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Abstract 
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Year: 2009 

Unmanned aircraft are relied on now more than ever to save lives and support the 

troops in the recent Operation Enduring Freedom and Operation Iraqi Freedom. The 

demands for UAS capabilities are rapidly increasing in the civilian sector. However, UAS 

operations will not be carried out in the NAS until safety concerns are alleviated. Among 

these concerns is determining the appropriate level of automation in conjunction with a 

suitable pilot who exhibits the necessary knowledge, skills, and abilities to safely operate 

these systems. 

This research examined two levels of automation: Management by Consent 

(MBC) and Management by Exception (MBE). User experiences were also analyzed in 

conjunction with both levels of automation while operating an unmanned aircraft 

simulator. The user experiences encompass three individual groups: Pilots, ATC, and 

Human Factors. Performance, workload, and situation awareness data were examined, 

but did not show any significant differences among the groups. Shortfalls and constraints 

are heavily examined to help pave the wave for future research. 

iii 



Acknowledgements 

I would like to dedicate this research to my son Triston who gave me the 
inspiration, motivation, and reason to succeed. The countless times that he sat on my 
shoulders holding my eyelids open as I read through journal articles and typed away on 
this report will always be remembered and cherished. It is his hugs, his smiles, and his 
laughs that give me all the reason to continue on. 

I want to express my gratitude to my thesis committee who made this possible. I 
could not have ended up with a better committee. Dr. Liu provided me with the insight 
and encouragement to conduct the thesis quickly and efficiently. He provided alternative 
solutions to meet my goals when it appeared that none existed. Dr. Doherty continuously 
offered a wealth of information and foresight necessary for me to meet my overall 
objectives. His suggestions and insight were invaluable throughout the entire program. 
Dr. Macchiarella responded quickly in a time of urgency. His presence on the committee 
enabled the research to progress in a timely manner, and his expertise provided real-
world insight into UAS operations. 

This thesis would not have been possible without the patience and understanding 
of my wife, Andrea. She managed to endure the inevitable stressful times of 'student 
living', and accepted the numerous all-nighters I spent working on this thesis. When I 
was tired, frustrated, and ready to give up, she convinced me to keep going. Thank you. 

Most importantly, I would like to thank God for keeping me alive and sane 
despite all the rigors throughout the past 2 years. It was an extremely tough run, but it has 
finally come to an end. 

IV 



Table of Contents 

Abstract iii 
Acknowledgements iv 
List of Tables vii 
List of Figures viii 
List of Abbreviations ix 
Glossary of Terms x 
Introduction 1 

UAS: A Historical Analysis 5 
Past UAS Operations 6 
Present UAS Operations 7 
Future UAS Operations 10 

Unmanned Aircraft Systems Architecture 13 
Equivalent Level of Safety (ELOS) 13 
A Regulatory Assessment ~ 14 
A Technological Assessment 15 
A Human Factors Assessment 17 

UAS Pilot Selection 20 
Pilot Skill Sets 20 
Air Traffic Control Skill Sets 21 
UAS Pilot in Command 23 

Automation 24 
Human-Centered Automation 26 
Function Allocation 27 
Studies of Automation on Workload 29 
Studies of Automation on Situation Awareness 30 
Levels of Automation 31 
Management by Consent 35 
Management by Exception 35 

Summary 37 
Statement of Hypotheses 39 

Method 40 
Participants 40 
Apparatus 40 
Design 41 
Tasks 42 

Primary Task 42 
Secondary Task 43 
Subjective Workload 44 
Subjective Situation Awareness 45 

Procedure 46 
Results 46 

Accuracy 47 
Image Accuracy 48 

Task Processing Time 49 

v 



Image Processing Time 50 
MMI Processing Time 51 
IA Processing Time 53 

Subjective Workload 54 
Subjective Workload Results 55 

Subjective Situation Awareness 56 
Subjective Situation Awareness Results 57 

Discussion 58 
Image Accuracy 59 
Task Processing Time 61 
Subjective Workload 65 
Subjective Situation Awareness 66 
Study Limitations 67 
Practical Implications 70 
Recommendations for Future Research 70 
Conclusion 72 

References 74 
Appendices Al 
Appendix A Al 
Appendix B Bl 
Appendix C CI 
Appendix D Dl 

vi 



List of Tables 

Table 1 Sheridan & Verplank's Level of Automation 32 

Table 2 Endsley's Level of Automation 33 

Table 3 Endsley's LOA Taxonomy 34 

Table 4 Experimental Design 42 

Table 5 ANOVA Source Table for Target Accuracy (%) 48 

Table 6 ANOVA Source Table for Image Processing Time (ms) 50 

Table 7 ANOVA Source Table for MMI Processing Time (ms) 51 

Table 8 ANOVA Source Table for IA Processing Time (ms) 53 

Table 9 ANOVA Source Table for Workload 55 

Table 10 ANOVA Source Table for Situation Awareness 57 

vii 



List of Figures 

Figure 1. Thesis Layout 4 

Figure 2. Chronology of names applied to robotic aircraft 6 

Figure 3. UAS Evolutionary Tree 7 

Figure 4. Timeline of DoD UASs 8 

Figure 5. Current & Future UAS Potential Markets 11 

Figure 6. Synergetic resources for man-machine cooperation 28 

Figure 7. LOA Taxonomy Definitions 35 

Figure 8. LOA Comparisons 37 

Figure 9. MIIIRO Testbed Display. Left: Tactical Situation Display (TSD); Right: Image 

Management Display (IMD) 41 

Figure 10. Comparison chart of task times for similar mission scenarios 60 

Figure 11. Comparison chart of task times for similar mission scenarios 64 

viii 



List of Abbreviations 

AC 
AD 
ADS-B 
AFRL 
AIM 
ASTM 
ATC 
CFR 
COA 
DSA 
ELOS 
FAA 
FAR 
GA 
ICAO 
IFR 
NAS 
NASA 
NextGEN 
ROA 
RTCA 
SWaP 
TSO 
UAS 
VFR 

Advisory Circulars 
Airworthiness Directives 
Automatic Dependent Surveillance-Broadcast 
Air Force Research Laboratory 
Airman's Information Manual 
American Society for Testing and Material Standards 
Air Traffic Control 
Code of Federal Regulations 
Certificate of Authorization 
Detect, Sense, and Avoid 
Equivalent Level of Safety 
Federal Aviation Administration 
Federal Aviation Regulations 
General Aviation 
International Civil Aviation Organization 
Instrument Flight Rules 
National Airspace 
National Aeronautics and Space Administration 
Next Generation Air Transport System 
Remotely Operator Aircraft 
Radio Technical Commission for Aeronautics 
Size, Weight, and Power 
Technical Standard Order 
Unmanned Aircraft System(s) 
Visual Flight Rules 

ix 



Glossary of Terms 

The following definitions are provided by the Federal Aviation Administration and 
ASTM International: 

Airworthiness 
For the UAS to be considered airworthy, both the aircraft and all of the other 
associated support equipment of the UAS must be in a condition for safe operation. 
If any element of the systems is not in condition for safe operation, then the 
unmanned aircraft would not be considered airworthy. 

Automated 
The automatic performance of scripted action 

Autonomy 
The ability of the machine to interpret its environment and make decision that result 
in unscripted actions. 

Chase Aircraft 
A manned aircraft flying in close proximity to an unmanned aircraft that carries, in 
addition to the pilot in command (PIC) of the aircraft, a qualified visual observer. 

Control station 
A system of computers and other equipment in a designated operating area that the 
pilot and other crewmembers use to communicate and fly the unmanned aircraft and 
to operate its sensors (if any). 

Fully autonomous 
Mode of control of a UAS where the UAS is expected to execute its mission, within 
the pre-programmed scope , with only monitoring from the pilot-in-command. As a 
descriptor for mode of control, this term includes: (1) fully automatic operation, (2) 
autonomous functions (like takeoff, landing, or collision avoidance), (3) "intelligent" 
fully autonomous operation. 

Line of sight 
Direct, point-to-point contact between a transmitter and receiver. 

Lost link 
A situation where the control station has lost either or both of the uplink and 
downlink contact with the unmanned aircraft and the pilot can no longer affect or 
monitor, or both, the aircraft's flight. 

Mode of control 
Means the pilot uses to direct the activity of the UAS. There are two modes of 
control: semi-autonomous and remote control. A UAS may use different modes of 
control in different phases of flight. 

Operator 
Means any person who causes or authorizes the operation of an aircraft, such as the 
owner, lessee, or bailee of an aircraft. Also, the entity responsible for compliance 
with airworthiness and continuing airworthiness requirements. 

Pilot in Command 
The person who has final authority and responsibility for the operation and safety of 
flight, has been designated as pilot in command before or during the flight, and holds 
the appropriate category, class, and type rating, if appropriate, for the conduct of the 

x 



flight. The responsibility and authority of the pilot in command as described by 14 
CFR 91.3, Responsibility and Authority of the Pilot in Command, apply to the 
unmanned aircraft PIC. The pilot in command position may rotate duties as 
necessary with equally qualified pilots. The individual designated as PIC may 
change during flight. 

Semi-autonomous 
Mode of control of a UAS where the pilot executes changes and conducts the 
mission through a flight management system interface. Without this input, the UAS 
will perform pre-programmed automatic operations. This can, but might not, include 
some fully autonomous functions (like takeoff, landing, and collisions avoidance) 

Unmanned Aircraft 
A device used or intended to be used for flight in the air that has no onboard pilot. 
This includes all classes of airplanes, helicopters, airships, and translational lift 
aircraft that have no onboard pilot. Unmanned aircraft are understood to include only 
those aircraft controllable in three axes and therefore, exclude traditional balloons 

Unmanned Aircraft System 
Airplane, airship, powered lift, or rotorcraft that operates with the pilot in command 
off-board, for purposes other than sport of recreation, also known as unmanned aerial 
vehicle. UASs are designed to be recovered and reused. A UAS system includes all 
parts of the system (data-link, control station, and so forth) required to operate the 
aircraft. The plural of UAS is UASs. 

Visual Line-of-Sight 
A method of control and collision avoidance that refers to the pilot or observer 
directly viewing the unmanned aircraft with human eyesight. Corrective lenses 
(spectacles or contact lenses) may be used by the pilot or visual observer. Aids to 
vision, such as binoculars, field glasses, or telephoto television may be employed as 
long as their field of view does not adversely affect the surveillance task. 

Visual Observer 
A trained person who assists the unmanned aircraft pilot in the duties associated with 
collision avoidance. This includes, but is not limited to, avoidance of other traffic, 
clouds, obstructions and terrain. 

(AIR-160, 2008; ASTM F-2395-07, 2007) 
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The Effect of Learned 1 

Introduction 

The crucial issue is the assimilation of the relevant sensory inputs, the processing of 
information pertinent to specified user goals, and the translation of the user's subsequent 
decisions into effective action. The fundamental barrier to success in this realm is not a 

technological one but a user-centered one. 

- Oron-Gilad, Chen, and Hancock, 2006 

Unmanned Aircraft Systems (UASs) are on the verge of taking flight alongside 

manned aircraft in the national airspace system (NAS). These unmanned systems have 

demonstrated their true potential through military endeavors, and their wide range of 

capabilities has inspired civilian agencies to harness the benefits that these systems 

provide. UAS has great potential to change the aviation arena forever, but special 

attention must be made to safety concerns associated with separating the pilot from the 

unmanned aircraft. The intent of this thesis is to analyze how the human is safely 

integrated into this highly automated and very complex system. 

Currently, there is no universally supported definition for modern-day UASs. The 

Department of Defense (DoD) defines these systems as, "A powered, aerial vehicle that 

does not carry a human operator, uses aerodynamic forces to provide vehicle lift, can fly 

autonomously or be piloted remotely, can be expendable or recoverable, and can carry a 

lethal or non-lethal payload. Ballistic or semi ballistic vehicles, cruise missiles, and 

artillery projectiles are not considered unmanned aerial vehicles " (Department of 

Defense, 2005). The FAA defines an UAS as an: "Airplane, airship, powered lift, or 

rotorcraft that operates with the pilot in command off-board, for purposes other than 

sport of recreation, also known as unmanned aerial vehicle. UASs are designed to be 

recovered and reused. A UAS system includes all parts of the system (data-link, control 

station, and so forth) required to operate the aircraft. The plural of UAS is UASs. " In 

1 



The Effect of Learned 2 

either case, a pilot is not co-located within the flying component of the system. This 

creates several human factors concerns regarding how the pilot is then integrated into the 

system to maintain adequate control (Hottman & Sortland, 2006). 

Of primary importance is the skill-set required on behalf of the pilot to safely and 

effectively fly the unmanned aircraft from a distance. The Federal Aviation 

Administration (FAA) has developed a number of certification requirements that must be 

met in order to fly manned aircraft, or to monitor and direct aircraft as an air traffic 

controller (ATC). Certification requirements for pilots of unmanned aircraft have yet to 

be developed and little research has been done to evaluate the appropriate knowledge, 

skills, and abilities (KSAs) that an UAS pilot should possess (Williams, 2005). 

A full understanding of the three-dimensional aspect of the unmanned aircraft in 

the airspace cannot occur without prior experience in the airspace. So, it is logical to 

suggest that conventional pilots of manned aircraft are comprised with the fundamental 

KSAs necessary to develop an accurate mental representation of the unmanned aircrafts 

current status. However, research that assessed the applicability of pilot KSAs applied to 

UAS operations are rare and has arrived at conflicting conclusions (McCarley & 

Wickens, 2005; Tirre, 1998; Flach, 1998). Research that analyzes the transfer of non-

pilot KSA's, such as those pertaining to air traffic controller (ATC) and skilled computer 

gamers, could not be found. It is important to note that UAS applications, scenarios, and 

designs vary significantly, thus the skill-sets required on behalf of the pilots may be just 

as diverse. 

Of secondary importance is how these highly automated systems interact with the 

pilot to provide for a seamless and coordinated control effort. It is especially important in 

2 



The Effect of Learned 3 

the design of UAS that automation strategies be integrated in a way that allows for the 

pilot to remain actively involved and aware of the functions taking place within the 

system. The high-performance nature of the system requires an extensive amount of 

autonomy in order to operate, but a fully-autonomous system would leave out important 

human oversight and is deemed unsafe. Therefore, an appropriate level of automation is 

critical to the safety and performance characteristics of UAS design. 

Currently, the U.S. Air Force and U.S. Navy calls for pilots with manned aircraft 

training, but this often results in a large amount of negative transfer effects when training 

them in a UAS environment (Pedersen, Cooke, Pringle, & Connor, 2006). The Human 

Systems Wing in the U.S. Air Force strongly recommends that, "Future work should 

focus on improving the empirical knowledge base on UAS human factors so evidence-

based recommendations can be made when incorporating control migration in UAS 

design and operations (Thompson et al., 2006)." The FAA Civil Aerospace Medical 

Institute furthers this notion, by acknowledging that much research is needed to assess the 

KSAs for future UAS pilots (Williams, 2005). With the growing reliance on autonomy, 

and the diminishing accessibility of human intervention, a superior control interface 

design has never been more necessary in the realm of aviation (Hughes, 2008). 

It is the intent of this current research to analyze the pilot's role in the UAS, and 

determine how the system best accommodates this role. Similar to manned aircraft, the 

pilot is directly responsible for insuring the overall safety of flight. For this reason, a 

human-centered approach will be assumed, rather than the mainstream technology-

centered approach that is common in UAS research and design. 

