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ABSTRACT 

Author: Leonardo A. Bueno 

Title: Development & Validation of the Acoustic Analogy Code for Jet Noise Predictions 

Institution: Embry-Riddle Aeronautical University 

Degree: Masters of Science in Aerospace Engineering 

Year: 2003 

In this thesis, the numerical code for predicting the far-field sound radiated from a 

localized sound source is developed based on Lighthill's acoustic analogy theory. The 

acoustic analogy equation allows calculating the sound intensity in terms of the integral 

over the volume with distributed Lighthill tensor of unsteady flow fluctuations. A 

FORTRAN code is written to perform the integration using Simpson's numeric 

technique. The procedure for validating the code against the test case for the sound 

source in the form of a Gaussian pulse is examined. Future application of the code to 

predict acoustic radiation from turbulent jets is briefly discussed. 
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1. INTRODUCTION 

Aircraft engines produce aerodynamic noise sources, such as the nozzle turbulent jet. As 

modern aircraft engines are developed, a reduction of the sound becomes more critical. 

The ability to estimate pressure with precision is a necessity in order to achieve a 

decrease in its levels. Computational aeroacoustics is an effective way to obtain these 

predictions as it can be used to generate models of the existent noise. The methods used 

by computational aeroacoustics aid in the creation of appropriate case models due to their 

efficiency and cost. 

This work addresses the prediction of aircraft noise, particularly the jet noise. There are 

several methods to predict the noise in the far-field sound propagation region (2). These 

include the linearized Euler equations (LEE), Kirchhoff s method, surface integral 

formulation (SIF) and LighthiU's theory. LEE is used in conjunction with large-scale 

simulation (LSS) because the acoustic wave propagation is governed by the linearized 

Euler equations, when it is not in the nonlinear sound generation region. In the case of 

Kirchhoff s method a cylindrical Kirchhoff s surface encloses all the sources and non­

linear effects so that outside of this region the mean flow velocity is zero or constant. In 

order to find the pressure at a point outside the Kirchhoff s surface, it is required to have 

the pressure and its normal derivative at the surface, and this would require additional 

post-processing of results from large-scale wave-field simulations. The surface integral 

formulation (SIF), works in the same way as Kirchhoff s method but it tries to eliminate 

the need to obtain the pressure's normal derivative on the surface. It uses the method of 
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images to make Green's function zero at the surface therefore eliminating the need for the 

pressure derivative of the surface (2). 

In the present study, LighthiU's theory is used to solve for the pressure in the far field. 

Considering a compact region of the flow and arranging the Navier-Stokes equations so 

that they become a non-homogeneous wave equation, allows the decay of the source 

within the extension of the computational domain. The sound that emanates from a 

compact source provides a good solution in the case of low Mach numbers but the non-

compactness of a source in supersonic jets can create a problem due to non-convergence 

of the integral (1). Solving LighthiU's integral over the near-field region provides the 

solution for the pressure in the far field. This allows for a calculation that does not have 

to extend to the point being calculated but just around the selected near field. 

The objective is to develop the code needed to obtain the sound pressure distribution in 

the far-field. LighthiU's theory is used to write the necessary algorithms. This code 

develops a solution for the case of a point source for which the pressure equation is 

given. The pressure is validated as two different types of point sources are considered, 

the monopole point source and the Gaussian Pulse case. 

A numeric method is used to solve LighthiU's theory in order to obtain the results 

wanted. Writing a program in the FORTRAN language is the solution preferred in order 

to speed up the calculations, due to high number of steps that have to be repeated. This is 

a program that can be configured to carry out the numeric technique for different types of 
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point sources. This is done by using separate functions as much as possible, therefore 

allowing the modular change of only the necessary functions. 



2. GOVERNING EQUATIONS 

The governing equations of the unsteady flow motion are the compressible Navier-Stokes 

equations. These are used in computational aeroacoustics to describe the source and the 

transmission of aerodynamically generated sound. In general, the Navier-Stokes 

equations can be written as (3): 

Du dp d 
P = fx—— + — 

Dt dx dx 

ju\ 2 divv 
I dx 3 

Dv 

"a" 
Dw 

p
D t ' 

-f,-

= / , -

dy 

- * 4 
dz 

d 

dy 

d 

' dz 

M 
(0du 2 -

2 divv 
I dy 3 

+ -dy 

d 
+ — 

dz 

M 

M 

^du dv 
2— + — 

dy dx 

d 
+ — 

dz 

( dw du 

v dx dz , 

ju\ 2 divv 
V dz 3 

+ -
d_ 

dx 
M 

^du dw 
2 — + — 

dz dy ^ 
f\dw du 
2— + — 

y, dx dz 

\ 

+ -
d_ 

dx 

d_ 

dy 

M 
^du dv 
2— + — 

dy dx 

dv dw 
: — + — 
dz dy j 

Or more compactly they can be written as: 

Dv -+ 
p——=f- grad(p) + Div(r) (i) 

In LighthiU's formulation the general equations of Navier-Stokes are expressed as a non-

homogeneous wave equation (2): 

al dr2 

d% l d2 

• + • 
2 a , 2 

typy, ao dt 
(p-a2

0P) (ii) 

Where T,j is the stress tensor with the viscous stresses represented as e,,: 

TlJ=pu,uJ-eIJ 
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Solution of (2) for the far-field sound pressure can be obtained by using Green's theorem, 

thus, neglecting the viscous stresses, it can be expressed as the volume integral in the 

following form; 

P =-
^Rob< 

r ^ JUJ ^ W J + ^ | T { P - ^ P } dv (iii) 
dx,dXj l ' J) at dt2 

The second source term is usually neglected. The braces indicate in (iii) that the source 

term is estimated at the time that the various paths required for acoustic waves emanating 

from the distributed source to arrive at the same time t of the observer location. The 

retarded time is then expressed as: 

tf = t-\x-f\/ao 

In addition, the spatial derivatives in (iii) can be effectively reflected with time 

derivative. Following Ref (1), the solution is written; 

ps -T^\\\^PC>drdxd<^ 

_ Rob (xcos# + rsin#cos^) 

o o 

Where; 

Cr =wcos# + vsin#cos^ 

Thus, the form of the Lighthill integral reduces to: 

I = C\ \JF(x,r,St)exv(-2mM}Stxcos0)rdrdx |2 (4) 
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Where: 

C = K ^St4(Ue/aJ 
(RobID)2 

F(x, r, St) = AJ0 (cr) + A{ J, (cr) + A2J2 (cr) 

Ao=Fxxcos20 + -Frrsin2e 

Al=Fxrsin20 

1 ~ - . 2 . 
4 = 2F-S i n ° 

In F(x, r, St), J is the Bessel function of: 

a = 27rStMr sin 0 
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3. FORMULATION OF THE ACOUSTIC ANALOGY EQUATIONS FOR JET 

NOISE PREDICTIONS 

The formulation used for the current code starts as the original LighthiU's theory for the 

far-field pressure, given by: 

P = 
1 

4*X«°l 

d 
U J T ^ T W " ; } dxtdXj 

I S 2 , 2 } +^Mp~a°p] dV 

The second term is again neglected (1), and since accounting for the retarded-time effect 

would require an excessive amount of computational storage, a compact source is 

assumed, yielding the form: 

Ps{*ot) = 
1 

^Roba
2
0 

III !<*?> dt 
rdrdxd(j) 

Cr =wcos# + vsin#cos^ 

_ Rob (*cos# + rsin#cos^) 

Note that the compact sound source is located at (x0,r0) = (0,0). Thus, it is placed at the 

center of the volume to be analyzed. Also, the retarded time can be written as: 

t. =t-} \X-Y\ 
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• 

Figure 3.1. Compact source's location. 

