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ABSTRACT 

Author: Daniel R. Lendzioszek 

Title: Modeling of Acoustic Emission Failure Mechanism Data from 

a Unidirectional Fiberglass/Epoxy Tensile Test Specimen 

Institution: Embry-Riddle Aeronautical University, Daytona Beach 

Degree: Master of Science in Aerospace Engineering 

Year: 2002 

The purpose of this work was to model the acoustic emission (AE) flaw growth data that 

resulted from the tensile test of a unidirectional fiberglass/epoxy specimen. The data 

collected and stored during the test were the six standard AE quantification parameters 

for each event. A classification neural network was used to sort the data into five failure 

mechanism clusters. The resulting frequency histograms of the sorted data were then 

mathematically modeled herein using the three types of Johnson distributions: bounded, 

lognormal, and unbounded. These provided a reasonably good fit for all six AE 

parameter distributions for each of the five failure mechanisms. 
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LO INTRODUCTION 

1.1 Overview 

Acoustic emission (AE) is a unique form of nondestructive testing. It is a passive 

technique that does not actively send out a signal into the material and then listen for a 

return echo; rather, AE detects the sound waves that are generated within a specimen that 

is under a load. This means that the specimen must be under a load in order for a signal 

to be generated. The major advantage of AE testing is that it is a dynamic test. What this 

means is that data can be taken in service, in real time, and the results of the test are 

immediately known. A widely used technique in industry, AE has been employed in 

such diverse applications as pressure vessel proof testing, in-flight monitoring of fatigue 

cracking in aircraft, and prediction of ultimate strengths/loads in composite structures. 

The basis of this thesis is to mathematically model the AE flaw growth data that is 

generated from a tensile test. It will be shown that the various histogram plots of the AE 

parameters for the flaw growth data can be successfully modeled using Johnson 

distributions. It is anticipated that the shape and scale parameters associated with these 

distribution curves will provide the input for future ultimate strength/load prediction 

schemes. 

1.2 Previous Research 

Previous research has shown that AE data can be used to create a prediction model for 

ultimate strength/load in several different applications. Fisher and Hill [1] found that by 

using a back propagation neural network based on the percentage of hits in each of the 

failure mechanisms, it was possible to create a burst pressure model for a filament wound 

fiberglass/epoxy pressure vessel. Walker and Hill [2] were also able to use a back 

propagation neural network based on the Weibull distribution shape and scale parameters 

to create an ultimate load prediction model for graphite/epoxy tensile test specimens. 
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Previous research has also shown that AE data can be sorted into the different failure 

mechanisms for composites. Ely and Hill [3] found that in a carbon fiber reinforced 

composite the different failure mechanisms could be sorted out by analyzing the 

amplitude versus duration or amplitude versus rise time plots. While this technique was 

useful for a test consisting of a relatively small data set, it is not as useful when extensive 

overlap exists between the failure mechanism distributions. Kouvarakos and Hill [4] 

used an iterative approach to isolate the different failure mechanisms. Their iterative 

approach employed the duration of the signal as the main sorting parameter. This 

technique sorted the data into six different failure mechanisms plus ultimate specimen 

failure. 

Previous research has also shown that AE data can be fit by several different curves. One 

of the first distributions used was the extreme value distribution. This was used by 

Graham [5] to fit the amplitude distributions of the four failure mechanisms from a 

composite beam. Another distribution that has been used is the lognormal distribution. 

Pollock [6] suggested this for modeling amplitude distributions. Kouvarakos and Hill [4] 

found that most of the AE amplitude distributions in a fiberglass/epoxy tensile test 

specimen could be fit by the normal or Gaussian distribution, but that because of the 

threshold, the lowest distribution is skewed to the right; therefore it was best fit by either 

a lognormal or extreme value distribution. 

Hill and Demeski [7] demonstrated that a neural network could be used to quickly and 

accurately classify AE data. Using a Kohonen self-organizing map (SOM), they more 

accurately classified the hand edited data of Kouvarakos and Hill [4] into five separate 

failure mechanisms - instead of the original six - plus ultimate failure. After the neural 

network sorted the data, they were able to mathematically model the data using three 

distributions: normal, extreme value, and lognormal. However, since the normal and 

extreme value distributions are specialized cases of the lognormal distribution, the 

lognormal was proposed as the best fit model. 
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1.3 Current Approach 

While previous research has shown that it is possible to create an ultimate strength/load 

prediction model for various types of specimens, several different approaches were 

employed. This research is being conducted to try to find a mathematical approach that 

can be used for all types of data. If this can be found, then the steps taken to create a 

prediction model might be simplified and standardized. As seen in Hill and Demeski's 

[7] work, several types of distributions can be used for modeling the data. The basis of 

this work was to find a single distribution type that could be used to accurately model all 

of the AE parameter data. Johnson distributions are known to fit many different shapes. 

