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ABSTRACT 

Edge-welded metal bellows present an ongoing challenge: the prediction of an 

accurate cycle life. Current methods rely on physical leak detection to determine a bellow's 

cycle life to failure. It is known, however, that crack initiation begins many cycles before a 

leak path is present. Bellows manufacturers require a method for detection of fatigue cracks 

when they initiate but before they result in leak rates large enough to contaminate a process. 

Acoustic emission (AE) testing is one method which can meet this need and is a proven, 

reliable technique for detecting crack initiation and monitoring fatigue crack growth. 

Four sets of metal bellows samples were fatigue tested and AE parameter data 

recorded. The data sets were analyzed and the determination made that amplitude, duration, 

and time of occurrence were the AE data variables required for separation of the various 

failure mechanisms. 

For two of the four materials, an expanded set of tests were performed. Fourteen tests 

were used to train and test a back-propagation neural network for prediction of bellows cycle 

life. The input data consisted of a material identifier, AE parameter data consisting of the 

amplitude distribution (50-100 dB) of the first 250 hits, and the final cycle life. The network 

was structured with an input layer consisting of the identifier and amplitude data, two hidden 

layers for mapping failure mechanisms, and an output layer for predicting cycle life. The 

network required training on four samples for the Inconel 718 and five samples for the 350 

stainless steel. Once trained the network was able to predict cycle life with a worst case error 

of-4.45 percent and 2.66 percent for the Inconel 718 and 350 stainless steel, respectively. 

Finally, through the use of multiple linear regression, a statistical analysis was made to 

develop a model capable of accurate prediction. Applying a natural log transformation to the 

independent variables of amplitude and energy resulted in a model capable of explaining 95 

percent of the variability in cycle life prediction. 
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CHAPTER 1 

INTRODUCTION 

1.1 OVERVIEW 

In most cases, metal bellows experience failure as a result of cyclic or fatigue loads. 

Such loadings initiate the nucleation and propagation of cracks through a material, especially 

in high-strength, corrosion-resistant alloys similar to those investigated herein. Such alloys 

sometimes require a heat treatment process that offers a gain in strength but is offset by a 

reduction in ductility. A majority of metal bellows are comprised of these materials and are 

subjected to cyclic loadings; therefore, the onset of fatiguing is of importance. To identify and 

characterize the effects from these loads and material changes, the implementation of an 

acoustic emission monitoring system and neural network analysis has been proposed as an 

addition to the reliability testing methods presently used at EG&G Belfab. Currently, cyclic 

stroking of the bellows and physical leak detection are the methods for determining a bellows 

cycle life and failure. It is known, however, that crack initiation begins many cycles before a 

leak path is present. Therefore it was warranted to research and develop a method for 

detecting fatigue cracks when they initiate, but before they result in leak rates large enough to 

contaminate a process. AE is one method for detecting crack initiation and is a proven, 

reliable technique for monitoring fatigue crack growth. 

To accurately predict cycle life an evaluation and some assumptions must be made on 

the recorded data. A determination must first be made as to which variables are likely to have 

the greatest impact on the desired output variable, in this case cycle life. Once a selection has 

been made, a prediction can be made on the variables through the use of neural network 

analysis. Tests incorporating filament wound composite pressure vessels have proven neural 

network analysis to be a reliable method for predicting burst pressures [Kalloo, 1998; Hill, 

1992], while tests incorporating aluminum-lithium weld specimens have proven successful in 

predicting ultimate weld strength through the use of neural networks [Hill et al., 1993]. 

AE signal data sets have characteristics that many times can be used to identify failure 

mechanisms. Metals have various AE parameters that correspond to such mechanisms as 

plastic deformation or crack propagation. Within these categories can exist sub-categories 
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that are separable by the severity or length of the signal. A third mechanism of leakage was 

noted to exist after crack breakthrough as a result of internal vacuum release. Each of these 

failure mechanisms tends to generate a characteristic AE signal. Moreover, each mechanism 

contributes its effect to the integrity of the total structure in varying degrees. As a result each 

mechanism is weighted differently by the neural network according to the effect it has on the 

fatigue life. Plastic deformations tend to have weighting coefficients near zero while crack 

propagations have much higher values. Neural networks provide an automated technique for 

sorting out the AE associated with the various mechanisms and determining the appropriate 

coefficients or weighting functions [Sachse et. al., 1992] to predict a cycle life to failure for 

each tested sample. 

1.2 PREVIOUS RESEARCH 

AE is a proven and commonly used method for weld monitoring. Unfortunately, no 

previous research has been found which incorporates both a tungsten/inert gas (TIG) welding 

and thin materials using sheet stocks less than 0.031 inch thick. The most applicable research 

to date focuses on structures constructed of plate or bar stocks which incorporate a TIG or 

arc welding process. Materials used in these tests are much thinner sheet stock, 0.004 inch 

thick, making the value of existing research questionable. 

1.3 CURRENT RESEARCH 

The purpose of this research focused on two requirements: (1) to develop a method 

for identifying the occurrence and characteristics of specific fatigue modes for commonly used 

stainless steels and nickel-based alloys; and (2) to develop a method for predicting metal 

bellows cycle life. By supplying an applied load, in this case an extension/compression cycle 

and an internal vacuum pressure, the fatigue modes could be detected through the use of an 

acoustic emission monitoring system and categorized by evaluating AE parameter data. The 

recorded AE parameter data could then be developed for input into a neural network for cycle 

life prediction. 
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CHAPTER 2 

BACKGROUND THEORY 

2.1 ACOUSTIC EMISSION 

Acoustic emission is a noninvasive, passive technique for detecting fatigue in 

structures under load. Any material (metals, composites, wood, etc.) can be analyzed by this 

method. Its two greatest benefits over other nondestructive techniques are that a structure 

can be analyzed both globally and on a real time basis. Other nondestructive techniques such 

as eddy current, radiography, and ultrasonics allow for monitoring a small area of a structure 

at any one time. In many cases complex geometry can greatly reduce the test accuracy and 

extend the time required for testing, making these methods costly and/or ineffective. For AE 

this is not a problem since the waves generated by flaw growth activity propagate throughout 

the structure. AE is also advantageous in that a structure can be tested while in service, 

reducing costly down time. These advantages make AE the most plausible method for 

monitoring edge-welded metal bellows for fatigue crack detection. 

Acoustic emission transducers (Figure 2.1) detect the stress waves emitted from 

sudden deformations within a material. Such deformations result in a rapid release of energy 

that propagates through the material until it dampens out or attenuates. Within the transducer 

is a piezoelectric element which acts as a receiver and transmitter. The energy wave is 

received by the transducer which in turn emits a voltage signal in response to the energy wave 

received. A couplant layer acts as a waveguide allowing the released energy waves to be 

detected by the transducer. 

Figure 2.1. Resonant transducer for detection of acoustic emission activity. 
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The resulting voltage signal emitted by the transducer is transmitted to the data 

acquisition system where the signal is amplified and digitized. The waveforms and specified 

AE parameters are then recorded for each received signal. Figure 2.2 depicts an example of 

an AE transducer and data acquisition system used to detect cracking. As the crack 

propagates, it releases energy waves that are detected by the AE transducer. The received 

energy wave is then converted to an electrical signal by the transducer and sent to the data 

acquisition system where the signal is digitized and specified AE parameter data are extracted. 

DIGITIZED 
WAVEFDRM 

ENERGY WAVES 

RESDNANT 
TRANSDUCER 

TEST SPECIMEN DATA ACQUISITION SYSTEM 
(SIGNAL AMPLIFICATION AND 
AE PARAMETER EXTRACTION) 

Figure 2.2. AE transducer receiving, converting, and transmitting energy waves 
to the data acquisition system. 

Figure 2.3 represents a voltage versus time signal and the associated AE parameters as 

recorded by the data acquisition system. Amplitude is the peak voltage of the incoming signal 

expressed in decibels (dB). Counts is the number of times the voltage signal crosses a set 

threshold. By setting a high enough threshold, external sources of noise can be eliminated 

from the pertinent data. Setting a low threshold allows for smaller AE events to be detected. 

