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ABSTRACT 

Author: Rachel Elizabeth Rajnicek 

Title: Application of Kalman Filtering to Real-time 

Flight Regime Recognition Algorithms in a 

Helicopter Health and Usage Monitoring System 

Institution: Embry-Riddle Aeronautical University 

Degree: Master of Science in Aerospace Engineering 

Year: 2007-2008 

The purpose of this study is the application of Kalman filters to real-time Flight Regime 

Recognition (FRR) algorithms to identify the regime flown and observe transitions between 

flight regimes. Rotor fault identification, a technique that is somewhat similar to flight regime 

recognition, successfully used Kalman filters to determine fault types and damage locations. 

Recently developed FRR algorithms successfully applied Hidden Markov Models, which are 

similar to Kalman filters. The selected regime set for this study derives from a study performed 

by Bell Helicopter Textron, Inc. The selected parameter set for this study is modified from the 

Schweizer 300 Flight Test Program performed by Embry-Riddle Aeronautical University. The FRR 

algorithms developed will use the recorded flight parameters to identify a flight regime. A 

graphical interface allows the user to observe the real-time FRR and transitions between 

regimes. This research aims to bridge the gap between the application of mathematical models 

for damage identification and regime recognition. Multiple mathematical models developed for 

rotor blade fault and damage identification include neural networks, fuzzy logic systems, and 

Kalman filters. Recent research indicates that only the neural network approach has been 

applied to FRR algorithms, and that a Hidden Markov Model (HMM) approach outperformed the 

neural network. Additionally, public domain regime recognition research focuses on post 

processing algorithms rather than real-time regime recognition. The post processing codes 

appear to use discrete algorithms, which do not clearly identify transitions between regimes. 
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1. INTRODUCTION 

The Federal Aviation Administration (FAA) Aging Aircraft Directorate currently oversees 

Rotorcraft Structural Integrity and Safety research. This research focuses on two areas: 

Rotorcraft Damage Tolerance (RCDT) and Helicopter Health and Usage Monitoring Systems 

(HUMS). Desired outcomes of RCDT research include developing technologies and data to 

reduce rotorcraft structural failures. Desired outcomes of HUMS research include validating 

Advisory Circular (AC) 29-2C Miscellaneous Guidance (MG) 15 for HUMS installation and 

maintenance credits [1]. The HUMS Research and Development Roadmap - 10 Year Plan 

outlines the FAA plan for HUMS research from 2005 through 2015. The roadmap also identifies 

Flight Regime Recognition (FRR) as a key component of HUMS Research. The HUMS roadmap 

requires FRR research in the following areas: HUMS AC Requirement Compliance 

Demonstration, HUMS Development and Equipped-Flight Testing, and Structural Usage 

Monitoring and Credit Validation [2]. 

1.1 HUMS Background 

A helicopter Health and Usage Monitoring System (HUMS) is a system of hardware and 

software which records and analyzes flight parameters either for real-time mitigation (health 

monitoring) or post-processing (usage monitoring). The HUMS health monitoring functionality 

can alert pilots to impending component failures or excessively damaging flight maneuvers. 

Impending component failures can include blade crack propagation or pitting on transmission 

gears. Excessively damaging flight maneuvers can produce abnormally high g-loads on the 

airframe or cause abnormally high stresses throughout flight critical components. Once the pilot 

receives an alert to impending component failure or an excessively damaging flight maneuver, 

the rotorcraft can land as soon as practical or the maneuver ended. This is a real-time mitigation 

because the after the in-flight alert pilot immediately takes action to eliminate or minimize 

failure of the rotorcraft. 

