);

17 bly=zeros(1,s);

18 cp=zeros(1,s);

19 sp=zeros(1,s);

20 hd=[];

21 cp=cos(phi);

22 sp=sin(phi);

23 flx=x+cl.*cp-0.5*cw.*sp;

24 frx=x+cl.*cp+0.5*cw.*sp;

25 brx=x+0.5*cw.*sp;

26 blx=x-0.5*cw.*sp;

27 fly=y+cl.*sp+0.5*cw.*cp;

28 fry=y+cl.*sp-0.5*cw.*cp;

29 bry=y-0.5*cw.*cp;

30 bly=y+0.5*cw.*cp;

31

32 figure %Draw the figure to be animated

33 % imshow(BW2)

34 hold on;

CHAPTER 8: MATLAB CODE 91

35 i=1;

36 for i=1:s % Animation loop

37 if (i-1)/10 == floor((i-1)/10) %plots 1 point /50 calculations

38 scatter(x(i),y(i),2,’k’)

39 end

40 if (i-1)/600 == floor((i-1)/600); %Plots 1 pt./150 calculations

41 xd = [flx(i),frx(i),brx(i),blx(i),flx(i)]; %Corners of a square

42 yd = [fly(i),fry(i),bry(i),bly(i),fly(i)];

43 hd = fill(xd,yd,’r’); % Draw the square and save handle

44 set(hd,’FaceColor’,’none’);

45 set(hd,’Xdata’,xd,’Ydata’,yd);

46 axis([xmin,xmax,ymin,ymax]);

47 pause(0.0005);

48 end

49 end

50 hold off

8.3 Image Processing and Potential Field Func-

tions

8.3.1 Image Processing to Find Obstacles

This m-file reads the image, scales it, and then sharpens the edges, and finds the borders.

1 %% Putting constraints on x-y plane in physical space

2 function [I,BW,BW2]=constraints(L,pic)

3 % Is bitmap out of 32 or 256?

4 ColorDepth=max(max(pic));

5 %[m,n] = size(pic);

6 %margin = ((m*n)/(pix*pix))ˆ.5/5;

7 margin = ColorDepth/128;

8 I = imresize(pic, [2*L+1 2*L+1]);

CHAPTER 8: MATLAB CODE 92

9 BW = zeros(2*L+1,2*L+1);

10 i=0;j=0;k=0;

11 for i=1:2*L

12 for j=1:2*L

13 if I(i,j)>= (ColorDepth-margin)

14 BW(i,j) = 0;

15 else %the way this is set up, this inverses the image

16 BW(i,j) = 1;

17 end

18 end

19 end

20

21 BW2 = ones(2*L+1,2*L+1);

22 surroundings = 1;

23 for i=2:2*L

24 for j=2:2*L

25 surroundings = BW(i,j)+BW(i-1,j)+BW(i-1,j-1)+BW(i,j-1)+...

26 BW(i+1,j)+BW(i+1,j+1)+BW(i,j+1)+BW(i-1,j+1)+BW(i+1,j-1);

27 if (surroundings >= 6) && (surroundings <= 8)

28 BW2(i,j) = 1;

29 else

30 BW2(i,j) = 0;

31 end

32 end

33 end

8.3.2 Placing Charges on Obstacles and Goal Position

This code, assigns a charge density to the borders of the obstacles and of the configuration

space. It also assigns a point charge at the origin.

1 %% Adding goal point to charge map and setting up weighting

2 function ChargeMap=ObstacleandGoalCharges(BW2,L)

CHAPTER 8: MATLAB CODE 93

3 xp=26;

4 yp=-24;

5 xi = xp*L/size(BW2,1)+L;

6 yi = yp*L/size(BW2,2)+L;

7 XYGoal=round([xi,yi]);

8 Kg=275; %(unitless) Charge weighting of goal node

9 Ko=8; %(unitless) Charge weighting of boundary nodes

10 Goalpoint = zeros(size(BW2,1),size(BW2,2));

11 Goalpoint(XYGoal(1),XYGoal(2))=-1*Kg;

12 ChargeMap=Goalpoint+(Ko*BW2);

8.3.3 Creating the Potential Field

Here the potential field is created in two dimensions.

1 function PField = PotentialField(ChargeMap)

2 %% Building the Potential Field

3 sizeCM=size(ChargeMap);

4 PField = zeros(sizeCM);

5 a = PField;

6 b = a;

7 for Y = 1:sizeCM(2),

8 for X = 1:sizeCM(1),

9 for y = 1:sizeCM(2),

10 for x = 1:sizeCM(1),

11 a(y,x)=(((y-Y)ˆ2)+((x-X)ˆ2))ˆ.5;

12 end

13 end

14 a(Y,X)=1;

15 b=ChargeMap./a;

16 PField(Y,X)=sum(sum(b));

17 end

18 end

CHAPTER 8: MATLAB CODE 94

19 PField=rot90(PField’,1);

8.4 Transformation to Heisenberg Space

In this code, the obstacles are transformed into Heisenberg space.