However, unless the environment is free of external noise sources, small AE events tend to be 

masked by higher amplitude sources. Counts-to-peak is the number of counts crossing a 

predetermined threshold before the signal reaches its maximum amplitude. Duration is the 

time in which the voltage signal exists above the set threshold. This is measured from the first 

time the signal crosses the threshold to the last time the signal falls below the threshold. 

Energy is the sum of all areas beneath the rectified voltage signal. Generally, the areas 

beneath the 0.0 volt line are inverted, or rectified, to represent a positive voltage that is 
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referred to as the Measured Area Under the Rectified Signal Envelope (MARSE). In Figure 

2.3 this parameter is represented by the sum of all shaded areas bounded by the waveform and 

the 0.0 volt line. Finally, the risetime is the time it takes for the signal to reach its maximum 

amplitude. 

DURATION • 
ENERGY 

JUUUUL 
I—' COUNTS-TO-PEAK (2) 

Figure 2.3 Typical waveform depicting measured AE parameters. 

THRESHOLD 

TIME 

COUNTS (22) 

2.2 NEURAL NETWORKS 

Neural networks are composed of numerous highly interconnected processing 

elements that work in parallel to solve a specific problem Like the human brain, neural 

networks cannot be programmed to perform specified tasks but must learn by example prior 

to correctly processing information. A benefit of neural network learning is that sets of test 

data can be generalized and evaluated without initially identifying or isolating the relevant 

factors from the remaining test data Regardless of extraneous data or the existence of data 

overlap, neural networks have an increased tolerance to noisy data and can work by learning 

all the pertinent data interactions for accurate prediction. 

Normally, a neural network will have several layers consisting of a pre-determined 

number of neurons. A neuron is a component of an artificial neuron that consists of a 

continuous differential transfer function (generally a hyperbolic tangent, sigmoid function, or 

simple threshold function) which prevents its output magnitude from becoming so large that 

other neurons effectively become zero The basic and most commonly used architecture of a 
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neural network consists of an input layer, a center or hidden layer, and an output layer. 

Connections exist between the neurons of adjacent layers to relay the output signal from one 

layer to the next. Fully connected networks occur when all nodes in each layer receive 

connections from all nodes in each preceding layer and are referred to as feed-forward 

networks. 

Information is input to the network through each neuron of the input layer. The input 

layer neurons' specific function is to direct information to the processing or hidden layer. The 

hidden and output layers contain neurons that process all incoming data. All inputs to each 

neuron are weighted, combined, and processed through a transfer function that controls the 

signal magnitude relayed through the neuron's output connection. 

An example of a simple neural network consists of a single artificial neuron (Figure 

2.4). Within the artificial neuron exist weight vector components, wj, and input vector 

components, Xj. Each input vector component is processed through and multiplied by its 

corresponding weight vector component. All resulting products are then summed up over all 

inputs to yield a NET output: 

NET = Si(wiXi) (1) 

- DUT = F(NET) 

Figure 2.4. An artificial neuron with a hyperbolic tangent activation function. 

In many cases each hidden and output layer is connected to an additional neuron called a bias. 

Bias neurons have a constant value of+1 but also have a weighted connection that trains like 

all other connection weights. Bias neurons improve the speed of training by simply outputting 
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a bias signal that applies a horizontal translation to the transfer function, resulting in a 

translation toward a more optimum (greater) slope within the sigmoid function. The 

translation term, 0, is a factor added to or subtracted from the total input of a neuron and is 

included as follows: 

NET = 0 + Si (wi Xi) (2) 

This model would suffice for modeling linear processes, but with nonlinear processes such as 

those encountered in this application, a nonlinear activation function, F, must be applied to the 

NET output. Here a nonlinear hyperbolic tangent activation function was employed as a 

squashing function: 
^NET -NET\ / / N E T , -NET\ OUT = F(NET) = [(e**1 - e"^1) / (e™1 + e™1)] (3) 

As NET approaches large positive values, OUT approaches a limiting value of+1; when NET 

equals 0, OUT equals 0; and when NET approaches large negative values, OUT approaches a 

limiting value of-1. Figure 2.5 represents a plot of this function along with the translation 

term 0. Use of this transfer function serves to normalize data and provide a nonlinear gain to 

allow each neuron to process inputs with both large or small magnitudes without incurring 

problems with noise saturation [Wasserman, 1989], 

-1.5 -L 

Figure 2.5. Hyperbolic tangent sigmoid function with translation term 0. 

Normally, networks containing multiple hidden layers will employ nonlinear activation 

functions throughout, so as to produce a nonlinear mapping result. Once a test data set has 

been applied and a state of optimization attained, the interconnection weights are saved to 

prevent further adjustments in the network structure. At this point the network is considered 

7 



to be "trained" and ready to make accurate predictions on various failure mechanisms using 

data sets comparable to those trained upon. 

2.3 REGRESSION METHODS 

There are considerable similarities between the theories of statistics and neural 

networks. Both are primarily concerned with data analysis. Data that can be generalized 

upon effectively by a neural network can usually be analyzed successfully using an appropriate 

statistical method. Regression is one such statistical method consisting of several types of 

analyses. 

Linear regression is a statistical technique that models the relationship between an 

independent variable and a dependent variable by fitting a linear equation to a set of collected 

data. The independent variable xi is associated with a value of the dependent variable Y | xi. 

The population regression line for a single independent variable is defined as: 

^Y|xl = Po + PlXi + Ei (4) 

The estimated model, a result of sample data taken from a population, is an estimation of the 

regression line produced by the population and is defined as: 

y = bo + biXi + 6i (5) 

The value Ei is a random error of the population model and must have a mean value of 

zero. Since the value 8i is an estimation of the population model's random error, a non-zero 

value will exist. However, with the random error, Ei, of the population line being unknown 

the expected value, Si, is assumed to be zero. To evaluate the effect of errors, an analysis of 

the resulting residuals (errors) can be made. 

Using the method of least squares, the variables b0 and bi (estimates for p0 and pi) can 

be found so that the sum of the squares of the residuals are minimized. The least squares 

estimates bo and bi are computed as: 

b o = y - b , x (6) 

b1=[E(x1-x)(y1-y)] /Z(x l-x)2 (7) 
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Multiple linear regression is a second statistical technique that models the relationship 

between two or more independent variables and a dependent variable by fitting an equation to 

a set of collected data. Generally, most applications of research data will contain complex 

mechanisms that require more than one independent variable in the regression model. For a 

set of k independent variables, xi, x2, .... , xk, the mean of the dependent variable 

YI xi, x2, .... , xn is given by the population multiple linear regression model: 

HY| xl,x2,....,xk = Po + P1X1 + p 2 x 2 + + pkxk + E (8) 

The estimated model, a result of sample data taken from a population, is an estimation of the 

regression line produced by the population data and is defined as: 

y = b0 + bixi + b2x2+ +bkxk + e (9) 

For both methods, fitted values, bi, are used as estimates of the parameters, Pi, of the 

population regression model. These predictor variables are computed by minimizing the sum 

of the squares of the vertical deviations from each data point to a fitted line. If a point lies on 

the fitted line, then the vertical deviation is zero. By first squaring then summing all 

deviations, cancellations between positive and negative values are alleviated. 

In some cases, linear regression methods can result in poor predictions due to non-

linearity existing between variables. To consider the effects of such non-linearities, a 

transformation may be applied to the data set. A regression model which contains 

transformed x and/or y variables does not result in the model becoming nonlinear. For 

example, if a logarithmic model is applied to Equation (5), the transformation occurs to the 

natural x variable. 

y = a + b log xi + log e (10) 

By letting xi' = log x and e' = log 8, the equation can be written as: 

y = a + bxi' + e' (11) 

Although the model has become nonlinear in the x variable, it remains linear in the b 

parameter and can therefore be treated as linear [Walpole et. al., 1998]. 