Because of this, the three different Johnson distributions were used to fit all the data 

herein. 
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2.0 THEORY 

2.1 Acoustic Emission 

Acoustic emissions (AE) are defined as the elastic waves generated by the rapid release 

of energy from sources within a material under an applied load. A piezoelectric sensor 

attached to the specimen detects these stress waves and converts them into a voltage 

versus time waveform. The sensor output is then connected to various amplifiers and 

filters before being sent to a data acquisition system, where the AE signal is quantified 

2.2 AE Signal Parameters 

The AE system generates six quantification parameters from the signal as shown in 

Figure 2.1. A voltage threshold is set to help eliminate any background noise. The 

system does not register a hit until the incoming signal crosses the threshold voltage. 

Once a hit has been detected, the system begins quantifying the signal. The hit ends once 

the signal no longer crosses the threshold. The six parameters that are quantified are as 

follows: 

AMPLITUDE 

COUNTS-TO-P: 

ENERGY 

THRESHOLD 
\J\fl>*<* TIME 

_ii_n_n_Ji ULRJITLJULL-
COUNTS 

Figure 2.1 AE Signal Parameters 
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Counts: The total number of times that the signal crosses the threshold. 

Counts to Peak: The number of counts to reach the peak amplitude of the signal. 

Amplitude: The peak value of the signal voltage measured in decibels (dB). 

Duration: The total amount of time that the signal is above the threshold, 

measured in microseconds (fis). 

Energy: The area under the rectified signal, measured in energy counts. 

Rise time: The time, from the start of the event to the peak amplitude, 

measured in microseconds (jus). 
2.3 Initial Settings 

Before a test can be run, the data acquisition system must have various settings entered 

into it. The purpose of these settings is to make sure that the system will properly detect 

the signals. These settings include the gain, threshold, and three different timing 

parameters: hit delay time (HDT), peak detection time (PDT), and hit lockout time 

(HLT). These timing parameters are explained in Appendix A. 

The gain amplifies the signal to a usable level. The smallest detectable signal is the 1.0 

microvolt (JLIV) reference voltage. A typical gain setting before the signal reaches the 

data acquisition system is 40 dB, which corresponds to a factor of 100 times 

amplification. To filter out some of the background noise, a threshold is used. The 

threshold is used to set the minimum voltage that the system will recognize. A typical 

threshold setting for composites is 40 dB or 0.1 mV. This setting means that the AE 

analyzer will ignore any signal that is not greater than 40 dB. Threshold settings are 

found through experimentation, because the background noise levels vary between test 

locations. 
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2.4 Composite Failure Mechanisms 

Composites typically have five principle failure mechanisms. These are fiber breaks, 

transverse matrix cracking, fiber/matrix debonding, fiber pullouts, and longitudinal 

splitting. A brief description of each is given below. 

Fiber breaks: The mechanism in which the fiber actually breaks 

Transverse matrix cracking: The mechanism in which the matrix cracks normal to the 

fiber direction. 

Fiber/matrix debonding: The process in which the fibers separate from the matrix. 

Fiber pullouts: The mechanism in which the fiber is pulled out of the 

matrix material. 

Longitudinal splitting The mechanism in which the matrix cracks along the 

fiber direction. 

2.5 Classification of Failure Mechanisms 

The unsorted amplitude distribution for the tensile test does not appear to have any 

distinguishable failure mechanism humps, as can be seen in Figure 2.2 [4]. This is due to 

the large number of data points (21,966 AE hits) that were obtained during the test. 

Although the threshold is set to 40 dB, due to the nature of the system, some data are 

taken below the threshold. 

6 



- I rn-T-vy 
55 60 65 

Amplitude [dB] 

Figure 2.2 Unsorted Amplitude Distribution 

When this many data points are obtained, there tends to be considerable overlap in the 

amplitude bands associated with each failure mechanism, making it virtually impossible 

to sort by hand. Because of this, a classification neural network was introduced for 

sorting the data. A neural network works similar to the human brain. It processes data in 

parallel, using multiple inputs to arrive at the correct classification. 

A Kohonen self-organizing map (SOM) was previously used by Hill and Demeski [7] to 

sort the tensile test data used in this work. This network has three layers, the input layer, 

the hidden (processing) layer, and the output layer. The layers are connected with 

adjustable weights. The network takes the input data, runs it through the processing 

layer, and then assigns it an x-y output. This x-y value is nondimensional and is used 

strictly for mapping. A plot of the x-y outputs reveals the beginnings of clusters. The 

network runs iteratively, adjusting the connection weights until all the data is grouped. 

