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ABSTRACT 

Author: Chandra Kay Stich 

Title: Designed Reduction of Radiated Noise Characteristics from 2-

Bladed General Aviation Propellers 

Institution: Embry-Riddle Aeronautical University 

Degree: Master of Science in Aerospace Engineering 

Year: 1999 

In recent years increased public awareness has made the reduction of environmental 

noise pollution a top priority for the aviation industry. Utilizing current technology, this study 

examines the reduction of noise generated by two bladed general aviation propellers, through 

design. The Aircraft Noise Prediction Program - Propeller Analysis System (ANOPP-PAS) is used 

to predict the noise and performance characteristics for an industry typical reference propeller as 

well as for the final quiet and efficient design. 

This investigation is based on the use of a 200 hp engine rotating a 76 inch propeller. 

Typically, such a propeller would be rotated at 2700 rpm; however, the quiet propeller is designed 

to operate at 2400 rpm. This rotational velocity reduction is incorporated in order to decrease the 

rotational tip speed thereby preventing the formation of undesirable shocks at the tip. The 

reference propeller spinning at 2400 rpm achieves a 9 dB reduction in far field OASPL and a 9.6 

(14 dBA) reduction in near field OASPL when compared to the reference propeller spinning at 

2700 rpm. It should be noted that the values at 2700 rpm are under predicted by 3-10 dB due to a 

known ANOPP shortfall in shock wave noise prediction. 

Blade twist distribution, tip shape, airfoil design, and blade sweep were all modified and 

examined through parametric study to further quiet the design and maintain desirable 

performance characteristics. These modifications produced additional reduction of 1.1 dB 

(3.6 dBA) reduction in far-field OASPL. Near-field noise characteristics were reduced by 17 dB 

(2.3 dBA). The final quiet design is achieved with a 1% increase in performance. 
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1.0 Introduction 

1.1 Premise of Study 

Aircraft noise has significant effects on the world community. These 

effects range from slight annoyance to severe physical and psychological 

problems for those who live, and work near airports. Community members often 

find that the noise from aircraft interferes negatively with their daily lives; 

reducing productivity, rest and sleep. Aircraft certification requires compliance 

with current noise regulations, as defined in FAA FAR Part 36. However, many 

local communities are pressuring the government for stricter regulations. The US 

has literally thousands of small local airports and as the aviation community 

expands these once accepted airports often find themselves in a noise 

controversy where aviators and community residents collide. The European 

community has similar conflicts; however, their problems are greatly magnified 

due to significantly higher population densities. In fact, the number of licensed 

general aviation pilots in Europe has already been restricted and additionally 

European communities are forcing such heavy restrictions that the recreational 

pilot is becoming significantly threatened. 

Acoustic efficiency is inherently desirable in general aviation technology. 

That is, noise is caused by a considerable loss of energy and the minimization of 

this noise is thus, required for optimal design. This fact coupled with pressure 

from the world community to reduce noise pollution has sparked a quest for 

improvement in acoustic efficiency in the worlds general aviation market. 

Operating hour restrictions of airports have helped to lessen community 



concerns, but now real solutions to noise abatement must be found and 

implemented. Reduction in the overall noise caused by general aviation aircraft 

will benefit the aviator, who is constantly surrounded by noise radiation. The 

noise within the cabin of general aviation aircraft is significant, as is witnessed by 

all small aircraft occupants, the noise may in time prove hazardous to those 

constantly exposed. Additionally acoustic emissions can cause the aircraft 

structure to fatigue over time, due to constant acoustically induced vibration 

during propeller operation. Thus, study of propeller noise reduction should focus 

not only on far-field radiation that effects entire communities, but additionally it 

should encompass near field acoustic emissions. 

Propeller driven aircraft noise is dominated by propeller tip speed, 

propeller blade tip thickness, and engine exhaust system characteristics. Thus, 

the propulsion system must be designed with considerable thought given to 

these parameters, with special attention given to climb and fly-over noise. 

Analysis of current general aviation aircraft estimates that approximately 84 

percent of noise is directly traceable to the propeller [1]. Propeller radiated noise 

can be suppressed in several ways including passive noise control at the 

receiver, optimally syncrophazing propellers on multi-engine aircraft, and active 

noise control at the source and receiver. All of the previously mentioned 

methods are successful to varying extents. Though significantly different 

methods, they all have one thing in common, they reduce propeller noise after it 

is generated. Perhaps the best way to reduce propeller noise is to prevent its 

generation. Although optimal acoustic design can not eliminate acoustic 

emissions of the propeller, an optimal design can minimize the propellers overall 

2 



acoustic emissions and in various ways, the reduction of propeller noise has 

been previously undertaken. [2] 

1.2 Review of Literature 

Initial noise reduction investigations of propeller driven aircraft were led by 

military groups seeking to reduce detectability of their aircraft. Small sources by 

comparison, propeller driven aircraft noise was somewhat set aside in the early 

age of the jet. Since the 1970's, increased public awareness of noise pollution's 

adverse effects has forced the aviation industry to re-examine noise issues. In 

1977, the FAA in conjunction with the EPA began regulating aviation noise, 

airport noise abatement features, and airport noise planning. [3] However in an 

effort to seek further noise reduction those concerned with aviation generated 

noise pollution, sought to prevent the origination of the noise at its' source. 

General aviation aircraft noise has three main elements consisting of: propeller 

generated noise (84%), exhaust noise (2%) and exhaust propeller combinations 

and unidentified sources (14%)[1]. Two-bladed fixed pitch propellers have a 

limited number of noise reduction techniques that can be implemented through 

the design phase: reducing RPM, reducing propeller diameter, utilizing in and out 

of plane sweep, changing tip geometry, and using high performance airfoils. Over 

the years, each of these parameters have been examined in an effort to reduce 

the noise generated by general aviation propellers. In the late seventies Davis 

studied the impact of using airfoils with performance better than that achieved 

with NACA 16 and 65 airfoils. [2] These higher performance airfoils increased 

blade loading such that performance is maintained at lower rpm thereby reducing 

3 



noise. A 200 rpm reduction in rotational speed was predicted to provide a 3 dB 

reduction in far-field radiated noise. [2] 

Klatte and Metzger studied the impacts to noise emission when the design 

parameters were modified in three different aircraft propellers (1970-1981). [3] 

One of the Klatte and Metzger investigations focused on a single engine 

Debonair. Tip shape modifications, replacing RAF-6 airfoils with NACA 16 airfoils 

and changing the twist distribution resulted in 7.0 dBA reduction in far-field 

radiated noise characteristics. Further investigations of blade sweep in the 

Debonair study indicated that high levels of tip sweep (52 deg.) resulted in high 

amounts of noise reduction (5.5 dBA). [4] In 1980 Korkan studied the noise 

radiation impacts when propeller sweep was modified on four different aircraft. [3] 

The Korkan study indicated that when a propeller has medium to high tip loading, 

incorporation of sweep reduces the radiated noise characteristics. 

All of the aforementioned design parameters have varying potential to 

provide noise reduction benefits. [4] Reduction in RPM with blade optimized for 

slower rotational speed has a high potential for noise reduction (5-8 dBA); 

however, there is some concern for structural reliability due to high twist needed 

in blade design and unknown installation effects. Changing of tip geometry has a 

low to medium predicted effect on noise reduction potential (1-5 dBA), depending 

on tip design there are potential structural limitations as well as potential 

production cost impacts. The use of high performance airfoils has low potential of 

achieving noise reduction (1-3 dBA) however performance may be increased 

when incorporated into design. Sweeping the propeller tip currently has a low 

4 



potential for noise reduction (1-3 dBA), this benefit could be increased with high 

amounts of sweep; however, sweep incorporation is limited by structural 

reliability and production cost increases. 

Leaps in current material technology and manufacturing processes will 

allow propeller designs to incorporate relatively thin airfoils. [4] Improvements in 

manufacturing will also allow propellers to be designed with increasing blade 

angles, which provide high aerodynamic efficiency and ultimately improved 

acoustic efficiency. Incorporation of in-plane sweep will also become increasingly 

possible resulting in reduction of far-field noise due to cancellation of the 

distributed load. The use of out-of plane sweep in GA propeller design will also 

become easier to incorporate with better materials and manufacturing processes 

and incorporation will decrease near-field noise radiation at cruise. [1] Thus, two-

bladed fixed pitch propeller noise radiation can be decreased through 

fundamental changes in design without sacrificing propeller performance. In this 

study all of the aforementioned design parameters will be examined, optimized, 

and combined to create a propeller that has superior aerodynamic and 

aeroacoustic efficiency. 

5 



2.0 Propeller Theory 

2.1 Propeller Aerodynamic Theory 

Propellers are designed to provide thrust for aircraft by imparting a 

relatively small increase in velocity to a relatively large mass of air. Aerodynamic 

propeller blades act much like small wings. Each blade has a normal type airfoil 

section that derives its propulsive forces from the airflow passing over it. 

Figure 2.1 illustrates a propeller in motion. 

VkkVUm 
. 

7* • 

Figure 2.1.1 Propeller in motion. [5] 
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Figure 2.1.2 Geometrical and effective pitch. [7] 
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Figure 2.1.2 Geometrical and effective pitch. [7] 

Figure 2.1.2 Geometrical and effective pitch. [7] 



Figure 2.1.3. Pitch angle effects the blade loading thus, it is also an important 

factor in the propeller design. 

Figure 2.1.3 Velocities and forces acting on a propeller blade 
cross section [5]. 

The lift to drag ratio (L/D) of the airfoil section is a function of the angle of 

attack. The thrust to torque ratio (T/Q) is also a function of angle of attack and 

therefore the L/D ratio. However, the T/Q ratio is also a function of the helix 

angle. This causes considerable changes in the T/Q ratio along the span of the 

blade. [7] Thus, the pitch angle will affect the design of the blade, and since pitch 

angle is a function of helix angle, the twist becomes an important aspect, in that it 

controls the pitch angle distribution. The ideal condition for high propeller 

efficiency requires the optimum angle of attack be achieved along all of the blade 

sections. The optimal angle is achieved through the propeller blade twist as 
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previously discussed. The twist distribution controls how the optimum angle of 

attack varies along the span of the blade. 

The propeller blade design should produce the maximum aerodynamic 

efficiency possible, while conforming to the required design operating conditions. 

Propeller efficiency (ri) as defined in Equation 2.1 is the ratio of thrust output to 

the shaft power input multiplied by the advance ratio of the propeller. [7] The 

propeller advance ratio (J), is defined in Equation 2.2. where the propeller 

rotational speed (n) is in revolutions per second, D is the propeller diameter and 

Vo is the aircraft free-stream velocity. [7] The power output is defined by thrust (T) 

or the thrust coefficient ( d ) in Equation 2.3. The shaft power input P is 

represented by the power coefficient (CP) defined in Equation 2.4. Thus, propeller 

efficiency is dependent on the forward speed, diameter, propeller rotational 

speed and the ratio of thrust output to shaft power input.[7]. 

TI = (CT /CP)J Equation 2.1 

J = Vo/nD Equation 2.2 

CT = T/pn2D4 Equation 2.3 

CP = P/pn3D5 Equation 2.4 

9 



Figure 2.4 shows the typical aerodynamic characteristics for a sample 

propeller, where the thrust coefficient Or, the power coefficient Cp and efficiency 

TI are plotted as a function of advance ratio J. 
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Figure 2.1.4 Typical Propeller Aerodynamic Performance 
Characteristics [6]. 

Each engine has a definite revolution speed that provides the optimal 

combination of thrust and power and thus, the maximum efficiency. [8] Varying 

the aerodynamic qualities of the propeller blade will lead to varying levels of 

propeller efficiency. Thus, it is important to know what these factors are and 

understand how they affect the propeller's performance in order to design 

efficient propellers. 
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Blade diameter, total planform area, airfoil section and twist are the most 

important factors to consider when designing the propeller. One particular 

combination of diameter and pitch will give the aircraft its maximum speed. 

