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ABSTRACT 

Author: Philippe Marchand 

Title: An Ameliorated Prediction of the Empennage In-Flight Gust Loads 

for a General Aviation Aircraft 

Institution: Embry-Riddle Aeronautical University 

Degree: Master of Science in Aerospace Engineering 

Year: 2000 

Airplanes often operate beyond their original design load profiles. Aviation opens 

so many new possibilities and wide variety of possible activities that it is hard for 

designers to foresee all loading spectra that the airplane structure will experience 

throughout its life. Nevertheless, the aircraft structures are required to be designed to fail

safe or safe-life criteria to be certified by the FAA. AFS-120 provides a database of 

normal accelerations that can be used to derive airplane wing loads. ACE-100 describes 

an acceptable method for determining the fatigue life of an empennage based on the same 

normal acceleration data provided in AFS-120. However, this data have not been 

demonstrated to be applicable for empennage loads. 

Earlier works have shown that maneuver induced-loads on the empennage can be 

predicted from motion parameters measured near the airplane center of gravity. 

Maneuver loads are pilot induced and do not account for weather related loads. During 

flight, the airplane is subjected to atmospheric turbulence and a method for determining 

empennage gust loads is desired. Embry-Riddle, with financial support from the FAA, 

has flight-tested a C-172P equipped with sensors to develop an ameliorated prediction of 

the empennage in-flight gust loads for a general aviation aircraft using Neural Networks. 

Both the power spectral density and the FAA 'two-second' methods have been applied to 

separate maneuvers and gusts. Findings were unexpected in that for this airplane, aircraft 

rotational motion appears to dampen empennage gust loads considerably and for the 

conditions tested, gust loads were not as significant as maneuver loads. 
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CHAPTER 1 

INTRODUCTION 

1.1 OVERVIEW 

Both fatigue evaluation and detection has become an important safety 

consideration in aeronautics. Fatigue has been with aviation since the first flight of the 

Wright flyer in 1903. Since then, our knowledge and understanding of the fatigue 

phenomenon have greatly improved in such a way that now, we are able to design and 

build reliable structures. However, Federal Aviation Regulations (FARs) require that 

structural components critical to the safe operation of an aircraft must not fail within their 

expected life times due to damage caused by the repeated loads typical to daily 

operations. Consequently, knowledge of the types of loading acting on the structure is 

required. 

The wing and empennage are the most critical structures during a flight. Fatigue 

life is determined using the Palmgren-Miner linear cumulative damage theory. However, 

this method requires the knowledge of the loading history or spectra of the aircraft, which 

is, nowadays, not always available. 

The NASA VGH (velocity, load factor, altitude) program, which was one of the 

largest and longest running in-flight load monitoring program for General Aviation 

aircraft, permitted collection of information on flight loads (normal acceleration near 

aircraft center of gravity: CG NZ) and lead to a report that is still being used to determine 

the fatigue life of airplane wings [1]. Other research evaluated the fatigue life of vertical 
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aerodynamic surfaces such as fins, rudders or winglets [2] without establishing a 

correlation between the loads of the empennage and the CG accelerometers. But as far as 

only accelerations near the Center of Gravity (CG.) were measured, the empennage 

structure fatigue loads stayed unexplored. A method to determine the empennage loads is 

consequently needed. 

There is a wide range of aircraft operations, activities and usage such as flight 

training, aerobatics, commercial, agricultural, and others that result in significantly 

different fatigue design load spectra. Furthermore, the load history for a given aircraft 

often varies substantially from what was expected initially. An accumulated fatigue 

damage monitoring system would allow establishing a maintenance schedule more 

appropriate for each aircraft. The owner or operator would then keep records of the 

fatigue load spectra and the flight profile information of the aircraft. Technicians could 

use this database to better estimate loads and they could modify and improve their design 

to ensure airworthiness throughout the airframe life. This may provide significant 

economic advantages and improved safety for the owner, operator and the industry. 

In order for General Aviation aircraft owners to be interested in such a system, it 

must be inexpensive, easy to install and maintain, and must not interfere with the normal 

operation of the airplane. The use of strain gages is consequently not recommended 

because of installation difficulties and associated costs. A better way to collect data 

would be to use a system similar to the NASA VGH recorder but one that is more robust 

and versatile that would provide loads on both the aircraft wing and empennage structure. 

Previous research has demonstrated that from a load spectra database (load 

induced by maneuvers), an in-flight load monitoring method could be used to keep track 

of accumulated damage of an airframe [10 and 20]. Subsequently, a similar methodology 

to predict the fatigue induced by gust loads on the empennage structure is needed. Then, 

an empennage in-flight load database could be created, and a database of fatigue load 

spectra would be available and helpful in determining the entire aircraft fatigue life using 

the Palmgren-Miner linear cumulative damage theory thereby increasing aircraft safety. 
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1.2 PREVIOUS RESEARCH 

Gust loads as well as maneuver loads, are of a stochastic nature. Their magnitude 

and frequency can only be predicted in a probabilistic sense. A relatively large amount of 

statistical data concerning vertical gusts is available in the format of CG vertical 

acceleration data (Anz) obtained during routine airline operations [3]. In 1962, at the 

request of the Federal Aviation Administration (FAA), and upon recommendation of the 

NASA Committee on Aircraft Operating Problems, the NASA VGH General Aviation 

Program was established. The purpose of this program was to define the gust and 

maneuver loads, airspeed practices, and altitude usage of General Aviation airplanes and 

to provide a data bank of information for use by airplane designers. In 1973, based on the 

data collected on thirty-six (36) airplanes flying approximately 12,400 hours, the FAA 

published Report No. AFS-120-73-02 [1] that describes the accepted method for fatigue 

evaluation of aircraft wings. Data collection was completed in 1981; at which time 

42,155 hours of VGH data were accumulated on one hundred and five airplanes (105) 

airplanes. NASA evaluated the data for ninety-five (95) airplanes flying 35,286 hours and 

presented it in tabular forms in the Technical Memorandum 84660 in 1983 [4] (Final 

Report No DOT/FAAICT-91/20, 1993 [5]). The NASA VGH program measured normal 

(z-direction) accelerations near the C.G.. One of the recommendations in the report was 

that a similar program was needed for fatigue of vertical aerodynamic surfaces. 

A database collected several years ago by the RAE (Royal Aircraft Establishment) 

contains fatiguemeter data in a wide variety of mainly piston-engine aircraft. The data, 

essentially consisting of acceleration counter readings together with speed and altitude, 

was recorded every ten minutes during flight. This database includes 10,697 flights. In 

this study, the range of mass, speed and altitude are fairly wide, and the accuracy of 

derived gust velocities is limited [6]. 

During a period of about ten (10) years, service load data have been retrieved 

from ACMS recordings made on Boeing 747 aircraft operated by the KSSU group-KLM, 

Swissair and SAS. These data were stored at NLR in the so-called ACMS Fatigue 
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Database. As indicated in the Technical Publication No. TP 89097 [7], the prediction of 

wing loads from the three previous databases is reasonably accurate but the loading of the 

tail structure includes a considerable amount of uncertainty. For this reason, the NLR 

carried out a service-tail load-recording program [8]. In this program, through the joint 

effort between NLR, the Fokker Company and the KLM, measurements were obtained 

during commercial operations of a Fokker F-100 over a period of one year. A strain load 

survey was performed to obtain tail load information using a 4-channel "Spectrapot" 

recorder. A reasonably large amount of data was collected, but for a fleet of aircraft, the 

method made it clear that using strain gages for measurements is not suitable as stated 

earlier in Overview. Thus, the problem of empennage fatigue load remained unadressed 

until these past few years. Some research has been done to predict the empennage in

flight loads of General Aviation aircraft. The method used was the back propagation 

neural network. The study was limited to the prediction of fatigue loads induced by 

maneuvers. The problem of the prediction of gust load still remains. 

Other previous works have defined design loads due to atmospheric turbulence 

using the Power Spectral Density (PSD) method. The design loads were calculated using 

linear transfer functions. This method was based on the assumptions that atmospheric 

turbulence could be described as a quasi-stationary Gaussian process. It was further 

assumed that the aircraft response to turbulence could be described with linear equations. 

Using theories about Gaussian processes, it was possible to define design loads based on 

number of exceedances of the design load level. However, for non4inear airplane 

motions or if other assumptions are no longer valid, the PSD method cannot be used [9]. 

The flight load prediction problem is being studied using Neural Networks at 

Embry-Riddle Aeronautical University, Florida. The research has demonstrated that it is 

possible to predict empennage strains resulting from maneuver loads in a Cessna 172P. 

The horizontal tail neural network was trained with CG NZ and x-, y-, and z-axis angular 

accelerometer signals and predicted 93% of all strains to within 50 [is of the measured 

value. The vertical tail neural network predicted 100% of all strains to within 50 (is of the 

measured value (Marciniak, M., "A Methodology for the Prediction of the Empennage 
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In-Flight Loads of a General Aviation Aircraft Using Back propagation Neural 

Networks" [10], Pechaud, L., "Improvement of a Methodology for the Prediction of the 

Empennage Maneuver In-Flight Loads of a General Aviation Aircraft Using Neural 

Networks" [16]). 

Previous studies on empennage gust loads have been done at Embry-Riddle 

Aeronautical University. Veronique de Poitevin [21] and Nicolas Arcaute [23], both 

under the supervision of Dr. D. Kim, participated in these researches, but without 

success. 

De Poitevin tried to train and test Neural Networks with the real time data filtered 

with DADiSP for the gust frequency range of interest. She focused on building a network 

for each tail (horizontal and vertical). The accuracy of the prediction was not sufficient, 

i.e. the correlation remained too low (well below 0.3 whereas 0.9 would be acceptable) 

and the R.M.S. (Root Mean Square) error too high (around 0.1 whereas 0.001 would be 

the target value). It was assumed that the gust quantity, gathered in flight was not 

significant enough for such a prediction. She also tried to train the network with the 

maneuver file and tested it with the gust file. The prediction was just slightly better 

without any real improvement. 