An advantage of today's statistical software is the ability to quickly evaluate many 

models for a set of variables. By using an advanced regression option, it is possible to 
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examine all combinations of input variables as long as they are not linear combinations of 

other terms within the model. When a linear relationship exists between variables, only one of 

the terms is required in the model to reflect the contribution of all variables. With no linear 

combinations existing and setting the number of independent variables to k = 3, for simplicity, 

there exists nine possible terms: xi, x2, x3, xi x2, xi x3, x2 x3, xi2, x2
2, and x3

2. Therefore, for a 

dependent variable, y, the complete regression model is defined as: 

y = b0 + bi xi2 + b2x2
2 + b3 x3

2 + b4xi x2 + b5 xi x3 + b6x2x3 + e (12) 

It is unlikely that all variables will have a significant impact on the model. Therefore, an 

analysis of adjusted R2 values and p-values must be made to determine which model 

combination offers the greatest prediction ability. The adjusted R2 (sample coefficient of 

multiple determination) value is a measurement that explains the proportion of the total 

variation in the values of the variable y that can be explained by the regression model with the 

values of the random variables xj. The p-value is a measure of the statistical significance of 

the model [Walpole et. al., 1998]. Generally, the simplest model with the highest adjusted R2 

value and lowest p-value (less than 0.1) is considered to have the "best" predictive 

characteristics. Once a model combination has been selected, plots of the residuals, resulting 

from the calculated variable y, can be generated. These plots are important in that they will 

identify the scatter of error (a uniform scattering about the lines is desired), identify whether a 

linear "fit" of the data exists, and check for normality of the errors in the model. Cases can 

occur where model combinations show excellent predictability resulting in a high adjusted R2 

value and a low p-value. However, when the statistics of the model is evaluated, it is 

discovered the model has been over-specified, resulting in a non-linear model that follows a 

series of points and fits the data. When the model assumptions are not satisfied, the statistical 

method being used may not be appropriate. Therefore, caution must be exercised in assuming 

the regression model to be correct without first evaluating the residual plots for linearity and 

testing model assumptions. This is especially important in cases where there are many 

independent variables relative to the number of observations available for regression model 

development. If the number of terms approaches the number of observations, the adjusted R2 

will be artificially inflated, making a poor model appear attractive. 
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CHAPTER 3 

EQUIPMENT SET-UP AND TESTING 

3.1 EQUIPMENT SET-UP 

3.1.1 METAL BELLOWS SEAL 

Four test sets of various materials, consisting of nickel-based alloys and stainless 

steels, were evaluated. Test pieces (Figure 3.1) consisted of a 35 convolution bellows core 

and two end adapters. The end adapters were machined from 316L stainless steel bar stock 

and designed with flats for placement of three piezoelectric transducers in a triangular 

arrangement. One adapter was designed with a single flat and end tap while the other was 

designed with two flats 180° apart and a through tap. Welded to the bellows core by TIG 

welding, the adapters were located such that the flat planes were parallel. 

SINGLE FLAT 
ADAPTER 

DUAL FLAT 
ADAPTER 

\ 35 CDNVDLUTIDN 
BELLDWS CDRE 

Figure 3.1. Typical metal bellows test specimen. 

3.1.2 FINAL ASSEMBLY 

The welded assembly was incorporated into a final assembly before installation onto 

the test bed. It was required to attach a secondary adapter as an interface between the dual 

flat adapter of the test seal and the load cell. This secondary adapter was designed with 

grooves for placement of o-rings to seal mating surfaces. The completed final assembly was 

then installed on the testbed by threading the single flat adapter to the shaft and bolting the 
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load cell to the support bracket by use of socket-head cap screws. A pressure line was then 

attached to the load cell for connection to the testbed prior to pressurization of the system. 

TRANSDUCER 3 

TD DATA 
AOUISI TIDN 

CYCLE CDUNTER INPUT 

<̂ = 

TD PRESSURE 
VESSEL 

TD DATA 
ACQUISITION 

CHANNEL 1 

CHANNEL 2 

CHANNEL 3 

-v -A, V -Ar • V 

Figure 3.2. Final assembly set-up 

-V 

3.1.3 AE TRANSDUCERS AND PREAMPLIFIERS 

Signal waveforms and AE parameter data were collected and filtered by implementing 

three piezoelectric transducers, with a 150 kHz resonance, and preamplifiers with a 100-300 

kHz bandpass filter and 40 dB gain. The transducers were attached to the machined flats of 

the adapters by use of a thin silicon film which acted as a couplant and adhesive. The 

transducers' relational positions were calculated to be 21 inches in the horizontal and 1.5 

inches in the vertical directions. Flats placement allowed for the transducers to be configured 

in a triangular arrangement. This arrangement was selected to determine how stress waves 

propagate through a bellow's complex geometry. If attenuation through the material was 

minimal, data would be detected by all three sensors. Existing data sets contain the required 

information for analyzing and determining the regions of highest activity. 
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3.1.4 PRESSURIZATION 

Once a metal-bellows test sample was installed on the testbed, the pressure hose was 

connected to the primary pressure port. A vacuum pump hose was then connected to the 

secondary port and the pump activated. Evacuation of a pressure vessel beneath the testbed 

was initiated until a 25 inches Hg pressure reading was noted on the attached pressure gauge. 

By evacuating the ID. of the test samples, a stressing condition similar to that of O.D. 

pressurization could be achieved. In normal operating conditions, the bellows used herein 

experiences O.D. pressure. 

In addition, the system consisted of a pressure sensor that served as a relay to the 

system power. Incorporated in the sensor was a control setting for maximum allowable 

system pressure. By setting the pressure sensor at 5 inches of Hg higher than system pressure, 

an automatic system shutdown would initiate once the sensor detected a pressure increase 

exceeding the set limit. Figure 3.3 represents the set-up configuration for major components 

of the testbed. 

EfO ~ ~ O] 3 
Eb . oh 

a U 
Figure 3.3. Testbed components and set-up configuration. 
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3.1.5 DATA ACQUISITION 

The three transducers, connected to their corresponding preamplifiers, were connected 

to Channels 1 through 3 on the MISTRAS 2001 data acquisition system card. AE data 

acquisition settings were as follows: Preamp Gain = 40 dB, Gain = 20 dB, Threshold = 50 

dB, PDT = 400 |LIS, HDT = 600 us, HLT = 800 us. Once the test was started, the data 

acquisition system recorded digitized waveforms and extracted the AE parameters for 

amplitude, counts, counts-to-peak, duration, energy, and risetime as received on each of the 

three channels. Standard information of time, date, and channel were also recorded as data 

were received. 

3.2 TESTING PROCEDURE 

Changes were incorporated into the test variables to initiate excess stressing within the 

welds and thereby promote early fatigue failure. These changes consisted of the applied 

internal vacuum of 25 inches of Hg and an increase of 0.150 inch applied to the extension 

portion of the bellows stroke length. An AE source simulation technique, the pencil lead 

break, was performed to check the output of each transducer before test start-up. 

Data acquisition and cycling of the test seal were initiated simultaneously. The seal 

was subjected to a continuous cyclic tension/compression mode. At the time of failure an 

internal pressure release triggered the system, and shut-down was initiated when the internal 

vacuum pressure reached 20 inches of Hg. This allowed the leakage signal to be detected, 

prevented final bellows separation from coloring recorded AE data, and stopped the system at 

the actual cycle count when material failure occurred. 

After failure and system shut-down, the set-up was disassembled and the test specimen 

inspected for leakage. The failure site was determined by pressurization of the ID. and 

applying "snoop" (a soapy solution) to check for bubble formations. The failed section was 

marked and machined from the bellows core. The section was then mounted and a visual 

examination of the specimen made to determine if failure occurred within the welded region or 

within the parent material. 
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3.3 DATA PROCESSING 

Once data were collected by the MISTRAS system, they were visually analyzed for 

trends in the AE parameters and prepared for use in the neural network analysis. It was 

necessary, however, to first convert the MISTRAS data files to ASCII format. Once 

converted, the files could be brought into a spreadsheet program (Excel 7.0 for Windows 95) 

where all AE parameter data could easily be analyzed. Once an evaluation was made on the 

data, those data believed to be required for neural network analysis were removed from each 

test's data set and incorporated into a text file. Text within these files were developed into 

distributions for the AE parameters evaluated. These distributions were then input for training 

and testing a back-propagation neural network for prediction of cycle life. A software 

package produced by NeuralWare, Inc., called NeuralWare Professional II/Plus™, provided 

the ability to produce neural networks in a graphical environment. 