Similarly, other combinations of pitch and diameter will give the conditions for the 

best rate of climb, the best departure and climb angle or the best cruising speed. 

Departure and climb performance are considered to be equally important to 

cruising speed and maximum speed, therefore a compromise of these 

parameters is sought in the design general purpose propellers. [8] When the 

aircraft is sitting on the runway its advance ratio J is zero and J increases as the 

propeller begins to move forward. It is important that CT be sufficiently high to 

insure good take off performance. Generally, for constant pitch propellers, low J 

tends to be the least efficient phase of operation due to separated flow. Several 

fundamental limits must be established for the propeller design: ground 

clearance required, structure interference limits, potential interference with other 

propellers, and the propellers slipstream. The forward speed, altitude and 

rotational speed can also limit the propeller diameter. [7] Blade number is 

generally effected by considerations of optimal propeller efficiency. 

Other factors affecting the efficiency of propeller design are the blade 

width, thickness ratio, the blade section or airfoil, blade solidity, the plan form and 

the activity factor. Blade solidity a is defined as the ratio of total blade area to 

propeller disk area, solidity it is used to determine the capability of a propeller to 

absorb power. [9] 

11 



Activity factor (AF) determines the amount of power absorbed by the propeller 

under specific operating conditions and is defined in Equation 2.5. [10] 

AF = 100,000 lf( b 
16 

Equation 2.5 

Where b is the blade width at radius r, R is the propeller radius and D is the 

propeller diameter. Thus, AF utilizes blade width distribution between the hub 

and tip to determine the propellers ability to absorb power. 

Illustrated in Figure 2.1.5, are the most common airfoil sections used in 

propeller design the RAF 6, Clark Y and NACA 16 series. In more recent years 

supercritical airfoil sections have also been used. It is also advisable to use 

laminar flow airfoil sections to minimize the losses in efficiency due to 

compressibility. Compressibility is one of the factors that affect instability and the 

transition from laminar to turbulent flow. Turbulent flow over the propeller surface 

will reduce the propeller's aerodynamic efficiency and thus its aeroacoustic 

efficiency. Laminar flow airfoils are designed to give constant velocity distribution 

across the chord under the required design operating conditions. 
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2.2 Propeller Noise Theory 

Propeller noise is characterized by tones that occur at blade passing 

frequency (BPF) and its harmonics. Blade passing frequency is the frequency at 

which a blade passes a fixed point in the propeller's plane of rotation and is a 

function of blade number n and rotational speed of the propeller Q as shown in 
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Discrete tones or rotational noise is caused by the periodic disturbance of 

the air as the propeller blade rotates. The sources of this noise are the steady 

forces of thrust and torque which act on the blades. Each element of the 

propeller blade has a pressure distribution due to its motion through the air. This 

distribution can be resolved into thrust and torque force components. The 
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distribution can be resolved into thrust and torque force components. The 

Discrete tones or rotational noise is caused by the periodic disturbance of 

the air as the propeller blade rotates. The sources of this noise are the steady 

forces of thrust and torque which act on the blades. Each element of the 

propeller blade has a pressure distribution due to its motion through the air. This 

distribution can be resolved into thrust and torque force components. The 



Gutin was the first propeller noise theorist to recognize the dipole nature 

and the directional properties of propeller noise as shown in Figure 2.2.2. [13]. In 

the 1930's, he developed the first successful theory of propeller radiated noise. 

Gutin assumed that the propeller blade width was very small and that the 

excitation could be treated as an impulse function. This fundamental assumption 

allows that the amplitude of the harmonics to be constant and a relation for 

torque and thrust can then be determined. [13,14] 

The total velocity potential can be obtained from Equation 2.2.1 when the 

forces, the velocity potential (OmB ) produced by a concentrated force and the 

geometry to the observer can be determined. The sound pressure (pmB) is given 

by Equation 2.2.2. 

Equation 2.2.1 

&mB = ^ ^ ' ^ ff f ^ c o s 5 + — ̂ s i n 5 s i n e L ' ( s j n 6 c o s 0 -^ 0 > r f ^ e 

4 n 2 p c r Q
 J J [dR R dR J 

Equation 2.2.2 

mBQ )[ dT . c dQ] 
FmB 2ncro

J
0[ dR OR2 dR] mBK ' 
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This sound pressure is the RMS value of pressure in the far-field at a distance r0 

and position in space defined by angles 8, and 0 for the nth harmonic of BPF for 

a single propeller [12]. Where m is the order of the harmonic, B is the number of 

blades, Q is the angular velocity of rotation, c is the speed of sound, R is the 

radius of the element considered, dT/dR is the thrust gradient along the radius, 

dQ/dR is the torque distribution, k is the wave number of the mtf) harmonic and 

JmB is a Bessel function of the first kind. 

The noise caused by the thickness of the blade is the other component of 

rotational noise. The noise is caused by an element of air being physically 

displaced by the rotating propeller. A finite volume of air is displaced by the 

rotating propeller, and it may be represented as a monopole, the strength 

determined by the component of displacement velocity normal to the propeller 

plane. Thickness noise has the same BPF and harmonics as loading noise and 

at high tip speeds thickness noise is a significant component of the overall noise 

generated by the propeller. 
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An expression for the far-field noise due to thickness is expressed in 

equation 2.2.3. 

Equation 2.2.3 

P'mB = ^)nJktbJ
ms(kRsmS)dR 

In Equation 2.2.3, p is air density, co is the rotational speed, k is a correction 

factor for finite solidity and t is the thickness and b is the chord length at radius R. 

The second type of noise is broadband or vortex noise. Unlike the rotational 

noise, broadband noise is the effect of random, fluctuating disturbances which 

may be initiated at the propeller. The sources of broadband noise include the 

turbulent regions in the propeller blade wake. Vortex shedding produces 

fluctuating forces that interact with the trailing edge of the propeller blade. 

Broadband noise is generally significantly less than discrete noise and can be 

neglected. However, if any portion of the propeller blade is stalled, broadband 

noise can become a significant contributor to the sound spectrum. The nonlinear 

quadrupole noise can be used to describe all viscous and propagation effects not 

covered by loading and thickness sources. Generally however the quadrupole 

source is most practically used to evaluate non-viscous flow close to the blade 

surface. At transonic section speeds of unswept, high tip-speed propellers, the 

quadrupole increases the loading and thickness noise sources. Figure 2.2.3 

illustrates the various types and classifications of the aforementioned propeller 

noise components. 
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Figure 2.2.3 Components of Propeller Radiated Noise. [11] 

In 1969 J.E. Ffowcs Williams and D.L Hawkings [15] generalized Lighthill's 

[16] results to a blade surface in motion, with quadruples around the surface 

and thickness and loading sources on the surface itself. They were still working 

with a quiescent medium and the results of their work is referred to as the Ffowcs 

Williams - Hawkings (FW-H) equation. [14] The key to applying the FW-H 

equation to propeller noise, is neglecting the second order source term that 

depends on Lighthill's stress tensor. [12] This results in a usable equation that is 

valid and can be solved using Green's functions for unbounded space. 

The FW-H equation is based on the conservation of momentum and 

mass. Williams and Hawkings [12,14] established the original derivation, and 

Farassat [12] introduced the embedding process. This process results in an 

equation that is useful for computational aeroacoustics and generates theoretical 

values that compare reasonable well with experimental data. The result gives an 
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equation that is useful for computational aeroacoustics and generates theoretical 

values that compare reasonably well with experimental data. The FW-H equation 

considers a body whose surface is described by the equation f (x, t) =0 where the 

x-frame is fixed to the undisturbed medium and t represents time. The equation 

of the surface f= 0 is defined such that f>0 is outside the body and f< 0 inside the 

body. The general Ffowcs-Williams Hawkings equation to determine acoustic 

pressure for a surface is given by equation 2.2.4. [14] 

Equation 2.2.4 

In equation 2.2.4, p is the acoustic pressure, p0 and c are the density and 

speed of sound of the undisturbed medium, respectively, vn is the local normal 

2 

velocity of the blade surface, 5(f) is the dirac delta function, 0 denotes the wave 

operator. V2 is the Laplacian operator and Vf is the gradient of the function 

defining the blade surface. Surface pressure and viscous stress are represented 

by 3p2/3x2. The compressive stress tensor is represented by the P//term and is 

the force acting on the fluid due to surface pressure distribution and viscous 

stress on the surface of the body. The source terms of the right hand side of the 
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equation are known as the thickness, loading and quadrupole terms respectively. 

The stress tensor term Tij is a quadrupole noise source that represents noise due 

to turbulence. This broadband turbulent noise source is generally much lower 

than the discrete noise and can be neglected. Neglecting the quadrupole terms 

gives equation 2.2.5 where nt is the unit outward normal to the body. [14] 

Equation 2.2.5 

v^ = l:WJv/r5(/)}-^-[M|v/|8(/)] 

Using equation 2.2.5, Formulation 1A was developed by F. Farassat [15] 

as an integral representation of the FW-H equation. When given the body 

geometry, motion and surface loading, this formulation becomes a solution to the 

FW-H equation and acoustic problems. The NASA propeller prediction program 

ANOPP-PAS, which will be used to predict propeller noise, uses Formulation 1A. 

Formulation 1A is valid for arbitrary blade motion and geometry. The 

sources lie on the actual body surface and can include loading from any 

mechanisms that act on the blade surface. Near-field and far-field terms are 1/r 

and 1/r2 terms respectively. The observer is fixed to the undisturbed medium. [15] 

To derive the formulation 1 A, the equation needs to be converted from a 

Cartesian ground-fixed frame of reference to a blade-fixed frame. The formal 
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solution to the wave equation is used to give the integral representation of the 

FW-H equation. After several conversions and transformations, the final result is 

given by Equation 2.2.6. [14] Equation 2.2.7 denotes the loading and thickness 

noise and equation 2.2.8 denotes the total noise neglecting the 

quadrupole terms. 

Where: 

R is the distance from source point at emission time to observer, 

Mr is the source Mach number component in the direction of the radiation vector, 

f is the unit vector from source point at emission time to observer, 

lx is the rate of change of the force per unit distance (time derivative) as 

observed from the ground fixed frame, 

M is the source mach number. 

4TIp'L(x9t) = - \ 
/ = 0 

lr 
r(l-Mr)

2 dS+j 
/=o 

r 2 ( l -M r ) 2 dS 

/=o 

lr(rM,r,+cMr-cM2) 
. r 2 ( l - M r ) 3 dS 

Equation 2.2.6 

Equation 2.2.7 

4Tlp'T(x,t)= { 
/=o 

p0vn(rM,r,+cMr-cM2) 

r 2 ( l - M r ) 3 dS 

Equation 2.2.8 

p'(x,t) = p'L(x,t) + p'T(x,t) 
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2.3 Noise Factors in Propeller Design 

Figure 2.3.1 Typical Propeller Blade Layout [7] 

The geometric and aerodynamic characteristics of a propeller are 

fundamentally linked to the noise generated by the propeller; shown in Figure 

2.3.1 is the typical layout of a propeller blade. Operating conditions and 

environment, blade number, tip speed, torque, thrust, and blade thickness all 

affect the noise produced by the propeller. Propeller generated noise can thus be 

controlled through the manipulation of the propeller's design parameters. Noise 

reduction can be achieved by minimizing source contributions, thus the propeller 

designer must have a fundamental knowledge of the acoustic sources of 

propeller noise. 
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Broadband propeller noise occurs as a random source. Broadband 

reduction can be accomplished through sweeping the propeller's trailing edge 

[17]. This is possible because the velocity component normal to the trailing edge 

is reduced thereby reducing the noise generated by vortex shedding. 