The network is considered to be trained when, after numerous iterations, the connection 

weights either no longer change or the change is minimal. On mapping the x-y outputs, 

failure mechanism clusters appear. 
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Here, the input for the SOM neural network was the six AE parameters for each AE hit. 

The SOM looks at the six parameters for each data point and tries to place it near similar 

data points. It can be seen in Figure 2.3 that the neural network sorted the data into five 

clusters, each representing a different composite failure mechanism. Figure 2.3 is 

representative of the x-y output produced by the SOM from the Neuralworks Pro II Plus 

software package by Neuralware. 

I31 

Figure 2.3 Sorted AE Data Plot 

Figure 2.4 shows the relative frequency plots of the five sorted mechanisms. It can be 

seen that there is a significant amount of overlap between the mechanisms, with 

mechanism 3 being hidden in between mechanisms 2 and 4. 
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Sorted Amplitude Distribution 

60 

Amplitude [dB] 

90 

Figure 2.4 Sorted Amplitude Distributions 

2.6 Mathematical Modeling 

The most versatile of all the statistical distribution types is the Johnson distribution [8]. 

All of the previously mentioned distributions are specialized cases of the three types of 

Johnson distributions. The first step in determining which type of Johnson distribution -

bounded, lognormal, or unbounded - provides the best fit to a given set of data is to 

calculate the mean JI, standard deviation a, and the second, third, and fourth moments of 

the distribution: 

1 " 

n tt 

m3 - - ife-nj" 
n — 

9 



and 

1 n 

m4=-5](xl-^)4 

Then determine the relative skewness from the expression 

V P 7 = m3 
v3 

2 (m2) 

and the relative kurtosis or peakedness from 

m4 

Finally, the relative skewness is squared to obtain p^ which is then plotted along with p2 

on a P1-P2 plot as shown in Figure 2.5. Here since the point (pi, P2) lies close to 

lognormal Johnson SL line, the data curve is best modeled as a lognormal distribution. 

Points that plot in between the lognormal and the impossible lines are best fit as the 

bounded Johnson SB distribution. Whereas those data whose (pi, P2) values fall below 

the lognormal line are best fit as unbounded Johnson Su distributions. 
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2.6.1 Bounded Johnson Distribution 

The equation for the probability density function of the bounded Johnson distribution [8] 

is given as 

f s » = 2% (x-e)(k-x + &) exp y + r|ln 
( X - E ^ 

-|2 

A.-X + 6 

where 

TI = 

In 

Z . - a ' - Z a 

(x,_a.-6)(e + A,-x0) 
_(xa-8)(e + >.-x1_a.)_ 

and 
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are the two shape parameters. Here x is the AE parameter value (counts, amplitude, 

energy, etc.), e is the minimum value of the variate x, and e + X is the maximum value of 

x for the data set. The values za and zx_a, correspond to the a and (1 - a') percentiles of 

the standard normal distribution; whereas xa and x,_a, are the corresponding x values for 

those data percentiles. To fit this data it was decided to fit the 9th and 91st percentile data 

points. This resulted in z009and z091 being equal to 1.34. 

Table 2.1 is an example data set where x009and x091 are the 508th and 5139th data points. 

This leads to x009and JC091 being 1 and 4 respectively. 

Table 2.1 Counts, Mechanism 2 

Counts 

0 

1 

2 

3 

4 

5 

6 

Frequency 

11 

597 

2689 

1667 

578 

86 

19 

Cumulative 
Frequency 

11 

608 

3297 

4964 

5542 

5628 

5647 

The following steps are taken to fit the Johnson SB distribution: (1) having determined 

from the Pi - p2 plot that the SB distribution is the appropriate distribution, (2) estimate 

the shape, location, and scale parameters (y, TJ, S, and X respectively), then (3) calculate 

and plot the expected frequencies for the fitted distribution from the equation 

P(x) = nwf(x) 

with 

n = number of AE hits in the data set 
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w = width of the histogram intervals. 

2.6.2 Lognormal Johnson Distribution 

The equation for the lognormal probability density distribution is [8] 

X :~[y^{ " " 
fs, (x) = 

X.-X+E 

V27T (x - e\X - x + e) 

where 

* ! = • 

and 

with 

y = 

|i and a again being the mean and standard deviation of each data set. 

The following steps are taken to fit the Johnson SL distribution: (1) determine that the SL 

distribution is the appropriate distribution from the pi - p2 plot, (2) estimate the shape, 

location, and scale parameters (y, r|, s, and X respectively), then (3) calculate and plot the 

expected frequencies P(x) for the fitted distribution. 

