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ABSTRACT 

Writer: Brian William Gaude 

Title: Solving Nonlinear Aeronautical Problems 
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Year: 2001 

Many problems in aeronautics can be described in terms of nonlinear systems of 

equations. Carleman developed a technique to linearize such equations that could lead to 

analytical solutions of nonlinear problems. Nonlinear problems are difficult to solve in 

closed form and therefore the construction of such solutions is usually nontrivial. This 

thesis will apply the Carleman linearization technique to three model problems: a two-

degree-of-freedom (2DOF) ballistic trajectory, Blasius' boundary layer, and Van der 

Pol's equation and evaluate how well the technique can adequately approximate the 

solutions of these ordinary differential equations. 
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CHAPTER I 

INTRODUCTION 

The major objective of this thesis applies and assesses the use of the Carleman 

linearization scheme for the approximation of solutions of nonlinear ordinary differential 

equations (ODEs). This thesis will show that the Carleman linearization technique has 

utility in solving a broad class of nonlinear aeronautical problems and more specifically, 

the nonlinear two-degree-of-freedom ballistic trajectory problem. 

This research project investigated the flight characteristics of objects re-entering 

the earth's atmosphere. The work was initiated by developing a two-degree-of-freedom 

(2DOF) numerical model to study the effects of mass perturbations on the trajectory of a 

reentry vehicle (RV). The simulation of reentry flight paths with 2DOF models required 

the use of several specific models and different physical assumptions of atmospheric re

entry. All of the 2DOF trajectory models had closed form solutions. Unfortunately, 

these simple flight mechanics descriptions are not typical of realistic RV flight mechanics 

problems, which usually have non-trivial reentry angles. No simple analytical solutions 

were found for RV flight mechanics problems with non-trivial reentry angles. Few 

closed form solutions are known because the aerodynamic drag term is a nonlinear 

function, which is proportional to the square of the velocity. Even though analytical 

solutions have been found for some special cases of the nonlinear equations of motion, 

the equations are so complicated that no general closed-form solutions are known. 
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Most engineers studying RV flight mechanics apply numerical methods to 

estimate reentry motion. Numerical methods essentially approximate the behavior of an 

RV over a series of fixed time intervals or cells. The equations of motion are computed 

over the entire length of the trajectory by passing from one time cell to the next. The 

resulting computed trajectories are not exact solutions but only approximations. The 

accuracy of such approximations depends on the size of the time interval or time-step. 

The larger the time-step, the worse the approximation can be, while, the smaller the time-

step the better the approximation may be. 

Computing trajectories using numerical methods is common in flight 

mechanics. Because of the power of the numerical techniques to simulate complicated 

problems, most reentry trajectory models are solved computationally. The down side of 

such numerical models is an over-reliance on the computer and a de-emphasis on the 

underling physics of RV kinematics. The goal of this thesis was to apply an analytical 

method to approximate RV motion, which would hopefully lead to more insight into the 

physics of reentry flight mechanics. This thesis applies the analytical linearization 

method developed by Carleman [9] to approximate solutions of example nonlinear 

problems in aeronautics. To date, the Carleman linearization has not been applied to 

simulate the aeronautics problems considered here. Moreover, the Carleman technique 

has not been applied to concrete examples of inhomogeneous nonlinear problems. In this 

study, the Carleman linearization method is applied to three model aeronautical 

problems: 1) a two-degree-of-freedom problem from flight mechanics, 2) Blasius' 

boundary layer from incompressible flow, and 3) Van der Pol's equation from guidance 

and control. The approximate analytical solutions obtained for these nonlinear problems 
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using the Carleman linearization are then compared with numerical solutions of high 

resolution. 

In this thesis, Chapter II reviews the historical development and relevant literature 

of the Carleman linearization or embedding technique. Chapter III develops the 

Carleman methodology for a system of inhomogeneous ordinary differential equations by 

deriving the Carleman embedding in the context of a two-degree-of-freedom flight 

mechanics problem. Chapter IV applies the Carleman method to the three model 

problems: the trajectory problem, the boundary layer problem, and the Van der Pol 

oscillator. Each of these problems is derived explicitly using the global linearization 

method. The results of the numerical experiments are presented in plot format, showing 

the Carleman solutions in contrast to the high-resolution numerical solutions for several 

different approximations. Chapter V then discussed the results. A converging Taylor 

series expansion of a logarithmic function is compared to the convergence of the 

Carleman scheme. Chapter VI completes the thesis with conclusions and 

recommendations. Conclusions are made as to the utility of this method and suggestions 

are made for future research. 
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CHAPTER H 

HISTORY OF THE CARLEMAN LINEARIZATION METHOD 

Anderson's text (1989) describes simple equations of motion for atmospheric 

reentry. It was the current author's interest in atmospheric reentry problems that lead to 

the study of the equations considered here. The equations of motion discussed by 

Anderson show that the velocity of the reentry body goes to zero before the vehicle 

reaches the ground. These equations of atmospheric reentry are a special case of more 

general equations. The specific example was developed to uncouple the drag force terms 

and has utility because it leads to a mathematical problem that has a closed form solution. 

This case models the motion of a body, horizontally through a resistive medium with no 

gravity force. Reagan and Anandakrishnan (1993) also described two similar cases: 

vertical reentry and steep vertical reentry. 

These examples are further special cases of the flight mechanics equations. The 

vertical reentry problem uncouples the horizontal component of the drag allowing 

construction of an analytical solution. The second case with a steep reentry angle also 

uncouples the horizontal and vertical components so that a solution may be found for the 

vertical velocity. Reagan and Anandakrishnan address other angles of attack and 

acknowledge that because of the nature of the coupled nonlinear system of equations, 

there has been no closed form solution discovered. 

Engineers and mathematicians usually solve flight mechanics problems with non-

trivial reentry angles with numerical methods. In computational schemes, the trajectories 
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are held constant on very small time steps. By doing this, nonlinear equations are 

simplified via local linear approximations. 

A theoretical technique was developed in the 1930s by the mathematician Torsten 

Carleman (1932) to globally linearize systems of nonlinear polynomial equations. His 

article, which introduced the linearization method was entitled "Application De La 

Theorie Des Equations Integrates Lineaires Aux Systemes D'Equations Differentiates 

Non Linaires" which loosely translated means: 'The Application of the Theory of Linear 

Integral Equations to Systems of Non-Linear Differential Equations." Carleman's ideas 

were born out of remarks made by Henri Poincare. Poincare is known for his studies in 

celestial mechanics and studying oscillatory motion in celestial bodies. Among other 

things, Poincare also discovered the theory of special relativity and helped lay the 

foundation for modern algebraic topology. Poincare remarked at a 1908 conference in 

Rome, that one should be able to apply the theory of linear integral equations to the study 

ordinary non-linear differential equations. From that remark, Carleman worked on an 

approach to embed a system of non-linear differential equations in to an infinite set of 

linear equations. The history relating Poincare and Carleman is reviewed by Montroll 

and Helleman, (1976). The rest of the history of the development of the Carleman 

linearization method is outlined from the introduction to the text by Kowalski and Steeb 

(1991). The Carleman technique essentially remained unused for a little over thirty years 

before Bellman and Richardson (1963) applied the method to approximate solutions of a 

nonlinear ODE. Thirteen years later Montroll and Helleman studied the embedding 

technique in relation to small denominators and secular terms. Then in 1980, Steeb and 

Wilhelm used Carleman embedding to approximate solutions of the Lotka-Volterra 
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problem. The Lotka-Volterra model is represented by a system of nonlinear equations 

that have periodic solutions. The Carleman technique was successfully applied to solve 

the Lotka-Volterra problem. 