A statistical analysis was then performed on all data sets to determine if a method of 

regression could accurately predict cycle life. Data sets, consisting of the first 250 hits of each 

test, were manipulated into a cumulative data table. AE parameters of amplitude, counts-to-

peak, duration, energy, and risetime were summed for input into STATGRAPHICS Plus 3.3, 

a software package that could quickly evaluate and represent the data through statistical 

analyses, graphing functions, and model development. 
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CHAPTER 4 

NEURAL NETWORKS 

4.1 BACK-PROPAGATION NETWORK 

The back-propagation neural network used trains towards a relationship between a set 

of input vectors and an output vector by attempting to minimize the difference (delta) between 

the predicted and actual output vectors. Using a gradient descent approach the network is 

able to learn the correct output vector and its relationship to a series of input vectors. The 

learning process consists of two phases. First the input vectors are passed through the 

network to generate a predicted output vector. An error is then computed for each input 

vector based upon the desired output vector. This error is then back-propagated through the 

network, upgrading the weights so as to reduce the overall network error. Stopping 

conditions for back-propagation neural network training are typically set such that the weight 

changes have reached some minimal value or the average error across a series of input vectors 

is below some desired level. Models incorporating hyperbolic tangent transfer functions, the 

activation function used herein, generally aid in generalizing learning characteristics, can 

positively affect results by accelerating learning for some models, and improve on prediction 

accuracy. 

4.2 BACK-PROPAGATION ARCHITECTURE 

The back-propagation neural network architecture consisted of an input layer, two 

hidden layers, a fully connected bias, and an output layer (Figure 4.1). The input vector was 

comprised of a single variable defining material type (0.25 for Inconel 718 and 0.50 for 350 

stainless steel) and 51 variables defining the number of hits occurring for each amplitude from 

50-100 dB. The output vector consisted of one variable defined as the actual cycle life. 
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Figure 4.1. Back-propagation neural network used for predicting cycle life. 

The number of neurons in the hidden layers have an effect on prediction accuracy. 

Therefore, an optimization process is generally required to design a network capable of 

accurate predictions, in this case within ±5 percent of the actual cycle life. After optimizing 

the networks, it was required to modify the number of hidden layer neurons for each material. 

Inconel 718 was optimized with 15 neurons per hidden layer while the 350 stainless steel 

required 10 neurons. The number of neurons applied within the hidden layers have an effect 

on how well the network will fit the training data. If the number of neurons are excessive, the 

network will fit training data well but will have problems when predicting on the test data. If 

too few neurons are used, the network will have problems fitting both the training and the test 

data. A good fit is generally obtained when the errors in fitting the test set are of the same 

order of magnitude as those from the training set. Due to the low noise levels in the test data, 

the training error was required to converge near zero to accurately predict on the test data. 

Once test data resulted in errors below the required 5 percent, the network was considered to 

be properly trained. 

A network is considered "trained" once the weights are adjusted to obtain the required 

output(s). The purpose of the training is to reach some optimal solution that offers a 

reasonable prediction within some desired tolerance. Once this requirement is met, the 
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network can be used as a predictive tool to test on inputs containing patterns recognized and 

recorded from the training data sets. 

4.3 BACK-PROPAGATION ALGORITHM 

The supervised learning approach is the most commonly used method for training a 

back-propagation neural network. This approach requires historical data with examples of 

both inputs and outputs to train the network. It is used to build prediction, classification, and 

time series models. It is referred to as supervised learning because during training the 

network can compare the prediction results to the actual results and adjust the model 

accordingly. The back-propagation algorithm is as follows [Walker et. al., 1996]: 

Stage 1 : Forward propagation of input vector 

Step 1 : Initialize weights to small random values. Values are generally set between 0 and 1 

or -1 and 1 depending on the activation function employed. 

Step 2 : When stopping condition is false: 

Step 3 : Compute input sum and apply activation function for each middle neuron: 

yj = f(Wij*xi) 

Step 4 : Compute input sum and apply activation function for each output neuron: 

Zk = flV jk*yj) 

Stage 2 : Back-propagation of error 

Step 5 : Compute error: 6k = (tk - zk) * f (Wjk * yj) 

Step 6 : Compute delta weights: AVjk = LC * 5k * yj + {Momentum * AVy(old)} 

Step 7 : Compute error contribution for each middle layer neuron: 

8j = 5k*Wjk*f(W i j*x i) 

Step 8 : Compute delta weights: AWy = LC * 6j * x< + {Momentum * AWy(old)} 

Step 9 : Update weights: Qra(new) = Qrs(old) + AQre 

Step 10 : Test for stopping condition 

Typically, stopping conditions for a back-propagation neural network are when the weight 

changes or the average error across a series of input vectors have reached some defined 

minimum. 
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4.4 BACK-PROPAGATION EXAMPLE 

Consider a back-propagation neural network in its most basic form with 2 inputs, a 

hidden layer consisting of 2 neurons, and a single output as shown below. In this example we 

wish to find the new weights when the network is presented with an input vector xj = [ 0.0, 

1.0 ] and a target vector Z\ = 1.0 using a learning coefficient of 0.05 and a hyperbolic tangent 

activation function. The weights are randomly initialized as: 

X] Y, 

W;j = 

vk = 

0.5 

-0.1 

0.3 

-0.3 i 0.6 

0.8 I 0.2 

-0.1 , -0.7 

Compute the hidden layer output using the relationship yj = Wy * x;: 

yi = (Wn * xi) + (W2i * x2) + Wm = (0.5 * 0.0) + (-0.1 * 1.0) + 0.6 = 0.5 
y2 = (Wn * xO + (W22 * x2) + W2B = (-0.1 * 0.0) + (0.8 * 1.0) + 0.2 = 1.0 

Y1(OUT) = %i) = (eyl - e'yl) / (eyl + e'yl) = 0.462 
Y2(OUD = % 2 ) = (ey2 - ey2) / (ey2 + ey2) = 0.761 

Compute the network output: 

Zi = (V11*Y,) + (V12*Y2) + V1B 

= (0.3 * 0.462) + (-0.1 * 0.761) - 0.7 = -0.637 

Z1(OUT) = f(zi) = (ezl - e'zl) / (ezl + e"zl) = -0.563 

Compute the network error : 

ak-Sz^Ok-Zk)*^,) 
= (Z1-Z1(our ))*[l+([eZ1(OUT) 

[ l - ( [ e ' Zl(OUT) -Zl(OUT) ] / [e' + e 
= (1.0 + 0.563) * (1 - 0.510) * (1 + 0.510) 
= 1.156 

•Zl(OUTh 1 i-gZKOUT) + e-Zl(OUT)i -̂i 

•Zl(OUT)-
-e 
Zl(OUT) ])] 
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Update middle to output layer weights using AVjk = LC * 8k * Yj: 

AV„ = LC * 8zi * Y1(OUT) = 0.05 * 1.156 * 0.462 = 0.026 
AVi2 = LC * 8zi * Y2(OUT) = 0.05 * 1.156 * 0.761 = 0.044 
AVIB = LC * SZ1 * Bias = 0.05 * 1.156* 1.0 = 0.057 

'k(NEW) 0.326 -0.055 -0.642 

Second stage : Compute the middle layer error as 5} = 8k * Vjk * f (Yj) : 

8YI(OUT) = 5zi * Vu * f (YI(OUD) 

= 8Z1 * V„ * [1 + ([eY1(OUT) - eY1(OUT)] / [eY,(OUT) + eYHOXm])] 
[ l - ( [ e Yl(OUT) -Yl(OUT) ] / [e Yl(OUT) , -Yl(OUT) 

' + e 
= 1.156*0.3 * (1 +0.431) * (1 -0.431) 
= 0.282 

8Y2(OUT) = Szi * Vi 2 * f (Y2(OUT)) 
= 1.156 * -0.1 * (1 + 0.642) * (1 - 0.642) 
= -0.067 

])] 

Update input to middle layers using AWy = LC * 8; * Xj: 

AWn = LC * SYKOUD * XI = 0.05 * 0.282 * 0.0 = 0.0 
AW12 = LC * 8YI(OUT) * x2 = 0.05 * 0.282 * 1.0 = 0.014 
AW21 = LC * 8Y2(OUT) * xi = 0.05 * -0.067 * 0.0 = 0.0 
AW22 = LC * 8Y2(OUD * x2 = 0.05 * -0.067 * 1.0 = -0.003 
AWIB = LC * 8YI(OUT) * Bias = 0.05 * 0.282 * 1.0 = 0.014 
AW22 = LC * 8Y2(OUT) * x2 = 0.05 * -0.067 * 1.0 = -0.003 

W ij(NEW) 

0.5 -0.285 

-0.1 0.796 

0.614 

0.196 

Typically, many cycles are required for training a back-propagation neural network. The 

number of cycles required for training is influenced by the choice of initial random weights. 

