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ABSTRACT

Author: Manish Pantha
Title: Adaptive Synchronization of Chaos for Secure Communication
Institution: ~ Embry Riddle Aeronautical University, Daytona Beach, FL

Degree: Master of Science in Aerospace Engineering

Year: 2004

The purpose of this thesis is to study the use of adaptive synchronization of chaos for
secure communication. Several non-linear models were studied, the one-dimensional logistic
map, two-dimensional coupled logistic map, three dimensional Lorenz systems with and
without time delay. Numerical simulation using MATLAB was conducted. The Lorenz system
with time delay was studied numerically as well as by testing an analog circuit and
comparisons was made between them. It has been pointed out in many research papers that for
low-dimensional chaotic processes, once intercepted, the information can be readily extracted,
so the interest has been directed to higher dimensional chaotic system synchronization. The

analog circuit gives a more accurate precise real time simulation.

The approach for secure communication utilizes the driver and driven synchronization
of two identical chaotic systems. At the transmitter, information is added as a time varying
parameter of the Lorenz system, and one of the state variables is transmitted through the public
channel. This state variable is used to drive the receiver causing the two systems to
synchronize in time. The driver system is used as the model reference for the adaptive
controller to synchronize both the transmitter aﬁd the receiver system. The results of the

Lorenz system are very conclusive both from the computer simulation and the analog circuits.
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CHAPTER 1

INTRODUCTION

Chaos is a class of complex behaviors that emerges from nonlinear dynamical systems,
and is ever present both in the technological and natural world. The new science of
chaos is defined as aperiodic behavior occurring in a deterministic system. A nonlinear
system is described as a system whose time evolution equation is nonlinear, that is, the
dynamical variables describing the properties of the system is in a nonlinear form
[Hillborn, 1994]. The main three properties of the deterministic systems are its time-
evolution equations, parameters that describe the system, and the initial conditions.
According to one definition, "Chaos theory is the qualitative study of unstable aperiodic

behavior in deterministic nonlinear dynamical systems." [Strogatz, 2000].

With the definition given above, we can draw several conclusions about the
characteristics of chaos. First, we can say that the system is a dynamical system,
meaning that its properties change over time. Second, that the behavior of the system is
aperiodic and unstable thus the system behavior does not repeat itself. A non-periodic
behavior does not follow a set pattern. If there is periodic behavior in a system, then
future behavior may be determined. Non-periodicity is an outcome of apparent
randomness, a sign of a chaotic system. Third, deterministic chaotic system has the
property of sensitivity with respect to initial conditions, thus the trajectories of two
perfectly identical chaotic systems starting with nearby initial conditions diverge from
each other exponentially. This basic definition derived from the discovery of chaos in

1961, by Edward Lorenz [Lorenz, 1996]; while working on a system of equations that



is now called the Lorenz system, he ran the computer modeling program twice with the
same initial conditions, except that one had the accuracy of six digits, while the other
had an accuracy of three digits. At first the two behaved identically, but after a short

while they acted drastically different.

From a practical standpoint, biological systems such as the human heart, prediction of
weather and stock markets exhibit chaotic behavior and therefore been of great interest
to researchers. As stated earlier, a chaotic system is aperiodic, and does which do not
settle down to a fixed points, periodic orbits or quasi-periodic orbits as time approaches
infinity. These characteristics have been extensively researched recently in various
applications such as chemical and biological systems. The aim of the work reported

here is to investigate the use of chaos in secure communication.

Synchronization of chaotic systems plays an important role in many applications. If two
chaotic oscillators are uncoupled, then knowing the dynamics of one oscillator does not
tell anything about the state of the other oscillator at that moment. It turns out that if we
couple both the chaotic systems in a way, then they tend to oscillate exactly the same
way. Since both chaotic oscillators have the same dynamical characteristics, the
trajectories of two chaotic systems are locked to each other and are said to be in
identical synchronization. This means that when the transmitter has a certain amplitude
at a given moment, the receiver at that moment is exactly of the same amplitude. The
characteristic of the identical synchronization after coupling the oscillators is a diagonal
line of the individual state variable of the receiver and the transmitter side. The

diagonal line appears because we plot a point for each moment in time for the whole. If



at some moment the two amplitudes were not equal, a deviation from the diagonal line

can be seen.

In a real situation, time delay is inevitable, since the propagation speed of an
information signal is finite. Chaotic attractors of time-delay systems can have a much
higher dimension, and this suggests other possible way to improve the security for the
use in secure communication. In this report we have utilized Lorenz systems to create
the time delay chaotic system. The time delay unit is added to one of the three state
variables of the Lorenz system. Both the transmitter and receiver circuit are made to
synchronize, using the same time delay and the same initial condition of the state
variables. Despite a small number of system variables, the embedding dimension and
number of positive Lyapunov exponent increases as the delay time increases, and the
system eventually transits to hyperchaos. The knowledge of Lyapunov exponents gives
the indication about the predictability of the system. The analysis of Lyapunov
exponents has not been investigated in this research. The time delay on a chaotic

system has been further investigated in this report.

1.2 Chaos and its Application to Communications:

Recently a lot of work on secure communication has been implemented on the research
phase, which all started in early 1960’s when Lorenz observed that in the set of
nonlinear equations, making very small changes of the parameters had a large effect on
their solutions. The work of Pecora and Carroll [Pecora, 1990, 1991] on
synchronization of chaotic system had recommended the possibility of secure

communication using chaos synchronization. Also in their work of synchronization of



chaotic systems such as Lorenz and Rossler system were divided into two identical
systems, so-called the response or transmitter system, while the other drive or receiver

system.

Following the process of synchronization, a number of methods have been proposed for
secure communication [Cuomo, 1993}, [Kocarev, 1995], [Boccaletti 1997], [Liu, 2000]
with the help of the chaotic signals. Cuomo and Oppemheim [Cuomo, 1993] had shown
that a small difference between the initial conditions between the drive and the response
system would uncouple and distort the synchronization process. In 1999, Lin, Peng, and
Wang [Lin, 1999] considered synchronized chaos in discrete systems, more precisely
they studied the synchronized chaotic behavior of the popular model in coupled map
lattices. However, Perez [Perez, 1995] in his paper pointed out that message masked
with low-dimensional chaotic processes, once intercepted, can be sometimes readily
extracted, so that the interest has been directed to higher dimensional chaotic system.
For more secure communication purposes hyper-chaotic systems are used for more

reliability and security, which can be easily generated by a time delay approach.

Two factors that are important to secure communications with chaotic systems are the
dimensionality of the chaos and the effort required to obtain the necessary parameters
to match that of the driven systems [Roy, 1999]. One way to avoid this extraction of
information from chaotic signal is to implement higher dimension with the time-delay
chaotic system, which has been studied in this work. The other process proposed by
Palaniyandi and Lakshmanan [Palaniyandi, 2001] to overcome by transmitting via a

multi-step parameter modulation combined with alternative driving of different drive



system variables, which makes that attractor reconstruction impossible. It has
researched, that without the receiver circuit, one can unmask the message from the
modulation drive signal from the return map. In their work the changes were made in
the mode of transmission of the digital message by the multi-step parameter modulation

instead of single step in-order to complicate the attractor in the return map.

