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Abstract 

Slew-maneuver control problem is studied for a flexible spacecraft consisting of a rigid 

main body to which a long flexible appendage is attached. Nonlinear dynamical system 

models are developed using both distributed parameter modeling and discrete parameter 

modeling; these models are shown to be equivalent for appropriately chosen system 

parameters. Lyapunov-based nonlinear feedback controllers are designed for the control 

of rigid-body motion while suppressing the lowest frequency vibrational mode. In case .of 

large-angle maneuvers, these nonlinear controllers are shown to outperform the 

linearization-based controllers including the filtered proportional-derivative (PD) 

controllers as well as the linear quadratic regulator (LQR) controllers. Finally, the 

theoretical development is applied to a benchmark flexible system and a number of 

computer simulations are included to illustrate the results. 
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Chapter I 

Introduction 

1.1 Introduction 

Since the beginning of satellite design, manufactures have pushed the technological 

limits of material science to develop stronger and lighter materials for spacecraft 

construction. The demands placed on satellites utilizing this progress with the 

technology allows for the satellites to be larger than ever before. Controlling the 

appendages on large satellites is becoming much more difficult with this increased size. 

The materials used in the construction of spacecraft appendages, such as solar panels, are 

becoming more advanced so control systems have to be designed so the appendages do 

not become flexed or stressed to the point of failure. In addition to structural failures, the 

vibrations of the appendages can interfere with the normal operations of the satellite 

causing undesired motions of the spacecraft. 

Figure 1: Example of a flexible structure, the LANDS AT 7 satellite with deployed solar 

array, (gsfc.nasa.gov) 
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Development of control systems for rigid body spacecraft with flexible appendages 

provides a complex nonlinear control problem. For many years, many approaches have 

been taken to solve this problem. Many of the approaches only take into account the 

rigid body and flexible mode dynamics of the spacecraft. By ignoring the dynamics of an 

actual actuator system to control the system, the final controller design is incomplete for 

practical applications for active spacecraft. 

Several controller designs have been considered over the years to tackle this complex 

problem. This thesis is aimed at providing a simple solution for the above-mentioned 

complex nonlinear control problem using Lyapunov*s direct method in comparison to 

other control methods. Two separate Proportional Derivative controllers will be used 

combined with a Notch filter and an Infinite Impulse Response filter respectively. These 

filters are applied to insure that the inputs at certain frequencies are not passed through 

the filter to the system. The Linear Quadratic Regulator is another control method that 

will be applied to the system for comparison to the Lyapunov-Based design. Finally, the 

Lyapunov-based design is applied to the system. All of the designs will be tested over 

two test cases with differing initial conditions to test the capability of each model to 

perform the required maneuver. 

1.2 Literature Review 

An important area where flexible structure control finds a widespread use is in control of 

aerospace systems. An extensive amount of research has been done in the area of active 

vibration control in aerospace structures such as flexible satellites, space antennae, and 
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more recently the International Space Station (ISS). Some studies have focused on 

rotational maneuver of flexible spacecraft that is modeled as a rigid body to which 

flexible appendages such as solar panels or antennae are attached. 

The book by Junkins and Kim [17] addresses in detail the problems associated with 

modeling and control of flexible structures. Infinite-dimensional models of flexible 

structures are treated using both Lagrangian approach and extended Hamilton's principle. 

The two most common approximate methods for finite dimensional models, the assumed 

modes methods and the finite element method, are thoroughly discussed. The book [17] 

also provides a detailed treatment of linear state feedback and output feedback problems 

associated with flexible structures. The book by Bryson [2] treats extensively several 

linear control design methods, including LQR (Linear Quadratic Regulator) and LQG 

(Linear Quadratic Gaussian) methods, for flexible spacecraft. Fundamentals of control 

theory can be found in [31]. The papers [18]-[20] provide mathematical models and 

control methodologies for multibody flexible space structures. 

An experimental apparatus for investigating control laws for large flexible spacecraft is 

introduced by Cannon and Rosenthal [3]. The experimental work in this paper 

demonstrates the difficulties associated with active control of large space structures, 

particularly when the sensors and actuators are noncolocated. Such systems have many 

low-frequency vibration modes and very low inherent damping so that quite sophisticated 

techniques are needed for fast, stable, and robust control. Casella et al [4] discuss the 

problem of modeling and simulation of a laboratory structure (a lab model of a large 
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space structure, a large modular truss suspended by soft springs) equipped with both air 

jet thrusters and piezoactuators. Neat et al in [29] implements a vibration control strategy 

for spaceborne optical interferometers on a Micro-Precision Interferometer testbed. The 

strategy incorporates the high-frequency attenuation of six-axis vibration isolation with 

low-frequency attenuation of active optical control. Lim et al in [23] compare various 

controller designs for an experimental flexible structure. 

In the literature, there have been many control schemes proposed for rotational 

maneuvers of flexible spacecraft with simultaneous vibration suppression. Control 

methods based on input command pre-shaping and/or time-delay filtering can be found in 

[1]> [9], [13], [33]-[35], and references therein. Boundary feedback control laws are 

proposed in [5], [10]-[12], [21], [25]-[27]. These control laws employ Lyapunov theory 

for distributed parameter systems, i.e. systems described by partial differential equations; 

and the stability achieved by these laws holds for the original infinite dimensional 

systems. Boundary feedback control approaches provide a practical alternative to the 

control approach based on finite-dimensional models, which has the well-known 

drawbacks of mode truncation and possible spillover effects. Several types of controllers 

have been developed for flexible spacecraft, including variable structure controllers ([11], 

[14], [32]), controllers based on genetic algorithms [10], fuzzy logic controllers [28], and 

structurally stable controllers based on internal model principle [24]. Other control 

methods include bang-off-bang control [22], output feedback control [6]-[8], and 

dynamic dissipative control [15]-[16]. 
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1.3. Contribution of Thesis 

This thesis presents useful comparison of state-of-the-art linear and nonlinear control 

designs for a flexible spacecraft. The contribution of this thesis can be summarized as 

follows: 

• Development of nonlinear dynamical system models using both distributed 

parameter modeling and discrete parameter modeling and showing their 

equivalence for appropriately chosen system parameters. 

