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ABSTRACT 

Author: Manish Pantha 

Title: Adaptive Synchronization of Chaos for Secure Communication 

Institution: Embry Riddle Aeronautical University, Daytona Beach, FL 

Degree: Master of Science in Aerospace Engineering 

Year: 2004 

The purpose of this thesis is to study the use of adaptive synchronization of chaos for 

secure communication. Several non-linear models were studied, the one-dimensional logistic 

map, two-dimensional coupled logistic map, three dimensional Lorenz systems with and 

without time delay. Numerical simulation using MATLAB was conducted. The Lorenz system 

with time delay was studied numerically as well as by testing an analog circuit and 

comparisons was made between them. It has been pointed out in many research papers that for 

low-dimensional chaotic processes, once intercepted, the information can be readily extracted, 

so the interest has been directed to higher dimensional chaotic system synchronization. The 

analog circuit gives a more accurate precise real time simulation. 

The approach for secure communication utilizes the driver and driven synchronization 

of two identical chaotic systems. At the transmitter, information is added as a time varying 

parameter of the Lorenz system, and one of the state variables is transmitted through the public 

channel. This state variable is used to drive the receiver causing the two systems to 

synchronize in time. The driver system is used as the model reference for the adaptive 

controller to synchronize both the transmitter and the receiver system. The results of the 

Lorenz system are very conclusive both from the computer simulation and the analog circuits. 
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CHAPTER 1 

INTRODUCTION 

Chaos is a class of complex behaviors that emerges from nonlinear dynamical systems, 

and is ever present both in the technological and natural world. The new science of 

chaos is defined as aperiodic behavior occurring in a deterministic system. A nonlinear 

system is described as a system whose time evolution equation is nonlinear, that is, the 

dynamical variables describing the properties of the system is in a nonlinear form 

[Hillborn, 1994]. The main three properties of the deterministic systems are its time-

evolution equations, parameters that describe the system, and the initial conditions. 

According to one definition, "Chaos theory is the qualitative study of unstable aperiodic 

behavior in deterministic nonlinear dynamical systems." [Strogatz, 2000]. 

With the definition given above, we can draw several conclusions about the 

characteristics of chaos. First, we can say that the system is a dynamical system, 

meaning that its properties change over time. Second, that the behavior of the system is 

aperiodic and unstable thus the system behavior does not repeat itself. A non-periodic 

behavior does not follow a set pattern. If there is periodic behavior in a system, then 

future behavior may be determined. Non-periodicity is an outcome of apparent 

randomness, a sign of a chaotic system. Third, deterministic chaotic system has the 

property of sensitivity with respect to initial conditions, thus the trajectories of two 

perfectly identical chaotic systems starting with nearby initial conditions diverge from 

each other exponentially. This basic definition derived from the discovery of chaos in 

1961, by Edward Lorenz [Lorenz, 1996]; while working on a system of equations that 
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is now called the Lorenz system, he ran the computer modeling program twice with the 

same initial conditions, except that one had the accuracy of six digits, while the other 

had an accuracy of three digits. At first the two behaved identically, but after a short 

while they acted drastically different. 

From a practical standpoint, biological systems such as the human heart, prediction of 

weather and stock markets exhibit chaotic behavior and therefore been of great interest 

to researchers. As stated earlier, a chaotic system is aperiodic, and does which do not 

settle down to a fixed points, periodic orbits or quasi-periodic orbits as time approaches 

infinity. These characteristics have been extensively researched recently in various 

applications such as chemical and biological systems. The aim of the work reported 

here is to investigate the use of chaos in secure communication. 

Synchronization of chaotic systems plays an important role in many applications. If two 

chaotic oscillators are uncoupled, then knowing the dynamics of one oscillator does not 

tell anything about the state of the other oscillator at that moment. It turns out that if we 

couple both the chaotic systems in a way, then they tend to oscillate exactly the same 

way. Since both chaotic oscillators have the same dynamical characteristics, the 

trajectories of two chaotic systems are locked to each other and are said to be in 

identical synchronization. This means that when the transmitter has a certain amplitude 

at a given moment, the receiver at that moment is exactly of the same amplitude. The 

characteristic of the identical synchronization after coupling the oscillators is a diagonal 

line of the individual state variable of the receiver and the transmitter side. The 

diagonal line appears because we plot a point for each moment in time for the whole. If 
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at some moment the two amplitudes were not equal, a deviation from the diagonal line 

can be seen. 

In a real situation, time delay is inevitable, since the propagation speed of an 

information signal is finite. Chaotic attractors of time-delay systems can have a much 

higher dimension, and this suggests other possible way to improve the security for the 

use in secure communication. In this report we have utilized Lorenz systems to create 

the time delay chaotic system. The time delay unit is added to one of the three state 

variables of the Lorenz system. Both the transmitter and receiver circuit are made to 

synchronize, using the same time delay and the same initial condition of the state 

variables. Despite a small number of system variables, the embedding dimension and 

number of positive Lyapunov exponent increases as the delay time increases, and the 

system eventually transits to hyperchaos. The knowledge of Lyapunov exponents gives 

the indication about the predictability of the system. The analysis of Lyapunov 

exponents has not been investigated in this research. The time delay on a chaotic 

system has been further investigated in this report. 

1.2 Chaos and its Application to Communications: 

Recently a lot of work on secure communication has been implemented on the research 

phase, which all started in early 1960's when Lorenz observed that in the set of 

nonlinear equations, making very small changes of the parameters had a large effect on 

their solutions. The work of Pecora and Carroll [Pecora, 1990, 1991] on 

synchronization of chaotic system had recommended the possibility of secure 

communication using chaos synchronization. Also in their work of synchronization of 

3 



chaotic systems such as Lorenz and Rossler system were divided into two identical 

systems, so-called the response or transmitter system, while the other drive or receiver 

system. 

Following the process of synchronization, a number of methods have been proposed for 

secure communication [Cuomo, 1993], [Kocarev, 1995], [Boccaletti 1997], [Liu, 2000] 

with the help of the chaotic signals. Cuomo and Oppemheim [Cuomo, 1993] had shown 

that a small difference between the initial conditions between the drive and the response 

system would uncouple and distort the synchronization process. In 1999, Lin, Peng, and 

Wang [Lin, 1999] considered synchronized chaos in discrete systems, more precisely 

they studied the synchronized chaotic behavior of the popular model in coupled map 

lattices. However, Perez [Perez, 1995] in his paper pointed out that message masked 

with low-dimensional chaotic processes, once intercepted, can be sometimes readily 

extracted, so that the interest has been directed to higher dimensional chaotic system. 

For more secure communication purposes hyper-chaotic systems are used for more 

reliability and security, which can be easily generated by a time delay approach. 

Two factors that are important to secure communications with chaotic systems are the 

dimensionality of the chaos and the effort required to obtain the necessary parameters 

to match that of the driven systems [Roy, 1999]. One way to avoid this extraction of 

information from chaotic signal is to implement higher dimension with the time-delay 

chaotic system, which has been studied in this work. The other process proposed by 

Palaniyandi and Lakshmanan [Palaniyandi, 2001] to overcome by transmitting via a 

multi-step parameter modulation combined with alternative driving of different drive 
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system variables, which makes that attractor reconstruction impossible. It has 

researched, that without the receiver circuit, one can unmask the message from the 

modulation drive signal from the return map. In their work the changes were made in 

the mode of transmission of the digital message by the multi-step parameter modulation 

instead of single step in-order to complicate the attractor in the return map. 

1.3 Overview of the Present Work 

In this thesis, the problem of control and synchronization of chaos in systems with time 

varying parameter is treated. There are two ways of signal modulation in the chaotic 

system. 

1. Modulation of state variable signal 

2. Modulation of system parameter signal 

Much of the previous work in this area has focused on modulating the state variable 

signal. In our research the time varying system parameter has been modulated. Since 

the message is encoded in a time varying parameter, synchronization with the response 

system must be first established, and the recovery of the message is not ensured unless 

the variables parameter is identified at the receiver side. Therefore the proposed method 

improves the security of communication even when the parameters are initially 

substantially different [Crispin, 2002]. 

The goal of this work is to utilize chaos as the means of transmitting messages in a 

communication system. The primary goal is to hide information on a chaotic carrier 

signal, which is sent from the drive system (transmitter) to the driven system (receiver) 
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through public channels. In this work, the extraction of information has been 

accomplished by synchronization of drive and the response system and adaptive control 

method. On the second part of this thesis, a nonlinear system with a time-delayed 

feedback approach has been utilized. The method of synchronization and parameter 

identification has been extensively used in order to achieve our goal [Crispin, 2004]. 

This work consists of building an analog chaotic circuit, and also analyzing and 

comparing it with the numerical solutions. It can be seen that, chaotic signals of higher 

dimension can be used as an encryption technique for private communication because 

it's hard to reconstruct its attractor. 