3 



The Effect of Learned 4 

The layout of this thesis encompasses a broad literature review that should 

familiarize the reader with the intent of UAS operations. This will allow for a deeper 

understanding of what is expected on behalf of the UAS pilot, and the responsibilities 

that he/she must endure. Figure 1 outlines the structure of this thesis. To begin, a 

historical analysis will cover UAS development and its many real-world applications. 

This will be followed by a "system-of-systems" approach to UAS development and 

integration. There are many constraints and requirements that are imposed on UAS pilots 

and these will be discussed as well. The second half of the literature review will focus 

on the independent variables of main concern to this study: Experience (KSAs of Pilots 

and ATC) and Levels of Automation (Management by Consent and Management by 

Exception). 

-. .1 L jvelopment 

UAS Architecture 

Figure 1. Thesis Layout 
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UAS: A Historical Analysis 

Contrary to popular belief, initial concepts of these systems date back to the late 

1800's by a highly notable scientist named Nikola Tesla (Newcome, 2004). In 1884, 

Tesla first conceptualized the design of a heavier-than-air unmanned aircraft flown by 

remote control using AC current. Tesla adamantly believed that his theory could be 

achievable through the use of radio frequencies and a ground-based controller, but the 

concept was readily dismissed as unachievable (Newcome, 2004). During the next 100 

years, advancements in UASs occurred mainly as a result of wartime activities. Shortly 

after World War I, unmanned aircraft technologies really began to develop, following the 

advent of automatic stabilization, remote control, and autonomous navigation. Today, the 

military relies heavily on UASs to conduct missions that would otherwise be too boring, 

risky, or impractical for manned flight. These missions are often referred to as the "Dull, 

Dirty, or Dangerous " missions. 

As the components of these systems became more advanced, and the missions 

more diverse, the terminology to describe these technologies has also evolved. UASs 

have undergone several name changes in their relatively short history. Depending on their 

intended use, they have been most commonly referred to as Remotely Piloted Vehicles, 

Unmanned Aerial Vehicles, and Remotely Operated Vehicles. The modern-day 

terminology, "Unmanned Aircraft Systems" was implemented to incorporate the entire 

system used to conduct the operation of these vehicles- inclusive of all the components 

required for operation (e.g. unmanned aircraft, CS, pilot, data-link, et al.) The timeline 

below depicts the chronology of names before it evolved into the term used today. 

5 
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Figure 2. Chronology of names applied to robotic aircraft (Newcome, 2004) 

Past UAS Operations 

It is popular belief that the first unmanned aircraft was developed in 1916 and was 

called the Aerial Target. Some would even argue that primitive examples of unmanned 

aircraft were used in at least two wars prior to the development of the airplane, and date 

back to the year 1818. During this year, French scientist Charles Rozier developed the 

first recorded unmanned balloon designed to fire rockets on a target. The differences in 

historical findings are often due to how one defines a unmanned aircraft. Prior to the 

development of the airplane, balloons were used in place of an airplane, but unmanned 

balloons would not meet the criteria for many of the modem day definitions of UAS. 

Newcome (2004) provides us with a graphical depiction (see Figure 3) on how UASs 

evolved into what we had today. The roots denote the inventors that realized the 

feasibility of UAS operations, and the branches indicate the several classifications of 

6 
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unmanned aircraft that exist today. Note that only some of these unmanned aircraft 

classifications illustrated by the branches would fall under the classical UAS definitions 

provided by the FAA and DoD. 

<**&» £% 

i »*h* 

Figure 3. UAS Evolutionary Tree (Newcome, 2004) 

Present UAS Operations 

UASs have been around for approximately 100 years, but it hasn't been until 

recently that their capabilities have been recognized. The enormous growth of military 

interest towards UAS is a direct result of their proven performance and capabilities in the 

realm of surveillance, reconnaissance, and intelligence gathering, and more reeently-

attaek missions (Hottman & Sortland, 2006). This highly sought after technology quickly 

grew in reputation after it was responsible for defeating the Iraqi Republican Guard 

several days sooner then what could have been achieved with manned aircraft. In 2005 

alone, UASs had conducted over 100,000 flight hours in support of Operation Iraqi 

Freedom and Operation Enduring Freedom. By the end of 2008 that number increased to 

7 
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nearly 500,000 flight hours (excluding hand-launched systems) (Department of Defense, 

2009). 

Furthermore, UAS flight operations accomplished this effort without putting 

American pilots' lives in danger, due to the missions being flown by pilots residing 

within the U.S. borders (Scarborough, 2003; Guidry & Wills, 2004). The first combat 

deployment of a very modern UAS, known as the RQ-4 Global Hawk, consisted of a 

team of 86 members, 56 of which were contractors needed to conduct the flight portion of 

this new equipment (Guidry & Wills, 2004). A timeline of past, present, and future usage 

of several military UAS platforms are depicted in Figure 4. 

1W5 1W) 1 W 7000 ?no«j 7010 ?f»1S 7020 Wi 7030 

• USA 
USAF 

Figure 4. Timeline of DoD UASs (Department of Defense, 2005) 

The tactical use of UASs surpassed the expectations of military commanders conducting 

wartime missions and the same is expected in civilian applications. 

8 
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UAS Operational Diversity. The environment and intended mission scenarios in 

which UASs operate differ significantly. These technologies have advanced to the point 

where their application can be useful in many practical purposes such as drug 

interdiction, border monitoring, law enforcement, agriculture, communication relays, 

aerial photography and mapping, emergency management, and scientific and 

environmental research (Hottman, Gutman, & Witt, 2000; Nakagawa, Witt, & Hottman, 

2001). These platforms would also operate in a number of environments, inclusive of 

those set up by regulating authorities. These vary by a multiple of factors, including 

airspace, weather conditions, and altitude. To suffice for each intended method of 

operation, user-interfaces would ultimately need to be designed in a fashion that allows 

for the most effective means of operation, thereby requiring different operating tasks on 

behalf of the pilot (Hottman & Sortland, 2006). 

Methods of Control. The KSAs of UAS pilots would vary due to the wide range 

of operating platforms and user-interfaces that exist (Hottman & Sortland, 2006). Similar 

to manned flight, UASs have a wide range of uses, and the qualifications and 

certifications required for operation may differ depending on the intent of operation 

(O'hare & Roscoe, 1990). Some UASs are controlled from a hand-held device and 

remain in visual-line-of-sight (VLOS) where the pilot is controlling the aircraft within 

visual range. Highly automated methods of control require the pilot to establish 

waypoints, while automation is left to determine the appropriate aircraft settings to reach 

those destinations. On the other hand, some highly-autonomous UASs still require the 

pilot to operate the unmanned aircraft by manipulating the control surfaces from the 

control station (CS) in a similar fashion to fly-by-wire methods used in manned-flight. 

9 
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Current UAS Pilots. Currently, there is no consistency in UAS pilot selection. 

The U.S. Air Force tends to select UAS pilot candidates that have received formal 

military flight training, but have recently graduated their first class of pilots trained 

specifically for UAS operation (Brinkerhoff, 2009). The Navy and Marine Corp select 

UAS pilots that already hold a private pilot license, while the Army selects UAS pilots 

who have never even flown a manned aircraft (McCarley & Wickens, 2004). Tirre 

(1998) noted that pilots transitioning from manned aircraft to UAS operations have faced 

boredom and difficulty maintaining situation awareness. It is also documented that 

transitioning pilots have difficulty switching flight environments due to the lack of 

vestibular and "seat-of-the-pants" sensory input obtained in manned flight. Weeks 

(2000) performed limited research in this area and concluded that there is a wide range of 

necessary qualifications that exist among UAS pilots, and more research is necessary to 

identify the KSAs of pilots that would best fit into UAS operations. 

Future UAS Operations 

The 2009 FAA NextGen Implementation Plan has cited that UAS is on the verge 

of taking flight in the NAS. Within the U.S., there are four different markets that may 

greatly benefit from UAS operations: military, civil government, research, and 

commercial applications. It is important to note that each market will have different 

constraints imposed on UAS operations. Examples of these constraints consist of several 

areas, inclusive of accessible technologies, regulations, public acceptance, cost-benefit, 

and other operational constraints (DeGarmo & Maroney, 2008). Regulatory controls, for 

example, may restrict commercial UAS operations entirely. The success of UAS in each 

market is dependent on the constraints imposed on their operation. Assuming that UAS 

10 
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capabilities are not heavily suppressed in each respective market, the chart below outlines 

predictions on when specific markets will be able to benefit from this aspiring 

technology. 
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Figure 5. Current & Future UAS Potential Markets (DeGarmo & Maroney, 2008) 

The potential operating scenarios are limitless, but have already been deemed 

useful in areas pertaining to agriculture, homeland security, telecommunications, and 

scientific research firms (McCarley & Wickens, 2005). The United Kingdom is 
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anticipating the use of UASs for police and coastal patrol activities by the year 2012 

(BAE Systems, 2007). In the same timeframe rapid spending and advanced technologies 

will enable the U.S. military to use UASs for a much broader range of missions inclusive 

of the Suppression of Enemy Air Defenses, Electronic Attack, and Deep Strike 

Interdiction (Department of Defense, 2005). Additionally, the Air Force Research 

Laboratory (AFRL) is actively researching the capabilities of Small Unmanned Aerial 

Vehicles (SAVs) and Micro Aerial Vehicles (MAVs) to perform target detection and 

identification missions within urban environments (Hughes, 2008). An aerospace and 

defense consulting agency has predicted that the U.S. will spend nearly $55 billion over 

the next decade towards the Research, Development, Testing, and Evaluation (RDT&E) 

efforts of UAS technologies. These research efforts will be comprised of the most 

dynamic growth sectors of the worlds' aerospace industry (Teal Group, 2009). It is no 

longer a question as to //"unmanned systems will become a part of our everyday lives, but 

more of a question as to when. The technology is feasible; it's now a matter of 

determining the most safe and effective route to guide its success. Among the means of 

achieving compliance to operate within our current NAS framework, there lies a 

fundamental question as to how the aircraft should be controlled and who should do so. 

The selection of well-suited pilots linked to adequate designs of UAS control stations is 

paramount to the safe integration of these cutting edge systems. 

The wide-range of potential for UAS operations is already foreseen, but how 

these operations are conducted is left to future research. It is currently required that 

humans remain active in UAS operations. This is necessary for a variety of reasons, 

including re-tasking the mission, communicating with other aircraft and ATC, and to file 
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flight plans. The reasons may vary from system to system, but determining who will pilot 

the UAS is one of the biggest issues in future UAS development (Pederson et al., 2006). 

Unmanned Aircraft Systems Architecture 

A system ultimately behaves in the way in which it was designed, rather than how 

it was expected or intended. This is critical to the system design where the operations 

take place in a complex, ever-changing operating environment (Williams, 2008). 

Systems are designed based on an understanding of the structure, function, and dynamics 

of the intended operating environment, as well as any foreseen variability that takes place 

within that environment. Since automated systems are literal minded agents, any 

inaccuracies, misconceptions, or simplifications in the design will inevitably lead to 

undesirable results (Hughes, 2008; Batkiewicz et al., 2006). For this reason it is 

imperative that the users remain a central focus in the design process, especially 

regarding situations where the pilot must recognize and mitigate unintended automation 

complications before they result in a catastrophe. 

Equivalent Level of Safety (ELOS) 

UAS operations must meet or exceed an "equivalent level of safety" (ELOS) as 

its manned counterpart (FAA Order 7610.4k, 2004). Currently, a military review 

indicated that UAS mishaps are nearly double the magnitude of manned-aircraft 

(Williams, 2004). Up to 69% of these occurrences are due to human factors related 

issues, often resulting from poor human systems integration. A thorough review of these 

mishaps suggested that attention factors were of primary cause. (Tvaryanas, Thompson, 

& Constable, 2006). The Air Force Scientific Advisory Board (AFSAB) blames pilot 

inadequacies on the human/system interface design as a limiting factor in UAS safety and 
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control (Worch, Borky, Gabriel, Heiser, Swalm, & Wong, 1996). A major challenge is to 

discover a human interface design that adequately keeps the pilot actively involved and 

fully aware of the flight operations taking place (Walter, Knutzon, Sannier, Oliver, 2004). 

A Regulatory Assessment 

The current national airspace system is comprised of an enormous multitude of 

regulations, procedures, and operational requirements that the pilot must adhere to. This 

framework enables the ability of safe operation among the people that share the NAS, 

and also protects lives and property on the ground. The Federal Aviation Administration 

(FAA) has recognized the importance of UAS technology and is adamantly concerned 

with its safe implementation, especially on behalf of the pilot's new role. As a result, the 

FAA is faced with an unprecedented dilemma: the massive architecture of governance 

was built around the assumption that the human operator would reside inside of the 

aircraft; with the onset of UAS technologies, this is no longer the case. As the human 

operator gets removed from the aircraft, there are numerous complications that arise and 

the FAA is seeking ways to deal with these issues. Fulfilling the following Federal 

Aviation Regulations (FARs) are deemed to be largest barriers in the transition from 

manned to unmanned flight: 

• 19 CFR 91.3 (a) Responsibility and authority of the pilot in command 
The pilot in command of an aircraft is directly responsible for, and is the final 
authority as to, the operation of that aircraft. 

• 19 CFR 91.111 (a) Operating near other aircraft 
No person may operate an aircraft so close to another aircraft as to create a 

collision hazard. 
• 19 CFR 91.113 (b) Right-of-way rules: Except water operations 

When weather conditions permit, regardless of whether an operation is 
conducted under instrument flight rules or visual flight rules, vigilance shall be 
maintained by each person operating an aircraft so as to see and avoid other 
aircraft. When a rule of this section gives another aircraft the right-of-way, the 
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pilot shall give way to that aircraft and may not pass over, under, or ahead of it 
unless well clear. 

(Reynolds 2008; Hottman, Hanson, & Berry, 2008) 

UAS operations will need to conform to the rules, regulations, standards and 

expectations of the future NAS (DeGarmo & Maroney, 2008). In meeting this objective, 

Hottman and Sortland (2006) highlight the importance of establishing a system that caters 

to the pilot whom insures that these ELOS objectives are met, even during unintended 

circumstances. The pilot must be able to create an accurate assessment of the flight 

situation, without being overworked. The user-interface, inclusive of the automation 

strategies, plays an important role to insure that this happens. 

There are a number of research efforts underway to address the regulatory 

challenges associated with the integration of UAS into the NAS. Well-respected 

regulating authorities such as the Radio Technical Commission for Aeronautics (RTCA), 

the American Society for Testing and Materials (ASTM), Society of Automotive 

Engineers (SAE), National Aeronautics and Space Administration's (NASA) Access 5, 

and the European Organisation for Civil Aviation Equipment (EROCAE) have all 

participated in defining recommendations for the minimum requirements of UAS 

components and operations (DeGarmo & Maroney, 2008; Tvaryanas et al., 2006). As 

these standards, regulations, and constraints for UAS operations are being developed, 

regulating bodies are limited by the lack of research focusing on the most critical part of 

the system - the human component (Tvaryanas et al., 2006). 