Because tonal noise is the largest contributor to the overall noise 

generated by the propeller, most reduction efforts focus on it. Discrete 

frequencies of a propeller occur as peaks at blade passing frequency (BPF) and 

its harmonics. The peaks can then be divided into loading and thickness noise 

components. The propeller thrust and torque create loading noise, while the 

volume of air displaced by the propeller blade generates thickness noise. 

Loading noise can be modified through alteration of tip speed, thrust, blade 

number, torque, pressure and loading distributions of the propeller. Decreasing 

the volume of the propeller's airfoil sections can minimize thickness noise. 

When attempting to design a quiet propeller blade it is important to avoid stall on 

the propeller blade because stall can increase both broadband and discrete 

generated noise. Stall increases discrete levels at BPF and its harmonics and 

also results in high levels of broadband noise. Stall can be induced on a propeller 

if loading is excessively high thereby causing flow separation on all or part of the 

blade. [16] 
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3.0 Analytic Method 

3.1 ANOPP-PAS 

NASA's Aircraft Noise Prediction Program Propeller Analysis System 

(ANOPP-PAS) is usually used as an aeroacoustic prediction code and not as a 

propeller design tool. However for this study it is used as a fundamental tool in 

the propeller design process. ANOPP-PAS is unique in that it allows the designer 

to reliably predict propeller performance and noise characteristics in the 

conceptual design phase. Thus, ANOPP-PAS is used in this study to achieve an 

optimum propeller design without having to fabricate or test an actual propeller. 

ANOPP-PAS was developed over a twenty-year period beginning in 1976 

and predicts the source noise, performance, propagation effects and response of 

propellers. ANOPP-PAS makes aeroacoustic and aerodynamic predictions for 

propellers in wind tunnel and flight conditions, and predicts propeller noise for 

both near and far-field acoustic radiation. 

ANOPP-PAS prediction techniques include performance (PRANDTL-

BETZ Vortex theory), source noise (Farassat Solution to FW-H equation), ground 

effects (Chien-Soroka), and atmospheric absorption (ANSI Standard). [11] 
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ANOPP-PAS data correlates well with data from propellers in flight and in wind 

tunnel experiments [18]. For example, ANOPP-PAS predictions match almost 

identically with FAA/DFLVR DNW test data shown in Figure 3.1.1 [18]. Also, 

when ANOPP-PAS data is compared to actual FAA fly-over data of a Piper 

Lance Aircraft it is apparent that ANOPP is a reliable and remarkably accurate 

prediction code as shown in Figure 3.1.1. 

ANOPP Propeller Analysis System 

now 

Piper Lance Aircraft 
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Figure 3.1.1 ANOPP-PAS Noise Predictions vs. Test Data [11] 

in 
20 

To perform an ANOPP-PAS prediction, the user must define certain 

fundamental characteristics of the propeller and its operating environment. To 

execute the ANOPP program, the user develops an input file. This file contains 

all the geometric information needed to define the propeller as well as provides 

commands that enable ANOPP to perform all calculations, set parameter values, 
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Boolean operators, and the EXECUTE command that runs the individual sub-

modules when all data parameters have been defined. When an analysis is 

initiated a script runs the input file, then the input file executes the sub-modules 

that define the propeller geometry, determine flight path, define an operating 

environment, calculate performance, and ultimately calculate the propellers noise 

characteristics. [5] The UNIX version of ANOPP-PAS is a very complex program 

that can be altered to provide very detailed performance and noise predictions. 

In order to define the propeller geometry, the user enters the airfoil 

coordinates of a minimum of three spanwise stations as a function of propeller 

span in percent propeller radius. Additionally, ANOPP requires the definition of 

the leading edge abscissa and ordinate of the airfoil at each station, in real space 

normalized with respect to blade radius. The user also defines blade angle, chord 

length normalized with respect to the radius, leading edge radius normalized with 

respect to chord, and the number of upper and lower surface points that define 

each airfoil. It should be noted that all analysis performed in this research is 

executed with eleven spanwise stations defining the propeller geometry. 

After the propeller geometry is defined, the user defines the number of 

blades, blade radius and the propeller rotational speed. The desired number of 

harmonics for near-field noise predictions is also specified. Then a table is 

generated to define the range of angles of attack and Mach numbers. This table 
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is used by ANOPP, through interpolation, to determine: lift, drag and many other 

quantities that help in the prediction of the propellers acoustic properties. 

All aerodynamic characteristics of the propeller are predicted as a function 

of advance ratio. Therefore, thrust and power coefficients can be graphed as a 

function of advance ratio. Then the program is executed for the design cruise 

condition of 2400 rpm. Finally, the ANOPP-PAS program is run to provide 

performance and noise characteristics at the desired cruise condition. All far-field 

noise data in this analysis is predicted for steady level fly-over at 1000 ft. All 

near-field data is collected for the first 20 harmonics for varying polar directivity 

angles at 5R (five propeller tip radii). 

ANOPP compares sound data in terms of OASPL, SPL, and A-weighted 

sound level. OASPL the overall sound pressure level adds most audible 

frequency components equally. SPL is equal to 20 times the logarithm to the 

base 10 of the ratio of the sound pressure to a reference pressure. A-weighted 

sound level is a sound pressure level that is weighted to approximate the 

response of the human ear by reducing the contributions of very low and very 

high frequencies. A-weighted sound pressure levels correlate closely with aircraft 

noise. [4] 
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4.0 Propeller Design 

4.1 Design and Analysis 

The design process of creating a quiet two bladed propeller began with the 

development of a two bladed reference propeller. The reference propeller was 

then utilized to examine the effects of varying design parameters on radiated 

noise and performance characteristics. Pre-determined propeller design criteria 

included the propeller diameter, range of rotational speeds and the cruise speed. 

Airfoils, lift coefficients, blade chord and twist distributions all had to be selected in 

order to define the basic reference propeller design. In order to avoid noise 

creating shock waves at the propeller tip, the rotational speed was selected to be 

2400 RPM, which is typical of small aircraft rotational speeds during cruise. To 

prevent stalling the propeller at low advance ratios, it is necessary that the airfoils 

exhibit good trailing stall characteristics at large angles of attack. 
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4.2 Reference Propeller Definition 

The first step in defining the reference propeller required definition of the 

propeller airfoils. Several series were examined including: NACA 44XX, 66XX, 

16XX and the Clark-Y airfoil series. These series were all selected based on 

maximum lift coefficient, trailing edge stall characteristics, and angle of zero lift. 

Trial reference blade cases were established for each series with the thinnest 

airfoils located at the tip increasing to the thickest sections at the propeller's root. 

Initial testing with ANOPPs performance module indicates that the NACA 44XX 

series is best for the reference propeller because it demonstrates superior power 

and thrust performance due to high Cimax and smooth trailing edge stall 

characteristics. 

There are three desirable characteristics required in selection of a blade 

shape for a fixed pitch propeller. They are; smooth pressure distribution, large 

maximum sectional lift coefficient Cimax, and good trailing edge stall 

characteristics. The propeller advance ratio J is defined by the relation, 

J = Vo/nD Equation 2.1.1 

where V0 is the free-stream speed, n is the propeller rotational speed in rev/sec 

and D is the propeller diameter [6]. At zero advance ratio, i.e. when V0 is zero, 

the propeller is typically in a highly stalled condition at inner radial stations. This 

fact requires that the airfoil shape have a large C,maxto achieve large thrust levels 

and significant C, at angles of attack (a) larger than where C,max occurs. These 

stall characteristics are indicative of trailing edge stall. The NACA 44XX series of 

30 



airfoils exhibit these desirable trailing edge stall characteristics as can be 

observed in Figure 4.2.1, where experimentally obtained sectional lift coefficient 

is plotted as a function of a for a NACA 4412 airfoil. [19] 
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Figure 4.2.1 NACA 4412 Sectional lift coefficient Q vs. angle of attack a . 

At an advance ratio J of zero and r/R of 0.5 the reference blade has an a of 

24.8°, inspection of Figure 4.2.1, indicates a sectional lift coefficient of 1.25. The 

44XX airfoil series also exhibits smooth pressure distributions at small a which 

results in a smooth distribution of radiated noise tones at blade-passing-

frequency (BPF) and harmonics. [20] The NACA 4412 has a high Ctmax of 1.6 

compared to the Clark-Y with Cimax of 1.4. [21] Inspection of Figure 4.2.1, also 

reveals that at a greater than 17° the sectional lift coefficient falls off gradually 
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this characteristic is indicative of an airfoil with good trailing edge stall 

characteristics. 

Presented in Figure 4.2.2 is a top view sketch of the blade plan-form shape 

of the reference blade as well as a leading edge view. 

Leading Edge View 

Blade6.5-44s 

Figure 4.2.2 Sketch of the reference propeller blade. 

Table 4.2.1 illustrates the fundamental design properties of the reference 

propeller. Starting with the distribution of airfoil sections for the propeller as a 

function of radial position r/R where r is the radial position measured from the 
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center of rotation and R is the blade tip radius, which is taken to be 38 inches. 

The reference propeller is thus, a two-bladed propeller with a tip diameter of 

76 inches. The other design criteria are a free-stream speed of 160 kts and a 

propeller rotational speed of 2,400 rpm, resulting in a design advance ratio J 

of 1.07. These characteristics are typical of GA propellers such as the Hartzell 

model F8475D-4. Also shown in table 4.2.1 are the blade chord c, blade angle p 

and sectional lift coefficient Q as a function of r/R. Inspection of this table shows 

that the NACA 4406 airfoil is used at the tip and the airfoil thickness increases as 

r/R decreases until the NACA 4418 airfoil is used at a r/R of 0.2. It is assumed 

that the spinner radius will be located at r/R of 0.2. The blade tip has an elliptical 

shape starting at r/R of 0.8, i.e. the outer 7.6 in. of the blade tip. The solidity of 

the reference propeller is a = .092 and the Activity Factor AF = 112 both of which 

are typical for two bladed fixed pitch propellers. [22] 

Table 4.2.1 Helix, Blade and Attack angles, chord c, and Sectional Lift 
Coefficient C/ as a Function of Radial Position r/R at a Design Advance 
Ratio of 1.07. 

NACA 
AIRFOIL 

4418 
4415 
4415 
4412 
4412 
4412 
4412 
4412 
4489 
4409 
4409 
4486 
4486 
4406 

r/R 

0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.75 
0.80 
045 
0.90 
0.95 

0.975 
0.995 
1.00 

r 

7.60 
11.40 
15.20 
19.00 
2240 
26.60 
28.50 
30.40 
32J0 
34.20 
36.10 
37.05 1 
3741 
38.00 

• 
59.48 
4841 
40.30 
34.16 
29.43 
2546 
2434 
22.98 
21.76 
20.65 
1945 
19.19 
1843 
18.74 

Ok 

27.79 
21.04 
16.96 
13.68 
1121 
10.72 
9.98 
931 
846 
840 
747 
7.16 
7.02 
6.98 

* 

87.27 
6945 
5716 
47.84 
41.69 
3648 
3442 
3249 
3042 
28.65 
27.12 
2644 
25.84 
25.72 

P 
65.03 
53.05 
44.70 
38.49 
33.77 
30.11 
27.98 
26.01 
2348 
21.87 
2046 
19.19 
1843 
18.74 

a 

3744 
32.01 
27.74 
2441 
2146 
1949 
1840 
16.70 
15.02 
1347 
1Z79 
12.04 
1141 
11.76 

c 

640 
640 
640 
640 
640 
640 
640 
6 4 0 
641 
5.72 
445 
3 4 9 
2.41 
148 

<V 

0.75 
0.75 
0.75 
0.75 
0.75 
0.75 
0.70 
0.65 
048 
0.45 
0.42 
0.40 
0.40 
0.40 
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Additionally the blade, effective helix angle <J>e, blade helix angle 4>, and the lift 

induced angle of attack a, are included in Table 4.2.1 and all are defined below in 

Equations 4.2.2- 4.2.5. [20] A sketch representing the various angles is shown in 

Figure 2.1.3. 

p = Oe + a 

<J>e = <t> + ai 

<D = tan-1(Vo/V t) 

Equation 4.2.2 

Equation 4.2.3 

Equation 4.2.4 

a. = — 

Equation 4.2.5 

^t^HPtf**^"^ 

Using the propeller rotational speed and free-stream velocity, the helix angle 

is calculated using equation 4.2.4. V0 and Vt represent the free stream speed and 

tangential component of the rotational speed respectively. The design lift 

coefficient determines the angle of attack for each respective airfoil section. The 

blade angle p is calculated through the following iterative process: first an initial 

blade angle is selected and assumed to be the sum of the helix angle and the 

34 



angle of attack, then with the value of p the induced angle of attack is derived 

using Equation 4.2.5 and in turn the helix inflow angle is calculated. Used in 

Equation 4.2.5 is the advance ratio J, the lift curve slope is a, VR and VT are the 

resultant velocity and tangential component of the velocity respectively, and the 

blade solidity a is the ratio of total blade area to propeller disk area. The iterative 

process is repeated until the blade angle is nearly constant from iteration to 

iteration i.e the blade angle is changing by less than a hundredth of a degree for 

each iteration. Figure 4.2.3 represents the blade angle distribution p as a function 

of r/R, for the reference propeller. 