1.3 Overview of the Present Work

In this thesis, the problem of control and synchronization of chaos in systems with time
varying parameter is treated. There are two ways of signal modulation in the chaotic
system.

1. Modulation of state variable signal

2. Modulation of system parameter signal
Much of the previous work in this area has focused on modulating the state variable
signal. In our research the time varying system parameter has been modulated. Since
the message is encoded in a time varying parameter, synchronization with the response
system must be first established, and the recovery of the message is not ensured unless
the variables parameter is identified at the receiver side. Therefore the proposed method
improves the security of communication even when the parameters are initially

substantially different [Crispin, 2002].

The goal of this work is to utilize chaos as the means of transmitting messages in a
communication system. The primary goal is to hide information on a chaotic carrier

signal, which is sent from the drive system (transmitter) to the driven system (receiver)



through public channels. In this work, the extraction of information has been
accomplished by synchronization of drive and the response system and adaptive control
method. On the second part of this thesis, a nonlinear system with a time-delayed
feedback approach has been utilized. The method of synchronization and parameter
identification has been extensively used in order to achieve our goal [Crispin, 2004].
This work consists of building an analog chaotic circuit, and also analyzing and
comparing it with the numerical solutions. It can be seen that, chaotic signals of higher
dimension can be used as an encryption technique for private communication because

it’s hard to reconstruct its attractor.

In order to understand the method completely in the three-dimensional model, first the
characteristics of the one-dimensional logistic map and the coupled lattice logistic map
are investigated in this thesis. The results from the computer simulation show that the
use of synchronization of the two chaotic systems and the adaptive method could be

used for the purpose of the secure and private communication.

In Chapter II and III, we present extensive analysis of one, two and three-dimensional
model of chaotic systems. In Chapter III numerical model as well as practical
implementation with the analog circuit of the Lorenz system is studied. The Lorenz
system displays trajectories a trajectory, plotted in three dimensions, that winds around
and around, occupying a region known as its attractors. The process of synchronization
is implemented with linking the trajectories of one system to the same value in the other
so that they remain in the step with each other, through the transmission of a signal

[Boccaletti, 1997]. The synchronization of two identical systems is established with



different initial condition between the drive and response system. In all the cases the
information of very low frequency and amplitude information is added to the

parameters of the system.

In Chapter IV, study on nonlinear systems with a time-delayed feedback approach on
Lorenz equation is studied. The dynamics of nonlinear feedback systems cover a wide
range up to high-dimensional chaotic behavior [Voss, 2001]. Nonlinear delay
differential systems, a peculiar class of infinite-dimensional dynamical systems, are
frequently used in several areas of science [Piccardi, 2001]. It has been known that very
simple time-delay system is able to exhibit hyperchaos. Therefore, a time-delay system
provides alternative simple and efficient tools for secure communication with low
detectability. The main aim of chapter IV is to show the synchronization process
extended to the delay differential systems, which has already been applied to the finite

dimensional system.

The analog circuit in this research allowed us to monitor the real time simulation of the
chaotic signals and implement our goal. The computer simulation can only give us the
approximate difference equation of the system and the model is analyzed in a finite
time domain. Thus to analyze the differential equation, the analog circuit gives an
infinite time dimension model and a real time simulation of our practical problem.
Since the integrators, summing amplifiers used in the analog circuit would represent the
true and perfect operation and thus avoid the truncation error. The other advantage of
the analog circuit analysis over digital system is the removal of an imposed sampling

frequency. The Fourier transform converts a signal from the time domain, without loss



of information, into the frequency domain. The frequency domain representation is
exactly the same signal, in a different format. The inverse Fourier transform takes the
frequency series of complex values and maps them back into the original time series.
The perfect invertability of the Fourier transform is an important property for building
filters, which remove noise or particular components of a signals spectrum. When the
signal is converted to digital form, the precision is limited by the number of bits
available. The errors that occur in the digital system are the artifacts and RMS error,
which corrupt the actual information while processing the signal. All analog systems
operate in real time, digital systems that depend on a computer to perform system
computations may or may not work in real time. Only standard commercially available
electronic components have been used and the observed signals are quiet robust. In

chapter V the conclusion and the future development on the work has been stated.



CHAPTER 2

ONE & TWO DIMENSIONAL MAPS

2.1. General Analysis: One Dimensional Map

Recently various methods have been investigated to use chaos in secure communication
system. The basic idea is to hide a message signal on a chaotic carrier. The first approach
in our report is to utilize this principle with the coupled logistic maps for the application
to secure communication. Also in this chapter we have compared the one and two-
dimensional models and simulate a two-dimensional coupled logistic map

communication scheme.

This chapter describes the use of chaos in one-dimensional map and two-dimensional
coupled logistic map in private communication system. Generally the nonlinear dynamics
of physical systems are analyzed by obtaining discrete models, mathematically known as
maps. In the discrete time domain we can say that a map is simply a function on the
phase space that gives the next state, of the system given its current state. The dimension
of the phase space is dependent on the number of variables in the system. One-

dimensional system has only one state variable x, and the dynamical equation is generally
represented byfc = f(x), where f is a smooth function from the real line in the x-axis.
X, = (X, (2.1)

The iterative scheme begins with the initial value of xo and generates a trajectory by

successive application of the map function. The one-dimensional iterative maps show a



much greater range of dynamical behavior than the one dimensional differential equation
system because the iterated maps are free from the constraints of continuity [Hilborn,

1994].

The fixed points in state space play an important role in understanding the dynamics of

the system. A fixed point xn = x(n-1) for a one dimensional map is given by x = f(x). If

the trajectory happens to get the fixed point, then the trajectory will remain at that

particular point. [Strogatz, 1994].

2.2 Coupled Logistic Maps (2D Map).

The remarkable feature of the logistic map is in the simplicity of its form and the
complexity of its dynamics and is one of the simplest forms of a chaotic process. In this
thesis we have used two dimensional coupled logistic maps as a means to create a secure

communication system. The system of N globally coupled one dimensional maps is
N
described as x,,: (1) = (1 - &)f[x, D] + %,_21 fx. (3)] 2.2)

Where i and j are indices of maps with the lattice, » and n+1 are iteration indices, the
coupling strength is € , which varies between zero and one and f(x) is the map function. If
the coupling strength approaches unity, we expect the lattice to fully-synchronize. The
xn(i) is the nth iteration of the ith map. The function is the logistic equation when f (x,) =
P Xn (1-X,) where p is the control parameter.

For the simple uncoupled one dimesional logistic map can be represented as:

Xn+1 =f(Xn) = P Xn (1-Xp) for 0<p<4 (2.3)

10



It represents the discrete-time model of the population growth in an ecological stystem

and p being the control parameter, taken to be positive and real value. The value of x

must lie between some finite interval along the x-axis and between 0 <x < 1.

