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ABSTRACT 

Effect size is the standardized effect that some treatment has on a sample of 
a population. In particular, Hedges' g and Glass delta are mean difference 
effect size estimators that are used to compute the effect sizes found in an 
experimental situation. A confidence interval is an interval placed around a 
point estimate that indicates the precision with which the point estimate can 
be made. This paper provides an explanation of the concept of effect size 
estimation and confidence interval calculation, the different methods that 
can be used to calculate effect sizes and confidence intervals, and applies 
these methods in a Monte Carlo simulation. It was found that under most 
conditions the method of effect size and confidence interval calculation was 
not relevant. 
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INTRODUCTION 

The field of social science is still in its infant stages when being compared to such 

well established fields as chemistry and physics. One can expect many mistakes as well 

as the field makes changes leading to improvements. This is particularly true when 

referring to statistical analysis and how it is applied to social science research. 

Anyone educated in the field of the social sciences is familiar with how 

experiments and observations are conducted. Both of these scenarios usually end with 

some sort of statement referring to statistical significance. "The differences between 

drug A and drug B are statistically significant" is a good example of a conclusion to 

typical experimental research. Recently, statistical significance testing has been the 

subject of debate between the statisticians and professionals within the social sciences. 

Many say that it should not be used at all anymore while others say it should be used in 

conjunction with other, more meaningful analyses (Cohen, 1988). 

In response to this current debate the American Psychological Association (APA) 

Task Force on Statistical Inference has provided some guidance stating, "Always provide 

some effect-size estimate when reporting ap value" (Wilkinson & APA Task Force on 

Statistical Inference, 1999, p. 599). It is now the position of the APA that a significance 

test alone is not adequate enough analysis and many of the top scientific journals now 

require effect size estimation for publication. The fifth edition of the APA (2001) 

Publication Manual stressed the importance of effect size reporting: 

"For the reader to fully understand the importance of your findings, it is 
almost always necessary to include some index of effect size or strength of 
relationship in your Results section. You can estimate the magnitude of 
the effect or the strength of the relationship with a number of common 
effect size estimates...The general principle to be followed...is to provide 
the reader not only with information about statistical significance but also 
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with enough information to assess the magnitude of the observed effect or 
relationship, (pp. 25-26)" 

Effect size estimation is not only important to provide the reader with enough 

information to assess the situation correctly but also for future studies. Cooper and 

Hedges (1994) defined a study and effect size best: "if we define a study to mean a set of 

observations taken on a subject sample on one or more occasions, there are three possible 

dimensions of variation in study results. There may be different results for different 

measures, for different sub-samples of people, and for different times of measurement. 

All of these variations have implications from conceptualizing and coding effect sizes" 

(Cooper & Hedges, 1994, p. 112). They illustrated the importance for effect size 

measurements and how they can help to standardize the results obtained in a study to 

allow the reader to generalize the results as well as compare the results across studies. 

Comparing the results across studies is called meta-analysis. Rosenthal (1991) 

stated that, "When we ask whether two studies are telling the same story, what we 

usually mean is whether the results (in terms of the estimated effect size) are reasonably 

consistent with each other or whether they are significantly heterogeneous" (Rosenthal, 

1991, p. 63). Meta-analysis is becoming the most popular statistical technique for 

analyzing data in the social sciences. The main goal of any experiment or observation is 

to analyze a sample of a population and in turn infer these results onto the population. 

Meta analysis takes statistical inference one step further by aggregating the results of 

individual studies to better estimate the relationship among constructs at the population 

level. The resulting inference based on many separate values is more precise and 

meaningful than any one of the experiments could have produced on their own. 
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It seems apparent then that reporting effect sizes should be a common practice in 

every experimental study; however, this is not the case and effect size reporting is still 

not part of the template of data interpretation. Researchers may be reluctant to report 

effect sizes because of the numerous effect sizes that can be computed and the 

complexity surrounding the proper computation of effect sizes. Which effect size should 

be used? Which effect size is the most precise (confidence intervals placed around effect 

size estimation)? Is this precision based on design characteristics? The current study will 

address these questions. First, an overview of what an effect size is and problems with 

effect size estimation will be discussed. Second, each of the major effect size indices will 

be described. Finally, the appropriate times to use each of the effect size estimators will 

be discussed. 

Effect Size 

Cohen (1988) perhaps stated the definition of an effect size the best: "it can now 

be readily made clear that when the null hypothesis is false, it is false to some specific 

degree, i.e., the effect size (ES) is some specific nonzero value in the population. The 

larger the value, the greater the degree to which the phenomenon under study is 

manifested" (Cohen, 1988, p. 10). So, in other words the effect size is the degree to 

which the experimental group is affected by the treatment, only presented in a 

standardized form. Cohen later stated how the effect size is related to the null hypothesis: 

"Thus, whether measured in one unit or another, whether expressed as a difference 

between two population parameters or the departure of a population parameter from a 

constant or in any other suitable way, the effect size can itself be treated as a parameter 

which takes the value zero when the null hypothesis is true and some other specific 
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nonzero value when the null hypothesis is false, and in this way the effect size serves as 

an index of degree of departure from the null hypothesis" (Cohen, 1988, p. 10). Effect 

size is so useful, as Cohen stated, due to the fact that no matter what way the 

experimental design was composed, the effect size can standardize the results and make 

them comparable across different studies. Finally, Cohen stated why an effect size is so 

important to statistical analysis: "we need a 'pure' number, one free of our original 

measurement unit, with which to index that can be alternately called the degree of 

departure from the null hypothesis of the alternate hypothesis, or the effect size we wish 

to detect. This is accomplished by standardizing the raw effect size as expressed in the 

measurement unit of the dependent variable by dividing it by the (common) standard 

deviation of the measures in their respective populations, the latter also in the original 

measurement unit" (Cohen, 1988, p. 20). 

Effect size estimation, however, is not a perfect instrument of statistical analysis. 

This type of estimation can be affected by error just like any other statistical inference. 

Restriction of range or unreliability in measurement instruments can lead to attenuation 

of the magnitude of the effect size estimate. Error variance, or any aspect of the 

experiment that is not controlled by the experimenter, may lead to an incorrect estimate 

of effect size. The effect size based on data collected during an experiment is called the 

observed effect size because it is only an estimation of the true effect size present in the 

population of interest. The observed effect size is different from the true effect size due 

to the experimenter's inability to gather the entire population or any type of experimental 

bias, as discussed above (Cooper & Hedges, 1994; Hunter & Schmidt, 1990). This is 

why the term effect size estimator is used; the true effect size of a population is unknown. 
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An experiment just takes a sample from the population and the effect size found from that 

sample is the best estimate that the experimenter can make about the true effect size of 

the population. 

In addition to sampling error, other factors may bias an effect size estimate. 

Hunter and Schmidt (1990) listed 10 other factors (11 factors in all), but the most 

common are measurement unreliability and restriction of range. Theoretically, effect size 

estimates can be corrected for some of Hunter and Schmidt's 11 artifacts, but these 

corrections are often estimates in and of themselves (see Hall & Brannick, 2002). 

Rosenthal (1991) commented on the Glass, McGaw, and Smith (1981) corrections 

and he basically stated that such tests as repeated measures, analysis of covariance, and 

blocked variable designs do have a tendency to produce larger effect sizes as well as 

larger amounts of significant test statistics (Rosenthal, 1991). Hunter and Schmidt (1990) 

also proposed a set of corrections in which they adjust for unreliability for the studies' 

variables, dichotomization of variables, restriction of range, poor construct validity, and 

unequal sample sizes. The work of Hunter and Schmidt is important because it reminds 

us that there are many different factors in an experiment that can lower the obtained 

effect size estimate and these factors can be corrected to obtain the most accurate effect 

size estimate (Rosenthal, 1991). Rosenthal made a good point questioning how important 

an effect size is if it does not represent the true effect size in a real experimental situation. 

The adjusted effect size will probably give a closer estimation of the real population level 

effect size in a perfect experimental environment. Those environments, however, do not 

exist, nor will they ever exist. The corrections do seem to control for the errors 

mentioned above, but do they just change the surface variables and leave all the affected 
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variables within the study unchanged? Do the corrections change the integrity of the 

study or the interpretation of the results? What scientists and readers really want to know 

is, "what is really happening in the real world where there are not perfect sample pools, 

unequal sample pools, and imperfect construct validity?" 

The Big Three 

Effect size estimation can be done in several ways. Specifically, an effect size 

can be computed by using the relationship between the variables or differences between 

the group means. The relationship between the variables is formed with such formulas as 

the Pearson Product-Moment Correlation Coefficient (r), odds ratios, risk rates, and risk 

differences (Law, Schmidt, & Hunter, 1994). Group mean differences, which are the 

focus of this study, are used to form an effect size estimator. There are three main mean 

differences effect size indices: Cohen's d, Glass's delta, Hedges' g. These effect size 

indices are all very similar; with minor differences in the denominator used by each. 

Two of the most common mean difference effect size estimates are Glass's delta 

and Hedges' g (equations 2 and 3, respectively). Both of these estimates use s in the 

denominator and are hence appropriate to use when working with sample data. Because 

of the use of pooled s, Hedge's g assumes homogeneity of variance. When this 

assumption is violated, as is often the case, Glass' delta is a more appropriate estimate to 

use. Delta uses the control group standard deviation in the denominator, addressing the 

violation of the homogeneity of variance assumption at the expense of precise estimation 

of the standard deviation. 
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Cohen's d 

Cohen's d is basically a theoretical definition of effect size and uses pooled a as 

the standardizing unit. In practice, a is usually unknown and is estimated using s. 

Nonetheless, Cohen's d provides the basic formulation for mean difference effect size 

estimates (equation 1). 

Y — Y 
^ large ^ small 

a [1] 

pooled 

As stated above Cohen's d standardizes the study results with o pooled. Two 

assumptions must be met to use Cohen's d: equal sample sizes and that the standard 

deviations of both groups are similar (homogeneity of variance). 

Cohen proposed the use of sigma as opposed to the actual standard deviation of 

the experimental population. Since this number is not attainable, the experimenter's best 

estimate is most appropriate. Cohen knew that this figure could not be attained but wrote 

the formula in broad population oriented terms. A Cohen's d obtained from the 

population parameters would not be an effect size estimator, it would be the effect size of 

the population, but since it is impossible to obtain these numbers the best estimate will 

do. In a simulation study, Rosenthal (1991) indicated that sample groups with equal 

sample sizes produced very precise effect size estimates, however as sample sizes varied 

Cohen's d tended to underestimate the effect size (Rosenthal, 1991). 

Cohen's d has also been found to have a small amount of positive bias. 

Sawilowsky and Yoon (2001) ran a simulation study of Cohen's d and found a small, 

positive bias in d values. Specifically, average d estimates were .17 even though the true 

modeled effect size was 0. This is concerning because an effect size of .20 is often 
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labeled as a "small effect." Roberts and Henson (2002) criticized this finding because 

Sawilowsky and Yoon did not allow computed d values in the simulation to be negative, 

thus artificially inflating the resulting average d value. 

Roberts and Henson (2002) replicated the Sawilowsky and Yoon simulation, but 

allowed the computed d values to be negative. They found a much smaller positive bias 

in d, and also found that the existing Ezekiel correction procedure tended to overcorrect 

the d values for this bias. While the small positive bias in d estimates is expected, there 

are few situations in which correction for this bias is actually recommended (Hunter & 

Schmidt, 1990). 

Hedges g 

While Cohen's d provides a theoretical and conceptual definition of standardized 

effect size, Hedge's g represents the practical implementation of Cohen's definition, 

X —X 
large small r^-i 

s 
pooled 

As stated above the only difference between Hedges g and Cohen's d is that Hedges g 

pools the sample standard deviation (S) while Cohen's Spools the population standard 

deviation (o). The only difference between these is that the sample standard deviation is 

divided by n-\ participants and the population standard deviation is divided by n 

participants. Indeed, Hedge's g is essentially the practical application of Cohen's d. 

While Hedge's g addresses the practical issue of estimating the standard deviation, it is 

still subject to the same assumptions of Cohen's d, namely equal sample sizes and 

equality of variances. 

Rosenthal (1991) supported the use of the pooled sample standard deviation: 

"The pooled S—that is, the one computed from both groups—tends to provide a better 

8 



estimate in the long run of the population standard deviation. However, when the S's 

based on the two different conditions differ greatly from each other, choosing the control 

group S as the standardizing quantity is a very reasonable alternative" (Rosenthal, 1991, 

p. 16). It seems as if Rosenthal is stating that the pooled S is the best standard error 

figure to use if the sample group fulfills both assumptions. If the standard deviations are 

not homogeneous than the control group standard deviation would be sufficient. 

Glass' Delta 

Glass' delta addresses the issue of unequal group variances by using the control 

group standard deviation as the denominator (equation 3). 

X — X 
/arge small r^-i 

<\ 
^control 

The use of the control group standard deviation is partially justified by the notion that the 

control group variance represents the amount of variability in scores expected in the 

general untreated population. It is not uncommon for the implantation of some treatment 

to either increase or even decrease score variability (Grissom & Kim, 2001). The former 

will occur when some sort of treatment by subject interaction occurs, meaning that the 

treatment does not work for everyone. The later occurs when the treatment acts as a 

mechanism to equate performance or some other outcome across skill levels or some 

other innate characteristic. In some cases, second order sampling error may explain 

differences between treatment and control group variances, but this is most likely to 

occur with small sample sizes. Indeed, with less than 20 degrees of freedom, point 

estimates of a can be in error by hundreds of percent (Hoaglin, Mosteller, & Tukey, 

1991). 
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Grissom & Kim argued that sometimes it is necessary to use only the control 

group standard deviation but that caution should be exercised because the control group 

and experimental groups may indeed have the same standard deviations in which case 

both the control and experimental group's standard deviations should be used (Grissom & 

Kim, 2001). The authors cautioned the use of using only the control group standard 

deviation when the experimental group standard deviation may be equivalent. This is 

important to know because if both groups' standard deviations could be used as a pooled 

standard deviation, the pooled standard deviation would provide a better estimate of the 

true population standard deviation. In other words omitting the experimental group's 

standard deviation when it should not be omitted would weaken the ability to generalize 

the study's results to the population. The decision to use the pooled estimate versus the 

control group only estimate should be based on educated insight. If there is no reason to 

believe that the treatment should cause a change in score variability, the pooled estimate 

should be used even if the observed sample-based variance estimates appear different. 

Glass' delta should only be used in specific situations, as mentioned above, and in 

those situations it may be the only effect size estimator that can consistently report an 

accurate effect size. However, caution should be taken to ensure that it is not used in 

situations like those previously mentioned for fear that it will weaken the study or give an 

inaccurate estimate of the population effect size. 

Effect Size Selection 

So how will a confidence interval help a researcher decide which effect size 

estimator to use in an experiments analysis? Rosenthal (1991) supported the use of 

confidence intervals for both meta-analysis as well as blocked meta-analysis because it 
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would better facilitate transference of the statistic to the population level (Rosenthal, 

1991). A confidence interval gives the reader an idea of a how precise that estimate 

really is, specifically with what level of certainty the author can place around that 

estimate. Rosenthal supported the use of confidence intervals for not only meta-analysis, 

but also for individual studies in order to enable the scientist to evaluate the results on a 

population level. The argument for the incorporation of confidence intervals into t tests 

for example is also applicable to confidence intervals and effect sizes. A confidence 

interval allows the researcher to apply his or her results to the population as well as 

indicate how precise the point estimate is. 

