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Abstract 

Expendable launch vehicles in the United States currently have a reliability of 

92%. The failures that do occur cost millions of dollars in spacecraft replacement, lost 

revenue, and other expenses. These costs are passed on in higher insurance rates and 

launch vehicle price. If the launch outcome of the launch vehicles could be better 

predicted, the overall cost of launching payloads into space would decrease. This study 

used artificial neural networks to model the overall launch outcome of a launch vehicle so 

that the results of a launch could be predicted. Two neural network architectures—MLP 

and fuzzy ARTMAP—were trained on historical launch data of Atlas, Delta, and Titan 

launch vehicles. The networks were then tested on their ability to generalize to new data. 

Fuzzy ARTMAP performed slightly better than MLP overall, but neither network can be 

used during launch countdown today. Future application of the networks in real-time 

during the vehicle launch countdown will require the use of more launch specific data. 
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Introduction 

Expendable launch vehicles, rockets used to launch satellites into space, constitute 

a large amount of business in the United States. Every year, dozens of payloads or 

satellites are launched into Earth orbit. Some of the payloads are commercial. These 

satellites facilitate cell phone signals, Global Positioning System navigation, television 

broadcasting, and countless other world-wide communication links. Other launch vehicle 

payloads are classified military projects that help to keep our country safe. Still other 

payloads consist of scientific packages. These satellites study the Earth, our Solar 

System, and beyond. 

Each launch vehicle payload is the result of years of research, development, 

manufacturing, and testing. This process constitutes a large commitment on the part of 

the satellite manufacturer and typically costs hundreds of millions of dollars (Chang, 

2000). The satellite makers sink large amounts of time and energy into creating their 

product—one they are counting on bringing a return back to their company. 

In addition to development and manufacturing cost, the actual launch of the 

payload is very expensive. The current price for launching one pound of payload into 

Earth orbit is $5,000 (Fragola, 1991). Considering most satellites are a few thousand 

pounds in weight, launches can run into the range of tens of millions of dollars. For 

example, a common commercial communications satellite has a mass of 9,480 pounds 

(Hill, 2000). This would incur an approximate launch cost of $47 million. 

It is important to the launch vehicle customer that their payload reaches its 

destination safely. It is also important to the maker of the launch vehicle that the process 

comes to a successful completion. Just like the satellites they transport, launch vehicles 
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undergo years of development and testing before they are prepared for use. Any launch 

failures would be a setback to both the payload manufacturer and the launch vehicle 

company. 

The current United States launch vehicle failure rate is 8% (Fragola, 1991). The 

consequences of these failures, listed in Table 1, are great. In addition to the monetary 

risk discussed above, there are several other risks associated with launch vehicle failures. 

Table 1 
Enumeration of Launch Expenditures and their Associated Costs (from Parkinson, 1998) 

Launch Expenditure 
Low Earth Orbit Payload 

Launch Cost 
Insurance 

Cost of Failure 
Lost Business 

Typical Cost 
$88 million 
$90 million 
$18 million 
$296 million 
$79 million 

Parkinson (1998) lists the total cost consequences of a vehicle failure. They 

include paying insurance for the lost payload, the cost of a new launch, the cost of an 

investigation and recovery, the cost of system maintenance during downtime, and the cost 

of lost opportunity. These costs are shared between the insurance agency, the launch 

operator, and the satellite manufacturer. 

Investigations into the cause of a launch vehicle failure cause downtime. Launch 

activities cannot resume until a cause is determined and the problem is fixed. This 

investigation process may result in schedule delays of several years (Pytanowski, 1999). 

Launch vehicle success also affects future business. One factor that is considered 

when choosing a launch vehicle to raise a payload into orbit is the reliability of the 

vehicle. If one launch vehicle has been receiving bad publicity because of failures, the 

vehicle's maker may lose business until the reliability improves (Parkinson, 1998). 
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Failures, and therefore lower vehicle reliability, add cost to the rest of the 

launches. Vehicle operators increase the price of launches to cover the costs they ensue 

from other failures. This cost of risk adds about 18% to the cost of a launch (Parkinson, 

1998). 

Additionally, there is also a risk to life on the ground if a launch vehicle fails 

during lift-off. The fuels used to propel launch vehicles into space are dangerous to the 

environment and to humans. Clean-up after a failure is an extensive and expensive 

process. Danger is somewhat mitigated by the placement of the two launch facilities in 

the United States. The Cape Canaveral launch site in Florida launches vehicles over the 

Atlantic Ocean, and the Vandenberg Air Station in California launches vehicles over the 

southwestern desert. However, winds may carry toxic fumes to populated areas. Besides 

launch site placement, there are many other safety considerations in place during launch. 

Contingency plans are ready in the event of a failure. 

For all the reasons stated above, it is important to better predict the outcome of a 

launch than it is to recover from it afterwards. If a failure can be prevented, time, energy, 

and money will be saved. There are many factors that contribute to the success or failure 

of a launch—the weather during launch, the type of engine, the reliability of the engine, 

the reliability of the internal components of the vehicle, and many others. 

In the United States today, there are three major launch vehicles: Delta operated 

by The Boeing Company and Atlas and Titan operated by Lockheed Martin Astronautics. 

There are currently three Delta vehicles being used: Delta II, III, and IV. Delta II has 

been in service since February 1989. The Delta III and IV vehicles are more recent 

additions to the fleet (Launch Vehicles, 2004). On average, there have been 8 Delta 
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vehicle launches per year since 1989 (Boeing, 2004). Lockheed Martin operates both the 

Atlas and Titan launch vehicles. The Atlas vehicles presently in use are the IIAS, III, and 

V. The first launch of the IIAS occurred on December 15, 1993. Titan II and IV are 

currently active. Titan II has been in service since 1964, and Titan IV was first launched 

in 1989 (Launch Vehicles, 2004). Altogether there have been 329 Atlas, Delta, and Titan 

launches since 1979. 

The objective of this study was to build a model to predict launch vehicle success. 

Statistical modeling methods were eliminated because the data are not independent and 

identically distributed. Neural networks have been used for similar problems in the past, 

so were selected for this application. 

This study was intended to demonstrate whether artificial neural networks are 

useful for modeling launch outcome. In more general terms, the neural networks 

modeled the reliability of the launch vehicles. Reliability in this paper is defined as the 

ability of a launch vehicle to reach orbit without destruction of the vehicle. 

Research was done to see if launch outcome could be predicted with an artificial 

neural network, and how well the network could model launch outcome. If successful, 

neural network modeling could be added to existing preflight checks as an additional 

measure of launch safety. Currently, a controller must use information from several 

sources to decide on a "Go" or "No Go" for launch. A neural network model would be 

able to sort through all of the controller's information to determine the outcome of the 

impending launch. The controller would be able to make a better decision having to 

analyze only one piece of computer output rather than dozens. 
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The ability to accurately predict launch outcome would save money due to lost 

payloads. Launch failures would be avoided as would the impact of those failures. 