Arcaute, however, concentrated on the PSD. As stated previously, feeding the 

network with the PSD data instead of time domain data would be more consistent and 

would lead to a significant gain of time. But he tried to predict the stress with only a 

single neural networks (for both horizontal and vertical tails) and the predictions were not 

as good as expected. Moreover, since this mean of load prediction is intended to be used 

on a regular basis on airliners as well as General Aviation airplanes, he decided to get rid 

of the expensive angular accelerometers as well as the very uneasy-to-install tail 

accelerometers for the Neural Network's inputs. Like de Poitevin's research, the 

correlation remained too low. Some optimization has been achieved but without any real 

improvement. 
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1.3 CURRENT APPROACH 

The objective of this research is to find and develop a relationship between the 

data collected near the CG and the strains at the empennage of General Aviation aircraft 

due to gust loads. More precisely, a method similar to the one used for the prediction of 

maneuver loads is desired for the prediction of gust loads. The research concentrates on 

finding: 

- The minimum set of instrumentation sensors needed to accurately 

predict the strains due to gust loads 

- The minimum threshold value of significant strains 

- The correlation between sensor output and the empennage flight loads 

Data recorded near the CG. are used to determine loads induced on the 

empennage structure. It has already been found that there is only a weak linear 

relationship between normal acceleration in the z-direction (CG NZ) and strain 

experienced by the horizontal tail. The relationship between normal acceleration in the y-

direction (CG NY) and strain experienced by the vertical tail is only slightly better [10]. 

However, there is no proof that other relationships cannot be found. 

The test aircraft Cessna 172P is equipped with sensors: air data transducers 

(airspeed, altitude, angle of attack, sideslip), rate gyros (to provide the angular velocities 

around each of the aircraft axes), angular accelerometers (to determine the angular 

accelerations), linear accelerometers (for y- and z-axis accelerations near the CG. of the 

aircraft and for the y- and z-axis accelerations in the tail section). A portable data 

acquisition system is used to collect data during the flight. But, one of the requirements 

for the successful implementation of this Data Monitoring System for General Aviation 

aircraft is low cost. Indeed if a useful flight load database is to be created, a large number 

of airplanes in a wide range of flight conditions and missions have to be monitored. Such 

a system should cost around $2,000 but no more than $3,000. One of the most expensive 
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instrumentation components is the angular accelerometer. Based on the previous 

research, it has been shown that the minimum set of instrumentation required for the 

prediction of maneuver loads consisted of only the linear accelerometers at the CG. and 

the rate gyros (the angular accelerations can be derived by numerical differentiation of 

rate gyro signals). Consequently, in this research, it would be desired not to use the 

angular accelerometers as well as the tail accelerometers that are more difficult to install. 

Unlike most of the previous research where predictions were based only on time 

domain, this work investigates the frequency domain using the Power Spectrum Density 

function (PSD). This approach was prompted by the need to separate gust and maneuver 

loads and by the fact that the PSD analysis is consistent with data needed for fatigue 

analysis, i.e., PSD gives the magnitude of the loads for each frequency of interest). The 

prediction of the strains on the empennage is realized with Neural Networks. Neural 

Networks analysis is a very powerful tool for modeling problems for which the explicit 

form of the relationship among certain variables is not known. Thus, this study consists 

of finding a network being able to predict the strains due to gust encountered during a 

flight. The basic architecture of the simplest possible neural networks consists of a layer 

with input units and a single output unit. For the prediction of gust loads, the inputs into 

the neural networks are provided by the PSD signals derived from the time domain data 

and collected in-flight from the above instruments. The necessary condition or the criteria 

used for testing the accuracy of the prediction is to evaluate the value of the correlation 

coefficient calculated between the strain predicted and the strain measured with a strain 

gage. 
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CHAPTER 2 

BACKGROUND THEORY 

2.1 AERODYNAMIC LOADING 

2.1.1 INTRODUCTION 

Two types of repeated flight loads are of principal significance to the fatigue of 

the aircraft structures: maneuver loads and gust loads. The pilot, in controlling the 

airplane, applies maneuver loads. Gust loads occur during flight due to the turbulence in 

the atmosphere. These are usually considered as being more frequent and larger than 

maneuver loads during normal airline operations. The same may or may not be true for 

General Aviation airplanes. The following discussions on gust loads are based on 

Reference [14], "Gust loads on Aircraft: Concepts and Applications". For further details 

about gust theory, this reference should be consulted. 

2.1.2 MECHANISM OF GUST LOADS GENERATION 

Gust loads, whether due to discrete gusts or continuous turbulence, are ordinarily 

considered to be the result of a change in angle of attack due to a component of gust 

velocity at right angles to the flight path (Figure 1). Vertical and lateral gusts fall into this 

category. The change in angle of attack, in radians, is equal to the gust velocity divided 

by the forward speed. 
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2.1.2.a Vertical and Lateral Gust: 

Gust Velocity U 
Resultant 

Velocity V due to 
forward speed 

Figure 1. Vertical Gust Velocity [14] 

Before gust, the lift of the airplane is equal to: 

P 2 
L=mxg=—xV xSxClaxa (Equation 1) 

For a vertical gust, the change in lift due to the gust is: 

AL = ̂ -xV2xSxC. xAa 
2 la 

(Equation 2) 



where: 
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V = Airplane forward speed 

P 2 
— xV = Dynamic pressure 

S = Reference wing area 

Q 

la = Lift curve slope 

^ = Change in angle of attack due to gust 

And Aa (in radians) »tan (Aa) = — for U « V 

where: 

U = Gust speed 

Then equation 2 becomes 

2 '" "'" V 2 
&L = £-xV2xSxClax — = £-xUxVxSxCla (Equation 3) 

Dividing by W gives the incremental load factor An: 

£xUxVxCla ^xUxV 
An = W= jF = w— (Equation 4) 

S SxCla 

Therefore, measuring the gust load can be done by the measurement of the load factor 

induced by it. 
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2.1.2.b Head-on Gust: 

During a head-on gust, the angle of attack is equal to the pitch attitude of the 

airplane. The only noticeable change is the dynamic pressure (the angle of attack is 

simply the constant pitch attitude of the airplane). 

Gust Velocity U Velocity V due to 
forward speed 

Figure 2. Head-on Gust Velocity [14] 

Before gust, Equation 1 holds. For a horizontal gust, the change in lift due to the gust is: 

(Equation 5) AL = ̂ x(V + U)2xSxCL 

where: 

d = Lift coefficient 

2 . \T2 and for U « V , (U+V)2 * Vz + 2UV. 
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Consequently, Equation 5 becomes: 

&L = — x(2xUxV)x(\ + -—)sxCL *^-x(2xUxV)xSxCL (Equation6) 

Dividing by W gives the incremental load factor An: 

KT ^-xUxVxC, ^-xUxV 
An = W= w = —\F~ (Equation 7) 

Substituting: 

S SxCL 

W 
CL = (Equation 8) 

?-xV2xS 
2 

we finally end up with the following equation: 

£x(2xuxv) 2U 
An = = (Equation 9) 

P-xV* V 

Thus, a head-on gust produces only an additional lift but no side force. 

2.L2.C Effect of Airplane Motions: 

The net change in angle of attack acting on the airplane depends not only on the 

gust velocity, but also on the airplane motion induced by the gust as the airplane traverses 

the gust profile. A gust does not reach its maximum velocity instantaneously; during the 

period of buildup, the airplane will have time to acquire motion. The pertinent airplane 

motions, in response to a vertical gust, are as follows: 
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Plunge: the airplane will translate vertically in the direction of the gust 

velocity, so that the net gust velocity felt is reduced. 

Pitch: the airplane, because of its natural pitch stability, will tend to 

'weathervane' so as to reduce the gust increment in angle of attack. 

The equation of motion of a rigid airplane in response to a vertical gust can be 

written in terms of a single variable a. This variable is the increment in angle of attack 

due to the airplane motions, 0 + —; it does not include the angle of attack aQ = — 

associated with the gust velocity, which appears in the equation of motion as the forcing 

function. This equation is a second-order linear differential equation, so the response is 

similar to that of a single-mass mass-spring damper system. Consequently, factors that 

affect the response of such a system also affect airplane response to gusts in much the 

same way. These would include, for example, damping, forcing-function "rise time," and 

resonant response to repeated load application. The forcing function, however, consists 

not only of the gust velocity itself, but also its first and second derivatives. Because the 

differential equation is of second order, the airplane motions can result in load alleviation 

or in load increase due to dynamic overshoot effect. Airplane motions in a manner 

comparable to that described for vertical gusts affect loads due to lateral gust. 

For a head-on gust, the alleviation effect of the plunge motion is the same as for a 

vertical gust; the motion depends only on the lift produced, not on its source. The pitch 

motion is different, however, inasmuch as the increment in lift due to vertical gust acts at 

the airplane center of pressure, whereas the lift due to a head-on gust acts at the 1-g flight 

center of pressure, that is, the CG. (these can differ substantially as a result of the 

difference between wing and tail angles of attack in 1-g flight; in fact, they must differ if 

the airplane is to be statically stable). In addition, in the case of a head-on gust, there is 
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probably some very small alleviating affect due to slowdown resulting from the drag 

increase associated with the increase in dynamic pressure. 

2.1.3 CHARACTERISTICS OF TURBULENCE 

2.1.3.a Gust Profile 

Gust Velocity 

Distance 

onTime 

Figure 3. Gust Profile 

A gust profile in space becomes a gust velocity time history when the distance 

scale is divided by the airplane forward speed to become a time scale. Typically, gust 

profiles tend to be continuous and irregular as illustrated in Figure 3. If the profile is 

continuous, the gust structure is referred to as turbulence. If the gust structure consists of 

more or less isolated pulses, a single pulse is referred to as a gust. In general, a 

continuous turbulence profile is thought of, loosely, as consisting of a series of gusts. 

Terms such as "gust structure", "gust profile", or "gust loads" refer equally to continuous 

turbulence and isolated gusts. 
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Isotropy: 

Typically, atmospheric turbulence tends to be not only continuous, but also 

considered isotropic (same in all directions). Thus, 

1) along a given path through a patch of turbulence, the lateral gust profile tends 

to have the same general characteristics as the vertical gust profile, including 

roughly the same peak values; 

2) for traverse in various directions through the same patch of turbulence, the 

resulting profiles tend to have the same general characteristics; and 

3) an individual gust is equally likely to be found in any direction of traverse 

(North-South, East-West, upwind, downwind, crosswind,...). 

Sources of Turbulence: 

The usual breakdown is as follows: 

1) Storm (especially thunderstorm): the most common source of severe 

turbulence, 

2) Cumulus cloud: the same mechanism as thunderstorm, but less severe, 

3) Clear air: sources include wind shear, jet stream (can be severe due to high 

wind shear), wind over ground (wind shear in the Earth's boundary layer), 

wind over and between mountains (can be extremely severe close to the 

ground), and convection due to morning warming of air close to the ground, 

especially over the desert. 
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2.2 DISCRETE-GUST STATIC LOADS 

2.2.1 GUST IDEALIZATION 

The usual idealization of the gust structure consists of a one-minus-cosine pulse: 

f 
U = -Un 1 - cos 

2nx 

~2H 
(Equation 10) 

Figure 4. Representation of an Idealized Gust 

2.2.2 FAR STATIC GUST REQUIREMENT 

For the purpose of obtaining static gust loads, FAR specifies the one-minus-cosine 

shape and an airplane motion confined to plunge only. 
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Gust Velocity Airplane Vertical 
Velocity 

Net (relative) velocity 
causing lift, maximum = KJJ0 

Figure 5. Gust Velocity and Airplane Vertical Velocity 

The use of the coefficient Kg in the preceding figure is an over-simplification. It is 

used to include the lag in buildup of lift in response to gust entry and sudden changes in 

angle of attack. 