According to this the equations can be simplified further by assuming that: 

R=\X-Y\=^R2
X+R2 

Rx=x-xo;Rr=r-rocos(<f>o-0) 

Also it is known that: 

cos0 = —f ° = and a2 =r2 +ro
2 -2rrocos((f>-<fi0) 

V(x-x0)2+r2 

In any case, ifro = 0 -^ a2 = r2, Rr = r, then R2 =(x-x0)
2 +r2 

Then substituting all this information into the pressure equation yields: 
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A-rrn2 JJJ Ana 

Rl d2 , 2 , . 2RxRr d2 ,____A , R2 d2 , _ ^ , 1 d2 ,_ _2 

R3 dt2 R1 dt2 R> St>
ipV ) + p ^ - ° ° P ) rdrdxdcj) 

Airn2 JJJ Ana 
cos2 0—-(pw2) + sin2<9cos^—- (puv) + sin2 0—j(pv2) 

dt dt1 dt1 
rdrdxd(j> 

The velocities in this case are defined as: u-U + u\v = v' 

Where; u',v' « U 

Substituting the velocities into the pressure equation: 

'-id 
d2 d2 

cos2 0—(U2 +2Uu'+u'2) + sin20cos0—(Uv'+u'v') 
dt2 dt2 

+s in 2 0-^ (v , 2 ) 
dt2 

rdrdxdfi 

A ™ 2 JJJ Ana dt2 cos2 0—(2Uu') + sin 20 cos <f> —- (Uv •) rdrdxdfj) 

If, 

u'-u(x,r)e 

v' = v(x,r)e~ 
-^ in retarded coordinates: 

uret
} = u(x,r)e 

vret' = v(x,r)e 

, Rnh (xcos0+rsin0cosd 
-ia)(t—^-+- -

Rob (xcos0+rsin 6cos<f>) 

-^r (2Uu •) = -2aVu(x, r)e"ae a° e 
dt2 

R (xcos0+rsm0cosd) 
ico— -ico- -

a2 

dt 
• ^ (Uv') = -co2Uv(x, r)emte "" e 

R (;ccos#+rsin0cos^ 
ico— -ioj-

iO)t „ an 
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Thus, p' = -t-2—— 
AnRa2 JJJ(2w cos2 0 + v cos 0 sin 20)<? fl° e 

A f *cos0+rsin#cos^ 
10)— -i(o\ 

rdrdxdij) 

Taking the Fourier conjugant: 
\u =u(x,r)e 

I v = v(x, r)e ~lO)t 

Then, 

AnRa] nt 
rsmtfcos^ 

o 

*0 ] + 
rsintfcos^ 

cos# 
o 

a, >e a° rdrdxdfy 

[vt/sin20][cos0e a° ] 

Consider the following for Bessel functions: 

Jn (z) = — \elzcos* cos(n<f>)d0, hence 

a = <f> + 7r 

(j)-a-n 
d<f> = da 

2K n 

j > c o s a cos(na)da = je
lzcos{*+;r) cos(n</> + ™ ) # 

cos(^ + ;r) = - cos(^) 

cos(n<f> + nn) - - cos ̂ , (n = 1) 

cos(2^ + 2K) = cos 2^, (« = 2) 

2;r ^ 

Then if n=0: je'zcoseda = je~lzcoseda 

This results in: 

In n 

je'2C0S*d<p = 2\e'zcos*d<f> = 2nJ0(z) «• 
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Hence, 

In C i , *\ n x 

j> c o s a cos(a)da = \ _ \= p ( ~ z ) c o s * ( - c o s ^ = _ JV<-w c o s ^ = -niJx(z) 
-a-n 

Resulting in: 

jelzcos*cos<f>d0 = 27riJl(z) 
In 

Thus, if z = — rsin# 

j V Z C 0 S ^ = 2TTJO(-Z) = 2nJ0{z) 
o 
,n 

je-zcos* cos(/)d(t> = 2nJ, (-z) = -2nJx (z) 

o 
In 

So that: 

Po°> 
P = • 

Ana0 

-e a° }}{[2uUcos2 0\2nJ0(z) + [Uu sin20](-2nUx(z))} e a° rdrdx 

.„ \Ao=2poUUcosl0\ , , ea° (co 
if " _ . Lthen/>' = -4=/?ov£/sin20 j 2/? 

-I XCOS0 ft I I ft* * w s < / 

— JJ[v.(*)-*V.(*)]e "° rdrd* 
\ a o 

Note that R. Mankbadi, et al (1), using LighthiU's theory to obtain the far-field sound, 

derive the sound intensity in the far-field expressed as: 

I = C\ \\F(x,r,St)exp(-2niM ,Stxcos0)rdrdx|2 
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Since the pressure is the objective and it is known that: 

\P\=PK^ 

Then following Mankbadi, F(x, r, St) and C are defined as: 

F(x, r, St) = AJ0 (a) - iA,Jx (a) - A^J2 (cr) 

71 -A, C = - — T S t \ U J a J 
(RobID)2 ' o) 

In the derivation of this thesis, it is obtained; 

F(x,r,St) = A0J0(cr)-iAiJ1(cr) 

C = ^^St\Ujay 
(RobID)2 e o) 

So that; 

( A4 

\p\=p]alSt1 —\ — 4n \\(AJ0(cr)-iAJx(cr)) exp(-2niM Stx cos 0)rdrdx 
{aj R JJ 

At this point the objective of this dissertation was to develop the code needed to obtain 

the sound pressure distribution in the far-field using LighthiU's theory by applying the 

previous equation for sound intensity. This code develops the case for the point source, 

for which the pressure equation is given. 
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4. CODE STRUCTURE 

The integral solver was developed using the FORTRAN programming language. The 

modular structure of the code is shown in figure 4.1. 

In the code, the same complexity arises because of the highly oscillatory Bessel functions 

which must be solved for each point of the observer and then integrated to obtain the 

functions. Code for these is used from Numerical Recipes [11]. The program is divided 

into simpler blocks and the calculations that are performed in separate functions are: 

• Angle of the observer location with respect to the source. 

• Integration along the radius. This is the inner integral of the double integral that 

forms part of the solution. 

• The calculations for each step of the integration. 

Keeping track of the parameters of each point being calculated, the numerical solutions of 

the integrals, and the resolution of the Bessel functions, are all critical points to consider 

when developing the structure of the program. The use of COMMON blocks to keep 

track of variables throughout the program reduces the number of arguments passed to the 

functions. 