Humans and the environment would be protected by avoiding fuel and payload debris 

from contaminating the earth. Finally, it would avoid the need to clean up hazardous 

materials. 

Neural networks are defined in the next section. Also detailed are how they have 

been used to predict reliability and what has been done in the past to predict launch 

vehicle success. 
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Neural Networks for Launch Outcome Prediction 

This chapter discusses neural network literature relevant to this reliability 

problem. First, recent studies using neural networks to model reliability will be outlined. 

Second, details about neural networks in general will be discussed. Finally, studies 

concerning the reliability of launch vehicles will be described. 

Neural Networks for Reliability 

Neural networks can be used to predict the reliability of systems. In the terms of 

this paper, reliability is the success rate of launch vehicles. Table 2 lists some of the 

research that has been done on modeling reliability using neural networks. The literature 

shows that neural networks are consistently useful for complex reliability problems that 

may not be solved using statistical methods. Neural networks take large amounts of data 

and quickly find solutions to a variety of types of problems. 

Table 2 
Use of MLP Neural Networks in Classifying Reliability Prediction 
1 Author/Date 
1 Adnan, W.A., Yaakob, M., 
Anas, R., and Tamjis, M.R. 
(2000) 

1 Amjady, N. and Ehsan, M. 
(1999) 
Chinnam,R.B. (1997) 

Coit, D.W. and Smith, A.E. 
(1995) 
Hiebert, S.F. and Chinnam, 
R.B. (2000) 
Khaparde, S.A. and 
Bhattacharyya, K. (1996) 
Sinha, S.K. and Pandey, 
M.D. (2002) 

Application 

software 

power 
systems 

drill bits 

genetic 
algorithms 

drill bits 

power 
systems 
oil and gas 
pipelines 

Scope 

overall 
system 

overall 
system 
individual 
component 
overall 
system 
individual 
component 
overall 
system 
overall 
system 

Success Rate of Prediction 

9 8 % 

99% 

time dependent 

99.5 % 

time dependent 

99% 

89% 

6 



In addition to being powerful and fast, neural networks can be applied to find 

either the reliability of overall systems or of individual parts. As an example of an 

overall system view, Sinha and Pandey (2002) studied the reliability of oil and gas 

pipelines. The neural network utilized eight attributes that were collected during an 

inspection of the pipeline. The neural network model estimated the probability of 

pipeline failure based on the data from the inspection. The probability of failure output 

was categorized into one of five ranges depending on the severity of the probability of 

failure. The model accurately predicted pipeline failure 89% of the time. 

Coit and Smith (1995) also focused on overall system reliability. They found that 

neural networks were useful in estimating overall system reliability of genetic algorithms 

based on individual component reliability and design configuration. The resulting neural 

network correctly classified system reliability 99.5% of the time. 

A study by Adnan, et al. (2000) examined the reliability of different types of 

software. Individually, software such as on-line data entry and flight dynamic 

applications was modeled. Overall, the neural network models correctly predicted 

reliability 98% of the time. 

Amjady and Ehsan (1999) studied the overall reliability of electrical transmission 

systems. They found that the neural networks modeled reliability correctly 99% of the 

time. The authors used estimations of scheduled maintenance to model the systems. 

Khaparde and Bhattacharyya (1996) also modeled electrical generator systems and found 

a correct prediction rate of 99% as well. 

Two other studies by Chinnam (1997) and Hiebert and Chinnam (2000) stressed 

the fact that neural networks can be used to analyze one individual component's 
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reliability. The studies focused on individual drill bits. They proposed that end users are 

interested in their component's reliability, not the average characteristics of an entire 

batch. The authors used degradation signals from individual drill bits to model the 

performance reliability of that drill bit. The percent accuracy of reliability prediction of 

the models increased as the number of holes drilled with the bit increased. 

The wide range of reliability problems that have been addressed using neural 

networks is promising. Appling neural networks to launch outcome requires looking at 

the overall system and choosing appropriate attributes in the neural network model of the 

system. Next, a background on neural networks is provided. 

Neural Network Overview 

Artificial neural networks have existed for sixty years (Hagan, Demuth, and 

Beale, 1996). Their widespread use, however, has just in the past few years begun to 

flourish. Within the neural network domain, there are several architectures that can be 

used for different types of applications. These architectures are used for a variety of 

learning tasks. Some architectures are more suited for some tasks than others. 

Each neural network is taught to perform a specific task. These tasks can be 

applied to a wide range of problems in a wide spectrum of fields. The following list 

details neural network tasks (Christodoulou and Georgiopoulos, 2001): 

• Approximation—estimate a function given a set of x and y data points. 

• Pattern classification—fit the input patterns into a fixed number of categories. 

• Prediction—predict present samples given past samples. 

• Clustering—group data with common features into categories. 
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This paper focuses on pattern classification. Input and output pairs of data with 

known outcomes were applied to the neural networks in order to train them. These input 

output pairs are referred to as training patterns. After they were trained with the training 

patterns, the trained network was used to categorize new input patterns. These new input 

patterns were not part of the training patterns. These have known outcomes to the 

modeler and are used to test how well the network performs on novel data. These are 

referred to as test patterns. The launches were classified into either a success or failure 

category. 

Each input pattern is made up of attributes that define that pattern. Some input 

attributes may have a relatively low correlation to launch outcome, and other input data 

may have a high correlation. It is not necessary for the researcher to know which 

attributes are more relevant to launch outcome. The neural network will assign weights 

to each attribute according to its effect on the outcome. 

The best neural network architectures for pattern classification problems are 

multi-layer perceptron (MLP) and fuzzy ARTMAP (Christodoulou and Georgiopoulos, 

2001). Multi-layer perceptron networks are feed-forward networks that are trained with 

back propagation algorithms and are the most widely used neural networks. Fuzzy 

ARTMAP networks are newer and thus less widely known. They are based on adaptive 

resonance theory. Table 3 lists studies that have compared the performance of MLP and 

fuzzy ARTMAP to each other and to other network architectures. 
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Table 3 
Comparison of the Performance of Several Neural Network Architectures 
Authors 

Meneganti, Saviello, 
and Tagliaferri, (1998) 

Llobet,etal.,(1999) 

Sinha and Pandey, 
(2002) 

Trocine, (2002) 

Architectures Studied 

Fuzzy ARTMAP 
Fuzzy Basis Functions 
Adaptive Optimal Fuzzy Logic 
System 
Quasi-Newton Multilayer 
Perceptron 
Fuzzy ARTMAP 
Learning Vector Quantization 
MLP 
Custom Modified Probabilistic 
Neural Network 
MLP 
General Regression 
Radial Basis Function (RBF) 
MLP 
RBF 
Fuzzy ARTMAP 

Success Rate 
Training Set 
100 % 
65.4 % 
70.6 % 

81.9% 

. . . 