The fixed points are given by:

xe=pxe(l1-xg) or xXe[pxs+(1-p)]=0 (24)

xn=0 and xp = 1-1/p 2.5)

This gives the fundamental of the logistic map which is utilized on our first part of this

research for the case of the secure cummunication system.

Considering two dynamical systems that are coupled in a unidirectional way, where one

system, the drive, produces a scalar signal that is added to the response system. The
transmitter system is assumed to be a discrete time autonomous dynamical system. In this
case we are particularly interested in complete synchronization of the two dynamical
systems.

If we consider two logistic equation functions f(x) and f(y), the coupled logistic map is
represented as a two-dimensional logistic map as shown below.

xa41 (D) = (1 —&)f[x, )]+ ef[y, ()] (2.6)

Yur1() = € £ [Xa(D)] + (1- €) £ [ya()] 2.7)

where f(xp) =p Xn (1-Xn) and f(yn) =p ya (1- yn) and e is the coupling strength

Increasing the number of dimensions (variables) for iterative maps increases the range of
possible behaviors. This type of coupling between two dimensional maps is also called
the dissipative coupling. This work utilizes the same type of coupling procedure for the

receiver and the transmitter unit in our work.

11



2.3 Synchronization and Parameter Identification.

We know that synchronization can be achieved by forcing one chaotic system to behave
same as the other chaotic system. A drive system and a response system should operate in
the same dynamics inorder to synchronize. The drive system creates the chaotic signal,
which is coupled with the response system with one of the state variable. The response
side then reconstructs the chaotic signal, which is exactly the same as the drive system.

The one-dimensional iterative map can be expressed as:

x(n+1) = f(x(n); p(n)) (2.8)

y(m+1)=£(y(n);q(m)) 2.9)

Where f: R™ > R™,x ye R™, p(n) € R¥, q(n) e R¥

where n is the time, x(n) is the state variable and p(n) is the independent time varying
parameter of the drive system. Similarly y(n) is the state variable and q(n) the time
varying parameter of the response system. The initial conditions of the state variable
x(n)= x(0) and y(n) = y(0) for n = 0 are not necessarily the same. Similarly initial values

of the parameters p(0) = p0 and q(0) = q0 of both the systems are different.

Since the chaotic systems are sensitive to the initial conditions, the drive and the response
system will not synchronize unless the response system is controlled and forced to
synchronize with the drive system using a transmitted signal [Crispin, 2002]. Thus a

scalar signal s(n), which is a function of x(n) can be transmitted to the response system.

s(n)=h(x(n)) (2.10)

12



In order to achieve our goal of synchronization, as also shown in Fig 2.5 and to transmit
the information from the transmitter side to the receiver side, the two dynamics of the

equations on the drive and the response side are represented as:
x(n+1) = £ (x(n); p(n) +1(n)) (2.11)

y(n+1)=f(y(n);q(n)) (2.12)
Where I(n) is the information to be transmitted and is added to the time varying
parameter. Thus the synchronization can also be achieved even when the parameters p(n)
and q(n) are initially substantially different [Crispin, 2002].

lim|p(n) - @) = 0 2.13)

The synchronization can be achieved if the dynamics of the response system parameter
q(n) is determined. In other words, the differential equations governing the evolution of
the response parameters q(n) need to be derived systematically for dynamical system of

the form of Eqs 2.7-2.8 [Crispin, 2002].

For the case of two dimensional coupled maps in the discrete time domain, the drive side

can be expressed in the following way.

The drive system:
xt(n+1) = (1-¢) fxt(n)+ € fyt(n) (2.14)
yt(ot1) = (1-¢) fyt(m)+ € fxt(n) (2.15)

where fxt(n)=pl(n) xt (n) (1-xt(n)) and fyt(n) = q1(n) yt (n) (1-yt(n))

At the response side:
xr(n+1) = (1-¢) fxt(n)+ & fyr(n) (2.16)

yr(n+1) = (1-¢) fyr(n)+ ¢ fxr(n) (2.17)
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where fxr(n)= p2(n) xr (n) (1-xr(n)) and fyr(n) = q2(n) yr (n) (1-yr(n)) and xt(n), yt(n)
are the state variable of the drive and xr(n), yr(n) are the state variable of the response

side with different initial conditions. The time varying parameters are pl(n), q1(n) and
p2(n) and q2(n) for the transmitter and the receiver side. As stated in the synchronization
algorithm one of the transmitter variable xt(n) has to be added to the response system as
shown in Egs. 2.15. Later in the chapter the possibility of encoding a message from the
chaotic dynamics through the parameter identification and adaptive process has been

extensively explained.

In the adaptive control and parameter identification of the one-dimensional logistic map
given in equation 2.7 and 2.8, the sensitivity method is used to design the adaptive law so
that the estimated parameters are adjusted in a direction that minimizes the error function.
Given the key logistic function and the transmitted signal xt(n), the problem is to identify

the parameter p(n) and extract masked information [Crispin].

The error e(n) represents the deviation of the receiver signal from that of the transmitted
signal:

e(n) = yr(n) - yt(n) (2.18)
Thus the adaptive process is derived by minimizing the objective function for error e(n)

which 1S represented by:
1 2_ 1,
J(nt1) =5(yr(n)-yt(n)) =5 (n+1) (2.19)

J is based on the Euclidean distance between the vectors x and y. As an example let us

consider the design of an adaptive law for updating the parameter vector 0.
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6(n) = [pl(n), p2(n),.....pn(n)]" (2.20)
6"(n) = [q1(n), Q2(n)......qn(n)] T (2.21)
where 0" is the unknown parameter vector. Thus when 6 =0~ implies that error e(n+1) =
0, a non-zero value of error e is represented by 6 # 0 *. Since the output is dependent on
the vector 8 and the error vector is also dependent on the® . Inorder to reduce the error

e(n+1) to zero is to adjust 0 in a certain way that minimizes the objective function.
1(0) =€%(9) (2.22)
The simple method to minimize is to use steepest decent method that decreases the

objective function, a possible adaptation process is given by:

8" (n+1)-0"(n) =-y VI(® )=-ye(n+l) Ve®") (2.23)
de o g |
where Ve(0") = e‘ , e‘ yererarans e‘ . (2.24)
691 ae2 aen

0" =[6,,0,........ 0] (2.25)
As we know that x(n+1) does not depend on 6* ;) . Then we have:

0" (n+1)-0"(m)=-y e(n+1) Vy(0") or 8" (nt+1)=06"(n) -y e(n+1)Vy(®") (2.26)
where y > 0 is the arbitrary design constant referred as the adaptive gain. Thus the
adaptive process reduces to:

q(n+1)=q(m) - G e(m+1) Vy(®") (2.27)

Where q(n+1) is the output or the recovered messages, where the initial condition of the

parameter is given by q(0) some constant and the error e(n+1) is the difference between

the transmitter and the receiver state variable.