2.6.3 Unbounded Johnson Distribution 

The unbounded Johnson probability density distribution is as follows [8]: 

fs„ (x) = 
1 

T+J(*p)+ WH 
'AY 2" 

V l > ) 

2*V(x-s)2+X2 

where 

X = -

— (co - 1 1 cocosh '2 iy 
nj j 

- , i / 
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and 

e = (H-X,co2sinh — 

with 

a) = e r . 

The following steps are taken to fit the Johnson Su distribution: (1) determine that the Su 

distribution is the appropriate distribution from the Pi - p2 plot, (2) estimate the shape 

parameters (y and r|) by looking up the A/p7 and p2 values for the distribution from 

Table V (Hahn and Shapiro [8]), (3) calculate co, (4) determine the scale parameters (s 

and X, respectively), and (5) calculate and plot the expected frequencies P(x). 

2.6.4 Chauvenet's Criterion 

In all real world testing applications, erroneous data points sometimes make it into a data 

set. In order to see if there were any bad data points, Chauvenet's criterion [9] was 

applied to each of the five data sets. Chauvenet's criterion is a mathematical method for 

analyzing the data set to see if any data points fall outside of an acceptable range and 

therefore can be eliminated. To apply this criterion, the mean \i and standard deviation a 

of the data set are first calculated. The next step is to calculate the ratio of the deviation 

of each data point from the standard deviation. This value is then compared to the ratio 

of maximum acceptable deviation to standard deviation. The equation for calculating the 

maximum acceptable probability is 

P(z)<l-i-, 
2n 

where 

n = number of data points. 

After P(z) is calculated, the value for the number of standard deviations z that 

corresponds to this maximum P(z) value is found from the area under the standard normal 

distribution curve (Table I, Hahn and Shapiro [8]). 

14 



3.0 SPECIMEN PREPARATION AND TEST PROCEDURE 

One tensile test specimen was used for this test. The test specimen was an eight-layer 

unidirectional fiberglass/epoxy laminate made in compliance with the ASTM D-3039 

standard [4,10]. The fibers were Owens-Corning S-2 glass with the Hexcel Epolite 2410 

resin system and 2183 hardener. Aluminum tabs were bonded to both ends of the 

specimens to prevent crushing/damaging during the test. Without the tabs, the ends of 

the specimens would have been crushed by the hydraulic grips of the MTS tensile test 

machine, resulting in extraneous AE data and possibly rendering the analysis useless. 

The tensile test was performed using a Physical Acoustics Corporation (PAC) R15 (150 

kHz) piezoelectric transducer. The transducer was placed on the center of the specimen, 

and it was coupled to the specimen using SAE 30 oil and secured with electrical tape. 

The oil provides acoustical coupling between the sensor and the specimen. Connected to 

the transducer was a PAC model 1220A preamplifier/filter with a 100 to 300 kHz band 

pass filter and set for 40 dB (lOOx) of amplification before the signal is sent to the 

acoustic emission data analyzer. The AE analyzer used was a PAC LOCAN-AT system. 

Further amplification may occur within the analyzer, plus it contains the circuitry to 

quantify, store, and analyze the AE parameter data. The LOCAN-AT hardware settings 

were as follows: 

Gain: 20 dB 

Threshold: 40 dB 

PDT: 40 us 

HDT: 150 îs 

HLT: 30 îs. 

Testing was performed at Embry-Riddle Aeronautical University (ERAU) using a 10 kip 

MTS tensile test machine. The specimen was placed in the MTS machine with a grip 

pressure of 1400 psi and was loaded in tension along the fiber direction at a rate of 

15 



approximately 500 lb/min. The load rate must be chosen such that that the AE data 

acquisition system is not overloaded, at which point it is unable to distinguish one hit 

from another. The other consideration is that if the load rate is too slow, the test will take 

an unreasonable amount of time to complete. AE data were taken from the onset of 

loading to specimen failure. However, the ultimate failure AE data were not included in 

the modeling effort since these hits occur so quickly that they overlap into multiple hits, 

which again confuses the analysis process. 
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4.0 RESULTS 

4.1 Determining the Appropriate Johnson Distribution 

Figure 4.land Figure 4.2 show the locations on the pi and p2 plane where the sorted AE 

data fell for this test. It can be seen that nineteen of the thirty (Pi,p2) points lie between 

the lognormal SL distribution line and the impossible line. This says that these data are 

best fit by the bounded Johnson SB distribution. For the nine (Pi,p2) points that plot 

relatively close to the lognormal line, the lognormal SL distribution is used to fit the data. 