— 

— 

96.7 % 

89.2 % 
81.9% 
85.7 % 
86.1 % 
100% 
100% 

Success Rate 
Test Set 
69.7 % 
59.8 % 
67.0 % 

72.1 % 

90.3 % 
92.0 % 
82.4 % 
91.2% 

84.5 % 
77.3 % 
81.1 % 
83.6 % 
4 5 % 
98.2 % 

Meneganti, et al. (1998) compared four architectures. Fuzzy ARTMAP and MLP 

outperformed Fuzzy Basis Functions and Adaptive Optimal Fuzzy Logic System. 

Trocine (2002) also found that fuzzy ARTMAP and MLP outperformed another 

architecture, Radial Basis Function neural networks. In the study by Sinha and Pandey 

(2002), only their custom-designed Probabilistic Neural Network outperformed MLP. 

Fuzzy ARTMAP was not included in the study. 

Llobet, et al. (1999) found that both fuzzy ARTMAP and Learning Vector 

Quantization (LVQ) classified better than MLP. LVQ performed well for that 

application, but currently there are no other examples comparing LVQ to fuzzy 

ARTMAP. Future studies may focus on this gap in research, however, that question was 

not considered for this study. 
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Overall, MLP and fuzzy ARTMAP are considered the best architectures for 

pattern classification tasks. The next section provides an overview of these two network 

architectures. 

The multi-layer perceptron (MLP) network is a feed-forward network. Feed­

forward means the signals between neurons only go from one layer to a higher index 

layer, not sideways or backwards. Synapses are the connections between individual 

neurons and each synapse has a different weight associated with it. Figure 1 shows one 

neuron with three synapses connecting to it. The sum of the weighted signals from the 

synapses must cross a threshold in order to generate an output from the neuron. Multi­

layer means that there are one or more hidden layers between the input and output layers 

as shown in Figure 2. 

threshold function 

Wi 

w2 

output 

W3 

£K 
Figure 1: Model of a NN neuron (from Christodoulou and Georgiopoulos, 2001). The 
neuron receives weighted signals wi, w2, and w3 from nodes 1 through 3 via the synapses. 
The sum of the input signals must pass some threshold function in order to pass through 
the neuron. If the threshold is met, the net signal is acted upon by some predetermined 
function and passed on as output. 
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There are several transfer functions available for use in MLP networks. Transfer 

functions are learning rules that are used to get the neuron input/output relationship to 

meet a specific goal. Specific functions are chosen for the type of problem that needs to 

be solved. For the model created in this study, the Hyperbolic Tangent Sigmoid (tansig) 

and Linear (purelin) functions were used, the latter for the transfer from the input layer to 

the hidden layer and the former for the transfer from the hidden layer to the output layer. 

The linear transfer function is exactly how it sounds, linear. The output is equal to the 

input (Hagan, et al., 1996): 

a = purelin(n) 

The tansig transfer function is a type of sigmoid function. Sigmoid functions are 

the most common activation functions used (Christodoulou and Georgiopoulos, 2001). 

The function has a range from 0 to +1, however applying the hyperbolic tangent sigmoid 

stretches the range to -1 to +1. This transfer function forces the output nodes to be nearly 

integer valued to indicate which class the output belongs to. The input/output relation is 

(Hagan, etal., 1996): 

a = e n - e ' n 

e11 + e"n 

The network used a gradient descent procedure which means that the synaptic weights 

were changed by an amount proportional to the negative gradient during training 

(Christodoulou and Georgiopoulos, 2001). Note that initially the weights are assigned to 

meaningless values. Through training the weights are gradually changed, via back 

propagation with gradient descent, to weights that map the input attributes ultimately to 

the correct outputs. 
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MLP can either be fully connected or partially connected. In a fully connected 

network, every node, or neuron, in each layer is connected to every node in the next 

forward layer. A partially connected network has some missing synapses (Christodoulou 

and Georgiopoulos, 2001). These weights are determined by the correlation between 

the input data and the desired output. 

Figure 2 shows the layout of an MLP network. The number of inputs is equal to 

K. Data from each input node is passed to each one of J nodes in the hidden layer. In 

turn, each hidden layer node passes its outcome to each of the I nodes in the output layer. 

I is equal to the desired amount of outputs. Currently, MLP is the most widely used 

architecture for classification and prediction problems (Adnan, et al., 2000). 

Layer 2 

Layer 1 

Layer 0 

Output 
Layer 

Hidden 
Layer 

Input 
Layer 

Figure 2: Model of the multi-layer neural network architecture (Christodoulou and 
Georgiopoulos, 2001). 
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MLP networks are also called back-propagation networks. Back-propagation is 

actually the training algorithm used to teach the network. The algorithm starts with the 

input propagating through the three layers of the network. This initializes the synaptic 

weights. Next, the sensitivities of those weights are calculated starting at the final output 

layer working back to the input layer. Finally, the synaptic weights are updated (input 

layer to output layer) according to the sensitivities (Hagan, et al., 1996). Training will be 

discussed more in the next section. 

Adaptive Resonance Theory (ART) networks were developed by Stephen 

Grossberg in the 1970s. The name of the network comes from the way the network acts 

during training. The neuron outputs reverberate back and forth between the node layers 

until a good pattern is developed. Then the oscillation becomes stable. ART is different 

from MLP in that it has a "plastic memory." Having a plastic memory means that, after 

the network is trained on one set of data, more data can be added in without having to 

retrain with the old data (Christodoulou and Georgiopoulos, 2001). The neural network 

adapts to the new information without forgetting the old information. 

Fuzzy ARTMAP is a particular ART architecture that requires binary input 

patterns. The fuzzy ARTMAP network is composed of three modules as seen in Figure 

3. The ARTa and ARTb modules are fuzzy ART modules with an inter ART module 

connecting them. Inputs flow into the ARTa module and corresponding outputs are 

mapped to the ARTb module. A field within the interART module determines whether 

the mapping from inputs to outputs is correct. If the mapping is satisfactory, the output is 

sent through the ARTb module. Otherwise, the process continues with constant 
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communication back and forth among the three modules until the mapping is satisfactory 

(Christodoulou and Georgiopoulos, 2001). 

ARTa module 

A L 

Input vector 

fc 

*+ 

InterART 

module 

A 

V 

ARTb module 

ir 

Output vector 

Figure 3: Model of the fuzzy ARTMAP architecture adapted from Christodoulou and 
Georgiopoulos (2001). The interART module interacts with both the ARTa and ARTb 
modules to map the input patterns to the output patterns. 

Another way to explain how fuzzy ARTMAP classifies data is by using a 

geometrical view. The weights that are created in the ARTa and ARTb modules are also 

called templates. The templates are represented as rectangles. A training pattern is 

presented to the network. If the weight of the pattern fits into the previous rectangle 

template, then it has the same outcome. If the weight does not fit into the rectangle, then 

a new rectangle template is formed. The size of the rectangles is set by tuning the 

network parameters with smaller rectangles being more ideal (Christodoulou and 

Georgiopoulos, 2001). In the end, the rectangles may overlap, but that is allowed. The 

rectangles represent the output classes that the input data fall into. Figure 4 shows this 

representation. 
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Figure 4: Geometric view of the output patterns as developed during fuzzy ARTMAP 
training (adapted from Trocine, 2002). The colors show different output classes. The 
input patterns fall within one of the rectangles or on the border of one. 