• Design of Lyapunov-based new nonlinear feedback controllers. 

• Comparison of linearization-based controllers (filtered PD controllers and LQR 

controllers) and Lyapunov-based nonlinear feedback controllers. 

• Application of the theoretical development to a benchmark flexible system 

testbed. 

1.4. Organization of Thesis 

The organization of the thesis is as follows. Chapter 2 gives the mathematical 

development of a model for a generic flexible system. Different controller designs are 

presented in Chapter 3. Chapter 4 introduces a benchmark flexible system model. 

Simulation results for the model are presented in Chapter 5. Controller comparisons are 

discussed in Chapter 6. Conclusions and future work are addressed in Chapter 7. 

5 



Chapter II 

Mathematical Model 

2.1 Introduction 

A typical spacecraft structure consists of two principal parts: a main body and flexible 

appendages. The main body of the spacecraft contains all the pay load instrumentation 

and control hardware. Its structure must be rigid in order to withstand mechanical loads 

during the launch stage. The second part of the spacecraft structure consists of large 

flexible appendages, such as solar arrays and antennae, built from light materials in ordpr 

to minimize their weight. These flexible appendages induce structural vibrations that 

interfere strongly with the rigid-body attitude dynamics. In order to achieve high 

precision attitude demands, the dynamic effects of flexible appendages have to be taken 

into account. 

This chapter is primarily concerned with the mathematical modeling of a spacecraft 

consisting of a rigid central body to which a flexible beam-like appendage is attached. 

The appendage is clamped to the rigid body at one end and free at the other. We assume 

that the flexible beam performs only planar motion. The appendage is considered to be a 

uniform flexible beam, and we make the Euler-Bernoulli assumptions of negligible shear 

deformation and negligible distributed rotary inertia. Any effects from atmospheric drag 

are also ignored. 
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The most widely used modeling techniques include distributed parameter modeling, 

discrete parameter modeling, and finite element modeling. This chapter briefly describes 

the first two techniques. For full details on modeling of flexible structures, see [17]. 

2.2 Distributed Parameter Modeling 

Figure 2.1. Diagram of continuous mass model of a spacecraft. 

The use of distributed parameter modeling to model the panel of the spacecraft is 

commonly used in the development of controls for such systems. Consider a spacecraft 

model consisting of a rigid body and a single flexible panel modeled as an Euler-
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Bernoulli beam as show in Figure 2.1. Let XYZ denote the inertial axes and xyz be the 

body-fixed axes. The axes xyz are assumed to be the principal axes of inertia. The angle 

0 represents the attitude of the spacecraft and r is the control torque about the z axis. 

Let pj denote the mass per unit length of beam, I7 denote the rotational inertia of the rigid 

body about the z axis, and EI be the uniform flexural rigidity of the beam. Then the 

kinetic energy T and potential energy U can be expressed as: 

T = ±Izd
2+-\Pl7

2dx (2.1) 

U=-El){f)2dx (2-2) 
^ 0 

where yor y(x,t) denotes the deformation from the rigid body axis at a point x units 

along the beam and at time t, /is the length of the beam, 0 denotes the attitude angle, 

and r is the velocity of the beam at point x, which is derived below. 

From the geometry, the position vector r can be written as 

r=(x + l0)7 + yj (2.3) 

where /0 is the distance from the spacecraft center of mass to the point of attachment of 

the beam. 

Noting that the angular velocity of the rigid body is given by 

a = 0k (2.4) 

the velocity vector r can be computed as 
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? = yj + 0kx((x + lo)i+ri) (2'5) 

Here, assuming there is no deformation along the x axis, the x term has been dropped. 

Solving for r1 yields: 

?>=[(X + lo)9 + y]2
+[y0]2 &*> 

Consequently, the Lagrangian L = T-Ucan be expressed as 

L = \*j2 +^\p\{ytf +[{x + h)d + tf)dx-\El\{y'')2 dx (2.7) 

We use the assumed mode method to separate the variables for y(x,t) 

N 

y{x,t) = ^(x)qk(t) (2.8) 
k=\ 

where ^(x)is the kthshape function and qk{t) is the generalized coordinate 

corresponding to the kth vibrational mode. As in [17], we use the following shape 

functions 

(j)k (JC) = 1 - cos 
( lrm-v\ 1 • ., /' kftX^ knx\ 1/ .a+i 

TJ+2{-l) 
V / J 

(2.9) 

It can be shown that these functions satisfy both the geometric (y(0,t) = 0,y'(0,t) = 0) 

and physical boundary conditions (y"(l,t) = 0,ym(l,t) = 0), and thus they are 

comparison functions. 

To obtain the simplest model, only the first mode will be considered, so N = l. The 

substitution for y(x,t) is as follows 

y = </)(x)q{t) 



y = <f>(x)q(t) 

f = f{x)q{t) 

The Lagrangian function then becomes 

L = ^Iz0
2 +±Piy

2q2e2 +(x + l0)
2 02 +<t>2q2 +2(x + lo)0<f>q 

* 0 

-\El)(f)2 q2dx 

dx 

(2.10) 

This can be simplified to the following expression 

where 

L = \h& + \ m ^ +\mqq
2+meieq-^kq2 (2.11) 

ma = Pi Wdx 

meq = / > / j " ( * H ) ^ 
o 

/ 

k = Elj(f)2dx 
o 

Wz+/}[(>H)3-'o3}3 

The structural damping is included via the Rayleigh dissipation function given as 

R = -cq2 

2 H 

where c is the damping constant for the beam. 