Picking the appropriate effect size estimator and forming a confidence interval is 

also important due to selective publishing. Selective publishing is an unfortunate side 

effect of publishing only those results that reach a certain level of significance. Most 

statisticians know that almost any effect can be found significant with a large enough 

sample size. The reason for using effect size estimators and confidence intervals is to 

select those studies not by their level of significance but by their effect size and 

confidence interval. Cooper and Hodges (1994) also caution the use of effect sizes and 

confidence intervals. They noted that using effect sizes can cause studies with extreme 

effect sizes to be published and thus encourage selective publication. Also, studies with 

smaller sample sizes have the capability of producing much larger effect size estimates 

than their larger sample size counterparts; an occurrence such as this is termed an induced 

association (Cooper & Hodges, 1994). Using effect sizes with confidence intervals will 

help to combat this problem; however it will not solve it. There is no solution to the 

problem that Cooper and Hodges spoke of; however the results of this study will help the 
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social sciences, specifically fields such as Human Factors to be able to produce more 

consistent publications. This means that similar experiments will produce similar results 

and those results will be analyzed in a regulated fashion and in turn earn more respect 

from other more developed fields of study. A side effect of more consistent publications 

and a greater respect is industries' need for human factors engineering and other related 

fields still in their infancy. 

Confidence Intervals 

Confidence intervals were first constructed by Neyman in the 1930's (Cumming 

& Finch, 2001). A confidence interval (CI) is a range of numbers placed around a point 

estimate in order to state with a certain level of confidence (C) that that interval contains 

the population parameter being estimated. If all of the possible samples of equal sample 

size were taken from the population approximately 95% of those intervals would contain 

the population parameter and 5% would not (Hinkle, Wiersma, & Jurs, 1998). Now, 

seven decades later, the importance of confidence interval computation is once again 

being realized in the social sciences. Confidence interval formulation is the future of 

statistical analysis particularly within null hypothesis and effect size estimation testing in 

the social sciences (Wilkenson et al , 1999). 

The formulation of confidence intervals for effect size estimates is not an easy 

task and there is much speculation as to which procedure is best. Proper CI's for effect 

size estimates are not computed using a central distribution. They must be computed 

differently using a non-central distribution because the alternative hypothesis distribution 

is usually centered on some non-zero value. For example, group mean comparisons are 

often examined using the /-test in which the observed value of/ serves as the center of the 
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expected distribution of/. This distribution is not normally distributed, thus the upper and 

lower bounds, given some level of confidence, are not equidistant from the center. Non-

central distributions occur when a normally distributed variable (effect size) has a mean 

not equal to zero and is divided by a standard deviation estimate. The standard deviation 

is distributed approximately as x2, which is not a normal distribution. Another important 

aspect of non-central distributions is that they change shape for every different value of 

the hypothesized parameter (Smithson, 2001). Smithson also stated that a CI for an effect 

size estimation is really constructed on the basis of a sample statistic and that it is not 

constructed around a sample statistic. There are no common tables like those of central 

test statistics for non-central distributions, so iteration must be used to find the best 

estimate from the sample pool because the values are not exact and maximum and 

minimum values (upper and lower bounds for the CI) are being estimated. Feingold 

(1995) found that this difference occurs due to the difference in variability and central 

tendency between both groups being compared. Feingold also reported that it is 

necessary to compute each tail of the CI for an effect size one at a time (Feingold, 1995). 

The amount that the distribution is skewed depends on the non-centrality parameter (A), 

which is the distance that the mean of the normal distribution is displaced from zero 

(Cumming & Finch, 2001). This non-centrality parameter is estimated using the 

observed value of/ (Smithson, 2001). Cumming and Finch illustrated that there are 

several characteristics of non-central / distributions that must be remembered when 

forming a CI for an effect size: 1) When A = 0 there is a central / distribution which is 

symmetric and centered at zero. 2) Non-central / is centered on A, which can be positive 

or negative. 3) For any given A, as df increases non-central / approaches central / in 
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shape. 4) This change, however, is very gradual. For example, when A = 2 and df= 60, 

non-central / is just visibly skewed. 5) Larger A values make the approach to symmetric 

shape slower. 6) When n is at least 30 it can be assumed that the normal distribution will 

be a good approximation (n being all group sample sizes assuming equal sample sizes). 

7) The curve is more skewed for smaller df and decreases as (^increases. 8) If A is 

positive, the skew will be positive (Cumming & Finch, 2001). These characteristics are 

very important in the formation of CI's specifically in determining which type of 

distribution to assume (central or non-central /) as well as what one can expect from 

different degrees of A. 

The calculation of a CI for a non-central / distribution is somewhat different than 

that of a central distribution. A central / distribution is affected by df, while a non-central 

/ distribution is affected by df and the non-centrality parameter. In order for a distribution 

to be central, the population group means in question must be equivalent. Cumming and 

Finch illustrated this location shift by rewriting the / statistic formula as 

( X - / / ) + (/ /-/ /0) 

Sl4n~ -" L J" 

The location shift represents a measure of some kind of effect, which is estimated by an 

effect size estimator. In Null Hypothesis Significant Testing, it is assumed that the null 

hypothesis is true and so fx - fio, thus it is assumed that there is no effect. If there is an 

effect and a CI is to be placed around that effect then the non-centrality parameter {A) 

must first be estimated using 

a 

yjn 
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Next, the lower and upper bounds must be estimated at one time (equations 6 and 7, 
respectively). 

Pr (/„.,, ^ ; > £ _ & ) = .025 [6] 
S/yfn' 

Pr (/„.;. AV > JL*L) =.975 [7] 
S/Jn~ 

So, /„.!, ̂ Lis the non-central / distribution that gives the estimated / value with a 

probability of .025 in its lower tail and tn.\, AU is the non-central / distribution that gives 

the estimated / value with a probability of .975 in its upper tail. Since / estimates the non-

centrality parameter, delta, the upper and lower bounds of delta are essentially the upper 

and lower bounds of the / distribution assuming Ha is true. These / values can be 

converted into Hedge's g values using equation 8. 

- 1 
The estimation of the upper and lower bounds of a non-central / distribution is 

made practical by the use of iteration methods performed using some sort of software 

program. Smithson (2001) has created syntax code for SPSS that estimates the CI for an 

effect size estimate and Cumming & Finch (2001) cited their use of ESCI graphical 

software, which runs under the Microsoft EXCEL program. 

In conclusion, the process of forming a CI around an effect size estimate can be 

broken down into steps. An estimate of an effect size can be expressed in terms of a / 

distribution, which is centered on observed /. The observed / value serves as an estimate 

of the non-centrality parameter. The upper and lower bounds of the CI around /, given 
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some level of confidence, is estimated using an iterative process. These upper and lower 

values can then be transformed into an effect size estimate such as g. 

An effect size estimate can be calculated for any group mean difference regardless 

of the whether that difference is statistically significant or not. However, it is imperative 

that a CI be placed around that effect size estimate so that the user can determine whether 

or not the effect size is of interest to him or her. The use of CIs allows the researcher to 

justify the presentation of an effect size estimate even if the conesponding NHST is not 

significant. If a CI is not presented, the reader will be unable to adequately evaluate the 

meaningfulness of the reported effect size in light of the precision with which it was 

estimated. That is why it is so important for the social sciences to blend the already in 

place method of NHST with effect size estimation and the formation of CI's around all 

point estimates. 

The Present Study 

Smithson (2001) and Cumming and Finch (2001) made an impressive argument 

about the need to create CIs around effect size estimates and furthermore, that non-central 

CIs should be constructed. Unfortunately, the construction of non-central intervals adds a 

layer of complexity to interval construction that may discourage some researchers from 

constructing CIs at all. Additionally, the complexity of effect size estimation is further 

complicated by the need to correct effect size estimates for inherent bias. It is no wonder 

that many researchers have simply chosen to not report confidence intervals around 

standardized estimates of effect sizes, given the number of choice points involved in the 

process. Therefore, the goal of the present study is to evaluate the accuracy and precision 
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of the Hedge's g and Glass' delta estimates using both central and non-central interval 

construction procedures as well as applying correction for bias. 

A variety of factors will impact the accuracy and precision of each effect size 

estimate and they will also determine the extent to which non-central interval 

construction and bias correction will impact the final results. Therefore, the accuracy and 

precision of the various methods of effect size estimation will be examined across 

factorial combinations of raw effect size, variance ratio (i.e. unequal variance), and 

sample size. 

Based on the past literature, these factors should affect the precision and accuracy 

of each of the effect size estimators in the following ways: 

1) Hedge's g will be the most accurate and precise estimator if the sample sizes are equal 

and homogeneity of variance is present. 

2) Glass' delta will be the most accurate and precise estimator if the standard deviations 

of the experimental group and control differ greatly (heterogeneity of variance) or if the 

experimental group is affected by uncontrolled variables making it different from the 

control group. 

3) For those samples with n < 30, a non-central / distribution will better estimate the 

proper confidence interval around the effect size estimate than will a central / 

distribution, regardless of the effect size estimator that is used. 

4) As the observed group mean difference changes so does the distribution in that the 

higher the observed group mean difference, the higher the non-centrality parameter and 

the slower the distribution approaches a symmetrical shape. 
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METHODS 

A Monte Carlo simulation was programmed using MINITAB statistical software 

(MINITAB Inc., 1997). Samples of data were generated using pre-defined population 

parameters of the variance ratio, sample size, and observed group mean difference. In 

total, 72 unique combinations were simulated separately. 

Monte Carlo Simulation 

The simulation program began by defining several population parameters to 

generate virtual populations from which individual sample data would be drawn. These 

sample data were then used to compute effect size estimates and confidence intervals 

using the Glass' delta and Hedges' g approaches. 

As discussed in the introduction, a variety of conditions were simulated in order 

to determine how the various effect size estimation procedures would perform under a 

variety of likely scenarios. 

Mean Difference 

The nominal mean difference was manipulated in order to generate a wide range of g 

scores. These values were selected so that both small and large effect sizes were 

simulated. The values of .25, .5, .75, 1, 2, and 3 were used. In the simulation, this was 

achieved by setting the parameter of fie to 1 and then adjusting the parameter, /iT, to 

achieve the desired mean difference value, where the sub-scripts C and T indicate control 

and treatment groups, respectively. 

Variance Ratio 

Equality of variance across the treatment and control groups is preferable as it 

allows for the pooling of standard deviation estimates, thus enhancing the precision with 
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which sigma can be estimated. In many situations, such equality does not exist. Three 

ratios of treatment to control group variances were used: .25, 1, and 4. In the Monte Carlo 

simulation, this was achieved by keeping a constant control group standard deviation (a = 

1) and manipulating the treatment group standard deviation (a =.5,1,2 respectively). 

The general rule of thumb is that a variance ratio of 3 or greater indicates heterogeneity 

(Keppel, 1991). The variance ratios selected created bias (vr = .25), homogeneity 

between the groups (vr = 1), and heterogeneity between the groups (vr = 4). In a practical 

sense, heterogeneity usually develops when the treatment being administered impacts the 

participants at different rates. In some cases, the treatment may actually reduce score 

variability. In any event, heterogeneity of variance is not uncommon and poses specific 

problems for the computation of standardized effect size estimates. 

Sample Size 

The sample sizes of the two groups were manipulated at four levels (n = 5, 10, 30, 

and 50). The sample sizes of the treatment and control groups were always equivalent 

(«c = «T)- The levels of group sample sizes were chosen for three reasons. First, group 

sample sizes of 5 and 10 were chosen because they represent group sample sizes of the 

majority of experimental studies. Second, sample sizes of 30 were chosen because 

Cumming and Finch (2001) found that group sample sizes of 30 or more produced a non-

central distribution that closely resembled a central distribution. In other words, the 

sample distribution was basically no longer non-central but central in form. Lastly, a 

group sample size of 50 was used to go above and beyond Cumming and Finch's findings 

to observe how much closer the non-central distribution would change towards a central 

distribution. 
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Process 

The process began by defining population parameters for two separate 

populations (control and treatment populations). For example, one combination of 

parameters included: 

Control population: /Xc = 1, 0c = l , « c = 5 

Treatment population: [IT=2, OJ = 1, « r = 5 

Next, 'n' numbers were randomly generated from the two population distributions and 

these two groups of V numbers were used to calculate the sample statistics (mean and 

standard deviation): 

Sample number 
1 
2 
3 
4 
5 

Sample Mean 
Standard Dev. 

Control 
1 

1.5 
1.1 
1.2 
.9 

1.14 
.230 

Treatment 
2 

2.1 
2.3 
1.9 
1.8 

2.02 
.192 

After that, computations were performed using the sample statistics which rendered a 

Hedges' g effect size estimate and a Glass' delta effect size estimate. Each of these point 

estimates were stored in an array.This process was repeated 1,000 times, each time the 

Hedges' g and Glass' delta point estimates were stored in the array. 

The result was an anay 2 x 1,000 in size. The mean was computed for each 

vector, representing the point estimate of g and delta, separately. The values in each of 

the two vectors were then rank-ordered and the 25th and 975th values were identified. 

These values represented the lower and upper tails of the distribution of observed effect 
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size values, thus identifying the bounds of the 95% confidence interval for g and delta. 

The various population parameters in Minitab were adjusted to create the next 

experimental condition and the sampling process was repeated for that experimental 

condition. This continued until all 72 unique experimental conditions were completed. 

The Minitab source code to produce one of the 72 experimental conditions is presented in 

Appendix A. 

Estimation Procedures 

The Monte Carlo simulation procedure was used to generate empirical effect size 

values to represent "truth" given some set of parameters. In a real study, the researcher 

usually has access to only one set of sample-based statistics from which effect size 

estimates and confidence intervals can be computed. The parameters defined in Minitab 

were used as "sample-based" information and were used to generate estimates of Hedge's 

g and Glass' delta. The equations provided by Hunter and Schmidt (1990, pgs. 267 - 290) 

were used throughout this process. The point estimates of g and delta were computed 

using the equations 9 through 11. 

g = h ^ [9] 
SPooled 

delta = gyl[(l + v2)/2] [10] 

v = ^ [11] 
Sc 

The standard error of g was then computed and was used to create the central confidence 

interval for g (see equations 12 and 13). The corresponding lower and upper bound 

Glass' delta values were computed by applying equation 10 to the lower and upper bound 

values of g. 
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s-g = 
"(tf-l)l 
_(JV-3)_ UJ il+g2]\ 

I 8 J. 
[12] 

C /g = S ± W-2,2) • 5f t1 3] 

Several authors have suggested the use of correction values for the various 

standardized effect size estimates (Hedges & Olkin, 1985; Hunter & Schmidt, 1990). The 

impact of such corrections has been the source of some debate, but most would agree that 

correction processes have little impact unless n is very small. Given that this simulation 

included small sample size situations, the correction equation described by Hunter and 

Schmidt (1990) was applied to the Hedge's g computations to produce adjusted point 

estimates and confidence intervals. The correction factor, a, is applied to the point 

estimate, g, as well as to sf (see equations 14 to 16). 

