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ABSTRACT 

Author: Seth-Andrew T. Dion 
Title: Neural Network Burst Pressure Prediction in Composite Overwrapped 

Pressure Vessels from Acoustic Emission Data 
Institution: Embry-Riddle Aeronautical University 
Degree: Master of Science in Aerospace Engineering 
Year: 2006 

Composites have grown in importance in the aerospace industry where high specific 
strength is a priority. Weight reduction in space vehicles is critical because of the 
exorbitant cost associated with placing objects into space. Major weight savings have 
been obtained by switching from all metal pressure vessels to composite overwrapped 
pressure vessels (COPVs). Due to the nature of composites, current nondestructive 
analysis procedures for COPVs are not adequate for assessing structural integrity. As 
such, new methods must be developed. Presented herein is one such method. 

A method for burst pressure prediction using parametric filtering of acoustic emission 
(AE) data along with the specification of a categorical variable defining damage type has 
yielded accurate results for COPVs. The process, while accurate - 5.85 % worst case 
prediction error — required that the inflicted damage type of the bottle be known in order 
to make accurate predictions. 

The newly developed method relied heavily upon filtering of the parametric data 
recorded by an acoustic emission detection system. This edited data set was then used to 
make burst pressure predictions using a three layer backpropagation neural network given 
the AE amplitude distributions as input. 

n 
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1.0 INTRODUCTION 

1.1 Composite Overwrapped Pressure Vessels 

Advanced composite materials play an important role in the aerospace industry where 

high strength and low weight are given priority over cost or ease of manufacture. This is 

especially evident in space applications. At the cost of tens of thousands of dollars per 

pound to place an object into orbit, the importance of minimum weight components and 

structures becomes apparent. 

Pressure vessels find widespread use in space vehicles as propellant and pressurant tanks. 

For example, the Space Shuttle Orbiter uses 24 spherical COPVs ranging from 19 to 40 

inches in diameter in four different subsystems (Sutter, 1). Pressure vessels have been 

made from metals like steel, aluminum, or titanium, but the potential weight savings 

associated with using composites has led to an increase in popularity of composite 

overwrapped pressure vessels (COPVs) as shown in Figure 1. As the name suggests, 

COPVs are pressure vessels that have composite layers wrapped over an ultra-thin, 

typically metallic, inner liner. The inner liner serves as the container for the fluid under 

pressure and also as the forming mandrel, while the composite overwraps provide 

structural strength. The weight savings of COPVs over metallic pressure vessels warrant 

their use; however, there are several drawbacks of using COPVs in place of their fully 

metallic counterparts, the most significant drawback being the high sensitivity to impact 

damage. 



Figure 1: Carbon/Epoxy COPV during manufacture 

There exists a great potential for COPVs to receive impact damage during their 

operational lifetimes. Damage ranging from a dropped wrench to a dropped bottle has 

the potential to significantly decrease the strength of the bottle. In some cases, impact 

damage that is severe enough to profoundly decrease the strength of the bottle is not 

readily visible to the naked eye. This is termed barely visible impact damage (BVID). 

The possibility of BVID in combination with the wide variability in composite end-

product quality and mechanical properties, make proof testing of COPVs even more 

important than for metallic pressure vessels. Proof testing of metallic pressure vessels 

generally consists of a controlled pressurization up to approximately 150% of the 

maximum expected operating pressure (MEOP), depending on the standard being used, 



-> 
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followed by controlled depressurization. During the proof test the pressure vessel should 

remain within the elastic region. As such, when depressurized, its strength is not 

substantially affected. This is not the case with composite pressure vessels. As a COPV 

is pressurized up to and above the MEOP the matrix material begins to crack, composite 

layers may delaminate and fibers may break, resulting in a bottle that could be 

substantively different, with respect to physical properties, than the bottle that began the 

proof test. This problem is compounded every time the vessel is pressurized because of 

the effects of cumulative damage. As a result, COPVs are sometimes tested in the range 

of 70-80% of the ultimate load. However, this pressurization can still lead to fiber 

breakage (NDT Handbook, 172). 

Of the failure mechanisms previously mentioned, fiber breaks have the most profound 

effect on the strength of the pressure vessel. It can be seen in Figure 2 that as loading 

increases toward, and then above, the proof pressure, the resulting number of fiber breaks 

increases at an exponential rate (Hill, 745). This presents a dilemma: proof testing of 

COPVs is imperative for their safe operation, yet proof testing can detrimentally affect 

COPV strength. It is apparent from this discussion that a need exists for a new method of 

testing COPVs that does not require such high proof pressures. 
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Figure 2: Fiber breaks as a function of ultimate load 
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1.2 Proj ect History 

A number of COPVs were manufactured by the NASA Marshall Space Flight Center for 

the purpose of performing destructive burst pressure testing. Each bottle was 15 inches 

in diameter and made from filament wound graphite/epoxy. A representative bottle used 

in the testing can be seen in Figure 3. 

Figure 3: Representative COPV used in burst pressure testing 

The bottles were fitted with instrumentation in order to measure various parameters 

including pressure and acoustic emission (AE) signals from flaw growth activity. Eight 

AE transducers were attached to each bottle, with the seventh and eight transducers near 

the polar bosses and the remaining six arrayed in two sets of three around the mid

section. A schematic illustration of transducer locations is given in Figure 4. 
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Figure 4: AE transducer locations 

It should be noted that not all of the bottles had the eighth transducer mounted. 

A summary of the manufacturing and testing data can be found in Table 1 for each of the 

ten bottles. Note that all bottles experienced differing pressurization ramp schemes, 

different types and amounts of damage, different curing methods, and different pressurant 

temperatures (cryogenic and room temperature). 
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Table 1: COPV Bottle Data 
SN 

SN002 

SN003 

SN009 
SN010 
SN013 
SN014 

SN018 

SN020 

SN025 

SN026 

Damage 

Impact 

Impact 

None 
None 
None 
None 

Cut Hoop Fibers 
(5 tows, midhoop 1st outer hoop) 

Impact 

Cut Hoop Fibers 
(5 tows, midhoop, 1st outer hoop) 

Cut Hoop Fibers 
(5 tows, 3" from dome, inner hoop) 

Cure (Oven) 

Static 

Rotissene 

Static 
Static 

Rotissene 
Rotissene 

Rotissene 

Rotissene 

Rotissene 

Rotissene 

Cryo 

Yes 

Yes 

Yes 
Yes 
No 
Yes 

No 

Yes 

Yes 

No 

Pressurization Scheme 

5 ramps w/ unloads, "plateau" 
has creep 

3 ramps w/ unloads, short-
uphill "holds" 
5 abrupt ramps 

6 ramps 
4 smooth ramps 

5 ramps 

1 slow ramp 

4 ramps, 4th long hold 

5 ramps w/ unloads, short-
uphill "holds" 

Unavailable 

The lack of a systematic treatment of the bottles, as well as the notoriously noisy nature 

of AE data from composites, negated successful attempts to make accurate burst pressure 

predictions. Only with the development of parametric analysis including categorical 

variables for noise rejection were accurate predictions achieved. This is partly due to the 

large variability of the intrinsic patterns in the AE data from one bottle to the next, but 

more a function of noise suppression. 