In 1981, Kerner studied the technique for embedding nonlinear systems into 

polynomial systems. Also, in 1981, Andrade and Rauh, and Brenig and Fairen studied 

the Lorenz model and power series expansions for nonlinear systems, respectively, using 

the Carleman embedding technique. In 1982, Wong demonstrated that a linear operator 

acting on Banach space could be related to analytic vector fields. This became known as 

the Carleman linearization or transformation of a vector field. Moreover, a number of 

other results were discovered about the linearization: 1) Andrade (1982) calculated 

Lyapunov exponents, 2) Kus (1983) discovered a class of explicitly time-dependent first 

integrals for the Lorenz model, 3) Steeb (1983) demonstrated that a matrix could be 

written in terms of Bose operators, and 4) Ermakov (1984) constructed an approximate 

Monte-Carlo-like solution to nonlinear integral equations via Carleman embedding. In 

1986, Esperidiao and Andrade revisited the study of secular terms in Carleman 

embedding. In 1987, Kowalski related finite dimensional nonlinear systems to problems 

in Hilbert space. Tsiligiannis and Lyberatos (1987) studied steady state bifurcation and 

exact multiplicity conditions using the Carleman method. Finally, by 1989, Steeb 

showed that there is a one-to-one correspondence between solutions of the infinite linear 

system and solutions of the associated nonlinear finite system for the analytic solutions. 

Fortunately, Kowalski and Steeb summarized a large portion of this work into one book. 

This book is the main reference from which most of the history of the Carleman method 

is outlined. 
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The Carleman embedding technique is the theoretical method used to approximate 

solutions of the nonlinear aeronautical problems studied in this thesis. Kowalski and 

Steeb's book was used extensively to derive the linearization. 

In addition to the references on the Carleman embedding technique, the texts by 

White (1974) and Schlichting (1979), and the NACA Technical Memorandum 1256 by 

Blasius (1950) were referenced for background information on the boundary layer 

problem. Lastly, Van der Pol's equation was developed from Bellman's book (1970) and 

its solutions studied via the Carleman technique. 
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CHAPTER HI 

THE CARLEMAN LINEARIZATION METHOD 

Research in mathematics often includes thought experiments and as such has an 

experimental facet. Almost all current technology, from aircraft to computers, was 

developed using mathematical ideas. Mathematicians take existing tools and apply them 

in experimental ways to further their understanding. In this way, new mathematical tools 

are discovered and developed. These new tools can then be applied to engineering and 

physics problems. 

For this study, the Carleman method was applied to linearize nonlinear 

aeronautical problems. Model problems were posed to minimize many of the 

mathematical complexities, while retaining the basic physics of the nonlinearity. The 

simple 2DOF problem captures the basic features of such nonlinear problem. This 

chapter is devoted to explaining systematically how to derive the Carleman linearization 

for systems of inhomogeneous ODEs. Once that is done, a wide range of nonlinear 

problems can analyzed with this method, to see what practical utility the Carleman 

linearization technique has. 
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Consider the following problem. Approximate the two-dimensional ballistic 

trajectory of a bowling ball pitched off the Eiffel Tower at 1 meter per second (m/s) using 

the Carleman linearization technique. This problem will be used to illustrate the 

derivation of the Carleman method. 

Fig. 1 Bowling ball pitched off the Eiffel Tower 

Marion [16] gives the equations of motion for a particle. The equation of motion 

for a particle falling in a constant gravitation field with a resistive medium is 
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where Fg is the force due to gravity and Fr is the retarding force in the resistive medium. 

This can be rewritten as 

F = mg + Fr(v) (2) 

It sufficient to consider that Fr (v) is proportional to some power of the velocity. This 

type of approximation can be written as 

_~ _ v 
F = mg- mkvn — (3) 

v 

where k is a positive constant that specifies the strength of the retarding force and v is a 

unit vector in the direction of — where v is the velocity of the relative wind with respect 

v 

to the bowling ball. 

The equations of motion for the trajectory of the bowling ball are developed to 

determine the bounds of the horizontal and vertical motion. From those bounds, a 

representation of the speed of the bowling ball, in the form of a fractional power, can be 

developed within the domain of the bounds of the horizontal and vertical motion. A least 

squares method is applied to discrete values on the "speed" surface to obtain a 

polynomial fit of the data. Equations of motion can then be developed in a polynomial 

form that allows the application of the Carleman technique. As a check, a comparison 

should be made of the polynomial's positive agreement to the original function to ensure 

the fit's accuracy. 

Horizontal Equation of Motion 
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Next look at the example of horizontal motion of a particle in a resisting medium. 

This problem will be used to motivate the equation of motion for the bowling ball. In this 

case, Newton's second law F = ma gives: 

dv , _ 
ma = m — = -kmv ^ 

dt 

The magnitude of the resisting force is the norm of- kmv where k is a constant. Now 

multiply both sides of the equation by dt and divide by v. The mass m cancels out. 

Integrate both sides to solve for v: 

J— = -kjdt (5) 

In v = -kt + C (6) 

To evaluate C define v at time (t) equal to 0 (written as v[/ = 0]= v0). The constant C 

then becomes 

C = l n v 0 (7) 

Now solve for v. 

v =v0e~kt (8) 

The same approach can be used to solve for horizontal and vertical velocity of the 

bowling ball. To do this, use the aerodynamic equation of the drag force derived from 

Anderson [1]. In addition, define the notation u to be the horizontal velocity, vfor 

vertical velocity, and S for the resultant speed. 
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For the horizontal component of velocity for the bowling ball, the gravity is 

neglected. The only force considered is the resistive force on the bowling ball as it 

moves through the air. Note in Marion's example, the right-hand of equation (4) mass is 

included in the resistive force. Aerodynamic drag, which is the resistive force for our 

bowling ball, is independent of the mass of the ball. Aerodynamic drag is defined as 

Fr=D (9) 

Fr=D = -pC,1Au2 (10) 

Fr=D = -pCdAu2=ku2 (11) 

where D is drag, p is atmospheric density, Cd is the drag coefficient, A is the surface 

area of the bowling ball u is the horizontal velocity. The constant k is equal to —pCdA . 

Now, to solve for the horizontal velocity of our bowling ball, substitute the right-hand 

side of equation (11) for the right-hand side of equation (4) to get equation (12). 

du 7 _2 

dt UZJ 

The minus sign in front of the k is due to the drag force acting in the opposite direction 

from the trajectory. 

Direction of the force ^ fi% \ ^ Direction of bowling 
of drag ^ ^ ball's path 

Fig. 2 The force of drag 
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Divide both sides of equation (12) by m and u2 then multiply through by dt. Equation 

(12) can now be integrated. 

du {-k)dt 
— = ^-^- (13) 
u m 

Next integrate both sides of (13). 