75 -| j 

H 30 "" ^ * 
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r/R 

Figure 4.2.3 Reference propeller Beta vs. r/R 

Propeller weight is a significant issue in GA aircraft; to ensure that the 

reference propeller is reasonably well designed with respect to weight, the 

propeller volume is calculated. The hub volume is based upon a hollowed right 

circular cylinder; the top view of the hub is illustrated in Figure 4.2.2. The hub is 

integrated with the blade at r/R of 0.2; additionally the hub is 6 in. diameter, and 
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3.25 in. thick. This hub has a 2.25 in. diameter hole at the centerline and 6 

mounting holes of 0.5 in. diameter equally spaced on a 4.5 in. bolt circle 

diameter. Based upon these criteria, the volume for the 2-bladed reference 

propeller is 296 in3 which is equivalent to approximately 30 lb. for the propeller 

fabricated from solid forged aluminum. The reference blade weight compares to 

35 lb. for a solid aluminum Sensenich propeller of 74 in. diameter used for the 

Piper Cherokee 165 and is thus reasonably designed with respect to weight. 

4.3 Reference Propeller Aerodynamic Performance (NACA Airfoils) 

Shown in Figure 4.3.1 are the reference propeller aerodynamic performance 

characteristics, where the thrust coefficient CT, power coefficient Cp, and 

efficiency r\ are plotted as a function of advance ratio J. The CT, CP, and TJ 

parameters are given by the following relationships. 

CT = T/pn2D4 Equation 4.3.1 

CP = P/pn3D5 Equation 4.3.2 

TI = (CT /CP)J Equation 4.3.3 

The design is based on a free-stream speed of 160 kts, blade 

tip diameter D of 76 inches, and propeller rotational speed n of 2,400 rpm, which 

in turn results in a design advance ratio J of 1.07 at level cruise conditions. At 
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the design J of 1.07, CT is 0.0447, CP is 0.0542, and r\ is 87.9%. These 

aerodynamic performance coefficients, at standard sea-level conditions, result in 

a thrust of 260 lb and power of 145 hp which gives a thrust to power ratio (T/P) of 

1.79 Ib./hp. Limitations in programming format cause compounded extrapolation 

errors which result in non-exact performance parameters at J< 0.55. Therefore 

below J = 0.55 the performance curves can only be used for general tendencies, 

and not for performance parameters[5]. For the airfoils selected, good take off 

performance will be assured as long as CT is above 0.07 at zero advance ratio. 

The specified power of 145.0 hp actually constitutes the required power for level 

flight which is based on approximately 70% of the assumed available power of 

about 200 hp. The excess power is necessary for the aircraft to climb and 

maneuver. 
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Figure 4.3.1 Aerodynamic Performance Characteristics for the Reference 
Propeller (NACA Airfoils). 
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The predicted reference propeller aerodynamic performance parameters 

compare favorably with published propeller data and thus, it is evident that the 

design is more than adequate for GA aircraft [6,9,10]. Therefore the reference 

propeller will function as well or better, than presently manufactured GA aircraft 

propellers. 

4.4 Radiated Noise Characteristics of Reference Propeller 

Presented in Figure 4.4.1 is the predicted unweighted near-field OASPL 

plotted as a function of directivity angle. The directivity angle is measured from 

directly in front of the propeller in a vertical plane, i.e. directly ahead is zero 

degrees, in the plane of propeller rotation is 90° and directly behind is 180° as 

shown in Figure 4.4.2. All near-field noise predictions reported are located in a 

vertical plane at a distance of 5R (five propeller tip radii) of the propeller center of 

rotation. A distance of 5R is 15.8 ft which is equivalent to 1.13 of a wave length 

at standard sea-level conditions and a blade-passage-frequency (BPF) of 80 Hz. 

Inspection of this curve indicates that the maximum near-field OASPL of 111.2 

dB occurs at a directivity angle of 105°. At 105° the equivalent maximum 

A-weighted OASPL is 96.4 dBA. 
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Figure 4.4.1 The Near-Field OASPL (dB) Re: 20 uPa as a Function of 
Directivity Angle. 

180 dtp, 

Figure 4.4.2 Sketch of Directivity Angle y. 

Presented in Figure 4.4.3 is the near-field sound-pressure-level (SPL), 

thickness and loading noise plotted as a function of harmonic number for the 

same prediction case as presented in Figure 4.4.1, at a directivity angle of 105°. 

This figure constitutes the frequency spectrum where the harmonic number 

indicates the integer times BPF, e.g. a harmonic number of three constitutes the 

tone at three times BPF, thus if BPF=80 Hz then 3BPF= 240 Hz. Examination of 

the curve reveals a monotonic decrease in the magnitude of the tones with the 

maximum occurring at BPF which is indicative of a smooth blade pressure 
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distribution. [10] Table 4.4.1 illustrates the contributions of the thickness noise 

and the loading noise, both of which are listed as a function of harmonic number 

and tonal frequency, for the same near-field case as presented in Figure 4.4.1. 

The table shows that the loading noise dominates thickness noise at BPF and 

2BPF, are essentially equal at 3BPF and at tones of 4BPF and greater, that 

thickness noise dominates. This information indicates that the unweighted 

OASPL is dominated by blade loading noise, but that the A-weighted OASPL is 

dominated by thickness noise. This phenomenon occurs because the A-

weighting function greatly attenuates the low frequency tones, e.g. at BPF the 

actual SPL is reduced by 22.5 dB. The reason that the sum of the loading and 

thickness noise are less than might be expected is due to the difference in phase 

angle of the two additive components. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Harmonic Number (frequency) 

Figure 4.4.3 SPL Frequency Spectrum of the Near-Field Noise in Terms 
of Harmonic Number for the Reference Propeller. 
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Table 4.4.1 Reference Propeller Near-field Thickness and Loading Noise 
as a Function of Harmonic Number at Directivity Angle 105°. 

| OASPL = irT2 

1 Harmonic 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

' 16 
17 
18 
19 
20 J 

Frequency 
(Hz) 

80 
160 
240 
320 
400 
280 
560 
640 
720 
800 
880 
960 
1040 
1120 
1200 
1280 
1360 
1440 
1520 
1600 

Thickness 
Noise (dB) 

99.28 
100.14 
98.59 
96.20 
93.39 
90.32 
87.10 
83.77 
80.36 
76.90 
73.38 
69.83 
66.24 
62.63 
58.99 
55.32 
51.64 
47.93 
44.21 
40.46 

Loading 
Noise 
(dB) 

109.68 
103.91 
98.43 
93.47 
89.02 
85.01 
81.31 
77.81 
74.41 
71.06 
67.74 
64.41 
61.07 
57.73 
54.36 
50.98 
47.76 
44.18 
40.75 
37.30 

Overall | 
Noise 
(dB) 

109.54 
104.18 
99.39 
95.10 
91.09 
87.21 
83.38 
79.56 
75.72 
71.86 
67.99 
64.07 
60.12 
56.14 
52.11 
48.05 
43.94 
39.80 
35.60 
31.34 



Shown in Figure 4.4.4 is the far-field unweighted over-all-sound-pressure-

level (OASPL) in decibels, with respect to 20 uPa, predicted at ground level with 

the aircraft flying overhead in level flight at an altitude of 1000 ft, for the reference 

propeller. This noise prediction is with the microphone placed 1.2 meters above 

the ground, at the origin of the reference frame. The maximum predicted 

unweighted OASPL of 76.9 dB shown in this curve is equivalent to an A-weighted 

level of 65.9 dBA. Due to the directivity characteristics of the radiated noise of 

propellers, the maximum OASPL occurs almost one second after the aircraft has 

passed the nearest point of approach. The maximum radiated propeller noise 

occurs slightly behind the propeller plane of rotation as expected. [12] 
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Figure 4.4.4 Far-field Radiated Noise at 1000 ft. (OASPL vs. time) for the 
Reference Propeller @ 2400 RPM 
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4.5 Effects of Tip Shape on Radiated Noise Characteristics 

The use of an elliptical tip shape in the reference propeller design is based 

upon a study where the reference propeller tip shape is varied, the radiated noise 

characteristics are predicted and the results compared. Four cases are studied, the 

nominal thrust of 260 lb and the nominal power of 145 hp, are maintained within a 

couple of percent of one another. For the elliptical tip, the ellipse is faired into the 

blade such that maximum thickness is located where the blade chord is 6.5 in. and 

7.6 in. from the blade tip. The blade chord is zero at the tip for the elliptical tipped 

blade. In a similar manner, a parabolic tip is analyzed. The third case is a circular 

tip where the radius is half the chord of 6.5 in. with the blade chord being zero at 

the tip. The fourth case is a square tip where the 6.5 in. blade chord remains the 

same all of the way to the blade tip. 

Table 4.5.1 illustrates the maximum unweighted and A-weighted OASPL in 

the Far-Field for 1000 ft in level flight, and the near-field at 105° directivity angle, 

for the various blade tip shapes considered in the investigation. This blade tip 

evaluation is with the 2-bladed reference propeller, 76 in. diameter, rotating at 

2400 rpm in a free-stream flow field of 160 kts. Inspection of this table shows that 
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the near-field unweighted OASPL for all tip configurations are all around 111 dB 

with minor variation. 

Table 4.5.1 Unweighted and A-weighted OASPL, Maximum Far-Field and 
Near-Field Levels at a Directivity Angle of 105°, for Different Propeller Tip 
Shapes. 

Max 
Near-Field 
(dB) 
Far- Field 
(dB) 
Far Field 
(dBA) 

Square 
111.1 

84.5 

72.3 

Circular 
111.1 

84.5 

73.9 

Parabolic 
110.6 

83.5 

69.9 

Elliptical 
110.9 

84.0 

73.5 

Table 4.5.1 also shows that the unweighted far-field OASPL for the square and 

circular tips are 84.5 dB and the OASPL for the parabolic and elliptical tips are 

respectively 1.0 dB and 0.5 dB less. For the A-weighted far-field OASPL, the 

circular tip is the noisiest at 73.9 dBA and the levels for the elliptical, square and 

parabolic tips are respectively 0.4 dBA, 1.6 dBA, and 2.4 dBA less. 