Generally, weights are updated after each training set or number of training sets (batch 

updating) are presented. By specifying a convergence criterion, or root mean square (RMS) 

error value, the network will continue to train until a comparison between the predicted value 

and actual value has meet the specified error level. 
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CHAPTER 5 

ANALYSIS AND RESULTS 

5.1 AE DATA ANALYSIS 

Four sets of metal bellows samples (stainless steels and nickel alloys) were fatigue 

tested with data taken using acoustic emission (AE) transducers. AE parameter data sets 

were recorded and analyzed for separation of crack initiation, crack propagation, and 

turbulent eddies from bellows leakage. Amplitude, duration, and time parameters were 

determinants for final separation of the various failure mode regions. All failure modes were 

noted to lie within an amplitude range between 50 and 100 dB, which is typical for ductile 

metals; however, this variable alone was insufficient for failure mechanism separation. 

Analyzing the duration versus amplitude plots resulted in suprisingly well separated regions. 

Plastic deformations associated with fatigue crack initiation were found to have low 

amplitudes and low durations. Crack propagation had initially low amplitudes and moderate 

durations progressing toward high amplitudes and long durations. At failure, eddy turbulence 

had a progression from low to high amplitude with peak durations that remained constant. 

Correlations in data and identification of fatigue modes can many times be made by 

analyzing AE data (amplitude, duration, energy, etc.) for trends in activity. Unfortunately, an 

analysis of recorded data was found to be inconclusive since no specific trends could be 

visually identified in the test data. It was concluded that neural networks would need to be 

implemented to identify any hidden trends which could be correlated to cycle life. 

Graphical plots of the AE signal's duration versus amplitude data show typical fatigue 

crack growth behavior, where Region I represents crack initiation (Figure 5.1); Region II, 

where stable crack propagation occurs (Figure 5.2); and Region III, where rapid unstable 

crack growth and failure of the sample takes place (Figure 5.3) [Smith, 1993]. Figure 5.4 

represents the final duration versus amplitude plot after vacuum evacuation. 
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Figure 5.1. Duration versus amplitude plot with crack initiations, Region I events. 
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Figure 5.2. Duration versus amplitude plot with stable crack propagations, Region II events. 
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Figure 5.3. Duration versus amplitude plot with rapid crack growth, Region III events. 
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Figure 5.4. Duration versus amplitude plot with vacuum evacuation. 

23 



At any one duration, the failure mode tended to have a scattering of approximately 10 

dB with the total amplitude ranging from 50 to 80 dB. Outlying hits were occasionally 

detected between 80 to 100 dB. AE parameters remained constant for crack initiations, 

Region I events, which consisted of generally short durations (< 1000 (as) and short 

amplitudes (50-60 dB). An increase in hits and durations was evident as events transitioned 

into crack propagation or Region II events. Crack propagation had initially low durations (« 

1000 |is) that transitioned to moderate durations (« 3000-7000 |us). Amplitudes were found 

to take one of two directions when transitioning through the crack propagation stage. 

Amplitudes showed moderate change, remaining short (50-60 dB) or had an increase over a 

longer range (60-75 dB). As rapid crack growth, Region III events, occurred, high 

amplitudes (> 60 dB) and long durations (> 3000 |is) resulted. At failure, eddy turbulence 

had a progression from low to high amplitudes (60-80 dB) with low durations (« 2000-3000 

|is) or durations that progressed to peak values of the test (some tests resulted in durations as 

high as 35,000 |is). The magnitude of duration is likely influenced by crack geometry and 

leakage rate. 

In many instances, incoming hits were noted to occur as single channel hits. Signal 

propagation through the bellows cores consisted of numerous directional changes as a result 

of bellows geometry. As a result, high attenuation levels were experienced by the hit energy 

signal and complete propagation was received only by the transducer nearest the source of 

activity. Thus, source location from the AE data was not possible, in that location can only 

occur if two or more transducers are able to receive the same AE event. 

5.2 AMPLITUDE DISTRIBUTIONS 

The acoustic emission amplitude parameter, A [dB], is a logarithmic representation of 

the peak signal voltage, V [V], of the AE waveform: 

A = 201og(V/Vi) (12) 

For this application, Vi = 1 |LIV at the sensor output and is chosen as the 0 dB 

reference because it is the lowest detectable voltage, just slightly above the noise level of the 

system electronics [Mitchell, 1984]. 
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Acoustic emission amplitude distributions (hits/events versus amplitude histograms) 

have been shown to contain information which allows for the identification of failure 

mechanisms in materials [Pollock, 1981]. The identification comes in the form of "humps" in 

the amplitude distribution, each of which represents a failure mechanism. For metals, these 

failure mechanisms include plastic deformation and cracking. As a result of the testing 

procedure, a third mechanism was observed herein: leakage from release of the internal 

vacuum as a result of material breakthrough. Figures 5.5 and 5.6 represent test specimens 

that define the characteristic humps for the 350 stainless steel and Inconel 718 nickel alloy. 

There appear to be five primary humps for each material with moderate overlap between 

them. 

Figures 5.5 and 5.6. Cumulative hits versus amplitude histogram plots with defined failure 
mechanism "humps" 

The extent of overlap between these regions is a function of the attenuation 

experienced. Factors such as material properties or geometry are also major factors in the 

extent of attenuation. In the design of metal bellows, geometry is multidirectional, and as a 

result, reflective waves are frequent, resulting in attenuation of the output signals. This was 

proven by the high number of single sensor hits noted within the reviewed results. 

Fortunately, the amplitude distributions had enough separation in each failure region to allow 
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for a moderately accurate prediction. Secondly, the data was not considered to be excessively 

noisy; therefore, a classification of noise from "good" data was not required. 

In Figures 5.5 and 5.6 it can be seen that the various failure mechanism humps are 

comprised of normally distributed AE amplitude bands. These normalized distributions are 

the result of measurements being taken as logarithms, which tend to have such distributions 

[Tennant-Smith, 1985]. Approximations for 350 stainless steel (Figure 5.5) show two failure 

mechanism humps from 45-62 dB due to plastic deformation, two failure mechanism humps 

from 58-71 dB associated with crack initiations and propagations, and one failure mechanism 

hump from 70-75 dB due to leakage. Approximations for Inconel 718 nickel alloy (Figure 

5.6) show two failure mechanism humps from 49-64 dB due to plastic deformations, two 

failure mechanism humps from 63-79 dB associated with crack initiations and propagations, 

and one failure mechanism hump from 70-75 dB due to leakage. Overlap within the 

amplitude distributions requires the use of neural networks to determine the contribution of 

each mechanism. 

5.3 FATIGUE ANALYSIS 

Inspection of failure sites revealed typical ductile failures occurring at the inner 

diameter (ID.) welds within the heat affected zone (HAZ). ID. weld failures were expected 

due to the alternating stresses placed on the welds by the cyclic loading and applied internal 

vacuum. Finite element analysis models have supported this observation, showing the highest 

stresses to be located at the I.D. welds. In extension, maximum stresses focus at the ID. on 

the inner and outer walls of the diaphragm (Figure 5.7). 
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Figure 5.7. Stress distribution at I.D. weld during stroke at maximum extension. 

In compression, stresses shift to the flat and first I.D. ripple transition (Figure 5.8). 