In contrast, the HUMS usage monitoring functionality allows owner/operators to 

monitor a rotorcraft's actual usage spectrum. The actual usage spectrum can justify 
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maintenance credits or early part replacement. An owner/operator achieves maintenance 

credits when the actual usage spectrum is less damaging than the certification spectrum for a 

life-limited component. Maintenance credits include eliminating hourly inspections or extending 

the service life of a life-limited component beyond the replacement or overhaul time published 

by the manufacturer. Maintenance credits are desirable for owner/operators as they can reduce 

the overall maintenance cost for a rotorcraft. Early part replacement can be required when a 

rotorcraft's actual usage spectrum is more damaging than its certification spectrum. In this 

situation, a life-limited component must be overhauled or replaced prior to the manufacturer's 

published life-limit. Early part replacement is desirable to reduce component failures that could 

result in accidents or fatalities. Ultimately, early part replacement based upon an actual usage 

spectrum can increase the safety and reliability of rotorcraft. 

A typical HUMS consists of an onboard data acquisition unit, onboard sensors, and a 

ground station used for data processing and analysis. The end-to-end HUMS consists of all the 

hardware and software used in both the airborne and ground stations to acquire, store, process, 

and analyze the HUMS data. 

1.2 Flight Regime Recognition Background 

The end-to-end HUMS includes data analysis tools such as Flight Regime Recognition 

(FRR) algorithms. FRR algorithms determine the rotorcraft's flight profile maneuver using the 

recorded flight data. Examples of flight profile maneuvers include 65kt level flight and >60° 

banked ascending right turn. FRR analysis transpires either in real-time by the onboard portion 

of the HUMS or during post processing by the ground based portion of the HUMS. FRR data 

analysis aids in generating the actual usage spectrum. FRR algorithms employ mathematical 

decision-making to determine the current flight regime. The mathematical basis for the flight 

regime recognition developed in this study is Kalman filtering. 

1.3 Kalman Filtering Background 

A Kalman Filter is a recursive filter that can estimate the state of a system from noisy 

measurements. A set of linear differential equations must describe the system. The state is a 

variable that completely specifies the status of the system at any given time [3]. The Kalman 
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filter is recursive because it uses state feedback to determine the state estimate at the next time 

step. The Kalman filtering technique has been readily utilized since R. E. Kalman published his 

filter derivation in 1960. Kalman filtering applies to a wide range of problems including 

engineering, finance, and economics. 
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2. SCOPE AND APPLICABILITY 

2.1 Motivation for Research 

Multiple mathematical models developed for rotor blade fault and damage 

identification include neural networks, fuzzy logic systems, and Kalman filters. Recent research 

indicates that only the neural network approach has been applied to FRR algorithms, and that a 

Hidden Markov Model (HMM) approach outperformed the neural network. The utilization of 

mathematical modeling for FRR is similar to the damage identification method. Clearly defined 

criteria identify each flight regime considered, in the same way that clearly defined criteria 

identify different damage causes or locations. A recently developed code utilizes HMM to 

perform FRR. A regime prediction algorithm, based on Kalman filters, integrated the HMM FRR 

code to expand its HUMS application. This combined code uses the Kalman filters for prediction 

of the future flight parameters though, not for FRR algorithms. 

Much of the FRR research performed throughout the past ten years is not available in 

the public domain. FRR algorithms and results remain classified by the government or 

proprietary to Original Equipment Manufacturers (OEM). The public domain FRR research 

typically focuses on post-processing algorithms rather than real-time regime recognition. The 

post processing codes also appear to use discrete algorithms, which do not clearly identify 

transitions between regimes. The HMM regime recognition code, although real-time, does have 

some difficulty identifying regime transitions that were not performed in its training data set. 

2.2 Problem Statement 

The problem examined by this research uses Kalman filtering to perform FRR, a 

technique not yet explored in public domain HUMS research. The primary purpose of this 

research is to develop a mathematical model for FRR, which uses Kalman Filtering to perform 

the regime recognition. The Kalman filter will identify the current flight regime and a graphical 

display will allow for the observation of real-time transitions between regimes. A secondary 

purpose is to advance the public domain knowledge of FRR algorithms. Major assumptions for 
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this study include limiting the flight spectrum to a commercial spectrum and limiting the 

rotorcraft of interest to a reciprocating single-engine helicopter. 