The double integration, as shown in figure 4.2, is performed in two steps. For the inner 

integral, the Simpson method is used. The numerical algorithm is written as a function 
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called from MAIN. The outer integral is calculated in MAIN itself using a loop to 

perform the counting, with small increment values used to increase the number of total 

steps for a constant-length Kirchhoff surface to improve accuracy. 

In order to make the MAIN structure easy to see, a flow chart was constructed allowing 

the general structure to be analyzed. It is a simple program shown in figure 4.1. 

Embedded block structure simplifies the management of changes. This reduces the size 

of each module and makes debugging or addition of changes easier. 
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Enter the program 
Declare the parameters, variables and 

functions 

OPEN Input File krsjet dat 
CREATE Output File output txt 

Observer Points along 
the x-axis 

Integration along the 
jet axis, for 

Kirchhoff s surface 
length 

Function angleffor 
Input Observer position, radius of axis of observer 
Output Angle of the observer position, 0 

Function simpeq for 
Input Simpson method, upper and lower limits of inner 

integral 
Output Inner integral result for corresponding location on 
Kirchhoff s surface 

Figure 4.1. Flow chart of the Main body of the program. 
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Integral Input 

Outer Loop 

Here the loop that represents the 
outer integral (over the x-axis) is 
applied to simpeq for 

Integral Output 

This action is 
performed every 
time the outer 
integral solves a 
point 

Simpeq for 

In this function the inner 
integral is solved for each 
value on the x-axis along 
the radius of the near-field 

Figure 4.2. Flow chart of double integration as it is performed by Main. 
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5. CODE VALIDATION 

5.1. Analysis of the Far-field Sound Intensity Equation 

In predicting the far-field noise from the near field, a Kirchhoff surface is used in order to 

enclose all the nonlinear effects and sound sources. The observer location is outside of 

the Kirchhoff surface, at an angle theta from the source and on the x-axis at a radius Rob 

from the jet line, in the far field, as can be seen in the next figure: 

Far Field 
Observer 

! / Rob 

7 \ e " fr ^ L.___Y >-Jet-flow * 
Point Source 

< > 
x 

Jet Centerline Near Field: Volume to be 

integrated. 

Figure 5.1.1. Kirchhoff surface for the far-field sound pressure calculations. 

The objective is to find the sound pressure along points on the x-axis parallel to the jet 

line. The angle theta and the radius Rob are changed only for the point being analyzed at 

the moment, and remain constant through the calculation of the pressure. 

\ 
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5.1.1 Code Testing Procedure 

The main parameters and functions of the code are tested. They are plotted in the axis for 

which they are effective at revealing their behavior and any potential errors. The range 

used is the same that is used while running the code for the final calculations. 

The argument of the Bessel function, sigma, is plotted and, since sigma is dependent only 

the change in r, the other variables remain constant. For this reason, the values for these 

variables are based on a particular case, for one point, of the final results. Sigma has 

been simplified to be dependent only on the angular frequency to speed of sound ratio, 

theta, and location along the radios. At an x-position at 30 points behind the jet and the 

radius of the observer Rob of 10, theta is calculated. Therefore, plotting sigma as a 

function of r from the jet line to the radius of the Kirchhoff surface yields: 

<r = 
^ 

rsin0 
\aoJ 

Figure 5.1.1.1. Plot of sigma for 0 < r < r Kirchhoff. 
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This argument is used in the Bessel functions of the first kind for the corresponding 

orders. Bessel functions of orders zero, one and two, are the functions used. It is solved 

by using the Bessel functions' code obtained from Numerical Recipes. 

In order to find the solution for Lighthill the functions F^, Fxr, and Fn- which are to be 

found and used in the A0, Ai, and A2 correspondent^. These functions are: 

Fxx=u2 

Fxr=uv 

Frr-v
2 

The testing of these functions is done to ensure that they are continuous and that the code 

does not leave any points out of it. Because the velocity of the flow along the radial axis 

is zero, Frr turns out to be zero. Then, the functions Ao, and Ai become: 

Ap =2n[u2 cos#] 

Ax =27uuvsin20 

From this point onward the results obtained are used to calculate the component of the 

sound pressure integral. 
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5.2. Pressure Equation for the Monopole Point Source 

The case in which the source of the sound is a monopole is now considered. This case 

represents a source in a near field used to calculate the pressures in the far field. 

Far Field 

Point Source Location y 

P'(x) 

Centerlme Near Field: Volume to be 
integrated. 

Figure 5.2.1. Monopole Point Source 

First let us consider the wave equation for the source Q(y,t)in this case which is: 

^-ay
2<p=a2<p = Q(y,t) 

To solve this case, the Green function of the wave operator is obtained: 

d2G 
dt2 ' 

a;V1G = 8(x)8(t) 

Also knowing that: 

S{x-x0) = | ™,x = x0 

\0,x*xo 

\8(x-x0)f(x)dx = f(x0) 

G(x,t) = 
8(t-1-^) 

Anc21 x I 
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Then the solution of the wave equation for the source Q is: 

<P(y,t)= \G(x-y,t-^^-)Q(x,T)dxdt= \- V ao J 

Ana0
l\x-y\ 

_f Q(x, r)dxdr 

Since, 

\S(t-T)Q(x,T)dT=Q(x,t-T) 

Resulting in: 

* * ' ) = I^TJ-

Q(x,t-^^) 

Ana„ 
-dx 

\x-y\ 

Also, in the case of this point source, 

Q(x,t) = Q0e
,atS(x) 

Thus: 

l*-j>k 
Q0 c dx «*t-^-) (y r uX twv > 

9(XJ) = - ^ { - ^ - e a° S(x) 4;raQ
 J | x - y 

Q0 e 
,«(3) 

4^a0 | y | 
In this case, | y |= r 

Then (p becomes: 

Q , , f l K ' — > 
<p = g^r~e AndiQ r 

This allows finding the pressure and velocities because of the fact that: 

Ho dt r=\ y) 
= V(p 
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So that for the pressure this yields: 

dt 4;rao r r 

Ps=~Po^lioy 
Amn 

The velocities are needed to proceed with LighthiU's method. 

Y _ V(p _ fo _ ̂  \ ft JgQo I ___ ^ f i f i ^ ""-^ 
5r [ 4;rao

2 4;raQ
3r J po ^ aor cor2 

From here the velocities along the x and r axis are obtained. This is because the 

velocities come from: 

u = Vcos0 = V: 

r 

This yields the result 

_ p, 

p a cor 

v-
ps y .. y 

lO)(t — ) 

lO)(t ) 

-I-
p0a\r2 cor3 

Where: 
_ CO 
co = — 

an 

From here the next step is to find Fxx, Frx, and F^ and setup for their used in LighthiU's 

method. This case however, contains a singularity that will not allow for an accurate 

estimation of the sound pressure using the Lighthill integral. Because of this, code 

validations focused on the case of the sound source in the form of the Gaussian pulse. 
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5.3. Validation of the Pressure Equation for a Gaussian Pulse Point Source 

We now examine the case of the sound sources represented by a Gaussian pulse. The 

pulse is centered at x=0.0 and decays quickly, with the decay controlled by a constant. 