2.2.3 FAR GUST LOAD FORMULA 

For most vertical gusts, the FAR gust load formula is: 

An = K 
8 ft? 

498 — 
S 

'Sharp-edge-gust" response 

(Equation 11) 
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in combination with: 

0.88// 
K, = — (Equation 12) 

5.3 + //, 

2W 
// = (Equation 13) 

pgScC, La 

where: 

An = Incremental Load Factor 

Kg = Factor to account for airplane motion and lag in buildup of lift 

Ude = Derived equivalent gust velocity, fps 

Ve = Airplane equivalent airspeed, knots 

CL<X = Airplane lift curve slope (per rad) 

498 = where po is the sea-level air density and 1.689 converts Ve in 
^ 1 . 6 8 9 
2 

knots to fps 

W = Airplane weight 

S = Reference wing area 

|ig = "mass parameter" as defined by equation 13 

p = Air density 

c = Wing mean geometric chord 

g = Acceleration due to gravity 

In Figure 5, Uo corresponds to Ude, where "e" is the subscript for equivalent. 

Hence, Ude=U0 \— (Equation 14). The subscript "d" means derived and 

reflects the fact that values of Ude can be derived from accelerations recorded in 

flight. 
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Ude can be specified as function of altitude, from sea-level to 20,000 feet: 

- at VB (design rough-air speed), Ude = 66 fps 

- at VC (design cruise speed), Ude = 50 fps 

- at VD (design dive speed), Ude= 25 fps 

2.2.4 EFFECT OF STATIC AEROELASTIC DEFORMATION ON CL<X 

Whenever an airplane encounters a gust, its structure is subject to quasi-static 

deformation due to the forces encountered. This means that the aerodynamic forces are 

different from those for a rigid airplane. Thus, in using the gust loads formula, the 

appropriate CLCX must be used. 
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2.3 STRESSES AND STRAINS ACTING ON AN AIRCRAFT 

One of the major concerns in aircraft design and operation is structural integrity. 

The airplane must withstand up to a certain amount of "load" without failure of its 

structure. Each airplane structure is subject to stresses. Stresses are present on the 

airplane whether on the ground or in flight. It is defined as a force applied to a unit area 

of material. Stress produces a deflection or deformation in the material called strain. 

Stress is always accompanied by strain and for uni-axial loading, it is: 

a = Es (Equation 15) 

where: 

E = Young Modulus = 10*(106) p.s.i. 

cr = Stress in p.s.i. 

s = Strain in jus 
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2.4 POWER SPECTRAL DENSITY (PSD) 

The Power Spectral Density, PSD, describes how the power (or variance) of a 

time series is distributed with frequency. It is often used to define airplane design loads 

due to turbulence. The PSD of loads provide a measure of the flight-load intensity in 

terms of the standard deviation (root mean square) of the load distribution for an airplane 

in flight through rough air. In the expression "Power Spectral Density", 

1) Spectral indicates a measure of frequency content 

2) Power indicates, somewhat by analogy, that the quantity to which the 

various frequency components contribute is the mean square value of 

the variable and 

3) Density indicates that the frequencies are not discrete but continuously 

distributed, so one cannot speak of the contribution of a single 

frequency co but only of the contribution of a band of frequencies 

between © and co+dco. 

Mathematically, it is defined as the Fourier Transform of the autocorrelation 

sequence of the time series: 

The Fourier transform X(f) of the signal x(t) is given by: 

X{f) = \x(t)e-2j*'dt - oo < / < oo (Equation 16) 
- o o 

X(f) contains all the information of the original signal, and x(t) can be obtained 

from X(f) by the inverse Fourier transformation: 

x(r) = jX(f)e2j¥'df - oo < t < oo (Equation 17) 
- c o 
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For discrete time-series x(n), the discrete-time Fourier Transform is used: 

X(ejm) = ^x(n)e-ja" (Equation 18) 

The inverse transform is: 

1 ** 
x(t) = — \X{ejm)ejmdm (Equation 19) 

2n 

An equivalent definition of PSD is the squared modulus of the Fourier transform 

of the time series scaled by a proper constant term. Since this is power per unit of 

frequency, the dimensions are those of a power divided by Hertz. 

In order to apply the PSD to determine the airplane design loads due to 

turbulence, some assumptions must be made: 

- The airplane is described as a linear system, 

The turbulence is stationary. 
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2.5 NEURAL NETWORKS FUNDAMENTALS 

Neural Networks represent an attempt to imitate the human brain and simulate 

what goes through nervous systems, with the hope of capturing some of the computing 

power of these biological systems. Whereas a computer is simply programmed to execute 

instructions written by a programmer, the human nervous system, due to its billions of 

interconnected cells, can perform some computations without the benefit of a 

programmer. 

Neural computing, in general, builds models based on historical data. It is 

applicable in any situation where there is an unknown relationship between a set of input 

factors and an outcome, and for which a representative set of historical examples of this 

unknown mapping is available. The objective of building a model is to find a formula or 

a program that facilitates predicting the outcome from the input factors. 

An artificial neural network is information processing that has certain 

performance characteristics in common with biological neural networks and consequently 

has the ability to learn through training. Artificial neural networks have been developed 

as generalizations of mathematical models of human cognition or neural biology, based 

on the assumptions that: 

1) Information processing occurs at many simple elements called neurons, 

2) Signals are passed between neurons over connection links, 

3) Each connection link has an associated weight, which, in a typical neural net, 

multiplies the signal transmitted, 

4) Each neuron applies an activation function (usually nonlinear) to its net input 

(sum of weighted input signals) to determine its output signal. 
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A neural network is characterized by: 

- The arrangement of neurons into layers and the connection patterns 

within and between layers (architecture), 

- Its method of determining the weights on the connections (training, or 

learning, or algorithm) and 

An activation function. 

What makes a network useful in the analysis of complex systems is the ability to 

modify its connectivity through experience. There are three types of modifications to a 

network: 

- The development of new connections, 

The loss of existing connections and 

- The modifications of the strengths of connections that already exist in 

the network. 

2.5.1 NEURAL NETWORKS DESCRIPTION 

A Neural Network (NN) consists of a large number of simple processing elements 

called neurons, units, cells, or nodes. There are three types of processing units in a neural 

network model: 

- The input units which receive data from sources external to the model, 

- One or more layers of hidden units which are internal to the model 

only, 

One or more output units which send signals out of the model to 

influence other external systems. 

Each neuron is connected to other neurons by means of directed communication 

links, each with an associated weight. The weights represent information being used by 

the net to solve a problem. A neuron has an internal state, called its activation or activity 

level, that is a function of the inputs it has received. Typically, a neuron sends its 
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activation signal to several other neurons. It is important to note that a neuron can send 

only one signal at a time, but that signal is broadcast to several other neurons. Each 

neuron first calculates a weighted sum of the input signals, then applies a transfer 

function to this sum and outputs the result (Figure 6). Transfer functions are generally 

nonlinear. Nonlinear functions are required to achieve the advantages of multi-layer nets. 

The following drawing represents the basic architecture of a processing element (PE). 

Weight W, ^ 
• 

I = I (W,*Xi) ^ 
w 

F(I) fe 
w 

Summation Transtert Function 

Figure 6. Representation of a Processing Element 
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Neurons are arranged in layers. Neurons in the same layer behave in the same 

manner. Within each layer, neurons usually have the same activation function and the 

same pattern of connections to other neurons. To be more specific, in many NN, the 

neurons within a layer are either fully interconnected or not interconnected at all. 

Neural nets are often classified as single layer or multi-layer. There are typically 

two layers with connections to the outside world: an input buffer where data is presented 

to the network, and an output buffer which holds the response of the network to a given 

input. Layers distinct from the input and output buffers are called hidden layers (Figure 

7). A single-layer net has one layer (or level) of connection weights. A multi-layer net is 

a net with one or more layers of nodes (the so-called hidden units) between the units and 

the output units. Typically, there is a layer of weights between two adjacent levels of 

units (input, hidden, or output). Multi-layer nets can solve more complicated problems 

than can single-layer nets, but training may be more difficult. However, in some cases, 

training may be more successful because it is possible to solve a problem that a single-

layer net cannot be trained to perform correctly at all. 
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Figure 7. Architecture of a Network 
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There are a number of procedures for training a network and adjusting the 

weights. Many learning algorithms have been derived over the last two decades. In 

choosing a learning algorithm for a system, we must realize the function that we want to 

specify is initially unknown to us because of the myriad possible fault situations. We can 

impose an unspecific function on the network as long as we can supply a set of examples 

of the desired input/output pairs. The network is then trained until it performs the input to 

output transformation desired. 

2.5.2 NETWORK OPERATION 

There are two main phases in the operation of a network: learning and recall. In 

most networks, these are distinct. 

Learning is the process of adapting or modifying the connection weights in 

response to stimuli being presented at the input buffer and optionally the output buffer. A 

stimulus presented at the output buffer corresponds to a desired response to a given input; 

a knowledgeable 'teacher' must provide this desired response. In such a case, the learning 

is referred to as "supervised learning". If the desired output is different from the input, 

the trained network is referred to as a hetero-associative network. If, for all training 

examples, the desired output vector is equal to the input vector, the trained network is 

called auto-associative. If ho desired output is shown, the learning is called unsupervised 

learning. A third kind of learning, falling between supervised and unsupervised learning, 

is reinforcement learning where an external teacher indicates only whether the response 

to an input is good or bad. In some instances, the network may only be graded after the 

network has processed several inputs. Whatever kind of learning is used, an essential 

characteristic of any network is its learning rule. The learning rule specifies how weights 

adapt in response to a learning example. Learning may require showing a network many 

examples, many thousands of times, or only once. The parameters governing a learning 

rule may change over time as the network progresses in its learning. The long-term 

control of the learning parameters is referred to as a learning schedule. 
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Recall refers to how the network processes a stimulus presented at its input buffer 

and creates a response at the output buffer. Often a recall is an integral part of the 

learning process such as when a desired response of the network must be compared to the 

actual output of the network to create an error signal. The simplest form of a network has 

no feedback connections from one layer to another or to itself. Such a network is called a 

"feed-forward network". In this case, information is passed from the input buffer, through 

intermediate layers to the output layer, in a straightforward manner, using the summation 

and transfer function characteristics of the particular network. In some feed-forward 

networks, a certain amount of feedback is used to create time-sensitivity in the network. 