An example of the difference in AE data from the damage progression of two similar 

bottles (one red, the other blue) can be seen in Figure 5. Furthermore, virgin stressing of 

composites is oftentimes typified by dramatic acoustic activity. This noisy behavior is a 

direct result of the many failure modes in composite structures coupled with the brittle 

mechanical properties of both the fibers and matrix materials. 
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1.3 Acoustic Emission Theory 

Acoustic emission is a nondestructive testing method that involves instrumenting a 

specimen with piezoelectric transducers and recording parametric representations of the 

waveform data from flaw growth activity in order to perform some type of analysis. 

Analysis of the data will oftentimes allow for the determination of failure mechanisms 

that are active in the specimen. Acoustic emission is caused by the rapid release of 

energy within the system due to dissipative mechanisms in the solid. 

During the testing of a specimen, any waveforms that have amplitudes greater than a 

preset threshold value are quantified by the acoustic emission system. Each signal picked 

up by the transducer is called a "hit", and each hit can be defined by a combination of 

five parameters. These quantification parameters include rise time, energy, amplitude, 

duration, and counts, as seen in Figure 6. Rise time is the time it takes for the signal from 

the initial excursion above the threshold to reach its peak amplitude. Amplitude is a 

measure of the signal strength and is commonly measured in decibels [dB]. The duration 

of the AE signal is the time [|is] from the initial to the final excursions above the 

threshold. Counts is a measure of the number excursions above the threshold that the 

rectified signal makes during its duration, and energy is the area under the rectified signal 

envelope. 
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Figure 6: Acoustic emission waveform and quantification parameters 

The acquisition of acoustic emission data can be highly sensitive to the recording 

hardware's setup parameters. These parameters are not of any particular consequence to 

this paper; however, it should be noted that as a result of these parameters, it is possible 

for multiple hit data (MHD) to occur (Karl, 14). When AE signals begin to occur faster 

than the recording hardware can save them, signals may be partially lost or superimposed 

onto other signals. It therefore becomes difficult to identify and remove the two 

overlapping signals, or MHD, without some form of parametric filtering. The techniques 

used herein will be presented in a subsequent section. 
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1.4 Failure Mechanisms in Composites 

Composite material systems are typified by brittle fibers embedded in a brittle matrix. 

Since each component of the material system has unique mechanical properties, failure 

can occur in either system independently or in combination. For failure to occur, damage 

must accumulate. Damage can be defined as an irreversible microscopic change in the 

solid that leads to a lower energy state. The different modes of damage include fiber 

breaks, transverse matrix cracking (cracks in the matrix perpendicular to the fiber 

direction), fiber-matrix debonding, and delaminations. 

However, AE does discriminate if the damage is occurring on the micro or macro scale. 

It will record the transient elastic waves regardless of the source so long as the wave has 

sufficient energy and is within the frequency range of the transducers. As such, there are 

other significant sources of AE in the system during testing. In composite laminates it 

has been shown (Talreja, 13) that there is a progression of damage from matrix cracking, 

interfacial (fiber-matrix) debonding, delamination, fiber breakage, and ultimately total 

failure of the laminate. In the real-world testing of COPVs it would also be expected to 

have noise from inter-laminar rubbing during cyclic pressurization, debonding of the 

composite from the metallic liner, electromagnetic interference, miscellaneous 

background noise, etcetera. Therefore, it is the goal of the analyst to filter out as much of 

the noise that is not directly related to the failure of the specimen as possible. Even with 

careful consideration to data acquisition, further data processing is more often than not 

needed. 
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In composite structures, the amplitude frequencies generated during loading can be 

grouped and classified into failure mechanisms. These mechanisms are sometimes seen 

as "humps" in the AE (differential) amplitude distributions. Figure 7 shows the 

amplitude distribution for bottle SN014, an undamaged graphite/epoxy COPV that was 

pressurized with a cryogenic fluid. Although it is not immediately evident, there are 

distinct humps in the AE amplitude distribution that can only be separated via a 

classification process. The failure mechanism humps are not always evident due to the 

multidimensional nature of the data plus larger numbers of signals will result in data 

overlap. The five failure mechanisms seen here were confirmed by analyzing the data 

with a self-organizing map (SOM) neural network (Karl, 8). The SOM classified three 

primary mechanisms and fourth and fifth less prevalent mechanisms. This result 

confirmed what was known about composite failure modes and what was visually 

observed in the amplitude frequency distributions. 

Figure 7: AE Amplitude Distribution - SN014 - 300 Hits 



1.5 Classical Wave Theory 

Acoustic emission relies on the transient elastic waves propagating in the solid to reach 

the data acquisition system. As the wave travels through the medium the signal 

attenuates. The magnitude of attenuation is a property of the geometry of the solid in 

which the elastic wave is propagating and the mechanical properties of the solid. One 

typical goal of AE monitoring is the location of the damage source mechanism. As such, 

the velocity of the waves must be calculated and multiple transducers must be used for 

flaw growth triangulation. 

The wave velocities can be calculated by first finding Lame's constants: 

(Ev) 
A = 

(\ + v)(l-2v) 

E 

" = 2(l + v) 

Then the wave speeds for the different wave types can then be calculated using the 

following four equations. 

cf = \ — Longitudinal Wave Speed 
V P 

cr = I— Transverse Wave Speed 

0.87 + 1. \2v . 
cR = Cj Rayleigh Wave Speed 

1 + v 

Cp = CfJ^^- Lamb Wave Speed 
V 1-v 
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A simple program was written to calculate the wave speeds and the results for the 

aluminum liner are listed in Table 2. 

Table 2: Calculated wave speed 
Wave Type 

Longitudinal 
Transverse 
Rayleigh 

Lamb 

s in the COPV aluminum liner 
Wave Speeds [m/s] 

6149 
3097 
2887 
5351 

These wave types are generalizations made in an attempt to accurately describe the wave 

motion in the medium. However, these wave types are based on mathematical models 

that fit imposed assumptions. While the wave motion in the solid absolutely follows an 

equation, that equation is not bounded to fit the imposed model (Pollock, 6). Therefore, 

the motion in the real-world structure can be extremely complicated to solve. 

With COPVs there are interactions between the metallic liners and the composite shells 

that provide the strength. The interactions are magnified because the mechanical 

properties of the two layers are significantly different. Furthermore, in a real pressure 

vessel wave coupling occurs with the contained fluid proving another means for the 

waves to propagate. The inherent difficulty of modeling a real structure becomes 

immediately apparent. The modeling of the waves in these structures is far beyond the 

scope of this research. 