Finally, for the remaining two (Pi,P2) points that fall below the line, the unbounded 

Johnson SB distribution is the appropriate model. Table 4.1 shows which Johnson 

distribution was used for the various mechanisms according to their location on the Pi -

P2 plane. 

Table 4.1 Table of Best Fit Johnson Distributions 

Mechanism 

1 

2 

3 

4 

5 

Rise 
Time 

SB 

SB 

SB 

SB 

SL 

Counts 

SB 

SB 

SL 

SL 

SB 

Counts to 
Peak 

SB 

SB 

SB 

SB 

SB 

Energy 

SL 

SL 

SL 

SB 

SB 

Duration 

SB 

SL 

SL 

SB 

SB 

Amplitude 

SB 

Su 

SL 

SL 

Su 
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Figure 4.1 Pi - p2 Plot with Data Sorted by Failure Mechamsm 
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Figure 4.2 Pi - p2 Plot with Data Sorted by AE Parameter 

4.2 Chauvenet's Criterion 

The maximum acceptable standard deviations z were calculated for each mechanism in 

accordance with Chauvenet's criterion and are summarized in Table 4.2. 
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Table 4.2 Table of Acceptable Standard Deviations 

1 Mechanism 
1 n 
j z 

1 
10,302 
3.82 

2 
5,649 
3.76 

3 
723 
3.35 

4 
3,369 
3.68 

5 i 
1,923 
3.59 

If any data point was found to be more than the acceptable number of standard deviations 

to the left or right of the mean, it was eliminated from the data set as an outlier. One 

could also put the outliers into the next mechanism to see if they fit there; however this 

was not done here. After Chauvenet's criterion was applied to all of the data sets, curve 

fitting was accomplished using the three different Johnson distributions. 

4.3 Bounded Johnson Distribution 

Nineteen of the thirty distributions (six AE parameters for each of the five failure 

mechanisms) were found to be best fit by the bounded Johnson SB distribution. Figure 

4.3 through Figure 4.5 show how well the bounded Johnson distribution fits the various 

AE parameter distributions for failure mechanism 2. All nineteen of the bounded 

Johnson SB distributions are included in Appendix B. 

Mechanism 2 
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IfiW ' ••• [ j/j.i--| j I I I I I l I j f ; .f | | | ) | | \ | \ } ) | | | i i | | -| n | | i > | i i i i i i i M I I iTTTT=rrF=H^)^..r-i i 
o « * « » o 2 J 5 : o » g H a 8 8 8 S 5 8 8 ? 3 3 S 3 8 8 S S $ 8 g S 8 8 S R ! R 

Rise Time \ps] 

Figure 4.3 Bounded Johnson Fit for the Rise Time Distribution, Mechanism 2 
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Mechanism 2 

Figure 4.4 Bounded Johnson Fit for the Counts Distribution, Mechanism 2 
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Figure 4.5 Bounded Johnson Fit for the Counts to Peak Distribution, Mechanism 2 

4.4 Lognormal Johnson Distribution 

Nine of the data sets were shown to be best fit by the lognormal Johnson SL distribution. 

Figure 4.6 and Figure 4.7 show lognormal Johnson distribution fits for failure mechanism 

2. All nine of the lognormal Johnson SL fits can be found in Appendix B. 
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Figure 4.6 Lognormal Johnson Fit for the Energy Distribution, Mechanism 2 
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Figure 4.7 Lognormal Johnson Fit for the Duration Distribution, Mechanism 2 

4.5 Unbounded Johnson Distribution 

Two of the data sets were shown to be best fit by the unbounded Johnson Su distribution. 

Figure 4.8 and Figure 4.9 are the amplitude distributions for mechanism 2 and 5 that were 

fit by the unbounded Johnson distribution. 
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M echanism 2 

Figure 4.8 Unbounded Johnson Fit for the Amplitude Distribution, Mechanism 2 

M echanism 5 

Figure 4.9 Unbounded Johnson Fit for the Amplitude Distribution, Mechanism 5 

According to the Pi - P2 plot, these two mechanisms are best fit by the unbounded 

distribution, but they were also fit by the bounded SB distribution. The bounded fits can 

be seen in Figure 4.10 and Figure 4.11. It would appear that the bounded SB distribution 

fits these distributions as well as the unbounded Su distribution. 
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Figure 4.10 Bounded Johnson Fit for the Amplitude Distribution, Mechanism 2 

Mechanism 5 

Figure 4.11 Bounded Johnson Fit for the Amplitude Distribution, Mechanism 5 

4.6 Distribution Parameters 

Table 4.3 through Table 4.8 provide the statistical parameters for all of the Johnson 

distributions. 
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Table 4.3 Risetime Parameters 