In order to understand the method completely in the three-dimensional model, first the 

characteristics of the one-dimensional logistic map and the coupled lattice logistic map 

are investigated in this thesis. The results from the computer simulation show that the 

use of synchronization of the two chaotic systems and the adaptive method could be 

used for the purpose of the secure and private communication. 

In Chapter II and III, we present extensive analysis of one, two and three-dimensional 

model of chaotic systems. In Chapter III numerical model as well as practical 

implementation with the analog circuit of the Lorenz system is studied. The Lorenz 

system displays trajectories a trajectory, plotted in three dimensions, that winds around 

and around, occupying a region known as its attractors. The process of synchronization 

is implemented with linking the trajectories of one system to the same value in the other 

so that they remain in the step with each other, through the transmission of a signal 

[Boccaletti, 1997]. The synchronization of two identical systems is established with 

6 



different initial condition between the drive and response system. In all the cases the 

information of very low frequency and amplitude information is added to the 

parameters of the system. 

In Chapter IV, study on nonlinear systems with a time-delayed feedback approach on 

Lorenz equation is studied. The dynamics of nonlinear feedback systems cover a wide 

range up to high-dimensional chaotic behavior [Voss, 2001]. Nonlinear delay 

differential systems, a peculiar class of infinite-dimensional dynamical systems, are 

frequently used in several areas of science [Piccardi, 2001]. It has been known that very 

simple time-delay system is able to exhibit hyperchaos. Therefore, a time-delay system 

provides alternative simple and efficient tools for secure communication with low 

detectability. The main aim of chapter IV is to show the synchronization process 

extended to the delay differential systems, which has already been applied to the finite 

dimensional system. 

The analog circuit in this research allowed us to monitor the real time simulation of the 

chaotic signals and implement our goal. The computer simulation can only give us the 

approximate difference equation of the system and the model is analyzed in a finite 

time domain. Thus to analyze the differential equation, the analog circuit gives an 

infinite time dimension model and a real time simulation of our practical problem. 

Since the integrators, summing amplifiers used in the analog circuit would represent the 

true and perfect operation and thus avoid the truncation error. The other advantage of 

the analog circuit analysis over digital system is the removal of an imposed sampling 

frequency. The Fourier transform converts a signal from the time domain, without loss 
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of information, into the frequency domain. The frequency domain representation is 

exactly the same signal, in a different format. The inverse Fourier transform takes the 

frequency series of complex values and maps them back into the original time series. 

The perfect invertability of the Fourier transform is an important property for building 

filters, which remove noise or particular components of a signals spectrum. When the 

signal is converted to digital form, the precision is limited by the number of bits 

available. The errors that occur in the digital system are the artifacts and RMS error, 

which corrupt the actual information while processing the signal. All analog systems 

operate in real time, digital systems that depend on a computer to perform system 

computations may or may not work in real time. Only standard commercially available 

electronic components have been used and the observed signals are quiet robust. In 

chapter V the conclusion and the future development on the work has been stated. 
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CHAPTER 2 

ONE & TWO DIMENSIONAL MAPS 

2.1. General Analysis: One Dimensional Map 

Recently various methods have been investigated to use chaos in secure communication 

system. The basic idea is to hide a message signal on a chaotic carrier. The first approach 

in our report is to utilize this principle with the coupled logistic maps for the application 

to secure communication. Also in this chapter we have compared the one and two-

dimensional models and simulate a two-dimensional coupled logistic map 

communication scheme. 

This chapter describes the use of chaos in one-dimensional map and two-dimensional 

coupled logistic map in private communication system. Generally the nonlinear dynamics 

of physical systems are analyzed by obtaining discrete models, mathematically known as 

maps. In the discrete time domain we can say that a map is simply a function on the 

phase space that gives the next state, of the system given its current state. The dimension 

of the phase space is dependent on the number of variables in the system. One-

dimensional system has only one state variable JC, and the dynamical equation is generally 

represented by x = f(x), where / is a smooth function from the real line in the x-axis. 

X„ = f(x„-1) (2-1) 

The iterative scheme begins with the initial value of xo and generates a trajectory by 

successive application of the map function. The one-dimensional iterative maps show a 
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much greater range of dynamical behavior than the one dimensional differential equation 

system because the iterated maps are free from the constraints of continuity [Hilborn, 

1994]. 

The fixed points in state space play an important role in understanding the dynamics of 

the system. A fixed point xn = x(n-l) for a one dimensional map is given by x = f (x). If 

the trajectory happens to get the fixed point, then the trajectory will remain at that 

particular point. [Strogatz, 1994]. 

2.2 Coupled Logistic Maps (2D Map). 

The remarkable feature of the logistic map is in the simplicity of its form and the 

complexity of its dynamics and is one of the simplest forms of a chaotic process. In this 

thesis we have used two dimensional coupled logistic maps as a means to create a secure 

communication system. The system of N globally coupled one dimensional maps is 

described as Xn+i 0) = (1 - e)f[x„ (i)] + ̂  2 f[Xn (j)] (2.2) 
NJ= 1 

Where i and j are indices of maps with the lattice, n and n+1 are iteration indices, the 

coupling strength is s , which varies between zero and one and f(x) is the map function. If 

the coupling strength approaches unity, we expect the lattice to fully-synchronize. The 

xn(i) is the nth iteration of the ith map. The function is the logistic equation when f (xn) = 

p xn (l-xn) where p is the control parameter. 

For the simple uncoupled one dimesional logistic map can be represented as: 

xn+i=f(xn) = pxn(l-xn) for 0 < p < 4 (2.3) 
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It represents the discrete-time model of the population growth in an ecological stystem 

and p being the control parameter, taken to be positive and real value. The value of x 

must lie between some finite interval along the x-axis and between 0 < x < 1. 

The fixed points are given by: 

xf = p xf (1-Xf) or xf [ p xf + (1-p)] = 0 (2.4) 

Xfi= 0 and XQ = 1-1/p (2.5) 

This gives the fundamental of the logistic map which is utilized on our first part of this 

research for the case of the secure cummunication system. 

Considering two dynamical systems that are coupled in a unidirectional way, where one 

system, the drive, produces a scalar signal that is added to the response system. The 

transmitter system is assumed to be a discrete time autonomous dynamical system. In this 

case we are particularly interested in complete synchronization of the two dynamical 

systems. 

If we consider two logistic equation functions f(x) and f(y), the coupled logistic map is 

represented as a two-dimensional logistic map as shown below. 

xn+i(i) = a-e)f[xn(i)] + ef[yn(j)] (2.6) 

yn+1(j) = e f [xn(i)] + (1- €) f [yn(j)] (2.7) 

where f(xn) = p xn (l-xn) and f(yn) = p yn (1- yn) and e is the coupling strength 

Increasing the number of dimensions (variables) for iterative maps increases the range of 

possible behaviors. This type of coupling between two dimensional maps is also called 

the dissipative coupling. This work utilizes the same type of coupling procedure for the 

receiver and the transmitter unit in our work. 
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2.3 Synchronization and Parameter Identification. 

We know that synchronization can be achieved by forcing one chaotic system to behave 

same as the other chaotic system. A drive system and a response system should operate in 

the same dynamics inorder to synchronize. The drive system creates the chaotic signal, 

which is coupled with the response system with one of the state variable. The response 

side then reconstructs the chaotic signal, which is exactly the same as the drive system. 

The one-dimensional iterative map can be expressed as: 

x(n + l) = f(x(n);p(n)) ^ ^ 

y(n + l) = f(y(n);q(n)) (2.9) 

Where f: Rm-> Rm , x,y e Rm, p(n) e RK, q(n) e RK 

where n is the time, x(n) is the state variable and p(n) is the independent time varying 

parameter of the drive system. Similarly y(n) is the state variable and q(n) the time 

varying parameter of the response system. The initial conditions of the state variable 

x(n)= x(0) and y(n) = y(0) for n = 0 are not necessarily the same. Similarly initial values 

of the parameters p(0) = pO and q(0) = qO of both the systems are different. 

Since the chaotic systems are sensitive to the initial conditions, the drive and the response 

system will not synchronize unless the response system is controlled and forced to 

synchronize with the drive system using a transmitted signal [Crispin, 2002]. Thus a 

scalar signal s(n), which is a function of x(n) can be transmitted to the response system. 

s(n)=h(x(n)) (2.10) 
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In order to achieve our goal of synchronization, as also shown in Fig 2.5 and to transmit 

the information from the transmitter side to the receiver side, the two dynamics of the 

equations on the drive and the response side are represented as: 

x(n + l) = f(x(n);p(n) + I(n)) (2.11) 

y(n + l) = f(y(n);q(n)) (2.12) 

Where I(n) is the information to be transmitted and is added to the time varying 

parameter. Thus the synchronization can also be achieved even when the parameters p(n) 

and q(n) are initially substantially different [Crispin, 2002]. 