Since a COPV is essential a thin shell, the Rayleigh and the Lamb waves will be of 

particular interest here. These two wave types carry the bulk of the information about the 

AE signal and have been successfully used in the location of damage (Scott, 160-161). 
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2.0 PARAMETRIC FILTERING 

2.1 Introduction 

The long-term goal of recording and analyzing the AE from the COPVs is to develop a 

real-time health monitoring system. Before such a system can be established, the 

mechanisms leading to structural failure must be well understood. Through strict filtering 

of the data, it is desirable to reduce the bulk of the information to an extremely concise 

data set consisting only of information that can be directly used by an artificial neural 

network (ANN), or other prediction toolsets, to make burst pressure predictions. Once an 

ANN can be relied upon to make accurate predictions, the next step to developing an 

active monitoring system can be taken. During the filtering process, data sets were made 

smaller and more manageable, erroneous data due to ambient noise were eliminated, and 

failure mechanisms in the specimens were identified to allow for further analysis in 

future burst pressure predictions. 
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2.2 Initial File Handling 

NASA's AE data sets for the pressurization of the bottles existed in very large files, 

originally in DTA format. Prior to filtering, the AE data had to be converted to text 

format. The raw DTA files were converted into TXT files with a MISTRAS utility 

program, ATASC.exe. The converted text files format is given in Figure 8 below. 

"(FILE d \aedata\sn002c02 dta)" 

"(TEST START DATE & TIME)" 
"(TueMar 4 20 02 53 2003)" 

"(COMMENTS)" 
"(MISTRAS-2001 DATA ACQUISITION TEST)" 

"(ACTIVE AE DATA SET PARAMETERS)" 
"(DDD""HH""MM""SS mmmuuun)" "(PARA1)" 

0 00 00 00 3072210 0 01 
0 00 00 00 8134537 0 01 
0 00 00 00 8187160 0 01 
0 00 00 00 9896647 0 02 
0 00 00 00 9897120 0 02 

"(CH)" 

1 
4 
3 
7 
6 

"(RISE)" 

2 

15 
28 
40 

213 

'(COUNTS)" 

2 
4 

18 
96 
96 

"(ENERGY)" 

1 
4 

25 
315 
207 

"(DURATION)" 

13 
49 

222 
901 
923 

"(AMP)" 

65 
65 
73 
88 
78 

Figure 8: Converted data file 

The resulting text files typically comprised over 300,000 lines, largely comprised of 

whitespace (nonnumerical spaces), as shown in Figure 8. A script written in Perl (a 

computer program adept at handling large file I/Os) was created that condensed the files 

by removing all whitespace, effectively making the files smaller and easier to manipulate. 

file:///aedata/sn002c02
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2.3 Filtering Process 

The first filtering step was to remove all zero-energy hits. Zero-energy hits are signals 

whose waveform has just enough energy to trip the data acquisition system before 

attenuating back below the threshold. Consequently, zero-energy hits contain no useful 

parametric information for analysis. Filtering the zero-energy hits removed the most data 

of all the filtering steps described herein. A representative energy versus duration plot 

for data after zero-energy event filtration can be seen in Figure 10. Note that while 

Figure 9 and Figure 10 appear to be identical, the data that were removed fell in the data 

dense area at the left-hand end of the plot, and as such, the changes are not readily 

apparent. 
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19 

After filtering zero-energy hits, the next process was to filter events that had very long 

durations, i.e., greater than 100,000 (is (100 ms). The logic behind this was twofold: 

first, any duration greater than this would most likely be either ambient noise or multiple 

hit data (MHD). Second, many data points were exceeding the maximum allowable 

duration for the data acquisition system as seen in Figure 9 and Figure 10 as the straight 

vertical line to the far right of the graph. The resulting data after filtering by duration can 

be seen in Figure 11. 

Removing hits with rise times greater than 25 ^s was the last step in this parametric 

editing procedure. Events with rise times shorter than 25 |is are most likely flaw growth 

and are used for prediction; conversely, events with rise times greater are probably 

mechanical in nature (Moore, 42) and therefore need to be eliminated. Compared to 

filtering zero-energy and long-duration hits, the number of hits filtered by the rise time 

stipulation was relatively few. However, this final step proved to be significant in the 

creation of data sets that were easier to analyze. The resulting energy versus duration 

plot can be seen in Figure 12. 

The above three step process was termed the parametric filtering method (PFM). After 

the application of the PFM, the data sets were significantly reduced in size. The final 

step was the preparation of amplitude distributions for prediction. Here the first 2000 hits 

were selected from the filtered data. While 2000 is a somewhat arbitrary number, it 

provided enough data to be statistically significant and yet was small enough to have had 

all the hits occur at low loads - less than 25 % of ultimate (Hill, 745). 
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Figure 11: Energy vs. Duration - post 100 ms duration filter 
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Figure 12: Energy vs. Duration - post 25 ^s rise time filter 
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3.0 STATISTICAL MODELING OF DATA 

3.1 Introduction 

Before the advent, and subsequent modernization, of digital computing systems, it was 

common to model empirical engineering data through statistical analysis. While there are 

numerous distribution models in use today (normal, lognormal, and extreme value 

functions), an often overlooked model is the Johnson distribution. The Johnson 

distribution is an extremely versatile data fitting model based on the transformation of the 

standard normal variate (Hahn and Shapiro,). 

The first step in the modeling process is to make estimations for the central moments, as 

is often the case with statistic-based techniques. The moments are calculated using the 

following equations: 

- Elli(*i-*)2 

m2=cr = ==^ 
n 

m3 = 
Elite-*)3 

m4 =• 
i;>.-*)' — \4 

n 
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Next the relative skewness, Pi, and the relative kurtosis, p2, are calculated for the data 

sets. 

A = - ™ 4 

(m2y 

Once the Pi and p% values are known, they can be used in conjunction with Johnson 

distribution approximation curves given by the following formulas. 

/?, = yco —1)(<2) + 2) where co is a range of values to plot the Johnson approximation curves 

fi2=a>4 + 2coz + 3<z>2 - 3 

The result of the distribution curves is seen in Figure 13. The region that the data point 

falls into determines the best statistical model. 
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Figure 13: Johnson distribution approximation curves 

The result of this determination is that the bounded Johnson distribution is the best 

statistical model for all the data sets. Thus, the formula for the probability distribution is 

given by 

- - r+rj]n\ X~£ 

M*)=4 A 
2K (X-£)(A-X + S) 

where the shape parameters r\ and y are approximated as 

77 = 

In 

V — 7 

(\-a>-e)(e + X-Xa) 
_{xa-e)(s + A-xx_a)_ 

r = v«'-^ln 
( v - ^ 

\-a 

s + A-x, \-a J 

An example of the resulting probability distribution is shown in Figure 14. 
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Figure 14: Example of Bounded Johnson distribution approximation curve 

A probability density distribution curve can thus be generated for any amplitude 

distribution. 
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3.2 Models 

Models for each of the COPVs amplitude distributions were generated from the 

parametrically filtered data. All of the bounded Johnson distribution calculations can be 

found in section 7.2. 