(14) | —5-dw = i — d t J u J m 

1 kt 
= + c (15) 

u m 

To evaluate c define u at time t = 0 at u0. The variable u0 is the initial horizontal 

velocity of our bowling ball. The constant c then becomes 

C = ~~ ^ u^t=o (16) 
u0 

Insert equation (16) in to equation (15) to get 

1 _ 1 kt 

u uQ m v ' 
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Solving for u (horizontal velocity) then yields 

u —» 
mu0 

m + ktuc 

(18) 

As an example consider values for m, u0, and k, and graph u (horizontal velocity) as a 

function of time and assume time (t) goes from 0 to 10 seconds. Remember k is equal to 

—pCdA wherep = 1.225-—, Cd = .5, A = .1256 m2, mass m = l kg , and u0 = 1 — . 
2 m s 

Horizontal Velocity vs. lime 

Fig. 3 Horizontal velocity vs. time plot 

Figure 3 shows the expected result, that the horizontal velocity decays steadily from an 

initial velocity. If the bowling ball's initial velocity is a value of 1— then the horizontal 
s 

velocity is bounded between 0 and 1—. Knowing the bounds of these functions for a 

s 

given set of initial conditions will be important later on when these functions are 

approximated using the Carleman method. 
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Vertical Equation of Motion 

Now that u has been solved for as a component of the speed, next, study and 

solve for the v (or vertical) component of speed. For the vertical component of velocity 

for the bowling ball, gravity is important. The concern here is with the resistive force on 

the bowling ball as it moves through the air as well as the accelerating force of gravity. 

Now look at equation (4) 

ma = m — = -kmv (4) 
dt 

The force of gravity, which is - mg , has to be added. 

Drag (+kmv) 

Gravity (-mg) 

Fig.4 The vertical force drag on our bowling ball 

The minus sign indicates a downward direction. The -kmv will be written as + kmv 

since the resistive force is in the opposite direction. Also, recall that the resistive force is 

aerodynamic drag, is independent of mass, and is proportional to the square of the 

velocity. Equation (4) can then be rewritten as equation (19). 

ma=-mg +kv2 (19 

or 
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dv - , i 2 
m— = -mg + KV 

dt 
(20) 

Divide both sides of equation (20) by m and multiply through by dt. 

_ \mg + kv2) 
dv = •dt 

m 
(21) 

\fYIQ -4- Jrv ) 
Divide both sides of equation (21) by - ^ to get equation (22). 

m 

m 
kv +mg 

-dv = -dt 

Integrate both sides of equation (22). 

(22) 

f—^ dv = -\dt 
J kv +mg J 

(23) 

4m 
( 

ArcTan 
v4k 

JgJk 
= -t + c (24) 

To evaluate c define v at time (t)equal to 0 (written as v\t = 0]= v0). The variable v0 is 

the initial vertical velocity of the bowling ball. The constant c then becomes 

4m 
( 

ArcTan 
v«4k 

V ? ^ = c (25) 

16 
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Insert equation (25) into equation (24) to get equation (26). 

/ 

4m ArcTan 
;4k n \ / 

4m 

JgJk 
= -t + -

ArcTan v0V^ 

yfgJk 
(26) 

Solving for v (vertical velocity) yields 

( 

Ig^m Tan 

v - » — 

tjg4k 
4m 

ArcTan 
v04k n \ 

4k 
(27) 

As an example consider values for m, u0, and k, and graph u (horizontal velocity) as a 

function of time and assume time (t) goes from 0 to 10 seconds. Remember k is equal 

1 KQ 777 
to —pCdA where p = 1.225^-, Cd = .5, A = .1256 m2, mass m = 1 % , and v0 = 0—. 

2 m s 

Vertical Velocity vs. Time 

Vertical Velocity (m/s) 

Time (sec.) 

Fig. 5 Vertical velocity vs. time plot 
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Figure 5 shows the expected result, that vertical velocity increases from an initial 

velocity, from the force of gravity, to a terminal velocity, the point at which the drag 

force equals the gravitational force. If the bowling ball's initial velocity is a value of 

0— then, the vertical velocity is bounded between 0 and 16 —. 
s s 

Polynomial Representation of Speed 

Now that the components of speed for the bowling ball are bounded, the actual 

speed is as a function of time, can be approximated in a polynomial. The speed is the 

square root of the sum of the squares of our components. This is derived from the 

Pythagorean theorem. 

• u 

v 

Fig. 6 Vector diagram 

From figure 3 it is known that the function for horizontal velocity -— is continuous 
m + ktu0 

for the set of initial conditions and 0 < t < 10. It is also known from figure 3 that for 

0 < t < 10 u is bounded between 0 and 1. Again, it is known from figure 5 that the 

function for vertical velocity 
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v - » ~ 

Tan 
ty[g4k 

4m 
- ArcTan 

vn4k r\\ 

v^ 

is continuous for the set of initial conditions and 0 < / < 10, as well as from figure 5, that 

for 0 < t < 10, v is bounded between 0 and 16. To see what the surface looks like for 

speed, plot a surface where the x coordinate is u (horizontal velocity), the y coordinate 

is v (vertical velocity), and the z coordinate is the square root of the sum of the squares 

of u and v. 

1 
|̂ ,v,Vw2 +v2 j 

Now plot 4u2 + v2 for u between 0 and 1, and forO < v < 16. The plot looks like fig ure 

4u2 +v2 

Fig. 7 Surface plot representing the speed 
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Now that the equations of motion have been derived, the next step is to develop a 

polynomial approximation. The Carleman method works for analytic ODEs, but in 

practice the method is applied to polynomial ODEs. 

Recall that the bounds of our equation were determined by analyzing them using a 

given set of initial conditions. The initial horizontal velocity is 1 m/s and the initial 

vertical velocity is 0 m/s. It was found that the horizontal motion slows down 

continuously from 1 m/s till it stops at 0 m/s. Therefore, u (horizontal velocity) is 

bounded between 0 and 1. It was also found that the vertical velocity slows down 

continuously in a nonlinear fashion until it either impacts the ground or is no longer 

accelerating due to the force of drag (terminal velocity). It was found that in about 10 

seconds the bowling ball reaches a terminal velocity of 16 meters/second, therefore the 

vertical velocity is bounded between 0 and 16 meters/second. Next, apply those bounds 

to the equation of motion for our bowling ball Vw2+v2 and plot the surface. 

By plotting the surface, a list of points in a plane is defined that represents 

V«2 + v2. From that list of points, a least squares polynomial fit is computed using 

Mathematica 3.0. 

Depending on what order of polynomial was chosen would yield varying degrees 

of accuracy for the approximation. Using high order polynomials in Carleman 

linearization can produce huge matrices. The polynomial approximation used is 

-0.3819 + .3306jc + 1.0027y-0.0253xy (30) 

When this function is plotted, the following result is obtained. 
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Fig. 8 Surface plot of approximation of speed that converts V«2 + v2 into a 
polynomial 

This plot is very similar to the original function of V«2 + v2. The next step is to see the 

closeness of fit. The two surfaces look so close that to lay one on top of the other may be 

difficult to distinguish the differences. To see the differences subtracted the z coordinate 

from the approximation from the z coordinate in the same (x, y) plane location to see the 

difference in the 2 planes. Then take the differences and plot the result. The result would 

show how little difference there is between the two planes. Since the difference between 

the two plots is small, the approximation is good. The maximum absolute error found 

was 0.08. Take the result and work backward to get the component equations of motion 

for out bowling ball. Ultimately the equations will be worked into matrix form that will 

be well suited to use in the Carleman Linearization technique. 

To start to put the equations of motion in vector form, retrace the steps by going 

back to the equation of the above example 

F = ma (31) 

Recall the equation in the earlier section 
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f = ma = m— = -kmv2 (32) 
dt 

Now define the vectors for the system that describes the motion of our bowling ball. 