Um|p(n)-q(n)| = 0 (2.13) 
n-»co 

The synchronization can be achieved if the dynamics of the response system parameter 

q(n) is determined. In other words, the differential equations governing the evolution of 

the response parameters q(n) need to be derived systematically for dynamical system of 

the form of Eqs 2.7-2.8 [Crispin, 2002]. 

For the case of two dimensional coupled maps in the discrete time domain, the drive side 

can be expressed in the following way. 

The drive system: 

xt(n+l) = (1-s) fxt(n)+ s fyt(n) (2.14) 

yt(n+l) = (1-s) fyt(n)+ 8 fxt(n) (2.15) 

where fxt(n)= pl(n) xt (n) (l-xt(n)) and fyt(n) = ql(n) yt (n) (l-yt(n)) 

At the response side: 

xr(n+l) = (1-s) fxt(n)+ 8 fyr(n) (2.16) 

yr(n+l) = (l-8)fyr(n)+ s fxr(n) (2.17) 
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where fxr(n)= p2(n) xr (n) (l-xr(n)) and fyr(n) = q2(n) yr (n) (l-yr(n)) and xt(n),yt(n) 

are the state variable of the drive and xr(n), yr(n) are the state variable of the response 

side with different initial conditions. The time varying parameters are pl(n), ql(n) and 

p2(n) and q2(n) for the transmitter and the receiver side. As stated in the synchronization 

algorithm one of the transmitter variable xt(n) has to be added to the response system as 

shown in Eqs. 2.15. Later in the chapter the possibility of encoding a message from the 

chaotic dynamics through the parameter identification and adaptive process has been 

extensively explained. 

In the adaptive control and parameter identification of the one-dimensional logistic map 

given in equation 2.7 and 2.8, the sensitivity method is used to design the adaptive law so 

that the estimated parameters are adjusted in a direction that minimizes the error function. 

Given the key logistic function and the transmitted signal xt(n), the problem is to identify 

the parameter p(n) and extract masked information [Crispin]. 

The error e(n) represents the deviation of the receiver signal from that of the transmitted 

signal: 

e(n)=yr(n)-yt(n) (2.18) 

Thus the adaptive process is derived by minimizing the objective function for error e(n) 

which is represented by: 

J(n+1) = | (yr(n)-yt(n))2 = ± e 2(n+l) (2.19) 

J is based on the Euclidean distance between the vectors x and y. As an example let us 

consider the design of an adaptive law for updating the parameter vector 0. 
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0(n) = [pl(n), p2(n), pn(n)]T (2.20) 

0\n) = [ql(n), q2(n), qn(n)]T (2.21) 

where 0 * is the unknown parameter vector. Thus when 0 = 0 ' implies that error e(n+l) = 

0, a non-zero value of error e(i) is represented by 0 * 0 *. Since the output is dependent on 

the vector 0* and the error vector is also dependent on the©". Inorder to reduce the error 

e(n+l) to zero is to adjust 0 * in a certain way that minimizes the objective function. 

J(0) = e2(0) (2.22) 

The simple method to minimize is to use steepest decent method that decreases the 

objective function, a possible adaptation process is given by: 

0*(n+l)- 0*(n) = -y VJ(0 *) = -y e(n+l) Ve(0 *) (2.23) 

where Ve(9*) = ^ * , ^ r - (2.24) 

is the gradient of e(j+i) with respect to 

e* =[e;,e; e;j (2.25) 

As we know that x(n+l) does not depend on 0* ($ . Then we have: 

0*(n+l)-0*(n)= - y e(n+l) Vy(0*) or 0*(n+l) = 0*(n) -y e(n+l)Vy(0") (2.26) 

where y > 0 is the arbitrary design constant referred as the adaptive gain. Thus the 

adaptive process reduces to: 

q(n+l) = q(n) - G e(n+l) Vy(0m) (2.27) 

Where q(n+l) is the output or the recovered messages, where the initial condition of the 

parameter is given by q(0) some constant and the error e(n+l) is the difference between 

the transmitter and the receiver state variable. 
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2.4 Using the Coupled logistic map for secure communication: 

Considering the two coupled logistic map at the drive system. 

xi(n+l) = (1-s) fxl(n)+ s fx2(n) (2.28) 

x2(n+l) = (1-s) fx2(n) + s fxl(n) (2.29) 

where the functions are one-dimensional logistic maps and s = 0.7 is the coupling 

strength. 

fxl(n)= pKn) xl(n) (l-xl(n)) (2.30) 

fx2(n)= p2(n) x2(n) (l-x2(n)) (2.31) 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 

No. of iteration 

Fig 2.2: Coupled logistic maps xl(n+l) and x2(n+l) at the drive (transmitter) side 

where pl(n) and p2(n) are the time varying parameters for the drive. Two information 

II(n) and I2(n) are added to the parameters; where bi=3.7; b2 =3.823; 

pl(n)=plO + Il(n) ; whereplO = bi(parameter) (2.32) 

p2(n)= p20 + I2(n); where p20 = b2 (parameter) (2.33) 
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Fig 2.3: Two Information signals II(n) and I2(n) to be transmitted which are added to the 

time varying parameters 
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Given the key logistic function and the transmitted signal x(n+l), the problem is to 

identify the parameters pl(n) and p2(n) and extract the masked information. In the 

response side has the same dynamical equation with the initial conditions being different 

from that of the drive side. 

yi(n+l) = (l-s)fyl(n) + sfy2(n) 

y2(n+l) = (1-s) fy2(n) + s fxl(n) 

where 

(2.34) 

(2.35) 

fyl(n) = qll(n)yl(n) (l-yl(n)) (2.36) 

fy2(n) = q22(n) y2(n) (l-y2(n)) (2.37) 

where ql l(i) = bi and q22(n) = b2 are the parameters of the response side. 

One of the state variables from the response side fxl is added to the receiver coupled 

equation 2.27. 
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Coupled logistic equation 

200 400 600 800 1000 1200 1400 1600 1800 2000 
No. of iteration 

Fig 2.4: Coupled logistic maps yl(n+l) and y2(n+l) at the driven side 

Using the adaptive process extraction of the first information II (n) shown in Fig 2.6 (a). 

qll(n+l)=qll(n)+G ei(n+l) 
dfy1 Kn+O 

d q. l (n + l ) 
(2.38) 

where '(n+1) = (1- s) yi(n) (l-yi(n)); 
dqii (n+i) 

Extraction of the second information I2(n) which is shown in the Fig 2.10 (b) and is 

compared with the actual information. 

q22(n+i)-q22(n)+G e2(n+i) 
dq22(n+1) 

(2.39) 

where 2(n+1) =(1- e) y2(n) (l-y2(n>) and ei(n+i)= yi(n+i) - xi(n+i) and e2(n+i)= y2(n+i) - x2(n+i) 
"<l22(n+l) 

and the G = 50. 
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Fig 2.5: Error and synchronization characteristics between the drive and the response 

signal. 
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Fig 2.6: The comparison between the actual information and the extracted information 

using the synchronization process and parameter identification: (a) 1st information, (b) 2nd 

information. The G = 0 for n <300 and G = 50 for n >300 
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Fig 2.7: The iterative plot of the transmitted variable xi(n) vs. xi(n+l). 

2.5 Conclusion: 

As stated above, the purpose of this chapter was to propose a generalized method of 

control, synchronization and parameter identification of chaotic systems with the time 

varying parameter. The proposed synchronization and parameter identification scheme 

demonstrates good signal and parameters identification as well as the information 

extraction. 

From the results we can see that the results were recovered perfectly. As seen on the Fig 

2.5 the synchronization between the same transmitter and the receiver variable has a 

diagonal line and the error between them is very small. The recovered messages may 

contain a high frequency noise as seen on Fig 2.6(a) which can be eliminated by using 

low pass filter. 
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The reason for applying the gain G = 50 after 300 iteration was to let the system settle 

down in the synchronization process. As seen for the iteration n < 300 the error in Fig 2.5 

is more compared to the error after n > 300 iteration. The results obtained from this 

computer simulation was satisfactory and this same approach has been implemented on 

the three dimensional Lorenz system in the next chapter. 
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CHAPTER III 

THREE DIMENSIONAL FLOW: LORENZ SYSTEM 

3.1. Lorenz system of Equations. 

Chaotic systems provide a rich mechanism for signal design, generation and processing. 

An interesting aspect of modern chaos study is the emerging notion of secure 

communication via synchronized chaos. A numerical model of the Lorenz system has 

been implemented to demonstrate how the chaotic signal can be used in various contexts 

to mask information-bearing waveforms. The information is added to one of the time 

varying parameters of the Lorenz system. An adaptive process and parameter 

identification is used for the recovery of the information at the receiver side. Since only 

one of the state variables of the Lorenz transmitter system is transmitted, the 

eavesdropper will not be able to reconstruct the whole dynamics of the system to extract 

the information. 

The application of the Lorenz systems to weather prediction has led to a popular 

metaphor known as the butterfly effect and its many practical applications such as secure 

communication, monitoring stock market and more. The Lorenz system is defined by the 

very simple, coupled, three nonlinear first-order ordinary differential equations. 