There exists, however, a major limitation in the curve fitting. The curves were fit to the 

entire resulting amplitude distribution data set. Since it is known that there exist at least 

five failure mechanisms, and all of the failure mechanisms are included in each amplitude 

distribution, a highly accurate fit cannot be expected. This is readily seen in Figure 15 

where the 80 and 100 dB data offset the curve at the lower amplitudes. The first failure 

mechanism (which is likely matrix cracking due the large number of low amplitude hits) 

is located on the left of the plot. However, the Johnson distribution curve can be seen to 

be skewed (or pulled over as it were) to the right. That is due to the large moment arm 

that the sparse, high-amplitude data to the far right possess. 
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Figure 15: Bounded Johnson distribution - SN020 

In order to improve the accuracy of the modeling, the failure mechanisms must first be 

separated and then each individual mechanism modeled with its own distribution curve. 
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4.0 RESULTS 

The parameterized data from the COPVs were recorded into DTA file format by a 

Physical Acoustics MISTRAS® AE acquisition system. Acoustic emission hits were 

recorded along with the transducer channel, pressure, and the AE parameters counts, rise 

time, energy, duration, and amplitude. Filtering was accomplished by using the 

aforementioned parametric frequency method. The results of the PFM calculations 

yielded frequencies from the sub 10 kHz to 1 MHz range. It is important to understand 

that the acoustic emission signal frequency spectrums are very sensitive to the resonance 

and transmission characteristics of the AE transducer and the emitting object's geometry 

and acoustic properties (Miller, 35). 

Once the amplitude distributions were completed, it was possible to begin data 

preparation for input into a backpropagation neural network (BPNN). The architectural 

design of the three layer network is beyond the scope of this paper; however, the details 

of the network architecture and settings are summarized in Table 3. 

Table 3: BNN Architectural Summary 
Inputs 

Hidden Layer Neurons 
Output 

Momentum 
F' Offset 

Learning Coefficient 
Transfer Function 

Learning Rule 
Convergence Criterion 

41 
11 
1 

0.400 
0.100 
0.300 

Hyperbolic Tangent 
Norm-Cum-Delta 

0.070 



The results from the BPNN's output are listed in Table 4. The predictions were not 

within the desired range of ±5 percent; however, they were within an acceptable range. 

The worst case prediction was for SN010 with a prediction error of+5.85%. 

Table 4: Neural Network Results 
S/N 
002 
003 
009 
013 
014 
018 
025 

Condition 
Impacted 
Impacted 

Good 
Good 
Good 

Lacerated 
Lacerated 

Cure Type 
Oven 

Rotisserie 
Oven 

Rotisserie 
Rotisserie 
Rotisserie 
Rotisserie 

Temperature 
Cryogenic 
Cryogenic 
Cryogenic 
Ambient 

Cryogenic 
Ambient 

Cryogenic 

Use 
Train 
Train 
Train 
Train 
Train 
Train 
Train 

[psig] 
1880 
2004 
2544 
2874 
2390 
2864 
2393 

Prediction 
1853.69 
2069.75 
2630.34 
2866.85 
2402.04 
2945.45 
2399.95 

% Error 
1.40 

-3.28 
-3.39 
0.24 
-0.50 
-2.84 
-0.29 

010 
020 
026 

Good 
Impacted 
Lacerated 

Oven 
Rotisserie 
Rotisserie 

Cryogenic 
Cryogenic 
Ambient 

Test 
Test 
Test 

2460 
1967 
2675 

2316.07 
1955.75 
2572.71 

5.85 
0.57 
3.82 
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5.0 CONCLUSIONS 

The parametric filtering method yielded burst pressure predictions with a high level of 

accuracy from the AE parametric data. Increasing the sample size substantially should 

yield more consistent and accurate test results while being less sensitive to small 

disturbances. Predictions based off of the Johnson distributions were inconsistent and 

outside the bounds of tolerable limits. The erroneous predictions are likely due to the 

modeling of multiple failure mechanisms with only one curve. Therefore, predicting via 

the PFM in conjunction with an ANN is preferable. 

In well defined successful experiments, it is essential to define a control group that sets a 

foundation on which to compare all other variables in a singular manner in order to 

determine each variable's contribution to the applied parameters. Without such a group, 

the purpose of changing variables to determine their respective effects borders on futility. 

There is also a need for systematic control over changing variables of interest. In this 

case, there clearly was no control group, nor was there a systematic approach to changing 

variables. Therefore, the effects on burst pressure by variables such as curing, 

cryogenics, impact, and laceration could not be sufficiently determined. Many bottles 

were varied in more than one manner and devoid of a foundation for comparison; little 

could be drawn from the effect of each variable. However, the purpose of the original 

testing was not to gather any specific or useful information for this research, but rather to 

test other equipment. Despite that, accurate predictions were still attained. In the future, 

and for verification, it would be highly beneficial to maintain a proper control group. 
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In the future, additional attention should be given to separating the individual failure 

mechanisms and making a comparison between the prediction methodologies', 

mentioned herein, accuracies. A long-term goal should be to determine the failure 

mechanism that allows for the most accurate, repeatable predictions with the least amount 

of post-acquisition manipulation with the intent of creating a real-time, health monitoring 

system. 
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7.0 APPENDIX 

7.1 Amplitude Distributions 
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Figure 20: SN013 Amplitude Distributions 
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Figure 22: SN018 Amplitude Distributions 
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7.2 Bounded Johnson Distributions 
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7 3 Peri Codes 

7.3.1 Comma Delimiting Con verier 
# This program is intended to take the AE data that was converted from 
# RA IV.DTA into RA W. TXT and remove all but the selected transducer's 
# data. 
# The new file is named CHANNELU_OriginalFileName.txt in a subdirectory9 

# April Fools, 2006 
# llperstd, a.k.a. Captainlnsane-O || GSSpectre 

# Declare subroutines 
sub ltrim($); 
sub csv($); 

system "els"; # Clears the DOS screen 
print "This is a test of the Perl enviromentAn"; 

for (SChannel = l;$Channel<8;$Channel++) 
{ 

print "\nThe selected channel is: $Channel\n"; 

# Check if directory exists and if it doesn't, makes it 
if (-d "Channel_$ChannelM) 

{ 
print "\nERROR ERROR ERROR ERROR ERROR ERRORVn"; 
print "Directory Already Exists!!!"; 
print "\nERROR ERROR ERROR ERROR ERROR ERROR\n\n\n"; 
die 

} 
else 

{ 
print "Directory Channel_$Channel was successfully created.\n"; 
mkdir("Channel_$Channel"); 

} 

@filelist = glob("*.txt"); # list of all the .txt files in the dir 
print "\nThe following files will be used:\n"; 
print @filelist; 