These are called recurrent networks or "feedback networks". 

2.5.3 BACK-PROPAGATION NETWORK 

For a prediction problem, back-propagation network seems to be the best choice. 

As it is the case with most NN, the aim is to train the network to achieve a balance 

between the ability to respond correctly to the input patterns that are used for training 

(memorization) and the ability to give reasonable (good) responses to input that is 

similar, but not identical, to that used in training (generalization). Back-propagation 

assumes that all processing elements and connections are somewhat to blame for an 

erroneous response. Responsibility for the error is affixed by propagating the output error 

backward through the connections to the previous layer. This process is repeated until the 

input layer is reached. The name "back-propagation" (or generalized delta rule) derives 

from this method of distributing the blame for errors. 

The training of a network by back-propagation involves three stages: 

- The feed-forward of the input training pattern, 

- The calculation and backpropagation of the associated error, 

The adjustment of the weights. 
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After training, application of the network involves only the computations of the 

feed-forward phase. Even if training is slow, a trained net can produce its output very 

rapidly. 

2.5.3.a Architecture: 

The typical back-propagation network (see Figure 6) always consists of: 

- Input layer (denoted "X"), 

- Output layer (denoted "Y") and 

- Hidden layer (denoted "H"). 

The number of hidden layers is not limited but typically there will be one or two. 

Each layer is fully connected to the succeeding layer. The arrows indicate flow of 

information during recall. During learning, information is also propagated back through 

the network and used to update the connection weights. The weights of the connections 

between the input and the hidden layer are denoted by "v" and "w" for those between the 

hidden and the output layer. 
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Inputs 

Input Layer 

Hidden Layer 

Output Layer 

Figure 8. Three-Layer Back Propagation Neural Network 

2.5.3.b Choices 

Before creating a back-propagation network, some choices have to be made in 

order to improve the quality of the net. 

• Number of Inputs: 

The input layer must have the same number of processing elements than the 

number of inputs. 
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• Choice of Initial Weights: 

The choice of the initial weights will influence whether the net reaches a global 

(or only a local) minimum of the error and, if so, how quickly it converges. The values 

for the initial weights must not be too large, or the initial input signals to each hidden or 

output unit will be likely to fall in the region where the derivative of the transfer function 

has a very small value (the so-called saturation region). On the other hand, if the initial 

weights are too small, the net input to a hidden or output unit will be close to zero, which 

also causes extremely slow learning. A common procedure is to initialize the weights to 

random values between -0.5 and 0.5 (or between -1 and 1 or some other suitable interval). 

• Data Representation: 

If input vectors and output vectors have components in the same range of values, 

because one factor in the weight correction expression is the activation of the lower unit, 

units whose activations are zero will not learn. Therefore, learning can be improved if the 

input is represented in bipolar form and the hyperbolic tangent is used for the activation 

function. 

• Number of Hidden Layers and Number of Neurons: 

Up to three hidden layers can be chosen. A linear problem requires only one 

hidden layer whereas more complex problems need more. One hidden layer is sufficient 

for a back-propagation network to approximate any continuous mapping from the input 

patterns to the output patterns to an arbitrary degree of accuracy. However, two hidden 

layers make training easier in some situations. 
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The number of neurons in the hidden layer is much more difficult to establish; it is 

found by trial and error. An arbitrary number of neurons is chosen until the maximum 

one is found after analysis of the results. 

• Number of Training Pairs: 

The question to be answered is "Under what circumstances can I be assured that a 

net which is trained to predict correctly a given percentage of the training patterns will 

also predict testing patterns drawn from the same sample space?" The answer is that if 

the training set contains a very large pattern of possible values of inputs and outputs and 

that they appear in the same proportion as in the testing set, then the network will be able 

to generalize as desired (predict unknown testing patterns correctly). For prediction 

problems, like the one addressed here, there is no rule available to determine this number 

of training patterns. Therefore, some trial and error is required, remembering that if the 

training fails, the number of training pairs must be increase. 

• Number of Outputs: 

For the output layer, the number of neurons is the same than the number of 

predicted variables for a prediction problem. In the case of a classification problem, the 

number of neurons must be equal to the number of classification. 

• Training Duration: 

Since the mean motivation for applying a back-propagation net is to achieve a 

balance between memorization and generalization, it is not necessarily advantageous to 

continue training until the total squared error actually reaches a minimum. A current 

approach is to use two sets of data during training: a set of training patterns and a set of 
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testing patterns. These two sets must be disjoint. Weight adjustments are based on the 

training patterns; however, at intervals during training, the error is computed using the 

testing set. Training is terminated when the error for the testing patterns starts to increase; 

the net is beginning to memorize the training set too specifically (loss of its ability to 

generalize). 

2.5.3.c Learning Algorithm: 

Let us suppose a processing element in layer h: 

Xi 

Figure 9. A Single Neural Network Processing Element in Layer h 

with: 

Xj — (Xi, X2,...,Xi,...,Xn) 

Ijh ^^W^X, : Summation 

Fjh =/Iih): Transfer 

(Equation 20) 

(Equation 21) 
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In this figure: 

- Yjh is the current output of neuron j in layer h 

- Wyh is the connection weight between neuron i and layer (h-1) and the 

neuron j in layer h 

- Ijh is the weighted sum of inputs to neuron j in layer h 

The function / i s a transfer function (or activation function); it can be linear, non

linear or a sigmoid. For sigmoid, it is given by: 

f(z) = — (Equation 22) 
\ + e r 

For each processing element in the output layer, the scaled local error 8k is 

calculated as: 

ek = (tk - ok ).f (lk) (Equation 23) 

The raw local error is given by: (tk -ok) (Equation 24) 

and the Delta Weight by: AW J = TJSJXI , (Equation 25) 

where 8j is the term used to back-propagate errors in the hidden layer, and r\ is the 

learning coefficient. The 5j term is given by: 

8) - f\ih,)Yu5^WT (Equation26) 
k 

In the previous equation, there is a layer above h, therefore, this equation can only 

be used for non-outputs layers. 

I f / i s the sigmoid function, then its derivative can be expressed as a simple 

function of itself as follows: 

/ ' ( z ) =/(z).(l-/(z)) (Equation 27) 
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Therefore, the 8j term becomes: 

8) = X \ (l - X) )X S[h+X)Wkj
 + (Equation 28) 

k 

provided the transfer function is a sigmoid. 

If for an input /, the desired output vector is /, and the actual output vector 

produced by the network is o, then the global error E is calculated as: 

E=It,(tk-oky) (Equation29) 
,*=l 

where M is the number of output nodes present in the network. The learning procedure 

for a standard back-propagation model can now be summarized as follows: 

(i) Present an input vector I to the input layer 

(ii) Calculate the summation value I using equation (20) 

(iii) Calculate the output value F using equation (21) 

(iv) For each node in the output layer calculate the local errors and the delta 

weights using equations (22) and (26) 

(v) For each node in the hidden layer calculate the local errors and the delta 

weights using equations (22) and (26) 

(vi) Finally, update all weights in the network by adding the current delta 

weights to the previous weights 

The process of forward feeding the input and back-propagating the error continues 

until the error at the output node is zero or is within an acceptable range. At this point the 

network is said to be converged. The converged network is used to predict the 

empennage in-flight loads due to gust of a General Aviation aircraft. 
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A transfer function is the component of a processing element through which the 

sum is passed (transformed) to create net output. For a back-propagation network the 

activation function should have several important characteristics: 

- Continuous 

- Differentiate 

Monotonically non-decreasing 

Furthermore, for computational efficiency, it is desirable that its derivative be 

easy to compute. Instead of the sigmoid function, any smooth function can be used as the 

transfer function for a processing element. The hyperbolic tangent and the sine function 

are an alternative. The hyperbolic tangent function is just a bipolar version of the sigmoid 

function: the sigmoid is a smooth version of a [0,1] step function whereas the hyperbolic 

tangent is a smooth version of a [-1,1] step function. 
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CHAPTER 3 

FLIGHT TESTING 

3.1 EXPERIMENTAL APPARATUS 

Sets of data containing gust in sufficient quantity are needed for the purpose of the 

study. Data were collected during flight tests aboard the Embry-Riddle Aeronautical 

University test aircraft Cessna 172P. The flight test parameters were collected using an 

IOTech DaqBook 216 portable data acquisition system. 

3.1.1 SENSORS AND ACCELEROMETERS 

The aircraft is equipped with sensors and accelerometers to collect data (Table 1). 

Among those is an air data transducer (or digital air data system), which provides 

information about total temperature, density altitude, pressure altitude, static air 

temperature, vertical speed, computed airspeed and true airspeed. This system is 

completely independent from the aircraft's navigational system, deriving data from a 

pressure transducer assembly and a temperature probe. 
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Table 1 

Instruments Installed on-board the Testbed C-172 

Type Qty 

Air Data Transducer 

Linear Accelerometer 

Rate Gyroscope 

Angular Accelerometer 

Instrumentation Boom 

Portable Computer 

Portable Data 

Acquisition System 

Strain Sensors 

1 

4 

J 

1 

1 

1 

6 

Model 

Unknown 

Columbia Research SA-

107BHP 

Gyrostar ENV-05H-02 

Shaevitz, Inc. 

Unknown 

PC 

Daqbook216 

Columbia Research 

Model 2681 

Manufacturer 

Unknown 

Columbia Research 

Laboratories. Inc. 

Murata Mfg. Co. 

Ltd. 

Shaevitz. Inc. 

E.R.A.U. Student 

Toshiba 

IOTech, Inc. 

Columbia Research 

Laboratories, Inc. 

Price 

$2,000 

$300 

$1,700 

One of the objectives of this research is to determine the minimum set of 

instruments needed to analyze gust loads. Consequently, not all the sensors were needed 

to obtain the results. Just the next one were used: 

Four linear accelerometers, used to measure the acceleration in terms 

of g-loads. Two are installed in the cabin of the aircraft, in the vicinity 

of the aircraft C.G., and the two others are located in the tail, 

Three rate gyroscopes and three angular accelerometers installed in the 

baggage area of the aircraft on a removable instrument pallet and 

Six temperature compensated strain gages mounted on the front spar of 

the horizontal and vertical stabilizer, and on the wing front spar. 



39 

The following figure indicates the location of those different sensors on board the 

aircraft. 