There are several examples of fuzzy ARTMAP being used for pattern 

classification. Llobet and others (1999) used an electric nose to determine several 

characteristics of bananas. They tested the abilities of both MLP and fuzzy ARTMAP to 

classify the bananas into ripeness categories. Overall, the MLP network had an 83.4% 

correct classification rate. The fuzzy ARTMAP network classified correctly 90.3% of the 

time. It was also stated that the fuzzy ARTMAP architecture performed well even with 

the presence of noise added to the signals from the electronic nose. 

Tu, et al. (2001) applied neural network architectures to benchmark datasets in 

order to compare training time. They found that the training time for fuzzy ARTMAP is 

relatively fast even with large datasets. The training time required for MLP is 

comparatively large. 

Lee, et al. (2002) applied fuzzy ARTMAP and MLP to channel equalization for 

digital communications. This application was regarded as a pattern classification 
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problem. The researchers found that fuzzy ARTMAP was not as sensitive to noise as 

MLP. The training time of the fuzzy ARTMAP network was approximately one-fifth 

that of the MLP network. 

Trocine (2002) compared the performance of MLP and fuzzy ARTMAP on the 

classification of a benchmark data set. The networks classified wines by their 

characteristics into one of three categories. MLP correctly classified 83.6% of the wines 

while fuzzy ARTMAP correctly classified 98.2%. 

Another study compared the ability of MLP and fuzzy ARTMAP networks to 

classify or find anomalies in a cooling system (Meneganti, Saviello, and Tagliaferri, 

1998). The networks were run with synthetic, realistic, and real data. Fuzzy ARTMAP 

had faster computation time for two of the three experiments. The percentages of error 

with the test sets showed variation among the type of data. With the synthetic data, fuzzy 

ARTMAP had a percent error of 7.29% and MLP had a percent error of 16.15%. 

However, the errors with the realistic data for fuzzy ARTMAP and MLP were 0.26% and 

0.18%> respectively. MLP also performed better than fuzzy ARTMAP with the real data 

set. These results, however, contradict the other studies presented here. 

The details of Fuzzy ARTMAP and MLP have just been discussed. In summary, 

Table 4 shows the overall differences between MLP and fuzzy ARTMAP. Training the 

neural networks is discussed in the next section. 
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Comparison of the Characteristics of MLP and Fuzzy ARTMAP 

Number of Hidden 
Nodes 
Training Time 
Memory 

Categories 

MLP 
Set by programmer 

Long, variable 
New patterns must be 

presented along with the old 
patterns in order to generalize 

Forces patterns into output 
classes 

Fuzzy ARTMAP 
Data driven 

Short 
Plastic—new patterns learned 
without having to relearn the 

old patterns 
Includes an "I Don't Know" 

class 

Training 

One of the major benefits of neural networks is their ability to generalize. That is, 

the network may accurately classify a pattern without having been trained on that pattern. 

Each of the neural network architectures needs to be trained first, before it can generalize 

to solve problems. The training procedure allows the network to adapt its synaptic 

weights to respond to the training patterns. Several iterations, called epochs, are required 

to find the ideal weights. One iteration of all the input patterns is one epoch 

(Christodoulou and Georgiopoulos, 2001). 

Before training, the input data is separated into two categories: a training set and 

a test set. During training, the training set is applied to the neural network with its 

appropriate target output. Training is complete when the actual output received from the 

neural network matches with some high percentage rate the target output. In other words, 

what the neural network answered (the actual output), matched the actual answers (target 

output). After training, the test set of data is applied to the neural network. The test set 

consists of input patterns the network has never seen before. The actual output from the 
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network is compared to the target output that matches the test set. If they match with 

some high percentage rate, the network has successfully generalized. 

Both MLP and fuzzy ARTMAP utilize supervised learning. Supervised learning 

involves the network adjusting its weights to match the target output. (Unsupervised 

learning does not require this.) The neural network weights adapt to decrease the error 

between the target output and the actual output of the neural network. Target responses 

that the neural network output should reach are provided (Christodoulou and 

Georgiopoulos, 2001). 

According to Christodoulou and Georgiopoulos (2001), generalization is one of 

the most important considerations when using a neural network for pattern classification. 

The network must be able to use one data set to generalize to another. 

Launch Prediction 

There are no previous studies applying artificial neural networks to launch 

outcome. There are, however, investigations into the causes of the failures after the fact. 

The failure data is used to find patterns and address the subsystems that fail most often. 

Chang (2001) summarized the subsystems that failed during launches around the world 

from 1980 to 1999. The data included manned launch vehicles and unmanned vehicles 

other than Atlas, Delta, and Titan. The overall problems, however, are constant across all 

launch vehicles. Propulsion systems fail most often, followed by avionics, stage 

separation, electrical systems, structural, and other systems. 

Pytanowski (1999) presented a case study of the RL10E-1 liquid propellant rocket 

engine. The study focused on increasing the reliability of the Centaur upper-stage of the 

Atlas II launch vehicle. Previous launch and engine testing data were used to determine 
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which components of the engine had the highest failure rates. The three most unreliable 

parts—valves, ignition system, and actuators-were individually redesigned to increase 

their reliability. The resulting changes reduced the predicted failure rate by three times 

its original value. The mission reliability was predicted to increase from 0.97 to 0.99. 

Recently, a neural network study was conducted on an issue within the launch 

vehicle industry. Williams, et al. (2004) applied an MLP network to the issue of range 

safety decisions. Range safety is a portion of launch safety. If a problem develops with a 

launch vehicle after it is launched, but before it reaches orbit, range safety personnel must 

decide whether to destroy the vehicle. They must figure out where the vehicle is and 

where debris would hit the ground if there was an incident. 

The model developed by Williams, et al. did not adequately replace the decision­

making of the range-safety personnel. It was determined that range-safety was too 

important of a decision to be left up to a computer. 

This study investigated whether overall launch vehicle success could be predicted 

using an artificial neural network. Two neural network architectures, multi-layer 

perceptron (MLP) and fuzzy ARTMAP, were compared in doing so. It was expected that 

the fuzzy ARTMAP network would produce a better model with less error than the MLP 

network and take less time to train. 

The next section details the methods used in this study to model launch 

prediction. 
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Methods 

The purpose of the study was to determine if artificial neural networks could be 

used to accurately predict launch vehicle success. In order to accomplish this, two neural 

network architectures were used to model launch outcome. This chapter details the 

method in which the models were developed and compared. First, the apparatus needed 

for the modeling is discussed. Next, the data collection and procedure are outlined. 

Finally, the specific experimental tests and interpretation of the results are described. 

Apparatus 

The equipment used for this study was a Dell PC running Windows NT. 