15



2.4 Using the Coupled logistic map for secure communication:

Considering the two coupled logistic map at the drive system.
xi(n+1) = (1-e) fx1(n)+ € fx2(n) (2.28)
x2(n+1) = (1-¢) fx2(n) + ¢ fx1(n) (2.29)

where the functions are one-dimensional logistic maps and € = 0.7 is the coupling

strength.
fx1(n)=pi(n) x1(n) (1-x1(n)) (2.30)
fx2(n)= p2(n) x2(n) (1-x2(n)) (2.31)
§ ouEn it et i ey A R S
N N N R e PRI AR AT Fo o N P
T B R A e et i a2 T
* 0 200 400 600 800 1000 1200 1400 1600 1800 2000
1 2
08} SO, s o, '?‘?\
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MY ket 12, % e %a S N sl wewiad
0.2 o N A BT NN e A S et s a0

o i i i i i 1 i ] 1
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Fig 2.2: Coupled logistic maps x1(n+1) and x2(n+1) at the drive (transmitter) side
where pl(n) and p2(n) are the time varying parameters for the drive. Two information
I1(n) and I12(n) are added to the parameters; where b;=3.7; b, =3.823;
pl(n)=pl10 + I1(n) , wherepl0= b;(parameter) (2.32)

p2(n)= p20 + 12(n), where p20 = b, (parameter) (2.33)
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Fig 2.3: Two Information signals I1(n) and 12(n) to be transmitted which are added to the

time varying parameters

Given the key logistic function and the transmitted signal x(n+1), the problem is to
identify the parameters pl(n) and p2(n) and extract the masked information. In the

response side has the same dynamical equation with the initial conditions being different

from that of the drive side.

yi(nt+1) = (1-¢) fyl(n) + € fy2(n) (2.34)
y2(n+1) = (1-g) fy2(n) + & fx1(n) (2.35)
where

fyl(n)=ql1(n) yl(n) (1-yl(n)) (2.36)
fy2(n) = q22(n) y2(n) (1-y2(n)) (2.37)

where q11(1) = b; and q22(n) = b, are the parameters of the response side.
One of the state variables from the response side fx1 is added to the receiver coupled

equation 2.27.

17



Coupled logistic equation

08 [Ny a: j?' SR vé!h

’ 0] . ’.d * ' 3 hL |

.‘\’ '\ ”‘ . e - b

<. 06 -Ar&*’é\‘«w ""‘“ M' ?.:fg vl

,'P"“ ...("& g f.' ..‘.‘ ¥ ":’o').‘o

o ‘. ~b '.q.. .5 M‘s""\\ ::.o ~$ 2 .‘ o.o.u. .'9.}{&..:

04 » s“ --------- ng .’......“
S “0" " ee ¥

02 (Jf.#'\'\.mzkf'&ma.\.p sﬂ'io'.a.gg..'.' .‘,t"c{(’*"

0 200 400 600 800 1000 1200 1400 1600 1800 2000

L)
o > f..‘,,.: is. DALY """"",&z&" ’)'. 7"..

So. o o s 3%
EITVE es "*"“*‘.“*:I. AT A
- . . e .0 £
0.2 ."-t..;’!"'\f' ﬂm}w Y 's&ﬂ...\la o o8 5 :}o’ s

0 i i i | i i i I |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
No. of iteration

Fig 2.4: Coupled logistic maps yl(n+1) and y2(n+1) at the driven side

Using the adaptive process extraction of the first information I1(n) shown in Fig 2.6 (a).

- dfy](n+l)
qll(n+1)=qll(n)+ G e;(ntl) ———— (2.38)
Q11n+1)
d& n+
where — "2 = (1- €) yim) (1-y1(m));
ql](n+1)

Extraction of the second information 12(n) which is shown in the Fig 2.10 (b) and is

compared with the actual information.

dfy n+
42201= 4220+ G €2m41) —— (2.39)
Q22 (n+1)
de2(n+1) _ — =
where q —(1' 8) Y2n) (1'y2(n)) and €1(n+1) = Yim+1) — Xi(n+1) and C2m+1)= Yo(m+1) — X2(n+1)
22(n+1)
and the G = 50.
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Fig 2.5: Error and synchronization characteristics between the drive and the response
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Fig 2.6: The comparison between the actual information and the extracted information
using the synchronization process and parameter identification: (a)1* information. (b) 2™

information. The G =0 for n <300 and G = 50 for n =300
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Fig 2.7: The iterative plot of the transmitted variable x;(n) vs. x;(n+1).

2.5 Conclusion:

As stated above, the purpose of this chapter was to propose a generalized method of
control, synchronization and parameter identification of chaotic systems with the time
varying parameter. The proposed synchronization and parameter identification scheme
demonstrates good signal and parameters identification as well as the information

extraction.

From the results we can see that the results were recovered perfectly. As seen on the Fig
2.5 the synchronization between the same transmitter and the receiver variable has a
diagonal line and the error between them is very small. The recovered messages may
contain a high frequency noise as seen on Fig 2.6(a) which can be eliminated by using

low pass filter.
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The reason for applying the gain G = 50 after 300 iteration was to let the system settle
down in the synchronization process. As seen for the iteration n < 300 the error in Fig 2.5
is more compared to the error after n > 300 iteration. The results obtained from this
computer simulation was satisfactory and this same approach has been implemented on

the three dimensional Lorenz system in the next chapter.
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CHAPTER III

THREE DIMENSIONAL FLOW: LORENZ SYSTEM

3.1. Lorenz system of Equations.

Chaotic systems provide a rich mechanism for signal design, generation and processing.
An interesting aspect of modern chaos study is the emerging notion of secure
communication via synchronized chaos. A numerical model of the Lorenz system has
been implemented to demonstrate how the chaotic signal can be used in various contexts
to mask information-bearing waveforms. The information is added to one of the time
varying parameters of the Lorenz system. An adaptive process and parameter
identification is used for the recovery of the information at the receiver side. Since only
one of the state variables of the Lorenz transmitter system is transmitted, the
eavesdropper will not be able to reconstruct the whole dynamics of the system to extract

the information.

The application of the Lorenz systems to weather prediction has led to a popular
metaphor known as the butterfly effect and its many practical applications such as secure
communication, monitoring stock market and more. The Lorenz system is defined by the

very simple, coupled, three nonlinear first-order ordinary differential equations.

dx
—= -X 3.1
% o(y —x) (3.1
y
— =1X—-y—XZ 3.2
oY (3.2)
dz
—=xy-bz 3.3
i (3.3)

where o, 1, b > 0 and o is the Prandtl number, r is the Rayleigh number and b is a

constant. The system has only two nonlinearities xy and xz. The solution of these
22



ordinary differential equations describe a trajectory, which when plotted in three

dimensional phase plane is known as the Lorenz attractor.