$length=@filelist+0; # Converts the array of file names into a length 

$i=0; 

while ($i<=$length-l) 
i 
print "\n Processing $filelist[$i] \n"; 
$file = @filelist[$i]; 
# Opens the original for reading 
open(ORIGINAU Sfile) || die "\nCANNOT OPEN FILE!:\n$!"; 
$file_new = @filelist[$i]; 

file:///nThe
file:///nERROR
file:///nERROR
file:///nThe
file:///nCANNOT
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U Opens/writes the new file 
open(NEW, "»Channel_$Channel/$file_newM) || die 'AnCANNOT OPEN FILE!An$!": 
$num_lines = 0; 
# Reads through the original file line by line 
while (<ORIGINAL>) 

I 
t 

Sline = $_; 
U Checks if the data is for (he correct transducer <A<A (ha( the 
H file is less than 65536 lines, if yes written to new file 
if (($line — Ad\Ad{2}\s{9}$Channel\s/)&&($num_lines<65535)) tt UM followed by 9 spaces 

Sline = ltrim( Sline); 
Sline = csv(Sline); 
Sline = "\n"; 
print NEW Sline; 
$num_lines++; 

: 

# Closes out the files when read writes complete 
close(NEW); 
close(ORIGINAL); 

$i^+; 
i 

» 

# This subroutine removes the leading spaces and (he first column 
sub ltrim(S) 
f 
X 

my Sstring = shift; 
Sstring =- s/A\s+//; 

Sstring = substr( Sstring,3); 

return Sstring; 

} 
U This subroutine converts from space-delim to csv 
sub csv($) 

my Sstring = shift; 
Sstring — sAs+A,/g; 
chop (Sstring); 
return Sstring; 

} 
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7.3.2 Parameter Separator 
# This program is intended to take the csv, text files and convert them U into single column arrays named 
bottle_attribute.txt 
n November 2006 
# I'iperstd, a.k.a. Captain I nsane-O GSSpectre 

system "els"; # Clears the DOS screen 
print "This is a test of the Perl enviromentAn"; 

@filelist = glob("*.txt"); U Get a list of all the .txt files in the directory 
$length=@filelist+0; U Converts the array affile names into a length for looping 

$i=0; 

while ($i<=$length-l) 
i 

print "\n Processing $filelist[$i]-— \n"; 
Sfile = @filelist[$i]; 

# Opens the original file for reading 
open(ORIGINAL, Stile) || die "\nCANNOT OPEN FILE!:\n$!"; 
@raw_data = <ORJGINAL>; 

# remove the .txt from the file name 
$file_new = "@filelist[$i]M; 
chop $file_new; 
chop Sfilenew; 
chop Sfilenew; 
chop Sfilenew; 

# create filenames for coloumn arrays 
Sfilejime = Sfilenew "_time.txt"; 
Sfile_para = $file_new "_para.txt"; 
$file_ch = Sfilenew "_ch.txt"; 
Sfilejt = Sfilenew "_rt.txt"; 
$file_counts = Sfilenew "_counts.txt"; 
Srlle_energ\ = $file_new "_energy.txt"; 
$file_duration = Sfilenew "_duration.txt"; 
$file_amp = Sfilenew "_amp.txt"; 

# Opens writes the new files 
open(TIME, "»$file_time") || die 'AnCANNOT OPEN FILE!:\n$!"; 
open(PARA, "»$file_para") || die 'AnCANNOT OPEN FILE.'AnS!"; 
open(CH, "»$file_ch") j, die 'AnCANNOT OPEN FILE!:\n$!"; 
open(RT, "»$file_rt") || die 'AnCANNOT OPEN FILE!:\n$!"; 
open(COUNTS, "»$file_counts") || die 'AnCANNOT OPEN FILE!:\n$!"; 
open(ENERGY, "»$file_energy") || die 'AnCANNOT OPEN FILE!:\n$!"; 
open(DURATION, "»$file_duration") || die 'AnCANNOT OPEN FlLEIAnS!": 
open(AMP, "»$file_amp") || die 'AnCANNOT OPEN FlLEIAnS!": 

# read in the file's content as an array 
foreach Srow (@raw_data) 

file:///nCANNOT


chop(Srow); Hremove the trailing newline 
# read in each value into the array & assign it to the proper file 
($timing,$para,$ch,$rt,$counts,$energy,$duration,$amplitude)=split(A,/,Srow); 
printf TIME "$timing\n"; 
printfPARA"$para\n"; 
printf CH "$ch\n"; 
printf RT"$rt\n"; 
printf COUNTS "$counts\n"; 
printf ENERGY "$energy\n"; 
printf DURATION "$duration\n"; 
printf AMP "$amplitude\n"; 

i » 

ttClose the open files when read writes complete 
close(TIME); 
close(PARA); 
close(CH); 
close(RT); 
close(COUNTS); 
close( ENERGY); 
close(DURATION); 
close(AMP); 
close(ORIGINAL); 

^increment the counter (go to the next bottle's file) 
$i++; 
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MATLAB Codes 

/ Frequency_Analyzer.m 
2-9-9-&&2-9-9-Q-S^9-9-9-^&9-9-9-9-9-9-S-9-l5-9-9'Q-9-0-9-9-9-9-9-l>-S-9.9-9-$-9-9.<:' Q. Q Q ° o o o o o o o o o o o o o g o o o o o o 
o o o o o o o o o o o o o o o o o o o o o o o o o o o o ' o o o o o o o o o o o o o ' 5 ' 5 ' 5 ' 5 ' S ' 6 ' 6 ' 5 ' 6 ' 6 ' 6 ' 6 ' 6 ' < 5 ' o ' o ' 6 ' 5 ' 6 ' i : ' ' o ' 6 ' 6 ' 6 " 6 ' 6 

% This program is designed to read in the contents of the 
% files containing the column vectors of the parameterized data % 
% & then create the family of plots required to visually rep. it. h 
% It also generates the PFM distributions for the BPNN % 
% THIS VERSION USES MINIMAL PARAMETRIC FILTERING % 
% Author: Seth-Andrew T. Dion % 
% Date: November 2006 % 

lowerbound=input( 
(min=0) [kHz]: 
upperbound=input( 
(max=1000)[kHz]: 
primary_fr=input( 
investigate : 

tic 

% 
filelist=['SN002'/'SN00 3';'SN005';'SN00 9';fSN010';'SN013';' SN014';'S 
NO18' ; 'SN02 0'; 'SN02 5'; 'SN02 6'] 
burst_p = [1880;2004;2760;2544;2460;2874;2390;2864;1967;2393;2675]; 

g.g.g.0 o 0.0.0.0,0 Q . a o o a Q o a o o a o o g o g o o o o o a o o g o 
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 