75 
a = l + ^ — [14] 

N-3 

g' = g/a [15] 

s f ' = V f l [16] 

Thus far, mathematically derived central confidence intervals and adjusted central 

confidence intervals for both g and delta have been computed. The computation of the 

non-central distributions and adjusted non-central distributions for g and delta were more 

complex and required a computer program to perform the calculations. Fortunately, 

Smithson (2003) provided detailed instructions on how to perform these calculations as 

well as a link to SPSS syntax code that would do the computations. The basic premise of 

the program is to find the / value for a given circumstance and use that / value as an 

estimate of the non-centrality parameter. This information was then used in an iterative 
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fashion to find the lower and upper ends of the non-central / distribution that corresponds 

with the given / value. The upper and lower / values were then converted into g values. 

The g values were converted into delta values using equation 10 and a complete set of 

adjusted values for both g and delta were computed using equations 6 through 8. The 

complete syntax used to generate the non-central and adjusted non-central distributions of 

g and delta is presented in Appendix B. The result of the procedures thus far can be 

summarized as follows: 

1. Empirically derived confidence intervals for g and delta based on the Monte Carlo 

simulation. 

2. Mathematically derived central confidence intervals for g and delta. 

3. Mathematically derived adjusted central confidence intervals for g and delta. 

4. Non-central confidence intervals for g and delta based on Smithson's (2003) 

iteration method. 

5. Adjusted non-central confidence intervals for g and delta. 

Empirical vs. Estimate Comparisons 

The primary purpose of this study was to determine which estimation procedure 

would provide the best estimate of the true distribution of effect size values under a 

variety of circumstances. Therefore, the empirically derived means and upper and lower 

bound estimates were used as the standard against which all other estimates were 

compared. The adjusted and non-adjusted mathematical and iteration estimates were 

compared to their empirical counterparts by subtracting the empirical value from the 

estimated value. The difference between the two numbers represents how far off the 
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estimate is relative to the likely population value. This process was done for all of the 

various estimates for the lower and upper bound and point estimate values. 

RESULTS 

The results of the Monte Carlo simulation and appropriate calculations are 

presented in Figures 1 through 18 (Appendix C) and in Tables 1 through 6 (see Appendix 

D). The 18 graphs are pictorial representations of the overlap between the empirical 

confidence intervals (Hedges' g and Glass' delta) generated by the Monte Carlo 

simulation and the calculated confidence intervals (central g, non-central g, adjusted 

central g, adjusted non-central g, central delta, non-central delta, adjusted central delta, 

and adjusted non-central delta). The empirical and computed interval data were used to 

find the differences between the empirical outcomes and the various estimation 

procedures. Tables 7 through 12 present these difference values across the 72 possible 

combinations of variance ratio, mean difference, and sample size (labeled appropriately). 

The difference values were computed by subtracting the computed LB, point estimate, or 

UB from the empirically derived data set from the corresponding value as estimated by 

both Hedges' g and Glass' delta procedures. Conected values are also presented in this 

table. 

It should also be noted that when analyzing the results of the manipulation of the 

mean difference variable it was imperative that only the data in the groups with variance 

ratio = 1 were used to insure that there was no variance ratio by mean difference 

interaction. 
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Hedges g 

Central g 

As can be seen in Figures 9 and 6 and Tables 9 and 12, central g point and 

confidence interval estimates were closest to the empirical values when the VR = 1, MD 

= .5, and n = 50 and deviated the most when the VR = .25, MD = 3, and n = 5. Note: this 

was computed by adding the absolute value of the differences between each of the upper 

and lower bounds of the confidence intervals to the difference between the computed 

effect size and the empirical effect size. 

Variance Ratio. When the variance ratio was not equal to 1, the central g confidence 

interval became too wide and the point estimate tended to be too low. 

Mean Difference. The central g confidence interval did not seem to be affected by the 

change in mean difference; however the point estimate tended to become too low as the 

mean difference increased. 

Sample Size. When the sample size was less than n = 50, the central g confidence 

interval was too wide or too narrow depending on the variable combination and the point 

estimate tended to be too low. 

Non-central g 

As can be seen in Figures 8 and 6 and Tables 8 and 12, non-central g point and 

confidence interval estimates were closest to the empirical values when the VR = 1, MD 

= .25, and n = 50 and deviated the most when the VR = .25, MD = 3, and n = 5. 

Variance Ratio. When the variance ratio was not equal to 1, the non-central g 

confidence interval became too narrow and the point estimate tended to be too low. 
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Mean Difference. The non-central g confidence interval did not seem to be affected by 

the change in mean difference until mean difference was 2 or greater, at which time it 

became too narrow. The point estimate tended to become too low as the mean difference 

increased. 

Sample Size. When the sample size was less than n - 50, the non-central g confidence 

interval became too narrow and the point estimate tended to be too low. 

Adjusted Central g 

As can be seen in Figures 6 and 10 and Tables 10 and 12, adjusted central g point 

and confidence interval estimates were closest to the empirical values when the VR = 1, 

MD = .75, and n = 50 and deviated the most when the VR = .25, MD = 3, and n = 5. 

Variance Ratio. When the variance ratio was not equal to 1, the adjusted central g 

confidence interval became too narrow and the point estimate tended to be too low. 

Mean Difference. The adjusted central g confidence interval did not seem to be 

affected by the change in mean difference until mean difference was 2 or greater, at 

which time it became too narrow. The point estimate tended to become too low as the 

mean difference increased. 

Sample Size. When the sample size was less than n = 50, the adjusted central g 

confidence interval became too narrow and the point estimate tended to be too low. 

Adjusted Non-central g 

As can be seen in Figures 8 and 10 and Tables 8 and 12, adjusted non-central g 

point and confidence interval estimates were closest to the empirical values when the VR 

= 1, MD = .25, and n = 50 and deviated the most when the VR = .25, MD = 3, and n = 5. 
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Variance Ratio. When the variance ratio was not equal to 1, the adjusted non-central g 

confidence interval became too narrow and if the variance ratio was less than 1 the point 

estimate tended to be too low, but if it was more than 1, the point estimate remained 

basically unchanged.. 

Mean Difference. The adjusted non-central g confidence interval did not seem to be 

affected by the change in mean difference until mean difference was 2 or greater, at 

which time it became narrower. The point estimate tended to become too low as the 

mean difference increased. 

Sample Size. When the sample size was less than n = 50, the adjusted non-central g 

confidence interval became too narrow and the point estimate tended to be too low. 

Glass' delta 

Central delta 

As can be seen in Figures 8 and 12 and Tables 8 and 12, central delta point and 

confidence interval estimates were closest to the empirical values when the VR = . 1, MD 

= .25, and n = 30 and deviated the most when the VR = 1, MD = 3, and n = 5. 

Variance Ratio. The central delta confidence interval and point estimate seemed to be 

unaffected by the change in variance ratio, with most values being too narrow and low. 

Mean Difference. The central delta confidence interval was only slightly affected by 

the increase in mean difference until mean difference was 2 or greater, at which time it 

became narrower. The point estimate tended to become too low as the mean difference 

increased. 

Sample Size. When the sample size was less than n ~ 50, the central delta confidence 

interval became too narrow and the point estimate tended to be too low. 
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Non-central delta 

As can be seen in Figures 2, 3, 8, and 12 and Tables 8, 9, and 12, non-central 

delta point and confidence interval estimates were closest to the empirical values when: 

(VR = .1, MD = .25, n = 50), (VR = .25, MD = .25, n = 50), (VR = .25, MD = .5, n = 50) 

and deviated the most when the VR = 1, MD = 3, and n = 5. 

Variance Ratio. When the variance ratio was not equal to .25, the non-central delta 

confidence interval became too narrow and point estimate seemed to be unaffected by the 

change in variance ratio, with most values being too low. 

Mean Difference. The non-central delta confidence interval was only slightly affected 

by the increase in mean difference until mean difference was 2 or greater, at which time it 

became narrower. The point estimate tended to become too low as the mean difference 

increased. 

Sample Size. When the sample size was less than n = 50, the non-central delta 

confidence interval became too narrow and the point estimate tended to be too low. 

Adjusted central delta 

As can be seen in Figures 3 and 12 and Tables 9 and 12, adjusted central delta 

point and confidence interval estimates were closest to the empirical values when VR = 

.25, MD = .5 and n = 50 and deviated the most when the VR = 1, MD = 3, and n = 5. 

Variance Ratio. When the variance ratio was not equal to .25, the adjusted central 

delta confidence interval became too narrow and point estimate seemed to be unaffected 

by the change in variance ratio, with most values being too low. 

Mean Difference. The adjusted central delta confidence interval was only slightly 

affected by the increase in mean difference until mean difference was 2 or greater, at 
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which time it became nanower. The point estimate tended to become too low as the 

mean difference increased. 

Sample Size. When the sample size was less than n = 50, the adjusted central delta 

confidence interval became too narrow and the point estimate tended to be too low. 

Adjusted non-central delta 

As can be seen in Figures 2, 8, and 12 and Tables 8 and 12, adjusted non-central 

delta point and confidence interval estimates were closest to the empirical values when: 

(VR = .1, MD = .25, n = 50) and (VR = .25, MD = .25, n = 50) and deviated the most 

when the VR = 1, MD = 3, and n = 5. 

Variance Ratio. When the variance ratio was not equal to .25, the adjusted non-central 

delta confidence interval became too narrow and point estimate seemed to be unaffected 

by the change in variance ratio, with most values being too low. 

Mean Difference. The adjusted non-central delta confidence interval was only slightly 

affected by the increase in mean difference until mean difference was 2 or greater, at 

which time it became narrower. The point estimate tended to become too low as the 

mean difference increased. 

Sample Size. When the sample size was less than n = 50, the adjusted non-central delta 

confidence interval became too narrow and the point estimate tended to be too low. 

DISCUSSION 

The accuracy and precision of two different effect size estimation procedures 

were compared against empirical values derived using Monte Carlo simulation. Both 

central and non-central intervals were created in order to assess when the creation of the 

more complex non-central interval is wananted. Furthermore, the effect size estimates 
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and confidence intervals were computed using both non-adjusted and adjusted 

techniques. The goal of the current research was to identify the method of estimation and 

confidence interval construction that produces maximal overlap with the empirically 

derived intervals under a variety of circumstances (i.e. different sample sizes, unequal 

variances, and various mean differences). 

Table 13 illustrates the average differences between the calculated point estimates 

and confidence intervals with the empirical point estimates and confidence intervals. For 

instance, at the variance ratio = 1 level, the average central d differences include the 

average of the differences between central d, its confidence interval, and the empirical 

values for each at all of the mean difference levels (1, .25, .5, .75, 2, and 3) and all of the 

sample size levels (5, 10, 30, and 50). Table 13 basically indicates which effect size 

estimator and confidence interval formation method is best for which situation. 

It is quite clear that effect size estimation is part of the future of experimental 

testing (Wilkinson & APA Task Force on Statistical Inference, 1999). This simulation 

study has also highlighted the importance of confidence interval calculation for effect 

size estimates. Effect size estimates and confidence intervals around those estimates are 

good indicators as to the degree of effect (in a common language) as well as the precision 

of that estimate. The main reason for performing this simulation was to determine if 

there was a superior effect size estimation and confidence interval calculation method. 

The variables selected for the Monte Carlo simulation helped to indicate which methods 

were best for each situation. 

In light of the literature review, it is evident that Hedges' g and Glass' delta 

cannot be compared as equal effect size estimators (Rosenthal, 1991 & 1994). Each has 
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specific assumptions that should be met in order to be an accurate estimator. Each of 

these should be used according to those assumptions. 

Central versus Non-central distribution 

When central and non-central distributions for the computation of confidence 

intervals are compared, the average differences in the confidence intervals formed around 

the point estimates are on the order of a few hundredths (see Table 13). Notice that the 

central distribution calculations seem to predict the upper bound of the confidence 

interval better and the non-central distribution seems to predict the lower bound of the 

confidence interval better. There is less difference between the two compared (central vs. 

non-central) within Glass' delta than Hedges' g. Depending on how accurate a scientist 

would like to be (more or less than the hundredths place), it seems as if using a central or 

a non-central distribution to compute a confidence interval around an effect size point 

estimate does not really matter. 

Unadjusted versus Adjusted Point Estimates 

When the unadjusted and adjusted point estimates are compared to the empirical 

point estimate values, the unadjusted point estimates are more accurate (see Table 13). 

This higher level of accuracy extends across all of the simulated conditions. The lower 

bound confidence interval estimates across the non-adjusted and adjusted processes were 

almost equivalent (within .03 in all cases) and the unadjusted calculations produced 

closer estimates of the upper bounds of the confidence intervals in all cases. These data 

indicate that the use of unadjusted point estimates and CI construction are preferable to 

the adjusted counterparts. 
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Conclusion 

The proper estimation of effect sizes and their corresponding confidence intervals 

is somewhat confusing. Many researchers may debate on which estimate to use (Hedge's 

g or Glass' delta), whether or not bias correction should be applied, and whether or not a 

non-central confidence interval should be constructed. Indeed, the perceived need to 

calculate a non-central confidence interval may persuade some researchers to forgo 

confidence interval construction altogether. While there are certainly theoretical reasons 

to use bias correction and non-central distribution assumptions, the actual benefits of 

implementing these procedures may be outweighed by the cost of additional complexity. 

Indeed, in some situations, the use of bias correction or non-central interval construction 

may actually reduce the accuracy of the resulting estimates. 

The findings of this study can be interpreted in two general ways. First, the reader 

can use the data in Table 13 to identify the most accurate and precise procedure to follow 

given a specific circumstance. Second, general conclusions about the overall 

appropriateness of each estimation procedure, presented below and also in Table 14, can 

be used as a guide for selecting the best approach for effect size estimation. 

The results suggest that the use of Glass' delta will produce more accurate point 

estimates and confidence intervals when the variance ratio is less than one and estimates 

similar to Hedges' g with variance ratios of 1 and 4. In practice though, the choice to use 

delta or g is usually made based on theoretical grounds. 

Theoretically, a non-central distribution should be used when creating confidence 

intervals around point estimates of effect size. The data, however, illustrate that using a 

central distribution would produce very similar results in most cases. This is not to say 
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that the use of non-central distributions for confidence interval construction will be 

counter productive, only that the added complexities involved in creating such 

distributions may not be warranted by the small differences in outcomes. Those who are 

comfortable with the construction of such intervals may wish to continue their use. 

There seems to be a good deal of consensus on when bias correction is practically 

useful (Hunter & Schmidt, 1990) and the data bear this out. Specifically, bias correction 

is most effective when small sample sizes are used. In most other situations, the use of 

bias correction actually reduces the accuracy of point estimates and confidence intervals. 

Available Method Conclusion 

Glass' delta vs. Hedges' g Glass' delta will produce more accurate point 
estimates and confidence intervals when the 
variance ratio is less than one and estimates similar 
to Hedges' g with variance ratios of 1 and 4. 

Central vs. Non-central 
distribution assumptions 

A central distribution produces very similar results 
as a non-central distribution in most cases 
which can make using a non-central distribution 
less attractive (factoring in the added 
calculations required to form the CI). 

Adjusted vs. un-adjusted 
effect size estimations 

Bias conection is most effective when small sample 
sizes are used. In most other situations, the 
use of bias correction actually reduces the accuracy 
of point estimates and confidence intervals. 