A Technological Assessment 

To date, there are no FAA-certified UASs operating in the NAS. Research is 

currently being conducted to develop adequate systems, but there seems to be a stand-off 
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between the FAA and the industry. "The FAA wants technology answers before writing 

new regulations; operators and manufacturers want to know the regulatory landscape 

before committing to major new investments in technology" (Wilson, 2007). Developing 

a system that is capable of performing equivalent to that of a human is no small feat. 

Currently, Certificates of Authorizations (COA) and/or experimental certificates 

can be obtained by public (state-owned/operated) and civil (typically industrial and 

manufacturers) entities on a case-by-case basis when special provisions are met (AIR-

160, 2008). Commercial operations are strictly prohibited, and it may be years before 

they are granted access to operating within the NAS (DeGarmo & Maroney, 2008).These 

certificates are essentially waivers that allow for an approved UAS to operate within the 

NAS under special restrictions and accommodations. To date, a very limited number of 

COAs have been granted to UASs. These allow for new technologies to be tested, but 

certain provisions must be made to accommodate for undeveloped technologies. 

Perhaps the biggest technological barrier for commercial UAS operations is the 

ability to replace the "see-and-avoid" (SAA) tasks that are required by pilots of manned 

aircraft. There have been exceptional improvements on detect, sense, and avoid (DSA) 

systems, but none have been certified for use. It is understood that this type of system 

must be highly autonomous (very little human involvement) to fully autonomous (i.e. in 

case of communication failure). To date, only portions of an adequate sense-and-avoid 

system exist, and much of it is economically impractical, along with size, weight, and 

power (SWAP) restrictions (Wilson, 2007). 

Hunn (2006) suggests that user interface displays have the potential to enhance 

the pilot's ability to gather system information and become compatible with the system. 
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Innovative information cues and presentation options may help UAS pilots compensate 

for certain "missing" information and maintain a degree of situational awareness 

equivalent to or better than that of manned flight (SC-203,2007; Pederson et al , 2006). 

Therefore, it may be a more practical approach to evaluate the combination of the 

pilot/user-interface compatibility, rather than evaluating the performance characteristics 

of each entity on a separate basis. 

A Human Factors Assessment 

Wiener and Curry (1980) pioneered the term "clumsy automation" when they 

discovered adverse effects that had occurred due to the implementation of automation. In 

some cases, operator workload was exacerbated in response to automation; meaning 

workload was increased in times of already high workload, but decreased in times of 

already low workload (Metzger & Parasuraman, 2005). An example of this is when the 

auto-pilot feature on an aircraft reduces the workload on pilots during cruise flight where 

workload is typically low, but increases the workload on pilots during the landing portion 

of flight where workload is typically high. These findings, in conjunction with an 

abundance of faulty automation applications, were an initial step in the discovery of 

several automation-induced problems. 

It is highly agreed upon that automation has the potential to substantially change 

the way that humans perceive the situation and provide feedback in ways that were never 

intended by the system designers. (Bainbridge, 1983; Billings, 1997; Parasuraman & 

Riley, 1997; Sarter & Amalberti, 2000; Wiener & Curry, 1980). The complexity of 

automated systems have also raised concerns on operator workload, monitoring skills, 

proficiency, target detection, complex decision making, and situation awareness 
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degradation (Endsley, 1996; Parasuraman, Molloy, & Singh, 1993; Wiener, 1988; Wiener 

& Curry, 1980; Galster, Bolia, Roe, & Parasuraman, 2001; Rovira, McGarry, & 

Parasuraman, 2002; Wickens & Hollands, 2000). This will ultimately alter human 

vigilance decrements, detection capabilities, limited system flexibility, and automation 

biases (Parasuraman, Sheridan, & Wickens, 2000). Additionally, automated systems 

induce an effect known as automation-induced complacency, where the operator becomes 

out-of-touch with the system operation, resulting in degraded performance (Farrell & 

Lewandowsky, 2000; Parasuraman & Byrne, 2003; Parasuraman et al., 1993). These 

automation-induced complications are of high concern in the realm of UAS where the 

flying platform is said to be partially to fully- autonomous, in addition to the pilot being 

physically separated from the aircraft. Not only does this pose many safety concerns, it 

also limits the human pilot's ability to work as a fail-safe. 

McCarley and Wickens (2004) analyzed a primary consequence that occurs by 

separating the pilot from the aircraft. Rather than directly obtaining sensory input from 

the surrounding environment, pilots are limited by the amount of information portrayed 

to them by the user-interface. This information ranges from ambient visual information to 

vestibular input and sound. The result of being restricted from this sensory input is 

termed "sensory isolation". Similarly, there is also a problem referred to as out-of-the-

loop unfamiliarity (OOTLUF) (Wickens, 1992). Humans typically construct a poor 

mental model of the situation and develop insufficient SA when they are not actively 

involved in the system operations (Endsley, 1996; Endsley & Kiris, 1995). A "mental 

model" is deemed as the ability to create an accurate mental representation of something, 

such as a remote operating environment, based on one's own past experiences (Moray, 
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1997). Furthermore, laboratory findings have suggested that humans are poor monitors 

over systems, and do not play a good role as a fail-safe in highly automated systems 

(Parasuraman et al, 1993; Pope & Bogart, 1992). Early UAS designs reinforced this 

notion after they realized that pilots lacked adequate SA and did not have the capacity to 

override automated functions when necessary (Department of Defense, 2003). Studies 

performed on USAF and Army pilots indicated high levels of boredom, degraded target 

detection, decreased recognition performance, and increased reaction times (Thompson et 

al., 2006; Barnes & Matz, 1998). Conclusively, if the user-interface does not adequately 

coincide with the human operator, and vice-versa, than the overall system performance is 

degraded (Lorenz, Di Nocera, Rottger, & Parasuraman 2002). 

In order for the pilot to make timely and effective decisions, he/she must be able 

to gain an accurate assessment of the unmanned aircraft in its operating environment. In 

order for this to exist, the machine and human should interact dynamically as a single 

system (Putzer & Onken, 2001). Furthermore, Schulte (2002) argues that the operator 

should also have static background knowledge relevant to the application domain, as well 

as dynamic solution knowledge generated as an output of the cognitive sub-processes. 

The resulting decision made by the operator will be based on their prior knowledge 

applied to the interpretation of the information forwarded by the user interface. 

The increasing reliance on automation in the realm of aviation results in an 

increase in challenges to design safe, reliable, and effective automated systems. It is all 

too common for functions that were traditionally performed by a human entity to be 

replaced by fickle automated systems that have failed in highly dynamic and often 

unpredictable environments. In an attempt to transcend from historic mistakes in 
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automation, research has indicated that a more favorable approach is to develop systems 

that allow for better coordination between human and automation to allow for adequate 

human oversight (Hughes, 2008). The pilot in command (PIC) assumes sole 

responsibility for the operation of the UAS, and is a fundamental part of the system, but 

how the user-interface compliments his/her function will ultimately determine the success 

of UAS. 

UAS Pilot Selection 

The selection of UAS pilots is one area that remains to be investigated (Nelson & 

Bolia, 2006). Several military branches are selecting experienced pilots to perform these 

duties, but many wonder if this is the correct approach. Hottman & Sortland (2006) 

suggest that the KSAs of UAS pilot candidates need to be determined empirically. They 

also suggest that the KSAs required for UAS pilots not only differ significantly from 

manned flight, but also between the various UASs, taking into account the level of 

automation that is necessary to fly the unmanned aircraft. 

Tirre (1998) acknowledges that research for UAS pilots should address the 

following areas of concern: 1) the selection and training of UAS pilots to accommodate 

the necessary situation awareness tasks, and 2) the effects of UAS automation on 

potential pilots. Situation awareness is especially critical, and can be improved by 

particular interfaces but individual differences among pilots with varying KSAs still 

remains an important issue (Gawron, 1997). 

Pilot Skill Sets 

Pilots of manned-aircraft perform their job function from an egocentric 

standpoint. In other words, they reside within the operating environment. Due to their 
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location of operation, pilots are generally able to obtain sensory information directly from 

the surrounding area. This is inclusive of sounds and kinesthetic clues that help determine 

flight characteristics such as airspeed, flight attitude, and power settings. An important 

aspect of manned flight is the ability to use vision as a primary means of obtaining 

situation awareness and performing collision avoidance functions. Direct human sensing 

is a key element found in manned-flight and is an important function in safely achieving 

the desired objective of safe flight (SC-203, 2007). Consequently, the slogan "flying by 

the seat of your pants" refers to a pilot's ability to perform flight functions primarily on 

the sensory cues obtained from the surrounding environment. When a sensory cue 

changes unexpectedly, an alert pilot will further assess the situation and take preventive 

measures to mitigate risk. 

A common phrase used in the aviation community typically sums up the duties of 

a pilot: "Aviate, Navigate, Communicate " (Machado, n.d.). Aviate refers to the 

responsibility of controlling the airplane safely using the controls available (i.e. flight 

instruments, flight controls, etc.). Navigate refers to the obligation of monitoring where 

the aircraft is located and determining how to get it to where it needs to be. Communicate 

refers to the task of keeping other pilots and ATC informed of the status. For obvious 

reasons, aviate remains the top priority for the pilot, followed by navigate, and then 

communicate. (Note: In a highly automated UAS setting, these pilot functions tend to be 

in reverse order, as automation accommodates much of the aviate and navigate roles.) 

Air Traffic Control Skill Sets 

Air Traffic Controllers (ATC) performs their job function from an exocentric 

standpoint. This means that they manage airspace operations outside the range of their 
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immediate senses (Hunn, 2005). They monitor the airspace to safely conduct the flow of 

traffic and prevent collisions and hazardous situations. The job function requires that they 

quickly assess the situation by absorbing the data given to them through radar displays 

and communicating with pilots. They control several aircraft at once while visualizing 

the position of each aircraft, in time and space, in order to develop strategic decisions 

regarding heading, airspeed, and altitude. 

An in-depth KSA profile has been developed in an effort to determine ability 

requirements for air traffic controllers (EiBfeldt, & Heintz, 2002). The main categories 

are divided up into five segments: cognitive abilities, psychomotor abilities, sensory 

abilities, interactive/social abilities, knowledge/skills. Multiple abilities are evaluated 

under each category, totaling 81 different abilities in all. The core cognitive abilities of 

controllers are 'Time Sharing', 'Selective Attention', 'Visualization', and 'Speed of 

Closure'. These allow the controller to quickly and routinely organize different pieces of 

information into a meaningful pattern, while also having the ability to shift between tasks 

as appropriate. The top abilities in the psychomotor category are 'Control Precision', 

'Response Orientation', 'Rate Control', and 'Reaction Time'. These all relate to the 

speed and coordination required to operate the necessary control and communications 

equipment. The top abilities in the sensory category are 'Near Vision', 'Hearing 

Sensitivity', 'Auditory Attention', 'Speech Recognition', and 'Speech Clarity'. These 

abilities are necessary to monitor the radar control equipment while communicating with 

other controllers or pilots. Under the knowledge category, 'Map Reading', and 'Spelling' 

are seen as important factors in conducting job duties. 
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It is important to note that the required abilities differ among various ATC 

positions and systems being used. Newer systems tend to require significant increases in 

abilities related to computer usage (EiBfeldt, & Heintz, 2002). 

UAS Pilot in Command 

There is little resistance to implement the pilot into the unmanned aircraft system 

architecture, but there still remains a high level of speculation and debate as to the role 

the pilot should perform and how the technology should support their mission (Hughes, 

2008). The selection of these pilots will remain an important aspect of maintaining a 

highly dynamic system design. The range in performance characteristics of unmanned 

aircraft is vast, and the skill-set required for UAS pilot recruitment may be equally 

varied. 

A UAS pilot will and always will be a necessary component of the system 

(Pederson et al., 2006), however, the required KSAs that an unmanned aircraft pilot 

should posses have yet to be determined (Pederson et al., 2006). Increases in UAS 

automation is decreasing the necessity for traditional pilot skills (DeGarmo & Maroney, 

2008), and instead requiring a heightened need for monitoring and collaborative decision 

making skills. An alternative approach is to consider the expertise of an air traffic 

controller, especially due to the similarity of multitasking and familiarity of 

exocentrically controlling a variety of air vehicles differing in space and timing (Hunn, 

2005). 

Schulte (2002) suggests that the reason for many of the negative impacts created 

by automation can be due to inconsistencies between the automated machine functions 

and how the pilot perceives them (Schulte, 2002). This reasoning implies that there will 
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be differences in system perception and operation, based on an individual's background; 

hence the differences in formal training among pilots and air traffic controllers having an 

impact on their perception and decision making ability. Likewise, the overall system 

design must be able to work in concert with the operator in which it is paired with. The 

superior design of the overall system, inclusive of the operator, is directly correlated to 

the pinnacle of its success. 

Automation 

Automation is a very complex and highly debatable topic in the research and 

engineering fields. Sheridan (2002) defines automation as "(a) the mechanization and 

integration of sensing the environmental variables (by artificial sensors); (b) data 

processing and decision making (by computers); and (c) mechanical action (by motors 

and devices that apply forces on the environment) or information action' by 

communication of processed information to people". More simply, Parasuraman and 

Riley (1997) define automation as "the execution by a machine agent (e.g. computer) of a 

function previously carried out by a human operator." Automation by design only does 

what it has been told to do, rather than what is expected, intended, or desired (Hughes, 

2008). It is for this reason that a human-operator, who inhibits the ability to foresee the 

unexpected and take corrective action to mitigate unintended situations, is an essential 

part of the system design. In an ever-changing aerospace environment, the automated part 

of the system is more vulnerable to unforeseen situations. 

With an ideally designed automated system, there has shown to be improvements 

to the operators SA, cognitive ability, and perceptual grounds for decision-making 

(Wiener, 1988). Studies specific to UAS have even suggested that there is a reduction of 
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operator workload with increased automation (Dixon, Wickens, & Chang, 2003). 

Automated systems have also played a significant role in improving the perceptual and 

cognitive abilities of the flight crew, while providing comfort to passengers, as well as 

increasing fuel efficiency and reducing flight times (Wiener, 1988). 

There are several applications that are currently being used in the modern-day 

NAS that assist the pilot with tasks that were once difficult and perhaps infeasible. 

Automated technologies used throughout the aviation arena range from Flight 

Management Systems (FMS) to Automatic Dependent, Surveillance-Broadcast (ADS-B) 

systems. Automation assists the pilot in number of tasks including the detection of other 

flight traffic, engine and fuel monitoring, and even flying the airplane. In fact, automated 

technologies allow some modern jet aircraft ranging from the Boeing 747 to the F-l 17 

Stealth Fighter to complete an entire flight with very little pilot interaction. 

The automated machine offers several advantages over a human operator, but the 

operator also has advantages over the machine. For instance, machines can carry out 

complex calculation quickly and precisely. Unlike humans, automated machinery rarely 

falters, and does not become tired, distracted, or bored. Humans on the other hand, are 

capable of planning, overseeing, and making intelligent decisions in time of uncertainty 

or automation failure. If they work together effectively, then they can achieve superior 

goals greater than the sum of the individual parts. However, this is not always the case. 

Hughes (2008) warns us that automation is not a panacea under conditions of uncertain 

changing situations. History has indicated that automated systems fail to perform as they 

were intended. He furthers this notion by identify three points that are inherent to 

systems: 
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• All cognitive systems are finite (people, machines, or combinations) 
• All finite cognitive systems in uncertain changing situation are fallible. 
• Therefore, machine cognitive systems (and joint systems across people 

and machines) are fallible 

(Hughes, 2008) 

It is clear that systems are inevitably fallible, especially in the highly dynamic and often 

unpredictable environments that UASs plan to operate within. Even if the probability of 

system fallibility is low, the magnitude of an adverse consequence often remains high. 