^ = <r(y-x) (3.1) 
at 

^ = r x - y - x z (3.2) 
dt ' 

— = x y - b z (3.3) 

dt 

where a, r, b > 0 and a is the Prandtl number, r is the Rayleigh number and b is a 

constant. The system has only two nonlinearities xy and xz. The solution of these 
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ordinary differential equations describe a trajectory, which when plotted in three 

dimensional phase plane is known as the Lorenz attractor. 

3.2 Synchronization of two Lorenz Systems. 

As stated earlier chaotic systems provide signals for design, generation and processing 

for the use of secure and private communication via synchronized chaos. In this report 

numerical model as well as analog circuit of the Lorenz system has been implemented to 

demonstrate the use of chaotic signal to mask the information-bearing waveforms. 

In this chapter control and synchronization of chaos with time varying parameter is 

treated using the adaptive method and parameter identification. The driven system is 

controlled by varying its parameters using an adaptation process. Multiple messages of 

secure information can be carried using the single scalar transmitted signal [Crispin, 

2002], thus in this setup only one information signal is transmitted. 

Consider the two similar chaotic systems, the first is a Lorenz system serving as the drive 

system and the second is the driven system with one common state variable which are 

shown in equations 3.4 to 3.9. The parameters in the drive system are pi, p2, p3, o, r and 

b, where p2 and p3 =1. Similarly the parameters in the driven system are qi, q2, q3, a, r 

and b where q2 and q3 =1. The scalar signal x2 is the only transmitted signal from the 

drive side, which enables to synchronize the two systems. The problem is to identify the 

parameter pi and extract the masked information. This can be achieved only if the two 

systems synchronize with the common signal x2. 
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Consider the Lorenz system at the transmitter side: 

dx, 
= CT(X2 - X i ) 

dt 
dx2 

"dT 
dx3 
— = XiX2-bx3 
dt 

= PlX|-p2X2-p3XlX3 

In the receiver or the response system: 

dy ' / ^ 
dt 
dy2 
— - = q>y>-q2y2-q3y,y3 
dt 
dŷ  . 
—=:- = y .X2-by3 
dt 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3-8) 

(3.9) 

projection of the attractor onto (x y) plane 
20r 

°l 
-10 [ 

projection of the attractor onto (x y) plane 

-20 -15 -10 0 

yi 

10 15 20 

I : : : : J„tfg.„J 

-30 -20 -10 0 10 20 30 

(b) 

Fig 3.1: Synchronization properties of the Lorenz system between the transmitter and the 

receiver system with different initial condition: (a) without coupling the transmitter and 

the receiver side of the Lorenz system (b) with coupling the transmitter and the receiver 

side of the Lorenz system with one of the system variable. 
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This chapter uses the principle that was published in the research work by Crispin, 

[Crispin, 2002]. In order to achieve the synchronization, we have to determine the 

dynamics of the parameter q(t). An analogy from the hydrodynamics, the Langrangian 

approach for describing the evolution of a scalar quantity convected in a flow field 

[Milne-Thomson, 1968] is used for this purpose. This approach used the equation of 

motion of two marker particles advected in the fluid flow described by the vector fields is 

given, w(x,p) = f(x,p) and w(y,q) = f(y,q) at any given point x s R n a n d y s R n and 

the right hand sides are to be interpreted as the local velocity vector as [Crispin 2002]. 

dx 
— = w(x,p) = f(x,p) (3.10) 
at 

« w ( y , q ) = f(y,q) (3.11) 
at 

Considering the time variation of a scalar property J(x, y) of the flow along a trajectory of 

the response system as it evolves in the phase y s Rn .The total rate of change is given by 

the substantial derivative of the scalar property, the derivatives following the flow 

[Crispin, 2002]: 

^ = ̂  + F(y(t),q)VJ (3.12) 
Dt dt 

U X7 ( 9 9 8) 

where V= — , , 
{dyx dy2 dyj 

The difference or error between the drive and the driven state variable e2 = y2 - x2 in the 

Lorenz system shown in Fig 3.18. The parameter pi contains the information, the purpose 

of the receiver is to adapt to the dynamics of the transmitter by varying the parameter qi 

[Crispin, 2002]. The adaptive process is derived by minimizing the objective function for 

error e(i) is represented by: 
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J©4lM2=^E(y.-*.)2=Ee .2 (313> 
z ^ 1=1 1=1 

where J is the Euclidean distance between the state vectors x and y . The derivative of J 

with respect to time is given by. 

5J ^ de, 5J 
— = Y e , — - or — = e, (3.14) at tr l dt dt l 

Substituting the values to equation 3.13 

DT n de 
^ Z ^ f . W O . q ) ] (3.15) 

since e = y - x; thus — = = f (y,q) - f(x,p) 
y dt dt dt yy HJ v V) 

The equation 3.16 reduces to 

DT n 

— = £e1[2f1(y(t),q)-f,(x(t),p)] (3.16) 
D t 1=i 

which defines the rate of change of positive scalar property J in terms of the state variable 

x and y of the drive and the response system, the parameters p and q. The synchronization 

can be achieved even when the parameters p(t) and q(t) are initially substantially different 

and thus the dynamics of the response system parameters q(t) need to be determined. This 

can be accomplished by controlling the response system y such that the parameter p(t) of 

the drive system x are eventually identified, this is [Crispin, 2002]. 

lim|p(t)-q(t)| = 0 (3.17) 
t-»» 

In order to achieve synchronization, the deviation between the drive and the response 

system should be continuously decreasing, thus for the perfect synchronization, errors 

between the two systems e = y - x = 0. 
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A possible adaptation process is given by. 

| = -GV q 2>,f.(y(t),q) (3.18) 

3. 3 Lorenz system and its use in secure communication. 

Synchronization of coupled chaotic oscillators has become the subject of much 

discussion in the past decade [Fujisaka, 1983]. A useful property of the Lorenz system is 

that it possesses a self-synchronization property. A chaotic system is self-synchronization 

if it can be decomposed into at least two subsystems; a drive system or the transmitter 

and the receiver or the response that synchronizes when coupled with a common signal or 

in this case a common state variable. The synchronization considered in this report is 

similar to the one proposed by Pecora and Carroll [Pecora, 1990,1991] by introducing 

into consideration the drive-response scheme for the condition of synchronization. 

Consider the Lorenz system at the transmitter side: 

dxi 

— = G(X2-XO (3.19) 
dx2 g0S „x 

— = piXi -p 2 x 2 -p3xix3 (3.20) 

d X 3 , •/% /%i x 

= x.X2-bx3 (3.21) 
dt 

where xi, x2 and x3 are the state variables with the initial condition of [xi*, x2* , X3*] = 

[0.1; 0.12; 0.45] and the pi, p2 and p3 are the time varying parameters of the system. 

pi= r0 + In where r0= 28 and In = the information added to the parameter = A Sin (cot)) 

were amplitude A = 1. The scalar signal x2 is transmitted through the public to drive the 

system and achieve synchronization. 

s(t)=h(x(t)) = x2(t) (3.22) 

27 



In the receiver or the response system: 

^ = a(s(t)-y.) (3.23) 
dt 

- J = q.yi - q2y2 - q3yiy3 (3.24) 
dt 

^ = y,s(t)-by3 (3.25) 
dt 

where yi, y2 and y3 are the state variables with the initial condition of [0.12; 0.17; 0.48] 

and qi, q2 and q3 are the parameters of the receiver side. As the response system evolves 

and synchronizes with the drive system, the parameters qi, q2 and q3 will follow the 

original parameter pi, p2 and p3 of the drive system [Crispin 2002]. 

According to adaptive process equation 3.19 the three dimensional Lorenz system is: 

3 
Z eif (y , q) = (yi - xi)[<7 (s(t)-yi)] + (y2 x2) [qtf) yi - q2(t) y2 - q3(t) yiy3] + (y3 -

i = 1 

x 3 ) ( y i s( t ) -by 3 ) (3.26) 

The gradient with respect to the parameters q is given by: 

3 

A q [ £ eifi(y, q)] = [(y2 _ X2) y i ) , - (y2 - x2) y2, - (y2-x2) yiy3)]l (3.27) 
i=l 

The differential equation governing the controlled parameter is 

- j ^ - = - Gn (y2-s(t)) yi + Gi2 (y2-s(t)) y2 + G,3 (y2-s(t)) yiy3 

% - = - G2i (y2-s(t)) yi + G22 (y2-s(t)) y2 + G23 (y2-s(t)) yiy3 (3.28) 
at 

dq3 G3i (y2-s(t)) y, + G32(y2-s(t)) y2 + G33 (y2-s(t)) yiy3 
dt 

where Gn, Gi2...G33 are the gain of the system. Considering the case where only one of 

the parameter pi is to be identified and the other two parameters p2 and p3 are some 
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constant and known. Thus the equations 3.27 & 3.29 can be reduced to [Crispin, 2002]: 

where q2 and q3 are some constants. 