8.4.1 Putting Obstacles in Heisenberg Space

1

2 function [plotx1,plotx2,plotx3]=TransformedObstacles(BW2,DPS)

3 %% Putting Obstacles in Heisenberg Space

4 xmax = (DPS(1)-1)/2;

5 xmin =-1*xmax;

6 ymax = (DPS(2)-1)/2;

7 ymin =-1*ymax;

8 thetamax = DPS(3)/2;

9 thetamin =-1*thetamax;

10 phimax = 2*pi;

11 phimin = 0;

12 sizeBW2=size(BW2);

13 PixelsPerSideOfCS=sizeBW2(1);

14 dx=(xmax-xmin)/(sizeBW2(1)-1);

15 dy=(ymax-ymin)/(sizeBW2(2)-1);

16 dphi=(phimax-phimin)/(PixelsPerSideOfCS-1);

17

18 X = (xmin : dx : xmax);

19 Y = (ymin : dy : ymax);

20 Phi = (phimin:dphi:phimax);

21

22 i=0;

23 j=0;

24 k=0;

CHAPTER 8: MATLAB CODE 95

25 x=0;

26 y=0;

27 phi=0;

28 co=0;

29 cp=0;

30 cs=0;

31 i1=1;

32 i2=2;

33 c1=0;

34

35 for i1=2:PixelsPerSideOfCS-1,

36 c1=c1+sum(BW2(i1,:));

37 end

38 c3=PixelsPerSideOfCS*PixelsPerSideOfCS;

39 c4=c1/c3;

40

41 Xtilde=X./DPS(1);

42 Ytilde=Y./DPS(2);

43 z=((PixelsPerSideOfCS/2)ˆ3)/2;

44 plotx1=zeros(1,c1);

45 plotx2=zeros(1,c1);

46 plotx3=zeros(1,c1);

47 c2=1;

48 for k=2:1:PixelsPerSideOfCS-1,

49 phi=Phi(k);

50 cp = cos(phi);

51 sp = sin(phi);

52 for j=2:1:PixelsPerSideOfCS-1,

53 y =Ytilde(j);

54 for i=2:1:PixelsPerSideOfCS-1,

55 x =Xtilde(i);

56 if BW2(i,j)==1,

57 x1 = phi ;

CHAPTER 8: MATLAB CODE 96

58 x2 = x*cp + y*sp ;

59 x3 = x*phi*cp - 2*x*sp + y*phi*sp + 2*y*cp ;

60 plotx1(c2)=x1;

61 plotx2(c2)=x2;

62 plotx3(c2)=x3;

63 c2=c2+1;

64 else

65 c2=c2;

66 end

67

68 end

69 end

70 end

71 i=1;

72 j=1;

73 k=0;

74 x=0;

75 y=0;

76 phi=0;

8.4.2 Adding in a Sample Paraboloid

Finally a sample paraboloid is added to the Heisenberg space to demonstrate the intersec-

tions of the obstacles and the sliding manifold.

1 %% Adding in a sample Paraboloid

2 function [parabalx1,parabalx2,parabalx3]=SManifold(pix,alpha,beta)

3 %parabaloid = zeros(pix,pix);

4 parabalx1 = zeros(1,pix);

5 parabalx2 = zeros(1,pix);

6 parabalx3 = zeros(1,pix);

7 i=1;

8 for i1 = -2:4/pix:2-4/pix,

CHAPTER 8: MATLAB CODE 97

9 for i2 = -2:4/pix:2-4/pix,

10 parabalx1(i)=i1; % usefull for statter3

11 parabalx2(i)=i2; % usefull for statter3

12 parabalx3(i)=(.5*beta/alpha)*(i1ˆ2+i2ˆ2); % usefull for statter3

13 % parabaloid(i2,i1)=(.5*beta/alpha)*(itˆ2+i2ˆ2) % usefull for mesh

14 i=i+1;

15 end

16 end

17 i=0;

Bibliography

E Al-Ragib. Master’s thesis, King Fahd University of Petrolium and Minerals, DHahran.

G. Artus, P. Morin, and C. Samson. Control of a maneuvering mobile robot by the transverse

function approach: control design and simulation results, 2004.

D.J. Balkcom and M.T. Mason. Time Optimal Trajectories for Bounded Velocity Differential

Drive Vehicles. International Journal of Robotics Research, 21(3):199–217, 2002.

A. M. Bloch, M. Reyhanoglu, and N. H. McClamroch. Control and Stabilization of Nonholo-

nomic Dynamic Systems. IEEE Transactions on Automatic Control, 37(11):1746–1757,

1992.