This is why it is so critical to design a system that allows for a pilot with the right skill-

sets to be actively involved in the system operation. 

Human-Centered A utomation 

Unlike conventional automation techniques, human-centered automation focuses 

on distributing tasks among the human and machine so that a team effort is achieved 

(Endsley, 1996; Billings, 1997). Human-centered automation is a technique that allows 

the human to function effectively as part of system, rather than simply an add-on to an 

already existing system. Information gathered and forwarded by the automated system is 

critical to the pilot's ability to quickly and accurately assess the situation that the 

unmanned aircraft is encountering. A poorly designed system can leave the pilot with 

only bits and pieces of information, which can result in poor SA and cognitive under

load, thereby resulting in overall poor performance (Sanders & McCormick, 1993). 

Therefore, humans must know how to operate the automated system, and the system must 

be designed in a way that reinforces an actively informed pilot. For this to happen the 

human operator must be fed correct information in the right amount of time and in the 

right manner. In the case of UAS operations, there is little room for error or inaccuracies 
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to take place. C.E. Billings (1997) identifies several key principles that make up human-

centered automation in a modern aviation context. They are as follows: 

Premises: 
• The pilot bears the responsibility for safety of flight. 
• Controllers bear the responsibility for traffic separation and safe traffic 

flow. 
Axioms: 

• Pilots must remain in command of their flight. 
• Controllers must remain in command of air traffic. 

Corollaries: 
• The pilots and controller must be actively involved. 
• Both human operators must be adequately informed. 
• The operators must be able to monitor the automation assisting them. 
• The automated systems must therefore be predictable. 
• The automated systems must also monitor the human operator. 
• Every intelligent system element must know the intent of other intelligent 

system elements. 

(Billings, 1997) 

The benefits of automation are ultimately contingent on how automation strategies are 

applied and distributed among the machine and the pilot. Appropriate allocation of 

system functions is essential to overall system performance. 

Function Allocation 

Sheridan (1998) defined function allocation as "the assignment of required 

functions (tasks) to resources, instruments, or agents (either people or machines)". For 

years, human factors experts have been trying to identify ways in which to best distribute 

tasks between human and machines. Hughes (2008) argues that designers should develop 

systems that provide for effective coordination between the user and the machine, rather 

than separate tasks between the two. This is effectively known as "team play". Richard 

Pew (1998) relates this concept to that of a symphony, whereby the composer aims at 

acquiring a harmonious sound by assigning individual instrument parts that work in 
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concert with each other. Likewise, certain tasks should be appropriately divided up 

between the human and the machine in a way that will safely and effectively achieve the 

overall objectives. 

The process of applying automation can be a difficult task in discerning which 

functions should be automated and what functions should be left up to the human. 

Schulte (2002) provided us with a high-level example of the strengths of humans and that 

of machines, as well as how they collaborate: 
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Figure 6. Synergetic resources for man-machine cooperation (Schulte 2002) 

Sanders & McCormick (1993) point out that humans are typically better at 

sensing unusual situations in the environment, deriving alternative solutions, and the 

detection of unexpected stimuli. Whereas machines are excellent at conducting pre-

specified tasks, endure extreme environmental elements, and reliably repeat their pre-

assigned functions. It should be noted that along with the inevitable progression of 

technology, the capabilities of machine will also evolve, resulting in the possibility of 

current human strengths being overcome by that of a machine. 

Many conventional systems do not provide for an adequate level of human 

involvement within the system operation, thereby placing the entire system at a much 

higher risk for failure. It is also common for system designers to only focus on decreasing 
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workload but this often results in a decrease in situation awareness, thereby increasing 

risk for failure. Due in large part to this concept, a U.S. Air Force Scientific Advisory 

Board concluded that the allocation of functions, and human-machine interface designs 

are both major shortfalls in UAS operations (Worch, 1996). An ideal system should be 

designed in a way that decreases workload, while increasing SA. Since one is often 

gained at the sacrifice of another, both should be measured in unison to discover the best 

desired combination of the two. 

Studies of Automation on Workload 

Workload is a general term used to describe the cost of accomplishing task 

requirements for the human element of a man-machine system (Hart & Wickens, 1990). 

Essentially, this comes down to a supply-and-demand type of concept. As a task 

becomes more demanding, the human must expend a higher amount of workload to 

compensate. Although humans are typically agile creatures by nature, there comes a point 

where demands exceed the amount of workload available, resulting in diminished 

performance (Sarno & Wickens, 1995). It is suggested that workload can be measured by 

numerous factors including: physical demand, mental demand, time pressure, effort 

expended, performance level achieved, frustration experienced, and annoyance 

experienced (Spirkovska, 2006). 

Performance can be degraded as a result of both high and low levels of workload 

demands (Crescenzio, Miranda, Periani, Bombardi, 2007). Low levels of automation 

typically demand higher levels of operator workload, whereas high levels of automation 

demand lower levels of operator workload but inevitably result in decreased SA, or out-

of-the-loop performance decrements. Out-of-the-loop performance decrements require 

29 



The Effect of Learned 30 

the operator to expend an abundant amount of workload in a short amount of time to 

regain in-the-loop familiarity with the situation. Crescenzio suggests that an ideal human-

centered interface should provide the human with the following: 

• Low level of operator workload: the operator would have to spend few 
resources in terms of time and cognitive effort to command the 
vehicle, in order to manage the mission and analyses the information 
coming from onboard system. 

• High level of operator situation awareness: the operator should be 
provided with a comprehensive view of the overall mission scenario, 
in order to understand the mission state and detailed vehicle state 
during the mission, enabling him to score and order all the information 
to develop the optimal command sequence 

(Crescenzio et al., 2007) 

It is noteworthy to mention that just as supply and demand continually fluctuate in the 

real business market, so does that of workload and SA. Therefore, it can be suggested 

that there will be a point of equilibrium where workload supply and SA demands will 

result in best achievable performance; yet fluctuations can be expected through time due 

to constant changes in factors such as operator characteristics and environmental 

concerns. 

Alleviating pilot workload, while maintaining (or increasing) adequate S A should 

be of primary importance in the design of a UAS. A disengaged pilot often results in out-

of-the-control-loop performance decrements, deficits in SA, sporadic workload, and 

inability to regain system control (Kaber & Endsley, 1997). 

Studies of Automation on Situation Awareness 

Endsley (1988) formally defines SA as "the perception of the elements in the 

environment within a volume of time and space, the comprehension of their meaning and 

the projection of their status in the future." Endsley (1995) later classifies SA into three 

levels to better apply towards complex systems. Level 1 requires the pilot to perceive 
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relevant environmental information (e.g. the presence of another aircraft). Level 2 

requires the pilot to comprehend the lower level situation to predict how it will affect the 

current situation (e.g. the aircraft is in conflict with current flight path). Level 3 requires 

the pilot comprehends the lower levels to predict future outcomes (e.g. a collision with 

the aircraft will occur unless a heading adjustment is made). 

In the event that systems are highly automated, achieving a state of Level 3 SA is 

very difficult to accomplish. Even achieving Level 2 SA has shown to be problematic 

(Carmody & Gluckman, 1993; Endsley & Kiris, 1995). Endsley (1997) summarizes these 

problems as: 

• Vigilance decrements associated with monitoring, complacency due to 
over-reliance on automation, or a lack of trust in automation can all 
significantly reduce SA as people may neglect monitoring tasks, 
attempt to monitor but do so poorly, or be aware of indicated 
problems, but neglect them due to high false alarm rates. 

• Passive processing of information under automation (as opposed to 
active manual processing) can make the dynamic update and 
integration of system information more difficult. 

• Changes in form or a complete loss of feedback frequently occur either 
intentionally or inadvertently with many automated systems. 

• Failure to achieve desired reductions in operator workload as 
monitoring is a demanding task and the automation itself introduces 
new kinds of workload 

(Endsley, 1997) 

An ideal method of designing a system that allows for a cooperative human-

system synergy is accomplished by strategically determining the appropriate level of 

automation (LOA) that minimizes the impacts of SA. "LOA represents a strategy for 

improving the functioning of the overall human-machine system by integrating the 

human and automated system in a way that allows the human to function effectively as 

part of the system (Endsley, 1997)." 

Levels of Automation 
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Levels of automation is defined as "the level of task planning and performance 

interaction maintained between the human operator and computer in controlling a 

complex system (Kaber & Endsley, 2003)." The level in which the machine and/or 

human are involved in the particular function is deemed to be the level of automation that 

is implemented into the design. 

Endsley & Kaber (1999) point out that automation is not an all or nothing 

concept. Instead, it can be applied to a multitude of tasks in various ways. Sheridan and 

Verplank (1978) discovered this concept early on while establishing automation 

techniques for teleoperated undersea vessels. The objective was not to assign individual 

tasks between the human and the machine, but to establish a 'game-plan' for a variety of 

tasks in a way that kept both assets actively involved. This coordination technique kept 

the human in the loop, while allowing for 'team-play' to be carried out. Table 1 lists the 

various levels of automation that could be associated with each task. 

Table 1 

Sheridan & Verplank's Level of Automation. (Sheridan & Verplank, 1978) 
(1) Human does the whole job up to the point of turning it over to the computer to implement 
(2) Computer helps by determining the options 
(3) Computer helps to determine options and suggests one, which human need not follow 
(4) Computer selects action and human may or may not do it 
(5) Computer selects action and implements it if human approves 
(6) Computer selects action, informs human in plenty of time to stop it 
(7) Computer does whole job and necessarily tells human what it did 
(8) Computer does whole job and tells human what it did only if human explicitly asks 
(9) Computer does whole job and decides what the human should be told 
(lO)Computer does the whole job if it decides it should be done and, if so, tells human, if it 

decides that the human should be told. 

Nearly ten years later, Endsley (1987) developed a similar model that focused on 

the human component of the system, rather than the machine. Endsley also added levels 

that would accommodate for fully-autonomous and fully-manual system functions. Table 
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2 provides a conceptual framework as to the level in which the human is involved in the 

task. 

Table 2 

Endsley's Level of Automation. (Endsley, 1987) 
(1) Manual Control- no assistance from system 
(2) Decision Support- by the operator with input in the form of recommendations provided by the system 
(3) Consensual Artificial Intelligence- by the system with the consent of the operator required to carry 

out actions 
(4) Monitored Artificial Intelligence- by the system to be automatically implanted unless vetoed by the 

operator 
(5) Full Automation- no operator interaction 

Endsley and Kaber (1997, 1999) further expanded this concept to include a wi'der 

range of cognitive and psychomotor skills necessary to complete tasks in cooperation 

with a machine counterpart. The applicability of the updated concept applies to many 

various domains that shared a variety of commonalities including: "(1) multiple 

competing goals, (2) multiple tasks competing for an operator's attention, each with 

difference goals, (3) high task demands under limited time resources (Kaber & Endsley, 

2003)." Likewise, there were also four intrinsic functions or 'roles' discovered for each 

level of automation: 

1. Monitoring- which includes taking in all information relevant to perceiving 
system status (e.g. scanning visual displays) 

2. Generating-formulating options or task strategies for achieving goals; 
3. Selecting-deciding on a particular option or strategy 
4. Implementing-carrying out the chosen option through control actions at an 

interface 
(Kaber & Endsley, 2003) 

Ensley's level of automation taxonomy is displayed in Table 3. A detailed explanation of 

each LOA is defined in Figure 8. 
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Table 3 

Endsley's LOA Taxonomy. (Kaber & Endsley, 2003) 

Level of Automation 

(1) Manual Control 
(2) Action Support 
(3) Batch Processing 
(4) Shared Control 
(5) Decision Support 
(6) Blended Decision making 
(7) Rigid System 
(8) Automated Decision 
Making 
(9) Supervisory Control 
(10) Full Automation 

Roles 
Monitoring 

Human 
Human/Computer 
Human/Computer 
Human/Computer 
Human/Computer 
Human/Computer 
Human/Computer 
Human/Computer 

Human/Computer 
Computer 

Generating 

Human 
Human 
Human 
Human/Computer 
Human/Computer 
Human/Computer 
Computer 
Human/Computer 

Computer 
Computer 

Selecting 

Human 
Human 
Human 
Human 
Human 
Human/Computer 
Human 
Computer 

Computer 
Computer 

Implementing 

Human 
Human/Computer 
Computer 
Human/Computer 
Computer 
Computer 
Computer 
Computer 

Computer 
Computer 

(1) Manual— The human performs all tasks including monitoring the state of the system, 
generating performance options, selecting the option to perform (decision making) and 
physically implementing it. 
(2) Action support— At this level, the system assists the operator with performance of 
the selected action, although some human control actions are required. A teleoperation 
system involving manipulator slaving based on human master input is a common 
example. 
(3) Batch processing— Although the human generates and selects the options to be 

performed, they then are turned over to the system to be carried out automatically. The 
automation is, therefore, primarily in terms of physical implementation of tasks. Many 
systems, which operate at this fairly low level of automation, exist, such as batch 
processing systems in manufacturing operations or cruise control on a car. 
(4) Shared control— Both the human and the computer generate possible decision 
options. The human still retains full control over the selection of which option to 
implement, however, carrying out the actions is shared between the human and the 
system. 
(5) Decision support— The computer generates a list of decision options, which the 
human can select from, or the operator may generate his or her own options. Once the 
human has selected an option, it is turned over to the computer to implement. This level 
is representative of many expert systems or decision support systems that provide option 
guidance, which the human operator may use or ignore in performing a task. This level is 
indicative of a decision support system that is capable of also carrying out tasks, while 
the previous level (shared control) is indicative of one that is not. 
6) Blended decision making— At this level, the computer generates a list of decision 
options, which it selects from and carries out if the human consents. The human may 
approve of the computer's selected option or select one from among those generated by 
the computer or the operator. The computer will then carry out the selected action. This 
level represents a high-level decision support system that is capable of selecting among 
alternatives as well as implementing the selected option. 
(7) Rigid system— This level is representative of a system that presents only a limited 
set of actions to the operator. The operator's role is to select from among this set. He or 
she cannot generate any other options. This system is, therefore, fairly rigid in allowing 
the operator little discretion over options. It will fully implement the selected actions, 
however. 
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(8) Automated decision making— At this level, the system selects the best option to 
implement and carries out that action, based upon a list of alternatives it generates 
(augmented by alternatives suggested by the human operator). This system, therefore, 
automates decision making in addition to the generation of options (as with decision 
support systems). 
(9) Supervisory control— At this level, the system generates options, selects the option 
to implement and carries out that action. The human mainly monitors the system and 
intervenes if necessary. Intervention places the human in the role of making a different 
option selection (from those generated by the computer or one generated by the operator); 
thus, effectively shifting to the Decision Support LOA. This level is representative of a 
typical supervisory control system in which human monitoring and intervention, when 
needed, is expected in conjunction with a highly automated system. 
(10) Full automation— At this level, the system carries out all actions. The human is 
completely out of the control loop and cannot intervene. This level is representative of a 
fully automated system where human processing is not deemed necessary. 

Figure 7. LOA Taxonomy Definitions (Kaber & Endsley, 2003) 

Billings (1997), offers a similar approach to automation styles directly related to 

pilot and ATC operations. Among those are two levels of automation that are approached 

prior to reaching a fully autonomous state of operation: management by consent and 

management by exception. 