3 
Aq[ £ e i f i ( y , q ) ] = [ ( y 2 _ x 2 ) y l , 0 , 0 ] t (3.29) 

i = 1 
dqL_ 
d t ~ - Gn (y2-s(t)) yi + Gn (y2-s(t)) y2 + Gi3 (y2-s(t)) yiy3 

- ° ' ^ r - ° ' (3.30) dt dt 

d q 2 _ A . d q 3 

—L = ~G11(y2 -s(t))yj or = -Gn(y2 -x2)yl where a scalar signal s(t) is a function of 
dt 

the state x(t) and - ^ - = 0 and - ^ - = 0 
dt dt 

3.4 Experimental Setup. 

In this section the circuit implementation of the chaotic Lorenz system has been 

described. The behavior of the numerical simulation matches that of the results from the 

analog circuit. The dynamics of the receiver side Lorenz circuit is exactly the same as 

transmitter circuit in order to synchronize the two systems. Information to be transmitted 

is added to the time varying parameters at the transmitter side. The basic addition at the 

receiver side is the adaptive process to recover the actual information using the parameter 

identification process. 

For the implementation of the Lorenz equations in an analog electronic circuit was done 

with op-amps (LF347BN) using it as the summing amplifier, inverter and an integrator 

and analog multipliers (AD633) for the nonlinear function of xy and xz. Only standard 

commercial available electronic components have been used and the observed signal is 
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quiet robust. The tolerances of the components were at the maximum of 2 % on the op-

amp, 0.2% on the multiplier and 1% on the values of the resistance. Each circuit, the 

driver and the driven system, was constructed independently, and then tested for proper 

operation. To be certain that both circuits were identical, the same types of electronic 

components were used. Once both circuits were completed, they were coupled together 

and all the connections made and the waveforms were observed by Tektronix TDS310 

oscilloscope. Typical data were sampled at a rate of 100 scans/second. 
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3.4.1 Circuit Setup. 

For the 1st Lorenz system on the transmitter side: 

dxi 

dt 
: a(x2 - Xi) where sigma =10. The output from the integrator 

f!su_J_ 
dt C4 

( 

Ris 2 

r R 16 1 + 
k R i 5 ; 

R 21 Y\ 

v R i 2 + R 2 i y ; 
CT(X2-X1) 

where Ci = 0.1/iF, R5 = Re 

For the Lorenz 2nd equation 

dx '2 _ 

dt 
pix, -p2X2 -p3X,x3 where P2 = P3 = 1 and pi= r0 + Information 

Vout, = -
^l(t) 10V^ 

V R 4 R 3 J 
R14 = - (r0 + I(t)) 

Inverting the Vout, signal with the inverter 

Vout2=-(r0 + I(t)) 
v R , y 

= (r„ + I(t)) = p,(t) 

The output from the integrator: 

dx2 

"dt" 
-P,(t)x, 

< 1 ^ 

v^ny 
+ x,x, 

ro 
V R 9 7 

+ x, 
< 1 ^ 

vRnyy 

Substituting the values will be equal to 2nd Lorenz system 

For the Lorenz 3rd equation: 

dx, 

dt 
= x,x2 - bx3 where b=8/3 

The summing integrator: 

dx3 _ 1 

dt ~ C 3 

( 
x.x \"-2 

R +-
V. 1 V12 i v 1 3 . 

dx3 8 
=—i = (x,x,—X,) 

dt ! 2 3 3 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 
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The values of the components are: 

Ri,R2,R3,R4,R8,R l 0=10kQ R5, R<5, R9, R17, R12=1MQ R7,Rn = 10MQ, R13 = 

3740 kQ. The capacitors d , C2, C3 = O.lfif and the multipliers AD633. 

In the receiver side: 

For the 1st Lorenz equation at the receiver side X2 is the variable that transmitted 

information from the transmitter side. 

dt 

dy, 
dt 

= a(x2 - y,) where a =10. The output from the integrator for the first variable: 

1_ 

Ci 

/ 

- x , 
V 

+ Yi 
' 1 ^ 

^sj vReyy 
(3.38) 

->nd 
For the Lorenz 2 equation at the receiver side; 

dy2 
-^— = q^ -q2y2 -q3y1y3 where qi,q2 and q3 are constants 
dt 

(3.39) 

Summing of the parameters: 

Voutl 

f5\ 10V^ 

R3 R4 

R 2 1=-(5+r 0 ) = -qi (3.40) 

Inverting the Vouti signal with an inverter: 

V o u t 2 = - q i 

( 0 
V R 2 / 

= q i (3.41) 

The output of the integrator 

dt 
J_ -qiYi 

f \ ^ 

V R 7> 

( 1 >\ ( i Yi 
+y iy 3 

v R i o y 
+y2 

v R uy 
(3-42) 

For the Lorenz 3rd equation on the receiver side 

—— = y.x, -by3 where b = 8/3 
dt ' 2 

(3.43) 
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dt C, 

( y i x 2 , y3
 A 

V R n R i s y 
(3.44) 

The Adaptation process: 

^ . = -G I I (y 2 -x a )y 1 

fore2=y2-x2 

The summing amplifier: 

(3.45) 

(3.46) 

e 2 = - y2 
"-28 R 

R 2 6 = ( y 2 - x 2 ) (3.47) 
27 7 

The final output 

dq. 
—^ = -G(y, - x, )y, where G = Gain 
dt 2 2 ' 

d Q i = i f (y2-x2)yi 
dt C41 10R19 

R21 R20 (3.48) 

The values of the components are: 

Ri, R2, Rs, R9, Rio, Rn» Ri2,Ri3,Ri5,Ri6,Ri9,R2o,R22> R23, R24> R25, R26» R27= 10kQ, R4= 

357kQ, R3)R5, Re.R?, R17, R21 = IMQ , = 35.7kQ, R14 = 10MQ, Rig = 3740 kQ .The 

capacitors Ci, C2, C3,C4= 0.1 uf multipliers AD633. 
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3.4 Results and Conclusion 

In this chapter we have been able to characterize perfect synchronization of the Lorenz 

oscillators in an electronic (analog) circuit. The comparison of the results obtained from 

the numerical analysis and the analog circuit were very similar. Below are the list of 

figures between the numerical analysis and the actual analog circuit. The results obtained 

were comparatively satisfactory but many other factors like band limitation, noise 

interference of the signal on the system has not been taken into consideration. 

state xi vs time 

10 20 30 40 50 60 70 

t 

(a) (b) 

Fig 3.4 The time series of the xi(t) vs. time of the Transmitter side: (a) computer 

simulation (b) analog circuit output 
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state x2 vs time 

(a) (b) 

Fig 3.5 The time series of the x2(t) vs. time of the Transmitter side (a) numerical solution 

(b) analog circuit output 

state y3 vs time 

0 10 20 30 40 50 60 70 80 90 100 
t 

W 

Tik'nnaioo's/i 

(b) 

Fig 3.6 The time series of the X3<t) vs. time of the Transmitter side: (a) numerical solution 

(b) analog circuit output 
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state x1 vs state x3 
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(a) (b) 

Fig 3.7 Attractor on the x3(t) and Xi(t) co-ordinate (2D) (a) numerical solutions (b) analog 

circuit output 
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Fig 3.8 Attractor on the x2(t) and xi(t) co-ordinate (2D): a) numerical solutions (b) analog 

circuit output 
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state x2 vs state x3 

<> 

-:,: -20 -10 0 
x2(t) 

10 20 30 

T U C f l D B 500 S / i #'*- 3 Acqs - I 

(a) (b) 

Fig 3.9 Attractor on the x3(t) and x2(t) coordinates (2D): (a) numerical solutions (b) analog 

circuit output 

state y1 vs time 

(a) (b) 

Fig 3.10 The time series of the yi(t) vs. time of the Receiver side: a) numerical solutions 

(b) analog circuit output 
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•20 

state y2 vs time 

~i 1 1 1 r 

- ' I ; 

-301 1 1 1 1 I I I I I 
0 10 20 30 43 5C 60 70 80 90 100 

(a) (b) 

Fig 3.11 The time series of the y2(t) vs. time of the Receiver side: a) Numnerical solutions 

(b) analog circuit output 

state y3 vs time 
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(a) (b) 

Fig 3.12 The time series of the y3(t) vs. time of the Receiver side: a) Numerical solutions 

(b) analog circuit output 
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Fig 3.13 Attractor on the y3(t) and yi(t) co-ordinate (2D): a) Numnerical solutions (b) 

analog circuit output 

state y2 vs state y3 
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Fig 3.14 Attractor on the y3(,) and yi(t) co-ordinate (2D): a) Numnerical solutions (b) 

analog circuit output 
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Fig 3.16 Properties of the synchronization between the receiver and the transmitter state 

variables: (a) computer simulation (b) analog circuit output 
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Fig 3.17 Difference between the receiver state variable (y2) and the transmitter variable 

(x2). (a) computer simulation (b) analog circuit output 
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Fig3.18 The original information and the extracted information: (a) computer simulation 

(b) analog circuit output 
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CHAPTER 4 

DELAY DIFFERENTIAL LORENZ EQUATION: 

4.1 Introduction: 

Nonlinear systems with a time-delayed feedback recently have attracted much research 

due to the wide abundance of time delays in nature and technologies [Voss, 2001]. In 

this chapter, we have addressed a practical problem of synchronization of high 

dimensional system by introducing the time delay feedback. It has been studied that 

message masked with low-dimensional chaotic processes, once intercepted, can be 

sometimes readily extracted, so that the interest has been directed to higher dimensional 

chaotic system. Thus with this new approach security of a communications scheme can 

be enhanced by making the transmitted signal more complex. 