Far Field 

Centerlme 

Observer Location 

Near Field Volume to be 
integrated 

Figure 5.3.1. Gaussian Pulse Point Source 

For the Gaussian pulse; 

Q(x,t) = Qoe
l0)te-

Then, for the perturbation velocity potential, 

<p(y,t)=[ 
1 AL 

Ana2 
dx = 1 ffte 

«K»-£^!) 

\x-y\ Ana2 ea^dx 
\x-y\ 

For the source: 

^ , > o = f , 1
2 , A ,g 

JAna0 \x-ys\ 

a° e-aWdx 
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Considering, 

V = V<p = ̂ - and P = -Po^-
w dr Fo dt 

For this case of 2D; 

2n oo oo 

<P(xs,ys,t)= J f f , % ,g , d(p(-e-a^+/)dxdy 
lll*™o4(xs-x)2+(ys-y)2 

m ( ( Jw¥Z 
= - 2 * - % J J 6 "° (-e-a^)dxdy (*) 

To find the pressure this equation is differentiated with respect to time. Since the 

pressure is known to be: 

Ho Anc2 dt 

Where: 

( c a-"i-x2
+y2 

-^ = 2n^^-r . —dxdy 
dt Anc2 J J ^-xY+iys-y)2 

This allows the pressure in far field to be calculated directly. 
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5.3.1. Lighthill Integral for Gaussian Pulse Point Source. 

Considering LighthiU's equation in its volume integral form: 

p = Po 

AicRa2 

d2 

dt2 v~ ' " " ^ dt2 v " r ' " " " ^ dt2 JJJ cos2 6^—T(w2) + cos^sin2^-T(wv) + c o s 2 ^ s i n 2 ^ ^ ( v 2 ) rdrdxdcp 

Far Field 
Observer Location 

Near Field Volume to be 
integrated 

Centerlme 

Figure 5.3.1.1. Lighthill case using a Gaussian Pulse. 

The retarded time is given by: 

R xcos0 + rsm0cosq> 
t ~t H — 
retarded „ 

CL„ a„ 

Also, from the figure it is seen that: 

R2 = (x-x0)
2 + ( r 2 -2r0rcos(cpo -cp) + r2 
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The velocities are given by: 

\u=u\x9r)e-u" 

[v = v\x,r)e-lti,t 
and in retarded time retarded = u \x, r)e 

-io)(t + *-) 

Vretarded =VXX>r)e 

. R xcos#+rsin0coscr 
-ia)(t + - ) 

Obtaining the derivatives of these velocities n retarded time: 

|^(W
2) = |^ ( W ' 2 (^rK 2 ^- ) 

dt dt 

= u'(x,r)-^e 
5

9 _ . R xcosO+rsmOcosa^ 
n n 

dt7 u
2=u'2(x,r)(-Ao)2)e 

. , R xcosff+rsmOcosw^ 

Similarly for the other derivatives: 

_a_2 

dt2 

dt2 

_ . R jccos0+rsin0cosc\ 
2lQ)(t + ^ ) 

2 \ ^ an an —j- uv-u \x, r)v \x, r)(-Aco )e 

_ . R xcos0+rsin0coscr 
-2io)(t + *-) 

—v2=v'2(x,r)(-Aco2)e 

Substituting in the integral: 

P = — ^ £ L ffjTcos2 0u2 + cos^sin20wv + cos2 (psm2 6>v2]e a°e 
0 R . .Arcosfl+rsinflcosp. 
2ico— -2io)( - ) 

AnRai 
rdrdxdcp 

PQ(Q 

AnRa2 >^E 
-2icorsm0 

-COS $9 
-2io)rsm0 

u2 cos2 0e a° + uv cos <p sin 20e 
-2icorsm0 

+v2cos2#>sin2#e 

-cos <p 

-COS(p 

-2 icor cos 6 

rdrdxdcp 
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Denoting 

<j = -2icor sin 0 

and using the representation 

Jn(z) = — )e'z™ecos(n<p)d<p , 

The integral simplifies to 

T3-
p = _Po^_e2io)R 

nR i 
(n> 2 „ 2 

2nul cos2 0JO (a) + uv sin 20{-2niJx (a)) 

-v2 sin2 0{n J0 (a) - nJ2 (a) 
-2lG)XCOS0 rdrdx 

Also, u and v come from the derivation of phi from the Gaussian pulse. They are: 

u = 
dcp 

dx, 

dcp 

Thus, using (* from section 5.3) by substituting we obtain for the source 

d<P_ Q0 

dx, 2a u 
O -GO 0 

iV-fa-xf+iys-y)1 

ea° e afW -^s~x)2
+(ys-y)2 

co . e ° 
i - -

ayfx 

C-x) *(y.-y) a. ^_xf ^_yf] 

(xs - x)dxdy 

dcp _ Q0 

dy5 2a/ i J 

i^(xs-x)2Hys-y)2 

ea° e 
ayjx2+y2 

co . ea° e 
-i 

ayjx2+y2 

(*,-xf+(y,-y? a, [(Xi_x)I+(yt_y)1] 

(ys-y)dxdy 

This allows the pressure to be written the following way: 

P = -
nR 

e2,m jj(F^ ^ ayi^Orirfr 
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Where, 

F(x, r, CD) = AoJo (a) - iAxJx (cr) - A2J2 (a) 

and AQ, A], and A2 are written as: 

A0 = 2n\u2 cos 0 + - v2 sin2 0] 

Ax =27ruvsin20 

4> = KV2 sin2 0 

Using this setup for LighthiU's equation follows the same pattern as the solution in (1). 

The program's structure allows for changes such as this to be made easily and altering the 

code does not represent a challenge, since all that is needed now is the velocities obtained 

from the Gaussian pulse point source equation. 
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6. RESULTS 

With regards to code development to obtain results, all the steps necessary to put 

LighthiU's equation into code were taken. The flow chart in section 4 describes the 

structure of the program. The program is written so that each integral and functions are 

calculated in separate modules, permitting the user control over the calculations. 

The objective is to develop a program to solve LighthiU's equation for the sound pressure 

at the far-field. The complete code is located in the appendix section. The output gives 

the pressure in the far field. The program produces a simple two-column output, where 

the magnitude of pressure in the far field is listed for its x-location. The input to the code 

the attempted tried test case is 

Radius of the Kirchhoff Surface: 

Length of the Kirchhoff Surface: 

Omega/Velocity of Sound: 

Radius of the Observer: 

Diameter of the Nozzle: 

Strouhal's number 

radius_kh = 

length = 

w a r a t i o = 

r_ob = 

d = 

St = 

1.5 

30 

1.131 

10 

1.0 

0.2 

The output of the code was prepared for validation against results for: 

„ yl(xs-x)2Hys-y)2 

-a^]xz+yz 

P = -PA If™, ' dxdy 
y°2a2 JJ J(xs-x)2

+(ys-y? 
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Pressure Equation 

3.00E-02 

2.50E-02 

2.00E-02 

§ 1.50E-02 

a. 