3.2 Synchronization of two Lorenz Systems.

As stated earlier chaotic systems provide signals for design, generation and processing
for the use of secure and private communication via synchronized chaos. In this report
numerical model as well as analog circuit of the Lorenz system has been implemented to

demonstrate the use of chaotic signal to mask the information-bearing waveforms.

In this chapter control and synchronization of chaos with time varying parameter is
treated using the adaptive method and parameter identification. The driven system is
controlled by varying its parameters using an adaptation process. Multiple messages of
secure information can be carried using the single scalar transmitted signal [Crispin,

2002], thus in this setup only one information signal is transmitted.

Consider the two similar chaotic systems, the first is a Lorenz system serving as the drive
system and the second is the driven system with one common state variable which are
shown in equations 3.4 to 3.9. The parameters in the drive system are pi, p2, ps3, 0, r and
b, where p, and p; =1. Similarly the parameters in the driven system are q;, qz, q3, 0, T
and b where g, and q; =1. The scalar signal x; is the only transmitted signal from the
drive side, which enables to synchronize the two systems. The problem is to identify the
parameter p; and extract the masked information. This can be achieved only if the two

systems synchronize with the common signal x.
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Consider the Lorenz system at the transmitter side:

dx.
—=0o(x:—Xu 34
" ( ) (3.4
dx.
— =D Xi —P:X2— P3XiXs 3.5
D PGSR (3.5)
ixi:x.x:—bx; 3.6)
dt

In the receiver or the response system:

dyl
—=0o(xX2—W: 3.7
it (x2—y1) (3.7)
Y:
—=q:1Vi—Q:Y2—(qQ3YVY3 38
Fraiak DAt DAl D0 (3-8)
dy:
— =yiX:— by 3.9
o y (3.9

projection of the attractor onto (x y) plane projection of the attractor onto (x y) plane

x1

x2

Fig 3.1: Synchronization properties of the Lorenz system between the transmitter and the
receiver system with different initial condition: (a) without coupling the transmitter and
the receiver side of the Lorenz system (b) with coupling the transmitter and the receiver

side of the Lorenz system with one of the system variable.
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This chapter uses the principle that was published in the research work by Crispin,
[Crispin, 2002]. In order to achieve the synchronization, we have to determine the
dynamics of the parameter q(t). An analogy from the hydrodynamics, the Langrangian
approach for describing the evolution of a scalar quantity convected in a flow field
[Milne-Thomson, 1968] is used for this purpose. This approach used the equation of
motion of two marker particles advected in the fluid flow described by the vector fields is
given, w(x,p) =f(x,p) and w(y,q)=f(y,q) at any given point x € R"and y ¢ R" and

the right hand sides are to be interpreted as the local velocity vector as [Crispin 2002].

& = wxp) = 105,p) (3.10)
% - w(,q) = £(1,0) @3.11)

Considering the time variation of a scalar property J(x, y) of the flow along a trajectory of
the response system as it evolves in the phase y € R" .The total rate of change is given by

the substantial derivative of the scalar property, the derivatives following the flow

[Crispin, 2002]:
DI O
—=—+F(y(t),q)VJ 3.12
ot ot (y(t),9) (3.12)
where V =(—a—,—a—, ....... i)

1 aYZ ayn

The difference or error between the drive and the driven state variable e; = y; - X, in the
Lorenz system shown in Fig 3.18. The parameter p; contains the information, the purpose
of the receiver is to adapt to the dynamics of the transmitter by varying the parameter q;
[Crispin, 2002]. The adaptive process is derived by minimizing the objective function for

error e(i) is represented by:
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1 - - 1 n n
Jm=5|y—x|2=5§(yl—xl)2 =Z} e’ (3.13)

where J is the Euclidean distance between the state vectors X and » . The derivative of J

with respect to time is given by.

a =Ze‘d_‘1 or X e (3.14)
a S a o ot

Substituting the values to equation 3.13

DI & de
— =) e[—+1 (y(t), 3.15
Dt Z}: ‘[dt (y(1),9)] (3.15)
i de dy dx
since € = y—X; thus — =——— = f(y,q) -f(x,

y T d (v,9)-f(x,p)

The equation 3.16 reduces to

DI &

o = 2126 00,0 - £, (x(1),p)] (3.16)

which defines the rate of change of positive scalar property J in terms of the state variable
x and y of the drive and the response system, the parameters p and q. The synchronization
can be achieved even when the parameters p(t) and q(t) are initially substantially different
and thus the dynamics of the response system parameters q(t) need to be determined. This
can be accomplished by controlling the response system y such that the parameter p(t) of

the drive system x are eventually identified, this is [Crispin, 2002].
lim|p(t) - q(t)]=0 (3.17)

In order to achieve synchronization, the deviation between the drive and the response
system should be continuously decreasing, thus for the perfect synchronization, errors

between the two systems e =y —x =0.
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A possible adaptation process is given by.

% =-GVq {Z e.f, (Y(t),Q)} (3.18)

3. 3 Lorenz system and its use in secure communication.

Synchronization of coupled chaotic oscillators has become the subject of much
discussion in the past decade [Fujisaka, 1983]. A useful property of the Lorenz system is
that it possesses a self-synchronization property. A chaotic system is self-synchronization
if it can be decomposed into at least two subsystems; a drive system or the transmitter
and the receiver or the response that synchronizes when coupled with a common signal or
in this case a common state variable. The synchronization considered in this report is
similar to the one proposed by Pecora and Carroll [Pecora, 1990,1991] by introducing
into consideration the drive-response scheme for the condition of synchronization.

Consider the Lorenz system at the transmitter side:

%=G(X2_XI) (319)
% =PpiXa — P2X2 — PsXuXs (320)
‘L’;’ = XiX2— bX: (3.21)

where X1, X2 and X3 are the state variables with the initial condition of [xl*, X2, X3]=
[0.1; 0.12; 0.45] and the p;, p2 and p;3 are the time varying parameters of the system.

pi= I, + I, where r,= 28 and I, = the information added to the parameter = A Sin (wt))
were amplitude A = 1. The scalar signal x; is transmitted through the public to drive the

system and achieve synchronization.

s(t) =h(x(t)) = x2(t) (3.22)
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In the receiver or the response system:

dy:

d—y = o(s(t) - y) (3.23)
t

dy:

d—}; =qiYr— QY — Qs Y1ys (324)

dys

d—yt = yis(t) — by (3.25)

where y), ¥ and y; are the state variables with the initial condition of [0.12; 0.17; 0.48]
and q;, q2 and qs are the parameters of the receiver side. As the response system evolves
and synchronizes with the drive system, the parameters q;, q» and q3 will follow the
original parameter p;, p, and p; of the drive system [Crispin 2002].