The proposed technique, based on the nonlinear control method, has several advantages 

over the existing methods Gassi, Mascolo [Gassi, 1998]. 

• It enables synchronization to be achieved in a systematic way. 

• It can be successfully applied to a wide class of hyperchaotic systems. 

• It does not require the computational of any Lyapunov exponents. 

• It does not require initial conditions belonging to the same basin of attraction. 

As we know that synchronization of two systems occurs when the trajectories of one of 

the systems converges to the same values as the other and they will remain in step with 

each other. For the chaotic systems synchronization is performed by the linking of 

chaotic systems with a common signal or signals (the so-called drivers). 
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Our objective is to implementation the Pecora-Carroll approach of chaos synchronization 

in hyperchaos, which takes advantage of increased randomness and unpredictability of 

the Lorenz systems of equation. The schematic setup of the synchronization experiment 

is shown in Fig 4.1, where one of the parameter of the transmitter's chaotic output state 

variable is coupled to the driven system. 

4.2 Hyperchaos Synchronization 

Considering a simple map representation of the time delayed system Kye, Choi, Kwon, 

Kim, Park [Kye, 2004)] 

^ = f(x(t),x(t-x)) (4.1) 

at 

where r > 0 is the time delay, x (t) e R is the state variables. The above system is of an 

infinite dimension system, because the state at time t is an element in the space of the 

continuous function x (•): [t-x, t] -» R. [Piccardi 2001]. 

The delay differential equation represented by the discrete form: 

xn+1 = f(xn,xn_T) where the function f : R x R ^ R (4.2) 

xn is the value of x at nth time step such that xn = x(nAt) and xn.T = x(nAt - xAt). 

f(xn,xn_T) = x(nAt) + F(x(nAt),x(nAt-xAt)At (4.3) 

It is known that the above system is equivalent to the (T +1) dimensional coupled maps. 

Xn=l = f ( X n > X n ) (A $\ 

where the variables x[9....xl constructs the feedback loop. The above representation 

plays an important role in analyzing the time-delayed system with fixed delay time. 
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The Lorenz system was chosen to implement the above described scheme of time delay. 

Consider the 3D delay-differential equations for the Lorenz system, the drive system is 

represented by: 

dx. 

dt 

dx 

i = o(x2(t)-x,(t-T)) (4.5) 

dt 

dx 3 

= rx1(t-x)-x2(t)-x1(t-x)x3(t) (4.6) 

= x,(t-T)x2(t)-bx3(t) (4.7) 
dt 

where cr, r ,b > 0 and the time delay x >0. The transmitted signal for synchronization is 

chose as the single variable. 

s(t) = h(x(t)) = x2(t) (4.8) 

The response system is given by 

^ = o(s(t)-y i(t-x)) (4.9) 
dt 

d y 2 _ 
dt 

= ry1(t-x)-y2(t)-y1(t-x)y3(t) (4.10) 

% - = y , ( t -0s( t ) -by , ( t ) (4.11) 
dt 

where a, r ,b > 0 and the time delay x >0 and state variable X2(t) from the drive system is 

injected to the driven system for both the system to synchronize. In the driven system the 

forcing delayed function is the same as the driver system in order the both the system to 

achieve synchronization. To achieve synchronization, the parameters of the two systems 

need to match. Two dynamical systems are termed synchronized if the difference 

between their states converges to zero for t -»<*>. 
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dt dt 

4.3 Experimental Setup 

In order to understand the result of the experiment, first coupled nonlinear time-delayed 

system is considered. Here, only unidirectional coupling between a 3D drive and the 

driven system with state X2(t) is taken into account. The signal from the drive system 

X2O) is injected into the response system. The time delay between the drive and driven 

system is varied between 10 ms to 100 ms range. In this particular test the time delay of 

85ms was used with the state variable Xi(t). The two systems are identical but differ in 

their structure and tolerance. The difference between the parameters deviation of the 

Lorenz drive and the driven system are kept to a very small value as possible. 

The drive and the driven system consist of nonlinear Lorenz system, built purely in 

analog domain from commercially available operational amplifiers and multipliers. A 

commercially available bucket bridge delay line is used in both the system. As 

anticipated the nonlinearities of the two oscillators are identical and since the bucket 

delay line induced some distortion of the signal, a long term run reveals that the 

synchronizing was achieved between the two systems. The time varying information 

signal is added one of the parameter. 
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4.3.1 Circuit Setup. 

To model the equations 4.4 - 4.10 consisting of the drive and the driven system are as 

follows. The drive system is given by: 

The Lorenz first delay differential equation: 

dx M _ 

dt 
= a(x2(t)-x1(t-x)) wherea=10andx>0 

1 dt 
x2(t) | x,( t-x) 

R, R 

\ 

2 J 

dx 
- ^ = 10(x 2( t ) -X l( t -x)) 

where Ri = R2 and Ci= 10 \xf 

The Lorenz 2nd delay differential equation: 

dx,, 

dt 
= rXj (t - T) - x2 (t) - Xj (t - r)x3 (t) were r = 28 

- c ^ 2 

dt 

x t ( t -x) X l(t-x)x3(t) x2(t) 
R7 ; v Rs R, 

dx2 

~dT 
= - ( rx 1 ( t -x) -x 1 ( t -x)x 3 ( t ) -x 3 ( t ) ) 

Inverting the signal in Eqs 4.18 by an inverter 

dx 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

dt 
= - ( r x 1 ( t - x ) - x 1 ( t - x ) x 3 ( t ) - x 3 ( t ) 1 - ^ = ( rx 1 ( t -x ) -x 1 ( t -x )x 3 ( t ) -x 3 ( t ) ) 

3rd Lorenz delay differential equation 

dx 

dt 
^ = x, (t - x)x2 (t) - bx3 (t) where b = 8/3 

C > 
dt 

x , ( t -x)x 2 ( t ) | x3 

Rs R0 

(4.19) 

(4.20) 
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dx 

dt 
3 _ x1(t-x)x2(t)-bx3(t) (4.21) 

The components values are given as: 

Ri, R2, R5, Rs = IMQ, R3 = 357kQ, R4, R6 = 10kQ , R7 = 10MQ, R9 = 3740KQ 

Ci, C2, C3 = O.luf and the time delay unit. 

For the response system 

The 1st Lorenz delay differential equation: 

dt 
= c(x(t) - y, (t - x)) where a =10 and x >0 

_ r dyi -
° 4 d t" 

dy 

x2(t) + y,(t-x) 

V R i o R 11 / 

^ = 10(x 2 ( t ) - y i ( t -x) ) 
dt 

The Lorenz 2nd delay differential equation: 

ry1(t-x)-y2(t)-y1(t-x)y3(t) wherer = 28 & = , , 
dt 

- C . 

dy, 
dt 

dt 

y . ( t - T ) y i ( t -T)y 3 ( t ) y2(t) 

R3 R5 R7 J 

= -(ry 1 ( t -x)-y 1 ( t -x)y 3 ( t ) -y 3 ( t ) ) 

Inverting the signal 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

^ = -(ry1(t-x)-y1(t-x)y3(t)-y3(t))f-y = (ry1(t-x)-y1(t-x)y3(t)-y3(t)) 
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3 rd Lorenz delay differential equation: 

dy, 
dt 

= y, (t - x)x(t) - by3 (t) where b = 8/3 (4.28) 

_c ^ = y i Q - t K P ) , x
3(t) ,6 - (4.29) 

dt R17 R„ 

d ^ = y1(t-x)x2(t)-by3(t) (4.30) 
dt 

The components values are given as: 

Rio, Rn, Ri4,Ri7= IMQ, Ri2 = 357kQ, R15, R13 = lOkQ, Ri6= 10MQ, Ri8 = 3740KQ 

C4, C5, C6 = O.luf and the time delay unit. 
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4.4 Results. 

We were able to show the synchronization of the Lorenz delay differential system in an 

electronic (analog) circuit. The comparison of the results obtained from the numerical 

analysis and the analog circuit were similar. List of figures between the numerical 

analysis and the actual analog circuit are shown below. The results obtained were very 

different from the MATLAB simulation. The main reasons could be the mismatch of the 

time delay unit on the analog circuit, high of the tolerance level of the components. The 

tolerance has been kept at low as ±5% in this experiment. 