Figure 10. Instrumentation Setup on Board the Aircraft 

The following pictures were taken during the installation of the instruments: 



The accelerometers are placed 

inside the bulkhead 

Figure 11. Tail Accelerometers Location 

Figure 12. Type of Strain Gages Mounted in the 
Aircraft 

Figure 13. Running Wires Through the Back of the Airplane 
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Figure 14. Wires Through the Bulkhead 

Figure 15. Centerline Gages 



3.1-2 DATA COLLECTION 

42 

3.1.2.a Data Acquisition System 

DaqBook is a data acquisition system capable of high-speed multi-function I/O to 

notebook PC's for portable test applications. The Daqbook Unit is directly connected to 

the PC's parallel port and provides a second parallel connector for attaching a parallel 

printer. This acquisition system is powered with a portable battery. The DaqBook 216 

model provides 256 analog inputs and 2 analog outputs and scan 16 digital inputs in the 

same sequence used for analog inputs (Figure 16). The DaqBook model has broad-

ranging software support, two Windows programs: 

DaqView4.2, a set-up and data acquisition package 

PostView, a post-acquisition waveform-display package 

Signal I/O 

PI 

ANALOG MO 

(DAS-16 

Two 12-ttt - to 

12-bit or 16-bit 
100 kHz 
analog to dgHal 
converter 

W a r f o M k " 
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DC-DC 
C0OV6ft8f •7 to 20V 

DC 

Computer I/O 

P4 
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port 

P5 
Pass through 

to parallel 

Figure 16. Daqbook 216 Diagram 
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DaqView 4.2 allows the selection of the desired channels and their gain settings. 

It also permits to stream data to disk and display them in either numerical or graphical 

formats. PostView is a post-acquisition waveform-viewing package, permitting the 

simultaneous viewing of up to 16 channels of acquired data. 

The DaqBook 216 acquisition system was equipped with an IOTech DBK 15 

Universal Current/Voltage Input card and an IOTech DBK43 Eight-Channel Strain Gage 

module. The DBK15 features a 16-channel multiplexer and a programmable gain input 

amplifier. Its component sockets accept resistors that configure each channel for either 

current-to-voltage conversion or for voltage attenuation. The DBK 15 can measure 

voltages up to 200 VDC or currents up to 1 AMP by scaling these parameters to the 0-5 

VDC DaqBook input range. Therefore, for the problem addressed here, this card is used 

to collect data from linear and angular accelerometers and rate gyros. The DBK43 eight-

channel strain gage expansion module accommodates the connection of most strain-gages 

types, from single element quarter bridges to 4-element full bridges. The DBK43 also 

includes provisions for bridge completion resistors and provides four adjustments on each 

of its eight channels, including excitation voltage, input gain, offset nulling and output 

scaling. The DBK43's 0 to 5 VDC offset adjustment range and output gain scaling 

nulling of large quiescent loads and expansion of dynamic range for maximum 

resolution. This is an important feature because strain gages typically exhibit pre-load or 

quiescent output, leading to a non-zero output prior to the application of the load to be 

measured. The DBK43's offset adjustments are used to null these pre-load conditions. 

The remaining signal can then be expanded by the DBK43's output scaling amplifiers to 

increase the resolution. Therefore, the DBK43's card is used to collect data from strain 

gages. Connected with the DaqBook data acquisition system, a laptop computer was used 

to record the data during the flight. 
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3.1.2.b Testing Procedure 

The pilot alone could acquire the data. However, safety considerations required a 

second crewmember to be present. Data were acquired at several altitudes, airspeeds and 

engine power settings to capture maximum gust loads without compromising safety. The 

data were recorded only during VFR (Visual Flight Rules) flights. Indeed FAA does not 

permit the usage of electrical devices while operating under IFR (Instrument Flight 

Rules) unless those electrical equipments are FAA certified. This data acquisition 

methodology is applicable to any flight condition and flight envelope. However, for 

safety reasons, the aircraft was flown only at or below its maneuvering speed. 

These data were collected for a time period varying from three to five minutes in 

order to have samples of gust loads in sufficient quantity. Detailed descriptions of the 

data acquisition system and testing procedure can be found in Reference [10]. The data-

sampling rate was set to 200 Hz (for a three minutes flight, 36,000 records were collected 

and for a five minutes flight, 60,000 records). 

Before start recording, the pilot performed some maneuvers (push-pull, rolls, 

constant-rate turns, sideslips, etc.) to check that all channels were correctly connected and 

were fully functional. The data collection was then started manually once the airplane 

was flying in a straight-and-level attitude. The data file was saved in a binary format. 

Several files were recorded during a flight, and flights were flown during several 

days at different geographic locations. 

3.1.2.C Testing Locations 

For this research, several flights have been carried out especially during gusty 

conditions. Most of the flights were local flights in the vicinity of Daytona Beach (DAB), 

Florida. Data showed that the turbulence in this area and other parts of Florida was 

primarily in the z-direction caused by thermals activities. Flights in the southern part of 
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Florida showed similar results. In contrast, flights in the Appalachian Mountain region, 

north of Greenville International airport (GSP), showed that the turbulence was 

predominantly in the y-direction caused by mountain waves from strong horizontal 

surface winds. 
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CHAPTER 4 

POSTPROCESSING OF DATA 

Once the data were recorded, they were converted from binary into ASCII format. 

Prior to using the data to train or to test a network, they were checked for integrity and 

content. The data files must contain gust information in a sufficient quantity to be useful. 

DADiSP was used to verify those files. DADiSP is an interactive graphics worksheet and 

a visually oriented software package for the display, management, analysis and 

presentation of scientific and technical data. DADiSP can be used to edit, filter, and 

process the data. In addition, to confirm the presence of gust (using a modified FAA two 

second gust separation method), a software developed in-house, Fliseg, was also used. 

4.1 DADISP 

Using DADiSP, a Power Spectrum Density (PSD) is constructed to identify gust 

loads. This analysis shows that several noises have been recorded in the same time as the 

gust. Those noises are characteristic of those encountered in a General Aviation airplane. 

According to a study conducted by Howard V.L. Patrick on a two-bladed propeller 

powered Cessna 172 airplane some significant different noises can be distinguished [25 

and 26]. 
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Those noises are: 

The firing frequency: 

Considering a four-stroke engine, each piston fires every two revolutions. 

Depending on the rotational speed of the engine, it results in a fundamental firing 

frequency, f, equal to: 

. 1 Cycles(RPM) 
f= —x— x Number of Blades 
7 4 60 

For example, for a rotational speed of 2400 RPM (Revolution Per Minute) or 40 RPS 

(Revolution Per Second), the fundamental firing frequency will be equal to 20 Hz, i.e. 

half of 40. Moreover, the engine has four cylinders resulting in a primary engine firing 

frequency (EFF) of four times f, equal to 80 Hz. 

The structural resonance frequencies: 

They occur at the harmonics of f, which are at 2f, 3f, 4f, 5f, etc. Higher harmonic 

frequencies are present but they are beyond the range studied. The most intense tone 

occurs at primary engine frequency. The propeller blade passing frequency (BPF) for a 

two-bladed propeller is twice the engine rotational speed, which is in fact identical to 

EFF. Consequently, this identity between BPF and EFF means that tones of both as well 

as multiples obscure each other. 

The Avionics Noise Frequency: 

Previous PSD studies have shown that it occurs around 69 - 70 Hz. 
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Figure 17. Power Spectrum Density Analysis of the CG NZ Signal 

All those preceding features show the necessity to record data at a high RPM 

setting (at least above 2,400 RPM) so that f is not included into the frequency range of 

interest (i.e. below 20 Hz for gust consideration). Then, since during the flights a lot of 

noise induced by the aircraft is recorded with the gust load data, the files must be filtered. 

Indeed, in order to train properly a neural network, one must get rid of all that noise. For 

the previous research, a digital band pass filter had been applied to the real-time collected 

gust data. Another way to do it would consist of considering the frequencies of interest 

once the PSD of the signal has been applied. However this method has to be validated. 

The second solution was adopted for this study for a much less time consuming reason 

and accounting that the PSD had to be calculated anyway. 
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4.2 FLISEG 

4.2,1 THEORY 

Fliseg has been developed and written at ERAU for the purpose of establishing 

Gust Load Spectra for General Aviation aircraft using a modified FAA two-second rule 

method. Presently, only wing loading spectra have been published and are available in 

Report No. AFS-120-73-2, "Fatigue Evaluation of Wing and Associated Structure on 

Small Airplanes" [1]. ACE-100, "Fatigue Evaluation of Empennage, Forward Wing, and 

Winglets/Tip Fins on Part 23 Airplanes" [2] provides an accepted method for estimating 

the fatigue life of empennage structures based on AFS-120 normal acceleration data, but 

this method is yet to be substantiated. These data are central to considering the "safe-life" 

or "fail-safe" concepts. 

Fliseg calculates the acceleration fraction 
\GnLLF J 

The cumulative number of 

occurrences of each value of the acceleration fraction is also plotted either per unit of 

time or per nautical miles. Initially, this program was written to derive the gust 

exceedance curves from data downloaded from the cumulative fatigue data recorder 

installed on Embry-Riddle Aeronautical University fleet airplanes. According to previous 

research it has been determined that a gust appears to occur above 2 Hz, depending on the 

airplane. This result allows the identification of the gust-induced loads from the 

maneuver loads. This is based on the acceleration near the CG. only. The acceleration 

f „ \ 
fraction a n 

\ anLLF J 
is the recorded incremental normal limit load factor (airplane limit load 

factor minus lg). The airplane limit gust load factor is determined using the appropriate 

certification regulation (F.A.R. Part. 23). 



Those values are: 
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- For a utility aircraft: 

• -1.76 g for the negative load factors 

• +4.4 g for the positive load factors 

- For a normal aircraft: 

• -1.52 g for the negative load factors 

• +3.8 g for the positive load factors 

This acceleration fraction, 
1 « . ^ 

V anLLF J 

, relates both the recorded gust accelerations to 

the airplane limit gust load factor and the recorded maneuver accelerations to the 

airplane's limit maneuver load factor. Consequently when the aircraft is in level flight, 

the acceleration equals zero. An acceleration fraction of 1 or greater indicates that the 

limit gust load factor has been reached or exceeded. Using this fraction results in the 

possibility of comparing the data for airplanes of different design limit gust load factors. 