Again, the difference between the unweighted and A-weighted OASPL is due to 

the thickness and loading noise frequency distributions. In three of the four noise 

categories, the parabolic tip resulted in the lowest noise levels and the elliptical 

tip resulted in the second quietest configuration. Due to these noise 

characteristics, the final selection of the tip shape was narrowed down to the 

parabolic and elliptical tip shapes. The A-weighted noise considerations show 

that the parbolic tip shape results in significant noise reduction with respect to the 

circular tip design. However, the parabolic blade was eliminated from 

consideration due to its design transition characteristics i.e. the intersection of the 
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parabolic tip distribution and the constant blade chord results in a sharp corner 

on the blade. High stress concentrations at the sharp corner, inherent problems 

in manufacturing and human factors all force the parabolic design to be 

eliminated from consideration. Therefore, the elliptical tip shape was chosen for 

the reference blade as it is best configuration based upon noise, human factors 

and manufacturing considerations. 

4.6 Propeller Rotational Speed 

Single engine aircraft operate at cruise in a range of 2400 to 2500 rpm and 

as high as 2700 rpm during take-off and at other times when the engine is run-up 

to full power. Because the propeller is designed with noise characteristics in 

mind, the reference propeller is optimized for the lower end of the rotational 

spectrum at 2400 rpm. Using full power the reference propeller is rotated at 2700 

rpm, and the propeller advance ratio decreases from 1.07 to 0.95. Referring to 

Figure 4.3.1, the propeller aerodynamic performance curves indicate that the 

new advance ratio J will result in aerodynamic performance characteristics where 

CP is 0.075, CT is 0.0679 and an efficiency of 87.0%. These quantities at 

standard sea level result in a thrust of 394 lb. and power of 200 hp, which gives a 

thrust to power ratio of 1.96 Ib/hp where 200 hp will normally constitute the 

maximum power available for the aircraft considered. 

Rotating a 76 in diameter propeller at 2700 rpm while generating lift at the tip 

will always result in shock waves being formed which, of course, generates a 

considerable amount of noise. The airfoils near the tip for the reference propeller 
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are designed to have a sectional lift coefficient of 0.40, as can be seen by 

reviewing Table 4.2.1, while rotating at 2,400 rpm. At these conditions, a study 

of the pressure distribution reveals that the peak flow velocity near the tip is 

0.92M and, therefore, no shock waves will form on the blade tip at 2400 rpm. 

Shown in Figure 4.6.1, is the far-field OASPL radiated noise 

characteristics of the reference propeller rotating at 2400 rpm and 2700 rpm. 

Examination of these curves indicates that at 2700 rpm, the OASPL is higher 

than at 2400 rpm by approximately 6 dB during approach and 9.5 dB greater at 

the peak level as well as during the departure. Interestingly, the noise is 

estimated to be 3 dB to 10 dB greater than predicted because the ANOPP-PAS 

program predicts the noise associated with the shock wave interaction with the 

blade but not the direct radiation from the shock or from the shock oscillation. 

[20] 
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Figure 4.6.1 Far-Field OASPL Radiated Noise Characteristics of 
Reference Propeller Rotating at 2,400 rpm, and 2,700 rpm. 
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Presented in Figure 4.6.2 is the predicted frequency distribution of the near-

field SPL for the reference propeller rotating at 2400 rpm and 2700 rpm, both at a 

directivity angle of 105°. It is important to note that BPF at 2400 rpm is 80 Hz 

and at 2700 rpm BPF is 90Hz, hereafter referred to as BPF|0 and BPFhl 

respectively. Review of this figure reveals that at the first tone that BPFhi is 

approximately 8 dB greater than BPF|0 and the decibel difference steadily 

increases to the highest harmonic tone at 20BPFhl (1,600 Hz) which is 

approximately 34 dB greater than 20BPF)o (1,800 Hz). For the data shown in 

Figure 4.6.2, the unweighted OASPL is 111.2 dB at 2400 rpm and is 9.6 dB 

greater at 2700 rpm, while the A-weighted OASPL is 96.4 dBA at 2400 rpm and 

is 14.0 dBA greater at 2700 rpm. 
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Figure 4.6.2 Frequency Distribution of Near-Field SPL of the Reference 
Propeller Rotating at 2400 and 2700 rpm, both at 105° Directivity Angle. 
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The shock wave formation at 2700 rpm, creates considerably more noise at 

the higher harmonics than at the lower ones and has a greater affect on the A-

weighted level than for the unweighted case. Moreover, the effect of shock wave 

formation will result in a greater increase in the A-weighted level than in the 

unweighted level. Again it is important to note that ANOPP-PAS contains a 

known under-prediction of shock wave noise of 3-1 OdB [20]. 

This comparison demonstrates that in order to reduce noise radiated from 

large diameter propellers it is necessary to prevent shock waves from forming at 

the tip. To prevent excess noise generation 76 in. diameter propellers should be 

designed for optimal cruise rotational speeds less than approximately 2400 rpm. 

Clearly the reference propeller is designed to meet this low noise criteria by 

avoiding tip shock waves during aircraft operations. The most severe noise case 

occurs during climb when the maximum engine power and rotational speed are 

encountered. To satisfy environmental noise considerations, it is very important 

that blade tip shock waves not be generated. 

4.7 Effects of In-Plane Sweep 

The use of sweep in propeller design has been well established as a means 

of reducing radiated noise of propellers. Swept propeller designs can reduce 

propeller noise using both in-plane and out-of-plane sweep [4,17]. The basic 

concept is that the noise source is distributed over the propeller blade surface 

[12,13] and that there can be noise cancellation at a point away from the 

propeller due to acoustic pressure wave cancellation. [25,26] The scimitar 
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shaped blades used on the ultra-high bypass prop-fan are designed based upon 

this concept using both in-plane and out-of-plane sweep. [4] 

For in-plane sweep, three basic sweep configurations are considered all of 

which are developed from the reference propeller, i.e. the 2-bladed configuration 

previously discussed. Sweep is incorporated into the reference propeller design 

by creating an ellipse and then forcing the leading edge of the reference propeller 

to follow one quarter of its elliptical arc in the plane of the propeller. The trailing 

edge is then defined from the new leading edge with equivalent chords from the 

reference propeller. This method transforms the elliptical tip shape such that the 

leading edge is drastically elongated and the trailing edge is slightly elongated 

and straightened. The degree of change due to sweep of the reference blade is 

then dependent on the chosen sweeping ellipse and the location of where it is 

incorporated into the design. The first configuration considered is based upon the 

sweep starting at the 0.2 r/R position sweeping aft in the plane of rotation and is 

called full sweep, with the designation IPSE following by a number designating 

the amount of sweep displacement at the tip in inches, e.g. IPSE-3 means 3 

inches of tip sweep. The IPSE configurations are evaluated with 3 in., 6.5 in. and 

13 in. of tip sweep. The second basic configuration consists of the aft in-plane 

sweep starting at 0.5 r/R position and designated as HIPSE with an ultimate tip 

sweep of 6.5 in. only. The third configuration consists of in-plane aft sweep 

starting at the 0.75r/R position which is designated as QIPS with tip sweep of 6.5 

in. and 9.75 inches. Shown in Figure 4.7.1 are the planform views for all of the 
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swept configurations discussed, the figures are labeled with the appropriate 

configuration designation. There are many other swept configurations that can 

be evaluated including combination configurations with forward sweep near the 

hub and aft sweep near the tip [17] as well as blades with out-of-plane sweep [4] 

which is discussed in section 4.8. 

i i 

| IPSE 3 I HIPSE 6.5 

• i 

I IPSE 6.5 I QIPS 6.5 

IPSE 13 | QIPS 9.75 

Figure 4.7.1 Planform View of all In-plane Swept Blade Configurations. 

The far-field fly-by OASPL as well as the near-field OASPL and SPL 

frequency spectrum noise levels are evaluated for all swept configurations and 

the thrust and power at cruise conditions are all within 2% of the reference 

propeller. Shown in Figure 4.7.2 is the unweighted far-field OASPL at fly-over 

during level flight at 1000 ft altitude for the HIPSE-6.5 configuration as well as the 

reference propeller. Comparing the two OASPL curves indicates that the swept 

blade is 1.0 dB quieter than the upswept case during approach and at the peak 

levels, while during departure very little difference is seen in the OASPL. 
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Figure 4.7.2 Far-field OASPL at 1000 ft for HIPSE 6.5 and the Reference 
Propeller. 

Shown in Table 4.7.1 is the maximum far and near field OASPL for all in-

plane sweep configurations including the reference propeller data for 

comparison. The maximum peak far-field non-weighted and A-weighted OASPL 

is predicted during fly-over at a 1000 ft altitude and the near-field OASPL is at a 

105° directivity angle. Inspection of this Table reveals that in-plane sweep does 

reduce both the far-field and near-field non-weighted and A-weighted OASPL. 

The HIPSE-6.5 and QIPS-9.75 swept configurations exhibit the lowest noise 

levels relative to the reference propeller. For example relative to the reference 
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propeller, the HIPSE- 6.5 in the far-field is 0.6 dB and 2.2 dBA quieter, and in the 

near-field is 0.5 dB and 1.4 dBA quieter. 

Table 4.7.1 Maximum Non-Weighted and A-Weighted OASPL, Near and 
Far-Field, for all Blade Configurations. 

Far 
OASPL 
(dB) 
Far 
OASPL 
(dBA) 
Near 
OASPL 
(dB) 
Near 
OASPL 
(dBA) 

Reference 
Propeller 

76.9 

65.9 

111.2 

96.4 

IPSE 
3 

76.6 

65.5 

111.0 

96.0 

IPSE 
6.5 
76.3 

65.2 

110.9 

95.6 

IPSE 
13 

76.0 

65.0 

111.0 

95.4 

QIPS 
6.5 
76.0 

64.6 

110.7 

95.0 

QIPS 
9.75 
75.5 

64.0 

110.4 

94.3 

HIPSE 
6.5 
76.3 

63.7 

110.7 

95.0 

For the cases considered the tables show, the greater the in-plane sweep 

the lower the noise as expected [27]. Based upon these predictions, the HIPSE-

6.5 configuration is recommended because it exhibits superior noise reduction 

characteristics, it is significantly quieter in the far- and near-fields especially in 

the A-weighted case than the reference case. The half-swept with 6.5 in. of tip 

sweep (HIPSE-6.5) configuration is also easier to manufacture than the full-

swept (IPSE) and quarter-swept (QIPS) configurations. 
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4.8 Effects of Out-of-Plane Sweep 

As discussed previously the use of sweep in propeller design is well 

established as a means of reducing radiated noise of propellers. As with in-plane 

sweep, the basic concept is that the noise source is distributed over the propeller 

blade source [12,13] and that there can be noise cancellation at a point away 

from the propeller because of acoustic pressure wave cancellation. [25,26] 

Two out-of plane configurations are swept in a similar manner to the in-plane 

designs. Sweep is incorporated into the reference propeller design by creating an 

ellipse and then forcing the leading edge of the reference propeller to follow one 

quarter of its elliptical arc aft of the propellers plane of rotation. The trailing edge 

is then defined from the new leading edge with equivalent chords from the 

reference propeller. The degree of change due to sweep of the reference blade is 

then dependent on the chosen sweeping ellipse and the location of where it is 

incorporated into the design. The first configuration is based upon the sweep, 

starting at the 0.2 r/R position sweeping aft in the plane of rotation. This 

configuration is called full out-of-plane sweep, with the designation OPSE 

following by a number designating the amount of sweep displacement at the tip 

in inches, e.g. OPSE-1.3 means 1.3 inches of tip sweep. The OPSE 

configurations are evaluated with 1.3in., 2.6 in., 3.9 in., and 6.5 in. of tip sweep. 