1.00E-02 

5.00E-03 

0.00E+00 10 20 30 40 

x loc 0:60 

Figure 6.1. Output of the direct calculation for pressure. 

50 60 70 

The case of the plot obtained using LighthiU's equation, while assuming a Gaussian pulse 

point source is shown on Figure 6.2. It is evident that the plots are different not only in 

magnitude but also in behavior. This difference in the behavior of the curve shows that 

an error has occurred and it likely to be the singularity present throughout the equations. 

Plotting the two curves together shows the difference in shape, note that the magnitude is 

not the same in the following but it serves as a comparison of their shape. 
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Comparison Output 

3.00E-02 

2.50E-02 

2.00E-02 

O 
Q) 1.50E-02 

°- 1.00E-02 

5.00E-03 

0.00E+00 

30 40 

x loc 0<x<60 

6.00E-12 

5.00E-12 

4.00E-12 

3.00E-12 

2.00E-12 

1.00E-12 

0.00E+00 

70 

• Pressure Equation —•— Lighthill Equation 

Figure 6.2. Output of the LighthiU's equation calculation for pressure in the far-field. 

The general shape of the curve is expected, following an increase in pressure near the 

source and proceeding to decrease as the distance of the observer increases from the 

origin. The continuous curve suggests that there are no problems with the integration 

itself, but its form indicates an error in the calculations. This error is known to exist as 

the singularity is present in every interval calculated. The elimination of this singularity 

from the equations will help explore the validation of the code. 
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Lighthill Equation For Different Intervals 
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x location 0<x<60 
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-Lighthill Eq. dx/10 Lighthill Eq. dx/100 Lighthill Eq. dx/1000 Lighthill Eq. dx 

Figure 6.3. Plots at different interval sizes for Gaussian pulse point source. 

This is the last test scenario with the highest practical accuracy, if the integration 

intervals are reduced in size to increase the number of steps, the results that were 

obtained were not better than the current plot. Therefore the significant increase in CPU 

usage was not worth the minimal improvement and did not change substantially the 

plotting of the curve. 
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When analyzing the shapes of the curves that were obtained using the Gaussian pulse it is 

important to state that they were considered post the study of the plots corresponding to 

the monopole point source. The original case was to consider a monopole source for both 

LighthiU's method and the pressure equation. Using the same parameters the plot was 

obtained and plotted with the pressure that would also be calculated assuming the 

monopole source. 

Comparison Rot 

| 2.50E-03 
C/) 

£ 2.00E-03 
Q_ 

10 30 40 

x location 0<x<60 

•Pressure • Lighthill Monopole Case 

2.50000E-09 

2.00000E-09 

» 1.50000E-09 

1.00000E-09 

- 5.00000E-10 

0.00000E+00 

70 

Figure 6.4. Plot of pressure & LighthiU's results for the monopole point source. 

These plots show how the pressure equation output behaves in comparison to the 

LighthiU's equation output. Note the logical decay from the high pressure, near the 

origin of the point source, and the progressive decay as the observer is farther away from 

the source. The main problem is the way the curves are shaped, as the result from 
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LighthiU's solution does not follow the same pressure solution as it should. This 

difference in the way the curve decays is what led to the development of the equations 

assuming the Gaussian point source. In order to see if the error occurred only in the 

particular case in view, other cases were attemped. 

LighthiU's Pressure 

0.00E+00 

30 40 

x location 0<x<60 

- Lighthill r=30 Lighthill r=50 

70 

Figure 6.5. LighthiU's solution at different radius from the centerline. 

While checking the results, plots were done at other distances from the centerline. This 

way it is possible to see that the results were consistent with the original Lighthill results, 

as their shape is similar and they reduce in magnitude as the observer sits farther away 

from the centerline. However, the difference in the shape from the pressure calculations 

remained throughout. 
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7. ANALYSIS AND DISCUSSION 

The results showed a large discrepancy in the results between the LighthiU's integral 

solution and direct computation of pressure. Samples of the code were tested in order to 

find probable bugs and numerical accuracy was tested by decreasing the size of discreet 

integration steps. It did not improve the results while the CPU time increased 

significantly. 

At the present, it may be suggested that the primary source of the discrepancy is the 

remaining singularity in the integral equation for the Gaussian-pulse sound source. Note 

that the singularity in the source was also the major problem when solving LighthiU's 

integral for a monopole sound source. By assuming the source to be a Gaussian pulse we 

attempted to reduce the effect of the singularity since only one point from a continuous 

distribution had to be carefully removed. However, apparently the error continued to 

persist in the integration of the pressure equation. 

The method that was last used to reduce this error does not correct for it. It is 

recommended that the issues of proper integration path and singularity removal have to 

be further explored in future research. If such attempts fail, a new representation for the 

source equations that provide adequate code validation has to be sought. 
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8. CONCLUSIONS 

This thesis project achieved the following objectives: 

1. A numerical code has been developed to performed integration of LighthiU's acoustic 

analogy equation. 

2. Two formulations for the sound source were examined to validate the code, 

corresponding to the monopole sound source and the Gaussian pulse sound source. 

3. In the study of the monopole sound source a singularity occurred in the integration 

process that prevented from obtaining an accurate numeric solution. 

4. In the case of the Gaussian-pulse sound source, we attempted to reduce the effect of 

the singularity since only one point from a continuous distribution has to be removed 

from the integration path. Still, the proper numerical solution was not obtained. 

5. Recommendations for further research of the integral were formulated. It is 

suggested that, first, the issue of proper integration path to remove the singularity 

from the numerical solution has to be explored to provide for code validation. 

Alternatively, another formulation for the sound source is proposed to achieve the 

goal. 
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LIGHTHILL' EQUATION CODE 
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MAIN.FOR 

PROGRAM main 

PARAMETER (pi = 3 141592) 

INTEGER iteration, itercount, ob_pomts, mum 
INTEGER 1, n, m 
INTEGER IRULE 

REAL mach, radious_kh, length_kh, dr, dx, w_a_ratio, r_ob 
REAL x_pos, x_value, rad_int, rad, n, real_part, i_part, absolut 
REAL n j th 
REAL A, B, G, H 
REAL anglevalue, angle, ao 
REAL xmtegral, intensity, St, d, pressure, R_d 

COMPLEX f, RESULTl, RESULT2, simpeq, dummy, press_cplx 

EXTERNAL f, simpeq 

COMMON /ANGLES/ anglevalue 
COMMON /POSITION/ x_pos 
COMMON /ASOUND/ ao 
COMMON /XINT/ x_integral 
COMMON /STROUHAL/ St 
COMMON /DIAMETER/ d 

c Beggining of program body 

RESULTl = (0 0,0 0) 
x_pos = 00 
x_value =0 0 
rad = 0 0 
ao = 340 3 
d = 1 0 

OPEN (UNIT=5, FILE='krsjet daf) 
OPEN (UNIT=6, FILE='output txf) 