According to adaptive process equation 3.19 the three dimensional Lorenz system is:

3
> . eif (y.q) = (y1 —x)[0 (s(®-yD] + (2 %2) [qi(®) y1- Q2(t) y2- G3(t) yrys] + (y3 -
i=

x3) (y15(t) —b y3) (3.26)

The gradient with respect to the parameters q is given by:

Aq[; efi(y,a)] = [(y2 - %2) Y1), - (¥2 - X2) Y2, - (y2-X2) y1y3)]* (3.27)

The differential equation governing the controlled parameter is

d

% = - G (y2-5(t)) y1 + Gi2 (y2-s(1)) y2 + Gus (y2-s(V) y1y3

d: t2 =- Gy1 (y2-5(t)) y1 + G2z (y2-5()) y2 + G2z (y2-s(1) y1ys (3.28)
% = - Gs1 (y2-5(t)) y1 + Ga2(y2-s(1)) y2 + Gs3 (y2-s(1)) y1¥3

where Gy, Giz...Gs3 are the gain of the system. Considering the case where only one of

the parameter p; is to be identified and the other two parameters p, and p; are some
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constant and known. Thus the equations 3.27 & 3.29 can be reduced to [Crispin, 2002]:

where g2 and g3 are some constants.

Aq[ X eifi(y,q)] =[(y2-x2)y1,0,0]* (3.29)

1 =

3
1

dq
4 = G 050) ¥ + Gz 0250) y2 + Gis (%2-5(0) Y1y

da, _ ,.99: _ .

dt dt (3.30)

d .
e T =G,,(y, =s(t))y, or= —-G,,(y,—X,)y, where a scalar signal s(t) is a function of

dt

the state x(t) and 44, =0 and 49, =0
dt dt

3.4 Experimental Setup.

In this section the circuit implementation of the chaotic Lorenz system has been
described. The behavior of the numerical simulation matches that of the results from the
analog circuit. The dynamics of the receiver side Lorenz circuit is exactly the same as
transmitter circuit in order to synchronize the two systems. Information to be transmitted
is added to the time varying parameters at the transmitter side. The basic addition at the
receiver side is the adaptive process to recover the actual information using the parameter

identification process.

For the implementation of the Lorenz equations in an analog electronic circuit was done
with op-amps (LF347BN) using it as the summing amplifier, inverter and an integrator
and analog multipliers (AD633) for the nonlinear function of xy and xz. Only standard

commercial available electronic components have been used and the observed signal is
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quiet robust. The tolerances of the components were at the maximum of 2 % on the op-
amp, 0.2% on the multiplier and 1% on the values of the resistance. Each circuit, the
driver and the driven system, was constructed independently, and then tested for proper
operation. To be certain that both circuits were identical, the same types of electronic
components were used. Once both circuits were completed, they were coupled together
and all the connections made and the waveforms were observed by Tektronix TDS310

oscilloscope. Typical data were sampled at a rate of 100 scans/second.
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3.4.1 Circuit Setup.
For the 1** Lorenz system on the transmitter side:

dx. :
Y = o(x2—X:) where sigma =10. The output from the integrator

d 1 R R
_q_1=—.——(x2—1—6+y2(1+ 16)( Rt j = o(x2-x1)
dt G4\ "Rys Ris J\R12 +Ry;

where C; =0.1uF, Rs =R

For the Lorenz 2™ equation

dx
Tdf_ = piX, —Pp2X, —P3X,X, where p,=p; =1 and p;=1, + Information

Vout, = —(% +%) R, =- (1 +1(1))

Inverting the Vout, signal with the inverter
R2
Vout, =- (ro + I(t)) BN = (1, + I(t)) = p1(t)
1

The output from the integrator:

at C, P 1 R, 1X3 R, 2 R,

Substituting the values will be equal to 2nd Lorenz system
For the Lorenz 3™ equation:

dx, =X,X, —bx, where b=8/3
dt

The summing integrator:

& 1 %%, X =dx3=(xx—§x)
it Cs| R, R, I B

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)
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The values of the components are:
Ri,R2,R3,R4, R8, Rjp=10kQ Rs, Rg, R9,R17,R12=1IMQ R7 R;; =10MQ, Rj3=

3740 kQ. The capacitors C;, C2, C3 = 0.1uf and the multipliers AD633.
In the receiver side:

For the 1% Lorenz equation at the receiver side X, is the variable that transmitted

information from the transmitter side.

7 =0(x, —y,) where o =10. The output from the integrator for the first variable:

dt

dy, __1(__ (L 1
dt cl( XZ(RJW‘(RGD (3:38)

For the Lorenz 2™ equation at the receiver side;

% =qiy, —q2y, —q3,y; Where q1,; and s are constants (3.39)

Summing of the parameters:

5V 10V
Vour1= _(R_3 + R4 ]Rzlz - (5 + r0) =-q (340)

Inverting the V,y signal with an inverter:

R
Vouz=-q1 (-‘—1)= qi (3.41)
R2

The output of the integrator

dy, 1 1 1 1 ]
e N [ o e P 3.42
m Cz( qul(RJ ylys(Rw Y2\ &, (3.42)

For the Lorenz 3™ equation on the receiver side
= y,X, —bys where b = 8/3 (3.43)
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dys _1(_¥%, ¥
dt C, R, Ry

The Adaptation process:

dq
Etl =-G,,(y, —X,)y,

fore,=y,—-x,

The summing amplifier:

1 1
e, =—|x,—-y,— |IR,.=(y,—x
2 ( 2R28 Y, R27J 2 (Y2 2)

The final output

dq,
dt

dq, _ _i[_(yZ _xz)Y1 R )R
= 21 |20

it C, 10R,,

=-G(y, —X,)y, where G=Gain

The values of the components are:

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

Ri, Rz, Rg, Ry, Rio, Ri1, Riz, Ri3, Ris, Ris, Rig, Rao, R22, R23, R4, Ras, Ras, R27=10kQ, Ry=

357kQ, R3 Rs Rg Rz, Ri7, Ry = 1IMQ, =35.7kQ, Ri4 = 10MQ, Ry = 3740 kQ .The

capacitors C;, Cz, C3,C4= 0.1uf multipliers AD633.
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3.4 Results and Conclusion

In this chapter we have been able to characterize perfect synchronization of the Lorenz
oscillators in an electronic (analog) circuit. The comparison of the results obtained from
the numerical analysis and the analog circuit were very similar. Below are the list of
figures between the numerical analysis and the actual analog circuit. The results obtained
were comparatively satisfactory but many other factors like band limitation, noise

interference of the signal on the system has not been taken into consideration.

state x1 vs time

x1(1)

(a) (b)

Fig 3.4 The time series of the X, vs. time of the Transmuitter side: (a) computer

simulation (b) analog circuit output
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(a) (b)
Fig 3.5 The time series of the X, vs. time of the Transmitter side (a) numerical solution

(b) analog circuit output

state y3vs time

0
0 W 24 33 40 4 60 70 & 99 W
t

(a) (b)

Fig 3.6 The time series of the x3;, vs. time of the Transmutter side: (a) numerical solution

(b) analog circuit output

37



(b)

ordinate (2D) (a) numerical solutions (b) analog
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Fig 3.8 Attractor on the X, and X,
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state x2 vs state x3

x3(1)