Table 14 
The basic conclusions derived from the study about effect size estimators, distribution assumptions, and 
bias adjustments. 
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Future Research 

This study focused on effect size estimates and confidence intervals around those 

estimates for mean difference calculations. It will be interesting to see how the social 

sciences will use the current research that the field of statistics has recently presented and 

if it will indeed increase the utility of publications within the field. It would be very 

informative to re-analyze published study results and compute effect size estimates and 

corresponding confidence intervals using the various methods described in this paper in 

order to assess the extent to which methodological choices impact final results. Such 

analyses may indeed support the notion that methodological choices in the estimation of 

effect sizes have little impact on the outcome. 
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APPENDIX A 

Name cl = 'control' 
Random 5 'control'; 

Normal 0.0 1.0. 
Name c2 = 'treat' 
Random 5 'treat'; 
Normal 1.0 1.0. 

Name C3 = 'effectsize' 
Let 'effectsize' = Mean(treat)-Mean(control) 
Name C5 = 'controlstd' 
Let 'controlstd' = STDEV(control) 
Name C6 = 'treatstd' 
Let 'treatstd' = STDEV(treat) 
Name C7 = 'stdevpool' 
Let 'stdevpool' = (STDEV(control) + STDEV(treat)) / 2 
Name C8 = 'cohen' 
Name C4 = 'hedges' 
Name C9 = 'glass' 
Letc4(l) = c3 /c7 
Ietc9(l) = c3/c5 
let cl3 = count (control) 
let cl4 = count (treat) 
Name C10 = 'stdc' 
let 'stdc' =sqrt(rsum((cl(l)-mean(control))** 2,(cl(2)-mean(control))** 2,(cl(3)-mean(control))** 
2,(cl(4)-mean(control))** 2,(cl(5)-mean(control))** 2)/cl3) 
name e l l ='stdc2' 
let 'stdc2' = sqrt(rsum((c2(l)-mean(treat))** 2,(c2(2)-mean(treat))** 2,(c2(3)-mean(treat))** 2,(c2(4)-
mean(treat))** 2,(c2(5)-mean(treat))** 2)/cl4) 
name cl2 = 'pstdcn' 
let 'pstden' = rsum(cl0,cl 1) / 2 
Ietc8(l) = c3/cl2 
let k2 = count (c8) 
add k2 1 k2 
execute "programl.mtj" 20 
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APPENDIX B 

COMMENT BEGIN BY SUPPLYING THE COMPUTER WITH THE MEAN DIFFERENCE 
BETWEEN TWO GROUP (MD), THE SAMPLE SIZE IN EACH GROUP (n). 
COMMENT AND THE ESTIMATED SD FOR EACH GROUP; THIS PROGRAM ASSUMES 
EQUAL GROUP SAMPLE SIZES. 
COMMENT NOTE THAT THE VARIANCE RATIO (vr) IS BASED ON SDt / SDc AND IS 
EXPRESSED IN VARIANCE (not sd) UNITS. 
COMMENT THUS A VR=4 INDICATES THAT THE TREATMENT GROUP VARIANCE WAS 
4X'S THAT OF THE CONTROL GROUP VARIANCE. 
COMMENT IN sd TERMS, SD FOR TREATMENT IS DOUBLE THAT OF SD CONTROL. 

COMPUTE tval = MD/sqrt(((sigmac**2+sigmat**2)/2)*(2/n)). 
COMPUTE df = (2*n)-2. 
COMPUTE conf= .95. 
EXECUTE. 

COMMENT THIS SCRIPT COMPUTES CONFIDENCE INTERVALS FOR THE 
NONCENTRALITY PARAMETER 
COMMENT FOR THE NONCENTRAL T DISTRIBUTION. 
COMMENT IT USES THE SPSS NONCENTRAL T CALCULATOR AND LAUBSCHER'S (1960) 
NORMAL APPROXIMATION 
COMMENT TO THE NONCENTRAL F WITH 1 DF FOR THE SPECIAL CASE WHERE F = TA2, 
COMMENT WITH A DECISION RULE FOR CHOOSING BETWEEN THEM. THE REASON FOR 
THIS IS THAT THE 
COMMENT NONCENTRAL T ALGORITHM FAILS FOR LARGE SAMPLE SIZE OR EFFECT 
SIZE. 
COMMENT THE FIRST PART USES THE NONCENTRAL T CALCULATOR IN SPSS. 
COMMENT THIS COMPUTES THE LOWER LIMIT ON THE T STATISTIC. 
COMPUTE #LC3 = TVAL . 
COMPUTE LC2 = TVAL/2 . 
COMPUTE #LC1 = -TVAL . 
COMPUTE #CUMF1 =NCDF.T(TVAL,DF,#LC1). 
COMPUTE #ULIM = l-(l-CONF)/2 . 
LOOP IF (#CUMF1 LT #ULIM). 
+ COMPUTE LC2 = #LC 1 . 
+ COMPUTE #LC1 = #LC1 TVAL . 
+ COMPUTE #CUMF1 = NCDF.T(TVAL,DF,#LC1). 
END LOOP . 
COMPUTE #CUMF2 = NCDF.T(TVAL,DF,LC2). 
COMPUTE #DIFF = 1 . 
LOOP IF (#DIFF GT .00005) 
+ DO IF (#CUMF2 LT #ULIM). 
+ COMPUTE #LC3 = LC2 . 
+ COMPUTE LC2 = (LC2 + #LC 1 )/2 . 
+ COMPUTE #CUMF2 = NCDF.T(TVAL,DF,LC2). 
+ ELSE. 
+ COMPUTE #LC1 = LC2 . 
+ COMPUTE LC2 = (LC2 + #LC3)/2 . 
+ COMPUTE #CUMF2 = NCDF.T(TVAL,DF,LC2). 
+ END IF . 
+ COMPUTE #DIFF = ABS(#CUMF2 - #ULIM). 
END LOOP . 
COMPUTE UCDF = NCDF.T(TVAL,DF,LC2). 
EXECUTE. 
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COMMENT 
COMMENT THIS COMPUTES THE UPPER LIMIT ON THE T STATISTIC. 
COMPUTE #UC3 = 2*TVAL . 
COMPUTE UC2 = 1.5*TVAL . 
COMPUTE #UC1 = TVAL . 
COMPUTE #LLIM = (l-CONF)/2 . 
COMPUTE #CUMF3 = NCDF.T(TVAL,DF,#UC3) 
LOOP IF (#CUMF3 GT #LLIM). 
+ COMPUTE UC2 = #UC3 
+ COMPUTE #UC3 = #UC3 + TVAL . 
+ COMPUTE #CUMF3 = NCDF.T(TVAL,DF,#UC3). 
END LOOP 
COMPUTE #CUMF2 = NCDF.T(TVAL,DF,UC2). 
COMPUTE #DIFF = 1 . 
LOOP IF (#DIFF GT .00001). 
+ DO IF (#CUMF2 LT #LLIM). 
+ COMPUTE #UC3 = UC2 . 
+ COMPUTE UC2 = (UC2 + #UC 1 )/2 . 
+ COMPUTE #CUMF2 = NCDF.T(TVAL,DF,UC2). 
+ ELSE 
+ COMPUTE #UC1 = UC2 . 
+ COMPUTE UC2 = (UC2 + #UC3)/2 . 
+ COMPUTE #CUMF2 = NCDF.T(TVAL,DF,UC2). 
+ END IF . 
+ COMPUTE #DIFF = ABS(#CUMF2 - #LLIM). 
END LOOP . 
COMPUTE LCDF = NCDF.T(TVAL,DF,UC2). 
COMMENT 
COMMENT THIS NEXT STATEMENT COMPUTES THE POWER IN RELATION TO THE T 
VALUE. 
COMPUTE POWER = 1 -NCDF.T(IDF.T(l-(l-CONF)/2,DF),DF,TVAL). 
EXECUTE. 
COMMENT 
COMMENT THE SECOND PART USES LAUBSCHER'S SQUARE-ROOT APPROXIMATION. 
COMMENT THIS COMPUTES THE LOWER LIMIT ON THE F NONCENTRALITY 
PARAMETER. 
COMPUTE #LLC3 = TVAL**2 . 
COMPUTE #LLC2 = TVAL**2/2 . 
COMPUTE #LLC1 = .001 
COMPUTE #ULIM = l-(l-CONF)/2 . 
COMPUTE #CUMF1 = l-CDFNORM((Sqrt(2*(l+#LLCl)-((l+2*#LLCl)/(l+#LLCl)))-Sqrt((2*DF-
1)*TVAL**2*1/DF))/ 
Sqrt( 1 *TVAL**2/DF+(( 1+2*#LLC 1)/(1+#LLC 1)))) 

LOOP IF (#CUMF1 LT #ULIM) . 
+ COMPUTE #LLC2 = #LLC1 . 
+ COMPUTE #LLC 1 = #LLC 1 /4 . 
+ COMPUTE #CUMF1 = l-CDFNORM((Sqrt(2*(l+#LLCl)-((l+2*#LLCl)/(l+#LLCl)))-
Sqrt((2 *DF-1) *T VAL* *2 * 1 /DF))/ 

Sqrt( 1 *TVAL**2/DF+(( 1 +2*#LLC 1)/(1 +#LLC 1)))). 
END LOOP . 
COMPUTE #CUMF3 = l-CDFNORM((Sqrt(2*(l+#LLC3)-((l+2*#LLC3)/(l+#LLC3)))-Sqrt((2*DF-
1)*TVAL**2*1/DF))/ 
Sqrt(l*TVAL**2/DF+((l+2*#LLC3)/(l+#LLC3)))). 

LOOP IF (#CUMF3 GT #ULIM). 
+ COMPUTE #LLC2 = #LLC3 . 
+ COMPUTE #LLC3 = #LLC3 + TVAL**2 . 
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+ COMPUTE #CUMF3 = l-CDFNORM((Sqrt(2*(l+#LLC3)-((l+2*#LLC3)/(l+#LLC3)))-
Sqrt((2*DF-l)*TVAL**2*l/DF))/ 

Sqrt(l*TVAL**2/DF+((l+2*#LLC3)/(l+#LLC3)))). 
END LOOP . 
COMPUTE #CUMF2 = l-CDFNORM((Sqrt(2*(l+#LLC2)-((l+2*#LLC2)/(l+#LLC2)))-Sqrt((2*DF-
1)*TVAL**2*1/DF))/ 
Sqrt( 1 *TVAL**2/DF+(( 1 +2*#LLC2)/( 1 +#LLC2)))). 

COMPUTE #DIFF = 1 . 
LOOP IF (#DIFF GT .00005). 
+ DO IF (#CUMF2 LT #ULIM). 
+ COMPUTE #LLC3 = #LLC2 . 
+ COMPUTE #LLC2 = (#LLC2 + #LLCl)/2 . 
+ COMPUTE #CUMF2 = l-CDFNORM((Sqrt(2*(l+#LLC2)-
((l+2*#LLC2)/(l+#LLC2)))-Sqrt((2*DF-l)*TVAL**2*l/DF))/ 

Sqrt( 1 *TVAL**2/DF+(( 1 +2*#LLC2)/( 1 +#LLC2)))). 
+ ELSE. 
+ COMPUTE #LLC1 = #LLC2 . 
+ COMPUTE #LLC2 = (#LLC2 + #LLC3)/2 . 
+ COMPUTE #CUMF2 = l-CDFNORM((Sqrt(2*(l+#LLC2)-
((1 +2*#LLC2)/( 1 +#LLC2)))-Sqrt((2*DF-1 )*TVAL* *2* 1/DF))/ 

Sqrt( 1 *TVAL**2/DF+(( 1 +2*#LLC2)/( 1 +#LLC2)))). 
+ END IF . 
+ COMPUTE #DIFF = ABS(#CUMF2 - #ULIM). 
END LOOP . 
COMPUTE #UUCDF = l-CDFNORM((Sqrt(2*(l+#LLC2)-((l+2*#LLC2)/(l+#LLC2)))-Sqrt((2*DF-
1)*TVAL**2*1/DF))/ 
Sqrt( 1 *TVAL**2/DF+(( 1 +2*#LLC2)/( 1 +#LLC2)))) 

COMMENT 
COMMENT THIS COMPUTES THE UPPER LIMIT ON THE T NONCENTRALITY 
PARAMETER. 
COMPUTE #UUC3 = 3*TVAL**2 . 
COMPUTE #UUC2 = 2*TVAL**2 . 
COMPUTE #UUC1 = TVAL**2 . 
COMPUTE #LLIM = (l-CONF)/2 . 
COMPUTE #CUMF1 = l-CDFNORM((Sqrt(2*(l+#UUCl)-((l+2*#UUCl)/(l+#UUCl)))-Sqrt((2*DF-
1)*TVAL**2*1/DF))/ 
Sqrt( 1 *TVAL**2/DF+(( 1 +2*#UUC 1)/(1 +#UUC 1)))). 

LOOP IF (#CUMF1 LT #LLIM). 
+ COMPUTE #UUC2 = #UUC 1 . 
+ COMPUTE #UUC 1 = #UUC 1/4 . 
+ COMPUTE #CUMF1 = l-CDFNORM((Sqrt(2*(l+#UUCl)-((l+2*#UUCl)/(l+#UUCl)))-
Sqrt((2*DF-l)*TVAL**2*l/DF))/ 

Sqrt( 1 *TVAL**2/DF+(( 1 +2*#UUC 1)/(1 +#UUC 1)))). 
END LOOP . 
COMPUTE #CUMF3 = l-CDFNORM((Sqrt(2*(l+#UUC3)-((l+2*#UUC3)/(l+#UUC3)))-Sqrt((2*DF-
1)*TVAL**2*1/DF))/ 
Sqrt( 1 *TVAL**2/DF+(( 1+2*#UUC3)/( 1+#UUC3)))). 

LOOP IF (#CUMF3 GT #LLIM). 
+ COMPUTE #UUC2 = #UUC3 
+ COMPUTE #UUC3 = #UUC3 + TVAL**2 . 
+ COMPUTE #CUMF3 = l-CDFNORM((Sqrt(2*(l+#UUC3)-((l+2*#UUC3)/(l+#UUC3)))-
Sqrt((2*DF-l)*TVAL**2*l/DF))/ 

Sqrt(l*TVAL**2/DF+((l+2*#UUC3)/(l+#UUC3)))). 
END LOOP . 
COMPUTE #CUMF2 = l-CDFNORM((Sqrt(2*(l+#UUC2)-((l+2*#UUC2)/(l+#UUC2)))-Sqrt((2*DF-
1)*TVAL**2*1/DF))/ 
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Sqrt( 1 *TVAL**2/DF+(( 1 +2*#UUC2)/( 1 +#UUC2)))). 
COMPUTE #DIFF = 1 
LOOP IF (#DIFF GT .00001). 
+ DO IF (#CUMF2 LT #LLIM). 
+ COMPUTE #UUC3 = #UUC2 . 
+ COMPUTE #UUC2 = (#UUC2 + #UUC 1 )/2 . 
+ COMPUTE #CUMF2 = l-CDFNORM((Sqrt(2*(l+#UUC2)-
((l+2*#UUC2)/(l+#UUC2)))-Sqrt((2*DF-l)*TVAL**2*l/DF))/ 

Sqrt( 1 *TVAL**2/DF+(( 1+2*#UUC2)/( 1+#UUC2)))). 
+ ELSE. 
+ COMPUTE #UUC1 = #UUC2 . 
+ COMPUTE #UUC2 = (#UUC2 + #UUC3)/2 . 
+ COMPUTE #CUMF2 = l-CDFNORM((Sqrt(2*(l+#UUC2)-
((l+2*#UUC2)/(l+#UUC2)))-Sqrt((2*DF-l)*TVAL**2*l/DF))/ 

Sqrt( 1 *TVAL**2/DF+(( 1 +2*#UUC2)/( 1 +#UUC2)))). 
+ END IF . 
+ COMPUTE #DIFF = ABS(#CUMF2 - #LLIM). 
END LOOP . 
COMPUTE #LLCDF = l-CDFNORM((Sqrt(2*(l+#UUC2)-((H-2*#UUC2)/(l+#UUC2)))-Sqrt((2*DF-
1)*TVAL**2*1/DF))/ 
Sqrt( 1 *TVAL**2/DF+(( 1+2*#UUC2)/( 1+#UUC2)))). 