For future work the tolerance level of ±1% should be used because the chaotic system is 

very sensitive to the initial condition and external influence could affect the whole 

dynamics of the output. The time delay unit used in this case was not a precise, using the 

digital time delay unit could improve the output, and this could also accurately match the 

delay time on both of the units placed on the receiver and the transmitter side. 
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variable with delay x3 vs. y3 (a) analog circuit output (b) computer simulation 
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CHAPTER IV 

CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK: 

It has been known that synchronization of chaotic system has motivated potential 

applications in secure communications. With the development of chaotic systems, many 

different encryption systems have been proposed, including secure communications 

based on synchronization of analog circuits. The use of chaotic systems has been for the 

purpose of encryption. This basic concept was implemented in this report, using the 

adaptive control process. This process combines both conventional encryption method 

and the synchronization of the chaotic system, so the level of security is enhanced. The 

two key features of chaos include a chaotic time series and sensitivity to small change in 

the initial conditions. These cause the chaotic transmission to have low probability of 

detection as an information-bearing signal is passed through the public channel. 

In this thesis we studied (a) a general mathematical model for chaotic system formulated 

in discrete time and continuous time domain from one-dimensional model to three-

dimensional Lorenz system. It uses of the chaos theory for the purpose of secure 

communication by adding the information to the time varying parameter, (b) It is based 

on an adaptive control method and parameter identification in order to an identify the 

information, (c) Synchronization of delay differential Lorenz equations to be further used 

in the implementation of secure communication. 

Chapter 2 presents the synchronization phenomenon of the coupled two-dimensional 

logistic equation. Its application to secure communications using an adaptive control 
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method is also demonstrated. It is known that under certain conditions, trajectories of the 

response system converge to exhibit a similar behavior to that of the driver system 

despite differences in their initial conditions. Further more in chapter 3, we propose the 

scheme for the three dimensional model of Lorenz system. The results from the analog 

circuit were comparatively similar to that of numerical solutions. In both cases the goal of 

synchronization was achieved. The electronic circuit described for the Lorenz system 

required fairly low tolerance value for the components to limit the performance. 

There are several drawbacks in working with the chaotic analog systems for its practical 

application. The synchronization process of the signals at the transmitter and the receiver 

side using the analog devices. The tolerance level of each of the components should be 

kept to a minimum. The time delay unit between the transmitter and the receiver should 

match perfectly in delay time, impedance value and the tolerance level. There is also a 

complexity issue as the chaotic system depends on nonlinear effects that are hard to 

control. Thus for the future work these practical problem could be addressed. 

As we know that the time delay system are present in nature and technology, due to the 

infinite signal transmition time, therefore the study of synchronization phenomena in 

such system is of great practical importance. In chapter IV we have described 

synchronization characteristics of time delay system. In future using the scheme of 

synchronization and parameter identification process of hyperchaotic system described 

by the delay differential equations, a communication system could be developed. Fig 5.1 

gives the general layout of this secure communication scheme. 
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Fig 5.1: Basic set-up of communication system using chaotic dynamics with delay 

In conclusion, we have presented a general approach to construct a synchronized 

dynamical system using an adaptive process, with and without time delay and discussed 

its practical application in a secure communication, where the information can be 

recovered without errors. One of potential applications of chaotic dynamics is secure 

communication in IT industry. With a rapid development of communication networks 

today such as Internet, telecommunications, e-business and so on, the security issue of 

information transmission becomes more and more important. Other areas such as military 

communication, banking transaction have the potential applications of chaotic 

communication system. 
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APPENDIX A 

MATLAB Program: The synchronization system described by 1-D coupled logistic map 

clear 
% Send two separate information which is added to the parameters 
% Case for the constant parameter with Different Inital Condition 
% Information is hidden in the parameters of the maps pl(i) and p2(i) 
% The transmitter x(i) is the coupled 2D map% 
% 
% The receiver uses two identification models: 
% yl(i)= a 2D coupled logistic map with a variable parameter ql(k) 
% y2(i)= a 2D coupled logistic map with a different parameter q2(k) 
% and synchronizes by adjusting the parameters of the maps 
% and by using an adaptation law for the switching parameters 
% Bll(i) and B22(i) are constants 
% 
% The secret information can be recovered at the receiver only 
% when the right switching sequence of the transmitter is identified 
% and the right models are used. 
bl=3.7; b2=3.823; % The parameters 

% Initial Condition % x(l) = Transmitter, reference model 
xl(l)= 0.7; x2(l)=0.5; % The initial condition for the Transmitter 
Dpl=0.01; % The amplitude of the Information signal #1 
Dp2=0.02; % The amplitude of the Information signal #2 

%The coupling parameter 
eps=0.7; Time = 250; 

%The gain used in the adaptive process 
gaml=50; gam2=50; 

%The initial condition for the error 
deltazl(l)=0;deltaz2(l)=0; 

% The initial condition for the Receiver 
yl(l)=0.6; y2(l)=0.65; 

%The parameters at the receiver side 
qll(l)=bl; q21(l)=b2+eps; ql2(l)=bl+eps; q22(l)=b2; 

% No. of Iterations 
N=1999; 
fori=l:N 

% At the Transmitter Side 
% The Transmitter variable parameters pl(i) and p2(i) is added with the 

information: 
pl(i) = bl + Dpl*(cos(pi*i/Time)); 
p2(i) = b2 + Dp2*(sin(pi*i/Time)); 

% The Logistic Equations: 
fxl(i)=pl(i)*xl(i)*(l-xl(i)); 
fx2(i)=p2(i)*x2(i)*(l-x2(i)); 

% The Coupled Logistic Equation:(2-D) 
% Tramsitted Message is xl(i) variable: 

xl(i+l) = (l-eps)*fxl(i) + eps*fe2(i); 
x2(i+l) = (l-eps)*fx2(i) + eps*fxl(i); 
X(i)=xl(i);Y(i)=xl(i+l); 



% The Actual Message that is transmitted 
MessageTl(i)= (pl(i) - bl); MessageT2(i)= (p2(i) - b2); 

% At the Receiver Side 
% The logistic Equations: (Dynamical Equation) in which xl is the 
% Transmitted Message 

fyl(i) = qll(i)*yl(i)*(l-yl(i)); 
fy2(i) = q22(i)*y2(i)*(l-y2(i)); 

% Coupled Logistic equation 
yl(i+l) = (l-eps)*fyl(i) + eps*fy2(i); 
y2(i+l) = (l-eps)*fy2(i) + eps*fxl(i); 

% Extraction of the Information 
% The difference between the Driver and Receiver Signal 

deltazl(i+l)= xl(i+l)-yl(i+l); deltaz2(i+l)= x2(i+l)-y2(i+l); 
%[B11,B22] = [1,0] Bll(i)=l; 
% The adaptation Laws for the coefficients ql: 

DylDqll(i) = (l-eps)*yl(i)*(l-yl(i)); 
DylDql2(i)= 0; 
DfylDqll(i)=Bll(i)*DylDqll(i); 
if i <=300 

gaml= 0; 
elseif i >=300 

garni = 50; 
end 
qll(i+l)=qll(i)+gaml*deltazl(i+l)*DfylDqll(i); 

%B11,B22]=[0,1] 
B12(i)=0;B22(i)=l; 
Dy2Dq22(i)=(l-eps)*y2(i)*(l-y2(i)); 

%xr2(i+l)= B22(i) * f2r(i); 
% The adaptation Laws for the coefficients q2: 