The limit gust load factor is determined from the certification regulation but 

Amendment 23-7 in Section 23.341 of the FAR is used to calculate anLLF- The 

incremental gust limit load factor calculation is based on the following equations: 

KxUxVxm anixF = 7 x—— (Equation 30) 
f^xl .689x^ 

Where: 

U = the nominal gust velocity 

V = the airplane design cruise speed 

m = the wing lift curve slope 

po = the density at Sea-Level, i.e. 0.0023769 slugs/ft3 
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W 2 

— = the wing loading at maximum weight (lb/ft ) 

K = has two different values depending on the value of the wing loading: 

i 

w i fwV 
If —<\6psf ,K=-x\— (Equation 31) 

? fn 
Otherwise, K= 1.33 :—- (Equation 32) 

rW\* 

s 

At a given point of the flight, the normal acceleration is equal to (nz-l); the 

acceleration fraction can therefore be determined since the value of the load factor (nz) 

recorded at the CG. is known. 

4.2.2 EXCEEDANCE CURVES PLOT - CYCLE COUNTING 

As shown above, the value of the acceleration fraction is determined for each 

recorded point of the flight quite easily. From there, different methods of cycle counting 

may be used to determine the number of occurrences of the normal acceleration fraction 

during a given flight. A standard way of counting described in ASTM Standards, Cycle 

Counting in Fatigue Analysis - Designation E 1049-85 [28], is used. Three different 

methods are offered: Level-Crossing Counting, Peak Counting and Simple-Range 

Counting. The method used is the peak counting. It identifies the occurrence of a relative 

maximum or minimum load value. Peaks above the reference load level are counted, and 

valleys below the reference load level are counted. The results for peaks and valleys are 

usually reported separately. The FAA uses this counting method. 
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4.2.3 FLISEG METHODOLOGY FOR GUST DISCRIMINATION 

In order to process the real-time data with Fliseg and ensure that gust is present in 

a sufficient quantity, the frequency threshold in order to discriminate gusts and 

maneuvers is set to 2 Hz, meaning that if a change in CG occurs below 2 Hz, this part of 

the flight is considered as maneuvers (pilot response or pilot control/maneuver). And for 

the part of the flight where a change in CG occurs in more than 2 Hz, it is considered as 

gusts. Then, the program discriminates the flight into two files, maneuver and gust. The 

exceedance curves can be plotted. An analysis of both the acceleration at the CG. and at 

the tail revealed that Fliseg is able to discriminate for either acceleration data. An 

important remark is that the file's result for both the acceleration at the CG. and at the 

tail is nearly the same, meaning that a relation between the acceleration at the CG. and 

the one at the tail can be drawn. However, studies for the Tail PSD's acceleration may 

show some peaks but those one are damped compared to one issued from the CG PSD. 
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4.3 GUST DISCRIMINATION 

First, a study of the time domain data was undertaken. It consisted of comparing 

the data collected during smooth and gusty conditions as well as maneuvering conditions. 

The following figures present data recorded during some smooth, gusty and maneuver 

conditions. The smooth air data were the baseline reference. The time domain data 

allowed the determination of the amplitude for the different channels concerned. The 

most important ones, i.e. the ones that were the most likely of influencing the NN are 

presented below. 

Secondly, the PSD of each channel has been studied. The PSD, primary, permitted 

the determination of the gust amplitude. 

Time domain and PSD data are drawn below in order to show the magnitude of 

the "gust" occurring during the flights. The x-axis is in seconds"1 (or Hertz) and the y-axis 

is in Seconds* Volts2. The maneuver flight consists of push-pulls and rolls. 



4.3.1 SMOOTH AIR TIME DOMAIN DATA 
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Figure 18. Smooth Air Horizontal Tail Strain Gage Time Domain 

Figure 19. Smooth Air CG NZ Accelerometer Time Domain 
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Figure 20. Smooth Air Horizontal Tail Accelerometer Time Domain 

Figure 21. Smooth Air Vertical Tail Strain Gage Time Domain 
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Figure 22. Smooth Air CG NY Accelerometer Time Domain 

Figure 23. Smooth Air Vertical Tail Accelerometer Time Domain 



4.3.2 SMOOTH AIR PSD DATA 
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Figure 24. Smooth Air Horizontal Tail Strain Gage PSD 

Figure 25. Smooth Air CG NZ Accelerometer PSD 
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Figure 26. Smooth Air Horizontal Tail Accelerometer PSD 

Figure 27. Smooth Air Vertical Tail Strain Gage PSD 



59 

Figure 28. Smooth Air CG NY Accelerometer PSD 

Figure 29. Smooth Air Vertical Tail Accelerometer PSD 
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4.3.3 TIME DOMAIN FOR GUSTY CONDITIONS IN THE Z-DIRECTION (VERTICAL 

GUST) 

Figure 30. Z-Gust Horizontal Tail Strain Gage Time Domain 

Figure 31. Z-Gust CG NZ Accelerometer Time Domain 
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Figure 32. Z-Gust Horizontal Tail Accelerometer Time Domain 

Figure 33. Z-Gust Vertical Tail Strain Gage Time Domain 
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Figure 34. Z-Gust CG NY Accelerometer Time Domain 

Figure 35. Z-Gust Vertical Tail Accelerometer Time Domain 
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4.3.4 PSD FOR GUSTY CONDITIONS IN THE Z-DIRECTION (VERTICAL GUST) 

Figure 36. Z-Gust Horizontal Tail Strain Gage PSD 

Figure 37. Z-Gust CG NZ Accelerometer PSD 
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Figure 38. Z-Gust Horizontal Tail Accelerometer PSD 

Figure 39. Z-Gust Vertical Tail Strain Gage PSD 
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Figure 40. Z-Gust CG NY Accelerometer PSD 

Figure 41. Z-Gust Vertical Tail Accelerometer PSD 
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4.3.5 TIME DOMAIN FOR GUSTY CONDITIONS IN THE Y-DIRECTION (LATERAL 

GUST) 

Figure 42. Y-Gust Horizontal Tail Strain Gage Time Domain 

Figure 43. Y-Gust CG NZ Accelerometer Time Domain 
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Figure 44. Y-Gust Horizontal Tail Accelerometer Time Domain 

Figure 45. Y-Gust Vertical Tail Strain Gage Time Domain 
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Figure 46. Y-Gust CG NY Accelerometer Time Domain 

Figure 47. Y-Gust Vertical Tail Accelerometer Time Domain 
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4.3.6 PSD FOR GUSTY CONDITIONS IN THE Y-DIRECTION (LATERAL GUST) 

Figure 48. Y-Gust Horizontal Tail Strain Gage PSD 

Figure 49. Y-Gust CG NZ Accelerometer PSD 
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Figure 50. Y-Gust Horizontal Tail Accelerometer PSD 

Figure 51. Y-Gust Vertical Tail Strain Gage PSD 
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Figure 52. Y-Gust CG NY Accelerometer PSD 

Figure 53. Y-Gust Vertical Tail Accelerometer PSD 
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4.3.7 TIME DOMAIN FOR MANEUVER DATA 

Figure 54. Maneuver Horizontal Tail Strain Gage Time Domain 

Figure 55. Maneuver CG NZ Accelerometer Time Domain 
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Figure 56. Maneuver Horizontal Tail Accelerometer Time Domain 

Figure 57. Maneuver Vertical Tail Strain Gage Time Domain 



Figure 58. Maneuver CG NY Accelerometer Time Domain 

Figure 59. Maneuver Vertical Tail Accelerometer Time Domain 



4.3.8 PSD FOR MANEUVER DATA 
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Figure 60. Maneuver Horizontal Tail Strain Gage PSD 

Figure 61. Maneuver CG NZ Accelerometer PSD 
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Figure 62. Maneuver Horizontal Tail Accelerometer PSD 
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Figure 63. Maneuver Vertical Tail Strain Gage PSD 
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Figure 64. Maneuver CG NY Accelerometer PSD 

Figure 65. Maneuver Vertical Tail Accelerometer PSD 
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The research for gust was not limited to the above figures only. Many other PSD 

analyses were accomplished. Both gust in the z- and y- directions were studied. 

4.3.9 GUST MAIN FREQUENCY RANGE 

The PSD figures for the smooth air tend to be linear, with no particular 

fluctuations (except for the peaks characteristic of noise as stated earlier in this research). 

The gusty conditions, however, reveal some peaks located between 4 and 18 Hz, 

especially around 10 Hz. Without any doubt, and remembering the fact that the data were 

gathered during very gusty conditions, it can be said that those peaks are representative of 

gust. 

4.3.9.a In the z-direction (Vertical Gust) 

The above figures characteristic of turbulence in the z-direction (due to thermals) 

demonstrate the presence of gust around 8 to 10 Hz. This is much more noticeable on the 

CG NZ PSD signals. Indeed, a "Gaussian shape", typical of gust, is clearly identifiable on 

the recorded CG NZ signal (figure 37), but is not as clearly apparent on the strain gage 

signal and horizontal Tail accelerometers and (figure 36 and 38). In the meantime, studies 

of the PSD for the y-channels (CG NY, Vertical Tail and Vertical Tail Strain gages) 

depict some peaks located between 7 and 8 Hz. Those peaks may be considered carefully 

since gust was recorded in Florida (z-direction). However, it may have been some 

structural resonance frequencies of the airplane. 

4.3.9.b In the y-direction (Lateral Gust) 

This previously stated frequency range is similar for gust in the y-direction. It 

confirms the hypothesis that gust is present within that range. Similarly, even if gust is 

recorded for one particular turbulence condition (y- for that case), some peaks are 

however noticeable on the z-direction, confirming the isotropy of a gust. 
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The "feeding" of the neural network requires that only the frequencies of interest 

be selected. Consequently, some macros were written in Visual Basic to facilitate this 

process. Those macros enabled a frequency cut-off (or a frequency band-pass cut). To 

ensure that the entire gust frequency range was selected, the band-pass frequency was 

initially set to 2-20 Hz. But, the lower limit was raised to 5 Hz due to some unexplained 

"noise" that can be seen on the figures of interest. And since it was initially thought that 

the gust may excite the first structural resonance and that this frequency may be included 

in the band pass used to predict the gust induced loads, the upper limit of the band pass 

frequency was lowered from 20 to 15 Hz. Moreover, on the CG NY PSD signal for z-gust 

conditions, the Blade Passage Frequency can be noticed around 21 Hz (for 2520 RPM), 

but another peak is clearly identifiable near 15 Hz (figure 40). This peak is also present 

on all other PSD channels relative to the y-direction. After a thorough study, it has been 

concluded that this peak is not induced by either gust or maneuver. It is most likely due to 

aircraft structural excitations. The fact that this peak is not present on the z-direction 

channels allowed us to think that it might come from spiraling slipstream (asymmetric 

buffet) induced by the propeller that envelops the entire aircraft and hits the left side of 

the vertical empennage. Nevertheless, this hypothesis needs to be validated but is beyond 

the scope of the current work. 