DO 10 i=l, 4 
READ (5,*) 

10 CONTINUE 
READ (5,*) iteration 
DO 20 i=l, 10 

READ (5,*) 
20 CONTINUE 

DO 3000 iter_count=l, iteration 

READ (5,*) ob_points, mum, mach, radious_kh, length_kh, 
SL dr, dx, w_a_ratio 

WRITE (*,504) ob_points, mach, w_a_ratio 
504 FORMAT (5X, 'Observer Points', 13, /5X, 

& 'Mach',F10 5,/5X, 
& 'w/ao ratio', Fl0 5) 

READ (5,*) 

r ob = 50 0 
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dummy = (0 0,1 0) 

CLOSE (UNIT=5) 

DO1500i=l,objpoints 

IF( ieq l )THEN 

c 

c 
c 
c 
c 

Simpson method steps 
n = 30 
Lower and upper limit in the x-direction 
A = 0 
B=1500 
Lower and upper limit in the r-direction 
G = 00 
H = l 5 

DO 900 n = 0,60 

x_pos=FLOAT(n) 

anglevalue = angle(x_pos, r o b ) 

RESULT2 = (0 0,0 0) 

n_lth = 00 

c This loop represents the outer integral dx 
c Remember to change the IF statements for each dx 

DO 600 m=0, 30 
x_mtegral = n_lth 

c FLOAT(in) 

RESULTl = simpeq(n, G, H) 

IF (in eq 0) THEN 
RESULT2 = RESULT2 + RESULTl 

ELSE IF (m eq 30) THEN 
RESULT2 = RESULT2 + RESULTl 

ELSE 
RESULT2 = RESULT2 + RESULTl *1 0 

END IF 

n_lth = n_lth + 1 0 

600 CONTINUE 

real_part = REAL(RESULT2) 
i_part = CABS(RESULT2-real_part) 
absolut = CABS(RESULT2) 

R_d = SQRT(x_pos**2 + r_ob**2) 

press_cplx = (-l 0/(3 14159*R_d))*(w_a_ratio**2)* 
& EXP(-2 0*dummy*w_a_ratio*R_d)*RESULT2 

pressure = CABS(press_cplx) 

WRITE (*,*) n, pressure 
WRITE (6,*) n, pressure 

900 CONTINUE 
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ELSE 
WRITE(*,*) 'Functionality not available' 

END IF 
CLOSE (UNIT=6) 

1500 CONTINUE 
3000 CONTINUE 

END 

ANGLE_F.FOR 

REAL FUNCTION angle (x_pos, r_ob) 

REAL x_pos, rob 
INTEGER x 

x = INT(x_pos) 

IF (x eq 0) THEN 
angle = 3 1415902/2 0 

ELSE 
angle = atan(r_ob/x_pos) 

END IF 

RETURN 
END 

SIMPEQ.FOR 

COMPLEX FUNCTION simpeq(n, a, b) 

REAL a, b, h, n, x 
COMPLEX sum, f 
EXTERNAL f 

c This is dr, the increment 

h = (b-a)/n 

x = a 

sum = f(x) 

DOi=l,n-2,2 

x = x+h 
sum=sum + 4*(f(x)) 
x = x+h 
sum = sum + 2*(f(x)) 

END DO 

x=x+h 

sum=sum + 4*(f(x)) 

sum = sum + (f(b)) 

simpeq = (b -a)*sum/(3*n) 

END 
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F.FOR 
COMPLEX FUNCTION f(r) 

REAL x_pos, r, pi 
REAL iteration, inum 
REAL mach, radious_kh, length_kh, dr, dx, w_a_ratio 
REAL angle, sigma 
REAL d, COS, SIN 
REAL jO, j 1, j2, bessjO, bessj 1, bessj 
REAL St 
REAL xmtegral 

COMPLEX a0,al ,a2, ft 
COMPLEX c_var, exp_part, fxxl, fieri, frrl, fiexjf,fier_f, frr_f 

EXTERNAL bessj0, bessj 1, bessj 
EXTERNAL fxx_f,fxr_f,frr_f 

COMMON /ANGLES/ angle 
COMMON /POSITION/ xjpos 
COMMON /XINT/ x_integral 
COMMON /STROUHAL/ St 
COMMON /DIAMETER/ d 
COMMON /MNUMBER/ mach 

f=(0 0,0 0) 
pi = 3 14159 
St = 0 2 

OPEN (UNIT=7, FILE='krsjet daf) 
OPEN (UNIT=8, FILE='otheroutput txt') 

DO 10 i=l, 4 
READ (7,*) 

CONTINUE 
READ (7,*) iteration 
DO 20 i=l, 10 

READ (7,*) 
CONTINUE 

READ (7,*) ob_points, mum, mach, radious_kh, length_kh, 
dr, dx, w_a_ratio 

CLOSE(UNIT=7) 

c_var = (0 0,l 0) 

sigma=w_a_ratio*r*SIN(angle) 

j0 = bessj O(sigma) 
j l = bessj 1 (sigma) 
j2 = bessj(2,sigma) 

fxxl = fxx_f(x_mtegral, r, w_a_ratio) 
fieri = fxr_f(x_mtegral, r, w_a_ratio) 
frrl = frr_f(x_integral, r, w_a_ratio) 

aO = 2 0*fxxl *(COS(angle)**2) 

a l = fieri *SIN(2 0*angle) 
a2=0 0 
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ft = aO*jO - c_var*al *jl - a2*j2 

expjpart = EXP(-1 0*c_var*w_a_ratio*x_mtegral*COS(angle)) 

f = exp_part*ft*r 

return 
c End of Function 

END 

BESSEL.FOR (from Numerical Recipes) 

FUNCTION bessjO(x) 
REAL bessj0,x 
REAL ax,xx,z 
DOUBLE PRECISION pl,p2,p3,p4,p5,ql,q2,q3,q4,q5,rl,r2,r3,r4,r5,r6, 
*sl,s2,s3,s4,s5,s6,y 
SAVEpl,p2,p3,p4,p5,ql,q2,q3,q4,q5,rl,r2,r3,r4,r5,r6,sl,s2,s3,s4, 
*s5,s6 
DATApl,p2,p3,p4,p5/l dO,- 1098628627d-2, 2734510407d-4, 
*- 2073370639d-5, 209388721 ld-6/, ql,q2,q3,q4,q5/- 1562499995d-l, 
*1430488765d-3,-6911147651d-5,7621095161d-6,-934945152d-7/ 
DATA rl,r2,r3,r4,r5,r6/57568490574 d0,-l 3362590354 dO, 
•651619640 7d0,-l 1214424 18d0,77392 33017d0,-184 9052456d0/,sl,s2, 
*s3,s4,s5,s6/57568490411 d0,1029532985 d0,9494680 718d0, 
*59272 64853d0,267 8532712d0,l dO/ 
if(abs(x) It 8 )then 

y=x**2 
bessj0=(rl+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))))/(sl+y*(s2+y*(s3+y* 