Mechanism 

1 

2 

3 

4 

5 

X 

9.941 

21.635 

35.390 

30.237 

28.413 

o 

7.993 

13.142 

18.143 

19.991 

17.938 

V P 7 

0.905 

0.987 

0.539 

0.853 

1.194 

h 

3.246 

3.800 

2.635 

2.798 

3.720 

8 

0 

0 

0 

0 

0 

X 

39 

74 

91 

102 

91 

Table 4.4 Counts Parameters 

Mechanism 

1 

2 

3 

4 

5 

X 

2.471 

11.844 

18.282 

24.779 

34.313 

a 

1.837 

4.179 

2.993 

3.760 

5.012 

VPT 

1.209 

0.171 

0.342 

0.148 

0.629 

P2 

3.616 

2.513 

3.322 

3.024 

3.318 

s 

0 

0 

8 

11 

17 

X 

9 

24 

27 

27 

34 

Table 4.5 Energy Parameters 

Mechanism 

1 

2 

3 

4 

5 

X 

1.868 

2.450 

3.758 

6.655 

18.128 

a 

0.566 

0.898 

0.870 

2.141 

8.700 

,/PT 
0 

0.607 

0.342 

0.634 

1.539 

P2 

3.02 

3.615 

3.194 

2.901 

5.491 

e 

0 

0 

2 

0 

0 

X 

4 

7 

4 

14 

54 
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Table 4.6 Duration Parameters 

Mechanism 

1 

2 

3 

4 

5 

X 

22.976 

89.186 

124.891 

160.097 

224.212 

a 

21.462 

23.242 

13.942 

20.450 

36.164 

VP7 
0.907 

0.063 

0 

0.207 

0.726 

P2 

2.759 

3.060 

3.068 

2.871 

3.008 

6 

0 

0 

78 

99 

123 

X 

100 

177 

93 

135 

204 

Table 4.7 Amplitude Parameters 

1 Mechanism 

1 

2 

3 

4 

5 

X 

40.795 

48.656 

52.112 

57.128 

64.933 

a 

2.584 

3.613 

2.782 

3.468 

3.497 

VP7 
0.888 

0.615 

0.100 

0.028 

0.558 

P2 

3.854 

4.226 

2.849 

3.000 

4.374 

8 

35 

38 

42 

44 

51 

f ^ — i 

X 

17 

27 

19 

26 

28 

Table 4.8 Counts to Peak Parameters 

[Mechanism 

1 

2 

3 

4 

5 

X 

1.634 

4.064 

6.744 

6.476 

6.453 

a 

0.962 

1.976 

2.741 

3.532 

3.560 

VPT 

1.571 

0.603 

0.218 

0.565 

0.781 

P2 

4.878 

3.183 

2.488 

2.492 

2.939 

8 

0 

0 

0 

0 

0 

X 

5 

12 

15 

18 

19 

The three different types of Johnson distributions (SB, SL, and Su) all have similar shape 

parameters. The shape parameters for all data sets are found in Table 4.9 below. 
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Table 4.9 Table of Distribution Shape Parameters 

Mechanism 

1 

2 

3 

4 

5 

Parameter 

n 
y 
" 

Y 
n 
Y 

n 
Y 
Tl 

Y 

Rise 
Time 
0.677 
1.124 
0.973 
1.022 
1.125 
0.485 
0.900 
0.872 
1.506 
-4.743 

Counts 

0.967 
0.670 
1.350 
-0.143 
3.105 
-7.386 
3.448 
-9.172 
1.646 

-0.342 

Energy 

3.721 
5.088 
3.381 
4.779 
2.272 
-1.134 
1.462 
0.000 
1.506 
0.891 

Duration 

0.550 
1.172 
3.123 

-13.890 
2.740 

-10.395 
1.471 
0.320 
1.351 

-0.252 

Amplitude 

1.413 
0.836 
2.662 
1.349 
3.161 
-7.175 
3.367 
-8.535 
2.37 
0.909 

Counts 
to Peak 
1.496 
0.734 
1.377 
0.877 
1.289 
0.447 
0.967 
0.670 
1.211 
0.687 
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5.0 CONCLUSIONS AND RECOMMENDATIONS 

It was found that, for the most part, the Kohonen SOM neural network was able to 

successfully sort the AE data into five failure mechanisms. Based on prior experiments 

that have been done to discover the physical source for each mechanism, mechanism 1 is 

most likely transverse matrix cracking, while mechanism 5 is probably fiber breaks. It is 

possible that mechanism 3 is a subset of mechanisms 2 and 4. This may be longitudinal 

splitting [3]. More testing would be necessary to identify with certainty the sources 

corresponding to mechanisms 2, 3, and 4. 