Finally, the frequency range of interest was set to 5 - 15 Hz in order to get rid of 

the noise and for better predictions. 
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CHAPTER 5 

NEURAL NETWORKS PROCEDURE 

5.1 CHOICE OF THE NEURAL NETWORKS 

The previous research, conducted for the prediction of loads induced by 

maneuvers, suggested that two different neural networks should be used for accurate 

predictions. In other words, one network for the horizontal tail and another one for the 

vertical tail were necessary to predict strains in the empennage structures. Consequently, 

the same procedure will be conducted for the prediction of gust loads in the vertical and 

horizontal tails 

The decomposition in two neural networks required a separation between the 

signals collected. The first set contained the signals that were used in the prediction of the 

strain in the vertical tail while the second set included the signals used in the prediction of 

the strain in the horizontal tail. It was initially decided to train and test NN with the PSD 

files and depending on the accuracy of the results, i.e., the correlation, the usage of the 

time domain would be considered. The PSD analysis of the angular accelerometers was 

much clearer than the one for the rate gyroscopes, i.e. a gust peak was much more 

noticeable and the channel was much less noisy. Consequently, for the feeding of the NN, 

the angular accelerometer values (pitch, roll and yaw) would serve to 'feed' the network. 

If successful, rate gyro signals would be differentiated to obtain accelerations (actually 

angular accelerometers are expensive, not easy to install and Pechaud has already 

demonstrated the feasibility of this technique, as well as its advantages). 
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The following PSD signals were used as inputs for the prediction of the strains in 

the vertical tail: 

• Frequency, 

• CGNY, 

• Tail NY 

• Pitch Angular Acceleration 

• Roll Angular Acceleration 

• Yaw Angular Acceleration 

Similarly, the same quantities were used for the strains' prediction in the 

horizontal tail: 

• Frequency, 

• CGNZ, 

• TailNZ 

• Pitch Angular Acceleration 

• Roll Angular Acceleration 

• Yaw Angular Acceleration 

The output signals were, respectively, the Vertical Tail Strain Gages and the 

Horizontal Strain Gages. Special care was taken to ensure that the full range of measured 

strains was represented within the training files, so that, the networks were able to well 

predict the testing files. 

A second set of NN tests were performed, but this time using the time domain 

data. These values were initially filtered with a bandpass filter using DADiSP. The inputs 

for the NN were the same as the one mentioned previously but without the frequency. 

The choice of a neural network type was driven by the fact that the relationship 

between the kinematical variables and the strains was unknown. 
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5.2 NEURAL NETWORKS SETUP 

Neural Works Professional 11+ (NW2) version 5.20 software was used for this 

research. This program could automatically generate a modular neural network from the 

specified parameters. For each 'bump' (or gust file) a file with seven (7) columns, six (6) 

for input and one (1) for the output, was defined to feed the NN. These files were built 

from the single channel PSD files obtained previously. Neural Networks Architecture 

requires a special configuration so that it will be able to identify the inputs and desired 

outputs (measured data). To avoid saturation of the Processing Elements (PE) the input 

data were scaled between some given values depending on the Transfer Function. In the 

case of back propagation applications, the hyperbolic tangent (TanH) function was 

recommended. Consequently, TanH was used in the following part of this research, but it 

required the data to be scaled between -1 and 1. NW2 offers the possibility to scale 

automatically the data using the min-max table. This function was tested in previous 

research but appeared unsatisfactory since it was normalizing each column 

independently. Indeed, if normalization is conducted in this manner, the relative effect of 

the data is then changed. This would have lead to inappropriate results in term of flight 

dynamics. 

It had been initially decided to study signals within the 5 - 15 Hz range. This 

interval selection was appropriate considering that gust loads seemed to be located 

around that range. 

For the first part of this study, the input data-files did not have to be normalized 

since the PSD's between 5 and 15 Hz were already distributed between -1 and 1 (actually 

between 0 and 1 the PSD's being positive). 
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5.2.1 NEURAL NETWORKS PARAMETERS 

The number of input layer neurons was initially set to 6. Further trials were 

needed to determine the minimum set of inputs required to accurately predict the strains. 

The number of neurons in the hidden layers was arbitrarily set to 5. However, most back 

propagation networks will have one or two layers. It has been decided to start with one 

hidden layer. A dichotomy method was used to define the best number of PE's when the 

performances start declining. 

The Extended Delta-Bar-Delta (EDBD) learning rule was selected. This learning 

rule consists of a weight update rule and a learning rate update rule minimizing the 

convergence time. It automatically selects and adjusts the learning coefficient, coefficient 

ratio, the learning coefficient transition and the momentum term. 

The epoch was set to 15 for the horizontal tail and 20 for the vertical tail (number 

based on previous research). Epoch is the number of sets of training data presented to the 

network (learning cycle) between weight updates. If the epoch checked box is selected, 

values gathered by the probe are combined across the probe component and over the 

number of cycles set by the epoch. 

The F'offset has been set to 0.3 for a TANH activation function, as suggested by 

the Neural Works User's Guide and by previous research [17]. This value is a constant 

added to the value of the derivative of the neuron activation function (TANH for our 

case) during training in order to prevent neuron saturation. 
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• Monitoring instruments: 

The root mean square error criterion calculates the RMS error between the target 

outputs. It adds up the squares of the errors for each node in the output layer, divides by 

the number of nodes in the output layer to obtain an average, and then takes the square 

root of that average. The confusion matrix is the square matrix whose rows and columns 

represent the sub-range for the target and model outputs respectively. The idea is to 

develop a network with a value of 1 on the diagonal running from lower left to upper 

right, and 0 elsewhere. 
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CHAPTER 6 

ANALYSIS OF RESULTS 

6.1 PRELIMINARIES 

The ideal networks would allow the prediction of gust loads with very good 

accuracy. However, "accuracy" must be defined in term of structural analysis. The main 

idea of this research was to determine the stresses on the empennage due to the 

accelerations (linear and angular) at a remote location such as the C.G.. This chapter 

states the criteria used to evaluate such predictions. Then the results obtained with NN 

are presented and analyzed. 

6.1.1 INSIGNIFICANT STRESS REGION AND TOLERANCE BAND 

The insignificant stress region is defined as the stress domain at which a material 

can withstand up to 107 cycles (for a given stress ratio) of stress reversal (repetition of 

loads or stresses or strains) without any failure. If any failure occurs after 107 cycles, the 

stress would then be considered as fatigue-stress (i.e. the stress causing fatigue). 

Empennage structures of the C-172 airplane are fabricated with 2024-T3 aluminum. 

Accordingly, based on the S-N curves (alternating or maximum stress versus number of 

cycles to failure) shown in figure 66, all stresses (or strains) lower than or equal to 1,000 

p.s.i. (or 100 |ue, since a (p.s.i.)=E.e, with E=10 (106)p.s.i.) are considered to be 

insignificant. Actually, the value of the minimum stress that causes fatigue damage is 
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5,000 p.s.i. for a full stress reversal [28]. However, since the strain gages are not located 

where the stresses are maximum and because the aircraft was not flown during extreme 

gust conditions (for safety reasons), a lower value of 1,000 p.s.i. (or 100 |LIS) was chosen 

as the threshold value. 

A second prediction criterion must be defined for the expected accuracy of the 

gust load predictions. The loads should be predicted at least within the tolerance of the 

2024-T3 aluminum S-N curves since this data is used to evaluate the fatigue life of the 

horizontal and vertical tails (figure 66). The S-N curve of an AL2024-T3 Aluminum 

sheet is presented in figure 66. According to the MILITARY-HANDBOOK-5E [28], the 

S-N curves are plotted within 1,000 p.s.i. (or 100 (is), therefore a tolerance band of ± 500 

p.s.i. (or 50 (is) was selected. Figure 67 presents the tolerance band and insignificant 

region based on the criteria. 

10» 1 * 10» io» 

Fatigue life, cycles 

Figure 66. S-N Curve of an AL2024-T3 Aluminum Sheet [28] 
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Figure 67. Tolerance Band and Insignificant Region 

6.1.2 STRAIN AND STRESS CALCULATIONS 

As previously mentioned, Daqbook was used to measure and record the flight 

parameters in volts. But in order to compare the predicted and measured strains together, 

one must first be able to calculate the different strains that are acting on the empennage. 

A conversion factor must then be applied to the data recorded from the strain gages. The 

gages have the following conversion factor: 

(10.25 mV / V) / 1000 => 97.560976 \xs I mV 

For example, for an input of 1 V, the output will be equal to 10.25 mV or 1000 

(as. 

The conversion factor to apply is the following: 

x{ ]=Vinp«l(Volls)*97.560976<»e) 
w \0'(Volls) 
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But, the gain added by the data acquisition system between the inputs and the 

outputs must also be taken into account, they are: 

- Gain for HT: 1430 (From Input in mV to Output in mV) 

- Gain for VT: 1782 (From Input in mV to Output in mV) 

In order to compare the magnitude of the gust and consequently the load induced 

on the empennage, the maximum and minimum stress values occurring during a flight 

were computed. Those values belonged to the 5-15 Hz range, accounting that this was the 

only frequency domain of interest for gust occurrence. Those results were not typical or 

just arbitrary. They were carefully considered. They are presented below: 
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Table 2 

Maximum and Minimum Strain in us for Different Flight Conditions 

Smooth Air 

Bump A (z-

direction) 

Bump B (z-

direction) 

Bump C (z-

direction) 

Bump D (y-

direction) 

Bump E (y-

direction) 

Maneuver A 

Maneuver B 

Horizontal Tail Strain 

Maximum 

36 

84 

79 

62 

38 

54 

133 

133 

Minimum 

-102 

-84 

-72 

-76 

-169 

-157 

-160 

-148 

Difference 

138 

168 

151 

138 

207 

211 

293 

281 

Vertical Tail Strain 

Maximum 

20 

47 

43 

37 

75 

26 

66 

61 

Minimum 

-97 

-68 

-55 

-68 

-235 

-140 

-146 

-146 

Difference 

117 

115 

98 

105 

310 

166 

212 

213 

The smooth air data have been recorded in October while flying in very smooth 

air condition in the southern part of Florida. Bumps A, B and C have been gathered in 

Florida during gusty conditions and are mostly in the z-direction certainly due to 

convective activities. Bumps D and E have been recorded in the Appalachian Mountains 

region where most of the gusts encountered were in the y-direction. There were strong 

surface winds over rough terrain. Maneuver A consists of push-pull and rolls whereas 

Maneuver B consists of left/right side-slip, rolls and stabilized g-turns. 
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Those values of stress and strains were very consistent with the type of gust 

encountered. Moreover, a thorough comparison between the loads induced by the 

maneuvers on the horizontal tail and the one induced by gust shows that the ratio between 

both ranged between 0.47 and 0.63 for the maximum values and between 0.45 and 0.52 

for the minimum values. In other words, the airplane was subjected to more stress during 

maneuvers than when it encountered gusts during these flights. 
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6.2 CURRENT RESEARCH RESULTS 

6.2.1 NEURAL NETWORKS TRAINED AND TESTED WITH THE PSD DATA 

6.2.1.a NN First Attempt: EDBD Rule and 5 PE 

A NN was developed for each horizontal and vertical tail. The first attempt 

(consisting of using the EDBD rule) was nearly as expected and confirmed de Poitevin's 

results. The correlation remained low and the RMS error high. Both networks revealed 

poor results. Neither horizontal or vertical tails were satisfactory. However, accounting 

that the gust's amplitude differs between all flights, additional files have been tested 

through the network, but without any further improvement. It has then been hypothesized 

that the too low order of magnitude of the data might have been a reason why. 