Define a vector for the horizontal velocity, the vertical velocity, and a vector for the 

speed of the bowling ball as a function of both horizontal and vertical velocity. 

u = (w,0) (33) 

v = (0,v) (34) 

J = («,v) <35> 

With these vectors defined, say 

S = it + v (36) 

| ? | is then defined as 

|?|| = -vw2+v2 =a + bu + cv + duv (37) 

This is where the approximation of the surface comes into play, a +bu + cv + duv is 

the expression for 

-0.3819 + .3306x + 1.0027y-0.0253jcy (38) 

just substitute wand vfor xand y respectively. 

Now go back and examine F-ma again. Look at each component of the speed 

by multiplying it by a unit vector in the direction of the component being studied. 
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For example, a unit vector in the direction of the horizontal component would be pp-

From this it can be written 

- _ du 
F -ma -m—: 

dt 
2 U 

-kms -jj—FT 

The "m " and " s " terms cancel and what is left is 

du 

It 
= -ksu 

Again, for the vertical component, write 

? - dv - , 2 v 
F = ma =m— = -mg - kms TTT 

dt \\s\\ 

(39) 

(40) 

(41) 

Again the " m " and " s " terms cancel and what is left is 

dv 

dt 
= -g - ksv (42) 

Now combine equation (37) with equations (40) and (42) to put the equations into 

polynomial form. They look like the following equations. 

du 
= - k (au + bu 2 + cuv + du 2 v ) 

dt V ' 

dv_ 

dt 
=-k\av + buv + cv2 +duv2) 

(43) 

(44) 

This can also be written in matrix form 

(u \ ( ksu ^ 

KVJ 
^g + ksv 

k\au+bu2 + cuv + du2 v j ] 

k[av+buv + cv2 + duv2) 14 ) 

(45) 

23 



As a reminder the constants a, b, c, and d are equal to the constants in the polynomial 

equation (38). 

a = -0.3819 

b = 0.3306 

c = 1.0027 

J = -0.0253 

This concludes the derivation of the model for two degree-of-freedom ballistic 

motion. A system of ODEs was found once the speed was approximated as a polynomial 

that could be applied to the Carleman linearization technique. 

Application of the Carleman Method 

Briefly, what the Carleman linearization technique does is it converts a system of 

equations into an infinite system of linear equations. That infinite system of linear 

equations is truncated and the finite system is solved. 

The way the finite system of linear equations is built is developed by Kowalski 

and Steeb [14]. Assume a system of equations as follows: 

dx 2 *> 
— = a + bx + cy + dx +exy + fyx+ gy~ (46) 
dt 

— = h + ix + jy + kx2+lxy + myx + ny2 (47) 
dt 

This system can be rewritten in matrix form as follows: 

d_ 

dt 

And also in the form: 

(x) (a b c d e f gYx) 
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dt 

where z = (x, y) and the "T" means transpose and where 

M=(a b c d e f g\ 
[ h i j k l m n ] 
\ J ) 

Now look at a first order system of ordinary differential equations 

(49) 

(50) 

du 

dt 
= A0(t)+Al(f)i + ... + An(tyi In) (51) 

such that Ar j e {0, • • •, n} is a matrix valued function such that it is a constant of 

u except \ which is just a matrix of constants, and where u^ = u ® u ® u ® u . 
i—times 

Where® denotes the Kronecker Product. Let A be a mxn matrix and let B be a pxq 

matrix. The Kronecker Product is defined as 

(anB ai2B ••• a[nB^ 

A®B:= 
a2\B a22B a2nB 

(52) 

a ,B a ^B ••• a B 
ml ml mn 

Thus A ® B is a mpxnq matrix. From equation (51), it is found that 

dt v=l 

* t ] 
= 5 j I I ® - - - ® ^ ^ / 1 ® ' " ® M 

7=0 

(53) 
> 

du [<] 
holds where Y A / ' stands at the v-r/z place. It also follows that = \ B u^ ^ 

- J dt ^ J 

a i ;=0 
7=0 

where 

B) :=£(/®---<g>/® Aj ®/®-"<g>7) (54) 
v=l 
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and where A} appears at the v-th site in the i-fold Kronecker Product and / is the 

kxk identity matrix. Equation (54) can be expressed as 

Bi
j=B)®I[i-l] + I®Bij-{ (55) 

Now re-examine equations (49) and (46) 

(49) dzT=MzT 

dt 

d* ' - ' 2 , _ . , * _ , _ . 2 

dt 
a + bx + cy + dx +exy + fyx + gy (46) 

The x and y terms in equation (46)can be rewritten as xl9x29x3,...xn to what ever order 

the polynomial is. For example 

can be written as 

dx 
— = a+bx + cy + dx2 + exy + fyx + gy2 

dt 

—- = a + bx{ + cx2 +dx3 +ex4 + fx5 +gx6 
dt 

(46) 

(56) 

M can be written as 

M = 

K 
0 

0 

B\ 

Bl 
0 

B\ • 

B] • 

B\ • 

• B: 

• B2_{ 

- Bl_2 

0 

B\ 

BL 

0 

0 

Bl 
(57) 

It then follows that if 

—L = a + bx{+ cx2 + dx3 + ex4 +fx5 + gx6 
dt 

dx2 

~dt 
= h + ix{ + jx2 + kx3 + lxA + rwc5 + nx6 
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then 

B 
- ( : ) 

B\ = 
(b c 

\ i j I \ J) 
sUd

k ' f g) 
k I m n ' 

From equation (4.10) 

r[2-l]. B2=Bl®Iv'-li + I®B0 
2-1 

/ = 
1 °1 
0 1 

(Identity matrix) 

So Bl = '-CM: W ">(:! 
* < T = 

(2a 0 ^ 

/i a 

h a 

0 2/i 

>2-l 

* . ' = f* cl®f1 %(l °Ub c) 
[i j [0 1 j (0 1J [t j) 

(2b c c 0 ^ 

/ b+j 0 c 

/ 0 b+j c 

0 i i 2 ; ; ' 

B? = 

?3 - R1 to 7&- 1 ] . B*=B^®r-li + I®B0 
3-1 

^ o 3 = 
ri <n 

1° 0 ® 
1° U 

f2a <H 
/i a 

h a 

0 2/z 

(58) 
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M = 

a 

h 

0 

0 

0 

0 

b 

i 

2a 

h 

h 

0 

Bl = 

c 

j 
0 

a 

a 

02h 

M = 

^a 

h 

h 

0 

h 

0 

0 

L 0 

d 

k 

2b 

i 

i 

0 

(Bl 
0 

0 

2a 

a 

2h 

0 

h 

0 

0 

e 

I 

c 

b + 

0 

i 

or 

Bl 
Bl 

0 

0 

a 

0 

2a 

h 

2h 

0" 

0 

0 

a 

0 

a 

a 

0 3hJ 

f 
m 

c 

j c 
b-> 

i 

B\) 
B?t 

) 

•j 

8" 
n 

0 

c 

c 
2h 

(59) 

(60) 

The matrix can be as large as is desired and this can easily be done computationally. 