Dfy2Dq22(i)=B22(i)*Dy2Dq22(i); 
%ql2(i+l)=ql2(i); 

if i <=300 
gam2= 0; 

elseif i>=300 
gam2 = 50; 

end 
q22(i+l)=q22(i)+gam2*deltaz2(i+l)*Dy2Dq22(i); 
end 

% Graph layout and Data 
figure 
subplot(2,l,l); plot(pl,'.');ylabel('Information l');grid on; 
subplot(2,l,2); plot(p2,'.');ylabel('Information 2,);xlabel('time');grid on; pause; 

figure 
subplot(2,l,l); plo^fxl/.^ylabelCfxlOjgrid on; 
subplot(2,l,2); plot(fx2;.,);ylabel('fx2,);xlabel(,time,);grid on; pause; 

figure 
subplot(2,l,l); plot(xl,V);ylabel('xl = Tranmitted Mormation');grid on; 
subplot(2,l,2); plot^/.'^ylabeK^^grid on; pause; 



figure 
subplot(2,l,l); plot(fyl,'.'); ylabel(!fyr);title(The Receiver side Logistic Equation');grid on; 
subplot(2,l,2); plot(fy2,7); ylabelOf^xlabelOtime^grid on; pause; 

figure 
subplot(2,l,l); plot(yl,7); ylabel('yr);title(fCoupled logistic equation');grid on; 
subplot(2,l,2); plot(y2,7); ylabel^^xlabelOtime^grid on; pause; 

figure 
subplot(2,l,l); plo^deltazl/.^ylabelCxl-yl^titleCError between the Transmitted and Received 
Message');grid on; 
subplot(2,l,2); plo^x^yl/.^ylabelCxl^xlabelCyl^grid on; pause; 

figure 
subplot(2,l,l); plot(deltaz2,'.t);ylabel(,x2-y2,);title(,Error between the Transmitted and Received 
Message');grid on; 
subplot(2,l,2); plot(x2,y2,'.l);ylabel(,x2,);xlabel(,y2,);grid on; pause; 

figure 
subplot(2,l,l); plot(MessageTl,7);title(The Actual Message #lf);grid on; 
subplot(2,l,2); plot(qll-bl,7);ylabel0qll-br); title(The Extracted Message');grid on; 
axis([l N -0.02 0.02]); pause; 

figure 
subplot(2,l,l); plot(MessageT2,t.,);title(The Actual Message #2');grid on; axis([l N -0.02 0.02]); 
subplot(2,l,2); plot(q22-b2,7);ylabel('q22-bl'); title(The Extracted Message');grid on; 
axis([l N -0.02 0.02]); pause; 

figure 
plot(X,Y,7); xlabel(,xl(i),);ylabel(,xl(i+l),);title('Iteration plot»);grid on; pause 
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APPENDIX B 

MATLAB Program: To Synchronize System Described by 3-D Lorenz Equation 
% Main Program 
clear 

% Conditions at the Trasmitter and Receiver side:(3-D) 
% Costant for the Lorenz Equation 

% (Parameters at the Transmitter and the Receiver side is same) 
global sigma rO b pi w Amp 

% The parameters 
sigma=ll;r0=28;b=8/3; 

% w = omega of the 2*pi*f of the signal 
% Amp is the amplitude of the signal 

w = 0.628; Amp = 1 ; 
% The initial TO = 0 and the TFINAL=100 is the time span 

t0=0; 
tfinal=100; 
tspan = [tO tfinal]; 

% Intial Condition 
xl0=0.1; x20=0.12; x30=0.45;yl0=0.12; y20=0.17; y30=0.48; 
Xinitial = [xlO x20 x30]; % Initial condition of x 
Yinitial = [ylO y20 y30]; % initial condition of y 

% 
ql0=r0 + 5; q20=l; q30=l; 

% ODE45 Solve differential equations, [t,x] = ODE45('ODEFUN',TSPAN,xO) 
% with tspan = [TO TFINAL] integrates the system of differential 
% equations x' = f(t,x) from time TO to TFINAL with initial conditions xO. 

XO = [Xinitial Yinitial qlO q20 q30]; 
% The ODE functions are Lorenz 1 (subroutine) 

[t,X]=ode45('Lorenzl ',tspan,X0); 
%At the receiver side 
% Identifying the Individual Vector for x 

xl=X(:,l);x2=X(:,2);x3=X(:,3); 

yl=X(:,4);y2=X(:,5);y3=X(:,6); 
ql=X(:,7); q2=X(:,8); q3=X(:,9); 
pi = rO + Amp*(sin(w*t)); 

% Figure and Graph 
plot(t,xl); 
title ('state xl vs. time'); 
xlabel('t'); ylabel('xl(t)f); 
%axis([10 50 25 -25]); grid on; pause; 

% Identifying the Individual Vector for y 

% The Actual signal Sent 

% plot t on x-axis, and xl on y-axis 
% put the title on the figure 
% put labels on x-axis and y-axis 

% plot t on x-axis, and xl on y-axis 
figure; 
plot(t, x2);title ('state x2 vs. time'); 
xlabel('t'); ylabel('x2(t)'); 
grid on; pause; 
% 
figure; 
plot(t, x3);title ('state x3 vs. time');xlabel('t*); ylabel('x3(t)'); grid on pause; 
% 



figure; 
plot3(xl, x2, x3); % plot 3-D graph (xl, x2, x3) 
title ('Lorenz Attractor chaotic master system'); 
xlabel('xl'); ylabel('x2'); zlabel('x3'); grid on; pause; 
% 
figure; 
plot(t, yl); % plot t on y-axis, and yl on y-axis 
title ('state yl vs. time1); % putting the title on the figure 
xlabel('t'); ylabel('yl(t)'); % putting labels on y-axis and y-axis 
grid on 
pause; 
% 
figure; 
plot(t, y2);title ('state y2 vs. time'); xlabel('t'); ylabel('y2(t)'); grid on;pause; 
% 
figure; 
plot(t, y3);title ('state y3 vs. time'); xlabel('t'); ylabel('y3(t)'); grid on pause; 
% 
figure; 
plot3(yl, y2, y3); . % plot 3-D graph (yl, y2, y3) 
title ('Lorenz Attractor chaotic slave system'); xlabel('yl'); ylabel('y2'); zlabel('y3'); grid on;pause; 
% 
figure; 
plot(xl,x3,7); % plot 2-D graph 
title ('state xl vs. state x3');xlabel('xl(t)'); ylabel('x3(t)');grid on;pause; 
% 
figure; 
plot(x2,xl,7); % plot 2-D graph 
title ('State xl vs. state x2');xlabel('x2(t)'); ylabel('xl(t)');grid on;pause; 
% 
figure; 
plot(x2,x3,7); % plot 2-D graph 
title ('state x2 vs. state x3');xlabel('x2(t)'); ylabel('x3(t)'); grid on pause; 

figure; % plot 2-D graph 
plot(yl,y3,7);title ('state yl vs. state y3'); xlabel('yl(t)'); ylabel('y3(t)'); grid on; pause; 
% 
figure; % plot 2-D graph 
plot(y2,yl,7);title ('state yl vs. state y2'); xlabel('y2(t)'); ylabel('yl(t)'); grid on; pause; 
% 
figure; % plot 2-D graph 
plot(y2,y3,7);title ('state y2 vs. state y3'); xlabel('y2(t)'); ylabel('y3(t)'); grid on; pause; 
% 
figure; % Verifying the synchronization 
subplot(21 l);plot(yl,xl,'.');xlabel('yl');ylabel('xl'); title('projection of the attractor onto (x y) 
plane'); grid on; 
subplot(212);plot(y2,x2,'.');xlabel('y2');ylabel('x2');grid on; pause; 
% 
figure; % Verifying the synchronization 
subplot(21 l);plot(t,yl-xl);ylabel('yl-xl');grid on; subplot(212);plot(t,y3-x3);ylabel('y3-
x3');xlabel('time');grid on; pause; 
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% 
figure; plot(t,y2-x2);ylabel('y2-x2');grid on pause; 

figure; 
subplot(211); plot(t,pl); titleCOriginal Information');grid on; 
subplot(212); plot(t,ql);title('Extracted Information'); xlabel('time');grid on; pause; 

% For the Annimation of the Lorenz 3D Map 
figure 
A = [ -8/3 0 0; 0-10 10; 0 28-1]; 

%initial condition 
x=[10 14]?; 

% x value increment 
delta = 0.01; 
p = plot3(x(l),x(2),x(3);EraseMode','none','MarkerSize'510); 
axis([0 50 -25 25 -25 25]) 
hold on 
fari=l:400000 

A(l,3) = x(2); 
A(3,l) = -x(2); 
xdot = A*x; 
x = x + delta*xdot; 

% Change coordinates 
set(p,'XData',x(l),'YData',x(2),'ZData',x(3)); 
xlabel('xl'); ylabel('x2');zlabel('x3') 
drawnow 
i=i+l; 

end 
% 
0/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 0 , 

function xdot= Lorenzl(t,X); 
%Constants for the Lorenz Equation 
global sigma rO b pi w Amp 
% The driving system (transmitter): xl, x2, x3 
xl=X(l); x2=X(2); x3=X(3); 
pi = rO + Amp*(sin(w*t)); p2 = 1; p3 = 1; % the parameters of the transmitter system 
xdot(l) = sigma*(x2-xl); 
xdot(2) = pl*xl - p2*x2 - p3*xl*x3; 
xdot(3) = xl*x2-b*x3; 
% The driven system (receiver): yl, y2, y3 
yl=X(4); y2=X(5); y3=X(6); ql=X(7); q2=X(8); q3 =X(9); 
% 
xdot(4) = sigma*(x2-yl); 
xdot(5) = ql*yl - q2*y2 - q3*yl*y3; 
xdot(6) = yl*x2-b*y3; 
%The difference between the drive and the driven signals 
error2 = y2-x2; 
% Gain of the system 
G=5; 
xdot(7)= -G *error2*yl; xdot(8)=0; xdot(9)=0; 
xdot= [xdot(l);xdot(2); xdot(3);xdot(4);xdot(5);xdot(6); xdot(7);xdot(8); xdot(9)]; 
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