*(s4+y*(s5+y*s6))))) 

else 
ax=abs(x) 
z=8/ax 
y=z**2 
xx=ax-785398164 
bessj0=sqrt(636619772/ax)*(cos(xx)*(pl+y*(p2+y*(p3+y*(p4+y* 

*P5))))-z*sm(xx)*(ql+y*(q2+y*(q3+y*(q4+y*q5))))) 
endif 
return 
END 

FUNCTION bessj l(x) 
REAL bessj 1 ,x 
REAL ax,xx,z 
DOUBLE PRECISION pl,p2,p3,p4,p5,ql,q2,q3,q4,q5,rl,r2,r3,r4,r5,r6, 
*sl,s2,s3,s4,s5,s6,y 
SAVEpl,p2,p3,p4,p5,ql,q2,q3,q4,q5,rl,r2,r3,r4,r5,r6,sl,s2,s3,s4, 

*s5,s6 
DATA rl,r2,r3,r4,r5,r6/72362614232 d0,-7895059235 dO, 
*242396853 ld0,-2972611 439d0,15704 48260d0,-30 16036606d0/,sl,s2, 
*s3,s4,s5,s6/144725228442 d0,2300535178 d0,18583304 74d0, 
*99447 43394d0,376 9991397d0,l dO/ 
DATApl,p2,p3,p4,p5/l dO, 183105d-2,-3516396496d-4, 
* 2457520174d-5r 240337019d-6/, ql,q2,q3,q4,q5/ 04687499995d0, 
*- 2002690873d-3, 8449199096d-5,- 88228987d-6, 105787412d-6/ 
if(abs(x) It 8 )then 
y=x**2 
bessjl=x*(rl+y*(r2+y*(r3+y*(r4+y*(r5+y:,!r6)))))/(sl+y*(s2+y*(s3+ 

*y*(s4+y*(s5+y*s6))))) 
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else 
ax=abs(x) 
z=8 /ax 
y=z**2 
xx=ax-2 356194491 
bessj l=sqrt( 636619772/ax)*(cos(xx)*(pl+y*(p2+y*(p3+y*(p4+ys,s 

"!p5))))-z*sin(xx)*(ql+y*(q2+y*(q3+y*(q4+y^q5)))))*sign(l,x) 
endif 
return 
END 
FUNCTION bessj(n,x) 
INTEGER n,IACC 
REAL bessj,x,BIGNO,BIGNI 
PARAMETER (IACC=40,BIGNO=1 elO,BIGNI=l e-10) 

CU USESbessjO,bessjl 
INTEGER j j sum,m 
REAL ax,bj,bjm,bjp,sum,tox,bessjO,bessj 1 
if(n It 2)pause 'bad argument n in bessj' 
ax=abs(x) 
if(ax eq 0 )then 
bessj=0 

else if(ax gt float(n))then 
tox=2 /ax 
bjm=bessjO(ax) 
bj=bessj 1 (ax) 
do l l j= l , n - l 
bjp=j*tox*bj-bjm 
bjm=bj 
bj=bjp 

11 continue 
bessj=bj 

else 

tox=2 /ax 
m=2*((n+mt(sqrt(float(IACC*n))))/2) 
bessj=0 
jsum=0 
sum=0 
bjp=0 
bj=l 
do 12j=m,l,-l 
bjm=j*tox*bj-bjp 
bjp=bj 
bj=bjm 
if(abs(bj) gt BIGNO)then 
bj=bj*BIGNI 
bjp=bjp*BIGNI 
bessj=bessj*BIGNI 
sum=sum*BIGNI 

endif 
if(jsum ne 0)sum=sum+bj 
jsum=l-jsum 
if(] eq n)bessj=bjp 

12 continue 
sum=2 *sum-bj 

bessj=bessj/sum 
endif 
if(x It 0 and mod(n,2) eq 1 )bessj=-bessj 
return 
END 
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F_FUNC.FOR 

COMPLEX FUNCTION fxx_f (x, r, w_a_ratio) 

COMPLEX temp 1, u_vel, ujunc 
REAL x, r 
REAL w, ao, ross 
REAL bb, mach 

EXTERNAL uJimc, vjunc 

COMMON /ASOUND/ ao 
COMMON /MNUMBER/ mach 

w = w_a_ratio*ao 

tempi =(0 0,1 0) 

u_vel = u_func(x,r,w_a_ratio) 

fxx_f= u_vel*u_vel 

return 
END 

COMPLEX FUNCTION fxr_f (x, r, w_ajratio) 

COMPLEX tempi, uvel, v_vel, ufunc, v_func 
REAL x, r 
REAL w, ao, ross 
REAL bb, mach 

EXTERNAL u_func, v_func 

COMMON /ASOUND/ ao 
COMMON /MNUMBER/ mach 

w = w_a_ratio*ao 

tempi =(0 0,10) 

u_vel = u_func(x,r,w_a_ratio) 
v_vel = v_func(x,r,w_a_ratio) 

fxr_f= u_vel*v_vel 

return 
END 

COMPLEX FUNCTION frr_f (x, r, w_a_ratio) 

COMPLEX temp 1, v_vel, v_runc 
REAL x, r 
REAL w, ao, ross 
REAL bb, mach 

EXTERNAL u_func, v_func 

COMMON /ASOUND/ ao 
COMMON /MNUMBER/ mach 
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w = w_a_ratio*ao 

tempi = (0 0,1 0) 

v_vel = v_func(x,r,w_a_ratio) 

frr_f= v_vel*v_vel 

return 
END 

U V PHI.FOR 

COMPLEX FUNCTION u_func(x, r, w_a_ratio) 

COMPLEX tempi, numl, num2, phi 
COMPLEX r_phi_loop, x_phi_loop, gauss_f 
REAL deml, num3, decay 
REAL x, r, x_phi, r_phi, dx_phi, dr_phi 
REAL Qo, ao, counter_x_phi, counter_r_phi 
INTEGER r_int_counter, x_mt_counter, c r m a x , c_x_max 

COMMON /ASOUND/ ao 

tempi =(0 0,1 0) 
r_phi_loop = (0 0,0 0) 
xjDhiJoop = (0 0,0 0) 
dx_phi = 0 1 
dr_phi = 0 1 
decay = -0 0001 
Q o = l 0 

counter_r_phi = -50 0 
r_int_counter = 0 

c_r_max = 100 
c_x_max= 100 
DO i=0, c_r_max 

r_phi = counter_r_phi 
r_mt_counter = I 

counter_x_phi = 00 
x_int_counter = 0 

c inner mt 
DO n=0, c_x_max 

x_phi = counter_x_phi 
x_int_counter = n 

deml = ((x-x_phi)**2 + (r-r_phi)**2 ) 
numl = ((templ*w_a_ratio/deml)-l 0/(deml**(3 0/2 0))) 
num2 = EXP(templ *w_a__ratio*SQRT(deml)) 
num3 = EXP(decay*SQRT(xj3hi**2+r_phi**2)) 
gauss_f = numl *num2*num3*(x-x_phi) 