Now the truncated infinite linear matrix can be put back into equation (49) yielding 

dxT 

dt 
• = MxT (61) 

Where x = (x{, x2, x3, JC4 , x5, x6) and the T denotes transpose. Multiply equation (61) 

through to end up with a system of ordinary differential equations and solve the resulting 

system for x{ and x2 with respect to t. Finally, compare these solutions to ones from the 

original system of equations and see how well the Carleman Linearization technique 

works for approximating the original system of equations. This is the approach this 

research will use to find an analytical solution to the trajectory of the bowling ball. 
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CHAPTER IV 

APPLICATIONS OF THE CARLEMAN LINEARIZATION 
METHOD TO NONLINEAR PROBLEMS IN AERONAUTICS 

2 DOF Ballistic Trajectory 

Now that it has been seen how the Carleman linearization technique is derived, it 

was applied to the problem of throwing the bowling ball off the Eiffel Tower. Chapter III 

took the equation 

V«2+v2 (62) 

and approximated it in order to convert it to a polynomial. The result was equation (30). 

Substituting u and v for x and v, respectively, yields 

- 0.3819 + .3306M +1.0027 v - 0.0253wv (63) 

Next define 

a = -0.3819 

6 = 0.3306 

c = 1.0027 

d = -0.02530 

s = a+bu+cv + duv (64) 

From equations (40), (42), and (64), the following equations can be written 

u=-ksu = -ku(a+bu + cv + duv)=-kau-kbu2 -kcuv-kdu2v 

v = -g-ksv = -g-kv(a+bu + cv+duv)= -kav-kbuv-kcv2 -kduv2 
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Let 

-ka = a 

-kb = /3 

-kc = \j/ 

-kd = A 

and write 

u = ecu + J3u2 + ymv + Aw2v 

v = -g + m> + /?wv + y/v2 + Awv2 

The following notation is used so that the reader can see how the polynomials u and v 

are expanded to capture the zero terms. This is important to build the matrix M . All the 

constants of the matrix need to be included, even the zeros, it and v are cubic equations 

that allow all the linear terms, quadratic terms, and cubic terms to be captured. The terms 

are illustrated in matrix notation below. 

x2x x22 

u uv 
.... „2 

*112 *121 v122 

x2U x2{2 x22{ x222 

u and v are now expanded and written as 

u=0+m + 0v + fiu2 +ymv + 0vu + 0u3 +Au2v + 0u2v + 0uv2 +Qu^ 

v = _g + 0w + m> + 0w2 +0wv + fivu + i/A;2 +0w3 +0w2v + 0w2v + 0wv2H-0w2v + 0wv2 H-Awv2+0v3 

Remember from Chapter III 

dxT 

dt 
= MxT (49) 

Where x = {xvx2,xi,x4,x5,x6), the T means transpose, and M is defined as 
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M = 

( n l p i Dl 

B0 tS{ ti2 

0 Bl B2 

0 0 Bl 

Bl 
B 

B 

B2 B2 

0 0 

0 
n-\ 
3 BL Bl n-1 'n-\ 

where B\ =B) ® / [ M ] + / ® B1;' and / = 
0 1 

(identity matrix). 

From u and v, £<}, flj, B\, and £3 are defined by inspection as 

* o = 
( 0 W:!W v° ", 

/? yr 0 0 

to 0 fi ¥) 
)BI = 

(0 A 0 0 0 

0 0 0 0 0 

M will be truncated so that the final matrix will look like 

M = 
(Bl 

0 
0 

V 

Bl 
Bl 
0 

B\ 

B2 

Bl 

Bl) 
Bl\ 

*.3 

l<2> /HI. Bo through B{ will be defined using the rule B) = B) ® 7L'"1J + / ® B'j >i-i 

r l ' l /L'J is defined as / <8> / and / l J is just / [1] 

Writing out fi0
2 through Bf ... 

Bl = 

I 0 

-8 
0 

0 N 

0 

0 

•28) 

B? = 

(2a 0 0 0 ^ 

0 2a 0 0 

0 0 2a 0 

0 0 0 2a 
j 

B} = 

(20 y/ y/ 0 0 0 0 0 ^ 

0 fi fi 2y/ 0 0 0 0 

0 0 0 0 2 / ? ^ ^ 0 

0 0 0 0 0 £ fi 2y) 
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Bl = 

M now b< 

M = 

( 0 

-8 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

, ° 

Again, rerr 

Excet >t this 

f 0 

-8 

-8 
0 -

-8 
0 

0 

, ° 
icomes 

a 

0 

0 

~8 

-8 
0 

0 

0 

0 

0 

0 

0 

0 

0 

lember 

> time 

0 

0 

0 

-2g 

0 

-8 
0 

0 

0 

a 

0 

0 

0 

-28 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-8 

-2g 

0 

fi 

0 

2a 

0 

0 

0 

0 

-8 

~8 
0 

-8 
0 

0 

0 

7 0 7 = 

0 N 

0 

0 

0 

0 

0 

0 

- 3 * , 

¥ 
0 

0 

2a 

0 

0 

0 

0 

0 

-2g 
0 

~8 
0 

0 

dx1 

dt 

f\ 

0 

0 

0 

Bl = 

0 

fi 

0 

0 

2a 

0 

0 

0 

0 

0 

0 

-8 

-2g 

0 

- = Mx 

0 

1 

0 

0 

(3a 

0 

0 

0 

0 

0 

0 

,° 

0 

¥ 
0 

0 

0 

2a 

0 

0 

0 

0 

0 

0 

0 

- 3 g 

T 

0 0^ 

0 0 

1 0 

0 1, 

0 

3a 

0 

0 

0 3a 

0 

0 

0 

0 

0 

0 

0 

2fi 
0 

0 

0 

3a 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

A 

0 

¥ 

fi 

0 

0 

0 

3a 

0 

0 

0 

0 

0 

0 

0 

0 

0 

3a 

0 

0 

0 

0 

0 

0 

¥ 

fi 

0 

0 

0 

0 

3a 

0 

0 

0 

0 

0 

0 

0 

0 

0 

3a 

0 

0 

0 

0 

0 

0 

2y 

0 

0 

0 

0 

0 

3a 

0 

0 

0 

0 

0 

0 

0 

0 

0 

3a 

0 

0 

0 

0 

0 

0 

2fi 
0 

0 

0 

0 

0 

3a 

0 

0 

0 

0 

0 

0 

0 

0 

0 

3a 

0 

r 

0 

0 

0 

0 

¥ 

fi 

0 

0 

0 

0 

0 

3or 

0 

0 

0^ 

0 

0 

0 

0 

0 

0 

la} 

0 0 > 

A 0 

0 0 

0 0 

y/ 0 

fi 2¥ 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

3a- 0 

0 3a- J 

(65) 
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x = (l u v u2 uv vu v2 M3 u2v u2v uv2 u2v uv2 uv2 v3)or 

x = (l x, x2 x3 x4 x5 x6 x1 xs x9 xl0 xn xn xl3 xl4) where xt=u, 

x2=v, x3=u2, etc. Multiply the two matrices together to arrive at a system of 14 

ordinary differential equations, which looks like the following... 

x;[^=axJf] + /&3[f] + ytf4M+Ax8[f] 

x2[t]=-g + a>c2[t] + px5[t] + ytt6[t]+Axn[t] 

xi[t]=2ax3[t] + 2fix1[t]+ytts[t]+yx>c9[t] 

x\ [t]= ~gx2[t] + 2ax4[t] + fixg[t] + fix9[t] + 2yficw[t] 

xs\t\=-gx2[t} + 2axi[t] + 2fixl\t} + \ian[t] + \ial}\t} 

x6 \t] = ~2gx3 [t] + 2ax6 [t] + fixn [t] + fixl3 [t] + 2yxH [t] 

x'1\t]=3ax1[t] 

xg[t]=-gx4[t] + 3axg[t] 

x9[t]=-gx4[t] + 3ax9[t] 

x'l0[th-2gx5[t] + 3axl0[t] 

xn[t]=-8x4[t] + 3axn[t] 

x'n [t]=-8x
5[t]- 8X6 [t] + 3axn [t] 

x'li\t]=-2gx6[t] + 3axn[t] 

xM=-^8x7[t] + 3axl4[t] 