A.M. Bloch. Nonholonomic mechanics and control. Springer, 2003. ISBN 0387955356.

A.M. Bloch and S.V. Drakunov. Stabilization and tracking in the nonholonomic integrator

via sliding modes 1. Systems & Control Letters, 29(2):91–99, October 1996.

A.M. Bloch, S.V. Drakunov, and Kinyon M.K. Stabilization of Brockett’s generalized canon-

ical driftless system. In Proceedings of the 36th IEEE Conference on Decision and Control,

pages 4260–4265, San Diego, CA, December 1997.

R. W. Brockett. Control theory and singular Riemannian geometry. In New Directions in

Applied Mathematics, pages 11–27. Springer-Verlag, 1981.

R. W. Brockett. Asymptotic stability and feedback stabilization. Differential Geometric

Control Theory, pages 181–191, 1983.

98

CHAPTER 8: MATLAB CODE 99

C. Canudas de Wit and O.J. Sordalen. Exponential Stabilization of Mobile Robots with

Nonholonomic Contstraints. IEEE Transactions on Automatic Control, 37(11):1791–

1797, 1992.

R. A. DeCarlo, S. H. Zak, and G. P. Matthews. Variable structure control of nonlinear

multivariable systems: a tutorial. Proceedings of the IEEE, 76(3):212–232, March 1988.

ISSN 00189219.

S. V. Drakunov, T. Floquet, and Perruquetti W. Stabilization and tracking for an extended

Heisenberg system with a drift. Systems & Control Letters, 54(5):435–445, May 2005.

L.E. Dubins. On Curves of Minimal Length with a Constraint on Average Curvature,

and with Prescribed Initial and Terminal Positions and Tangents. American Journal of

Mathematics, 79(3):497–516, July 1957.

O.E. Fernandez, A.M. Bloch, and T. Mestdag. The Pontryagin maximum principle applied

to nonholonomic mechanics. 2008 47th IEEE Conference on Decision and Control, (1):

4306–4311, 2008.

G.I. Frobenius. ber das Pfaff’sche probleme. Journal fr Math., (82):230–315, 1877.

A.A. Furtuna, D.J. Balkcom, H. Chitsaz, and P. Kavathekar. Generalizing the dubins

and reeds-shepp cars: Fastest paths for bounded-velocity mobile robots. In 2008 IEEE

International Conference on Robotics and Automation, pages 2533–2539. IEEE, May

2008. ISBN 978-1-4244-1646-2.

J. Guldner and V.I. Utkin. Stabilization of non-holonomic mobile robots using Lyapunov

functions for navigation and sliding mode control. Proceedings of 1994 33rd IEEE Con-

ference on Decision and Control, (December):2967–2972, 1994.

H. Hashimoto, Y. Kunii, F. Harashha, V.I. Utkin, and S.V. Drakunov. Obstacle Avoidance

Control in Multi-Dimentional Space Using Sliding Mode. In Proceedings of IEEE/RSJ

International Conference On Intelligent Robots And Systems, number 3, pages 697–702,

Raleigh, NC, 1992. IEEE/RSJ.

J Hespanha. Stabilization of nonholonomic integrators via logic-based switching. Automat-

ica, 35(3):385–393, March 1999. ISSN 00051098.

CHAPTER 8: MATLAB CODE 100

Y.K. Hwang and N. Ahuja. A Potential Field Approach to Path Planning. IEEE Transac-

tions on Robotics and Automation, 8(1):23–32, 1992.

J.P. Jiang and H. Nijmeijer. Tracking Control of Mobile Robots: A Case Study in Back-

stepping. Automatica, 33(7):1393–1399, 1997.

J.P. Jiang and H. Nijmeijer. A Recursive Technique for Tracking Control of Nonholonomic

Systems in Chained Form. IEEE Transactions on Automatic Control, 44(2):265–279,

1999.

J.P. Jiang, A.A.J. Lefeber, and H. Nijmeijer. Saturated Stabilization and Tracking of a

Nonholonomic Robot. Systems & Control Letters, 42:327–332, 2001.

P. Khosla and R. Volpe. Superquadric artificial potentials for obstacle avoidance and ap-

proach. In Proceedings of IEEE International Conference on Robotics and Automation,

pages 1778–1784, Philadelphia, PA, 1988. IEEE Comput. Soc. Press.

B. Kim and P. Tsiotras. Controllers for Unicycle-Type Wheeled Robots: Theoretical Results

and Experimental Validation. Transactions on Robotics and Automation, 18(3):294–299,

June 2002.

K. Kondak and G. Hommel. Computation of Time Optimal Movements for Autonomous

Parking of Non-Holonomic Mobile Platforms. In Proceedings of the 2001 IEEE Inter-

national Conference on Robotics and Automation, pages 2698–2703, Seoul, Korea, 2001.