(2.12) 

Consequently, applying Lagrange's equations 
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d_dL_dL_ dR_ 
dt 30 80 + 30 " T 

±dL_dL dR_0 

dt dq dq dq 

the equations of motion can be written as 

j^I,e + meqq + mqq
2e\ = T (2.13) 

^[mqq + m0ie]-mqq02+kq + cq = O (2A4^ 

which can be expressed as 

(ll+mqq
1)e + mgqq + 2mqqqe = T (2-15) 

mq'q + mdq0 - mqq02 +kq + cq = 0 (2.16) 

Using a partial feedback linearization, we obtain 

0 = u (2.17) 

q + 2%a)nq + co2q = -au + q02 (2.18) 

where 

r - m6qq0 + akq + acq - 2mqqq 

I,+mqq
2 -ameq 

u= ^ — ' •* ""«*»- (2.19) 

meq a = —-
mq 

k 
'\mq 

c 
t = -

(2.20) 

(2.21) 

2fi^k (2-22) 

Here u is the new control input, a is the coupling constant, con is the natural frequency, 

and £is the damping ratio for the flexible appendage. 
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2.3 Discrete Parameter Modeling 

Figure 2.2. Basic model of the satellite undergoing a rotation and flexing. 

Discrete parameter modeling is another useful method that can be applied to a 

combination spacecraft and flexible panel system. For the model, consider a spacecraft 

consisting of a rigid body and a flexible appendage. Here, a single mass model will be 

considered for the panel, i.e. the panel is modeled as a discrete mass at the end of a 

massless arm as shown in Figure 2.2. Let XYZ denote the inertial axes and xyz be the 

body-fixed axes. The axes xyz are assumed to be the principal axes of inertia. 

12 



Let m denote the effective mass at the end of the beam, I2 denote the rotational inertia of 

the rigid body about the z axis, and k denote the stiffness coefficient of the panel. The 

angle 9 represents the attitude of the spacecraft and r is the control torque about the z 

axis. 

Then the kinetic energy T and potential energy U can be expressed as: 

T = ±MF2+!-L02 (2.23) 
2 2 ' 

U = -kq2 (2.24) 
2 

where # denotes the deformation from the rigid body axisx, 9 denotes the attitude 

angle, and r is the velocity of the point mass m, which is derived below. 

From the geometry, the position can be written as 

r=(l + l0)T + qj (2.25) 

where / is the length of the panel and /0 is the distance from the system center of mass to 

the point of attachment of the solar panel to the rigid body. 

Recognizing that the angular velocity is given by 

3 = 9k (2.26) 

the velocity vector f can be computed as 

? = y+a)xr=-q9l + (9(l + l0) + q)j (2.27) 

13 



Finally squaring the 7 vector yields 

P2=q292+q2+2(l + l0)q9 + {l + l0f9
2 (2-28) 

Consequently, the Lagrangian L = T-Ucan be expressed in terms of the generalized 

coordinates (9, q) and generalized velocities (0, q) as 

L=l-m[q202
 +q2 +2(1+ lQ)q0 + (l+ l0f 02] + \l,02 -\kq2 ( 2 2 9 ) 

As in the previous section, let us define the Rayleigh dissipation function R as 

R = ±cq2 (2.30) 
2 * 

where c is the mechanical dissipative constant. 

Assuming a torque r acts on the rigid hub, we can write the virtual work of the system as 

8W = r89 (2.31) 

Consequently, applying Lagrange's equations 

d_dIL_dLL dR_ 
dt 89 09* 89 ~T (2.32) 
d_dL_dL 8R_ 
dt dq dq* dq ~ ( 2 3 3 ) 

we obtain the equations of motion as 

(l( + mq2}9 + m(l + l0)q + 2mqq9 = r (2.34) 

m(l + l0)9 + mq-mq92 +kq + cq = 0 (2.35) 

where It = Iz + m (/ + /0)2 . It is clear that, with mq =m,m0q = in (/ +10), these equations 

become identical to the equations of motion (2.15)-(2.16) derived in the previous section 

using distributed parameter modeling. 

14 



Using a partial feedback linearization, we obtain 

where 

q + 2<!;a)nq + (on
2q = -au + q02 (2.37) 

T-m(l + lo)q02+(l + lo)cq + (l + lo)kq-2mqq0 £.38) 

(2.39) 

U = - 9 

7? + m# 
a = l + l0 

a>. ~\m 

(2.40) 

£ = _ £ _ (2.41) 
2Vw£ 

Here w is the new control input, a is the coupling constant, con is the natural frequency, 

and I; is the damping ratio for the flexible appendage. 

15 



Chapter III 

Review of Controller Design Methods 

3.1 Introduction 

In this chapter, we first briefly review the relevant control theoretic results that are used 

in this thesis to design controllers for the flexible appendage system. For full details, the 

reader is referred to [17], [31], and [36]. The chapter is arranged in the following 

manner. Section 3.2 summarizes a number of stability concepts. Lyapunov's direct 

method is described in Section 3.3. The background on notch and IIR filters is included 

in Section 3.4. Finally, Section 3.5 provides a quick review of the Linear Quadratic 

Regulator (LQR) method. 

3.2 System Stability 

Let x = (xl,--,xn)
Tdenote an n dimensional state vector and consider an autonomous 

nonlinear dynamical system written in the form 

* = / (*) (3-D 

where the f(x) function is considered to be continuously differentiable. Let xe denote 

an equilibrium state, i.e. let 

/(*.) = o <3-2> 

For simplicity, assume that xe = 0 (this can always be achieved by shifting the 

coordinates). 