Such cyclic stressing results in the material undergoing a plastic deformation and 

embrittlement process. A period is observed where no AE activity is evident. Within this 

period the material undergoes a stage of strain-hardening. The material's dislocation density 

increases with deformation resulting in a reduction in dislocation movements. This results in 

an increase in tensile strength and a decrease in ductility of the material. As strain hardening 

increases within the material, a critical point is achieved where fatigue cracking (a brittle 

failure mechanism in a normally ductile material) occurs, and high levels of AE activity are 

evident. 
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Figure 5.8. Stress distribution at I.D. weld during stroke at maximum compression. 

Mounted sections were evaluated at the site of failure. All failures occurred within the 

heat-affected zone (HAZ), a region that experiences reduced material strength as a result of 

transitional changes in grain structure due to welding. Weld failures were prevalent at I.D. 

locations, typical for the applied pressure conditions of these tests. Figures 5.9 and 5.10 

represent typical failures for the nickel alloy and stainless steel specimens, respectively. 
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Figures 5.9 and 5.10. Typical HAZ region failures for nickel-alloy and stainless steel 
materials, respectively. 

An investigation was made to determine whether a bellows experiences a nonuniform 

loading or displacement within a stroke. It was hypothesized that the existence of a 

nonuniformity would be consistent with failures occurring at a specific region of the bellows 

core. Regions of interest were the stationary and moving ends of the bellows. It is generally 

accepted that a bellows can be evaluated as a spring when analyzing loading conditions. 

Therefore, a uniformly distributed loading and linear displacement would exist as a 

compressive or tensile force is applied. 

After each test specimen experienced failure, a leak test was performed to determine 

the failure site. Table 5.1 lists specimen identifications and failure locations, noted from the 

dual flat adapter, for the four materials tested. Figure 5.11 represents a histogram of failure 

locations for all materials tested. Failure locations tended to be higher in occurrence on the 

fixed end with the remainder of occurrences scattered. An excessive loading condition or a 

nonlinear displacement may exist in this region of highest occurrence. To support such an 

argument, however, a larger data set would need to be evaluated in order to verify that 

occurrences have a tendency to localized in this region. 
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Table 5.1. Failure locations for each test specimen with reference to the dual flat adapter. 

TEST 
IDENTIFICATION 

0100 
0200 
0300 
0400 
0500 
0600 
0700 

0800 
0900 

| 1000 

n'oo" 
1200 

1300 
1400 
1500' 
1600 

r 1700 ~ 

r 1800 
[ 1900 ™ 

2000 | ____ 

H ' 2200 

2400 
2500 
2600 

2700 

I 2800 

MATERIAL 

350 stainless steel (NHT) 
350 stainless steel (NHT) 

350 stainless steel (NHT) 
Inconel 625 nickel alloy 
Inconel 718 nickel alloy 
Inconel 718 nickel alloy 

Inconel 718 nickel alloy 
350 stainless steel (HT) 
350 stainless steel (HT) 

350 stainless steel (HT) 

Inconel 625 nickel alloy 

Inconel 625 nickel alloy 

Inconel 625 nickel alloy 
350 stainless steel (HT) 
350 stainless steel (HT) 
350 stainless steel (HT) 
350 stainless steel (HT) 
Inconel 718 nickel alloy 
Inconel 718 nickel alloy 

Inconel 718 nickel alloy 

Inconel 718 nickel alloy 

350 stainless steel (HT) 

350 stainless steel (HT) 

350 stainless steel (HT) 
350 stainless steel (HT) 

350 stainless steel (HT) 
350 stainless steel (HT) 

350 stainless steel (HT) 

FAILURE LOCATION 

16th I.D. weld 

2nd I.D. weld 
2i^fi5rweid 
15th I.D. weld 
2nd I.D. weid 
2nd I.D. weld 

3rd I.ID. weld 
5th i.D. weid 
8th i.D. weid 

10thil.D.weld 

lettTTDTwekr 
34th I.D. weld 
5th I.D. weld 

24th I.D. weld 
6thTD7weid 
30th |.b. weld 

13thTDTweid 

10th LpTweld 

2nd I.D. weid 

24th and 33rd I.D. welds 

2nd i.D. weld 

5th LD. weld 

8th i.D. weid 
21st i.D. weld 

1st I.D. weld 
8th I.D. weld 

5th I.D. weid 

NHT = non-heat treated HT = heat treated 
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Figure 5.11. Histogram of weld failure locations for all materials tested. Convolution 
number is with reference to the dual flat adapter. 

5.4 NEURAL NETWORK RESULTS 

The AE variable of amplitude has proven to be effective for prediction. When formed 

into an amplitude distribution, a neural network has been successful in identifying trends and 

predicting burst pressures in composite pressure vessels [Hill, 1992]. From each test 

conducted herein, amplitude distributions were developed for the first 100, 250, 500, and 

1000 hits. Evaluation of each distribution set resulted in the conclusion that the 250 hit 

distributions were most effective for prediction. All other distribution sets tended to have one 

or more predictions with a percent error above 15 percent, some as high as 200 percent. It is 

believed the 100 hit amplitude distributions did not contain sufficient data for the neural 

network to characterize trends. The 500 and 1000 hit amplitude distributions were believed 

to result in poor prediction due to the presence of numerous failure mechanisms. Several tests 

failed with less than 1000 total hits; therefore, these distributions included an increased 

percentage of amplitude data consisting of crack propagation failure mechanisms. 

Final AE parameter data consisted of the amplitude distribution, in 1 dB increments 

(50-100 dB) for the first 250 hits (Table 5.2), and the final cycle life. Amplitude distributions 

were used as network inputs while actual cycle lives were supplied as target values for the 

supervised training phase. 
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Each material, Inconel 718 nickel alloy and 350 stainless steel, consisted of seven 

tests that were used to train and test a back-propagation neural network for prediction of 

bellows cycle life. The network was structured with an input layer consisting of the amplitude 

distribution data, two hidden layers for mapping failure mechanisms, and an output layer 

containing the target cycle life. The trained network was then applied to the remaining tests 

to determine if cycle life could accurately be predicted. 

Table 5.2 : Training and testing data for Inconel 718 and 350 stainless steel test specimens. 

TEST ID / MATERIAL 

0500/Inconel 718 

0600/ Inconel "fyf~ 

0700/Inconel 718 

1800/Inconel 718 

1900/Inconel 718 

2000/Inconel 718 

2100/Inconel 718 

0800/350 S.S. 

0900/350 S.S. 

1000/350 S.S. 

1400/350 S.S. 

t T500/350S.S. 

1600 / 350 S.S. 

1700/350 S.S. 

CYCLES TO 
FAILURE 

91,145 

40^073™" 

67,660 

51,818 

11,392 

27,216 

213,668 

82,428 

108,950 

265,803 

92,718 

511,702 

303,948 

AMPLITUDE DISTRIBUTION DATA (50-100 dB)* 

52 27 37 23 23 18 12 9 9 9 7 6 1 3 5 1 1 3 2 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

"44 65 g g i s s i r n M r o ^ 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
36 83 113 12 1 1 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
18 1213 11 13 13 13 16 2 2 1 8 5 1 0 7 1 5 1 5 9 7 6 4 3 3 3 6 5 1 
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
8 9 18 18"27 1755 3 7 8 6 5 15 10 17 16 20 20 6 3 3 2 0 1 OK) 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
12 20 35 32 32 35 25 9 16 5 10 6 2 1 2 0 0 0 3 1 3 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 9 14 32 34 42 49 27 7 3 1 5 1 3 2 3 4 1 0 0 1 1 0 0 0 0 0 1 0 1 
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 
40 36 42 18 16 16 6 7 3 5 2 4 3 4 2 4 6 4 2 4 2 0 1 0 3 2 1 1 2 3 
1 2 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
49 97 72 8 4 3 1 1 2 0 1 0 1 2 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 
1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 
30 29 22 15 6 6 5 5 5 6 3 7 1 0 1 1 3 1 0 0 0 0 0 0 1 0 2 2 0 0 1 
0 0 2 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 
30 23 4 5 4 9 25 51 81 17 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
47 36 57 31 10 5 1 0 5 15 20 8 2 3 1 4 2 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
3211 3527 23 27 2020 19 16 1 2 3 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
61 1621 12 10 20 10 13 107 11 11 6 3 3 5 3 4 1 3 3 2 5 3 2 2 0 
1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

* Amplitude distributions consist of the first 250 hits occurring within a test. Tests having 
less than 250 total hits have amplitude distributions consisting of the total number of hits. 