Remember from the original problem, the bowling ball was pushed off the 

Eiffel Tower horizontally at 1 —. Therefore, the initial conditions are 
s 

"[o]=^[o]=i 
v[0]=x2[0]=0 
"2[o]=*3[o]=i 

"3[o]=*7[o]=i 

all the rest of the initial conditions are 0 at t = 0. Now the system of 14 differential 

equations can be solved. To solve this, Mathematica 3.0 was used, which is a symbolic 

and numerical mathematics software that can be used to solve large systems of equations 

in which complicated mechanical and numerical operations can be performed. 
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Next, plots of the original horizontal and vertical velocity functions will be 

shown again in order to start at the beginning of problem solving. The solution using the 

Carleman linearization technique will then be shown. Finally, the plots are overlaid so 

that a comparison can be made. Figures 9 and 10 show the plot for horizontal and 

vertical velocity over a time interval of 5 seconds. 

\fekcity (m/s) 

0.S-

0.6-

0.4-

0.5 

Hxizcntal TfeQocity Plot 

Tiire (s 

Fig. 9 Horizontal velocity plot of original equation of motion 
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Velocity (m/s) ^ ^ ^ ^ ^ 

15-

12.5-

19-

7.5-

2.5-

Tirre ( sec ) 

Fig. 10 Vertical velocity plot of original equation of motion 

Figures 11 and 12 compare the original function with the Carleman linearization 

technique over a time interval of 5 seconds. 

Velocity (m/s) 
Hanzontal Velocity Plot 

Tine (sec) 

Fig. 11 The original horizontal velocity function compared with the Carleman 
linearization technique over a time interval of 5 seconds using third order 
polynomials yielding a system of 14 ODEs 
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Velocity (m/s) 
Vertical Velocity Plot 

35-

30-

25-

20-

15-

10-

Time (sec ) 

Fig. 12 The original vertical velocity function compared with the Carleman 
linearization technique over a time interval of 5 seconds using third order 
polynomials yielding a system of 14 ODEs 

The plots show that Carleman's linearization technique works well close to time 

zero up to about one second. As the bowling ball begins to reach terminal velocity and 

the function becomes linear, Carleman's approximation begins to diverge rapidly. Thus, 

an increase in the order of the polynomial should be investigated. 

u=au + fiu2 + i//uv + Au2v 

v = -g + av + puv + i/A?2 + Auv2 

These equations are third order. If the order is increased to fourth order, the resolution of 

our approximation can be increased. In other words, the length of time the approximation 

holds before it begins to diverge can be increased. Increasing the order adds another B\ 

term to the matrix 
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M = 

(Bl 
0 
0 

Bl 
Bl 
0 

Bl • 

Bl • 

Bl • 

• Bl 

• B2^ 

• BU 

0 

Bl 
BU 

0 
0 

B3 

n 

Each B\ term added to the matrix causes the matrix to grow in size exponentially. The 

fourth order polynomial yields a system of 30 ordinary differential equations. 

Figures 13 and 14 show the plots for the fourth order polynomials. 

Velocity (m/s) 

0.75-

0.5-

0.25-

-0.25-

-0.5-

-0.75 

Harizontal \&locity Plot 

Tine (sec) 

Fig. 13 The original horizontal velocity function compared with the Carleman 
linearization technique over a time interval of 5 seconds using fourth order 
polynomials yielding a system of 30 ODEs 
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Velocity 
Horizontal Velocity Plot 

Fig. 14 The original vertical velocity function compared with the Carleman linearization 
technique over a time interval of 5 seconds using fourth order polynomials yielding a 
system of 30 ODEs 

Figures 15 and 16 show the comparison of a fifth order polynomial, which yields a 

system of 62 ordinary differential equations. 
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Velocity (m/s) Horizontal Velocity Plot 

0.0-

0.6-

0.4-

0.* 

Time (sec ) 

Fig. 15 The original horizontal velocity function compared with the Carleman 
linearization technique over a time interval of 5 seconds using fifth order polynomials 
yielding a system of 62 ODEs 

Wlod.ty (m/s) 

35H 

30 

25-

20 

15-

10-

^fertinal Vekzity Plot 

Tine (sac) 

Fig. 16 The original vertical velocity function compared with the Carleman linearization 
technique over a time interval of 5 seconds using fifth order polynomials yielding a 
system of 62 ODEs 
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Figures 17 and 18 show the comparison of a sixth order polynomial, which yields a 

system of 126 ordinary differential equations. 

Velocity 

- 1 -

0 75-

0 25-

-0 25-

-0 75-

Fig. 17 T 

(m/s) 

he origii lalh 

Hon: 

orizontal vek 

sontal Velocity 

> 

>city function 

Plot 

I \ v ^ 

compai 

I ! 
— Tame (sec ) 

ed with the Carleman 
linearization technique over a time interval of 5 seconds using sixth order polynomials 
yielding a system of 126 ODEs 

\fekdty (m/s) 
\fertica1 Velocity Plot 

125-

Ture (sec) 

Fig. 18 The original vertical velocity function compared with the Carleman linearization 
technique over a time interval of 5 seconds using sixth order polynomials yielding a 
system of 126 ODEs 
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Figures 19 and 20 show the comparison of a tenth order polynomials, which yields a 

system of 2046 ordinary differential equations. 

\felccLty (m/s) 

-i-

0.S 

0.4-

-0.+ 

Horizontal \felocity Plot 

Fig. 19 The original horizontal velocity function compared with the Carleman 
linearization technique over a time interval of 5 seconds using tenth order polynomials 
yielding a system of 2046 ODEs 

Velocity (m/s) Vertical Velocity Plot 

7.-5-

Tme (sec) 

Fig. 20 The original vertical velocity function compared with the Carleman linearization 
technique over a time interval of 5 seconds using tenth order polynomials yielding a 
system of 2046 ODEs 
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Perhaps an easier way to compare the plots is to use an overlay showing the 

divergence of the plots as a percentage over time (figure 21). Percent divergence is 

defined as the difference between the original function and the Carleman approximation, 

divided by the original function and multiplied by one hundred. 

Pvrcwmfc D i v « r 9 « n c « 

*•— 

• 

From ttvd order polynomials - 14 O 

I 

From fifth order polynomials - 62 ODE 's 

I I ^ \ 
From sixth order polynomials - 126 O D E 's x . 

I I \ 
From tenth order polynomials -2048 O O E ' s \ 

c X 

X 

( 

)E's 

M 
t 

X/ 

( 

Fig. 21 Percent divergence versus time for varying levels of matrix complexity 

The tenth order polynomials (2046 O.D.E's) do indeed capture most of the bend 

in the trajectory curve. To capture the linear tail of our trajectory approximation (in the 

vertical velocity), figure 20 shows that with a large enough system of ordinary 

differential equations it could be done. However, the system would quickly become 

unmanageable, and a super computer would be needed to compute it. A solution could 

be captured in perhaps two steps. Step one would be a Carleman linearization technique 

to approximate the bend of the curve and step two being some other linear approximation 

of the essentially linear tail. The smaller the system of ordinary differential equations 
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used the more Carleman linearization technique "steps" would have to be used to 

approximate the bend in the curve. 