6.2J.b NN Second Attempt: Data Rescale 

The data were therefore rescaled. They were multiplied by a corrective factor. A 

multiplication per one hundred (100) was considered but most of the data would have 

been greater than 1, which would have lead to the PE's saturation. Consequently, a 

multiplication factor often (10) was then applied. Unfortunately the results were still 

unsatisfactory because of a too high and constant RMS and a too low correlation 

coefficient. 

6.2.1.C NN Third Attempt: Convergence Criterion Optimization 

Then the convergence criterion has been changed from 0.001 to 0.0001 in order to 

see if a longer training phase would allow the decrease of the RMS and the increase of 

the correlation coefficient. But the RMS error remained around 0.1 even after 50,000 

training samples with a still meaningless correlation coefficient. 
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6.2.1.d NN Fourth Attempt: Change in the Number ofPE 

The next step consisted of increasing the number of Processing Elements (PE), in 

the hidden layer, from 5 to 40. The goal was to apply a dichotomy method to find the best 

number of PE. Still no real improvement was observed. 

6.2. he NN Fifth Attempt: Change in Learning Rule 

Following this failure to predict accurately the strains, a more radical approach 

was taken. The learning rule was changed from EDBD to the Delta Rule. This learning 

rule was chosen since it allows the learning coefficient's adjustment, which is difficult 

with the EDBD rule. This rule permits the minimization of the squares of the difference 

between the net input to the output units and the target values. Moreover, the local error 

is reduced more rapidly by adjusting the weights. With this network, the number of PE's 

was maintained at 40 and the default learning weights were used. A small improvement 

was observed since the RMS error decreased below 0.01 (which is still too high when the 

order of magnitude of the data is considered). The correlation slightly increased but 

stayed below 0.2. One possible reason of this poor prediction could have been the 

saturation of one or several PE's. However, it was found that no saturation was occurring 

during the training of the NN (Contrarily to the EDBD rule, the Delta Rule is not 

influenced by the change of the Epoch number). 

6.2. Lf NN Sixth Attempt: Change in Learning Coefficients 

The last step of this optimization consisted of changing the learning weights. This 

modification was performed as suggested in the Neural Ware manual (UN-55). The main 

idea was to allow the adjustment of the learning weights during the training phase to help 

the convergence and speed it up. The other purpose of the learning weight adjustment 

was to avoid local minimums. 
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This change of the learning weights induced a decrease of the RMS below 0.005 

that is acceptable, but the correlation coefficient still remained well below 1. 

6.2.2 NEURAL NETWORKS TRAINED AND TESTED WITH THE TIME DATA 

The use of the PSD for loads prediction on the empennage still needs to be 

validated. Previous studies have demonstrated that maneuver loads on the empennage 

could be predicted using time domain data and this with very good accuracy [10 + 16]. 

And, since the use of the PSD for loads prediction has not been validated yet, it was 

thought that the low correlation value was a consequence. Therefore, it has been decided 

to check the accuracy of the predictions by using time domain data to feed the network. A 

comparison between PSD results and time domain results would then be possible. 

The same technique used in de Poitevin's research was utilized, i.e. filtering the 

gust data with a band pass filter. The frequency of interest remained unchanged, i.e. the 5 

-15 Hz range. 

Neural Networks did not predict better, but the correlation however increased to 

0.25. 

6.2.3 NEURAL NETWORKS TRAINED WITH THE MANEUVER FILES 

As a result of these poor predictions, training the network with a maneuver file 

was considered. It has indeed been thought that it might improve the correlation. Two 

different methods were followed. 

First, a network was created and trained with the filtered maneuver file's time 

domain. This idea was based on a time domain study revealing that the maneuver loads' 

and gust loads' amplitudes were similar. Indeed, the CG NZ time domain graphs showed 
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that the acceleration data gathered by the accelerometers had nearly the same range of 

voltage, meaning that the load induced by gust might have been as significant as the one 

induced by a maneuver. In the meantime, the study of the stress induced by the 

maneuvers and the gusts (table 2) reinforced that hypothesis, even if the maneuver 

amplitude is slightly larger than the gust one. In order to run the network, and as stated 

previously, the EDBD rule was initially used then the Delta-Bar and finally the learning 

weight coefficient's adjustment. Moreover, different transfer functions were tried in order 

to improve the network. 

The best correlation reached only a low value of 0.31. 

Secondly, the PSD has been considered. The PSD of the maneuver data has been 

computed to permit the training of the network. The same technique used for gust files 

was used (Macros to setup DADiSP files). The net has therefore been tested with the 

gust's PSD. 

Unfortunately, the correlation did not increase. 
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CHAPTER 7 

CONCLUSION AND RECOMMENDATIONS 

7.1 IMPROVEMENT OF THE PREDICTIONS 

The results, though not as good as expected, showed a slight improvement 

compared to Arcaute's and de Poitevin's work. The correlation increased to about 0.31 

even if the RMS remained quite constant and high. 

7.2 LOW CORRELATION EXPLANATION 

Whereas the network was able to predict 93% of the stress induced by a maneuver 

for the horizontal tail and 100% for the vertical one [16], it seemed incomprehensible that 

it could not perform the same computation for gust. Though there was a significant 

presence of gust on the PSD files, i.e. in the 5 - 15 Hz frequency range, it seemed, 

however, that "gust" was much more pronounced on the CG accelerometers than on the 

tail accelerometers or even the strain gages. This fact is really explicit on figures 36 and 

37. In addition, the PSD of the strain gages appeared to be very "noisy" when analyzed 

with DADiSP (figure 35). The time domain signals seemed to be filled with noise too. 

Whenever the strain gage PSD for a maneuver was visualized, the curve trend was clear 
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and representative of the kind of maneuver. But for a gust, no conclusion could be drawn 

with certainty. 

7.2.1 PSD vs. TIME DOMAIN 

One of the objectives of this research was the validation of the use of PSD for gust 

loads prediction. The feasibility of predicting maneuver loads using time domain data had 

already been proved. It was thought that the use of the PSD as inputs for the network 

would help in predicting gust loads. 

Unfortunately, it did not. Trying to use the PSD might have been too ambitious 

and could have been the reason of such poor predictions, even if the cause was unknown. 

Unfortunately, networks fed with time domain data did not improve the correlation nor 

decrease the RMS error. The presence and the magnitude of gust were then questioned. 

Moreover, an important fact was that the maneuver's PSD revealed some peaks 

on all of the y-direction. A sharp shape can be distinguished between 11 and 17 Hz, 

whereas no gusty conditions were encountered during the record of these maneuvers. Of 

course a gust is a very sudden and unpredictable phenomena with a very short lifetime. 

But even if its intensity fluctuates, its frequency range should remain quite constant. That 

is why the PSD was used, to make sure that the magnitude was significant enough. But 

those results were inconsistent with the previous hypothesis that gust was located 

between 5 and 15 Hz. The period at which those maneuvers were experienced did not 

imply turbulence at all. 
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7.2.2 FLISEG DISCRIMINATION 

In the meantime, Fliseg did confirm the fact that gust was present. Based on 

previous theories and research, a correlation should have consequently been found. But 

nothing significant happened. 

Fliseg discriminated the flight between maneuver and gust, with a threshold value 

of 2 Hz. If the threshold was changed to 10 or even 25 Hz, Fliseg found some 'gust'. But 

it was not sufficient enough to be correctly predicted by the network. Perhaps its 

magnitude was not big enough. Referring to table 2 (Maximum and Minimum Stress in 

(is for different flight conditions), it can be noticed that the maneuver induced load is 

much more significant than the gust induced one. As strange as it may appear, this means 

that the airplane was much more subject to stress while performing maneuvers such as 

side-slip, rolls and stabilized g-turns than while encountering gust. 

Actually, the method used in Fliseg for gust discrimination was based on the 

modified FAA two-second rule. This counting method was developed for wing loading 

based on normal acceleration and should be applicable to any airplane. However, it 

appeared that the CI72 airplane damped the oscillations at the empennage, meaning that 

if a gust was encountered at the C.G., the acceleration was damped by the structure 

and/or aircraft rigid body rotation and nothing significant was observed at the tail. A 

bigger airplane should be used for this kind of research to confirm that hypothesis (such 

as a T-Tail). 
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7.3 RECOMMENDATIONS 

This research did not lead to the anticipated results of predicting the load induced 

by a gust, but the findings opened even more questions as to the structural (empennage) 

response of the airplane in turbulence. 

The minimum sets of instruments to be used may however be defined, even 

though the accuracy of the predictions was less than expected. Indeed, it appeared that the 

tail accelerometers were fully needed for the prediction of the loads induced by a gust. If 

its signal was suppressed from the network's inputs, the correlation decreased 

significantly. The angular accelerometers can therefore be suppressed and the derivative 

values of the rate gyroscopes be used. 

Another consideration is that gust might not have been acquired in sufficient 

quantity. The gust conditions might have been too "smooth". More thorough flight-

testing must be accomplish in much more gusty conditions to validate this hypothesis, but 

Embry-Riddle flight operations guidelines make this practically impossible. 

The strain gage channels should be examined more carefully to see if they can be 

isolated better to reduce noise that might negatively affect NN predictions. Moreover, the 

airplane's installation is quite old now and the accuracy of those strain gages should be 

confirmed. The option of using the PSD is still unanswered and needs to be validated. 

However, even though the predictions were unsatisfactory, the slight improvement of the 

correlation still leaves some hope of predicting the stress induced by a gust on the 

aircraft's empennage. 
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