16 



6 € 

Stable Unstable 

Figure 3.1. Stable and unstable systems. 

The equilibrium state is said to be stable if for any e> 0 there exists a 8(G) > 0 such that 

| * ( 0 ) | < < ^ | * ( f ) | < e (3.3) 

for every t > 0. 

Figure 3.1 shows examples of both stable and unstable systems. The system is 

considered unstable if it does not satisfy (3.3). For this to occur, there must exist an 

e> 0 from which no value of 8 exists to satisfy the stability requirement. 

The system is said to be asymptotically stable if it is stable and 8 can be chosen such that 

|*(0) |<*=>Hm*(/) = 0 (3-4) 

There are several ways to determine the stability of an equilibrium point, including: 

solving the differential equation, Lyapunov's first method (also known as the indirect 

method) as well as Lyapunov's second method (known as the direct method). In this 

thesis, Lyapunov's direct method is explored further. 

17 



3.3 Lyapunov's Direct Method 

Proving stability of nonlinear systems with the basic stability definitions and without 

resorting to local approximations can be quite tedious and difficult. Lyapunov's direct 

method provides a tool to make rigorous, analytical stability claims of nonlinear systems 

by studying the behavior of a scalar, energy-like Lyapunov function. 

Let V(x) be a continuously differentiable function defined on a domain D c R " , which 

contains the origin, i.e. the equilibrium state. Then we have the following definitions: 

• V (x) is said to be positive definite if V(0) = 0 and 

V(x)>0 V x G D-{0} (3.5) 

• V(x) is positive semidefinite in the same domain if 

V(x)>0 V xeD (3.6) 

V(x) is said to be negative definite or negative semidefinite if -V(x) is positive 

definite or is positive semidefinite, respectively. 

To determine the stability, both the behavior of both the Lyapunov function and its 

derivative must be observed. The following results can be stated: 

• If V(x) > 0 and V(x) < 0 in the domain D, then x = 0 is stable. 

18 



• If, in addition to the above, V(x) is not identically zero along any solution of 

(3.1) other than the equilibrium in the domain Z), then x = 0 is asymptotically 

stable. 

Figure 3.2. Example of a Lyapunov function. 

3.4 Filters 

Filters are an important component in many controller designs. The purpose of filters in 

flexible controls is to minimize or remove the effects of vibrational frequencies inherent 

to the system. Filters can also be used to safeguard the specific mode of the system is not 

destabilized by feedback control. As stated by B. Wie in [36], filters do not introduce 

any dampening into the system. To control the rigid body motion, a proportional 

derivative (PD) controller is utilized. Two different filters are considered in this thesis, a 

notch filter as well as an IIR filter. 
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Figure 3.3. Block diagram of a PD controlled system. 

3.4.1 Notch Filter 

A notch filter, also known as a bandreject filter, is a specialized form of a second-order 

filter. A generalized format of these filters can be shown as 

s2/co2+2ls/a)z+l (3.7) 

s2/a>p
2+2Zps/a>p+l 

where co_, a> , £ , and %p are filter parameters. Different choices and combinations for 

these parameters yield different filter designs such as lead/lag and all pass filters as well 

as the notch filter. For the notch filter design for the system in the paper, the parameters 

are chosen as con =coz = cop. 

The filter dampening ratios for a notch filter are defined as 

£ = 0 a n d £ „ = l 

Making these substitutions into the original generalized format yields 

s2/o>„2+l (3-8) 

s2/o>2+2s/a>n+l 
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which simplifies to the general notch filter 
2 2 

s + co2 

(*+*>„) 
(3.9) 

The block diagram representing a notch filter applied to a PD controlled system is shown 

in Figure 3.4. 

-M£ 
i k 

Kp + tfdS a s2+2<tj r,s+cjj 
s2+2u;ns+u>2 

U 

• 

0 

—a • 

I 
7? 

l 
S2 + 2Cu>T»S+U>n 

0 

q 
• 

Figure 3.4. Block diagram of notch filter applied to a PD controlled system. 

3.4.2 IIR Filter 

The Infinite Impulse Response (IIR) filter is another filter that can be used to reduce the 

effects of vibrational modes. The continuous s-domain representation of an IIR filter is 

given by 

S3 is2 +2£CD S + CD2 I 

(3.10) 
co, (s + S)3 

The initial setup of the filter is similar to that of the notch filter, with the addition of a 

time constants. The result of applying this filter to an underdamped second order 

system, like the system used in this thesis, is a third order critically damped system. The 

21 



filter cancels underdamped poles from the second order equation and replaces them with 

the critically damped third order poles. 

The block diagram representing an IIR filter applied to a PD controlled system is shown 

in Figure 3.5. 

A 

Kv + Kds a 63 s2+2tuns+u2
n 

u>2 (s+6)3 
U 

^ 

9 
^ 

—a ^ 

1 
7* 

9 

l 
S 2 +2CcJ n 5+w2 

q 

Figure 3.5. IIR filter applied to a PD controlled system. 

3.5 Linear Quadratic Regulator 

The linear quadratic regulator method provides a way to compute the state feedback 

control gain matrix for a system. We start with a single input linear time-invariant 

system 

x = Ax + Bu (3.11) 

where x and u are the state space and input variables for the system. LQR method is 

employed to determine the optimal feedback control 

u = -Kx (3.12) 

that minimizes the cost function 
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J(u)= \(xTQx + uTRu)dt (3.13) 
0 

This thesis utilizes the MATLAB built-in function lqr() to solve for the optimal gain K 

for the system. 
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Chapter IV 

Controller Design 

4.1 Introduction 

In this chapter, we develop and apply four different controller designs for the system. It 

is demonstrated that PD feedback can be combined with a Notch filter or an IIR (Infinite 

Impulse Response) filter to insure that the inputs at the vibration frequencies are not 

passed through the filter. Finally, the Lyapunov method is applied do design nonlinear 

controllers. 