There were a few outliers (misclassifications) that had to be statistically removed from 

the failure mechanism clusters. When the (Pi,p2) values were plotted for the resulting 

sorted data sets, it was found that nineteen of the curves were within the bounded region 

of the plot. Two of the curves were within the unbounded region, and the remaining nine 

curves were on or near the lognormal line. Before the data were given to the SOM neural 

network, those data associated with ultimate failure of the specimen were supposed to 

have been removed. When performing this operation on the data, an error may have been 

made, in that some of the ultimate failure data points were not removed. It is believed 

that these data may have caused two of the distributions to fall into the unbounded region. 

Additionally, some of the bounded distributions did not provide as good a fit as was 

hoped. 

Chauvenet's criterion assumes a normal distribution (symmetrical) while most of the data 

herein are right skewed. This causes the lower end data points to not be removed. It was 

found that Chauvenet's criterion was not adequate in removing outliers from the data 

because of the skewness of the data. If the lower end data points were removed from the 

data set, the bounded Johnson distribution would better fit the data. This is because those 

particular data points were forcing the fit, decreasing the relative kurtosis or peakedness 

p2 of the curve. If a different method had been used to find the outliers, a better fit may 

have resulted. Values of pi and f}2 are very sensitive to outliers; thus incorporation of 

skewness into the removal of outliers should improve the fit. It is anticipated that this 
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would result in the two Su curves becoming SB curves. It is recommended that any future 

work incorporate the Chi-squared goodness of fit test to verify the curve fitting results. 

Further testing should also be conducted to develop an ultimate strength equation for 

tensile test specimens. This would require the construction of at least nine ASTM 

standard tensile test specimens from the same material. The shape parameters of the 

Johnson distributions (T|, y) could then be used in a multivariate statistical analysis or a 

back propagation neural network for prediction of ultimate strengths [1,2]. 

29 



6.0 REFERENCES 

1. Fisher, M. E. and Hill, E. v. K., "Burst Pressure Prediction of Filament 

Wound Composite Pressure Vessels Using Acoustic Emission," MSAE 

Thesis, 1996, Embry-Riddle Aeronautical University, Daytona Beach, FL. 

2. Walker II, J. L. and Hill, E. v. K., "Backpropagation Neural Network for 

Predicting Ultimate Strengths of Unidirectional Graphite/Epoxy Tensile 

Specimens," Advanced Performance Materials, Vol 3, No. 1, 1996, 75-83. 

3. Ely, T. M. and Hill, E. v. K., "Characterization of Failure Mechanisms in 

Graphite/Epoxy Tensile Test Specimen using Acoustic Emission Data," 

Proceedings of Fourth International Symposium on Acoustic Emission from 

Composite Materials (Seattle, WA: American Society for Nondestructive 

Testing, July 27-32, 1992), 187-199. 

4. Kouvarakos, M. and Hill, E. v. K., "Isolating Failure Mechanisms in a 

Fiberglass/Epoxy Tensile Test Specimen Using Acoustic Emission Signal 

Parameters," MSAE Thesis, 1992, Embry-Riddle Aeronautical University, 

Daytona Beach, FL. 

5. Graham, L. J., "Acoustic Emission Signal Analysis for Failure Mode 

Identification," 1980 Paper Summaries, ASNT National Spring Conference, 

American Society for Nondestructive Testing, Columbus, OH, 1980, 74-79. 

6. Pollock, A. A., "Acoustic Emission Amplitude Distributions," International 

Advances in Nondestructive Testing, Vol. 7, Gordon & Breach, Newark, NJ, 

1981,215-239. 

30 



Hill, E. v. K. and Demeski, R. J., "Modeling of Acoustic Emission Failure 

Mechanism Data from a Fiberglass/Epoxy Tensile Test Specimen," AE 699 

Paper, Embry-Riddle Aeronautical University, Daytona Beach, FL, 1996. 

Hahn, G. and Shapiro, S., Statistical Models in Engineering, John Wiley & 

Sons, Inc., New York, 1994, 195-220 

Holman, J. P., Experimental Methods for Engineers, McGraw Hill, New 

York, 2001, 78-80. 

ASTM Standard D3039-76 (Reapproved 1982), Annual Book of ASTM 
Standards; reprinted in ASTM Standards and Literature References for 
Composite Materials, Philadelphia, PA: American Society for Testing 
Materials, 1987,39. 