COMMENT 
COMMENT THIS NEXT STATEMENT COMPUTES THE POWER IN RELATION TO THE F 
VALUE. 
COMPUTE #PPOWER = CDFNORM((Sqrt(2*(l+TVAL**2*(l/DF)*(l+DF+l))-
((l+2*TVAL**2*(l/DF)*(l+DF+l))/(l+TVAL**2*(l/DF)*(l+DF+l))))-Sqrt((2*DF-l)*IDF.F(l-(l-
CONF)/2,l,DF)*l/DF))/ 

Sqrt(l*IDF.F(l-(l-
CONF)/2,l,DF)/DF+((l+2*TVAL**2*(l/DF)*(l+DF+l))/(l+TVAL**2*(l/DF)*(l+DF+l))))). 
COMMENT 
COMMENT NOW CHOOSE THE METHOD TO USE FOR THE FINAL ESTIMATES. 
COMMENT THIS DECISION IS BASED ON THE OBSERVATION THAT SPSS NONCENTRAL 
T 
COMMENT PRODUCES UPPER BOUND ESTIMATES THAT FALL BELOW ACCURATE 
VALUES UNTIL 
COMMENT ARE SIMPLY EQUAL TO THE TVAL THAT IS GIVEN AS THE STARTING 
POINT. 
COMMENT THE NORMAL APPROXIMATION, ON THE OTHER HAND, TENDS TO 
UNDERESTIMATE 
COMMENT THE TRUE NONCENTRALITY PARAMETER FOR SMALL N AND/OR SMALL 
EFFECTS. 
COMMENT NONCENTRAL T ALSO PRODUCES A LOWER BOUND THAT HITS A CEILING 
OF APPROXIMATELY 
COMMENT 17.5.1 HAVE ALLOWED A SMALL MARGIN BELOW THAT IN CASE THE 
ROUTINE DECLINES 
COMMENT IN ACCURACY IN THE NEIGHBORHOOD OF THIS CEILING. 
DO IF ((SQRT(#UUC2) > UC2 OR SQRT(#LLC2) > 16.5) AND LC2 > 0) . 
+ COMPUTE LC2 = SQRT(#LLC2). 
+ COMPUTE UCDF = #UUCDF. 
END IF 
DO IF (SQRT(#UUC2) > UC2 OR (SQRT(#LLC2) > 16.5 AND LC2 > 0)). 
+ COMPUTE POWER = #PPOWER. 
END IF . 
DO IF (SQRT(#UUC2)>UC2 0RUC2<=TVAL) 
+ COMPUTE UC2 = SQRT(#UUC2) 
+ COMPUTE LCDF = #LLCDF. 
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END IF . 
EXECUTE. 

COMMENT THESE COMPUTATIONS ARE BASED ON THE HUNTER & SCHMIDT 
EQUATIONS AND ARE FUNCTIONALLY EQUIVALENT TO THE COMPUTATIONS. 
COMMENT OFFERED BY SMITHSON; THE PROCESS IS ONE OF CONVERTING T VALUES 
INTO D VALUES; SEE P 272 OF H&S. 

COMMENT BEGIN BY COMPUTING THE CENTRAL VALUES FOR D (NOTE THAT 'D' IS 
EQUIVALENT TO 'G' IN THIS PROGRAM). 
COMMENT HERE ARE THE UNADJUSTED D VALUES. 
COMPUTE #totn = 2*n. 

COMMENT THIS COMPUTATION COMPUTES THE SE OF HEDGE'S G AND 
SUBSEQUENTLY BUILDS A CENTRAL 95% CI AROUND THAT VALUE. 
COMMENT THIS EQUATION COMES FROM HUNTER & SCHMIDT (1991) (P 281) AND IS 
BASED ON THE "SMALL SAMPLE" EQUATION. 
COMMENT NOTE THAT HUNTER & SCHMIDT CALL HEDGE'S G - 'd'. 

COMPUTE D = 2*rval/SQRT(#totn). 
COMPUTE sehedg = SQRT(((#totn-l)/(#totn-3)) * ((4/#totn)* (l+(D**2/8)))). 

COMMENT COMPUTE UB AND LB VALUES BASED ON TCRIT AND SE VALUES. 
COMMENT COMPUTE THE TCRIT VALUE BASED ON DF AND CONFIDENCE 

LEVEL. 
COMPUTE tcrit = ABS(IDF.T(((l-conf)/2),(df))). 
COMPUTE CD = D . 
COMPUTE CDUB = D + tcrit*sehedg. 
COMPUTE CDLB = D - tcrit*sehedg. 

COMMENT NOW COMPUTE THE NON-CENTRAL D VALUES BY CONVERTING THE LB 
AND UB VALUES OF T INTO D UNITS. 

COMPUTE NCD = D . 
COMPUTE NCDLB = 2*LC2/SQRT(#totn). 
COMPUTE NCDUB = 2*UC2/SQRT(#totn). 

COMMENT HUNTER & SCHMIDT ENCOURAGE THE USE OF CORRECTED d VALUES 
BASED ON THE CORRECTION FACTOR a. 
COMMENT THIS ROUTINE WILL ALSO COMPUTE CORRECTED VALUES OF HEDGE'S G 
AND SE ESTIMATES. 

COMMENT COMPUTE ADJUSTMENT FACTOR 'a' AS DESCRIBE BY H&S. 
COMPUTE #a = 1 + .75 / (#totn-3). 

COMMENT ADJUST D AND SE VALUES USING CORRECTION FACTOR. 
COMPUTE #ASE = sehedg / #a. 
COMPUTE #AD = D / #a. 

COMMENT COMPUTE THE ADJUSTED CENTRAL UPPER AND LOWER BOUNDS OF D. 
COMPUTE ACD = #AD. 
COMPUTE ACDLB = ACD - tcrit*#ASE. 
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COMPUTE ACDUB = ACD + tcrit*#ASE. 

COMMENT THE FOLLOWING "TEST" PROVES THAT ADJUSTING CLB AND CUB 
BY DIVIDING BY 'a' IS EQUIVALENT TO BUILDING A NEW. 

COMMENT INTERVAL BASED ON ACD AND ASE; RESULTS HAVE BEEN 
REMOVED FROM OUTPUT. 

COMPUTE #TEST = CDLB/#A. 
COMPUTE #TEST2 = ACDLB-#TEST. 

COMMENT COMPUTE THE ADJUSTED NON-CENTRAL UPPER AND LOWER BOUNDS OF 
D. 

COMPUTE ANCD = NCD/#a. 
COMPUTE ANCDLB = NCDLB/#a. 
COMPUTE ANCDUB = NCDUB/#a. 

COMMENT THIS NEXT SECTION WILL COMPUTE GLASS' DELTA BY CONVERTING THE 
VARIOUS D VALUES INTO DELTA VALUES. 
COMMENT THIS CONVERSION EQUATION IS PROVIDED IN H&S (P 277) AND IS BASED 
ON THE VARIANCE RATIO. 
COMMENT WE WILL COMPUTE A CONVERSION VARIABLE WHICH WILL BE 
MULTIPLIED BY THE D VALUE. 

COMPUTE #v = sigmat/sigmac. 
COMPUTE #cor = SQRT((l/#v**2)/2). 

COMMENT COMPUTE NON-ADJUSTED CENTRAL AND NON-CENTRAL GLASS' DELTA 
VALUES. 

COMPUTE CG = CD/#COR. 
COMPUTE CGLB = CDLB/#COR. 
COMPUTE CGUB = CDUB/#COR. 
COMPUTE NCG = NCD/#COR. 
COMPUTE NCGLB = NCDLB/#COR. 
COMPUTE NCGUB = NCDUB/#COR. 

COMMENT COMPUTE ADJUSTED CENTRAL AND NON-CENTRAL GLASS' DELTA 
VALUES. 

COMPUTE ACG = ACD/#COR. 
COMPUTE ACGLB = ACDLB/#COR. 
COMPUTE ACGUB = ACDUB/#COR. 
COMPUTE ANCG = ANCD/#COR. 
COMPUTE ANCGLB = ANCDLB/#COR. 
COMPUTE ANCGUB = ANCDUB/#COR. 

EXECUTE. 
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Figure 15. Confidence intervals for Hedges g and Glass' delta 
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Figure 16. Confidence intervals for Hedges g and Glass' delta 
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1.73 
1.19 
.77 
.65 

1.79 
1.26 
.83 

.71 
1.64 
1.10 
.68 
.56 

Adjusted Noncentral g 
LB 
-.91 
-.61 
-.26 
-.14 
-.85 
-.55 
-.19 

-.08 
-.98 
-.69 
-35 
-.23 

C 
.23 
.24 
.25 
.25 
.29 
30 
31 

31 
.14 
.15 
.16 
.16 

UB 
1.34 
1.08 
.75 
.64 

1.40 
1.14 
.81 

.70 
1.26 
.99 
.66 
.55 

Variance 
Ratio 
1.00 
1.00 
1.00 
1.00 
.25 
.25 
.25 

.25 
4.00 
4.00 
4.00 
4.00 

Mean 
Difference n 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 

50.00 
5.00 
10.00 
30.00 
50.00 

Empirical delta 
LB 

-1.37512 
-0.59115 
-0.28672 
-0.14823 
-1.07432 
-0.44195 
-0.15873 
-0.05053 

-2.26945 
-1.29718 
-0.53913 
-0.38731 

C 
0.30561 
0.28392 
0.24711 
0.25859 
0.30534 
0.29254 
0.25843 

0.25718 
0.29476 
0.30993 
0.27639 
0.24057 

UB 
2.11119 
1.35371 
0.78397 
0.6328 
1.70064 
1.11758 
0.70076 
0.57451 
2.90346 
2.03464 
1.1006 

0.89561 

Central delta 
LB 
-1.41 
-.75 
-.28 
-.15 

-1.07 
-.54 
-.17 

-.07 
-2.37 
-1.32 
-.58 
-.38 

C 
.25 
.25 
.25 
.25 
.25 
.25 
.25 

.25 

.25 

.25 

.25 

.25 

UB 
1.91 
1.25 
.78 
.65 

1.57 
1.04 
.67 

.57 
2.87 
1.82 
1.08 
.88 

Noncentral delta 
LB 
-1.00 
-.63 
-.26 
-.14 
-.75 
-.45 
-.15 

-.06 
-1.72 
-1.14 
-.55 
-37 

C 
.25 
.25 
.25 
.25 
.25 
.25 
.25 

.25 

.25 

.25 

.25 

.25 

UB 
1.49 
1.13 
.76 
.64 

1.23 
.94 
.65 

.56 
2.21 
1.63 
1.05 
.87 

Adj. Central delta 
LB 
-1.27 
-.72 
-.27 
-.15 
-.96 
-.52 
-.17 

-.07 
-2.14 
-1.27 
-.58 
-.38 

C 
.23 
.24 
.25 
.25 
.23 
.24 
.25 

.25 

.23 

.24 

.25 

.25 

UB 
1.73 
1.19 
.77 
.65 

1.41 
1.00 
.66 

.56 
2.59 
1.75 
1.07 
.88 

Adj. Noncentral delta 
LB 
-.91 
-.61 
-.26 
-.14 
-.67 
-.43 
-.15 

-.06 
-1.55 
-1.09 
-.55 
-37 

C 
.23 
.24 
.25 
.25 
.23 
.24 
.25 

.25 

.23 

.24 

.25 

.25 

UB 
1.34 
1.08 
.75 
.64 

1.11 
.90 
.64 

.56 
1.99 
1.57 
1.04 
.86 

Table 2 
Empirically defined and computed confidence intervals 
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Variance Mean Empirical g Central g Noncentral g Adjusted Central g Adjusted Noncentral g 
tio Difference n 
1.00 
1.00 
1.00 
1.00 
.25 
.25 
.25 

.25 
4.00 
4.00 
4.00 
4.00 

.50 5.00 

.50 10.00 

.50 30.00 

.50 50.00 

.50 5.00 

.50 10.00 

.50 30.00 

.50 50.00 

.50 5.00 

.50 10.00 

.50 30.00 

.50 50.00 

LB 
-0.87168 
-0.4016 
-0.05616 
0.09072 
-0.70748 
-0.23194 
0.13046 

0.22853 
-1.23442 
-0.59159 
-0.22206 
-0.07241 

C 
0.51416 
0.54793 
0.52102 
0.49504 
0.73219 
0.69427 
0.66985 

0.66543 
0.3559 
0.3849 
0.34485 
0.34386 

UB 
2.16577 
1.55896 
1.06486 
0.92652 
2.51247 
1.7369 

1.22647 

1.10652 
2.17922 
1.45503 
0.88388 
0.76181 

LB 
-1.18 
-.51 
-.03 
.09 

-1.06 
-39 
.09 

.22 
-135 
-.68 
-.21 
-.09 

C 
.50 
.50 
.50 
.50 
.63 
.63 
.63 

.63 
32 
32 
32 
32 

UB 
2.18 
1.51 
1.03 
.91 

2.33 
1.65 
1.17 

1.04 
1.98 
1.32 
.85 
.72 

LB 
-.78 
-.40 
-.02 
.10 

-.66 
-.28 
.11 

.23 
-.94 
-.57 
-.19 
-.08 

C 
.50 
.50 
.50 
.50 
.63 
.63 
.63 

.63 
32 
32 
32 
32 

UB 
1.75 
1.38 
1.01 
.90 

1.89 
1.52 
1.15 

1.03 
1.56 
1.19 
.82 
.71 

LB 
-1.07 
-.49 
-.03 
.09 

-.96 
-37 
.09 

.22 
-1.22 
-.65 
-.21 
-.09 

C 
.45 
.48 
.49 
.50 
.57 
.61 
.62 

.63 

.29 
30 
31 
31 

UB 
1.97 
1.44 
1.02 
.90 

2.10 
1.58 
1.16 

1.04 
1.79 
1.26 
.83 
.71 

LB 
-.70 
-38 
-.02 
.10 

-.60 
-.26 
.11 

.23 
-.85 
-.55 
-.19 
-.08 

C 
.45 
.48 
.49 
.50 
.57 
.61 
.62 

.63 

.29 
30 
31 
31 

UB 
1.58 
1.33 
1.00 
.89 

1.71 
1.46 
1.13 

1.02 
1.40 
1.14 
.81 
.70 

iance 
itio 
1.00 
1.00 
1.00 
1.00 
.25 
.25 
.25 
.25 

4.00 
4.00 
4.00 
4.00 

Mean 
Difference n 

.50 5.00 

.50 10.00 

.50 30.00 

.50 50.00 

.50 5.00 

.50 10.00 

.50 30.00 

.50 50.00 

.50 5.00 

.50 10.00 

.50 30.00 

.50 50.00 

Empirical delta 
LB 

-0.98711 
-039451 
-0.05024 
0.09108 
-0.51821 
-0.16289 
0.10387 
0.16908 
-2.0108 
-0.8838 
-0.31432 
-0.09446 