The software used was Microsoft Excel 2002 Version 10.4524.4219 SP-2 and MATLAB 

Version 6.5.0.180913a Release 13, by The Math Works, Inc. including the neural 

network toolbox. 

Data 

In order to create neural network models of launch prediction, a range of data was 

gathered from a variety of sources. The data covered system-wide aspects of the launch 

and the launch vehicle. The input data is listed in Table 5. 

Table 5 
Factors Affecting Launch prediction 
Input Factor 
Barometric pressure at launch 

Cloud ceiling at launch 

Customer country of origin 
Intended orbit inclination 
Launch date 

Source 
National Climatic Data Center 
(2004) 
National Climatic Data Center 
(2004) 
Isakowitz, et al. (1999) 
Isakowitz, et al. (1999) 
Isakowitz, et al. (1999) 
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Launch pad 
Launch vehicle manufacturer 
Mass of payload(s) 
Miles visibility at launch 

Number of days between 
launches 
Number of engines 
Number of payloads 
Payload client 
Sky cover at launch 

Temperature at launch 

Time of launch 
Vehicle model 
Wind speed at launch 

Isakowitz, et al. (1999) 
Isakowitz, etal. (1999) 
Isakowitz, etal. (1999) 
National Climatic Data Center 
(2004) 
Isakowitz, etal. (1999) 

Launch Vehicles (2004) 
Isakowitz, etal. (1999) 
Isakowitz, etal. (1999) 
National Climatic Data Center 
(2004) 
National Climatic Data Center 
(2004) 
McDowell (2004) 
Isakowitz, etal. (1999) 
National Climatic Data Center 
(2004) 

Each of the factors may have a different effect on the success of the launch 

vehicle. Data concerning the launch date, vehicle model, and payload descriptions were 

acquired through Isakowitz, et al. (1999). This information, however, only went back as 

far as 1979 and includes up to 1999. Information about the engines used for the launches 

was found in Launch Vehicles (2004). The weather data was acquired through the 

National Climatic Data Center. 

Data collection was the most difficult part of this study. Originally, it was 

planned that data such as the number of preflight anomalies and the value of the payloads 

would be included. This information, however, is not available to the public. The 

number of complete data sets was limited, in the end, by the weather data. The weather 

data used by launch control is not available to the public, so civilian weather observations 

had to be used. Presently these observations are made every hour, but in the past they 

were only made a few times a day. This lack of consistent data limited the number of 
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launches with complete data to 125 out of a total of 329 launches. Eight of the 125 

launches were failures. The complete data set used for the neural network models is 

included in the Appendix. 

The launch vehicles that this study focused on are the three unmanned vehicles 

manufactured and currently launched in the United States: Atlas, Delta, and Titan. 

Procedure 

After the data was compiled in an Excel spreadsheet, the complete data sets were 

sorted randomly and separated into two groups. Two-thirds of the data sets (or 83 rows) 

were used as the training set to train the neural networks, while the other third (42 rows) 

were used as the test set to validate the networks. This is standard practice among 

researchers applying neural networks (Christodoulou and Georgiopoulos, 2001). Five 

launch failures were included in the training set, and three failures were in the test set. 

The sets remained constant for both the MLP and fuzzy ARTMAP networks. 

MLP networks can be manipulated in several ways. The number of hidden nodes, 

the type of transfer function and training algorithm, and the number of epochs can all be 

changed to find the best MLP network. For this experiment, only the number of hidden 

nodes was modified. The transfer functions used were "tansig" and "purelin." These are 

typical classification problem functions. The number of epochs was set to 300. This was 

to allow sufficient time for the model to converge on a solution. This implementation 

was a 'plain vanilla' and was not intended to experiment on which MLP configuration 

would be best. 
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Before running the programs, the number of hidden nodes to use was analyzed. 

Table 6 lists works previously cited in this paper and the number of hidden nodes that 

were used in their models. 

Table 6 
MLP Configuration for the Previously Discussed Studies 
Authors 

Adnan, et al. (2000) 
Amjady and Ehsan (1999) 
Chinnam (1997) 
Coit and Smith (1995) 
Lee, et al. (2002) 
Llobet, et al. (1999) 
Meneganti, et al. (1998) 
Sinha and Pandey (2002) 
Trocine (2002) 
Tu, etal. (2001) 

Number of Training 
Patterns 

Not stated 
50 

Not stated 
9600 

16 
44 
380 
350 
178 

Not stated 

Number of Hidden Nodes 

Not stated 
3 
50 
15 
8 
6 
27 

Not stated 
7 

Not stated 

From this information, it was decided to try seven different numbers of hidden 

nodes (3, 6, 9, 12, 15, 18, 21). The optimum number of nodes would be determined by 

the outcome—the best match to the expected outcome would be the best number of 

hidden nodes to use. 

The program was run with the same training and test sets for each number of 

hidden nodes. All programs reached the goal before completing 300 epochs except for 

the 21 hidden node version. Therefore, the 21 hidden node version (and any version with 

a higher number of hidden nodes) was eliminated. All of the programs from the 

remaining hidden node versions resulted in the same output—all of the launches in both 

the training and test sets were classified as successful. 

In order to pare down the field even further, 3, 6, and 9 were eliminated because 

the outputs they produced were just repetitions of the same numbers. 
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1.1320 0.0448 
1.1320 0.0448 
1.1320 0.0448 
1.1320 0.0448 
1.1320 0.0448 

The output of the MLP network is interpreted as follows. The first output column 

represents a predicted successful launch while the second column represents a predicted 

failure. Ideally the MLP would output a "1 0" when the launch was actually a success, 

and a "0 1" when the launch was actually a failure. Instead the MLP network will 

produce values between 0 and 1 in each of the two columns. The higher value of the two 

columns is the predicted outcome. 

The output for 12, 15, and 18 hidden nodes looked different from above. Though 

the outputs were the same (all success outcomes), the individual columns of numbers did 

not just repeat. 

0.9372 0.2409 

0.9370 0.2414 
0.9371 0.2412 
0.9372 0.2408 
0.9372 0.2409 

Any of these three numbers of hidden nodes could be used. The final number of hidden 

nodes was chosen to be 15, because it is the mean of these useable numbers. 

Fuzzy ARTMAP networks are manipulated when the experimenter defines the 

values for the network parameters. Standard values were used for all of the parameters. 

The number of committed and uncommitted nodes in the ARTa and ARTb modules were 

set to 1. The vigilance parameters for ARTa and ARTb were set to 0 and 1 respectively. 

Eps was set to 0.001. Only the beta weights were changed during this experiment. 
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Before the experiment, the best value for the beta weights was determined. The 

baseline beta weight was set at 0.01 and was to be increased or decreased by powers of 

ten. The optimum beta weight would be chosen by finding the one that produced the 

most correct classification of the outcomes. Experimenting with the beta weights would 

stop when the incremental improvement in the outcome decreased dramatically or if the 

outcome did not improve. 

First, the fuzzy ARTMAP program was run with the beta weights set at 0.01. 