Management by Consent 

MBC is a management style that incorporates lower levels of automation. This 

management style allows the machine to perform functions only when given permission 

by the operator, and correlates with levels 6 and 7 of Kaber & Endsley's (2003) level of 

automation taxonomies. This style of automation associates the pilot as a team player in 

the system functions, since he/she must designate the tasks to be conducted by 

automation. This often results in higher SA but also increases workload. 

It has been demonstrated that airline pilots prefer the MBC approach over MBE 

(Olson & Salter, 1998), due to their ability to control system functions. However, pilot 

preference shifted to MBE in situations involving high workload, task complexity, and 

situations resulting in heightened time pressure. 

Management by Exception 
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MBE is the management style that incorporates higher levels of automation. 

According to Billings (1996) management by exception is "a management-control 

situation in which the automation possesses the capability to perform all actions required 

for mission completion and performs them unless the manager takes exception". 

Essentially, this management style incorporates the use of levels 8 and 9 on Kaber & 

Endsley's (2003) level of automation taxonomies. This allows for the machine to initiate 

and perform functions on its own, and requires little pilot interaction (Billings, 1997); yet, 

the pilot still has the opportunity to become involved in system operations when chosen, 

or re-delegate tasks to automation when necessary. 

MBE reduces the amount of pilot involvement and increases the risk of losing 

track of system functions. This management style also requires the pilot to perform a 

monitoring role, often resulting in automation surprises such as degraded SA and 

sporadic cognitive workload (Sarter, Woods, Billings, 1997). Automation problems are 

believed to be further exacerbated in systems that do not actively support operators in the 

monitoring role (Olson & Sarter, 2000). 

The benefits of automation, especially on a grand scale, is likely indicative on the 

level of automation that is implemented (Mouloua, Gilson, Daskarolis-Kring, Kring, 

Hancock 2001; Parasuraman, et al., 2000). Much research is needed to determine which 

levels of automation are optimal for UAS operations (McCarley & Wickens, 2005). 

Ruff, Calhoun, Draper, Fontejon, and Guilfoos (2004) performed a similar UAS study 

that indicated MBE resulted in higher workload and poorer performance then MBC. A 

preceding study also discovered that MBC produced a higher level of mission efficiency 
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and higher levels of SA than MBE (Ruff, Narayanan, & Draper, 2002). The known 

advantages and disadvantages of each management style are shown in Figure 8. 

Level of Automation 

Management by Consent 
(MBC) 

Management by Exception 
(MBE) 

Advantages 
• Involves human in 

action selection 
process 

• Greater Situation 
Awareness 

• Lower levels of 
operator workload 

• Shorter action 
selection times 

Disadvantages 
• Higher levels of 

Operator workload 
• Longer action 

selection times 

• Removes human 
requirement from 
action selection 

• Prompts lower 
operator awareness 

Figure 8. LOA Comparisons (Wasson, 2005) 

Summary 

The UAS control station must allow the pilot to fly the aircraft in a safe manner. Many of 
the human performance related regulations and standards related to human performance 

that exist today apply to the UAS control station but are not sufficient when the pilot is 
remote from the aircraft. A human centered control station design will mitigate human 

error and facilitate safe, easier control station training and learning. 
-RTCA SC-203, 2007 

UASs are complex highly-automated systems that intend to operate within 

expansive and rather unpredictable environments. While operating in these environments, 

they are restricted by human and technology limitations, as well as regulatory 

frameworks mandated for safe facilitation of the NAS. The unmanned aircraft component 

of the system must demonstrate an equivalent level of safety to that of manned aircraft. 

The pilot must be able to monitor and assess the state of the unmanned aircraft, the 

unmanned aircraft operating environment, as well as monitoring the control station 

environment. As a result, heightened cognitive demands that drastically alter mental 

workload and SA should be expected. A faulty human-control interface design can 
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present grave danger to other NAS users if not properly engaged. Unfortunately, 

performance testing in this critical area is extremely rare and time is growing short. 

There currently lacks a certifiable UAS design that has been granted access into 

the NAS by the FAA. Adequate standards and guidance material is currently being 

developed to help facilitate a safe and effective implementation of this aspiring 

technology. Though certification expectations for technology have yet to be identified, 

one thing remains certain: the pilot remains to be the sole responsibility of the aircraft. A 

new and refreshing design approach would be to use the human as a starting point, and 

design the automated machine as an extension of the pilot. 

A main area of concern is to discover an ideal combination of KSAs in 

conjunction with automation strategies. It is pertinent that the pilot be delivered the right 

information, at the right time, and in the right manner. It is also important for the pilot to 

perceive that information correctly, make decisions based on sound rationale, and provide 

correct feedback. In the event that a lower level of autonomy is used, the pilot must be 

able to safely keep up with the cognitive workload while maintaining adequate S A. In the 

event that a higher level of automation is used, the pilot must still remain adequately 

involved, aware, and in-the-loop of the UAS operation. MBC and MBE automation 

strategies in conjunction with pilot and ATC expertise are all familiar attributes in the 

aviation domain. The intent of this current research is to discover a good combination 

between the management styles and individual experiences, rather than solely focusing 

on each factor individually. Therefore, both Air Traffic Controllers (with extrinsic flight 

familiarity) and pilots (with intrinsic flight familiarity) will be tested at both MBE and 

38 



The Effect of Learned 39 

MBC levels of automation to determine if there are any prominent combinations that 

exist. 

Statement of Hypotheses 

Hypothesis 1: Participants using MBC automation strategies will result in higher 

accuracy scores than those using MBE automation strategies. 

Hypothesis 2: Participants using MBE automation strategies will result in lower task 

processing times than those using MBC automation strategies. 

Hypothesis 3: Participants using MBE automation strategies will result in lower workload 

scores than when they are using MBC automation strategies. 

Hypothesis 4: Participants using MBC automation strategies will result in higher SA 

scores than when they are using MBE automation strategies. 

Hypothesis 5: The Pilot group will result in higher task accuracy scores than the ATC 

group and the control group. 

Hypothesis 6: The ATC group will result in lower task processing times than the Pilot 

group and the control group. 

Hypothesis 7: The ATC group will indicate lower workload scores than the Pilot group 

and the control group. 

Hypothesis 8: The Pilot group will indicate higher SA scores than the ATC group and 

the control group. 

Hypothesis 9: An interaction will exist between level of automation and user experiences 

for task processing times. Specifically, in high levels of automation, Air 

Traffic Controllers will have lower task processing times, whereas pilot 

task processing times will remain the same or increase. 
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Hypothesis 10: An interaction will exist between level of automation and user 

experiences for workload. Specifically, in high levels of automation, Air 

Traffic Controllers will indicate lower workload ratings, whereas pilot 

workload ratings will increase or remain the same. 

Hypothesis 11: An interaction will exist between level of automation and user 

experiences for situation awareness. Specifically, in high levels of 

automation, Air Traffic Controllers will indicate lower situation awareness 

ratings, whereas pilot situation awareness ratings will increase or remain 

the same. 

Method 

Participants 

Twenty-four participants from Embry-Riddle Aeronautical University were 

selected to participate in the study. All students were upper-classmen with an average age 

of 22 years. 16 students were male and 8 were female. The targeted population groups 

were inclusive of eight flight students, eight ATC students, and eight additional Human 

Factors students to represent the baseline. All participants were selected on a volunteer 

basis. Participants were asked to sign a consent form acknowledging their willingness to 

participate on a free-will basis (see Appendix A). Each volunteer was compensated $15 

for their time. An additional $100 cash prize incentive was awarded to the top performer. 

Apparatus 

The apparatus consisted of a UAS software test-bed simulation device called 

MIIIRO (Multi-modal Immersive Intelligent Interface for Remote Operations). MIIIRO 

has been widely used as an UAS research simulator (Nelson, Lefebvre, & Andre, 2004; 
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Tso et al. 2003). The software was designed by IA Tech with support from the Air Force 

Research Laboratory, and is geared towards supporting research for long-range, high-

endurance UASs. The hardware component is comprised of a standard PC with a dual 

monitor setup. The primary monitor portrayed the Tactical Situation Display (TSD) 

which encompassed the topographical image of the unmanned aircraft's environment, the 

unmanned aircraft(s), a color-coded assignment of unmanned aircraft routes, critical 
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and SA were subjective measures filled out by the participants, whereas accuracy and 

response times were objective measures collected by the MIIIRO software. Refer to table 

4 for a graphical depiction of the experimental design. 

Table 4 

Experimental Design 

Experience 

Pilot ATC Baseline 

Level of Automation 
MBE 

Tasks 

Primary Task 

The MBC and MBE flight mission scenarios were set up similar to a highly-

automated UAS. Therefore, there was no direct control of the unmanned aircrafts flight 

control surfaces. Instead, predetermined waypoints made up the flight path in which the 

unmanned aircraft autonomously followed. Along the flight path, 15 image capture 

locations were also preset and the associated images were automatically displayed to the 

participant, once the unmanned aircraft approached the preset waypoint. 

The primary task of the participant was to view the images collected by the 

unmanned aircraft and verify that the Automatic Target Recognizer (ATR) had selected 

the correct target(s) present in the image. Each image collected along the flight route 

contained at least one ground vehicle, but a threat was not always present. The threats 

and non-threats were depicted as ground vehicles and were visually discemable by color, 

but were not always selected correctly by the ATR. The ATR attempted to distinguish 

1 8 8 
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between the two or more vehicles by placing a red box around the threat(s). The 

reliability of the ATR was set to 80%, so the participant had to verify that threats were 

correctly selected. In cases where the ATR had incorrectly dissociated threats from non-

threats, the participant needed to manually select and/or deselect the images by directly 

clicking on the targets with a mouse curser. 

During MBC scenarios, the participant processed the image manually by 

accepting or rejecting each image in the image cue. During MBE scenarios, the computer 

automatically processed the images after a 15 second duration, unless the participant 

overrode the automation by manually processing the images. If the participant needed 

more time, they were instructed to press a hold button which reset the time-out period to 

15 seconds. 

Primary task performance data was collected automatically by the MIIIRO 

software. The primary dataset was inclusive of: image response time, image queue time, 

image processing time, target selection accuracy, manual accepts/rejection, automatic 

accepts/rejections and image hold times. 

Secondary Task 

There are two secondary tasks associated with the experiment. The first task 

encompassed Intruder Aircraft (IA) events that mimicked an unexpected aircraft entering 

within the unmanned aircrafts airspace. This random event occurred twice per trial, and 

was deemed a highly critical situation that necessitated a quick and attentive response. 

The event was depicted by a red aircraft-shaped icon instantly appearing on the TSD at 

random times. To alleviate the threat, the participant needed to click on the aircraft and 

enter a pre-determined code. 
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The second task encompassed a MMI that mimicked an indicator representing the 

status or health of the UAS. This indicator was constantly displayed on the TSD and 

looked similar to a horizontal traffic light. It was made up of three round lights that 

changed from green to yellow or red, depending on the unmanned aircrafts status. A 

green status indicated that the unmanned aircraft was in good health. The light would 

randomly change to yellow or red, indicating that attention was needed from the 

simulated pilot to correct the situation. To correct the situation, the participant was 

required to click on the light panel and correctly type in a text string of numbers shown in 

a pop-up window. Once the text string was entered correctly, the status indicator returned 

back to green, indicating a healthy status. 

Secondary task performance data was collected automatically by the MIIIRO 

software. The secondary dataset is inclusive of: MMI event occurrences, MMI response 

times, IA occurrences, and IA detection response times. 

Subjective Workload 

A NASA-TLX rating scale was used to measure workload experienced by the 

participants (Hart & Staveland, 1988). The NASA-TLX provided an overall workload 

score based on a weighted average and rating of six subscales: Mental Demands, Physical 

Demands, Temporal Demands, Performance, Effort, and Frustration. The participant first 

responded to a series of pair-wise comparisons to determine the ranking order in which 

each subscale topic contributed to overall workload during the task. These subscales 

were then weighted in order of its rank, with the top ranking subscale given the most 

weight. The participant then rated each workload subscale individually as to how they 

felt it pertained to the mission scenario. High ranking subscales did not always coincide 
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with highly rated subscales. For example, the participant may have ranked the Physical 

Demand subscale to be the most critical aspect effecting workload, but still rated it low 

due to it being a computer-based simulation requiring little physical demands. 

Documentation of the NASA-TLX is provided in Appendix C. 

Subjective Situation Awareness 

A modified Post-Trial Participant Subjective Situation Awareness Questionnaire 

(PSAQ) was used to measure the level of SA experienced by the participants. The PSAQ 

instrument is a questionnaire designed for the participant to rate specific levels of SA and 

also illicit their own responses following each mission scenario. Each item was rated on a 

5-point scale. A rating of 1 indicated that the participant was not aware of the evolving 

situation, whereas a rating of 5 indicated that the participant had been fully aware of the 

evolving situation (Strater, Endsley, Pleban, & Matthews, 2001). 

The PSAQ derived from Strater et al. (2001) originally measured three items: 

• Workload: how hard the participant worked during the scenario. 
• Performance—how well the officer performed during the scenario, and 

• Self-perceived SA—how aware the officer was of the evolving situation. 

These three subjective measurements were retained for the questionnaire being conducted 

in this current study. However, an additional five questions were added to assess the 

participants' SA specific to events contained within each mission scenario. This is 

inclusive of the Mission Mode Indicator status, Intruding Aircraft, and the perception of 

the aircrafts involvement within the surrounding environment. The modified PSAQ 

questionnaire can be found in Appendix D. 

45 



The Effect of Learned 46 

Procedure 

Upon the participant's arrival to the lab, they were asked to fill out a consent form 

(see Appendix A) and Biographical Questionnaire (see Appendix B) asking questions 

about their background. During this time, they were also introduced to the PSAQ and 

NASA-TLX questionnaires. The participants were then be familiarized with the MIIIRO 

simulator and informed of the research taking place. Each participant took part in an 

instructional session and a five-minute hands-on training exercise that familiarized them 

with all possible events that were to occur in the actual scenarios. Any questions that the 

participants had were answered at that time. 

After the participant had been briefed and were ready to proceed, they were 

instructed to begin the trial. No assistance was granted at this time. Each participant 

conducted both MBC and MBE scenarios. In an effort to counterbalance the ordering 

effect, the first scenario was randomly assigned, followed by the alternate scenario. 

Accuracy and time data were automatically collected by the MIIIRO test bed software. 

Immediately following each simulated flying mission, the participant filled out a 

workload and SA questionnaire. Once both trials were complete, and all data was 

collected, the participant was debriefed and additional questions were answered at that 

time. Each participant was paid $15 for their participation and was instructed to sign a 

payment receipt. Once the entire study was concluded, the individual with the highest 

performance score was contacted and awarded $100. 

Results 

The objective of the present study was to investigate the effects of level of 

automation and user experience on UAS piloting performance, workload, and situation 
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awareness. The achieved results have been divided into four main areas of interest: 

accuracy, task processing time, workload, and situation awareness. The data was 

analyzed using several repeated measure factorial designs to assess the effects of level of 

automation on user experience resulting in each of the following independent variables: 

image accuracy, image processing time, MMI processing time, IA processing time, 

workload, and situation awareness. 