(b)
Fig 3.9 Attractor on the X3, and X, coordinates (2D): (a) numerical solutions (b) analog

circuit output

state y1vs time

il
l

.J{ylﬁ“hUl

y 1

»l'

(a) (b)
Fig 3.10 The time series of the y|(, vs. time of the Receiver side: a) numerical solutions

(b) analog circuit output
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(a) (b)
Fig 3.11 The time series of the y»(, vs. time of the Receiver side: a) Numnerical solutions

(b) analog circuit output

state y3vs time
T T

(a) (b)

Fig 3.12 The time series of the yy, vs. time of the Receiver side: a) Numerical solutions

(b) analog circuit output
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y3()

state y1vs state y3 ; —
. - Tek BTTIH 500 57
- WL

(b)

(2)

Fig 3.13 Attractor on the y3(, and y), co-ordinate (2D): a) Numnerical solutions (b)

analog circuit output

state y2 vs state y3

TS0

y3(t)

Fig 3.14 Attractor on the y3() and yj( co-ordinate (2D): a) Numnerical solutions (b)
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y2-x2

(a) (b)

Fig 3.17 Difference between the receiver state variable (y,) and the transmitter variable

(x2). (a) computer simulation (b) analog circuit output

Onginal Information

10 % kS 40 50 &0 70 80 %0 100

(®)

Fig3.18 The original information and the extracted information: (a) computer simulation

(b) analog circuit output
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CHAPTER 4

DELAY DIFFERENTIAL LORENZ EQUATION:

4.1 Introduction:

Nonlinear systems with a time-delayed feedback recently have attracted much research
due to the wide abundance of time delays in nature and technologies [Voss, 2001]. In
this chapter, we have addressed a practical problem of synchronization of high
dimensional system by introducing the time delay feedback. It has been studied that
message masked with low-dimensional chaotic processes, once intercepted, can be
sometimes readily extracted, so that the interest has been directed to higher dimensional
chaotic system. Thus with this new approach security of a communications scheme can

be enhanced by making the transmitted signal more complex.

The proposed technique, based on the nonlinear control method, has several advantages
over the existing methods Gassi, Mascolo [Gassi, 1998].

e It enables synchronization to be achieved in a systematic way.

e It can be successfully applied to a wide class of hyperchaotic systems.

e It does not require the computational of any Lyapunov exponents.

e It does not require initial conditions belonging to the same basin of attraction.

As we know that synchronization of two systems occurs when the trajectories of one of
the systems converges to the same values as the other and they will remain in step with
each other. For the chaotic systems synchronization is performed by the linking of

chaotic systems with a common signal or signals (the so-called drivers).
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Our objective is to implementation the Pecora-Carroll approach of chaos synchronization
in hyperchaos, which takes advantage of increased randomness and unpredictability of
the Lorenz systems of equation. The schematic setup of the synchronization experiment
is shown in Fig 4.1, where one of the parameter of the transmitter’s chaotic output state

variable is coupled to the driven system.

4.2 Hyperchaos Synchronization

Considering a simple map representation of the time delayed system Kye, Choi, Kwon,

Kim, Park [Kye, 2004)]
% =f(x(t),x(t-71)) 4.1)

where 7> 0 is the time delay, x (t) € R is the state variables. The above system is of an
infinite dimension system, because the state at time t is an element in the space of the
continuous function x (e): [t-T, t] — R. [Piccardi 2001].

The delay differential equation represented by the discrete form:

X, =f(x,,x,_.) where the function f: RxR - R 4.2)

X, is the value of x at nth time step such that x, = x(nAt) and Xx,., = x(nAt — 7At).

f(x,,x,_.) = x(nAt) + F(x(nAt), x(nAt — tAt)At 4.3)

n-t

It is known that the above system is equivalent to the (7 +1) dimensional coupled maps.

Xa = £, %) 4.4)

where the variables x.,..x: constructs the feedback loop. The above representation

plays an important role in analyzing the time-delayed system with fixed delay time.
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The Lorenz system was chosen to implement the above described scheme of time delay.

Consider the 3D delay-differential equations for the Lorenz system, the drive system is

represented by:

% =o(X, (t) - X, (t- 1)) 4.5)
% =1X,(t-1) — X, () — X, (t - T)X,(t) (4.6)
% =X, (t—1)x,(t) = bx, (t) 4.7

where o, r ,b > 0 and the time delay t >0. The transmitted signal for synchronization is
chose as the single variable.

s(t) = h(x(t)) = xa(t) 4.8)

The response system is given by

dy, _ v (t-

2 o659 y,(t-9) (49)
D — 1,9 - 1,0 -1t D0 (4.10)
sy (t- 950 by, ) @“.11)

where o, r ,b > 0 and the time delay t >0 and state variable x,(t) from the drive system is
injected to the driven system for both the system to synchronize. In the driven system the
forcing delayed function is the same as the driver system in order the both the system to
achieve synchronization. To achieve synchronization, the parameters of the two systems

need to match. Two dynamical systems are termed synchronized if the difference

between their states converges to zero for t - w.
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e=2_ % _, (4.12)

4.3 Experimental Setup

In order to understand the result of the experiment, first coupled nonlinear time-delayed
system is considered. Here, only unidirectional coupling between a 3D drive and the
driven system with state x,(t) is taken into account. The signal from the drive system
X2(t) is injected into the response system. The time delay between the drive and driven
system is varied between 10 ms to 100 ms range. In this particular test the time delay of
85ms was used with the state variable x;(t). The two systems are identical but differ in
their structure and tolerance. The difference between the parameters deviation of the

Lorenz drive and the driven system are kept to a very small value as possible.

The drive and the driven system consist of nonlinear Lorenz system, built purely in
analog domain from commercially available operational amplifiers and multipliers. A
commercially available bucket bridge delay line is used in both the system. As
anticipated the nonlinearities of the two oscillators are identical and since the bucket
delay line induced some distortion of the signal, a long term run reveals that the
synchronizing was achieved between the two systems. The time varying information

signal is added one of the parameter.
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4.3.1 Circuit Setup.
To model the equations 4.4 - 4.10 consisting of the drive and the driven system are as
follows. The drive system is given by:

The Lorenz first delay differential equation:

%:c(xz(t)—xl(t-t)) where c =10 and T > 0 (4.13)

c dx, =[_ X, (1) +x,(t—t)] (4.14)
dt R, R,

%=10(x2(t)—xl(t—t)) (4.15)

where R; =R; and C;=10 pf

The Lorenz 2™ delay differential equation:

%:rxl(t_‘[)—xz(t)—xl(t-T)x3(t) werer =28 (4.16)

. =(x1(t—r) X (t-x, (1) xz(t)) @17
dt R3 Rs R7

% = —(ox, (t = 1) = %, (= DX, () = X, (1)) (4.18)

Inverting the signal in Eqs 4.18 by an inverter

i:;tiz—(rxl(t —-1)—X,(t—1)x,(t) - x3(t){— %ij =(rx,(t -1) =X, (t-1)x,(t) - x3(t))

3" Lorenz delay differential equation:

9y (t=7)x, (t) — bx, () where b = 8/3 (4.19)

dt

dx, __X,(t—‘t)xz(t)_l—}_?_

-C =
} dt Rg R9

(4.20)
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% =X, (t—=1)x,(t) - bx,(t)

The components values are given as:

Ri, Ry, Rs, Rg= IMQ, R3=357kQ, Ry, Rg = 10kQ , R7= 10MQ, Ry = 3740KQ2

Ci, C;, C3 =0.1uf and the time delay unit.