% Scan through all the files 1 at a time and determine Primary Fs % 
o o o o o G o o o o o o o o o o o o o o o o o a g . o o o Q . g o Q . Q . g . o . o o o o a a a 
' 6 ' 6 ' 6 ' 6 ' 6 ' 6 ' 6 ' 6 ' 5 ' 6 ' 0 ' 6 ' 6 ' 5 ' 6 ' 5 ' 0 0 ' 0 ' 0 ' 5 ' o ' o o o ' o ' o ' C ' O o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 

filelist=['SN002';'SN003';'SN00 5';'SN00 9';'SN010';'SN013';'SN014';'S 
NO18';'SN02 0';'SN02 5'/'SN02 6'] 

for i=l:1:length(filelist) 

fn_l=streat(filelist(i,1),filelist(i,2),filelist(i,3),filelist(i,4), 
filelist (i,5) ); 

fn 2 = 
fn 3= 
fn 4 = 
fn 5 = 
fn 6= 
fn 1 = 
fn 8 = 

amp.txt'; 
ch.txt'; 
counts.txt'; 
duration.txt 
energy.txt'; 
para.txt'; 
rt.txt'; 

fn 9=' time.txt'; 
% strc :at 'adds' the 

r 

strings together to make compound file names 
fnamp=streat(fn_l,fn_2); 
fnch=strcat(fn 1,fn 3)/ 
fncounts=strcat(fn_l,fn_4); 
fnduration=strcat(fn l,fn 5); 

Please enter the minimum frequency too allow 
) ; 
Please enter the maximum frequency too allow 
); 
Please enter the # of primary frequencies to 
); 
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fnenergy=strcat(fn_l,fn_6); 
fnpara=strcat(fn_l,fn_7); 
fnrt=strcat(fn_l,fn_8); 
fntime=strcat(fn l,fn 9); 

amp=load(fnamp); 
ch=load(fnch); 
counts=load(fncounts); 
duration=load(fnduration); 
energy=load(fnenergy); 
para=load(fnpara); 
rt=load(fnrt); 
time=load(fntime); 

freq = floor(counts./(duration.*le-6)/1000); -calculated based 

min_freq = min(freq); 
max_freq = max(freq); 

% remove frequency values that are not in the desired range 
for j=length(freq):-1:1 

if ( (freq(j , :)<lowerbound) I (freq(j, :)>upperbound) && j>0) 
freq(j, :) = [] ; 
amp (j ,:) = [] ; 
ch(j, :) = []; 
counts (j, :) = []; 
duration(j,:)=[]; 
energy (j, :) = []; 
para(j,:)=[]; 
rt(j, :) = [] ; 
time (j ,:) = [] ; 

end 
end 
I remove zero energy events 
if (energy(j,:)==0) 

freq(j,:)=[]; 
amp(j,:)=[]; 
ch(j, :) = []; 
counts(j,:)=[]; 
duration(j,:)=[]; 
energy(j,:)=[]; 
para(j,:)=[]; 
rt(j, :) = [] ; 
time (j, : ) = [] ; 

end 



write the filtered files tor post processing 

freq_gl{i}=freq; 

Handles the frequency groupings for avg. value determination % 
9- 9-9-2-2- 2 2 2 9 2 2 2 ° ° Q ° ° ° o ' .9,0,9, ~, .. o o o o o o o c c ': o o o o c> c 

% create the array of frequencies to group together 
c=l; 
for l = lowerbound:1:upperbound-1; 

freq_bins(c,1) = 1; 
c=c+l; 

end 

freq_events = zeros(length(freq_bins),1); 

for k=l:1:length(freq_bins) 
for c=l:1:length(freq) 

if (freq(c,1)==freq_bins(k,1)) 
freq_events(k,1)=freq_events(k, 1)+ 1; 

end 
end 

end 

f req_events_new ( : , i) =f req_events ( : , 1) ; 

end 

o o o g o 5.5.Q,5.S.g.4Q.Q.Q.Q.2.^43'9.9.9-8-2'^2'2'2'9-&5'9'9'9'S-2'S'S'&S-9-S&1 

' O ' O ' O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O ' 

h calculates the n-primary frequencies, where n is user input 
o o, o. 0. 0. ' -0.0-0.0.2-2-0.0.0. 22-222-222-2-292-22-9' 00,90 0.000,0,2-22-2-2 2 2- 2-222-22 
' O ' O ' O ' O ' O ' O O ' O ' O ' O O O O O ' O O O O O O O O O O O O O O O O O ' 0 0 0 0 0 0 0 " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 

freq_ 
xy ( : , 
xy ( : , 
xy=so 
pf=xy 
pf=so 

avg=me 
l)=fre 
2)=fre 
rtrows 
(lengt 
rtrows 

:eq_events_new,2); 

is; 

an(fre 
q_bins 
q_avg; 
(xy,2); 
h(xy)-primary_fr:length(xy) , : ) ; 
(pf,D 

writes the frequency distribution files for the bacKpropagation 
neural network processing 

for i=l:1:length(pf) 
pfm_bot2(i,l)=length(find(freq_gl{l}(:)==pf(i,1)) 
pfm_bot3(i,l)=length(find(freq_gl{2}(:)==pf(i,1)) 
pfm_bot5(i,l)=length(find(freq_gl{3} (:)==pf (i,1) ) 
pfm_bot9(i,l)=length(find(freq_gl{4}(:)==pf(i,1)) 
pfmJootlO(i,l)=length(find(freq_gl{5}(:)==pf(i,1) 
pfm_botl3(i,l)=length(find(freq_gl{6}(:)==pf(i,1) 
pfm_botl4(i,l)=length(find(freq_gl{7} (:)==pf (i,1) 
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end 

pfm_botl8(i, l)=length(find(freq_gl{8} (:)==pf(i,1) ) ) ; 
pfm_bot2 0(i,1)=length(find(freq_gl{9}(:)==pf(i,1))); 
pfm_bot25(i,1)=length(find(freq_gl{10}(:)==pf(i,1))); 
pfm_bot2 6(i,1)=length(find(freq_gl{11} (:)==pf(i, 1) ) ); 

dlmwrite 
dlmwrite 
'%.2f') 
dlmwrite 
dlmwrite 
1 %.2f') 
dlmwrite 
dlmwrite 
'%.2f') 
dlmwrite 
dlmwrite 
'%.2f') 
dlmwrite 
•%.2f') 
dlmwrite 
•%.2f') 
dlmwrite 
'%.2f') 
dlmwrite 
• % . 2 f ' ) 
dlmwrite 
'%.2f') 
dlmwrite 
'%.2f') 
dlmwrite 
f%.2f') 
dlmwrite 
'%.2f') 
dlmwrite 
•%.2f') 
dlmwrite 
'%.2f') 
dlmwrite 
'%.2f') 
dlmwrite 
'%.2f') 
dlmwrite 

• % . 2 f ' ) 
dlmwrite 
'%.2f') 
code time=toc 

'SN002_PFFM.txt' 
'SN002_PFFM.txt' 

'SN003_PFFM.txt' 
'SN003_PFFM.txt' 

'SN005_PFFM.txt' 
'SN005_PFFM.txt' 

'SN009_PFFM.txt' 
'SN009_PFFM.txt' 

'SN010_PFFM.txt' 

'SN010_PFFM.txt' 

'SN013_PFFM.txt' 