Accuracy 

For the primary task, image accuracy refers to the number of images correctly 

accepted or rejected as being a threat or non-threat. The number of correctly processed 

images were then divided by the total number of images for each simulated mission to 

reveal an overall percentage score. Hypotheses one and five anticipated that the level of 

automation, and the experience levels of the simulated pilot would impact the task 

accuracy scores. Hypothesis one predicted that the use of MBC automation strategies 

would result in higher accuracy scores than the use of MBE automation strategies. 

Hypothesis five predicted that the Pilot group would result in higher task accuracy scores 

than the ATC group and the control group. To test these hypotheses, a repeated measures 

factorial ANOVA was conducted on the accuracy scores. 
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Image Accuracy 

Table 5 illustrates the ANOVA results on image accuracy. 

Table 5 

ANOVA Source Table for Target Accuracy (%) 

Source SS df MS / P 
Eta 

Squared Power 

Within Subjects 

LOA 
LOA* Experience 
Error (LOA) 

.188 

.375 
255.938 

1 .188 
2 .188 

21 12.188 

.015 

.015 
.902 
.985 

.004 

.106 
.052 
.052 

Between Subjects 

Intercept 
Experience 
Error 

437963.021 
479.042 

1928.438 

1 437963.021 
2 239.521 

21 91.830 

4769.262 
2.608 

.000 

.097 
.981 
.007 

1.000 
.462 

*p<.05. 

Image Accuracy Main Effect Interpretation: Level of Automation. The derived 

F=.015 for the level of automation main effect did not exceed the tabled critical value 

.F=4.33 at^»=.05 with df\=\ and dfi=2\. Therefore, it is concluded that the mean image 

accuracy score for MBC (M=95.458, SD=8.387) was not significantly different from the 

mean image accuracy score for MBE (M=95.583, SD=6.743), F(l,21)=.015,/?>.05. In 

terms of hypothesis one, it appears that the differences in image accuracy scores among 

the MBC and MBE groups are non-significant. 

Image Accuracy Main Effect Interpretation: Experience. The derived F=2.608 

for the experience main effect did not exceed the tabled critical value F=3.47 at/?=05 

with df\=2 and dfi=2\. Therefore, it is concluded that there are no significant differences 

among the mean image accuracy scores for the Pilot (M=97.500, SD=3.665), ATC 
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(M=91.063, SD=11.51), and control (M=98.000, SD=2.58) groups, F(l,21)=2.608, 

p>.05. In terms of hypothesis five, it appears that the differences in image accuracy 

scores among Pilot, ATC, and control groups are non-significant. 

Task Processing Time 

Task processing times are separated into three individual times pertaining to three 

different tasks. The primary task, image processing time, represents the average time it 

took the simulated pilot to recognize and process the ground-based images displayed in 

the IMD. The MMI processing time represents the average time it took the simulated 

pilot to identify and accurately respond to the multiple mission mode indicator events. 

The IA processing times indicate the average time it took the simulated pilot to identify 

an intruder aircraft and resolve the conflict using the IFF code. Hypotheses two, six, and 

nine all refer to task processing times. Hypothesis two predicted that participants using 

MBE level of automation strategies would result in lower task processing times than 

participants using MBC levels of automation. Hypothesis six predicted that the ATC 

group would have lower task processing times than the Pilot group and the control group. 

Hypothesis nine predicted that an interaction would exist between the level of automation 

and user experience for task processing times. To test these hypotheses, a repeated 

measures factorial ANOVA was conducted on each of the processing times. 
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Image Processing Time 

Table 6 illustrates the ANOVA results on image processing time. 

Table 6 

ANOVA Source Table for Image Processing Time (ms) 

Source SS df MS f p S q ^ e d Power 

Within Subjects 

LOA 295945 1 295945 J\5 4̂81 1)24 .105 
LOA*Experience 189348 2 94674 .165 .849 .015 .072 
Error (LOA) 12061848 21 574375 

Between Subjects 
Intercept 625933852 1 625966852 383.064 .000 9̂48 1.000 
Experience 5197983 2 2598991 1.59 .227 .132 .298 
Error 34316222 21 1634105 

* p < .05. 

Image Time Main Effect Interpretation: Level of Automation. The derived F=.515 

for the level of automation main effect did not exceed the tabled critical value F=4.33 at 

p=.05 with dfi=T and df2=21. Therefore, it is concluded that the mean image processing 

time for MBC (M=3532.708, SD=970.16) was not significantly different from the mean 

image processing time for MBE (M=3689.750, SD=1144.40), F(l,21)=.515, p>.05. In 

terms of hypothesis two, it appears that the differences in image processing times among 

the MBC and MBE groups are non-significant. 

Image Time Main Effect Interpretation: Experience. The derived F=\ .59 for the 

experience main effect did not exceed the tabled critical value F=3.47 at p=.05 with 

dfi=2 and df2=21. Therefore, it is concluded that there are no significant differences 

among the mean image processing times for the Pilot (M=4072.500, SD=1403.55), ATC 
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(M=3327.125, SD=865.54), and control (M=3434.062, SD=728.17) groups, 

F(2,21)=1.59, p>.05. In terms of hypothesis six, it appears that the differences in image 

processing times among Pilot, ATC, and control groups are non-significant. 

Image Time Interaction Interpretation: Level of Automation by Experience. The 

derived F=.165 for the level of automation x experience interaction did not exceed the 

tabled critical value F=3.47 at p=.05 with dfi=2 and df2=21. Therefore, it is concluded 

that the interaction between the level of automation and experience levels on image 

processing times is non-significant, F(2,21)=.165, p>.05. In terms of hypothesis nine, it 

appears that the interaction between the level of automation and the experience levels on 

image processing times is non-significant. 

MMI Processing Time 

Table 7 illustrates the ANOVA results on MMI processing time. 

Table 7 

ANOVA Source Table for MMI Processing Time (ms) 

Source SS df MS f P 
Eta 

Squared Power 

Within Subjects 

LOA 
LOA*Experience 
Error (LOA) 

572033 
2285095 

30742643 

1 572033 
2 1142547 

21 1463935 

.391 

.780 
.539 
.471 

.018 

.069 
.092 
.165 

Between Subjects 

Intercept 
Experience 
Error 

3272909670 
3045872 

183558423 

1 3272909670 
2 1522936 

21 8740877 

374.437 
.174 

.000 

.841 
.947 
.016 

1.000 
.074 

*p<.05. 

MMI Main Effect Interpretation: Level of Automation. The derived F=.39\ for 

the level of automation main effect did not exceed the tabled critical value F=4.33 at 

p=.05 with dfi=l and df2=2\. Therefore, it is concluded that the mean MMI processing 
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time for MBC (M=8366.625, SD=2331.85) was not significantly different from the mean 

MMI processing time for MBE (M=8148.292, SD=2027.73), F(l,21)=.391,/?>.05. In 

terms of hypothesis two, it appears that the differences in image processing times among 

the MBC and MBE groups are non-significant. 

MMI Main Effect Interpretation: Experience. The derived F=. 174 for the 

experience main effect did not exceed the tabled critical value F=3.47 at/?=05 with df=2 

and df2=2\. Therefore, it is concluded that there are no significant differences among the 

mean MMI processing times for the Pilot (M=8612.625, SD=3078.55), ATC 

(M=8055.875, SD=1530.19), and control (M=8103.875, SD=1799.37) groups, 

F(2,21)=.174,p>.05. In terms of hypothesis six, it appears that the differences in MMI 

processing times among Pilot, ATC, and control groups are non-significant. 

MMI Interaction Interpretation: Level of Automation by Experience. The derived 

F=.780 for the level of automation x experience interaction did not exceed the tabled 

critical value F=3.47 at;?=05 with df\=2 and df2=2l. Therefore, it is concluded that the 

interaction between the level of automation and experience levels on MMI processing 

times is non-significant, F(2,21)=.780,/?>.05. In terms of hypothesis nine, it appears that 

the interaction between the level of automation and the experience levels on MMI 

processing times is non-significant. 
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IA Processing Time 

Table 8 illustrates the ANOVA results on IA processing time. 

Table 8 

ANOVA Source Table for IA Processing Time (ms) 

Source SS df MS f P 
Eta 

Squared 
Power 

Within Subjects 

LOA 
LOA*Experience 
Error (LOA) 

3884563 
21439361 
89614478 

1 3884563 
2 10719680 

21 4267356 

.910 
2.512 

.351 

.105 
.042 
.193 

.149 

.447 

Between Subjects 

Intercept 
Experience 
Error 

2502466449 
66253778 

490050601 

1 250246649 
2 33126889 

21 23335742 

107.237 
1.420 

.000 

.264 
.836 
.119 

1.000 
.270 

*p < .05. 

IA Main Effect Interpretation: Level of Automation. The derived F=.910 for the 

level of automation main effect did not exceed the tabled critical value F=4.33 at/?=05 

with dfi=l and dfi=2\. Therefore, it is concluded that the mean IA processing time for 

MBC (M=7504.917, SD=4368.12) was not significantly different from the mean IA 

processing time for MBE (M=6935.958, SD=3152.00), F(l,21)=.910,/?>.05. In terms of 

hypothesis two, it appears that the differences in IA processing times among the MBC 

and MBE groups are non-significant. 

IA Main Effect Interpretation: Experience. The derived F=l .420 for the 

experience main effect did not exceed the tabled critical value F=3.47 at/^.05 with df=2 

and dfi=2\. Therefore, it is concluded that there are no significant differences among the 

mean IA processing times for the Pilot (M=8878.625, SD-5808.26), ATC (M=6300.563, 
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SD=2143.88), and control (M=6482.125, SD=2384.19) groups, F(2,21)=1.420,jp>.05. In 

terms of hypothesis six, it appears that the differences in IA processing times among 

Pilot, ATC, and control groups are non-significant. 

IA Interaction Interpretation: Level of Automation by Experience. The derived 

F=2.512 for the level of automation x experience interaction did not exceed the tabled 

critical value F=3.47 at/?=.05 with df=2 and df2=2l. Therefore, it is concluded that the 

interaction between the level of automation and experience levels on Al processing times 

is non-significant, F(2,21)=2.512,/?>.05. In terms of hypothesis nine, it appears that the 

interaction between the level of automation and the experience levels on Al processing 

times is non-significant. 

Subjective Workload 

Workload was measured subjectively using the NASA-TLX workload rating 

scale. Hypotheses three, seven, and ten refer to workload. Hypothesis three predicted that 

MBE automation strategies would result in lower workload scores than MBC automation 

strategies. Hypothesis seven predicted that the ATC group would result in lower 

workload scores than the Pilot group and the control group. Hypothesis ten predicted that 

an interaction would exist among the level of automation and the user experience groups 

for workload. To test these hypotheses, a repeated measures factorial ANOVA was 

conducted on the workload dependent variable. 
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Subjective Workload Results 

Table 9 illustrates the ANOVA results on subjective workload. 

Table 9 

ANOVA Source Table for Workload 

Source SS df MS / P 
Eta 

Squared Power 

Within Subjects 

LOA 
LOA* Experience 
Error (LOA) 

6.750 
324.125 

3037.125 

1 6.750 
2 162.062 

21 144.625 

.047 
1.121 

.831 

.345 
.002 
.096 

.055 

.220 

Between Subjects 

Intercept 
Experience 
Error 

70074.083 
3180.792 
9869.125 

1 700074.083 
2 1590.396 

21 469.958 

149.107 
3.384 

.000 

.053 
.877 
.244 

1.000 
.573 

*p < .05. 

Workload Main Effect Interpretation: Level of Automation. The derived F=.047 

for the level of automation main effect did not exceed the tabled critical value F=4.33 at 

p=.05 with df=l and df2=2\. Therefore, it is concluded that the mean workload scores 

for MBC (M=37.833, SD=16.88) was not significantly different from the mean workload 

scores for MBE (M=38.583, SD=20.70), F(l,21)=.047,/?>.05. In terms of hypothesis 

three, it appears that the differences in workload scores among the MBC and MBE 

groups are non-significant. 

Workload Main Effect Interpretation: Experience. The derived F=3.384 for the 

experience main effect did not exceed the tabled critical value F=3.47 at/?=05 with df\=2 

and df2=2\. Therefore, it is concluded that there are no significant differences among the 

mean IA processing times for the Pilot (M=26.938, SD=19.84), ATC (M=45.875, 
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SD=17.10), and control (M=41.812, SD=11.54) groups, F(2,21)=3.384,/?>.05. In terms 

of hypothesis seven, it appears that the differences in workload scores among Pilot, ATC, 

and control groups are non-significant. 

Workload Interaction Interpretation: Level of Automation X Experience. The 

derived F= 1.121 for the level of automation x experience interaction did not exceed the 

tabled critical value F=3.47 at/?=05 with dfy^l and df2=2l. Therefore, it is concluded 

that the interaction between the level of automation and experience levels on workload 

scores is non-significant, F(2,21)=1.121, j9>.05. In terms of hypothesis ten, it appears that 

the interaction between the level of automation and the experience levels on workload 

scores is non-significant. 

Subjective Situation Awareness 

SA was measured subjectively using the PSAQ questionnaire. Hypotheses four, 

eight, and eleven refer to SA. Hypothesis four predicted that MBC automation strategies 

would result in higher SA scores than MBE automation strategies. Hypothesis eight 

predicted that the Pilot group would result in higher S A scores than the ATC group and 

the control group. Hypothesis eleven predicted that an interaction would exist between 

the level of automation and experience levels for SA. To test these hypotheses, a repeated 

measures factorial ANOVA was conducted on the SA dependent variable. 
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Subjective Situation Awareness Results 

Table 10 illustrates the ANOVA results on subjective situation awareness. 

Table 10 

ANOVA Source Table for Situation Awareness 

Source SS df MS f P 
Eta 

Squared 
Power 

Within Subjects 

LOA 
LOA* Experience 
Error (LOA) 

.013 

.366 
3.082 

1 .013 .086 
2 .183 1.245 

21 .147 

.772 

.308 
.004 
.106 

.059 

.241 

Between Subjects 

Intercept 
Experience 
Error 

834.667 
.118 

15.802 

1 834.667 1109.228 
2 .059 .078 

21 .752 

.000 

.925 
.981 
.007 

1.000 
.060 

*p < .05. 

SA Main Effect Interpretation: Level of Automation. The derived F=.086 for the 

level of automation main effect did not exceed the tabled critical value F=4.33 at/?=.05 

with df\=\ and <#2=21. Therefore, it is concluded that the mean workload scores for 

MBC (M=4.154, SD=.600) was not significantly different from the mean workload 

scores for MBE (M=4.186, SD=694), F(l,21)=.086,/?>.05. In terms of hypothesis four, 

it appears that the differences in SA scores among the MBC and MBE groups are non

significant. 

SA Main Effect Interpretation: Experience. The derived F=.078 for the 

experience main effect did not exceed the tabled critical value F=3.47 atp=05 with df\=2 

and dfi=2l. Therefore, it is concluded that there are no significant differences among the 

mean IA processing times for the Pilot (M=4.136, SD=.616), ATC (M=4.240, SD=584), 
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and control (M=4.134, SD=777) groups, F(2,21)=.078,/?>.05. In terms of hypothesis 

eight, it appears that the differences in SA scores among Pilot, ATC, and control groups 

are non-significant. 