For the response system
The 1% Lorenz delay differential equation:

dy X, (1) yi(t-1)
Gy =(_ R, R
10 11

dd_};l=10(x2(t)—y1(t_7))

The Lorenz 2™ delay differential equation:

d
_;% =ry,(t-1)-y,(t) -y, (t-7)y;(t) wherer=28

o W _ y«t—r)_yla—r)y;(t)_yz(t))
*dt | R, R, R,

d

% =—(1y,(t—1) -y, (t— D)y, () - ¥5(1))
Inverting the signal

dy,

dt 13

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

4.27)

—=—(ryl(t—r)—y,(t—r)ya(t)—yga))[—%l—q=(ryl<t—r)—y1<t—r)y3(t)—y3<t))

49



3" Lorenz delay differential equation:

% = y,(t—T)x(t) - by, (t) Where b =8/3

—C dy, _ y,(t=1)x,(t) N X,(t)

¢ dt R, R,

By t—yx, (1)
& = NE-D%0-by,O)

The components values are given as:

(4.28)

(4.29)

(4.30)

RlO, R“, R14, R17° IMQ, R12 = 357kQ, R15, R13 = IOkQ, R16= IOMQ, R]g = 3740KQ

C4, Cs, C¢ = 0.1uf and the time delay unit.
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4.4 Results.

We were able to show the synchronization of the Lorenz delay differential system in an
electronic (analog) circuit. The comparison of the results obtained from the numerical
analysis and the analog circuit were similar. List of figures between the numerical
analysis and the actual analog circuit are shown below. The results obtained were very
different from the MATLAB simulation. The main reasons could be the mismatch of the
time delay unit on the analog circuit, high of the tolerance level of the components. The

tolerance has been kept at low as 5% in this experiment.

For future work the tolerance level of +1% should be used because the chaotic system is
very sensitive to the initial condition and external influence could affect the whole
dynamics of the output. The time delay unit used in this case was not a precise, using the
digital time delay unit could improve the output, and this could also accurately match the

delay time on both of the units placed on the receiver and the transmitter side.
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state x1 vs. time
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Fig 4.3 The time series of the x1(t) vs. time of the Transmitter side with time delay (a)

analog circuit output (b) computer simulation

state x2 vs time
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Fig 4.4 The time series of the x2(t) vs. time of the Transmitter side with time delay (a)

analog circuit output (b) computer simulation
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state x3vws time
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Fig 4.5 The time series of the x3(t) vs. time of the Transmitter side with time delay (a)

analog circuit output (b) computer simulation

state x1vs state x3
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(a) (b)

Fig 4.6 Attractor on the x3(t) and x1(t) co-ordinate (2D) with time delay (a) analog circuit

output (b) computer simulation
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state x2 vs state x3
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Fig 4.7 Attractor on the x3(t) and x2(t) co-ordinate (2D) with time delay (a) analog circuit

output (b) computer simulation

state x1 vs. state x2
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Fig 4.8 Attractor on the x2(t) and x1(t) co-ordinate (2D) with time delay (a) analog circuit

output (b) computer simulation
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state y1 vs time
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Fig 4.9 The time series of the yl(t) vs. ime of the Receiver side with time delay (a)

analog circuit output (b) computer simulation
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Fig 4.10 The time series of the y2(t) vs. time of the Receiver side with time delay (a)

analog circuit output (b) computer simulation
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state y3 vs time
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Fig 4.11 The time series of the y3(t) vs. time of the Receiver side with time delay (a)

analog circuit output (b) computer simulation
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Fig 4.12 Attractor on the y3(t) and yI(t) co-ordinate (2D) with time delay (a) analog

circuit output (b) computer simulation
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state y2 vs state y1
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Fig 4.13 Attractor on the y2(t) and y1(t) co-ordinate (2D) with time delay (a) analog

circuit output (b) computer simulation
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state x1 v state y1
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Fig 4.15 Properties of the synchronization between the receiver and the transmitter state
variable with delay x1 vs. yl (a) analog circuit output (b) computer simulation

state x2 vs state y2
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Fig 4.16 Properties of the synchronization between the receiver and the transmitter state

variable with delay x2 vs. y2 (a) analog circuit output (b) computer simulation
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state x3 v state y3

—rT T T e

5 10 15 20 25 30 35 40 45 50

(@ (b)
Fig 4.17 Properties of the synchronization between the receiver and the transmitter state

variable with delay x3 vs. y3 (a) analog circuit output (b) computer simulation
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CHAPTERIV

CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK:

It has been known that synchronization of chaotic system has motivated potential
applications in secure communications. With the development of chaotic systems, many
different encryption systems have been proposed, including secure communications
based on synchronization of analog circuits. The use of chaotic systems has been for the
purpose of encryption. This basic concept was implemented in this report, using the
adaptive control process. This process combines both conventional encryption method
and the synchronization of the chaotic system, so the level of security is enhanced. The
two key features of chaos include a chaotic time series and sensitivity to small change in
the initial conditions. These cause the chaotic transmission to have low probability of

detection as an information-bearing signal is passed through the public channel.

In this thesis we studied (a) a general mathematical model for chaotic system formulated
in discrete time and continuous time domain from one-dimensional model to three-
dimensional Lorenz system. It uses of the chaos theory for the purpose of secure
communication by adding the information to the time varying parameter. (b) It is based
on an adaptive control method and parameter identification in order to an identify the
information. (¢) Synchronization of delay differential Lorenz equations to be further used

in the implementation of secure communication.

Chapter 2 presents the synchronization phenomenon of the coupled two-dimensional

logistic equation. Its application to secure communications using an adaptive control
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method is also demonstrated. It is known that under certain conditions, trajectories of the
response system converge to exhibit a similar behavior to that of the driver system
despite differences in their initial conditions. Further more in chapter 3, we propose the
scheme for the three dimensional model of Lorenz system. The results from the analog
circuit were comparatively similar to that of numerical solutions. In both cases the goal of
synchronization was achieved. The electronic circuit described for the Lorenz system

required fairly low tolerance value for the components to limit the performance.

There are several drawbacks in working with the chaotic analog systems for its practical
application. The synchronization process of the signals at the transmitter and the receiver
side using the analog devices. The tolerance level of each of the components should be
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