4.2 A PD Controller with Notch Filter 

Consider the block diagram in Figure 3.4. The linearized equations can be written as 

0 = u (4-1) 

q + 2£a)nq + co2q = -au (4.2) 

The output of the PD controller is given by (with 0C = 0 as the equilibrium point) 

a = -Kp0-Kd0 (4.3) 

where K and Kd represent the controller gains. The notch filter can be expressed as a 

transfer function from the input a to the output u of the filter as 

2 - e 2 (4.4) 
u _s2 + 2B,cons + co2 v ' 

a [s + con)
2 

or, equivalently, as 

ii + 2conu + a>2u = a + 2%a)na + a)n
2 a (4.5) 
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To obtain a state-space realization of the filter define an auxiliary signal z satisfying 

z + 2a>„z + co2z = a (4-6) 

so that the transfer function from a to z is given by 

z = 1 (4.7) 

a s2 + 2cos + (o2 

n n 

Clearly, the filter output can be expressed as 

u = z + 2%a>nz + co2z (4-8) 

Substituting z from equation (4.6) simplifies to 

u = a-2con(l-£)z (4.9) 

thus yielding a new equation for the output of the filter. 

Define the state variables 

^Xj, x2, x3, x4, x5, x6)
 = ĉ/, t/, ̂ , q, z, zj 

so that the closed-loop system (including the nonlinearity 92q) can be written as: 

x,=x2 (4-10) 

x2=u (4-H) 

X^ X^ 

x4 = -&>„2x3 - 2^conx4 -au + x2
2x3 (4.13) 

x5=x6 (4-14) 

i6 = -2o>nx6 - a)n
2x5 +a (4.15) 

where 

a = -Kp
x\-Kdxi (4.16) 

w = a-2<»„(l-£)x6 ( 4 1 ? ) 
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4.3 A PD Controller with IIR Filter 

The Infinite Impulse Response (IIR) filter is another filter that is applied to this control 

problem. Consider again the linearized system 

9 = u (4.18) 

q + 2£a)nq + co2q = -au (4.19) 

The IIR filter can be expressed as a transfer function from the input a to the output u of 

the filter as 

u 83 Is2 +2£a>ns + G>2^ 

a G)„ (s + S)> 
(4.20) 

where 8 is the time constant for the filter. To obtain a state-space realization of the filter 

define an auxiliary signal z satisfying 

z + 38'z + 3£2z + 83z = —Ta 
co2 

(4.21) 

Clearly, the filter output can be expressed as 

u = z + 2^conz + co2z (4.22) 

Define the state variables 

\Xj, x2, x3, x4, x5, x6, Xj) — \L7, C7, q, q, z, z, z) 

so that the closed-loop system (including the nonlinearity 9 q) can be written as 

x2 = u 

(4.23) 

(4.24) 
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where 

x̂  x4 

x4 = -&>n
2x3 - 2ga)nx4 -au + x3x2 

x5 — x6 

x6 — x7 

x7 =—-<?-£ 3x 5 -382x6 -38x7 
0)„ 

a = -Kpxx-Kdx2 

u-x1-\- 2con^xe + a>2x5 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

4.4 LQR 

LQR method is applied in the following manner. From (2.17)-(2.18) the linearized 

system can be written as 

x = Ax + Bu 

where JC = {0,0,q,qf is the state vector, u the control input, and 

A = 

0 
0 

0 

0 

1 
0 

0 

0 

0 
0 

0 

-V2 

0 
0 

1 

-2£». 

B = 

0 

1 

0 

-a 

(4.32) 

(4.33) 

It should also be noted that the nonlinear term is ignored prior to application of the LQR 

method. 
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Next, the weighting matrices Q and R are chosen for the system. Q can be either a 

positive definite or a positive semidefinite matrix whereas R must be a positive definite 

matrix. They should be chosen to minimize the cost index equation when applied to the 

state space variables. Generally, diagonal matrices, including the identity matrix, are 

utilized for Q and R . 

Utilizing the built-in function Iqr in MATLAB, the optimal gainJif is determined such 

that the cost function 

j(u) = )(xTQx + uTRu)dt (4-34> 
0 

is minimized. The optimal linear feedback is then given by 

u = -Kx (4.35) 

and the state matrix for the controlled system becomes 

A=A-BK (4.36) 
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4.5 Lyapunov-Based Design 

Again recall the nonlinear system dynamics described as 

9 = u (4.37) 

q + 2£a>nq + co2q = -au + q92 (4.38) 

Let x = (9,9, q, q)T and consider a Lyapunov function candidate given by 

V=^-92 +a— + -q2
 +t3Lq2+abq9 (4.39) 

2 2 2^ 2 

Clearly, F is positive definite if Kx > 0, a > 0, 6 > 0, a - a2b > 0. For asymptotic 

stability, it suffices to show that V < 0 and V is not identically zero along any solution of 

(4.37)-(4.38) other than the equilibrium x = 0. 

The time rate of change for the Lyapunov function candidate along the trajectories of 

(4.37)-(4.38) can be computed as 

V = -2b%conq
2 + 6[KX0 + au + bqq9 + ab(-2ga>nq - co2q -au + 92q)j ^4A0>} 

It is easily seen that the first term will always satisfy the requirements for asymptotic 

stability, so a new term is introduced into the function to insure that the it will always 

remain less than zero for AS. Choosing 

-K29 = (a- a2b)u + KX9 + bqq9 - 2ab£a>nq - abco2q + ab92q (4.41) 

yields 

V = -2b£conq
2 - K29

2 (4.42) 
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which satisfies V < 0. Note that V = 0=>(9 = 0,q = 0)=> x = 0, i.e. V is not identically 

zero along any solution of (4.19)-(4.20) other than the equilibrium x = 0. 