SA Interaction Interpretation: Level of Automation X Experience. The derived 

F= 1.245 for the level of automation x experience interaction did not exceed the tabled 

critical value F=3.47 atp=.05 with df=2 and df2=2l. Therefore, it is concluded that the 

interaction between the level of automation and experience levels on SA scores is non

significant, F(2,21)=1.245, j?>.05. In terms of hypothesis eleven, it appears that the 

interaction between the level of automation and the experience levels on SA scores is 

non-significant. 

Overall, the results indicate that there are no significant differences found among 

level of automation, experience, or an interaction thereof. 

Discussion 

The objective of this study was to analyze the effects of level of automation and 

the type of prior experience a simulated pilot has on UAS operations in the areas of 

performance and perception. Accuracy and time performance were both measured 

objectively, while workload and situation awareness were measured subjectively. In other 

words, the study intended to see if different experiences in the aviation domain attributed 

to better performance and SA while acting as a pilot-in-command of an UAS simulator. 

Varying levels of automation were also used to determine whether users with specific 

KSAs performed in a more cooperative and coordinated manner when combined with a 

specific automation level. The results of the study were divided into four areas of focus: 
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image accuracy, task processing time, subjective workload, and subjective situation 

awareness. 

Image Accuracy 

Image accuracy scores were collected automatically from the MIIIRO software. 

Image accuracy scores were calculated by determining the number of correctly processed 

images divided by the total number of images presented in each mission scenario. An 

image was correctly processed if the image is accepted when a 'threat target' is present, 

and if the image is rejected when there are no 'threat targets' in the image. Additionally, 

the accuracy of the Automatic Target Recognizer (ATR) was set to 80%. Therefore, 

automation would correctly designate the targets as threats/non-threats 80% of the time. 

The image processing task was deemed as the primary task. 

The results of the image accuracy scores did not indicate any significant 

differences, regardless of the level of automation, or the experience level of the 

participant. The lack of significance was in contrast to hypothesis one and five. The 

results found in this current study indicate that the accuracy rate was 95% for MBC and 

96% for MBE, with a SD of 8.4% and 6.7% respectively. This implies that if the 

participant relied solely on automation during the MBE mission scenario, they would 

reside outside one standard deviation of the mean. With the same ATR accuracy rate of 

80%, Wasson (2005) found slightly lower results during the same two mission scenarios 

with a MBC and MBE accuracy percentage of 89% and 88% respectively, which is 

ultimately an average decrease of 2 out of the 30 images presented to the simulated pilot. 

A comparison of the results are displayed in figure 10. 
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Target Image Accuracy 

Figure 10. Comparison chart of task times for similar mission scenarios (data extracted 
from Wasson, 2005) 

Subjective feedback obtained from the PSAQ questionnaire highlighted several 

factors that may contribute to a non-significant difference among the image accuracy 

means among prior experience and levels of automation. First, the majority of the images 

were easily deciphered at first glance, while a select few were rather obscure in detail In 

other words, it was easy to distinguish the threats from the non-threats in the vast 

majority of the images. Yet a few of the images left very little evidence to distinguish 

between the targets, no matter how long the image was observed. For the non-obvious 

images, it was more of a guessing game, rather than a need to further analyze the image. 

Therefore, a quick decision and response could be made at first glance. Some participants 

revealed that even in cases where there was minimal doubt, they would not risk targeting 

a 'friendly', or non-threat. This type of rationale was never anticipated by the author of 

this research, but possibly played a significant role in the outcome of the accuracy scores. 
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More details on this issue will be discussed in the Recommendations for Future Research 

section. 

Task Processing Time 

Image Processing Time. Task processing times were collected automatically by 

the MIIIRO software. The image processing time pertains to the average amount of time 

it took for a participant to respond and fully process an image, by discerning 'threat' 

vehicles from 'non-threat' vehicles. The results of these image processing times did not 

indicate any significant differences, regardless of the level of automation, or the 

experience level of the participant. This is in contrast to hypotheses two, six, and nine. 

Past research has suggested that image processing times were higher during the MBE 

level of automation, due to the participant relying on automation to process the image in a 

minimum of 15 seconds. Using an identical mission scenario, Wasson (2005) indicated 

that participants processed images at an average rate of 4564ms for MBC and 5965ms for 

MBE, whereas the results in this current study indicate that participants processed images 

at an average rate of 3533ms for MBC and 3689ms for MBE. A reasonable explanation 

for the faster processing times may be that there was a large monetary incentive for the 

top performer in speed and accuracy of the primary task. An alternative explanation for 

the faster processing times could be due to the targeted groups of participants selected in 

this study to satisfy the levels of experience criteria. Additionally, the MBE option was 

very rarely used among participants. In fact, data collected by the MIIIRO software 

indicated that the most it was ever used by any single participant was once. Ruff et. al. 

(2004) pointed out that participant's typically responded to images rather than allowing 

automation to process them. This finding is also supported by Olson & Sarter (1998), 

61 



The Effect of Learned 62 

specifically among experienced pilots conducting flight tasks under MBC/MBE 

strategies. This study found that all three levels of experience (pilot, ATC, and control 

group) chose to process the images on their own, rather than rely on MBE strategies. 

MMI Processing Time. There were also two secondary task processing times 

collected automatically by the MIIIRO software: MMI times, and IA times. Essentially, 

each of these tasks competed for the same mental resources as the primary task. The 

MMI times reflect the amount of time it took a participant to become aware of an 

abnormal MMI indication of yellow or red (indicating a need for a response), and 

respond to it by clicking directly on the indicator and typing in a string of numbers 

displayed in the resulting pop-up box. The results of these MMI processing times did not 

indicate any significant differences, regardless of the level of automation, or the 

experience level of the participant. This is in contrast to hypotheses two, six, and nine. 

These results concur with Wasson's (2005) study, where the average MMI processing 

times were 8926ms for MBC and 10996ms for MBE, whereas the results in this current 

study indicate that participants processed images at an average rate of 8367ms for MBC 

and 8148ms for MBE. Once again, the faster processing times may be attributed to the 

monetary incentive for the top performer in the primary task (despite this was not part of 

the primary task). 

IA Processing Times. The IA times reflect the amount of time it took a participant 

to become aware of I A, and respond to it by clicking directly on the IA icon and typing in 

the revealed code 'daytona' in the resulting pop-up box. The results of the mean IA 

processing times did not indicate any significant differences, regardless of the level of 

automation, or the experience level of the participant. This is in contrast to hypotheses 
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two, six, and nine. These results concur with Wasson's (2005) study, where the average 

IA processing times were 8752ms for MBC and 7997ms for MBE, whereas the results in 

this current study indicate that participants processed images at a faster average rate of 

7505ms for MBC and 6936ms for MBE. Once again, the faster processing times may be 

attributed to the monetary incentive for the top performer in the primary task (despite this 

was not part of the primary task). 

Overall, these results suggest that the differences in mean processing times among 

the primary and secondary tasks were non-significant among both the level of automation 

and the prior experiences of the participant groups. It is noteworthy that response times 

are indicative of adequate SA, alertness, scanning abilities, and responses times, yet two 

out of three of the quickest responders were among the control group, having no flight or 

ATC experience. Additionally, the top two fastest responders were the only participants 

who indicated computer gaming experience beyond the '0-5 hour' choice in the 

biographical questionnaire. In both cases the highest choice of '20-25+' hours of 

computer gaming per week was selected. 

Subjective feedback obtained from the PSAQ questionnaire revealed several 

theories as to why task processing times were comparatively quick. First, participants 

indicated that the overall mission was simple enough to quickly detect and react to all 

three timed events. The image processing task was deemed easily mediated, as any 

additional time spent on the task would not alter the initial decision of deciphering 

'threats' from 'non-threats'. Additionally, unlike the MMI, the IA was easily 

recognizable since it instantly appeared as a "bright red blip" on the display. The MMI 

was said to be a bit trickier, since all three lights were continuously present, and the 
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changes in brightness were harder to detect. Perhaps, if the primary task was more 

complex and required more time to process, than all three task times would have been 

increased. On the other hand, participants acknowledged that it was difficult to stay 

focused on the mission, and often felt as if they were just responding to event occurrences 

rather than actually processing information and making decisions. It was often revealed 

that the cash incentive of $100 for being the top performer encouraged quick and 

attentive responses. This notion is supported by comparing the task response times with 

a former between-subjects study using an identical mission scenario, with a $20 incentive 

prize. An overview of the task times comparing the two studies are displayed in figure 

11, An alternate theory may suggest that the time differences were due to the addition of 

the targeted experience levels presented in this study. 

MBC 

IA Time 

MMI Time 

•jsj Image Time 
3 

Past Study 

i Present Study 

0 2000 4000 6000 8000 10000 12000 

Time(ms) 

Figure 11. Comparison chart of task times for similar mission scenarios (data extracted 
from Wasson, 2005) 
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Subjective Workload 

The NASA-TLX workload assessment was introduced to the participant prior to 

the training session. It was then described in greater detail and completed by the 

participant following each mission. The results of the mean workload scores did not 

indicate any significant differences, regardless of the level of automation, or the 

experience level of the participant. This is in contrast to hypotheses three, seven, and ten. 

Past studies reveal that the Modified Cooper-Harper scale may not have been 

sensitive of specific enough to analyze workload on the MIIIRO simulator (Wasson, 

2005; Ruff et a l , 2004). Therefore, the NASA-TLX was used for this study. A statistical 

analysis revealed that the significance level among the three levels of experience was 

.052 with a power level of .573. The mean workload score of the pilot group was 27, in 

comparison to the mean workload scores of ATC and control groups of 46 and 42, 

respectively. Yet, each participant experienced the same exact mission scenarios. This 

supports the notion that there were few differences that existed between the MBC and 

MBE mission scenarios. In other words, if the participant ignores the automated 

capabilities that are offered during the MBE mission scenario, then they are essentially 

performing the same mission as if they were operating under MBC strategies. The two 

mission scenarios were nearly identical, with the addition of MBE capabilities. Since 

both levels of automation were performed by each participant, there was opportunity for 

each participant to rate one scenario above the other, but this was not the case. 

Furthermore, the only workload measure that came close to showing any significance 

was a result of the pilot group indicating lower workload scores than the ATC and control 

groups, despite performing the same mission scenarios. It is a possibility that a pilot's 
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perception of workload under the tested conditions are in direct comparison to actually 

flying an aircraft, whereas no other tested group can make this comparison. 

Subjective Situation Awareness 

A modified PSAQ questionnaire was introduced to the participant prior to the 

training session. It was then described in greater detail and completed by the participant 

following each mission. The results of the mean SA scores did not indicate any 

significant differences, regardless of the level of automation, or the experience level of 

the participant. This is in contrast to hypotheses four, eight, and eleven. 

It became apparent during the literature review that measuring SA while 

measuring workload could be beneficial. Often times, while working with automation, 

workload may decrease but also result in SA decrements. Therefore, the PSAQ 

questionnaire was modified to evaluate participant SA in several areas and tasks related 

to the simulated mission scenarios. This also presented an opportunity to gain participant 

feedback over all areas of the experiment. 

Differences in SA appeared to be non-significant among all tested groups. A 

possibility for these results is due to the inability for the participant to get any feedback 

on their performance. In most cases, if the participant missed an MMI or IA event, they 

remained unaware of doing so. The participants were never aware of their performance 

in the primary and secondary tasks nor did they have a foundation to base their 

performance on. Simply put, they were not aware of what they weren't aware of. 

Indicated SA scores remained high across all participants, regardless of their actual 

performance. 
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The feedback section in the PSAQ questionnaire was useful in determining how 

participants perceived the mission scenario. For instance, it was common for participants 

to mention how the IA events were much more recognizable than the MMI events. Other 

participants mentioned how they neglected to pay attention to the majority of the Tactical 

Situation Display, since all tasks could be accomplished by focusing on the uppermost 

section of the display. As a result, attention was completely detracted from the aircraft in 

accordance with its location on the map. Participants also advised that their performance 

was not degraded due to lack of attention, but because the events often took place all at 

once, forcing them to prioritize which tasks to respond to first. It was common for a 

participant to reveal that they remained attentive primarily due to the monetary incentive 

or the "challenge" posed against the other groups. SA results may have varied without the 

cash incentive or the competition, as both were compelling characteristics of the 

experiment. Additionally, adding the MBE option on the primary task seemed to add 

another element that most participants thought was more of a nuisance than a help. 

Lastly, participants indicated that the tasks were too simple and became boring. 

Overall, the experiment did not reveal any significant differences among level of 

automation and user experience levels. 

Study Limitations 

The primary constraint that incurred throughout this study was the simulation test-

bed design. Although this research did not detect any significant differences among the 

KSAs of individual experiences, it can be reasonably theorized that differences still exist. 

It became apparent during the experiment that participants acted more as responders 

rather than troubleshooters. This was partly due to the task requirements implemented in 
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the design. The design relied on the scanning capabilities and response times of the 

participants, rather than extensive decision making, troubleshooting, or strategizing 

abilities. This ultimately relieved the participants from having to perform with the use of 

prior knowledge and training. Thus, knowledge played an insignificant role, yet it is the 

knowledge-base that ultimately separates the participants among the three experience 

groups. A more appropriate setup would have required a testbed design that allowed for 

the participant to interact more as an operator, rather than a monitor. This would allow 

the simulated pilots to further exploit his/her knowledge base, specifically in the areas of 

detect, sense and avoid (DSA), operating procedures, and troubleshooting lost 

communications. However, the real-world role of a UAS operator is still unknown, and a 

certifiable user-interface has yet to be discovered. 

Additionally, the MBC and MBE settings for either particular mission scenario 

did not make any significant changes. It may be advantageous if these individual settings 

resulted in more extreme differences. Overall, the mission scenarios were too simple, and 

the level of automation did not play a large factor in performance. The overall complexity 

of the mission was too easy and required minimal mental processing ability to complete. 

There are a variety of UASs, and the option of user-interfaces are vast. Fixating on a 

highly automated and restrictive testbed may ultimately restrict research potential. It 

would be beneficial to invest in a testbed that allows for more design flexibility and 

capabilities. 

The primary task associated with the processing images did not require much time 

or mental processing to accomplish. The images used in this study were purposely set at a 

very low resolution in an effort to require the participant to spend more time analyzing it. 
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However, participants were still capable of making processing decisions at first glance. In 

other words, looking at the image longer did not alter their level of certainty in 

distinguishing threats from non-threats. Perhaps a new set of images would have made 

this task more appropriate for distinguishing experience characteristics. This issue will be 

discussed more in the Recommendations for Future Research section of this report. 

Furthermore, during the MBE scenarios, the time-out period for automatic image 

processing was 15 seconds. This provided ample time for the participant to process the 

image on their own. Perhaps, if the time-out period was reduced, participants would have 

relied more on the higher level of automation to assist them with the primary task. 

The sample population used in this study may have played a contributing factor in 

the lack of differences among participants with varying expertise and experiences. All 

participants were relatively inexperienced, when compared to individuals who have 

worked in the respective professions for several years. Due to financial and time 

constraints, it was infeasible to acquire well-experienced participants for this particular 

study. Furthermore, the sample size was relatively small, mainly due to money and time 

constraints, but also due to the timing in which the experiment took place. All of the 

participants were selected during the summer months, thereby reducing the population 

size. However, in order to obtain a reasonable power size, statistical power calculations 

revealed that it probably would have required a much larger sample size than what would 

have been feasible for this type of research. 