The second configuration consists of the aft out-of-plane sweep starting at 0.5 

r/R position and designated as HOPSE with the same amount of tip sweep as the 

first configurations. 
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The far-field fly-by OASPL as well as the near-field OASPL and SPL 

frequency spectrum noise levels are evaluated for all swept configurations and the 

thrust and power at cruise conditions are all within 1.5% of the reference 

propeller. Figure 4.8.1 illustrates the non-weighted far-field OASPL at fly-over 

during level flight at 1000 ft altitude for the OPSE-6.5 configuration and the 

reference propeller. Comparing the two OASPL curves in the figure indicates that 

the blade swept out of plane is 1.8 dB quieter than the non-swept case 10 

seconds prior to reaching the observer and 1.5 dB quieter just past the observer 

(peak); departure OASPL values are nearly identical. As with the reference 

propeller, OPSE6.5 has a maximum Near-Field OASPL at a directivity angle of 

105°. 
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Figure 4.8.1 Far-field OASPL at 1000 ft for OPSE 6.5 and the Reference 
Propeller 

Table 4.8.1 contains the maximum far and near field OASPL for all out-of-

plane sweep configurations including the reference propeller data for 

comparison. Inspection of this Table reveals that out-of-plane sweep does 

reduce both the far-field and near-field unweighted and A-weighted OASPL. The 

OPSE-6.5 configuration exhibits the lowest noise levels relative to the reference 

propeller. For example relative to the reference propeller, the OPSE-6.5 in the 

far-field is 1.8 dB and 1.4 dBA quieter, and in the near-field is 3 dB and 

2.5 dBA quieter. 
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Table 4.8.1 Maximum Far and Near Field OASPL for all Out-of-plane Swept 
Configurations 

Far OASPL (dB) 
Far OASPL (dBA) 
Near OASPL (dB) 
Near OASPL (dBA) 

Far OASPL (dB) 
Far OASPL (dBA) 
Near OASPL (dB) 
Near OASPL (dBA) 

Reference 
Propeller 

76.9 
65.9 

111.2 
96.4 

Reference 
Propeller 

76.9 
65.9 

111.2 
96.4 

OPSE-1.3 

76.3 
66.4 
109.5 
96.8 

HOPSE-
1.3 

76.9 
66.0 
110.0 
96.9 

OPSE-2.6 

76.1 
66.2 
109.3 
97.0 

HOPSE-2.6 

76.8 
65.9 
109.4 
97.3 

OPSE-3.9 

75.6 
65.1 
108.3 
94.5 

HOPSE-3.9 

76.6 
65.8 
108.9 
94.7 

OPSE-6.5 

75.1 
64.5 
108.2 ; 
93.9 

HOPSE-6.5 

76.6 
65.7 
108.7 
94.3 

For the cases considered it appears that as with in-plane sweep the greater 

the out-of-plane sweep the lower the noise. Based upon these predictions, the 

OPSE-6.5 configuration is recommended because it exhibits superior noise 

reduction characteristics than the reference case, i.e. it demonstrates 

significantly quieter noise characteristics in the far- and near-fields. 

Manufacturing propellers with out-of-plane sweep is very difficult and large 

bending stresses are encountered. These stresses are generated due to the 

uneven radial mass distribution and centrifugal force effects. Straight bladed 

propellers are designed so that the radial mass distribution is on a straight radial 

line leading out from the hub and, therefore bending stresses due to centrifugal 

forces are avoided. 

56 



4.9 Propeller Design Using Natural-Laminar-Flow (NLF) Airfoils 

Airfoil skin friction at high Reynolds numbers is significantly reduced by the 

successful design of airfoil shapes that exhibit large regions of laminar boundary 

layer flow on both the upper and lower surfaces [29,30]. Propellers are designed 

using these NLF airfoils in the hope that there is an increase in propeller 

efficiency due to the reduction of airfoil parasite drag. This study investigates 

NLF airfoils to determine if NLF propellers will exhibit lower noise characteristics 

than propellers using more conventional NACA airfoil sections. 

Jeffrey Viken of Innovative Aerodynamic Technologies (IAT), an NLF design 

specialist, and designer of the NASA NLF(1)-0414F airfoil, designed a set of NLF 

airfoils for propellers based upon the same size and with the same performance 

characteristics as is used to design the reference propeller. [30] Based upon the 

sectional lift coefficient and Reynolds number distribution required as a function 

of blade radial position, Mr. Viken designed the NLF airfoils as labeled in 

Table 4.9.1 as a function of radial position r/R for the NLF propeller. Inspection 

of this table indicates a twist angle and sectional lift coefficient distributions very 

similar to that used for the reference propeller. 
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Table 4.9.1 Blade angles, chord and lift coefficient as a function of radial 
position for NLF propeller. 

NLF 

Airfoil 

jv-prop.20 
jv-prop.20 
jv-prop.40 
jv-prop.40 
jv-prop.SS 
jv-prop.55 
jv-prop.70 
jv-prop.70 
jv-prop.70 
jv-prop.85 
jv-prop.85 
jv-prop.95 
jv-prop.95 
jv-prop.95 
jv-prop.95 

r/R 

O.IO 
0.20 
0.30 
0.40 
0.55 
0.60 
0.70 
0.75 
0.80 
0.85 
090 
0.95 
0.975 
0.995 
1.00 

r 

3.80 
7.60 
J 1.40 
15.20 
20.90 
22.80 
26.60 
28.50 
30.40 
32.30 
34.20 
36.10 
37.05 
37.81 
38.00 

C 
- • 

6.50 
6.50 
6.50 
6.50 
650 
6.50 
6.50 
6.50 
6.50 
6.31 
5.72 
4.55 
3.59 
2.41 
1.98 

t/c 

0.1800 
0.1800 
0.1500 
0.1500 
0.1275 
0.1275 
0.1050 
0.1050 
0.1050 
0.0825 
0.0825 
0.0675 
0.0675 
0.0675 
0.0675 

P 

76.48 
6170 
50.44 
42.15 
33.65 
31.46 
27.74 
26.22 
24.86 
23.10 
21.99 
20.51 
20.04 
19.69 
19.60 

a 

1.39 
1.39 
1.32 
1.32 
146 
1.46 
1.41 

c, 
• 

0.70 
0.70 
0.73 
0.73 
0.74 
0.74 
0.75 

1.41 0.75 
1.41 
1.01 
1.01 
0.65 
0.65 
0.65 
0.65 

0.75 
0.58 , 
0.58 
0.42 
0.42 
0.42 
0.42 

Examination of Table 4.9.1 reveals that the jv-prop.20 airfoil with a maximum 

thickness of 18%, is used at a r/R of 0.1 and 0.2, the jv-prop.40 with a t/c of 15% 

is used at a r/R of 0.3 and 0.4, the jv-prop.55 with a t/c of 12.75% at a r/R of 0.5 

and 0.6, the jv-prop.70 with a t/c of 10.5% from a r/t of 0.7 to 0.8, the jv-prop.85 

with a t/c of 8.25% at r/R of 0.85 and 0.9, and the jv-prop.95 with a t/c of 6.75% 

at r/R equal to and greater than 0.95. To gain insight into the unique shape of 

the NLF airfoil shapes, the NACA 44XX series and the jv-prop series are 

presented side by side in Figure 4.9.1 at various radial positions. For example, 

the NACA-4406 airfoil is plotted next to the jv-prop.95 airfoil both of which are 

used near the blade tip at a radial position of 0.95 r/R, noting that the NACA 44xx 

series airfoil is used on the reference propeller. 
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NACA 4418 

jv-prop,20 

Figure 4.9.1 Comparison between NACA 44 and NLF series airfoils. 

Figure 4.9.2 shows the propeller aerodynamic performance characteristics 

for the propeller with the NLF airfoils, where the thrust coefficient CT, power 

coefficient CP, and efficiency r| are plotted as a function of advance ratio J. This 

propeller exhibits almost identical aerodynamic performance characteristics as 

the reference propeller. Both propellers are 76 in. diameter rotating at 2,400 rpm 
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at a cruise speed of 160 kts, resulting in a cruise advance ratio J of 1.07. 

Inspection of Figure 4.9.2 reveals a thrust coefficient CT of 0.0447, power 

coefficient CPof 0.0537, and efficiency of 88.7%. At standard sea-level conditions 

and level flight of 160 kts, these coefficients result in a power of 143.6 hp and 

259.4 lb. compared to 145.0 hp, and 259.6 lb. at an efficiency of 87.9%. for the 

reference propeller. This comparison shows that the straight reference propeller 

exhibits similar thrust and power coefficient trends as the NLF propeller but the 

NLF propeller is 1% more efficient. 
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Figure 4.9.2 Aerodynamic Performance of Straight Propeller with 
NLF Airfoils 

4.10 Noise Characteristics of NLF Propeller 

Figure 4.10.1 shows the far-field unweighted OASPL levels for both the 

straight NLF and reference propellers for fly-over at an altitude of 1000 ft and a 

speed of 160 kts in steady level flight. Both propellers are rotating at 2,400 rpm. 
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The OASPL for both curves is nearly identical near and at the peak levels, but 

that the NLF propeller is slightly quieter during approach than the reference 

propeller and slightly noisier during the departure. Thus, for the unweighted 

case, there are no significant differences in the far-field OASPL between the NLF 

and reference propellers. 
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Figure 4.10.1 Fly-over Unweighted OASPL Far-Field Radiated Noise 
Characteristics of Straight NLF and Reference Propellers (2400 RPM). 

The near-field unweighted SPL frequency spectrum of both the NLF and reference 

propeller's rotating at 2400 rpm is illustrated in Figure 4.10.2. Comparison of the data in 

the figure indicates that at BPF" (harmonic number of one) the SPL for both propellers is 
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the same. However as the harmonic number increases in Figure 4.10.2 the SPL for the 

NLF propeller progressively increases over the reference propeller levels. This increase is 

most apparent at harmonic number of 20 (20BPF) where the SPL of the NLF propeller is 

approximately 7 dB greater than the reference propeller's SPL. As previously 

stated, thickness noise dominates the loading noise at the higher harmonics and 

comparing Table 4.2.1 with Table 4.9.1, shows that the thickness distribution as a 

function of radial position is different between the NACA 44 series and jv-prop (NLF) 

airfoil sections. Review of Figure 4.9.1, where sketches of both the NACA 44 series and 

the jv-prop airfoils are shown at various radial positions, there are significant volume 

differences between the two airfoil series. Because of these geometrical differences, it is 

not surprising that the thickness noise is significantly different and is the reason why the 

SPL at the higher harmonics is greater in the NLF propeller than the reference propeller. 

120 

100 • 

3. 
e 

El 

pa 

a. 
V. 

80 

60 

40 

20 • 

• Ref Blade 2400 RPM 
DNLF 2400 RPM 

| a l | B I | B I | « l | B I | B I | B I | B I | « l | « l | « l | « l | » l | M I | « l | « l | « l | « l | M l | « l | 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Frequency (harmonic number) 

Figure 14.10.2 Frequency Distribution of Near-Field Unweighted SPL for 
the NLF Propeller and the Reference Propeller rotating at 2,400 RPM and 
at Directivity Angle of 105°. 
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A-weighted noise levels are important in noise research in that A-weighted 

levels allow sound levels to be adjusted to represent the response of the human 

ear. Table 4.10.1 is presented to show the unweighted and A-weighted OASPL 

for maximum fly-over and near-field levels at a directivity angle of 105°, for the 

straight NLF and reference propeller as well as the HIPSE-6.5, OPSE-6.5 and 

the swept NLF propellers (NFL-HIPSE-6.5, NLF-OPSE-6.5). The HIPSE-6.5 and 

the in-plane swept NLF-HIPSE-6.5 propeller are swept identically with 6.5 in. of 

sweep in the plane of rotation, starting at the 0.5 r/R radial position. Similarly the 

OPSE-6.5 and NLF-OPSE-6.5 are swept identically, with the out-of-plane sweep 

beginning at the 0.2 r/R radial position with 6.5in of tip sweep aft of the plane of 

rotation. 

Table 4.10.1 Non-weighted and A-weighted OASPL for Maximum Fly-Over 
and Near-Field Levels (at a Directivity Angle of 105°), for NLF and 
Reference Propeller's for straight, in and out-of- plane swept 
configurations. 