C 
0.54355 
0.57498 
0.52464 
0.49851 
0.58368 
0.53421 
0.50628 
0.50184 
0.56052 
0.60177 
0.52072 
0.51562 

UB 
2.42096 
1.74513 
1.09605 
0.93693 
2.07577 
1.41052 
0.9298 
0.83742 
3.4752 

2.31115 
1.36601 
1.16188 

Central delta 
LB 
-1.18 
-.51 
-.03 
.09 

-.84 
-30 
.07 
.18 

-2.13 
-1.08 
-34 
-.14 

C 
.50 
.50 
.50 
.50 
.50 
.50 
.50 
.50 
.50 
.50 
.50 
.50 

UB 
2.18 
1.51 
1.03 
.91 

1.84 
1.30 
.93 
.82 

3.13 
2.08 
1.34 
1.14 

Noncentral delta 
LB 
-.78 
-.40 
-.02 
.10 

-.52 
-.22 
.09 
.18 

-1.49 
-.90 
-31 
-.12 

C 
.50 
.50 
.50 
.50 
.50 
.50 
.50 
.50 
.50 
.50 
.50 
.50 

UB 
1.75 
138 
1.01 
.90 

1.49 
1.21 
.91 
.82 

2.46 
1.89 
1.30 
1.12 

Adj. Central delta 
LB 

-1.07 
-.49 
-.03 
.09 

-.76 
-.29 
.07 
.17 

-1.92 
-1.03 
-.33 
-.14 

C 
.45 
.48 
.49 
.50 
.45 
.48 
.49 
.50 
.45 
.48 
.49 
.50 

UB 
1.97 
1.44 
1.02 
.90 

1.66 
1.25 
.91 
.82 

2.83 
1.99 
1.32 
1.13 

Adj. Noncentral delta 
LB 
-.70 
-38 
-.02 
.10 

-.47 
-.21 
.09 
.18 

-1.35 
-.86 
-30 
-.12 

C 
.45 
.48 
.49 
.50 
.45 
.48 
.49 
.50 
.45 
.48 
.49 
.50 

UB 
1.58 
1.33 
1.00 
.89 

1.35 
1.15 
.90 
.81 

2.22 
1.81 
1.29 
1.11 
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Variance Mean 
Ratio Difference LB 

Empirical 
C 

g 
UB 

Central g 
LB C UB 
-.96 .75 2.46 
-.28 .75 1.78 
0.21 0.75 1.29 
0.34 0.75 1.16 
-.80 .95 2.69 
-.10 .95 2.00 
39 .95 1.50 
.53 .95 1.37 

-1.20 .47 2.15 
-.53 .47 1.48 
-.06 .47 1.01 
.07 .47 .88 

Adjusted Central g 
LB C UB 

Noncentral g 
LB C UB 
-.56 .75 2.02 -.87 .68 2.22 
-.17 .75 1.65 -.27 .72 1.70 
0.22 0.75 1.27 0.2 0.7 1.28 
0.34 0.75 1.15 0.33 0.7 1.16 
-.40 .95 2.24 -.72 .86 2.43 
.01 .95 1.87 -.09 .91 1.91 
.41 .95 1.48 39 .94 1.48 

.53 .95 1.36 .52 .94 1.36 
-.80 .47 1.72 -1.09 .43 1.94 
-.42 .47 1.36 -.51 .45 1.42 
-.04 .47 .99 -.06 .47 .99 
.08 .47 .87 .07 .47 .87 

Adjusted Noncentral g 
LB C UB 

.68 1.82 

1.58 

1.00 .75 5.00 -0.57617 0.87878 2.55364 

1.00 .75 10.00 -0.20234 0.78674 1.94768 

1 0.75 30.00 0.21451 0.73211 1.2848 

1 0.75 50.00 037155 0.7686 1.17995 

.25 .75 5.00 -0.33173 1.17576 3.23129 

.25 .75 10.00 0.06588 1.05124 2.1668 

.25 .75 30.00 0.45621 1.02936 1.6245 

.25 .75 50.00 0.58342 1.00906 1.41928 

4.00 .75 5.00 -1.06964 0.61673 2.31485 

4.00 .75 10.00 -0.52701 0.51815 1.50289 

4.00 .75 30.00 -0.01916 0.49812 1.08615 

4.00 .75 50.00 0.10752 0.50059 0.93143 

-.51 
-.16 
0.22 
0.34 
-36 
.01 
.41 

.53 
-.72 
-.40 
-.04 
.08 

.72 
0.74 
0.74 

.86 

.91 

.94 

.94 

.43 

.45 

.47 

.47 

1.25 
1.15 
2.03 
1.79 
1.46 
1.35 
1.55 
1.30 
.97 
.86 

Variance Mean 
Ratio Difference n 

Empirical delta 
LB C UB 

Central delta 
LB C UB 

Noncentral delta 
LB C UB 

Adj. Central delta 
LB C UB 

Adj. Noncentral delta 
LB C UB 

1.00 
1.00 

1 
1 

.25 

.25 

.25 

.25 
4.00 
4.00 
4.00 
4.00 

.75 

.75 
0.75 
0.75 
.75 
.75 
.75 

.75 

.75 

.75 

.75 

.75 

5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 

50.00 
5.00 
10.00 
30.00 
50.00 

-0.63216 
-0.2056 
0.21684 
034629 
-0.2383 
0.04506 
034206 

0.42565 
-1.8774 
-0.7884 
-0.03017 
0.16089 

0.92857 
0.81522 
0.74145 
0.76973 
0.96751 
0.81348 
0.77792 

0.75932 
1.00922 
0.7877 
0.74854 
0.75424 

3.17703 
2.05784 
132558 
1.22992 
3.1165 
1.82674 
1.28923 
1.09831 
4.4427 

2.40979 
1.62196 
1.42836 

-.96 
-.28 
.21 

0.34 
-0.63 
-.08 
31 

.42 
-1.90 
-.84 
-.09 
.11 

.75 

.75 

.75 
0.75 
0.75 

.75 

.75 

.75 

.75 

.75 

.75 

.75 

2.46 
1.78 
1.29 
1.16 
2.13 
1.58 
1.19 

1.08 
3.40 
2.34 
1.59 
1.39 

-.56 
-.17 
.22 

0.34 
-0.31 

.01 
32 

.42 
-1.27 
-.67 
-.06 
.12 

.75 

.75 

.75 
0.75 
0.75 

.75 

.75 

.75 

.75 

.75 

.75 

.75 

2.02 
1.65 
1.27 
1.15 
1.77 
1.48 
1.17 

1.08 
2.72 
2.15 
1.56 
1.38 

-.87 
-.27 
.20 

0.33 
-0.57 
-.07 
31 

.41 
-1.72 
-.81 
-.09 
.11 

.68 

.72 

.74 
0.7 
0.7 
.72 
.74 

.74 

.68 

.72 

.74 

.74 

2.22 
1.70 
1.28 
1.16 
1.92 
1.51 
1.17 

1.08 
3.07 
2.24 
1.57 
1.38 

-.51 
-.16 
.22 

0.34 
-0.28 

.01 
32 

.42 
-1.14 
-.64 
-.06 
.12 

.68 

.72 

.74 
0.74 
0.68 

.72 

.74 

.74 

.68 

.72 

.74 

.74 

1.82 
1.58 
1.25 
1.15 
1.6 

1.41 
1.15 

1.07 
2.46 
2.06 
1.54 
1.37 
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Variance 
Ratio 
1.00 
1.00 
1.00 
1.00 
.25 
.25 
.25 

.25 
4.00 

4 
4 

4.00 

Mean 
Difference 

2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 

2.00 
2.00 

2 
2 

2.00 

n 
5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 

50.00 
5.00 
10.00 
30.00 
50.00 

Empirical g 
LB 
0.63784 
1.09753 
1.43562 
1.57499 
1.2665 
1.59733 
2.03483 

2.14398 
-0.0671 
-0.31173 
0.76455 
0.93135 

C 
2.27984 
2.12263 
2.03271 
2.0109 
3.06529 
2.83681 
2.73099 

2.7051 
1.52331 
0.70329 
1.35763 
1.34555 

r 

UB 
4.65358 
339973 
2.72583 
2.53157 
6.2933 
4.70884 
3.58187 
3.36808 

3.8562 
1.75883 
1.97211 
1.81909 

LB 
-.03 
.78 

1.36 
1.51 
31 

1.20 
1.82 

1.99 
-.55 
0.18 
0.69 

.83 

Central g 
C 

2.00 
2.00 
2.00 
2.00 
2.53 
2.53 
2.53 

2.53 
1.26 
1.26 
1.26 
1.26 

UB 
4.03 
3.22 
2.64 
2.49 
4.75 
3.86 
3.24 

3.07 
3.08 
2.35 
1.84 
1.70 

Noncentral g 
LB 

39 
.89 

1.37 
1.52 
.75 

1.31 
1.84 

2.00 
-.15 
0.28 
0.7 
.83 

C 
2.00 
2.00 
2.00 
2.00 
2.53 
2.53 
2.53 

2.53 
1.26 
1.26 
1.26 
1.26 

UB 
3.53 
3.07 
2.62 
2.48 
4.23 
3.71 
3.21 

3.05 
2.62 
2.22 
1.82 
1.69 

Adjusted Central g 
LB C 
-.02 1.81 
.75 1.92 

1.34 1.97 
1.50 1.98 
.28 2.29 

1.15 2.42 
1.80 2.50 

1.98 2.51 
-.49 1.14 
0.17 1.2 
0.68 1.3 

.82 1.26 

UB 
3.64 
3.08 
2.61 
2.47 
4.29 
3.70 
3.19 

3.04 
2.78 
2.25 
1.82 
1.69 

Adjusted 
LB 

35 
.85 

1.35 
1.50 
.68 

1.26 
1.82 

1.98 
-.13 
0.27 
0.7 
.83 

1 Noncentral g 
C 
1.81 
1.92 
1.97 
1.98 
2.29 
2.42 
2.50 

2.51 
1.14 
1.21 
1.25 
1.26 

UB 
3.19 
2.94 
2.58 
2.46 
3.82 
3.55 
3.17 

3.03 
2.36 
2.12 
1.79 
1.68 

Variance 
Ratio 
1.00 
1.00 
1.00 
1.00 
.25 
.25 
.25 
.25 

4.00 
4 
4 

4.00 

Mean 
Difference n 

2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 

2 
2 

2.00 

5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 

Empirical delta 
LB 

0.6303 
1.02922 
1.37234 
1.5062 
0.8394 
1.12841 
1.47255 
1.57402 
-0.1046 
-0.45066 
1.11472 
1.32928 

C 
2.46833 
2.19893 
2.05074 
2.02795 
2.50071 
2.19998 
2.06359 
2.03917 
2.42102 
1.12503 
2.04446 
2.02925 

UB 
5.7131 
4.00068 
2.91323 
2.6521 
6.0727 
4.12561 
2.84542 
2.64919 
6.9813 
2.98568 
3.08141 
2.90768 

Central delta 
LB 
-.03 
.78 

1.36 
1.51 
.25 
.95 

1.44 
1.57 
-.86 
.28 

1.09 
1.31 

C 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 

2 
2 

UB 
4.03 
3.22 
2.64 
2.49 
3.75 
3.05 
2.56 
2.43 
4.86 
3.72 
2.91 
2.69 

Noncentral delta 
LB 

39 
.89 

1.37 
1.52 
.60 

1.04 
1.45 
1.58 
-.23 
.45 

1.11 
1.32 

C 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 

2 
2 

UB 
3.53 
3.07 
2.62 
2.48 
3.34 
2.93 
2.54 
2.41 
4.13 
3.51 
2.87 
2.68 

Adj. Central delta 
LB C 
-.02 1.81 
.75 1.92 

1.34 1.97 
1.50 1.98 
.22 1.81 
.91 1.92 

1.42 1.97 
1.56 1.98 
-.78 1.81 
.27 1.92 

1.08 2 
13 2 

UB 
3.64 
3.08 
2.61 
2.47 
3.39 
2.92 
2.52 
2.41 
4.39 
3.56 
2.87 
2.67 

Adj. Noncentral delta 
LB 

35 
.85 

1.35 
1.50 
.54 
.99 

1.44 
1.57 
-.21 
.43 
1.1 

1.31 

C 
1.81 
1.92 
1.97 
1.98 
1.81 
1.92 
1.97 
1.98 
1.81 
1.92 
1.97 
1.98 

UB 
3.19 
2.94 
2.58 
2.46 
3.02 
2.81 
2.50 
2.40 
3.73 
3.36 
2.83 
2.66 

Table 5 
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Variance 
Ratio 

Mean 
Difference LB 

Empirical 
C 

g 
UB LB 

Central g 
C UB 

Noncentral g 
LB C UB 

Adjusted Central g Adjusted Noncentral g 
LB C UB LB C UB 

1.00 
1.00 
1.00 
1.00 
.25 
.25 
.25 

.25 
4.00 
4.00 
4.00 
4.00 

3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 

3.00 
3.00 
3.00 
3.00 
3.00 

5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 

50.00 
5.00 
10.00 
30.00 
50.00 

1.73508 
1.98297 
2.35503 
2.4768 
2.257 

2.70838 
3.23493 

3.31682 
0.65634 
1.02753 
1.38569 
1.51892 

3.47762 
3.17297 
3.04338 
3.01564 
4.54309 
4.23794 
4.0931 

4.02654 
2.30808 
2.09906 
2.04244 
2.03113 

6.44085 
4.86922 
3.87521 
3.63671 
8.6787 
6.63431 
5.20379 

4.82805 
5.03593 
3.5594 

2.79473 
2.58387 

.59 
1.55 
2.23 
2.42 
1.03 
2.13 
2.91 

3.12 
-.09 
.70 

1.26 
1.41 

3.00 
3.00 
3.00 
3.00 
3.79 
3.79 
3.79 

3.79 
1.90 
1.90 
1.90 
1.90 

5.41 
4.45 
3.77 
3.58 
6.56 
5.46 
4.67 

4.47 
3.89 
3.09 
2.53 
2.38 

1.06 
1.67 
2.25 
2.42 
1.56 
2.27 
2.93 

3.13 
32 
.81 

1.28 
1.42 

3.00 
3.00 
3.00 
3.00 
3.79 
3.79 
3.79 

3.79 
1.90 
1.90 
1.90 
1.90 

4.87 
4.29 
3.74 
3.57 
5.97 
5.29 
4.64 

4.45 
3.40 
2.95 
2.50 
2.37 

.53 2.71 
1.49 2.87 
2.20 2.96 
2.40 2.98 

.93 3.43 
2.04 3.63 
2.88 3.75 

3.10 3.77 
-.08 1.71 
.67 1.82 

1.25 1.87 
1.40 1.88 

4.89 
4.26 
3.72 
3.56 
5.93 
5.23 
4.61 

4.43 
3.51 
2.96 
2.50 
2.36 

.96 
1.60 
2.22 
2.40 
1.40 
2.17 
2.90 

3.10 
.29 
.77 

1.26 
1.41 

2.71 
2.87 
2.96 
2.98 
3.43 
3.63 
3.75 

3.77 
1.71 
1.82 
1.87 
1.88 

4.39 
4.11 
3.69 
3.54 
5.39 
5.06 
4.58 

4.41 
3.07 
2.83 
2.47 
2.35 

Variance 
Ratio 
1.00 
1.00 
1.00 
1.00 
.25 
.25 
.25 
.25 

4.00 
4.00 
4.00 
4.00 

Mean 
Difference n 

3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 

5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 

Empirical delta 
LB 

1.4473 
1.8162 

2.26969 
2.39103 
1.5675 
1.89262 
2.33535 
2.36831 
0.9471 
1.5304 

2.10373 
2.24731 

C 
3.86014 
3.26676 
3.06563 
3.03125 
3.68675 
3.26429 
3.10128 
3.03625 
3.72345 
3.30482 
3.09825 
3.04628 

UB 
93989 
5.71954 
4.1255 
3.79352 
8.8847 
5.61781 
4.2246 
3.77545 
8.9366 
6.1929 

4.44102 
4.012 

Central delta 
LB 

.59 
1.55 
2.23 
2.42 

.81 
1.69 
230 
2.47 
-.15 
1.11 
2.00 
2.24 

C 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 

UB 
5.41 
4.45 
3.77 
3.58 
5.19 
4.31 
3.70 
3.53 
6.15 
4.89 
4.00 
3.76 

Noncentral delta 
LB 
1.06 
1.67 
2.25 
2.42 
1.23 
1.79 
2.32 
2.47 

.51 
1.28 
2.02 
2.25 

C 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 

UB 
4.87 
4.29 
3.74 
3.57 
4.72 
4.18 
3.67 
3.51 
5.38 
4.67 
3.96 
3.74 

Adj. Central delta 
LB C 

.53 2.71 
1.49 2.87 
2.20 2.96 
2.40 2.98 

.73 2.71 
1.61 2.87 
2.27 2.96 
2.45 2.98 
-.13 2.71 
1.06 2.87 
1.97 2.96 
2.22 2.98 