From the substitution above, the input u is defined as follows 

_ -K29-Kx9-bqq9 + 2ab^0)nq + abco2q-ab92q (4.43) 

a-a b 

Define the state variables 

(xx,x2,x3,x4) = (9,9,q,q) 

so that the closed-loop system can be written as: 

Xi=x2 (4-44) 

x2 = u (4.45) 

x3=x4 (4.46) 

x4 = -con
2x3 - 2%(Dnx4 -au + x3x2

2 (4.47) 

where 

u 
-K2x2 -Kxxx -bx2x3x4 +2ab<!;o)nx4 +aba>n

2x3 -abx2x, 

a-a b 
(4.48) 
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Chapter V 

Experimental Setup 

5.1 Introduction 

This section of the thesis will utilize the control methods that have been described and 

apply them to a known experimental setup. The proposed setup is composed of several 

components. The two main components that will be used in the modeling process for this 

thesis include the Rotary Flexible Link module (FLEXGAGE) and the SRV02 plant 

produced by Quanser shown in Figure 5.1. This setup is comprised of a thin stainless 

steel link as the flexible appendage as well as a servomotor. Further research will use 

this flexible link module to demonstrate the effectiveness of the controllers designed in 

this thesis. 

Figure 5.1. The flexible link module setup. (Quanser.com) 
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To properly generate the torque profile developed by the controllers, the input voltage to 

the motor must be derived to dampen the vibrations caused by an attitude change in the 

system. This modeling of setup will ignore any affects caused by air resistance as well as 

the effect of gravity. The gravitational influence is ignored with the understanding that 

the plane of motion of the setup is perpendicular to the force of gravity caused by the 

Earth. 

The next two sections will introduce the system dynamics of the motor as well as the 

controllers being applied to the system. Section 5.2 will go through the formulation of 

the mathematical model for the Quanser motor setup. The application of the controllers 

designed in the previous sections will be shown in Section 5.3. 

5.2 Mathematical Model of Actuator Dynamics 

The torque developed by the motor is 

Tm=rjmrjgKtIa (5.1) 

where Kt is the motor torque constant and Ia is the armature current. The motor and 

gearbox efficiencies are represented by r/m and t]g, respectively. The differential 

equation for the armature circuit is then given by 

LJa+RI+Em=V (5.2) 
a a a a m i v ' 

where V{ is the armature voltage (input to the servomotor), La is the armature 

inductance, Ra is the armature resistance, and Em is the back electromotive force (EMF) 

voltage of the motor. 
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The back EMF of the motor is defined as follows 

E =K 0 (5-3) 
m mm 

where Km is the motor voltage constant and 9m is the angular velocity of the motor. The 

angular velocity of the motor can also be represented in terms of the gear ratio Kg and 

the angular velocity of the system 9 as 

9m=K9 (5.4) 
no g 

where the system torque is 

r = KgTm (5.5) 

Substituting these values and solving (5.2) using (5.1) yields 

Lal + — r = V- KmKe0
 ( 5 ' 6 ) 

a imngK,Ks • m * 

In general, the armature inductance La is very small (La « 0) and is therefore ignored in 

this thesis. Consequently, (5.6) simplifies to 

R- -T = V-KKa0 (5.7) 
rimngK,Kg 

I m g 

Solving for system torque r yields 

r = ™*K'K'iVi-KmKe\ (5.8) 
a 

This is the same torque that is derived from the partial feedback equations. The 

calculation from the controller can be substituted for r to solve for the voltage output, 

Vt, of the motor for the system 
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5.3 Physical Values for the Experimental Setup 

We apply the controllers designed previously to the Quanser flexible link experiment 

module. The distributed parameter model will be utilized for the experimental 

simulations for the system. 

Table 5.1. Fl 
Variable 

>o 
/ 

m 

Pi 

E 
I 
EI 
k 
c 
# 

exible arm parameters 
Name 
Distance attach pt. to center of rotation 

Length of arm 
Mass of beam 
Beam mass per unit length 

Modulus of elasticity of beam 
Beam area moment of inertia 
Beam uniform flexural rigidity 
Stiffness coefficient 
Mechanical dissipative constant 
Damping ratio of beam 

Value 
~0 

0.483 
0.065 
0.1346 

7.1xl010 

4.125 xlO-12 

0.293 
379.77 
0.0339 
0.001 

Units 
m 

m 

kg 
kg/m 

N/m2 

™ 4 m 
N-m2 

Nm/rad 
N-m/rad/s 
N/A 
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Table 5.2. Servo motor parameters 
Variable 

K 
La 

rlm 

% 

K, 

* m 

\Kg 

I. 

v 
| max 

Name 
Armature resistance 

Armature inductance 

Motor efficiency 

Gearbox efficiency 

Motor torque constant 

Motor voltage/back EMF constant 

Gear ratio 

Equivalent mass moment of inertia 

Input Voltage range 

Value 
2.6 

0.18 

0.69 

0.85 

0.00767 

0.00767 

60:1 

188.84 xlO5 

±10 

Units 

a. 
mH 

N/A 

N/A 

N-m 

V/rad/s 

N/A 

kgm2 

V 

Recalling the equations of motion for the distributed parameter model (2.15) and (2.16) 