Far OASPL (dB) 

Far OASPL 
(dBA) 
Near OASPL 
(dB) 
Near OASPL 
(dBA) 

Far OASPL (dB) 

Far OASPL 
(dBA) 
Near OASPL 
(dB) 
Near OASPL 
(dBA) 

Reference 
Propeller 

76.9 

65.9 

111.2 

96.4 

NLF Propeller 

77.1 

66.1 

111.7 

97.6 

HIPSE-6.5 

75.9 

64.6 

110.7 

95.0 

NLF-HIPSE-6.5 

76.3 

63.7 

111.3 

96.5 

OPSE-6.5 

75.1 

64.5 

108.2 

93.9 

NLF-OPSE-6.5 

75.6 

63.7 

108.9 

93.6 
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The aerodynamic performance characteristics CT, CP, and r| of all six 

propeller configurations are within 2.2% of one another. Inspection of Table 

4.10.1 indicates that the unweighted far-field OASPL of the reference propeller is 

76.9 dB and the unswept NLF propeller is 0.2 dB noisier while the HIPSE-6.5 and 

NLF-HIPSE-6.5 propellers are respectively 1.0 dB and 0.6 dB quieter. The far-

field A-weighted OASPL of the reference propeller is 65.9 dBA and the unswept 

NLF propeller is 0.2 dBA noisier while the HIPSE-6.5 and NLF-HIPSE-6.5 

propellers are respectively 1.3 dBA and 2.2 dBA quieter, i.e. both in-plane swept 

configurations are significantly quieter than either swept configuration when 

comparing the A-weighted levels. The near-field differences are not as 

significant. The NLF propeller swept in-plane generates the same A-weighted 

levels as the reference propeller and the HIPSE-6.5 is 1.5 dBA quieter. When 

swept out of plane the far-field OASPL for the OPSE6.5 is 1.8 dB quieter than the 

reference propeller while the NLF-OPSE-6.5 is 1.3 dB quieter. The far-field A-

weighted OASPL for OPSE-6.5 and NLF-OPSE-6.5 is 1.4 and 2.2 dBA quieter 

than the reference propeller respectively. When swept out-of-plane radiated 

noise in the near field results in even greater noise reduction. OPSE-6.5 is 3dB 

(2.5dBA) quieter than the reference propeller in the near field and NLF-OPSE-6.5 

is 2.3dB (2.7dBA) quieter than the reference propeller. These comparisons 

indicate that both the HIPSE-6.5 and NLF-HIPSE-6.5 propellers are generally 

quieter and that their A-weighted levels are significantly quieter, than the 

reference propeller. Also, the OPSE-6.5 and NLF-OPSE-6.5 have quieter far-field 

A-weighted levels and their near-field noise radiation is significantly quieter than 
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the reference propeller in both unweighted and A-weighted levels. In general 

there is no significant acoustical advantage using NLF airfoils for propellers when 

compared to NACA 44XX series airfoils. 

4.11 Optimal Propeller Design 

The optimal propeller in this study is derived from a combination of the of 

the aforementioned design parameters. The optimal blade is designed to rotate 

at 2400 rpm to avoid shock wave formation at the tip. The propeller has an 

elliptical tip shape for ease in manufacturing and good noise characteristics. 

Fundamentally the blade is designed for optimum efficiency with the basic 

characteristics of the straight NLF propeller with NLF airfoils, which provide 

optimal efficiency as well as good A-weighted noise characteristics. Incorporated 

into the design is both in- and out-of-plane sweep equivalent to the sweep used 

in NLF-HIPSE-6.5 and NLF-OPSE-6.5 configurations. The in and out of plane 

sweep are incorporated for near- and far-field noise reduction. 

Figure 4.11.1 Illustrates the Far-field unweighted OASPL levels for the 

optimal propeller compared to the reference propeller for fly-over at an altitude of 

1000 ft and a speed of 160 kts in steady level flight. Both propellers rotate at 

2400 rpm, with the same thrust. The OASPL for both curves is nearly identical 

near and at the peak levels, but that the NLF propeller is slightly quieter during 

approach than the reference propeller and nearly identical during the departure. 
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Figure 4.11.1 Fly-over Unweighted OASPL Far-Field Radiated Noise 
Characteristics of the Reference and Optimal Propellers (2400 RPM). 

The optimal propeller thrust coefficient CT of 0.0448, power coefficient CP of 

0.0539, and efficiency of 88.9% compared to 88.7% for the straight NLF 

propeller. Aerodynamically the optimal propeller has almost identical 

performance characteristics to the straight NLF proper. 

Table 4.11.1 illustrates the radiated noise characteristics of the optimum 

propeller as compared to the reference and straight NLF propeller's. When 

compared to the reference propeller, far-field radiated noise is decreased by 

1.1 dB and 3.6 dBA for the optimal propeller. Under the same comparison, the 
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near-field noise characteristics of the optimal propeller are decreased by 1.7 dB 

and 2.3 dBA over the reference propeller levels. Since the optimal propeller 

design is based on the straight NLF propeller, it is important to note that noise 

reduction over the straight NLF blade is 1.3 dB (3.8 dBA) in the far-field, and 

2.2 dB (3.5 dBA) in the near field. 

Table 4.11.1 Non-weighted and A-weighted OASPL for Maximum Fly-Over 
and Near-Field Levels (at a Directivity Angle of 105°), for the Reference, 
Straight NLF and the Optimal propellers. 

Far OASPL 
(dB) 
Far OASPL 
(dBA) 
Near OASPL 
(dB) 
Near OASPL 
(dBA) 

Reference 
Propeller 

76.9 

65.9 

111.2 

96.4 

NLF Propeller 

77.1 

66.1 

111.7 

97.6 

Optimal 
Propeller 

75.8 

62.3 

109.5 

94.1 

Therefore, optimizing the design parameters in this study resulted in a the 

optimal propeller design which is slightly quieter overall with significant noise 

reduction in the A-weighted spectrum and is 1% more efficient than the 

reference propeller. 

4.12 Unsteady Blade Loading 

It is important to note that most acoustic prediction methods make 

predictions for propellers operating under ideal conditions. Obviously in actual 

practice, ideal conditions are the exception rather than the rule. While in flight, 
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the propeller shaft is often at an angle of attack and this angle causes flow 

distortion or unsteady loading on the propeller. Therefore the blade loading 

varies through its revolution as a cyclic change in local angle of attack. Unsteady 

loading on the blade increases the noise produced by the propeller [4]. 

Therefore, propeller noise prediction methods must consider effects of unsteady 

blade loading in order to accurately predict the noise generated by the propeller 

under investigation. 

Recent updates to ANOPP-PAS include the effects of unsteady blade 

loading due to propeller inflow angle on the noise generated by propellers. [30] 

In this study, the updated ANOPP-PAS code is utilized to determine unsteady 

loading effects on the two bladed reference propeller radiated noise 

characteristics. The reference propeller is simulated to be operating with a 

relative propeller angle of attack of five degrees. 

Figure 4.12.1 represents the overall near-field SPL at directivity angle 75° 

of the reference propeller under steady and unsteady loading conditions. The 

overall SPL is the sum of the loading and thickness noise components. Both 

flight conditions generate similar data sets that decrease with increasing 

harmonic number. As anticipated, the SPL generated under the unsteady 

loading condition is higher than the steady loading case at most harmonic 

numbers. At a directivity angle of 75° the difference in OASPL is 2.9 dB: the 

unsteady condition is 112.9 dB versus 110.1 dB for the steady condition. At blade 
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passing frequency the difference is even greater with the unsteady case some 

3.6 dB higher than the steady condition. The reference blade under steady 

conditions has peak OASPL values of 111.2 dB at 105° directivity versus 112.9 

at 75°for the unsteady loading case. Thus, at their respective noisiest locations 

the blade operating in unsteady conditions is predicted to be 1.7 dB (2.7 dBA) 

louder than the propeller under steady loading conditions. 

Figure 4.12.1 Comparison of Unsteady and Steady Overall Noise generated 
by Reference Propeller [SPL (dB Re: 20 uPa) vs. Harmonic Number (f)]. 

As the previous data indicates, unsteady blade loading has an impact on 

the radiated noise characteristics of the reference propeller. The impact to far-
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field characteristics is especially large as shown in the far-field radiated noise 

characteristics of the reference blade under steady and unsteady loading 

conditions, shown in Figure 4.12.2. Under unsteady loading conditions the 

reference blade has a maximum OASPL of 79 dB (67dBA). Acoustic theory 

predicts a peak approximately one second past the observer, as seen in the 

steady loading case. The unsteady loading level occurs 0.39 seconds past the 

observer. Additionally theory predicts that the approach levels should be lower 

than levels during the retreat phase, the unsteady case has nearly identical 

levels during the approach and retreat phases. The most dramatic impact of the 

unsteady loading occurs 15 seconds before reaching the observer, when the 

difference between the steady and unsteady case is an enormous 22 dB. This 

large difference between levels monotonically declines to almost zero at the 

observer when the levels become almost identical throughout the retreat phase. 

Thus, unsteady loading can have a significant impact on actual radiated noise 

characteristics of propellers, particularly in the far-field. 
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Figure 4.12.2 Comparison of Unsteady and Steady Far-Field Radiated Noise 
At 1000ft [OASLP dB Re: 20 uPa vs. Time (Sec)] 

In Figure 4.12.3 the near-field thickness noise versus harmonic number 

(frequency) is plotted under both steady and unsteady loading conditions for the 

reference propeller at directivity angle of 75°. Inspection of this figure reveals that 

the thickness noise is greater for the unsteady loading conditions than steady 

loading over all harmonics. Though the trend of the data is similar to the overall 

noise characteristics, it is evident that the difference in that the thickness noise 

increases with increasing harmonic number. 
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Figure 4.12.3 Comparison of Unsteady and Steady, Near-Field Thickness 
Noise Generated by the Reference Propeller [SPL (dB Re: 20 uPa) vs. 
Harmonic Number (f) ]. 

Figure 4.12.4 shows a comparison of the steady and unsteady loading 

noise generated by the reference propeller. Inspection of this figure indicates that 

the greatest difference between steady and unsteady loading conditions occur for 

the loading noise component. As shown in the previous charts, the loading noise 

decreases with increasing harmonic number until the ninth harmonic when the 
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unsteady loading condition levels off and remains nearly constant and at fairly 

high levels through the remaining harmonics. 
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Figure 4.12.4 Comparison of Unsteady and Steady Loading Noise 
Generated by the Reference Propeller [SPL(dB Re: 20 u.Pa) vs. Harmonic 
Number (f) ]. 

As seen in the Figures 4.12.2 - 4.12.4, the unsteady loading conditions 

increase both the near-field thickness and loading noise components generated 

by the propeller and therefore increase the overall noise generated by the 

propeller. Figure 4.12.5 shows a comparison of the near-field overall noise 

directivity patterns for the steadily and unsteadily loaded reference propeller. The 

changes in noise radiation due to unsteady load have an impact on the directivity 

pattern, as seen in reviewing Figure 4.12.5. 
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Figure 4.12.5 Comparison of Unsteady and Steady Near-Field Overall Noise 
Directivity Patterns [Near Field OASPL Re: 20 uPa as a function of 
Directivity Angle]. 

Inspection of Figure 4.12.5 reveals that the reference blade under steady 

conditions has a peak OASPL value of 111.2 dB at 105° directivity angle versus 

112.9 dB at 75°for the unsteady loading case. At 0°and 180° the OASPL for 

steady loading is less than 50 dB but for unsteady loading the OASPL is greater 

than 100 dB. The directivity angle illustrated in Figure 4.4.2 is measured aft of the 

propeller looking forward as follows: forward of the propeller is zero; 90° is 

measured in the plane of the propeller's rotation and directly aft is 180° 

In addition to the maximum radiation location shift, the unsteady condition 

directivity pattern is almost constant from 0° to 180°. Though the range the 
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unsteady OASPL ranges from 106.3 dB at zero to 112.9 at 75, a delta of 6.6 dB. 