UB 
4.89 
4.26 
3.72 
3.56 
4.69 
4.13 
3.65 
3.50 
5.55 
4.68 
3.95 
3.73 

Adj. Noncentral delta 
LB 

.96 
1.60 
2.22 
2.40 
1.11 
1.72 
2.29 
2.45 
.46 

1.23 
2.00 
2.23 

C 
2.71 
2.87 
2.96 
2.98 
2.71 
2.87 
2.96 
2.98 
2.71 
2.87 
2.96 
2.98 

UB 
4.39 
4.11 
3.69 
3.54 
4.26 
4.00 
3.62 
3.49 
4.86 
4.47 
3.91 
3.71 

Table 6 
Empirically defined and computed confidence intervals 
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Empirical -
Variance Mean Central d 

latio 
1.00 
1.00 
1.00 
1.00 
.25 
.25 
.25 
.25 

4.00 
4.00 
4.00 
4.00 

Difference 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

n 
5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 

LB 
0.50 
0.16 
0.04 
0.01 
0.62 
0.24 
0.09 
0.08 
0.34 
0.09 
0.05 
0.05 

C 
0.13 
0.06 
0.02 
0.02 
0.22 
0.14 
0.09 
0.09 
0.17 
0.09 
0.06 
0.04 

UB 
0.19 
0.17 
0.06 
0.02 
0.43 
0.30 
0.16 
0.13 
0.17 
0.16 
0.07 
0.06 

Variance 
Ratio 
1.00 
1.00 
1.00 
1.00 
.25 
.25 
.25 
.25 

4.00 
4.00 
4.00 
4.00 

Table 7 

Mean 
Difference 

1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 
1.00 

n 
5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 

Empirical-
Central g 

0.47 
0.16 
0.01 
0.02 
0.49 
0.17 
0.04 
0.02 
0.40 
0.09 
0.06 
0.05 

0.26 
0.10 
0.03 
0.02 
0.18 
0.07 
0.02 
0.02 
0.30 
0.11 
0.04 
0.01 

1.06 
0.33 
0.15 
0.06 
0.72 
0.27 
0.09 
0.07 
1.03 
0.34 
0.07 
0.03 

Differences between the calculated values and the empirical values. 

Empirical -
Noncentral d 

LB 
0.11 
0.06 
0.02 
0.00 
0.22 
0.14 
0.08 
0.08 

-0.06 
-0.02 
0.03 
0.04 

c 
0.13 
0.06 
0.02 
0.02 
0.22 
0.14 
0.09 
0.09 
0.17 
0.09 
0.06 
0.04 

UB 
0.64 
0.30 
0.09 
0.04 
0.89 
0.43 
0.18 
0.14 
0.61 
0.29 
0.09 
0.07 

Empirical -
Adj. Central d 

LB 
0.43 
0.16 
0.04 
0.01 
0.56 
0.25 
0.10 
0.09 
0.24 
0.07 
0.05 
0.05 

C 
0.23 
0.10 
0.03 
0.03 
0.34 
0.19 
0.10 
0.09 
0.23 
0.11 
0.07 
0.04 

UB 
0.45 
0.25 
0.08 
0.04 
0.73 
0.40 
0.18 
0.14 
0.40 
0.23 
0.08 
0.06 

Empirical -
Adj. Noncentral < 

LB C UB 
0.07 0.23 0.86 
0.06 0.10 0.38 
0.03 0.03 0.11 
0.00 0.03 0.05 
0.20 034 1.15 
0.15 0.19 0.53 
0.08 0.10 0.21 
0.08 0.09 0.15 

-0.12 0.23 0.79 
-0.04 0.11 0.35 
0.03 0.07 0.11 
0.04 0.04 0.08 

Empirical- Empirical- Empirical-
Noncentral g Adj. Central g Adj. Noncentral g 

0.08 
0.06 
•0.01 
0.01 
0.18 
0.09 
0.02 
0.01 
•0.23 
•0.08 
0.03 
0.04 

0.26 
0.10 
0.03 
0.02 
0.18 
0.07 
0.02 
0.02 
0.30 
0.11 
0.04 
0.01 

1.51 
0.46 
0.18 
0.08 
1.08 
0.38 
0.11 
0.08 
1.72 
0.54 
0.10 
0.05 

0.40 
0.16 
0.01 
0.02 
0.45 
0.18 
0.04 
0.02 
0.24 
0.06 
0.06 
0.05 

0.36 
0.14 
0.04 
0.03 
0.28 
0.11 
0.03 
0.03 
0.40 
0.15 
0.05 
0.02 

1.32 
0.41 
0.17 
0.08 
0.95 
0.35 
0.11 
0.08 
1.39 
0.45 
0.09 
0.04 

0.04 0.36 
0.06 0.14 
0.00 0.04 
0.01 0.03 
0.17 0.28 
0.10 0.11 
0.03 0.03 
0.02 0.03 

-0.33 0.40 
-0.10 0.15 
0.04 0.05 
0.04 0.02 

1.73 
0.54 
0.20 
0.09 
1.28 
0.45 
0.13 
0.09 
2.01 
0.64 
0.13 
0.06 



Variance 
Ratio 

1.00 

1.00 
1.00 

1.00 
.25 
.25 

.25 

.25 

4.00 
4.00 
4.00 
4.00 

Mean 
Difference 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

n 

5.00 

10.00 
30.00 

50.00 
5.00 

10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 

Empirical -
Central d 

LB 
0.17 

0.18 
0.00 
0.00 
0.12 
0.09 
0.00 
0.02 

0.18 
0.02 
0.01 

-0.01 

c 
0.04 

0.03 
0.00 
0.01 
0.05 
0.06 
0.02 
0.02 
0.02 
0.04 
0.02 
0.00 

UB 
-0.13 
0.03 
0.02 

-0.02 

-0.11 
0.07 
0.06 
0.05 

-0.08 
0.09 
0.09 
0.05 

Empirical -
Noncentral d 

LB 
-0.24 
0.06 

-0.02 
-0.01 
-0.29 
-0.02 
-0.02 
0.01 

-0.23 
-0.10 
-0.01 
-0.01 

c 
0.04 

0.03 
0.00 
0.01 
0.05 
0.06 
0.02 
0.02 
0.02 
0.04 
0.02 
0.00 

UB 
0.29 
0.15 
0.04 

-0.01 
0.31 
0.20 
0.09 
0.06 
0.33 
0.21 
0.11 
0.06 

Empirical -
Adj. Central d 

LB 
0.03 
0.15 

-0.01 
0.00 

-0.01 
0.06 
0.00 
0.02 
0.03 

-0.02 
0.00 

-0.01 

c 
0.06 
0.04 
0.00 

0.01 
0.08 
0.08 
0.03 
0.03 
0.04 
0.05 
0.02 
0.00 

UB 
0.05 

0.09 
0.03 

-0.02 
0.08 
0.13 
0.08 
0.06 
0.09 
0.14 
0.09 
0.05 

Empirical -
Adj. Noncentral d 
LB 

-0.33 
0.04 

-0.02 

-0.01 
-0.38 
-0.04 

-0.02 
0.01 

-0.34 

-0.13 
-0.01 
-0.02 

C UB 
0.06 0.44 
0.04 0.20 

0.00 0.05 
0.01 -0.01 
0.08 0.47 
0.08 0.25 
0.03 0.10 
0.03 0.07 
0.04 0.47 
0.05 0.25 
0.02 0.11 
0.00 0.06 

Variance 
Ratio 

Mean 
Difference 

Empirical -
Central g 

Empirical -
Noncentral g 

-0.38 0.06 0.62 
0.04 0.03 0.22 

-0.03 0.00 0.02 
-0.01 0.01 -0.01 
-0.32 0.06 0.47 
0.01 0.04 0.18 

-0.01 0.01 0.05 
0.01 0.01 0.01 

-0.55 0.04 0.69 
-0.16 0.06 0.40 
0.01 0.03 0.05 

-0.02 -0.01 0.03 

Empirical-
Adj. Central g 

Empirical-
Adj. Noncentral g 

1.00 
1.00 
1.00 
1.00 
.25 
.25 
.25 
.25 

4.00 
4.00 
4.00 
4.00 

Table 8 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

.25 

Differences between the 

5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 

calcula 

0.03 
0.16 
•0.01 
0.00 
0.00 
0.10 
0.01 
0.02 
0.10 
0.02 
0.04 
•0.01 

0.06 
0.03 
0.00 
0.01 
0.06 
0.04 
0.01 
0.01 
0.04 
0.06 
0.03 

-0.01 

0.20 
0.10 
0.00 

-0.02 
0.13 
0.08 
0.03 
0.00 
0.03 
0.21 
0.02 
0.02 

-0.11 
0.13 
•0.02 
0.00 
•0.11 
0.08 
0.01 
0.02 
•0.13 
•0.03 
0.04 
•0.01 

0.08 
0.04 
0.00 
0.01 
0.08 
0.05 
0.01 
0.01 
0.06 
0.07 
0.03 

-0.01 

0.38 
0.16 
0.01 

-0.02 
0.29 
0.12 
0.04 
0.01 
0.31 
0.28 
0.03 
0.02 

-0.47 
0.02 

-0.03 
-0.01 
-0.40 
-0.01 
-0.01 
0.01 

-0.72 
-0.21 
0.01 

-0.02 

0.08 
0.04 

0.00 
0.01 
0.08 
0.05 
0.01 
0.01 
0.06 
0.07 
0.03 

-0.01 

0.77 
0.27 
0.03 

-0.01 
0.59 
0.22 
0.06 
0.01 
0.91 
0.46 
0.06 
0.04 
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Variance 
Ratio 

Mean 
Difference n 

Empirical -
Central d 

LB C UB 

Empirical -
Noncentral d 

LB C UB 

Empirical -
Adj. Central d 

LB C UB 

Empirical -
Adj. Noncentral d 
LB C UB 

1.00 
1.00 
1.00 
1.00 
.25 
.25 
.25 
.25 

4.00 
4.00 
4.00 
4.00 

.50 

.50 

.50 

.50 

.50 

.50 

.50 

.50 

.50 

.50 

.50 

.50 

5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 

0.31 
0.11 

-0.03 
0.00 
0.35 
0.16 
0.04 
0.01 
0.12 
0.09 

-0.01 
0.02 

0.01 
0.05 
0.02 
0.00 
0.10 
0.06 
0.04 
0.04 
0.04 
0.06 
0.02 
0.02 

-0.01 
0.05 
0.03 
0.02 
0.18 
0.09 
0.06 
0.07 
0.20 
0.14 
0.03 
0.04 

-0.09 
0.00 

-0.04 
-0.01 
-0.05 
0.05 
0.02 
0.00 

-0.29 
-0.02 
-0.03 
0.01 

0.01 
0.05 
0.02 
0.00 
0.10 
0.06 
0.04 
0.04 
0.04 
0.06 
0.02 
0.02 

0.42 
0.18 
0.05 
0.03 
0.62 
0.22 
0.08 
0.08 
0.62 
0.27 
0.06 
0.05 

0.20 
0.09 

-0.03 
0.00 
0.25 
0.14 
0.04 
0.01 

-0.01 
0.06 

-0.01 
0.02 

0.06 
0.07 
0.03 
0.00 
0.16 
0.08 
0.05 
0.04 
0.07 
0.08 
0.03 
0.03 

0.20 
0.12 
0.04 
0.03 
0.41 
0.16 
0.07 
0.07 
0.39 
0.20 
0.05 
0.05 

-0.17 
-0.02 
-0.04 
-0.01 
-0.11 
0.03 
0.02 
0.00 

-0.38 
-0.04 
-0.03 
0.01 

0.06 0.59 
0.07 0.23 
0.03 0.06 
0.00 0.04 
0.16 0.80 
0.08 0.28 
0.05 0.10 
0.04 0.09 
0.07 0.78 
0.08 0.32 
0.03 0.07 
0.03 0.06 

Variance 
Ratio 
1.00 
1.00 
1.00 
1.00 
.25 
.25 
.25 
.25 

4.00 
4.00 
4.00 
4.00 

Mean 
Difference 

.50 

.50 

.50 

.50 

.50 

.50 

.50 

.50 

.50 

.50 

.50 

.50 

. n 
5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 

Empirical -
Central g 

0.19 
0.12 

-0.02 
0.00 
0.32 
0.14 
0.03 

-0.01 
0.12 
0.20 
0.03 
0.05 

0.04 
0.07 
0.02 
0.00 
0.08 
0.03 
0.01 
0.00 
0.06 
0.10 
0.02 
0.02 

0.24 
0.24 
0.07 
0.03 
0.24 
0.11 
0.00 
0.02 
0.35 
0.23 
0.03 
0.02 

Empirical 1-

Noncentral g 
-0.21 
0.01 

-0.03 
-0.01 
0.00 
0.06 
0.01 

-0.01 
-0.52 
0.02 
0.00 
0.03 

0.04 
0.07 
0.02 
0.00 
0.08 
0.03 
0.01 
0.00 
0.06 
0.10 
0.02 
0.02 

0.67 
0.37 
0.09 
0.04 
0.59 
0.20 
0.02 
0.02 
1.02 
0.42 
0.07 
0.04 

Empirical-
Adj. 