'SN013_PFFM.txt' 

'SN014_PFFM.txt' 

'SN014_PFFM.txt' 

'SN018_PFFM.txt' 

'SN018_PFFM.txt' 

'SN020_PFFM.txt' 

'SN020_PFFM.txt' 

'SN025_PFFM.txt' 

'SN025_PFFM.txt• 

'SN026_PFFM.txt' 

'SN026 PFFM.txt' 

transpose 
burst_p(1 

transpose 
burst_p(2 

transpose 
burst_p(3 

transpose 
burst_p(4 

pfm_bot2), 'precision', '%.2f') 
1), '-append', 'precision', 

pfm_bot3), 'precision', '-.2f') 
1), '-append', 'precision', 

pfm_bot5), 'precision', '%.2f') 
1), '-append', 'precision', 

pfm_bot9), 'precision', '%.2f') 
1), '-append', 'precision', 

transpose(pfmJootlO), 'precision', 

burst_p(5,1), '-append', 'precision', 

transpose(pfm_botl3), 'precision', 

burst_p(6,1), '-append', 'precision', 

transpose(pfm_bot14), 'precision', 

burst_p(7,1), '-append', 'precision', 

transpose(pfm_botl8), 'precision', 

burst_p(8,1), '-append', 'precision', 

transpose(pfm_bot2 0), 'precision', 

burst_p(9,1), '-append', 'precision', 

transpose(pfm_bot2 5), 'precision' , 

burst_p(10,1), '-append', 'precision' 

transpose(pfm_bot2 6), 'precision', 

burst_p(11,1), '-append', 'precision' 

: : : : : : : : : : : : : : : : : : : " j, " ' 9. 9 9. 9. 9 ^ , ̂  9. 9 , ^ ^ ^ 9. :, : 

0 0 0 0 0 0 0 0 0 "59:":- : : : "' c o c 

1 Plots 
-- 9 - " ^99.^ ^ 9 9 2 9 9 9 9 9 - 9 9 9 ^ 

: "5 "c : : : • : : ; • : : : : " " " : : ' " : : : ': 3 c : - - - ; ; -. ; ': : ~ 
hold all 

scatter(pf(:,1),pf(:,2)) 
plot(freq_bins,freq_avg) 
scatter(pf(:,1),pfm_bot2(:,1)) 
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scatter(pf( 
scatter(pf( 
scatter(pf( 
scatter(pf( 
scatter(pf( 
scatter(pf( 
scatter(pf( 
scatter(pf( 
scatter(pf( 
scatter(pf( 

,1) 
,D 
,1) 
,1) 
,D 
,1) 
,D 
,D 
,1) 
,1) 

,pfm bot3(: , 
,pfm bot5(: , 
,pfm bot9(:, 
,pfm_botlO( 
,pfm botl3( 
,pfm_botl4( 
,pfm_botl8( 
,pfm_bot20( 
,pfm bot25( 
,pfm_bot2 6( 

D) 
1) ) 

D) 
,D ) 
,D) 
,D) 
,D ) 
,D) 
,1>) 
,D ) 
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Johnson dsitribution.m 
2222-22Q-02,; 

o o o o o o "o o o o o o o 'o '6 "o '6 'o "6 9* 'o "o "6 "c> o 6 o o 

%Calculate the Johnson Distribution of a bottle filtered to 91kHz-
% Author: Seth-Andrew T. Dion 
% Date: November 2006 
2 9 O. 2 2 9 2 2 9 2 2 2- 2 2. 2 2 0- 2 2 O- 0. 2 0. 2 2- 2 o o, o, .9 0, g. '9 g. o c - o o 
o o o o o o o o o o o o o o 0 o "o o 'o 'o 'o o 'o o o o o o o c ' 

clear; 
clc; 
close all; 

%Channel 1, 91kHz filtering, bottle SN002 

A=[207;1451;1766;1273;933;767;617;498;414;354;279;247;233;191;158; 
131;85;116;74;78;56;52;40;35;27;20;26;23;19;14;10;10;7;10;4;7;6;2; 
8; 6; 15; ] ; 
A=[259;1994;2498;1750;1169;727;529;394;337;254;218;218;179;147;114 
; 91; 55;66;4 4;31;23;27;25;15;16;13;9;7;6;6;2;4;4;2;4;0;1;4;2;1;1] ; 
B=[60;61;62;63;64;65;66;67;68;69;70;71;72;73;74;75;76;77;78; 7 9; 8 0 ; 
81; 82 ; 83; 84;85;86;87;88;89;90;91;92;93;94;95;96;97;98;99;100]; 

n=max(size(A)); 
A_sum = sum(A); 
-calculate the estimation of central moments from data 
m2 = l/n*sum(A."2)-l/nA2*(sum(A))"2; 
m3 = sum(A."3)/n-3*sum(A.A2)/n*sum(A)/n+2*(sum(A)/n)"3; 
m4 = sum(A.A4)/n -
4*sum(A)/n*sum(A.A3)/n+6*(sum(A)/n)"2*sum(A.A2)/n-3*(sum(A)/n)A4; 

betal = (m3/m2A(3/2))"2; relative skewness 
beta2 = m4/m2A2; -relative kurtosis (peakedness) 

% based on these values of beta, use Fig 6-2 pg 200 Hahnn & 
Shapiro 
% to determine Johnson shape -->Sb (bounded Johnson) region 
% for Sb, epsilon=0 (lower bound is 0 data pts, lambda unknown 

eps = 59.99; this is the lower bound of the data. 
lambda = 40.01; -the upper limit of the data set 
x_5 = median(A); 

% Calculate x_a based on the 9- data 

i-1; 
value = A(i); 
while value<=sum(A)*.09 

value=value+A(i+1); 
i=i+l; 

end 
x_a = B(i); 
% Calculate x_l-a cased on the 91- aata 

value = A(i); 
while value<=sum(A)*.91 

value=value+A(i+1); 
i=i+l; 
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end 
x_l_ap = B(i) ; 

% values read off of the normal-distribution tables 
z_l_ap = 1.34; 
z a = -1.34; 

ada_hat_pl = (z_l_ap - z_a); 
ada_hat_p2_n = (x_l_ap-eps)*(eps+lambda-x_a); 
ada_hat_p2_d = (x_a-eps)*(eps+lambda-x_l_ap); 
ada_hat - ada_hat_pl/(log(ada_hat_p2_n/ada_hat_p2_d)); 

gamma_hat = z_l_ap-ada_hat*log((x_l_ap-eps)/(eps+lambda-x_l_ap)); 
% Eq 6.27 

for i=l:1:n 

fl (i, l)=ada_hat/ ((2*pi)*.5); 
f2(i,l)=lambda/((B(i)-eps)*(lambda-B(i)+eps)); 
f3(i, 1)=exp(-.5*(gamma_hat + ada_hat*log( (B(i)-eps)/(lambda-

B(i)+eps)))A2); 
end 

f=fl.*f2.*f3; 
% f=max(A)/max(f) .*f ; 
f=sum(A).*f 
% P = sum(A)*l*f; 

% Plotting 
bar(B,A) 
hold on 
plot(B,f,'r',... 