It is evident that a pilot study would have been useful in directing the outcome of 

the current research. The intent of the author was to apply a new independent variable 

(i.e. Experience), to a past research design (see Wasson, 2005) in order to determine if 
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piloting or air traffic control experience may have played a significant role in their 

findings. If a pilot study was conducted prior to the current research, than the outcome of 

this study may have been foreseen, and modifications could have been made to allow for 

a more appropriate approach in determining the impact of experience on UAS piloting 

ability. Nevertheless, it may still hold true that significant difference in UAS piloting 

abilities are not reliant on the prior experience levels tested. 

Practical Implications 

This research is the first of its kind at an attempt to distinguish personal 

differences among potential UAS pilots with various backgrounds. Although no 

significant differences were discovered, this research can be used as a good starting point 

for setting up future testbeds to better analyze individual characteristics. 

Current UAS designs are vast, and new concepts and innovations continue to 

unveil. Much research is still needed to uncover how automation strategies should be 

implemented in a system design, as well as the necessary skillsets required on behalf of 

the PIC. Does piloting experience play an issue in UAS operations? Will shared-fate alter 

decision making if the pilot is not co-located with the aircraft? There are still several 

questions left unanswered and should be figured out in a lab rather than being answered 

at the expense of human lives in the air or on the ground. By nature, UAS interface 

laboratory testing can simulate just about every scenario that can be experienced in actual 

operations. 

Recommendations for Future Research 

UAS research offers a wide variety of testing options that can essentially replicate 

real-world operations. Based on this current study, it would be advisable to further 
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investigate options that are allowed by the MIIIRO software. This current research was 

an extension of two mission scenarios that were designed in a prior study in order to 

make direct comparisons of the results, with the addition of using targeted populations. It 

was discovered that the level of automation played a very small role in altering the 

involvement of the participant. 

Additionally, emphasis should be directed on the primary task images. The 

current images require little time and effort to process. A different approach may be to 

collect birds-eye imagery from a source, such as Google Earth, that require the 

participant to scan and locate and designate specific items (such as basketball courts, 

swimming pools, or landing strips). This will eliminate the unnecessary decision to 

target threats from non-threats. Participant feedback in this study suggested that some 

users based their decision around whether to risk the lives of friendly targets. It will also 

require the simulated pilot to filter out an abundance of 'noise' in order to locate specific 

targets. Furthermore, this type of task will always remain open-ended, meaning the pilot 

in command will always have some level of doubt as to whether all targets are discovered 

and if the image should be accepted or rejected. In using this type of imagery, pilots, for 

instance, may have a higher confidence level in processing these images, due to their 

flight experience. 

Research should also examine how various levels of expertise perform tasks 

related to in-flight planning, especially in the area of unexpected events. The current 

study examined how a participant would respond to known and foreseen events. They 

merely needed to respond to these events, rather than make think critically and make 

decisions. If this type of thinking was all that was needed in the realm of aviation, than 
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pilots and controllers would not require much training. In fact, these unforeseen 

challenges in an ever-changing airspace environment is why it is so imperative that the 

human component remain in-the-loop of the system operation. Significant differences 

may be discovered among various user experiences if the missions allow additional 

flexibility for the user to become more involved in the actual mission (i.e. re-route 

aircraft around weather and traffic in order to complete a series of tasks). 

Subjective workload and SA should be investigated further, perhaps objectively. 

It is also recommended that these measurements take place during extremely demanding 

situations requiring a high level of user involvement, as well as relatively boring 

situations requiring low levels of user involvement. It is also advisable to apply workload 

and SA ratings on specific tasks, rather than the overall mission. This will allow 

researchers to discern between tasks that lessen workload while maintaining or increasing 

SA. 

Lastly, it is worth reiterating that the top performer in this study was among the 

baseline group and had no prior aviation training. The top two performers in the study 

were the only participants who indicated on the biographical questionnaire that they are 

avid computer gamers. The third top performer was neither a computer gamer, nor had 

prior aviation training, but used a computer more hours per week than any other 

participant. Future research may want to investigate whether computer familiarity plays 

an important role in conducting UAS operations from a PC-based operating platform. 

Conclusion 

UASs are on the verge of taking flight alongside manned counterparts. In fact, 

their presence in the military arsenal is well known and admired for their superior 
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capabilities. Several other entities have witnessed the expansive opportunities that UASs 

have to offer, and are seeking ways to exploit this technology. However, regulatory 

constraints will not permit UAS operation in the NAS until technological constraints and 

human factors concerns have been overcome. Removing the human component from the 

flying platform poses several advantages, but does not come without an abundance of 

risk. 

This study has initiated a much needed area of research pertaining to the user-

interface design, as well as understanding the capabilities and KSAs required on behalf of 

the pilot. Unfortunately, no significant differences were determined among the 

experience levels of the simulated pilot, nor the level of automation that was 

implemented into the system design. The possibility of replicating realistic, real-world 

UAS operations in a laboratory setting should be enough motivation to further this type 

of research in a simulated environment, rather than allowing shortfalls to be discovered at 

the expense of human life. 

The results discovered in this study revealed that humans, regardless of prior 

training in aviation realms, can perform substantially well under foreseen and expected 

circumstances. However, pilots are expected to remain in-the-loop of UAS operations for 

reasons that automation cannot mediate- the unforeseen, unexpected, and unintended 

situations. It is for this reason that future research should be carried out in these areas to 

determine the best approach at aligning adequate UAS pilots with an appropriately level 

of automation in an effort to promote coordinated team-play. 
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Appendices 

Appendix A 

Unmanned Aircraft System (UAS) Automation and Pilot Selection Study 

Conducted by Chris Reynolds 
Advisor: Dr. Dahai Liu 

Embry-Riddle Aeronautical University 
600 S. Clyde Morris Blvd, Daytona Beach, FL 32114 

The purpose of this study is to examine the effect of automation styles and learned 
skill-sets on performance, workload, and situation awareness. This experiment consists 
of one session that will last approximately one hour. During this session, you will be 
asked to complete two computer-based UAS simulation trials and fill out questionnaires 
regarding your perceived feeling of situation awareness and workload. 

Your participation in this study will help us determine an appropriate level of 
automation and help distinguish potential pilot candidates for future UASs. There are no 
known risks associated with this experiment. The data collected from your participation 
will remain completely anonymous. You will be compensated for your participation with 
a $15.00 cash incentive and will be eligible to receive a $50.00 cash prize for best overall 
performance. You may terminate your participation at any time. 

Thank you for your participation. If you have any questions, please ask during the 
experiment, or call Chris Reynolds at 719.640.7142 or Dr. Dahai Liu at 386.226.6214. 

Statement of Consent 

I acknowledge that my participation in this experiment is entirely voluntary and 
that I am free to withdraw at any time. I have been informed as to the general scientific 
purposes of the experiment and that I will receive $15.00 for completion of this study and 
will be eligible to receive $50.00 in the event that I have the best overall task 
performance in the entire study. Both rewards are contingent upon completion. 

I acknowledge that I have had the opportunity to obtain additional information 
regarding the study and that any questions I have raised have been answered to my full 
satisfaction. 

I have read and fully understand the consent form and I sign it freely and 
voluntarily. 

Participant's Name: 

Participant's Signature: Date 

Experimenter Signature: Date 
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Appendix B 

Biographical Information Questionnaire 

Please fill in the blanks or circle the appropriate response. 

1. What is your age? years 
2. What is your gender? M / F 
3. Do you have normal or corrected to 20/20 vision? Yes / No 
4. Are you color blind? Yes /No 
5. Are you: R-handed / L - handed 
6. What is your current learned skill-set? Pilot ATC Other 

a. If Pilot: 
i. What is the highest rating you hold? Private Instrument 

Commercial 
ii. What is your total PIC time (approx.)? hours 

iii. What is your total Instrument (including simulated) time? hours 
iv. Are you current? Yes /No 
v. How many hours have you flown in the past month (approx.)? 

hours 
b. If ATC: 

i. Check the courses that you have completed or are currently enrolled in? 
ATM-I ATM-II ATM-Ill ATM-IV ATM-V 
VFR Control Tower/AT315 Non-Radar ATC/AT406__ 

ii. How many hours have you spent performing ATC-based duties within the 
last month: hours 

7. How many hours per week do you use computers: hours 
8. On a scale of 1 to 5, what is your confidence level in using computers: 

LOW confidence 1 2 3 4 5 HIGH confidence 
9. On average, how many hours per week do you spend playing computer games? 

0-5 6-10 11-15 16-20 21-25+ 
10. What type of genre of gaming are you most accustomed to playing? 

Action Adventure Role-Playing Strategy 
Simulation 

11. Have you had any other experience participating in unmanned aircraft simulation? Yes / 
No 

12. Do you have any experience flying unmanned aircraft or remote controlled aircraft? Yes / 
No 

a. If so, please explain: 
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Appendix C 

NASA Task Load Index (TLX) Form (Presented after the completion of each trial) 
We are interested in your subjective experience of workload. Workload is a difficult concept to define precisely, but 

a simple one to understand generally. The factors that influence your experience of workload may come from the task 
itself, your feelings about your own performance, how much effort you put in, or the stress and frustration you felt. 

One way to find out about workload is to ask people to describe the feelings they experienced. Because workload 
may be caused by many different factors, we would like you to evaluate several of them individually rather than 
lumping them into a single global evaluation of overall workload. This set of six rating scales was developed for you to 
use in evaluating your experiences during the test trial. 

Please indicate the level of workload you experienced on each of the 6 scales by circling the line at the point which 
best reflects the level of workload you experienced. The ends of the scales are labeled to indicate very low and very 
high workload. Points in between those end points represent intermediate values of workload. Please note that the 
Performance scale goes from Good on the left to Bad on the right. This order has been confusing for some people. 

EFFORT — How hard did you have to work (mentally and physically) to accomplish your level of 
performance? 

I I I I I I I I I I I I I I I I I I I I I 
Low High 

PERFORMANCE — How successful do you think you were in accomplishing the goals of the task set by 
the experimenter (or yourself)? How satisfied were you with your performance in accomplishing these 
goals? 

I I I I I I I I I I I I I I I I I I I I I 
Good Poor 

FRUSTRATION LEVEL — How insecure, discouraged, irritated, stressed, and annoyed versus secure, 
gratified, content, relaxed, and complacent did you feel during the task? 

I I I I I I I I I I I I I I I I I I I I I 
Low High 

TEMPORAL DEMAND — How much time pressure did you feel due to the rate or pace at which the 
tasks or events occurred? Was the pace slow and leisurely, or rapid and frantic? 

I I I I I I I I I I I I I I I I I I I I I 
Low High 

MENTAL DEMAND — How much mental and perceptual activity was required (e.g., thinking, deciding, 
calculating, remembering, looking, searching)? Was the task easy or demanding, simple or complex, 
forgiving or exacting ? 

I I I I I I I I I I I I I I I I I I I I I 
Low High 

PHYSICAL DEMAND — How much physical activity was required (e.g., pushing, pulling, turning, 
controlling, activating)? Was the task physically easy or demanding, slow or brisk, slack or strenuous, 
restful or laborious? 

Low High 
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NASA Task Load Index (TLX) Weighting Form 

The forms you filled out included six rating scale factors that can influence workload. We are interested in 
your assessment of the relative contribution of these factors to your experience of workload. 

People vary in their opinion of what contributes to workload. For example, some people feel that mental or 
temporal demands are the essential aspects of workload regardless of the effort they expended or the 
performance they achieved. Others feel that if they performed well, the workload must have been low and 
if they performed poorly, the workload must have been high. Yet others feel that effort or feelings of 
frustration are the most important factors in workload, and so on. 

In addition, the factors that create levels of workload differ depending on the task. For example, some 
tasks might be difficult because they must be completed very quickly. Others may seem easy or hard 
because of the intensity of mental or physical effort required. Yet others feel difficult because they cannot 
be performed well, no matter how much effort is expended. 

The evaluation you are about to perform is a technique developed by NASA to assess the relative 
importance of the six factors that were included in the workload rating scale in determining how much 
workload you experienced across all the test trials you just completed. 

Below is a list of pairs of rating scale titles (for example Effort vs. Mental demand). For each pair, please 
circle the item that was more important to your experience of workload across all the test trials you just 
completed. 

MENTAL DEMAND 

TEMPORAL DEMAND 

PHYSICAL DEMAND 

EFFORT 

PERFORMANCE 

TEMPORAL DEMAND 

MENTAL DEMAND 

PERFORMANCE 

EFFORT 

TEMPORAL DEMAND 

EFFORT 

PHYSICAL DEMAND 

FRUSTRATION 

MENTAL DEMAND 

FRUSTRATION 

VS 

vs 

VS 

vs 

vs 

vs 

vs 

vs 

vs 

vs 

vs 

vs 

vs 

vs 

vs 

PHYSICAL DEMAND 

MENTAL DEMAND 

TEMPORAL DEMAND 

PERFORMANCE 

FRUSTRATION 

PERFORMANCE 

PERFORMANCE 

PHYSICAL DEMAND 

FRUSTRATION 

EFFORT 

MENTAL DEMAND 

EFFORT 

TEMPORAL DEMAND 

FRUSTRATION 

PHYSICAL DEMAND 
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Appendix D 

Post-Trial Participant Subjective SA Questionnaire (PSAQ) 

Name: Task: Date: 

Note: Definitions are provided for reference on the last page. 
1. Please circle the number that best describes how hard Not 

you were working during this scenario. hard 
Comments: 

1 2 3 4 5 
Extremely 

hard 

2. Please circle the number that best describes how Extremely 
well you performed during this scenario. poor 

Comments: 

1 2 3 4 5 Extremely 
well 

3. Please circle the number that best describes how 
aware of the evolving situation you were during 
the scenario. 

Comments: 

Not aware 
of 

situation 
1 2 3 4 5 

Completely 
aware of 
situation 

4. Please circle the number that best describes how 
aware of Intruding Aircraft you were during the 
scenario. 

Comments: 

Not aware 
of 

situation 
1 2 3 4 5 

Completely 
aware of 
situation 
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5. Please circle the number that best describes how 
aware of the Mission Mode Indicator you were 
during the scenario. 

Comments: 

Not aware 
of 

situation 
1 2 3 4 5 

Completely 
aware of 
situation 

6. Please circle the number that best describes how 
well you perceived the operating environment of 
the aircraft(s) in which you were flying. 

Comments: 

No mental 
perception 1 2 3 4 5 

Very high 
mental 

perception 

7. Please circle the number that best describes how 
well you perceived the future status of the 
aircraft(s) in which you were flying. 

Comments: 

No mental 
perception 1 2 3 4 5 

Very high 
mental 

perception 

8. Please circle the number that best describes how 
well you perceived the interaction of the 
aircraft(s) in which you were flying with the 
surrounding environment. 

Comments: 

No mental 
perception 1 2 3 4 5 

Very high 
mental 

perception 

Additional Comments: 
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PSAQ Definitions 

Hard Work: 
Refers to the overall amount of effort exerted to complete the mission scenario. This is 
an overall combination of: mental demand, physical demand, temporal/time demand, 
performance, effort, frustration, etc. 

Performance: 
Refers to how quickly and correctly you completed the tasks required of you during the 
mission scenario. 

Awareness: 
Refers to your ability to quickly and effectively comprehend what is taking place during 
specific occurrences in the mission scenario. 

Perception: 
Refers to how well you could visualize or create a mental picture of the situation in your 
head. 
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