0.08 
0.10 

-0.02 
0.00 
0.24 
0.13 
0.03 
0.00 

-0.09 
0.15 
0.02 
0.05 

Central g 
0.09 
0.09 
0.03 
0.00 
0.13 
0.05 
0.02 
0.00 
0.11 
0.12 
0.03 
0.02 

0.45 
0.31 
0.08 
0.04 
0.42 
0.16 
0.02 
0.02 
0.65 
0.32 
0.05 
0.03 

Empirical -
Adj. Noncentral g 
-0.29 
-0.01 
-0.03 
-0.01 
-0.05 
0.05 
0.01 

-0.01 
-0.66 
-0.02 
-0.01 
0.03 

0.09 0.84 
0.09 0.42 
0.03 0.10 
0.00 0.05 
0.13 0.73 
0.05 0.26 
0.02 0.03 
0.00 0.03 
0.11 1.26 
0.12 0.50 
0.03 0.08 
0.02 0.05 

Table 9 
Differences between the calculated values and the empirical values. 
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Variance 
Ratio 
1.00 
1.00 

1 
1 

.25 

.25 

.25 

.25 
4.00 
4.00 
4.00 
4.00 

Mean 
Difference 

.75 

.75 
0.75 
0.75 
.75 
.75 
.75 
.75 
.75 
.75 
.75 
.75 

n 
5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 

Empirical -
Central d 

LB 
0.38 
0.08 
0.00 
0.03 
0.47 
0.17 
0.07 
0.05 
0.13 
0.00 
0.04 
0.04 

c 
0.13 
0.04 

-0.02 
0.02 
0.23 
0.10 
0.08 
0.06 
0.15 
0.05 
0.03 
0.03 

UB 
0.09 
0.17 

-0.01 
0.02 
0.54 
0.17 
0.12 
0.05 
0.16 
0.02 
0.08 
0.05 

Empirical -
Noncentral d 

LB 
-0.02 
-0.03 
-0.01 
0.03 
0.07 
0.06 
0.05 
0.05 

-0.27 
-0.11 
0.02 
0.03 

C 
0.13 
0.04 

-0.02 
0.02 
0.23 
0.10 
0.08 
0.06 
0.15 
0.05 
0.03 
0.03 

UB 
0.53 
0.30 
0.01 
0.03 
0.99 
0.30 
0.14 
0.06 
0.59 
0.14 
0.10 
0.06 

Empirical -
Adj. Central d 

LB C 
0.29 0.20 
0.07 0.07 
0.01 -0.01 
0.04 0.03 
0.39 0.32 
0.16 0.14 
0.07 0.09 
0.06 0.07 
0.02 0.19 

-0.02 0.07 
0.04 0.03 
0.04 0.03 

UB 
0.33 
0.25 
0.00 
0.02 
0.80 
0.26 
0.14 
0.06 
0.37 
0.08 
0.10 
0.06 

Empirical -
Adj. Noncentral d 
LB 

-0.07 
-0.04 
-0.01 
0.03 
0.03 
0.06 
0.05 
0.05 

-0.35 
-0.13 
0.02 
0.03 

C UB 
0.20 0.73 
0.07 0.37 

-0.01 0.03 
0.03 0.03 
0.32 1.20 
0.14 0.38 
0.09 0.16 
0.07 0.07 
0.19 0.76 
0.07 0.20 
0.03 0.12 
0.03 0.07 

Variance 
Ratio 

Mean 
Difference 

1.00 
1.00 

1 
1 

.25 

.25 

.25 

.25 
4.00 
4.00 
4.00 
4.00 

Table 10 

.75 

.75 
0.75 
0.75 
.75 
.75 
.75 
.75 
.75 
.75 
.75 
.75 

Differences between the 

5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 

calculai 

Empirical -
Central g 

Empirical -
Noncentral g 

Empirical-
Adj. Central g 

Empirical -
Adj. Noncentral g 

0.33 0.18 0.72 -0.07 0.18 1.16 0.24 0.25 0.96 -0.12 0.25 1.36 
0.07 0.07 0.28 -0.04 0.07 0.41 0.06 0.10 0.36 -0.05 0.10 0.48 
0.01 -0.01 0.04 0.00 -0.01 0.06 0.02 0.00 0.05 0.00 0.00 0.08 
0.01 0.02 0.07 0.01 0.02 0.08 0.02 0.03 0.07 0.01 0.03 0.08 
0.39 0.22 0.99 0.07 0.22 1.35 0.33 0.29 1.20 0.04 0.29 1.52 
0.13 0.06 0.25 0.04 0.06 0.35 0.12 0.09 0.32 0.04 0.09 0.42 
0.03 0.03 0.10 0.02 0.03 0.12 0.03 0.04 0.12 0.02 0.04 0.14 
0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.03 
0.02 0.26 1.04 -0.61 0.26 1.72 -0.16 0.33 1.37 -0.74 0.33 1.98 
0.05 0.04 0.07 -0.12 0.04 0.26 0.02 0.07 0.17 -0.15 0.07 0.35 
0.06 0.00 0.03 0.03 0.00 0.06 0.06 0.01 0.05 0.03 0.01 0.08 
0.05 0.00 0.04 0.04 0.00 0.05 0.05 0.01 0.05 0.04 0.01 0.06 
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Variance 
Ratio 
1.00 
1.00 
1.00 
1.00 
.25 
.25 
.25 
.25 

4.00 
4 
4 

4.00 

Mean 
Difference 

2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 

2 
2 

2.00 

n 
5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 

Empirical -
Central d 

LB 
0.67 
0.32 
0.08 
0.06 
0.96 
0.40 
0.21 
0.15 
0.48 

-0.49 
0.07 
0.10 

C 
0.28 
0.12 
0.03 
0.01 
0.54 
0.31 
0.20 
0.18 
0.26 

-0.56 
0.10 
0.09 

UB 
0.62 
0.18 
0.09 
0.04 
1.54 
0.85 
0.34 
0.30 
0.78 

-0.59 
0.13 
0.12 

Empirical -
Noncentral d 

LB 
0.25 
0.21 
0.07 
0.05 
0.52 
0.29 
0.19 
0.14 
0.08 

-0.59 
0.06 
0.10 

C 
0.28 
0.12 
0.03 
0.01 
0.54 
0.31 
0.20 
0.18 
0.26 

-0.56 
0.10 
0.09 

UB 
1.12 
0.33 
0.11 
0.05 
2.06 
1.00 
0.37 
0.32 
1.24 

-0.46 
0.15 
0.13 

Empirical -
Adj. Central d 

LB 
0.66 
0.35 
0.10 
0.07 
0.99 
0.45 
0.23 
0.16 
0.42 

-0.48 
0.08 
0.11 

C 
0.47 
0.20 
0.06 
0.03 
0.78 
0.42 
0.23 
0.20 
0.38 

-0.51 
0.11 
0.09 

UB 
1.01 
0.32 
0.12 
0.06 
2.00 
1.01 
0.39 
0.33 
1.08 

-0.49 
0.15 
0.13 

Empirical -
Adj. Noncentral d 
LB 
0.29 
0.25 
0.09 
0.07 
0.59 
0.34 
0.21 
0.16 
0.06 

-0.58 
0.06 
0.10 

C UB 
0.47 1.46 
0.20 0.46 
0.06 0.15 
0.03 0.07 
0.78 2.47 
0.42 1.16 
0.23 0.41 
0.20 0.34 
0.38 1.50 

-0.51 -0.36 
0.11 0.18 
0.09 0.14 

Variance 
Ratio 

Mean 
Difference 

Empirical -
Central g 

Empirical -
Noncentral g 

Empirical-
Adj. Central g 

Empirical -
Adj. Noncentral g 

1.00 
1.00 
1.00 
1.00 
.25 
.25 
.25 
.25 

4.00 
4 
4 

4.00 
Table 11 

2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 

2 
2 

2.00 

Differences between the 

5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 

calcula 

0.66 
0.25 
0.01 
0.00 
0.59 
0.18 
0.03 
0.00 
0.76 
•0.73 
0.02 
0.02 

0.47 
0.20 
0.05 
0.03 
0.50 
0.20 
0.06 
0.04 
0.42 

-0.87 
0.04 
0.03 

1.68 
0.78 
0.27 
0.16 
2.32 
1.08 
0.29 
0.22 
2.12 

-0.73 
0.17 
0.22 

0.24 
0.14 
0.00 

-0.01 
0.24 
0.09 
0.02 

-0.01 
0.13 

-0.90 
0.00 
0.01 

0.47 
0.20 
0.05 
0.03 
0.50 
0.20 
0.06 
0.04 
0.42 

-0.87 
0.04 
0.03 

2.18 
0.93 
0.29 
0.17 
2.73 
1.20 
0.31 
0.24 
2.85 

-0.52 
0.21 
0.23 

0.65 
0.28 
0.03 
0.01 
0.62 
0.22 
0.05 
0.01 
0.68 

-0.72 
0.03 
0.03 

0.66 
0.28 
0.08 
0.05 
0.69 
0.28 
0.09 
0.06 
0.61 

-0.79 
0.07 
0.05 

2.07 
0.92 
0.30 
0.18 
2.68 
1.21 
0.33 
0.24 
2.59 

-0.57 
0.21 
0.24 

0.28 
0.18 
0.02 
0.01 
0.30 
0.14 
0.03 
0.00 
0.11 

-0.88 
0.01 
0.02 

0.66 
0.28 
0.08 
0.05 
0.69 
0.28 
0.09 
0.06 
0.61 

-0.79 
0.07 
0.05 

2.52 
1.06 
0.33 
0.19 
3.05 
1.32 
0.35 
0.25 
3.25 

-0.37 
0.25 
0.25 
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Variance 
Ratio 
1.00 
1.00 
1.00 
1.00 
.25 
.25 
.25 
.25 

4.00 
4.00 
4.00 
4.00 

Mean 
Difference 

3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 

n 
5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 

Empirical -
Central d 

LB 
1.15 
0.43 
0.13 
0.06 
1.23 
0.58 
0.32 
0.20 
0.75 
0.33 
0.13 
0.11 

c 
0.48 
0.17 
0.04 
0.02 
0.75 
0.45 
0.30 
0.24 
0.41 
0.20 
0.14 
0.13 

UB 
1.03 
0.42 
0.11 
0.06 
2.12 
1.17 
0.53 
0.36 
1.15 
0.47 
0.26 
0.20 

Empirical -
Noncentral d 

LB 
0.68 
0.31 
0.11 
0.06 
0.70 
0.44 
0.30 
0.19 
0.34 
0.22 
0.11 
0.10 

c 
0.48 
0.17 
0.04 
0.02 
0.75 
0.45 
0.30 
0.24 
0.41 
0.20 
0.14 
0.13 

UB 
1.57 
0.58 
0.14 
0.07 
2.71 
1.34 
0.56 
0.38 
1.64 
0.61 
0.29 
0.21 

Empirical -
Adj. Central d 

LB 
1.21 
0.49 
0.16 
0.08 
1.33 
0.67 
0.35 
0.22 
0.74 
0.36 
0.14 
0.12 

C 
0.77 
0.30 
0.08 
0.04 
1.11 
0.61 
0.34 
0.26 
0.60 
0.28 
0.17 
0.15 

UB 
1.55 
0.61 
0.16 
0.08 
2.75 
1.40 
0.59 
0.40 
1.53 
0.60 
0.29 
0.22 

Empirical -
Adj. Noncentral d 
LB 
0.78 
0.38 
0.14 
0.08 
0.86 
0.54 
0.33 
0.22 
0.37 
0.26 
0.13 
0.11 

C UB 
0.77 2.05 
0.30 0.76 
0.08 0.19 
0.04 0.10 
1.11 3.29 
0.61 1.57 
0.34 0.62 
0.26 0.42 
0.60 1.97 
0.28 0.73 
0.17 0.32 
0.15 0.23 

Variance 
Ratio 
1.00 
1.00 
1.00 
1.00 
.25 
.25 
.25 
.25 

4.00 
4.00 
4.00 
4.00 

Mean 
Difference n 

3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 
3.00 

5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 
5.00 
10.00 
30.00 
50.00 

Empirical-
Central g 

0.86 
0.27 
0.04 

-0.03 
0.76 
0.20 
0.04 

-0.10 
1.10 
0.42 
0.10 
0.01 

Table 12 
Differences between the calculated values and the 

0.86 
0.27 
0.07 
0.03 
0.69 
0.26 
0.10 
0.04 
0.72 
0.30 
0.10 
0.05 

empmca 

3.99 
1.27 
0.36 
0.21 
3.69 
1.31 
0.52 
0.25 
2.79 
1.30 
0.44 
0.25 

1 values. 

Empirical -
Noncentral g 

0.39 
0.15 
0.02 

-0.03 
0.34 
0.10 
0.02 

-0.10 
0.44 
0.25 
0.08 
0.00 

0.86 
0.27 
0.07 
0.03 
0.69 
0.26 
0.10 
0.04 
0.72 
0.30 
0.10 
0.05 

4.53 
1.43 
0.39 
0.22 
4.16 
1.44 
0.55 
0.27 
3.56 
1.52 
0.48 
0.27 

Empirical -
Adj. Central g 

0.92 
0.33 
0.07 

-0.01 
0.84 
0.28 
0.07 

-0.08 
1.08 
0.47 
0.13 
0.03 

1.15 
0.40 
0.11 
0.05 
0.98 
0.39 
0.14 
0.06 
1.01 
0.43 
0.14 
0.07 

4.51 
1.46 
0.41 
0.23 
4.19 
1.49 
0.57 
0.28 
3.39 
1.51 
0.49 
0.28 

Empirical -
Adj. Noncentral g 
0.49 
0.22 
0.05 

-0.01 
0.46 
0.17 
0.05 

-0.08 
0.49 
0.30 
0.10 
0.02 

1.15 5.01 
0.40 1.61 
0.11 0.44 
0.05 0.25 
0.98 4.62 
0.39 1.62 
0.14 0.60 
0.06 0.29 
1.01 4.08 
0.43 1.72 
0.14 0.53 
0.07 0.30 
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Variance 
Ratio 

1 
0 25 

4 00 

Variance 

Ratio 

1 

0 25 

4 00 

LB 
0 20 
0 28 

Oil 

LB 

0 15 

0 15 

0 15 

Central g 

C 
0 07 
0 18 

0 07 

Central delta 

C 

012 

Oil 

Oil 

UB 
0 13 
0 40 

0 16 

UB 

051 

0 53 

0 53 

LB 
0 06 
0 13 

-0 03 

LB 

0 01 

0 04 

-0 09 

Noncentral g 

C 
0 07 
018 

0 07 

Noncentral delta 

C 

012 

Oil 

0 08 

UB 
0 29 
0 56 

031 

UB 

0 67 

0 66 

0 66 

LB 
0 19 
0 27 

0 08 

LB 

014 

015 

0 09 

Adj.Central g 

C 
0 12 
0 24 

0 10 

Adj.Central delta 

C 

017 

016 

013 

UB 
0 24 
0 53 

0 25 

UB 

0 62 

0 63 

0 56 

LB 
0 07 
0 14 

-0 04 

Adj. Noncentral g 

C UB 
012 0 39 
0 24 0 68 

0 10 0 39 

Adj. Noncentral delta 

LB 

0 01 

0 05 

-Oil 

C UB 

017 0 77 

016 0 75 

013 0 78 
Table 13 
The average differences between the lower bounds, upper bounds, and point estimates for each level of variance ratio for each effect size estimator 
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