IF (x_int_counter eq 0) THEN 
x_phi_loop = x_phi_loop + gauss_f 

ELSE IF (x_int_counter eq c_x_max) THEN 
x_phi_loop = x_phi_loop + gauss_f 

ELSE 
x_phi_loop = x_phi_loop + gauss_f*dx_phi 
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ENDIF 

counter_x_phi = counter_x_phi + dx_phi 
END DO 

c inner int 
IF (r_int_counter eq 0) THEN 

r_phi_loop = r_phi_ploop + x_phi_loop 
ELSE IF (r_int_counter eq c_r_max) THEN 

r_phi_loop = r_phi_loop + x_phi_loop 
ELSE 

r p h i l o o p = r_phi_loop + x_phi_loop*dr_phi 
ENDIF 

counter_r_phi = counter_r_phi + dr_phi 
END DO 

u_func = -1 0*Qo*r_phi_loop/(2 0*(ao**2)) 

return 
END 

c c 

c v function c 

COMPLEX FUNCTION v_func(x, r, w_a_ratio) 

COMPLEX tempi, numl, num2, phi 

COMPLEX r_phi_loop, x_phi_loop, gauss_f 
REAL deml, num3, decay 
REAL x, r, x_phi, r_phi, dx_phi, dr_phi 
REAL Qo, ao, counter_x_phi, counter_r_phi 
INTEGER rintcounter, x_mt_counter, c_r_max, c_x_max 

COMMON /ASOUND/ ao 

tempi =(0 0,1 0) 
rjphijoop = (0 0,0 0) 
x_phi_loop = (0 0,0 0) 
dx_phi = 0 1 
dr_phi = 0 1 
decay = -0 0001 
Q o = 1 0 

counter_r_phi = -50 0 
r_int_counter = 0 

c_r_max= 100 
c_x_max = 100 
DO i=0, c_r_max 

rjphi = counter_r_phi 
r_int_counter = l 

counter_x_phi = 00 
x_int_counter = 0 

c inner int 
DO n=0, c x m a x 

x_phi = counter_x_phi 
x_int_counter = n 

deml = ((x-x_phi)**2 + (r-r_phi)**2 ) 
numl = ((tempi *w_a_ratio/deml)-l 0/(deml**(3 0/2 0))) 
num2 = EXP(templ *w_a_ratio*SQRT(deml)) 
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num3 = EXP(decay*SQRT(x_phi**2+r_phi**2)) 
gauss_f = numl *num2*num3*(r-r_phi) 

IF (x_mt_counter eq 0) THEN 
x_phi_loop = x_phi_loop + gauss_f 

ELSE IF (x_int_counter eq c_x_max) THEN 
x_phi_loop = xjphijoop + gaussjf 

ELSE 
x_phi_loop = x_phi_loop + gauss_Pdx_phi 

ENDIF 

counter_x_phi = counter_x_phi + dx_phi 
END DO 

c inner int 
IF (r_int_counter eq 0) THEN 

r_phi_loop = r_phi_ploop + x_phi_loop 
ELSE IF (r_mt_counter eq c_r_max) THEN 

r_phi_loop = rjphiloop + x_phi_loop 
ELSE 

r_phi_loop = r_phi_loop + x_phi_loop*dr_phi 
ENDIF 

counter_r_phi = counter_r_phi -I- drjphi 
END DO 

v_func = -1 0*Qo*r_phi_loop/(2 0*(ao**2)) 
return 
END 

KRSJET.DAT 
SOURCE FILE 

* 
* 
*number of iterations (with different data) 
* 

1 
* 

*number of observers 
*type of denvatives (inum=0 => analytical, inum=3 => all numencal) 
*Mach number of Kirchhoff surface 
*radius of Kirchhoff surface 
*length of Kirchhoff surface 
*Dr, Dx for numencal normal derivatives 
*omega/Vsound 
* 
* 

1,0,1 2d0,0 555d0,1500 d0,0 d0,0 d0,l 131d0 
*r, theta for each observer position 
10,90 
50,15 
50,20 
50,25 
50,30 
50,35 
50,40 
50,45 
50,50 
50,55 
50,60 
50,65 
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50./70. 
50.,75. 
50.,80. 
50.,85. 
50.,90. 
!,0,0.dO,5.dO,150.dO,0.dO,0.dO,l.dO 
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PRESSURE EQUATION CODE 
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MAIN.FOR 

PROGRAM Main 

REAL x, press, w 
REAL b, ao 

COMPLEX p_l, p_2, cplx, p_cplx 
COMPLEX tempi, numl, num2, phi 
COMPLEX r_phi_loop, x_phi_loop, gaussjf 
REAL deml, num3, decay 
REAL r, x_phi, r_phi, dx_phi, dr_phi 
REAL Qo, counter_xjphi, counter_r_phi 
INTEGER r_mt_counter, x_int_counter, c r m a x , c x m a x 

tempi =(0 0,1 0) 
ao = 343 0 

OPEN(UNIT=7,FILE='pressplot txf) 

w_a_ratio =1131 

r = 500 

D O J J = 0 , 6 0 

r_phi_loop = (0 0,0 0) 
x_phi_loop = (0 0,0 0) 

decay = -0 0001 
Q o = 1 0 
x = FLOATOj) 

c_r_max = 200 
c_x_max= 100 
dx_phi = 0 1 
drjphi = 0 1 
counter_r_phi = -100 0 

r_int_counter = 0 

DO i=0, c_r_max 
r_phi = counter_r_phi 
r_mt_counter = l 

counter_x_phi = dx_phi 
x_int_counter = 0 

DO n=0, c_x_max 
x_phi = counter_x_phi 
x_int_counter = n 

deml =((x-xjDhi)**2+(r-r_j)hi)**2) 
numl = 1 0/SQRT(deml) 
num2 = EXP(templ*w_a_ratio*SQRT(deml)) 
num3 = EXP(decay*SQRT(x_phi**2+r_phi**2)) 
gauss_f = numl *num2*num3 *templ *w_a_ratio 

IF (x_int_counter eq 0) THEN 
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x_phi_loop = x_phi_loop + gauss_f 
ELSE IF (x_mt_counter eq c_x_max) THEN 

x_phi_loop = x_phi_loop + gauss_f 
ELSE 

x_phi_loop = x_phi_loop + gauss_f*dx_phi 
ENDIF 

counter_x_phi = counter_x_phi + dx_phi 
END DO 

IF (r_int_counter eq 0) THEN 
r_phi_loop = r_phi_ploop + x_phi_loop 

ELSE IF (r_int_counter eq c_r_max) THEN 
r_phi_loop = r_phi_loop + x_phi_loop 

ELSE 
rjphi_loop = r_phi_loop + x_phi_loop*dr_phi 

ENDIF 

counter_r_phi = counter_rjphi + dr_phi 

END DO 

p_cplx=-l 0*Qo*r_phi_loop/(2 0*ao) 

press = ABS(p_cplx) 

WRITE(7,*)jj, press 
WRITE(*,*)j], press 

END DO 

CLOSE(UNIT=7) 

END 
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