IEEE.

J.P. Laumond. Nonholonomic Motion Planning versus Controllability via the Multibody

Car System Example. Technical report, Department of Computer Science, Stanford

University, October 1990.

J.P. Laumond. Robot motion planning and control. 1998. ISBN 9783540762195.

S.M. LaValle. Planning algorithms. Cambridge University Press, 2006. ISBN 0521862051.

W.S. Levine. The Control Handbook. CRC Press, 1996. ISBN 0849385709.

G.A.D. Lopes. Perception Based Navigation for Underactuated Robots. Ph.d, University of

Michigan, 2007.

CHAPTER 8: MATLAB CODE 101

P. Morin and C. Samson. Practical stabilization of driftless homogeneous systems based

on the use of transverse periodic functions. Proceedings of the 40th IEEE Conference on

Decision and Control (Cat. No.01CH37228), pages 1761–1766, 2001.

P. Morin and C. Samson. Control of Nonholonomic Mobile Robots Based on the Transverse

Function Approach. IEEE Transactions on Robotics, 25(5):1058–1073, October 2009.

ISSN 1552-3098.

R.M. Murray and S.S. Sastry. Nonholonomic motion planning: steering using sinusoids.

IEEE Transactions on Automatic Control, 38(5):700–716, May 1993. ISSN 00189286.

Y. Nakamura and H. Ezaki. Design of steering mechanism and control of nonholonomic

trailer systems. IEEE Transactions on Robotics and Automation, 17(3):367–374, June

2001. ISSN 1042296X.

C. Park, D.J. Scheeres, V. Guibout, and A. Bloch. Globally Optimal Feedback Control

Law of the Underactuated Heisenberg System by Generating Functions. In Proceedings

of 45th IEEE Conference on Decision and Control, pages 2687–2692, San Diego, CA,

2006. IEEE.

I.E. Paromtchik and C. Laugier. Autonomous parallel parking of a nonholonomic vehicle.

Proceedings of Conference on Intelligent Vehicles, pages 13–18.

B.H. Partee, A.G.B. ter Meulen, and R.E. Wall. Mathematical Methods in Linguistics.

Kluwer Academic Publishers, Netherlands, hardbound edition, 1990.

K. Pathak and S.K. Agrawal. An Integrated Path-Planning and Control Approach for

Nonholonomic Unicycles Using Switched Local Potentials. Transactions on Robotics, 21

(6):1201–1208, December 2005.

V.G. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidez, and E.F. Mishenko. The Mathemat-

ical Theory of Optimal Processes. Interscience Publishers, 1962.

J.A. Reeds and L.A. Shepp. Optimal Paths for a Car that Goes Both Forwards and Back-

wards. Pacific Journal of Mathematics, 145(2):367–393, 1990.

CHAPTER 8: MATLAB CODE 102

M. Reyhanoglu and E. Al-Regib. Nonholonomic Motion Planning for Wheeled Mobile

Systems Using Geometric Phase. In Proceedings of IEEE International Symposium on

Intelligent Control, pages 135–140, Columbus, OH, 1994. IEEE.

M. Reyhanoglu and T. Geluk. Switched Feedback Tracking Control of a Nonholonomic

Mobile Robot. In Proceedings IEEE Industrial Electronics Society, pages 3810–3814.

IEEE, 2006.

M. Sampei. A control strategy for a class of nonholonomic systems - time-state control form

and its application. IEEE. ISBN 0-7803-1968-0.

C. Samson. Control of Chained Systems Application to Path Following and Time-Varying

Point-Stabilization of Mobile Robots. IEEE Transactions on Automatic Control, 40(1):

64–77, 1995.

S. Sekhavat, P. Svestka, J.P. Laumond, and M. H. Overmars. Multilevel Path Planning for

Nonholonomic Robots Using Semiholonomic Subsystems. The International Journal of

Robotics Research, 17(8):840–857, August 1998. ISSN 0278-3649.

O.J. Sordalen. Feedback Control of Nonholonomic Mobile Robots. Dr. ing., Norwegian

Institute of Technology, 1993.

O.J. Sordalen and K.Y. Wichlund. Exponential stabilization of a car with n trailers. In

Proceedings of 32nd IEEE Conference on Decision and Control, volume 2, pages 978–983.

IEEE, 1993. ISBN 0-7803-1298-8.

M. Srinivasan, R.A. Metoyer, and E.N. Mortensen. Controllable real-time locomotion using

mobility maps. Proceedings of Graphics Interface, 112:51–59, 2005.

R. Weinstock. Calculus of Variations with Applications to Physics and Engineering. Dover,

1974. ISBN 0486630692.

	Nonholonomic Feedback Control Among Moving Obstacles
	Scholarly Commons Citation

	tmp.1436369361.pdf.0KmKK