Table 5.3 represents the neural network settings used in the training and testing stages. The 

network required training on four samples for the Inconel 718 and five samples for the 350 

stainless steel. Once trained the network was able to predict cycle life with a worst case error 
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of-4.45 percent and 2.66 percent for the Inconel 718 and 350 stainless steel, respectively. A 

secondary validation set of samples (Tests 2200 and above) was obtained for the 350 stainless 

steel and applied to the trained network. Three of the five samples fell within the ±5 percent 

error requirement, but two samples failed with large errors. Table 5.4 represents a summary 

of the actual and predicted cycle life values for samples tested by the trained networks. 

Table 5.3 : Neural network training and testing parameters 

PARAMETER 

Input Layer Neurons 

Hidden Layer 1 Neurons 
Hidden Layer 2 Neurons 

Output Layer Neurons 

Bias 

Learning Coefficient 
Learning Rule 
Transfer Function 
Momentum 
Transition Point 

Learning Coefficient Ratio 

P Offset 
Min-Max 

Convergence Criterion 

Epoch Size 

Input Range 

Output Range 

Cycles to Learn 

INCONEL 718 

52 

15 
15 

1 
YES 

0.005/0.010/0.010 

Normalized-Cumulative-Delta 
Hyperbolic Tangent 

0.400 
5000 
0.500 

0.100 
YES 

0.010 
4 

0.000 to 1.000 

-0.800 to 0.800 

2869 

350 STAINLESS STEEL 

52 
10 

10 

1 

YES 

0.035/0.035/0.005 
Normalized-Cumulative-Delta 

Hyperbolic Tangent 
0.400 
5000 
0.500 
6.500 

YES 

0.020 

3 * 

0.000 to 1.000 
-0.800 to 0.800 

1950 

Epoch size does not reflect the number of test samples (5 samples) used in network training. 

Table 5.4 : Summary of the network testing results 

Test ID / Material 

0700/Inconel 718 

1900/Inconel 718 

2 i o 6 7 T n ^ 
0800 / 350 Stainless 

1000/350 Stainless 

2200 /350 Stainless 

2300/ 350 Stainless 
2400 /350 Stainless 

2500 / 350 Stainless 

2800 /350 Stainless 

Actual Cycle Life 

67,660 

25,252 

27,216 

213,668 

'108,950 

53,511 

33,181 

48,104 

226,774 

111,673 

Predicted Cycle Life 

64,649 

24,556 

27,981 

219,352 

107,451 

51,402 

73,728 

30,420 11111 
225,432 

114,113 

Percent Error 

-4.45 

-2.76 

2.81 

2.66 

-1.38 

3.94 

122.20 

-36.76 

0.59 

-2.19 
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5.5 MULTIPLE LINEAR REGRESSION ANALYSIS 

A comparison was made on the results of the neural network and a standard statistical 

method, multiple linear regression. In the statistical analysis, all materials were initially 

evaluated to see if a single model could be used for prediction on multiple materials. Before 

attempting such an analysis, a scatterplot matrix was developed using all variables of interest 

in the analysis (Figure 5.12). 
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Figure 5.12. Scatterplot matrix for comparison of AE parameters. 

A scatterplot matrix aids in identifying paired linear or nonlinear relationships between 

independent variables. Generally, variables which show linear relationships have a strong 

correlation with one another. If strong multicollinearity exists between two or more variables, 

only one is required in the model to reflect the effect of all variables with the linear relation. 

Generally, a simple linear regression is used with each independent variable and the variable 

with the greatest prediction ability, or R2 value, is incorporated into the multiple linear 

regression model. 

Cases do exist, however, that require transforming data through the use of a transfer 

function (i.e., logarithmic, exponential, reciprocal). Evaluation of the scatterplot matrix 

identified three variables (counts-to-peak, duration, and energy) that showed strong linear 

relationships. Unfortunately, the dependent variable of interest, cycle life, showed no such 
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relationship to these variables. To determine which variable would be incorporated into the 

multiple linear regression model, a simple linear regression was performed using each of the 

three variables. Statistical analysis showed the variable of energy to have the best prediction 

with an R2 value of 9.206 percent, as opposed to the 8.723 and 8.404 percentages calculated 

for counts-to-peak and duration, respectively 

Multiple linear regression was the method selected to model an equation for 

prediction. A secondary scatterplot was created with only the variables of interest (cycle life, 

amplitude, energy, and risetime) incorporated (Figure 5.13). 
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Figure 5.13. Final scatterplot matrix for multiple linear regression analysis 

In the second scatterplot, an exponential trend was seen in the cycle life versus amplitude, 

versus energy, and versus risetime plots. A clustering of data points was noted to occur in the 

lower left region of each plot. There has been no defined correlation that explains this region 

separation; however, it has been hypothesized that the unidentified variable may be related to 

changes in material properties and/or weld geometry. All clustered data within the lower left 

region are representative of low cycle life and low occurrence of variables. All Inconel 718, 

one Inconel 625, and two 350 stainless steel samples were noted to exist in the clustering. 

Therefore, the characteristic of the "missing" variable tends to have an effect on all materials 
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evaluated. This raises the question: Does variability in material lots or manufacturing 

processes have an effect on which region a sample clusters into? 

An appropriate model, with sufficient predictability, cannot be developed using both 

the data in the exponential and clustered regions. By looking at the data within the clustered 

region, a linear relationship would be inappropriate. The fitted line would be horizontal, 

therefore, for any value of x the best possible prediction for y would be to use the resulting 

average of all y values. Until a larger data set can be supplied to better develop the trend 

existing in this region, an accurate model for prediction cannot be developed. As a result, the 

data set was simplified and a statistical analysis made only on data in the exponential region. 

Since the curve tended to be exponential, a natural log transformation was applied to 

each variable and a regression model performed using the STATGRAPHICS software. The 

software developed regression models for all possible combinations of the set of variables. In 

the analysis, three variables (amplitude, xi; energy, x2; and risetime, x3) were evaluated and 

two incorporated in the final model. From the analysis the model was given as: 

y = 114095000 - 11807800 In xi - 9934850 In x2 + 1028750 In xi In x2 (13) 

This model resulted in an adjusted R2 capable of explaining 98.2 percent of the total variation 

in the y values. The p-value was found to be less than 0.01, therefore, there was a statistically 

significant prediction ability associated with the model. The model was evaluated for 

significance by reviewing the Cp statistic. The Cp statistic can be used to gain insight on the 

adequacy of a candidate model by comparing to the total number, p, of pi parameters in the 

model. For example, a Cp > p indicates a model that is biased due to being underfitted 

(chosen too few model terms) or one with excessive prediction variance from overfitting (has 

redundancies in the model), while a Cp approximately equal to p indicates a reasonable model 

[Walpole et. al., 1993]. The selected model was found to have a Cp of 4.6, close to the 

number of parameters (4) in the model. The Durbin-Watson statistic is a measure used to test 

a model for autocorrelation between variables. Developed with a scale of 0 through 4, a 0 or 

4 represents the highest level of autocorrelation while a value of 2 is desirable and represents 

the lowest level of autocorrelation. The selected model was found to have a Durbin-Watson 

statistic of 2.54, therefore, a low level of autocorrelation existed in the model. 
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Plots were created for the residuals to evaluate if constant variance and normality 

existed in the distributions. Figure 5.14 represents studentized residuals versus predicted 

cycle life and Figure 5.15 represents the normal probability plot of the studentized residuals. 

jo 
CO 
D 

'55 
<i> 

a: 
"D 
0) 
.N 
-̂* 

C 
<D 

"O 
3 3 -1 

CO 

i 

• • • 
—• 

99.9 

99 

95 
<D 

o> 80 

<D 50 

i? 20 

0.1 

0 1 2 3 4 5 

Predicted Cycle Life (X 100000) 

Figure 5.14. Plot of studentized residuals versus predicted cycle life. 
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Figure 5.15. Normal probability plot for studentized residuals. 