This resulted in a correct classification of 100% of the training patterns and 90.5% of the 

test patterns. Next, the beta weights were increased by a power often to 0.10. The 

correct classification decreased to 88.1% of the test patterns. Because the percentage of 

correct outcome decreased, the beta weights were not increased any more. The next 

program was run with beta weights of 0.001. The outcome was a correct classification of 

90.5% of the test patterns. Beta weights of 0.0001 and 0.00001 also produced the same 

outcome as with 0.001 and 0.01. Therefore, the beta weights were chosen to be 0.01. 

When the optimal neural network programs were completed, the final running of 

the training and test patterns was begun. 

The same training and testing patterns were used for both MLP and fuzzy 

ARTMAP during each trial. The training and test patterns were randomly ordered before 

each trial. There were 5 failures in the training pattern and 3 failures in the testing 

pattern. 

The training patterns and outcomes were transferred from an Excel file into text 

files. The MLP network code for training was run in MATLAB. The code automatically 

retrieved the training patterns and outcomes from the text files. The neural network was 

26 



allowed to train on this data for a given number of epochs. A popup screen in MATLAB 

showed the network coming to convergence. When this step was completed, the code for 

testing the network was run in MATLAB. Again, the code was set up to retrieve the test 

patterns from a text file. The outputs from the training and testing phases were saved into 

new text files. Those outputs were compared to the actual outcomes. When the actual 

outcome of the launch (success or failure) matched the model outcome (success or 

failure), the match was a correct prediction. 

Training and testing for fuzzy ARTMAP occurred in a similar fashion. The fuzzy 

ARTMAP model retrieved the training and testing patterns from text files. The text files 

were set up slightly different, however. Each row of the training pattern included the 18 

attributes followed by the complements of those attributes. The outcomes were presented 

in the same way. The fuzzy ARTMAP code was run in MATLAB. There was no popup 

screen to show the progress of the model towards convergence because each running of 

the training program is one epoch. 

In order to determine if the network could generalize to new data, the testing 

phase of fuzzy ARTMAP was implemented next. The code of the testing phase is set up 

to compare the output of the network to the actual outcome. The model returned 

information on the MATLAB screen about what percentage of the outputs were correct 

and specifically which lines in the testing pattern were classified incorrectly. 

This procedure was repeated ten times on both the MLP and fuzzy ARTMAP 

networks. The repetition of the experiment ensured to minimize any side effects of order 

of presentation. 
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Results 

This study was intended to not only determine if launch outcome could be 

predicted by a neural network, but also to compare the performance of two kinds of 

neural networks. The outcomes for both of these objectives are shown next. 

The results presented in Table 7 show some differences between the outcomes of 

MLP and fuzzy ARTMAP. The outcome is split into successes and failures because this 

more accurately shows the differences. Overall, including successes and failures 

together, fuzzy ARTMAP performed statistically the same as MLP, t(18) = 1.085, p > 

0.05. This information is distorted, however. The MLP model did not classify any 

launches (in training or testing) as failures. Therefore, 100% of the successes were 

correctly classified, and 0% of the failures were correctly classified throughout all ten 

trials. On the other hand, the fuzzy ARTMAP model correctly classified 100% of the 

successes and failures during the training phase. In the testing phase, 93.3% of the 

successes were correctly classified and 20% of the failures were correctly classified. 

Table 7 
Percentage of Correctly Classified Launches from the Neural Network Models 

MLP 
Fuzzy ARTMAP 

Training 

% of Successes 
Correct 
N = 78 
100% 
100 % 

% of Failures 
Correct 
N = 5 
0% 

100 % 

Testing 

% of Successes 
Correct 
N = 39 
100% 
93% 

% of Failures 
Correct 
N = 3 
0 % 

20% 

These results can also be analyzed in another way. Table 8 shows the outcome 

from the two models in the context of Signal Detection Theory. The objective of the 

models is to maximize hits and correct rejections while minimizing misses and false 
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alarms. As discussed previously, the cost of a miss is about $300 million dollars. A false 

alarm, however, would just result in a delay of the launch. A delay would cost money in 

operations and personnel, but the magnitude of the cost a delay is nowhere near that of a 

launch failure. Though fuzzy ARTMAP did miss 80%o of the failures, the network shows 

possibility in that it correctly rejected 20%o of the failures. MLP does not show potential; 

it missed 100%) of the failures. 

Table 8 
Percentage of Launches Classified in each Category during the Testing Phase 

Actual 
Outcome 

Success 

Failure 

Predicted Outcome 
Success 

MLP: 100% 
FAM: 9 3 % 

Hit 
MLP: 100% 
FAM: 80% 

Miss 

Failure 
MLP: 0% 
FAM: 7% 

False Alarm 
MLP: 0% 

FAM: 20% 
Correct Rejection 

Figure 5 shows the difference in The MLP model used between 2 and 6 epochs to 

train the network; while fuzzy ARTMAP used one epoch each trial. Fuzzy ARTMAP 

overall trained in about one-fifth of the time that MLP did. 
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Figure 5: Bar graph indicating the frequency of use of each number of epochs by fiizzy 
ARTMAP and MLP. 

The number of hidden nodes was set to 15 for the MLP model. Fuzzy ARTMAP 

determines for itself how many hidden nodes are needed. Throughout the trials, fuzzy 

ARTMAP used between 7 and 11 hidden nodes. Overall, fuzzy ARTMAP was faster and 

more efficient (used less resources) than MLP. In the space industry it is important to 

have a fast, efficient model. During launch countdowns, time is very critical. 

MLP models do not allow the researcher to discover how the input patterns match 

up to the output. The model acts as a black box, inside of which the weights assigned to 

each attribute remain hidden. Fuzzy ARTMAP models, on the other hand, give the 

researcher information that can be used to determine the weight each attribute has on the 

outcome. At the end of the training phase, the fuzzy ARTMAP model saves the weights 

of the trained ARTa, ARTb, and interART modules in three files. These files are then 

called during the testing phase and used to generalize to the new patterns. The weights 

may be used to determine the impact each attribute has on the final output. A trace may 

be done from node to node to determine the weight assigned to the attribute. 
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Conclusions 

Expendable launch vehicles have a great impact on our society. A model that 

helps predict launch vehicle outcome would be a great asset. It would save money, time, 

and perhaps lives. Currently, the reliability rate of launch vehicles in the United States is 

92%. A model that predicts the launch outcome of a specific launch vehicle—whether it 

will be in the successful group or in the 8% that fail—would be a valuable asset to the 

space industry. 

Though the models presented do not perform as well as hoped, the fuzzy 

ARTMAP model does show promise. The MLP network never found a failure. All of 

the outputs for every trial were successes. The fuzzy ARTMAP model did correctly 

classify one failure during six of the ten trials. However, all of the failures were 

misclassified during the rest of the trials. Also some successes were misclassified as 

failures. 