Blasius' Boundary Layer 

Now that a method has been established to approximate polynomial non-linear 

equations, it can be applied to other mathematical problems. Another such problem that 

comes up in aeronautics or fluid dynamics is the Blasius boundary layer problem. The 

problem is governed by equations of a rather simple system of non-linear equations, but 

to date, no one has ever found an analytical solution. Blasius, made an approximation in 

1908, but his approximation is only good locally. The system of equations is given by 

y'i=-yiy* 

With initial conditions of 

y,[0]=.46960 

y2[0]=0 

y3[0]=0 

From y[, y2 and y^, B\ and B2 are defined by inspection as 

Bl = 

'0 0 0^ 

1 0 0 

0 1 0 
V ) 

f 

Bl = 

V 

(0 0 -1 0 0 0 0 0 0} 

0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

M is truncated so that the final matrix will look like 

M = 
fB\ B\y 

0 B]} 
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This matrix can be started with B\ since the system of equations has inhomogeneous 

terms. Kowalski and Steeb have a simplified version of building the matrix equation 

when the governing ODE is homogeneous. However, for consistency, the same formulae 

for building the trajectory matrix equation will be used for all of the examples presented. 

B2 will be defined using the rule B) = B) ® I[M] + 7 ® B? 

7['] is defined as 7®7 and 7[l] is just 7. Since the original system of equations has 

three equations 7 is defined as 

7 = 

I 0 0^ 

0 1 0 

0 0 1 

Notice in the trajectory example, where the system of equations consists of two 

equations, 7 is defined as 

7 = 
r\ 0^ 

0 1 

Writing out B2 

Bl = 

(0 0 0 0 0 0 0 0 0^ 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

0 1 0 1 0 0 0 0 0 

0 0 1 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 0 

0 0 0 0 1 0 1 0 0 

0 0 0 0 0 1 0 1 0 

When all these matrices are put back in to M the result is 
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0 
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0 

0 

1 
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0 
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0 
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0 

0 

0 

0 

0 

0 

Again, remember 

= Mx 
dt 

Except this time 

X = \y y y y2 yy yy yy y2 yy yy yy y2\OT 
\l 2 3 1 1 2 1 3 2 1 2 2 3 3 1 3 2 3 ) 

x = (x{ x2 x3 x4 x5 x6 x7 x% x9 xw xn xl2) where x{ = y, x2 = y, 
1 2 

x4= y2 and so on and the T means transpose. Multiply the two matrices together to get a 
i 

system of 12 ordinary differential equations. That system looks like the following 
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x{[t]=-x6[t] 
x'2[t]=Xl[t] 
x'i[t]=x2[t] 

x4[t]=0 
x5[t]=x4[t] 
x6\t]=x5[t] 

x'sithxsW + x^t] 
x9[t]= x6[t] +x8[t] 

x'n[t]= xs[t] +xl0[t] 
x'l2[t]=x9[t]-xn[t] 

Recall, the Carleman linearization technique matrix can be made as large as 

needed. A larger the matrix provides better resolution. Figure 22 shows the results of a 

12x12 matrix, which translates to a system of 12 ordinary differential equations. The red 

line depicts the original function and the black line shows the approximation using the 

Carleman linearization technique. The goal is to make the approximation approach one 

as the plot moves infinitely to the right. 
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Fig. 22 The original boundary layer function compared with the Carleman linearization 
technique over a time interval of 5 seconds using quadratic polynomials yielding a 
system of 12 ODEs 

Since this system of equations has three polynomials, the size of the matrix grows 

very, very quickly as the order of the polynomials is increased. Note that increasing the 

order of the polynomials means that "zero terms" are added to the equation. For example 

au-vbv 

can also be written as 

au+bv + 0u2 +0uv + 0vu+0v2 

effectively increasing the order of the polynomial. Next, the equations are increased by 

four orders so that the result is a system of sixth order equations. This manipulation 
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yields a 1092x1092 matrix, which translates to 1092 ordinary differential equations. 

Figure 23 depicts the solution. 

-d-l 

2 5 

^ 

1 5 

-+-

0-5-

• 

1 2 3 4 5 

Fig. 23 The original boundary layer function compared with the Carleman linearization 
technique over a time interval of 5 seconds using sixth order polynomials yielding a 
system of 1092 ODEs 

This is a much better approximation, with the red line being the original function 

and the black line being the approximation. The approximation gets to about .92 before it 

starts to diverge. By increasing the order of the polynomial even further, the 

approximation could probably achieve a 99% "match." However, remember that the 

matrix that would have to be developed in order to compute the solution will grow 

extremely fast. 
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Van der Pol's Equations 

The next problem considered was Van der Pol's equation. Although there are 

analytical solutions to this equation, it was desired to see if the Carleman linearization 

technique would provide satisfactory results. The example by Kowalski and Steeb [14] 

of the Lotka Volterra model is periodic. The Carleman linearization technique 

approximates it quite well over the entire range of the function. Since Van der Pol's 

equation also has a periodic nature, the Carleman linearization technique was applied to 

see if it would do as well as the Lotka Volterra model. 

Van der Pol's equation looks like the following 

dx ( 
— =y + £ 
dt 

1 3 
x — X 

3 
dy_ 
dt 

;c[0]=tf 

y[o]=fi 
8 ~ small 

= -x 

where a and fi are constants. For this example, 1 and 0 were chosen respectively. 

From x and y , B0, 5 , , B2, and B3 are defined by inspection as 

Bl = 
(0} . (e l\ . 0 0 0 0^ . 

# = \B2=\ \BI = 

[o 1 ' (-1 O1 [0 0 0 o 1 3 

\ 
— 0 0 0 0 0 0 0 

3 
0 0 0 0 0 0 0 0 / 

M will be truncated so that the final matrix will look like 

M = 

(Bl 
0 

V 

Bl 
Bl 
0 

Bl 
Bl 
Bl 

Bl) 
Bl 
Bl 
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> « I F M . B; through fi,3 will be defined using the rule B) = B) ® /l'"'J + I®B) >/-i 

rW /l'J is defined as I® I and J1 J is just / . / is defined as [i] 

/ = 
1 0 1 
0 1 

Writing out Bl through Bf 

Bl = 

(0 0"\ 

0 0 

0 0 

1° °, 

/ 

Bl=\ 

V 

2e 1 1 0̂1 

-1 £ 0 1 

-1 0 £ 1 

0 - 1 - 1 0 
; 

Bl = 

(0 0 0 0 0 0 0 Ôi 

O O O O O O O O 

O O O O O O O O 

O O O O O O O O 

I®I = 

Bl = 

^1 0 0 0"\ 

0 1 0 0 

0 0 1 0 

0 0 0 1 

(o 0 
0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

t0 0 

0 0' 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 oj 

( 

5,31 

V 

3e 1 1 

-1 2e 0 

- 1 0 2e 

- 1 - 1 

0 0 

- 1 0 

0 - 1 

0 0 

0 

- 1 

0 

0 

0 

J 

0 

1 

1 
£ 

0 2£ 

0 

0 

0 

1 

0 

0 

1 

- 1 £ 

- 1 0 

1 

0 

0 

0 

0 0 

0 0 

1 

0 

1 

0 

£ 

0 

1 

0 

1 

1 

•1 0 - 1 - 1 0 

When all these matrices are put back in to M you get 
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dt 
= MxT 