37 



The plot in Figure 5.14 does show random scatter; however, Figure 5.15 shows a scatter 

focused more to the lower region of the line. It can only be said that there exists constant 

variance in the studentized residuals distribution, but a larger data set must be evaluated to 

confirm there is sufficient normality in the studentized residual distribution. 

Figure 5.16 represents a plot of the linear prediction model and actual cycle life values. 

A uniform scattering of data points lie fairly close to the line. Therefore, it looks as though 

the model has a significant prediction ability. 
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Figure 5.16. Plot of observed cycle life versus predicted cycle life. 

To determine whether the model does has significant prediction ability, the following 

hypothesis test for the Pi coefficients was performed: 

Ho: Pi = p2 = p3 = 0 

Ha : at least one Pi * 0 

Examination of the analysis of variance (ANOVA) table developed in Statgraphics revealed a 

F-ratio of F = 217.01. Using a F-distribution statistical table for the number of observations 

n = 13, the number of variables k = 3, and the area to the right of the normal distribution of a 

= 0.05; the f-distribution [fa(k, n-k-1)] was found to be ft.0s(3, 9) = 3.86. This value is much 

smaller than the calculated F-ratio of 217.01; hence, our statistic falls far outside the interval. 

38 



The corresponding p-value was much less than the a of 0.05. Therefore, we can reject the 

null hypothesis that there is no significant prediction ability for the model and accept the 

alternate that at least one of the variables has significant prediction ability. 

To determine whether all Pi parameters are necessary, a hypothesis test was conducted 

for each parameter as follows: 

Ho: pi = 0 

Ha : pi * 0 

Since each individual pj was evaluated, a more liberal a of 0.10 was used. The p-value for 

each parameter was much less than 0.10 (Pi, p = 0.0013; p2, p = 0.0013; p3, p = 0.0014). 

Consequently, it can be conclude that each parameter has significant prediction ability and is 

required in the model. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 CONCLUSIONS 

The application of neural networks and multiple linear regression for predicting cycle 

life are promising with the results obtained thus far. However, to accurately test the ability of 

these methods, testing with larger data sets should first be performed. The low error results 

obtained in these tests are questionable. Studies on neural networks have shown testing with 

too small a data set can result in accurate predictions on the testing data but poor prediction 

on secondary sets of validation data. In cases where very small data sets are used, a neural 

network can train itself to guess near zero error many times and achieve a good rate of 

prediction [NeuralWare, Inc., 1995]. Although an equation was found to fit the data set 

evaluated in the statistical analysis, a larger data set should be applied to the equation to 

confirm the accuracy of the model. With a larger data set, the equation may require 

modification for a best fit. 

Initial testing offered results with predicted cycle lives meeting the accuracy 

requirement of ±5 percent error. However, continued testing within this research project has 

presented a dilemma. A second set of seven test samples for the 350 stainless steel was run 

through the trained network. This second set of test samples consisted of two separate runs 

of the 350 stainless steel material. These tests resulted in several samples failing the 

requirement of accurately predicting cycle life within ±5 percent. This is believed to be due to 

two factors: (1) new material, geometry, and/or manufacturing variations were present in the 

new lot of material and product; and (2) the new variations were not tested on and 

incorporated into the neural network model; therefore, the network could not predict 

accurately. 
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6.1.1 FAILURE MECHANICS 

• Bellows crack propagation is not constant, but cyclic over time. The material experiences 

"quiet" periods of no AE activity, followed by shorter periods of high AE activity. A 

cycle of strain-hardening and material fatigue results. Stainless steel materials see multiple 

cycles of high to low AE activity, while nickel alloy materials experience a single cycle of 

strain hardening and an immediate final failure. 

• Cycle life is greatly affected by whether a material is heat treated or non-heat treated. 

Heat treatments increase material strength but compromise cycle life by reducing ductility. 

Heat treated materials tend to strain harden through fewer cycles prior to fatigue failure. 

6.1.2 AE PARAMETER DATA 

• As the material transitions through stages of crack initiation, crack propagation, and rapid 

crack growth a graduating growth in event amplitude and duration results. 

• Failure regions can be initially separated by evaluation of duration versus amplitude plots 

and hits versus amplitude histogram plots. Evaluation of the hits versus amplitude plots 

reveals normal distributions which identify separate modes of failure. 

• Duration versus amplitude plots reveal separate modes of failure by correlating with time 

of occurrence. 

• Each material has characteristic regions on the hits versus amplitude plots for its failure 

modes. 

• Overlapping of regions require the application of neural network analysis to separate 

failure mechanisms. 

• AE can be an effective real-time method for determining the time of occurrence of 

specified failure modes when used in conjunction with a comparison set of AE test 

parameters. 
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6.1.3 NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION 

• After evaluation of each distribution set, it was concluded the 250 hit amplitude 

distributions were most effective for prediction. This size distribution tended to contain 

data which offered sufficient trends for a neural network to train upon while offering data 

which mainly consisted of a single failure mechanism, plastic deformation. 

• Neural networks require at least two hidden layers to accurately model the nonlinearity 

that occurs in metal-bellows samples. Nickel alloys have required a larger number of 

neurons per hidden layer, as opposed to stainless steels, which is probably due to the more 

complex material composition and crack behavior during material fatigue. 

• A neural network can be better developed by updating the network model. With each 

new set of collected data, the network model can be improved by incorporating the new 

data into training. 

• The two 350 stainless steel samples, which failed to meet the error requirements, were 

found to be tests which fell within the clustered region of the scatterplots. This region 

represents normal cycle life values for the Inconel 718 samples; however, cycle lives for 

350 stainless steel samples tend to be lower than normal within this region. It is 

questioned as to whether this represents samples which failed prematurely, and if so, what 

was the influential variable? 

• The multiple linear regression model should be re-evaluated if applied to an expanded data 

set. A determination will need to be made as to which factor(s) contribute to the region 

separation seen in the scatterplots. If this factor(s) can be determined, an increased data 

set will likely show a second trend in data that will require a secondary model for the 

clustered region. An increased data set will also result in more data points falling within 

the exponential curve region. Therefore, modifications to the existing statistical model 

may be necessary to better fit the new data curve. 
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• Due to the small sample size used in this research for each material, it was required to 

combine all materials to offer a sufficient data set for statistical analysis. It has been 

determined that a separate model will be required for non-heat treated materials due to the 

increase in ductility and longer cycle life which occurs. If large sample sizes can be 

produced for each material, a better prediction model can likely be developed for each 

material. Developed models will likely have similar curvature with some variation 

characterized by an offset. 

6.2 RECOMMENDATIONS 

To better develop a neural network and statistical model which can accurately predict 

on new data sets, several modifications will need to be incorporated into any future testing: 

• Test samples must be obtained from various material lots and stamping runs. This allows 

for a larger range of variations within the test samples. Any variations of significance to 

the cycle life prediction will likely be identified by the neural network and weighted 

accordingly during the training phase. 

• Testing required cycling the bellows an average of 10 to 15 percent of the total cycle life 

before the 250 hits required for testing was achieved. Lowering the threshold setting to 

40 dB will result in more incoming hits of plastic deformation and "noise" being recorded. 

Although the data will contain more noise, neural networks have been shown to train 

better when noise exists within the test data. This lower threshold will also allow for 

sufficient test data to be collected within less than 5 percent of the total cycle life. It may 

then be possible to use a 500 or 1000 hit distribution if sufficient incoming hits are 

recorded. This would likely improve the prediction capability of the network. 

• Since metal bellows are manufactured in a variety of sizes, but similar in configuration, it 

may be warranted to incorporate a variety of sizes to determine if prediction can be made 

on all sizes for a specific material type or whether a separate network is required for each 

size or range of sizes. 
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• A larger set of test samples should be used for the training and testing phases. Seven 

samples were sufficient for a preliminary evaluation, but not enough to implement a 

secondary validation group to confirm that the designed network will be a good predictor. 

It is likely, for network training and statistical analysis, a minimum of 30 samples would be 

needed to create a highly accurate model for prediction. Statistical methods generally 

require a sample model of at least 30 to be considered an accurate representation of the 

distribution found in the population model. 
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