[lt +mqq
2]9 + m0qq + 2mqqq9 = T 

m
q
(i + meq6 ~ macl^1 +kq + cq = 0 

The physical values are then applied to the system. The me , mq and k terms are 

computed through integration by parts to be 

21 1 2 n" 2 \ 

"••''"•' \rv+s = .0608 kgm 

% = p,l 
4 \ , 1 x ft 

1 + 2 + - + —+ — 
2 3 20 

= 0.758 kg 

k = EI\ 1 + -
P-4 

K 
^V = 379.94 N/m 
/3 

Through substitution from the partial feedback linearized model, 

<y„ = — = 22.38 rad/s 

Noting that£ = 0.001, c is then solved as 
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c = 2mq^o)n =0.033 N-s/m 

The coupling constant, a becomes 

mQa 
a = - ^ - = 0.086m 

m„ 

Substituting these values into the original equations of motion yields 

(0.0069 + O.758tf2)0 + O.O6O8tf + \.5\6qq9 = r 

q + 0.045? + 501.08? = -0.08020 + q92 

and solving for the torque of the system we obtain 

r = (0.002 + 0.758?2) u +1.5\6qq9 - 0.0027? - 30.57? + 0.06 \q92 

The voltage required by the motor to produce the torque then becomes in terms of the 

torque r : 

Vt = 9.63r +0.460 

or in terms of the state space variables 

Vx =(0.019 + 7.30?2)w + 11.10^-0.026?-294.48? + 0.59^2+0.46^ 

5.4 Application of Control Methods 

Two separate test cases are applied to the experimental setup using the methods derived 

in this thesis. The initial values for each of the test cases are shown in Table 5.3. 

Table 5.3. Initial conditions i 

Case 1 

Case 2 

for test cases. 
Attitude change 
90 = 0.5 rad 

9Q = KX2L& 

Other ICs 
0 

90 =0.1rad/s 
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For both of the cases, the initial values for q,q,z,z,z are all set equal to zero. Each of the 

test cases were applied to the following 4 control designs: PD controller with notch filter, 

PD controller with IIR filter, LQR controller, and the Lyapunov-based controller. 

Simulations were done using the MATLAB function ode45. 

The controller parameters were chosen as follows (applied for both cases) 

Table 5.4. Controller parameters. 
PD with Notch Filter: equations (4.10)-(4.17) 

K
P=5 

Kd=\2 

PD with IIR Filter: equations (4.23)-(4.31) 

Kp=\\ £ = 30 

Kd=\0 

LQR: equations (4.32)-(4.33), (4.35) 

Q = 

.05 0 0 0 

0 40 0 0 

0 0 0.01 0 

0 0 0 40 

• * = M 

K = [0.224 6.36 -35.2 -5.55] 

0"(4*J = {-6-33, - 0.035, - 0.245 + 22.4i, - 0.245 - 22.4i} 

Lyapunov: equations (4.44)-(4.48) 

AT, =0.1 a = 1.45 

K2=3 b = lQ 
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Notch filter response oftheta and thetadot 
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Figure 5.2. Case 1 PD Control with Notch filter 9 and 9 responses. 
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x10 Notch filter response of q and qdot 
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Figure 5.3. Case 1 PD Control with Notch filter q and q responses. 
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x10 Notch filter torque and voltage responses 

Figure 5.4. Case 1 PD Control with Notch filter z and Vi responses. 

40 



IIR filter response oftheta and thetadot 
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Figure 5.5. Case 1 PD Control with IIR filter 9 and 9 responses. 
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x 10"4 , IR filter response of q and qdot 
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Figure 5.6. Case 1 PD Control with IIR filter q and q responses. 
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IIR filter torque and voltage response 
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Figure 5.7. Case 1 PD Control with IIR filter r and V. responses. 
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LQR method response oftheta and thetadot 
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Figure 5.8. Case 1 LQR method 9 and 9 responses. 
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x 10 LQR method response of q and qdot 
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Figure 5.9. Case 1 LQR method q and q responses. 
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x10 LQR method torque and voltage responses 
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Figure 5.10. Case 1 LQR method r and V} responses. 
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Figure 5.11. Case 1 Lyapunov method 9 and 9 responses. 
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x io b Lyapunov method response of q and qdot 
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Figure 5.12. Case 1 Lyapunov method q and q responses. 
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Lyapunov method response of 0 and 0 dot 
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Figure 5.13. Case 1 Lyapunov method r and Vi responses. 
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Notch filter response of theta and thetadot 
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Figure 5.14. Case 2 PD Control with Notch filter 9 and 9 responses. 
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x10 Notch filter response of q and qdot 
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Figure 5.15. Case 2 PD Control with Notch filter q and q responses. 
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Notch filter torque and voltage responses 
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Figure 5.16. Case 2 PD Control with Notch filter z and Vj responses. 
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IIR filter response oftheta and thetadot 
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Figure 5.17. Case 2 PD Control with IIR filter 9 and 9 responses. 
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x10 IIR filter response of q and qdot 
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Figure 5.18. Case 2 PD Control with IIR filter q and q responses. 
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IIR filter torque and voltage response 
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Figure 5.19. Case 2 PD Control with IIR filter z and Vi responses. 
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Figure 5.20. Case 2 LQR method 9 and 9 responses. 
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x 10 LQR method response of q and qdot 
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Figure 5.21. Case 2 LQR method q and q responses. 
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x 10 LQR method torque and voltage responses 

? ° 
z 

2 -5 

-10 

! • 

50 100 150 
Time (s) 

150 
Time (s) 

Figure 5.22. Case 2 LQR method z and Vi responses. 