Except this time 

x = (l x y x2 xy yx y2 x3 x2y x2y xy2 x2y xy2 xy2 y3)or 
')• 

: = (1 *, X^ X-i J^A Xc X>£. Xn Xo XC\ X\I 
xn x{2 xl3 x{4) where x{ = x, 

x2 ~ y» x3 = x2and so on and the T means transpose. Multiply the two matrices together 

to get a system of 14 ordinary differential equations. That system looks like the following 
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4']= 

xM= 

•;,H 
] 

x„\t\= 
l12 
v13 

t\ = 

£Xl[t] + X2[t]--X7[t] 

2ex3[t] +x4[t] +x5[t] 

-x3[t] + ex4[t] + x6[t] 

-x3[t] +x5[t] +x6[t] 

-x4[t]-x5[t] 

JC,, [t] + 3ec7 [t] + x8 [t] + x9 [t] 

xl0[t] + xl2[t]-x1[t] + 2exs[t] 

xlQ[t] + xl3[t] - x-;[t] + 2ex9[t] 

•• &l0[t] + xH[t]- xs[t]- x9[t] 

2ex{, [t ] + xl2 [t] + xl3 [t] - x-j [t] 

-xx, [t] + sxn [t] + xXA [t] - x% [t] 
-*,, [t] + exi3 [t] + xu [t] - x9 [t] 

-xi0[t]-xl2[t]-xi3[t] 

When Carleman's technique was used, it yielded a 14x14 matrix, which translates to 14 

ordinary differential equations. The comparison of the solution to the original function is 

plotted in figure 24 below. 
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Fig. 24 Van der Pol's equation compared with the Carleman linearization technique over 
a time interval of 5 seconds using third order polynomials yielding a system of 14 ODEs 

There are actually two graphs in figure 24. As the size of £ is increased, the 

approximation gets worse. For this example an £ of .001 was used, and it can be seen 

that the approximation is nearly perfect. What this result may indicate is that the 

Carleman linearization technique may work exceptionally well for non-linear problems 

that are periodic in nature. 
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Fig. 25 Van der Pol's equation compared with the Carleman linearization technique over 
a time interval of 5 seconds, £ = 0.01 

Fig. 26 Van der Pol's equation compared with the Carleman linearization technique over 
a time interval of 5 seconds £ = 0.1 

54 



CHAPTER V 

DISCUSSION OF RESULTS 

The results obtained from the trajectory problem and the boundary layer problems 

were less than spectacular. The rate of convergence for these functions was slow at best. 

It took a large system of ODEs to capture an acceptable portion of the function. For 

comparison, it is of some interest to expand a log type function in a Taylor series and 

show the slow convergence. It appears that, even though the rate of convergence for log 

type functions using the Carleman technique is slow, it converges faster and more 

accurately than does a Taylor expansion of a log type function. 

Below, figure 27 show the plot of function log[x] for x=0 to 3. 

Fig. 27 Plot of Log[x] for x = 0 to 3 
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The function Log[x] is expanded using a Taylor series for n = 2, n = 4, n = 8, n = 

16, and n = 1000. Only the expansion for n = 2, where n is the number of terms and the 

order of the polynomial, is listed below, though all of the expansions were calculated 

using Mathematica 3.0 and plotted against the original Log[x] function. 

Fig. 28 Plot of Taylor series expansion approximations for different "n" number of terms 
in the Taylor series expansion compared to the original function Log[x] 

Then the difference between the original function and the Taylor series expansion is 

shown in figure 29 to illustrate the slow rate of convergence. The more terms that are 

added the better the approximation, but the number of terms grows very rapidly to move 

farther to the right on the plot. The reason n = 1000 was picked was because it begins to 

approach the number of terms used in the Carleman technique. 
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Fig. 29 Shows how much the Taylor series expansion diverges from the function Log[x] 
as x increases for "n" number of terms in the Taylor series expansion 

Figure 30 compares how well the Carleman technique converges in relation not to the 

number of term but in the number of ODEs, for the trajectory problem. 

F*r««n» Div<rrm< Pvrcvnfe Dlv«r9«nc< v« Tin* 

Fig. 30 Percent divergence versus time for varying levels of matrix complexity for the 
ballistic trajectory problem 
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Figures 31 and 32 show how well the Carleman technique converges in relation not to the 

number of term but in the number of ODEs, for the boundary layer problem. 

Carleman technique ' 
using 1092 ODEs 

Fig. 31 Convergence of 
1.5 

the Carleman technique for the boundary layer problem 
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Fig. 32 Convergence of the Carleman technique for the boundary layer problem 

The Carleman technique did, however, work very well for Van der Pol's 

equations for £ ~ small using the smallest system of ODEs generated by the Carleman 

technique. As £ is increased, the fidelity of the Carleman technique decreases. This 

was illustrated in figures 33, 34, and 35. 

The results, overall, show that the Carleman linearization technique works for 

functions of a periodic nature such as Van der Pol's equations. It works fine for log type 

functions, it just converges slowly. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

At the conclusion of this research, it appears that the utility of the Carleman 

linearization technique for studying trajectories is not very practical. In order to capture 

adequately the trajectory of the bowling ball, the number of ODEs became impractical for 

any engineering use. For engineering purposes, such calculations can be just as easily 

made using numerical methods. There may be minor applications to reentering bodies in 

the earth's atmosphere that do not reach a terminal velocity. For log type functions, such 

as the vertical velocity of the bowling ball, the sharper the bends in the log function the 

more ODEs were required to characterize the trajectory. For objects that do not reach 

terminal velocity, the bend in this function is slight and the Carleman technique can 

characterize the trajectory very well with a small number of ODEs. 

The boundary layer problem was very similar to that of the trajectory problem in 

terms of how the function behaved. Therefore, the result that the Carleman linearization 

technique produced was also similar. By inspection, it did a little better than the 

trajectory problem but not enough to say that it has any engineering utility. It like the 

trajectory problem required an extraordinary amount of ODEs to adequately capture the 

boundary layer function. 
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There may be some utility in using this technique for theoretical studies, in which 

case one would not worry about how many terms or numbers of ODEs it takes for the 

function to converge. 

The Carleman linearization method did appear to have some practicality in the 

study of problems with periodic solutions. Kowalski and Steeb showed that a solution to 

the Lotka-Volterra model could be found using this method. Even though a solution to 

Van der Pol's equations already existed, this research showed that a solution to Van der 

Pol's equations could also be found using the Carleman method. Since the solutions the 

Carleman technique yielded are periodic, other such problems with periodic solutions 

should be tried. This could lead to analytical solution of nonlinear problems, which have 

applications in guidance and control systems for aircraft and missile systems. Anywhere 

nonlinear but periodic solutions are modeled in nonlinear problems, this technique may 

have an application. 

Recommendations 

Future research involving this linearization technique should focus on problems 

with periodic solutions. It makes sense to go in this direction given that Poincare and 

Carleman first thought of this technique to study oscillatory motion. Most of the 

examples in the review of literature were of a periodic nature. A lot of the application 

thus far has only been in the area studying circuit and vibration problems. However, 

many things in engineering are periodic in nature and are worthy of study using this 

technique. The wave equation to study shocks and vibration is one example. The wave 
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equation would lead to studying how well this technique works with partial differential 

equations. 
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