'LineWidth',3) 
hold off 

%plots the Johnson distribution curves 
omega = 1:.01:1.5; 
bl = (omega-1).*(omega+2).A2; 
b2 = omega.M+2.*omega.A3+3.*omega.^2-3; 

% Create figure 
figure2 = figure; 
% Create axes 
axesl = axes('YDir','reverse','Parent',figure2; 
% Create plot 
hold on 
plot(bl,b2) 
plot(bl,bl+l) 
ylim(axesl, [0 16] ) ; 
xlim(axesl,[0 6]); 
xlabel(axesl,'\betal'); 
ylabel(axesl,'\beta2'); 
hold(axesl,'all'); 

file:///betal
file:///beta2
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plot(betal,beta2,':bs', 
'MarkerSize', 10) 

Or 

3 

P1 

2000 y 

55 60 65 70 75 80 85 90 95 100 105 
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7.4.3 Wave Speed 

% Calculate the wave speeds of the 15" Gr/E COPV Bottles 
% Author: Seth-Andrew T. Dion 
% Date: November 2006 
§ ; ^ % % H S ; % H ? ; ? ; § ; 2 ' ^ H ^ S ' ^ ^ S ' 9 - ^ 9 - 2 . & J 0 0 9 . a o a o o a o a o a a a o o o o o o o o o a o o f l o o g o o o g 
O O O O O O O O O O O O T ) X 3 0OX)^^)OO'OO'OOOOOOOO"5'6"O?'6"8'6'8'5*6'8"5'5'6'6'5-6'5'6"6"5"6'5'5O'6^'5^'6"O"6'6'6'O 

% NOTE: in an infinite medium two wave types propagate 
% Dilational - Longitudinal, volume changes, angles remain fixed 
% Equivoliminal - transverse (t) or shear (2D), volume fixed, 
angles change 

clear;clc; 
% Material Properties of 6061-T6 Al 
E_A1 = 68.9e9; I Pa 
nu_Al = 0.33; 
rho_Al = 27 00; kg/m"3 
t_Al = .12* (1/(25.4*1000)) : convertion to m from inches 

% Material Properties of Hexcel Gr/Epoxy AS4 
E_ge = 231e9; I Pa 
nu_ge =0.33; v 

rho_ge - 1780; 9kg/m^3 

% Tabulated values 
cl_Al_book = 6.3 % Longitudinal waves (compressional/sound) 
ct_Al_book = 3.1 % shear (transverse) 
cr_Al_book = 2.9; % rayleigh (surface) 
cp Al book = 5.1; i plate (Lamb... dispersive, occur in plates due 
to finite t) 
rhocl_Al_book = 17; -acoustic impedance 10A6 kg/(mA2*s) 

% Lame's constants, A^ 
lambda_Al = E_Al*nu_Al/((l+nu_Al)*(l-2*nu_Al)); 
mu_Al = E_A1/(2*(l+nu_Al)); 

I Calculated wave speeds 
cl_Al = sqrt((lambda_Al+2*mu_Al)/rho_Al); • Longitudinal WS, m/s 
ct_Al = sqrt(mu_Al/rho_Al); Transverse WS, m/s 
cr_Al = ((0.87+1.12*nu__Al)/(l+nu_Al))*ct_Al; Rayleigh WS, m/s 
cp_Al = ct_Al*sqrt(2/(l-nu_Al)); Lamb WS, m/s 

% group velocity curves 
k v = cp+Al - lambda* 

fprintf('The following wave speeds were calculated for an Aluminum 
Liner:\n') 
fprintf('Longitudinal: %g m/s\n',cl_Al) 
fprintf('Transverse: %g m/s\n',ct_Al) 
fprintf('Rayleigh: %g m/s\n',cr_Al) 
fprintf('Lamb: %g m/s\n',cp_Al) 

The tallowing wave speeds were calculated lor the Alum -...:: Liner: 
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Longitudinal: 6148.93 m/s 
Transverse: 3097.33 m/s 
Rayleigh: 2S86.8 m/s 
Lamb: 5351.36 m/s 

Published with MATLABl 7.0 



4 TWPV_burst_pressure_predictwn.m 
9- 9- 9- 9- 9- 9- 9- & °- 9- 9 9- 9- 9- 9- 3 
o o t> t> ̂> o 15 t> o t> o o^"6 o o o o ot5t> o'o o "o "3 'o '< 

% Calculate the theoretical burst pressure of a COPV 
% Author: Seth-Andrew T. Dion 
% Date: November 2006 

clear 
clc 
close all 
format short g 

% Bottle Properties 
n_hoop = 5 ; % # of hoop plies 
n_polar = 2 ; % # of polar plies 
d = 15; % diameter, inches 

% Material Properties 
t_hoop = .007; ply thinckness, inches 
t_polar = t_hoop; 
x_t = 310; ksi 
x_c = -24 0; % ksi 
y_t =8.7; ksi 
y_c = -8.7; % ksi 
sl2 = 18.5; % ksi 

% thin walled pressure vessels 
syms sig2 
sigl = 2*sig2; 
tl2 = 0; 
f = 0; % default value 

% Calculate Fs 
Fl = l/x_t + l/x_c; 
F2 = l/y_t + l/y_c; 
Fll = -1/(x_t*x_c); 
F22 = -l/(y_t*y_c); 
F66 = l/(sl2)A2; 
F12 = f*sqrt(F11*F22); 

I Failure Envelope 
% matrix splitting occurs at these values 
A=solve(Fl*sigl+F2*sig2 + 
Fll*siglA2+F22*sig2A2+F6 6*tl2A2+2*F12*sigl*sig2-l,sig2) ; 

sig2 = double(A) 
sigl = 2*sig2 

% Calculate pressure 
k sigl = pr/t 
P = 2*sigl*(n_hoop*t_hoop+n_polar*t_polar)/(d-
2*(n_hoop*t_hoop+n_polar*t_polar))*1000 rpsi 

% Calculate ultimate failure pressure (hoop plies) 
clear sigl sig2 
sig2 = 0; 
syms sigl 
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A=solve(Fl*sigl+F2*sig2 + 
Fll*siglA2+F22*sig2A2+F66*tl2A2+2*F12*sigl*sig2-l,sigl) ; 
s i g l = d o u b l e ( A ) 
P = m a x ( 2 * s i g l * ( n _ h o o p * t _ h o o p + n _ p o l a r * t _ p o l a r ) / ( d -
2 * ( n _ h o o p * t _ h o o p + n _ p o l a r * t _ p o l a r ) ) * 1 0 0 0 ) %psi 

sig2 = 

8.1536 
-8. 6111 

sial = 

11.501 
-17.223 

P = 

115.13 
-113.21 

sigl 

310 
-240 

'.038. 7 
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