By comparison the steady loading case varies 72 dB from maximum to minimum 

at 105° and 0° respectively. 

As the previous data indicates, unsteady blade loading has a major impact 

on the radiated noise characteristics of the reference propeller. Shown in Figure 

4.12.6 are the steady and unsteady far-field radiated noise characteristics. The 

impact to far-field characteristics is shown to be especially large for the reference 

blade during approach, as predicted by acoustic theory. Under unsteady loading 

conditions the reference blade has a maximum OASPL of 79 dB (67dBA). The 

unsteady loading peak level occurs 0.39 seconds past the observer. Traditional 

steady loading acoustic theory predicts a peak approximately one second past 

the observer, as shown in the steady loading case. The unsteady and steady 

cases have nearly identical noise levels as the propeller passes and retreats 

from the observer. Unsteady loading levels are greatest 15 seconds before 

reaching the observer, when the difference between the steady and unsteady 

levels is an enormous 22 dB. This large delta between levels steadily declines to 

almost zero at the observer when the levels become almost identical throughout 

the retreat phase. Thus, unsteady loading can have a significant impact on actual 

radiated noise characteristics of propellers, particularly in the far-field during the 

approach phase. 
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5.0 Conclusions 

The NASA Aircraft Noise Prediction Program-Propeller Analysis System 
(ANOPP-PAS) was used to design quiet two-bladed general aviation (GA) 
propellers. This theoretical investigation resulted in the following conclusions: 

> Based upon noise and manufacturing considerations, the elliptical blade tip 
shape was deemed best tip design when compared with square, parabolic 
and circular tips, even though the parabolic tip was predicted to be the 
quietest. 

> Using propeller rotational speeds of 2700 rpm for a 76 in. diameter 2-bladed 
propeller, will always result in extremely high radiated noise levels because of 
shock wave formation at the blade tip and this excessive noise problem does 
not occur at 2400 rpm due to reduced tip Mach numbers. 

> Using in-plane sweep on the 76 in. diameter 2-bladed propeller, resulted in a 
predicted far-field OASPL reduction of 0.6 dB and 2.2 dBA, and near-field 
OASPL reduction of 0.5 dB and 1.4 dBA when compared to the typical 
straight 2-bladed propeller of the same diameter. Both propellers rotated at 
2,400 rpm and were designed using NACA 44XX series of airfoils. 

> Using natural-laminar-flow (NLF) airfoil shapes for a 76 in. diameter and 
straight 2-bladed propeller, resulted in a one percent increase in propeller 
efficiency and slight increases in the near- and far-field OASPL when 
compared to the straight 2-bladed propeller using NACA 44XX series of 
airfoils. Both propellers were of the same diameter and rotating at 2,400 rpm. 

> A 2-bladed propeller with in-plane sweep with NACA 44 series and NLF airfoil 
shapes, resulted in approximately the same near- and far-field non-weighted 
noise levels as for the straight 2-bladed propeller with the same airfoils. 
However when compared to the reference blade, the A-weighted levels for 
the in-plane swept blades, resulted in significant noise reduction of 1-2 dBA. 
These propellers were of the same 76 in. diameter and were both rotated at 
2400 rpm. 
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> Using out-of-plane sweep on the 76 in. diameter 2-bladed propeller, resulted 
in a predicted far-field OASPL reduction of 1.8 dB and 1.4 dBA, and near-field 
OASPL reduction of 3.0 dB and 2.5 dBA when compared to the typical 
straight 2-bladed propeller of the same diameter. Both propellers rotated at 
2,400 rpm and were designed using NACA 44XX series of airfoils. 

> A 76 in. optimal propeller was designed with NLF airfoils, in-plane and out-of-
plane sweep and elliptical tip shape. The optimal propeller was 1% more 
efficient than the reference propeller. Additionally, the optimal design resulted 
in a predicted far-field OASPL reduction of 1.1 dB and 3.6 dBA, and a near-
field OASPL reduction of 1.7 dB and 2.3 dBA when compared to the straight 
bladed reference propeller. 
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6.0 Recommendations 

Anechoic wind tunnel tests should be performed to validate the design and 

radiated noise prediction capability of the NASA Aircraft Noise Prediction 

Program-Propeller Analysis System (ANOPP-PAS). The propeller designs used 

in this investigation should be used in performing anechoic wind tunnel tests to 

verify the predicted propeller aerodynamic performance and radiated noise 

characteristics. These model tests would also be used to develop and verify the 

radiated noise scaling laws for use in full-scale evaluations. Propeller 

aerodynamic scaling laws are reasonably well understood but this is not the case 

for radiated noise characteristics. Anechoic wind tunnel tests in conjunction with 

the theoretical prediction capabilities of the ANOPP-PAS computer code will 

allow the development of accurate propeller radiated noise scaling laws. This 

recommended validation will result in the ability of General Aviation (GA) aircraft 

and propeller manufacturers to use the ANOPP-PAS computer code to design 

quiet and efficient propellers with a reasonable degree of accuracy and 

confidence. 

These anechoic wind tunnel tests should also investigate propeller 

installation effects. The ANOPP-PAS computer code has limited capability of 
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predicting unsteady blade loading due to in part to installation effects; therefore, 

a simplified nacelle installation algorithm should be developed and incorporated 

into the code. Incorporating this capability will greatly strengthen the ANOPP-

PAS computer code capabilities. ANOPP's ability to predict noise due to 

unsteady blade loading should be further examined and results should be 

compared with flight data. 

Further in-plane and out-of-plane sweep designs should also be studied to 

determine the full capability of using sweep to reduce radiated noise 

characteristics for GA aircraft propellers. These future studies must look 

carefully at the practicality of manufacturing highly swept-propeller blades as well 

as the strength characteristics. It is easy to envision a case where a highly swept 

propeller is designed that is efficient and quiet but would experience blade failure 

because of inadequate strength capabilities. 

80 



REFERENCES 

[1] Rathgelber, R. K., and Sipes, D. E., "The Influence of Design Parameters 
on Light Propeller Aircraft Noise," SAE-770444, 1977. 

[2] Wilson, "Noise Control, Measured Analysis, and control of Sound and 
Vibration" 
Malabar, Fl: Kreiger Publishing, 1994 

[3] Metzger, F. B., "An Assessment of Propeller Aircraft Noise Reduction 
Technology," NASA CR 198237, August 1995. 

[4] Klatte, R.J. and Metzger, F.B. "Influence of Noise Reduction on Weight 
and Cost of general Aviation Propellers." FAA-AEE-79-18, June 1979. 

[5] Hubbard, H. FL, "Aeroacoustics of Flight Vehicles: Theory & Practice," 
NASA RP-1258, 1991. 

[6] Chusseau M., Roozen E., Pauzin S., Matharan P., Carrere A., "Light 
Aircraft propeller: Design Parameter Effects on Acoustics and 
Aerodynamics," AIAA 93-4443, October 1993. 

[7] Rawls, John W., Jr.,"10.2 Blade Shape Module. Aircraft Noise Prediction 
Program Theoretical Manual, Propeller Aerodynamics and Noise." William 
E. Zorumski and Donald S. Weir, eds., NASA TM-83199, Part3, June 
1986. 

[8] Meacock, FT., The Elemants of Aircraft Propeller Design. London: E&F. 
Spon LTD, 1947 

[9] Mises, Richard Von, "Theory of Flight," New York: Dover Publications, 
1959 

[10] Weick, fred E. Aircraft Propeller Design. New york and London: McGraw-
Hill, 1930 

81 



References Continued 

[11] Patrick, H.V.L., "Aeroacoustics Graduate Seminar Notes" Embry-Riddle 
Aeronautical University, Spring 1995 

[12] Goldstein, M.E., "Aeroacoustics", NASA SP-346, 1974 

[13] Fowcs Williams, J. E. and Hawkings, D. L., "Sound Generation of 
Turbulence and Surfaces in Arbitrary Motion," Philos. Trans. R. Soc. 
London, Ser. A., Vol. 264, 1969. 

[14] Lighthill, M. J., "On Sound Generated Aerodynamically: I. General 
Theory," Proc. R. Soc. London, Ser. A, Vol. 211,1952, pp. 564-587. 

[15] Metzger, F. B., "A Review of Propeller Noise Prediction Methodology 
1919-1994," NASA CR 198156, June 1995. 

[16] Farassat, F., Generalized Functions and Applications to Aeroacoustics 
Seminar", NASA Langley Research Center, August 1996. 

[17] Gutin.L, "On Sound Field of a Rotating Propeller", NASA TM 1195, 
October 1948. 

[18] Brentner, K.S. "Prediction of Helicopter Rotor Discrete Frequency noise", 
NASA TM 87721, October 1986 

[19] Padula, Sharon L.," 11.1 Subsonic Propeller Noise Module, Aircraft Noise 
Prediction Program Theoretical Manual, Propeller Aerodynamics and 
Noise." William E. Zorumski and Donald S. Weir, eds., NASA TM-83199, 
Part 3, June 1986. 

[20] McCormick, Barnes Warnack, Aerodynamics: Aeronautics and Flight 
Mechanics. John Wiley and Sons, 1979 

[21] Succi, G. P., "Design of Quiet Efficient Propellers," SAE Tech. Paper 
790584, 1979. 

[22] Nguyen, L. Cathy," A users Guide for the NASA ANOPP Propeller 
Ananlysis System," 
NASA Contractors Report, Contract NASI-96014,1996 

[23] Jacobs and Pinkerton, "Tests of NACA Airfoils in the Variable Density 
Wind Tunnel", Series 44 and 64" NACA TN-401,1931 

82 



References Continued 

[24] Farassat, F., "The Unified Acoustic and Aerodynamic Prediction Theory of 
Advanced Propellers in the Time Domain," AIAA J., Vol.24,1986, pp. 578-
584. 

[25] Borst, Henry V., Volume 1, "Aerodynamic Performance and Installation", 
USAAMRDL TR-73-34A, 1973. 

[26] Dwinnell, J. D., "Principles of Aerodynamics," McGraw-Hill, 1949 

[27] Richards, E. J., and Mead, D. J., "Noise and Acoustic Fatigue in 
Aeronautics," Wiley, 1968. 

[28] Farassat, F., Consultation Conversation Fall 1996 

[29] Hanson, D. B., "Compressible Helicoidal Surface Theory for Propeller 
Aerodynamics and Noise," AIAA J. Vol. 18, pp. 1213-1220. 

[30] Keiter, I.D., "Impact of Advanced Propeller Technology on Aircraft/ Mission 
Characteristics of Several General Aviation Aircraft," SAE Technical Paper 
No. 810584, April 1981. 

[31] Mcghee, R.J., Viken, J.K., Pfenninger, W., Beasley, W.D. and Harvey, 
W.D.: "Experimental Results for a Flapped Natural Laminar Flow airfoil 
with High Lift/Drag Ratios," NASA TM-85788, 1984. 

[32] Sewall, W.G., McGhee, R.J., Viken, J.K., Waggoner, E.G., Walker, B.S. 
and Millard, B.F.: "Wind Tunnel Results for a High-Speed, Natural 
Laminar Flow Airfoil Designed for General Aviation Aircraft," NASA TM-
87602, 1985. 

[33] Kelly, Jeffery J., Nguyen, L. Cathy, "Influence of Shaft Angle of Attack on 
Sound Radiation by Subsonic Propellers", Submittal to AIAA Journal of 
Aircraft, October 1996. 

83 


	Designed Reduction of Radiated Noise Characteristics from Two-Bladed General Aviation Propellers
	Scholarly Commons Citation

	ProQuest Dissertations