The failure that fuzzy ARTMAP found in six of the ten trials was the same 

launch. This would indicate that either this launch was very similar to the failures in the 

training pattern or it was very different from the other failures in the test pattern. Close 

examinations of these launches found that most attributes of the test pattern failures fell 

within the range of the attributes of the training pattern failures. By human standards, all 

eight failures are very similar to each other. However, some difference must exist that 

sets that one failure apart from the others. 

The expected results were that the fuzzy ARTMAP network would produce less 

error and have a faster training time. The fuzzy ARTMAP network trials did have a 

lower training time and more efficiency in the number of hidden nodes used. 
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Statistically, there was no difference between the results of the MLP and fuzzy ARTMAP 

testing phases; however, the statistics are misleading in this case. When the results are 

broken down into the number of failures correctly classified, fuzzy ARTMAP does 

perform better. 

There could be several reasons why the models did not work as expected in 

modeling launch outcome. It is thought that the most likely reason for the unsuccessful 

models was the lack of more in depth data. Information such as the reliability of the 

engines, the number of preflight anomalies, and other data was not available to the 

public. This different data may be more relevant to the outcome of a launch than the data 

that was included in this study. Including data with a higher correlation to the outcome 

should produce a better classification model. 

The lack of complete weather data also served to limit the number of training 

patterns applied to the networks. Though networks can be adequately trained on very 

few data patterns, it was an inconvenience to cut the data set down to less than half 

because of the lack of the weather data. This also introduced the bigger problem that 

there were only eight failures in the total data patterns. More failures would have given 

the models more information. This may have been the problem with MLP. The network 

was overpowered with successful launches (almost 16 times more successes than failures 

during training). The failure category was so small that the MLP model did not want to 

classify any data set into that small category. 

This experiment, though not as successful as hoped, does serve to show that there 

is a possible use for neural networks in the launch vehicle industry. It is recommended to 
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future researchers to attempt to create the models again with different and more specific 

data. The idea of using neural networks to model launch outcome should not be quelled. 
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Appendix 

Table 9 
Index to the Following Launch Vehicle Data 
M 
Day 
Year 
Time 
Intvl 

Model 

Eng 

Pad 

Pylds 

Mass 

Orbit 

Mrkt 
Cntry 

Month 
Day 
Year 
Time (UTC) 
Launch Interval 
(days) 
Vehicle Model 

Number of 
Engines 
Launch Pad 

Number of 
Payloads 
Payload Mass 
(kg) 
Intended Orbit 

Market 
Country of Origin 

11—Atlas E,F, 
and SLV 3D 
14—Atlas Hand 
G 

16—Atlas I 
17—Atlas II, 
ILA, and IIAS 

21—Delta 2914 

22—Delta 3910, 
3913, 3914, and 
3920 

23—Delta 2310 

24—Delta 6920 and 
6925 

25—Delta 4925 
26—Delta 5920 

27—Delta 7920 and 
7925 
28—Delta 7420 and 
7425 

29—Delta 8930 

30—Delta 
7320, 7325, and 
7326 
51—Titan 2 
52—Titan 3, 
3C, 3D, 34B, 
34D, and 24B 

53—Titan 4, 
402A, 405A, 
403A, 404A, 
401A, 402B, 
40IB, and404B 

1—SLC 2W 
2—LC 17A 
3—LC 17B 
4—SLC 2E 

5—LC 40 
6—LC41 
7—SLC 3W 
8—SLC 3E 

9—LC 36A 
10—LC 36B 
11—SLC4E 

1—EEO 
2—GTO 
3—LEO 

1—Military 
1—USA 
2—United 
Kingdom 
3—India 

4—SSO 
5—MEO 
6—Outside Earth 
Orbit 
2—Commercial 
5—Europe 
6—Indonesia 

7—Germany 

7—GEO 
8—Polar Orbit 

3—Civilian 
9—Japan 
10—Korea 

11—Norway 
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Speed 

Ceiling 
Sky 

Vsblty 
Temp 
Press 

Manu 

Result 

Wind Speed 
(mph) 
Ceiling (feet) 
Sky Cover 

Visibility (mi) 
Temperature (°F) 
Barometric 
Pressure (in Hg) 
Vehicle 
Manufacturer 
Launch Result 

4—Canada 8—International 12—Russia 

1—Broken 
2—Scattered 

3—Overcast 
4—Obscured 

5—Clear 

1—Titan 

1—Success 

2—Atlas 

0—Failure 

3—Delta 
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Table 10 
Complete Launch Vehicle Data 
M 

3 
6 
2 
6 
9 
12 
2 

7 
6 
5 
3 
3 
9 
6 
11 
8 
9 
12 
6 
3 
3 
9 
5 
9 
12 
9 
3 
2 
3 
2 
6 

Day 

16 
27 
7 
18 
3 
18 
28 

16 
20 
26 
28 
1 
8 
9 
14 
16 
21 
22 
25 
13 
22 
28 
3 
5 
5 
17 
20 
26 
26 
8 
10 

Year 

1979 

1979 

1980 

1980 

1981 

1981 

1981 

1982 

1983 

1983 

1983 

1984 

1984 

1984 

1984 

1984 

1984 

1984 

1984 

1985 

1985 

1985 

1986 

1986 

1986 

1986 

1987 

1987 

1987 

1988 

1989 

Time 

1030 

852 
1310 

1129 

1129 

1710 

1115 

1059 

1145 

818 
752 
959 
1441 

1903 

1934 

1048 

1818 

1902 

1143 

1800 

1855 

1917 

1818 

1108 

2130 

852 
1722 

1805 

1622 

1707 

1819 

Intvl 

92 
54 
78 
132 
132 
3 
77 

37 
66 
28 
47 
161 
87 
125 
54 
168 
36 
18 
69 
91 
9 
90 
535 
125 
79 
220 
22 
174 
111 
325 
78 

Model 

52 
11 
52 
52 
52 
11 
52 

22 
52 
22 
11 
22 
11 
14 
22 
22 
22 
52 
52 
11 
14 
14 
22 
22 
14 
11 
22 
22 
14 
22 
24 

Eng 

6 
7 
6 
6 
6 
7 
6 

11 
6 
12 
7 
11 
7 
8 
12 
12 
11 
6 
6 
7 
8 
8 
12 
11 
8 
7 
11 
12 
8 
11 
12 