31 



APPENDIX A 

ACOUSTIC EMISSION TIMING PARAMETERS 



A.1 Hit Delay Time 

An illustration of hit delay time is shown in Figure A. 1. HDT is used to enable the 

system to detect the end of a hit. The HDT is the amount of time that the system waits 

when a signal goes below the threshold before it stops recording the hit. If the next signal 

should cross the threshold before the HDT has passed, the system will recognize it as part 

of the initial hit. An HDT value of 150 microseconds was used in these tests. 

TECHNIQUE M 
i 

Figure A. 1 Illustration of the HDT Parameter 

A.2 Peak Detection Time 

Peak detection time is the amount of time that the system uses to determine the peak 

value of the signal. An illustration of PDT is shown in Figure A.2. The PDT value used 

in these tests was 40 microseconds. 

CORRECT HDT 
I ^ z z — i 

ENO OF HIT TIME OUT 
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CORRECT PDT 

1 ^H 

PEAK DEFINED 

Figure A.2 Illustration of PDT Parameter 

A.3 Hit Lockout Time 

Hit lockout time is the amount of time that the system waits after the HDT, before it 

resets the system to read the next hit. The definition of HLT is shown graphically in 

Figure A.3. A typical value of HLT is 300 microseconds for fiberglass/epoxy, and this 

was the value used in these tests. 

CORRECT HLT 
\ ^ 1 

HDT TIME OUT SYSTEM REARMED FOR 
NEXT HIT 

Figure A.3 Illustration of HLT Parameter 
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APPENDIX B 

JOHNSON DISTRIBUTION CURVES 



Mechanism 1 
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Figure B.l Bounded Johnson Fit for the Rise Time Distribution, Mechanism 1 
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Figure B.2 Bounded Johnson Fit for the Counts Distribution, Mechanism 1 

Mechanism 1 

Energy 

Figure B.3 Lognormal Johnson Fit for the Energy Distribution, Mechanism 1 
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Mechanism 1 

Figure B.4 Bounded Johnson Fit for the Duration Distribution, Mechanism 1 
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Figure B.5 Bounded Johnson Fit for the Amplitude Distribution, Mechanism 1 
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Figure B.6 Bounded Johnson Fit for the Counts to Peak Distribution, Mechanism 1 
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Figure B.7 Bounded Johnson Fit for the Rise Time Distribution, Mechanism 2 

Mechanism 2 

Figure B.8 Bounded Johnson Fit for the Counts Distribution, Mechanism 2 
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Figure B.9 Lognormal Johnson Fit for the Energy Distribution, Mechamsm 2 
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Figure B.IO Lognormal Johnson Fit for the Duration Distribution, Mechanism 2 
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Figure B. 11 Unbounded Johnson Fit for the Amplitude Distribution, Mechanism 2 
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Figure B.12 Bounded Johnson Fit for the Counts to Peak Distribution, Mechanism 2 
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Figure B.l3 Bounded Johnson Fit for the Rise Time Distribution, Mechanism 3 

M echanism 3 

Figure B.14 Lognormal Johnson Fit for the Counts Distribution, Mechanism 3 
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Figure B.l5 Lognormal Johnson Fit for the Energy Distribution, Mechanism 3 
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Figure B.l6 Lognormal Johnson Fit for the Duration Distribution, Mechanism 3 
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Figure B.l7 Lognormal Johnson Fit for the Amplitude Distribution, Mechanism 3 
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Figure B.l8 Bounded Johnson Fit for the Counts to Peak Distribution, Mechanism 3 
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Mechanism 4 
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Figure B.l9 Bounded Johnson Fit for the Rise Time Distribution, Mechanism 4 

Mechanism 4 

Figure B.20 Lognormal Johnson Fit for the Counts Distribution, Mechanism 4 
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Figure B.21 Bounded Johnson Fit for the Energy Distribution, Mechanism 4 
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Figure B.22 Bounded Johnson Fit for the Duration Distribution, Mechanism 4 

Mechanism 4 

Figure B.23 Lognormal Johnson Fit for the Amplitude Distribution, Mechanism 4 

Mechanism 4 

Figure B.24 Bounded Johnson Fit for the Counts to Peak Distribution, Mechanism 4 
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Mechanism 5 
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Figure B.25 Lognormal Johnson Fit for the Rise Time Distribution, Mechanism 5 
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Figure B.26 Boimded Johnson Fit for the Counts Distribution, Mechanism 5 
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Figure B.27 Bounded Johnson Fit for the Energy Distribution, Mechanism 5 
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Mechanism 6 
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Figure B.28 Bounded Johnson Fit for the Duration Distribution, Mechanism 5 

Mechanism 5 

Figure B.29 Unbounded Johnson Fit for the Amplitude Distribution, Mechanism 5 
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Figure B.30 Bounded Johnson Fit for the Counts to Peak Distribution, Mechanism 
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