58 



Lyapunov method response of theta and thetadot 
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Figure 5.23. Case 2 Lyapunov method 9 and 9 responses. 
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x10 Lyapunov method response of q and qdot 
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Figure 5.24. Case 2 Lyapunov method q and q responses. 
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Lyapunov method torque and voltage responses 
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Figure 5.25. Case 2 Lyapunov method z and Vj responses. 
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Chapter VI 

Discussion of Results 

6.1 Introduction 

This chapter will review the performance of the controllers applied to the experimental 

setup. The figures do not all have the same time-axis scale, because of the filtered 

systems responded faster so their response would have been difficult to observe on the 

axes used for the LQR and Lyapunov-based designs. 

6.2 Case 1: Filtered Control 

As shown in Figures 5.2 and 5.5, the two filtered PD controlled systems, both the notch 

and IIR filters, performs rapid attitude changes for the systems in the first case in small 

amounts of time. The attitude 0 for the rigid body quickly converges to the equilibrium 

state for both of the systems. Upon achieving the equilibrium, the systems remains at 

equilibrium for all subsequent times. 

Figure 5.3 shows the deformation of the tip of the appendage for the notch filtered system 

peaked at magnitude of about 0.04 cm off the rigid body axis. The IIR filtered system's 

deformation, as shown in Figure 5.6, is about twice that of the notch filtered system. For 

both systems, after the time at which 9 reached equilibrium, a subsequent small vibration 

is observed. This residual vibration is only on the order of a nanometer. 

Figure 5.4 shows that the notch filtered system requires well within the allowable range 

of voltages for the motor to achieve the response as shown in Figure 5.2. Figure 5.7 
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shows the IIR filter system requires more voltage than the notch filter system, but still 

within the allowable range for the motor. 

6.3 Case 1: LQR Control 

As shown in Figure 5.8, the LQR method control responds much slower than the filtered 

controllers for the attitude change. The system behaves in a similar fashion like the 

filters after reaching the equilibrium attitude, as it remains there for all times afterwards. 

The appendage tip motion, shown in Figure 5.9, performs better than the previous 

systems. The magnitude of the deflection is almost 10 times less than the filtered 

systems, with continued vibrating after reaching the desired attitude 

Figure 5.10 shows that the voltage response for the LQR method is much less than that of 

the filtered systems, requiring on the order of 100 times less voltage for the motor for the 

maneuver. 

6.4 Case 1: Lyapunov-Based Control 

The Lyapunov-Based controller has a similar response time as the LQR method to 

achieve the equilibrium attitude. As seen in Figure 5.11, the systems remains at 

equilibrium for all subsequent times after reaching the equilibrium point. 

The tip deflection for the Lyapunov method is near 100 times smaller in magnitude than 

the filtered system, and around 10 times less than the LQR system during the maneuver 
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to attitude equilibrium. Figure 5.12 also shows the frequency of the vibrations is much 

greater than the two filtered systems, but the amplitude of the vibrations is very small 

relative to the other systems. 

Figure 5.13 shows that the voltage response for the Lyapunov-Based controller is well 

within the design parameters for the servo motor. 

6.5 Case 2: Filtered Control 

For Case 2, the filtered control designs responded similarly to case 1. Both of the 

systems' response times are in the range of case 1. As with Case 1, Figures 5.14 and 5.17 

show that once the 9 equilibrium point is achieved, the attitude of the system remains 

constant. 

The filtered system designs break down for the large angle maneuver. Figures 5.15 and 

5.18 show that both of the systems have residual vibrations after the equilibrium was 

reached. The amplitude of the vibration is about 1% of the maximum for the system, and 

remained for long durations after the equilibrium was achieved. This vibration is more 

apparent in the IIR tip deformation response. 

As shown in Figures 5.16 and 5.19, the voltage response for both of the filters resides 

within the allowable ranges for the motor performance. 
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6.6 Case 2: LQR Control 

Figure 5.20 shows that the LQR method has a response time similar to that of Case 1 for 

the attitude change in Case 2. As with Case 1, upon reaching the equilibrium attitude, the 

system remains stable. 

The tip deflections shown in Figure 5.21 are again smaller in magnitude with respect to 

the filtered systems in Case 2. There is an apparent residual vibration of the system prior 

to reaching equilibrium, but it is much smaller than the residual vibrations after 

equilibrium is reached for the filtered systems. 

Figure 5.22 shows that the required voltage response for the LQR method is again very 

low. This voltage is shown to be the smallest required voltage response for the Case 2 

systems. 

6.7 Case 2: Lyapunov-Based Control 

Figure 5.23 shows that, as in Case 1, the Lyapunov-Based control for Case 2 has the 

slowest response time of all the systems. The Lyapunov-Based system is shown to 

remain stable after achieving the equilibrium point. 

The tip deformation for the appendage is shown in Figure 5.24 to again be magnitudes 

smaller than the other proposed designs. There still exists a residual vibration in the 

system, but it can be seen that the deformation during the attitude change is minimal with 

respect to the rest of the system. 
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Figure 5.25 demonstrates that the Lyapunov-based design requires voltages within the 

range of the motor parameters. 



Chapter VII 

Conclusion 

This thesis was focused on the design and application of a control method utilizing a 

Lyapunov-Based controller. Other controller designs were introduced to provide simple 

comparisons to the response of the Lyapunov control. The control designs were then 

applied using the physical parameters of an experimental setup and tested for validation 

of the designs. 

The results of the application of the controllers to the experimental setup clearly show 

that under both small and large attitude control maneuvers, the Lyapunov-Based design 

outperformed the others presented in this thesis. The advantage of a Lyapunov-Based 

control over the other designs was also observed in the minimized deformation of the 

appendage during the maneuvers. The performance of this method would be expected to 

carry over to spaced-based applications as well. 

Future research for this topic could include the purchase of the experimental setup 

described in this thesis. The setup is designed to work with the MATLAB software so 

the designs in this thesis could be directly applied to the system and validated through 

actual experimentation. 
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