Pad 

4 
7 
4 
4 
4 
8 
1 

1 
4 
1 
7 
1 
7 
10 
2 
2 
3 
5 
4 
7 
10 
10 
2 
3 
10 
7 
3 
2 
10 
3 
2 

Pylds 

2 

2 

3 

2 

2 

Mass 

13360 

723 
13300 

1300 

13300 

759 
3000 

1972 

32000 

540 
3775 

1990 

759 
1928 

760 
924 
1218 

1170 

13360 

635 
2013 

2013 

838 
2495 

2310 

1712 

1244 

841 
2300 

1574 

1657 

Orbit 

4 
3 
3 
4 
4 
5 
4 

4 
4 
1 
4 
4 
5 
2 
2 
1 
2 
7 
4 
3 
2 
2 
2 
3 
2 
4 
2 
2 
2 
3 
5 

Mrkt 

1 
3 
1 
1 
1 
1 
1 

3 
1 
3 
3 
3 
1 
2 
1 
3 
2 
1 
1 
1 
2 
2 
3 
1 
1 
3 
2 
3 
1 
1 
1 

Cntry 

5 

8 

8 
5 
8 
1 
1 
1 
1 
8 
8 
1 
1 
1 
1 
6 
1 
1 
1 
1 

Speed 

0 
21 
18 
7 
0 
0 
23 

9 
9 
3 
6 
1 
9 
9 
0 
9 
9 
0 
8 
7 
11 
11 
17 
11 
17 
11 
16 
11 
0 
16 
14 

Ceiling 

98 
197 
722 
14 
6 

128 
36 

7 
14 
6 

197 
722 
722 
722 
722 
722 
98 
722 
722 
722 
722 
30 
246 
722 
98 
10 
722 
79 
15 
12 
722 

Sky 

1 
1 
2 
3 
3 
1 
1 

3 
1 
4 
1 
1 
2 
5 
2 
5 
1 
2 
2 
2 
2 
3 

3 
3 
3 
2 

Vsblty 

9.9 
5 

9.9 
7 
6 
4 
7 

7 
7 

0.9 
14.9 

12.9 

24.9 

7 
7 
7 
7 
7 

24.9 

11.9 

7 
7 
5 
7 
7 
7 
7 
5 

1.5 
7 
7 

Temp 

54 
60 
59 
57 
59 
58 
52 

59 
64 
54 
52 
61 
93 
77 
58 
87 
79 
68 
65 
54 
75 
78 
75 
85 
62 
64 
64 
70 
68 
52 
82 

Press 

30.03 

30.06 

29.86 

30.08 

29.92 

30.11 

29.86 

29.97 

29.87 

29.83 

30.12 

30.12 

29.89 

30.11 

30.34 

30.09 

29.95 

30.15 

30.05 

29.98 

29.86 

30.14 

30.03 

29.99 

30.22 

30.07 

29.89 

30.18 

29.97 

30.15 

30.16 

Manu 

1 
2 
1 
1 
1 
2 
1 

3 
1 
3 
2 
3 
2 
2 
3 
3 
3 
1 
1 
2 
2 
2 
3 
3 
2 
2 
3 
3 
2 
3 
3 

Result 

0 

0 

0 
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Ĵ 

CO 

p 
-s| 

IO 

4s-

-sl 

CD 
CD 

en 

CO 
4s-
-sl 

it 

-sl 

CD 

CD 

IO 
-sl o o 

ro 

IO 

_̂  

-xj 

4s* 
CO 

_. 

-X4 

IO 
CO 
CO 
-sj 

IO 

00 

en 

CO 
CO 
cn 

-sj 

o 

IO 
-xi 

ro 
-sj 

ro 

CO 

_x 

4s-
-sl 

ro 

IO 

o 

o 

-sl 
ro 
ro 

ro 

4s-

CO 
O 

d 
4s-

CO 

© 

^ 

4s-

CD 
CD 

en 

CD 
IO 
IO 

CO 

ro 
-xj 

ro 

^ 

ro 
-sl 
CD 
00 

4s-

_L 

00 

CD 

-sl 
ro 
ro 

cn 

•̂ 4 

ro 
CD 
CD 
4s-

CO 

ro 

CO 

o 

CO 
CO 
4s-

IO 
o 
ro 

CO 

-

•̂i 

-sl 

•vl 

ro 

4>-

co 

^ 

CD 

-xj 
ro 
ro 

cn 

^4 

ro 
CD 
CD 
00 

IO 

-

ro 
cn 

CD 
CD 
4s-

00 
CO 
4s-

ro 

cn 

CO 

^ 

4s-
IO 
4s-

CD 

_̂  

,̂ 

00 

-sj 
ro 
ro 

ro 

o 

CO 

o 
d 
CO 

_>. 

CD 

ro 
4s-

CO 
CO 
4s* 

CO 
en 
o 

^i 
ro 

CD 

^i 

o 

ro 
00 
4s-
-xl 

ro 

^ 

_̂  

, 

-sl 
IO 
ro 

ro 

CD 

CO 

o 
d 
cn 

IO 

IO 

N) 

ro 

co 
CD 
4s* 

-sj 

CO 

^4 

cn 
CO 

-sJ 

cn 

IO 
CO 
cn 
cn 

-vl 

_* 

^ 

4--

-s! 

CO 

4s-

,l>0 

CD 
00 

_». 

00 

CO 

CD 
CO 
4s-

CD 

cn 

4s-

o 

-4 

^1 

CD 

IO 
00 
CD 
O 

IO 

IO 

_̂  

CD 

-v| 
IO 
ro 

ro 

^i 

00 

p 

ro 

00 

CO 

o 

CO 
CD 
CO 

00 
CO 
00 

CD 

cn 

ro 
-sl 

IO 

CO 

00 
00 
IO 

cn 

_L 

_̂  

-s| 

-4 
ro 
ro 

ro 

-sl 

CO 

o 
d 
CO 

CO 

o 

IO 
CD 

CD 
CO 
CO 

ro 
o 
4s-

cn 
^i 

ro 
^4 

IO 

CO 

00 
00 
ro 

en 

_>. 

_JL 

CD 

O 

CO 

cn 

ro 
CO 
CO 
CO 

CO 

CD 

ro 
CD 

CO 
CO 
CO 

CO 
ro 
^4 

4s-
4s-

IO 
-sl 

ro 

ro 

00 
00 
IO 

cn 

_x 

—X 

00 

-4 
ro 
ro 

IO 

-sl 

CO 

p 
CO 

CO 

CO 

ro 
cn 

CO 
CO 
CO 

CD 
CO 
00 

ro 
en 

CD 

-sl 

o 

ro 
00 
CD 
CD 

ro 

_». 

_̂  

CO 

it 
00 

_* 

->i 

CO 

o 
d 
cn 

IO 

o 

ro 

CD 

CO 
CO 
CO 

CO 
CO 
00 

00 

^J 

-sl 

o 

CO 
CO 

cn 

IO 

ro 

_̂  

"̂  

IO 

ro 

cn 

-s| 

CO 
o 
d 
^i 

IO 



CO 

CM 
© 
© 
CO 

CD 
CO 

Is-

CN 

CN 
CN 
Is-

Is-

CN 

CO 

° LO 

CO 

LO 

^ 

CN 

Is-
CN 

5 

CD 

LO 

CD 
CD 

O 
CN 

CN 

CO 

LO 
O 
© 
CO 

CO 
CO 

CO 

CO 

CO 

CO 

CN 

CO 

© 

CO 

LO 

*-

CN 

r-. 
CN 

CD 
CN 

CD 
CO 
CO 

Is-
CD 
CD 

CM 

00 

CO 

CN 
00 
© 
CM 

xt 

co 

r-. 

CN 

CN 
CN 
Is-

r--

CN 

CO 

O 
LO 
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