This research aims to bridge the gap between the application of mathematical models 

for RCDT and HUMS, as well as advance public domain FRR algorithms. Rotor blade fault and 

damage identification applies multiple mathematical models. Yet only recently have FRR 

algorithms applied these models. The success of the HMM approach to FRR indicates that a 

similar approach which utilizes Kalman filtering should be successful. Additionally, much of the 

public domain FRR research focuses on post processing algorithms rather than real-time regime 

recognition. The post processing codes appear to use discrete algorithms, which do not clearly 

identify transitions between regimes. 

2.3 Review of Related Literature 

Multiple mathematical models developed for rotor blade fault and damage 

identification include neural networks, fuzzy logic systems, and Kalman filters. A review of 

available literature indicates that only the neural network approach has been applied to real

time FRR codes, and it was outperformed by a HMM. The neural network approach for damage 

identification combines a detailed physics-based model of rotor blades in forward flight with 

two neural networks. The neural networks in this study were trained first using ideal data and 

then trained using noisy data. Training the neural networks with noisy data allowed them to 

provide good damage estimates with noisy input data [4]. The feedforward neural networks 

used allow for modeling of complex relationships between the inputs and outputs and can 

model any given function. Drawbacks to neural networks include difficulty in understanding and 

developing the neural network, large amounts of time needed to train the neural network, and 

the training algorithms are difficult to understand and develop. Neural networks could be used 

for the mathematical modeling needed in this study, but the development difficulty and time 

required do not allow for practical application. 

The researchers who developed the damage identification neural network 

approximated this system using a fuzzy logic system. Fuzzy logic systems can approximate any 

function and their research indicated that fuzzy logic systems could accurately estimate neural 

networks. The fuzzy logic system used the same physics-based model of the rotor in forward 
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flight. The fuzzy logic system accounts for noise and uncertainty in the data with acceptable 

accuracy. The fuzzy logic system was developed more quickly than the neural network using a 

defined set of fuzzy rules to determine each damage type. The fuzzy logic system identified the 

most likely fault using maximum matching defuzzification [5]. The fuzzy logic system could be 

used for regime identification needed for this study. However, lack of experience with fuzzy 

logic systems would increase the code development time required, thus a fuzzy logic system was 

not chosen for this study. 

The Kalman filtering approach used for damage identification is a multiple-model 

adaptive estimation technique. This approach identifies four fault cases and an undamaged 

case. Faults were determined to be at one of four locations along the blade span with sensors 

simulated at eleven locations. The filters identified the fault type and most likely location. This 

technique used Kalman filters tuned to each fault type identified to obtain state estimates and 

residual vectors. The residual vectors were used to obtain a probability value for the most likely 

fault encountered. Theoretically, the lowest residual vector corresponds to the fault with the 

highest probability of occurrence [6]. Kalman filtering techniques inherently treat measurement 

and process noise, thus good parameter estimates from the data acquisition system are not 

required. Additionally, real-time systems regularly implement Kalman filters, thus a real-time 

FRR code can utilize Kalman filtering. Kalman filters are well understood by the thesis advisor, 

thus the filter development time will be less than with neural networks or fuzzy logic systems. 

Current public domain FRR research offers little insight into code development. The 

research does include valuable information on regime and parameter sets. Each research 

organization has developed its own set of identified regimes. The regimes identified by the US 

Navy are general commercial spectrum regimes identified by their listed parameter set [7]. The 

report published by the US Navy does not appear to have any follow on data or studies and thus 

the parameter set and regime set outlined were not selected for this study. 

Bell Helicopter Textron, Inc began FRR research as early as 1996. Three reports have 

been published based on this research using Bell model 412 rotorcraft in three distinct mission 

profiles [8][9][10]. All three reports outline the regime set identified and two of the reports 

outline the parameter set utilized. Additionally, one of the reports outlines a low airspeed 

regime recognition technique, which can capture both low speed flight maneuvers and hover 
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maneuvers [10]. The regime and parameter sets used in the most recent reports provided the 

basis for the regime and parameter set used in this study. Additionally, initial code development 

for this study used the decision tree method and limits identified by the July 2004 report [9]. 

These decisions correspond to the identification of the main flight regime using limits published 

in the report. 

The results of the Bell Helicopter FRR research are included in a spectrum comparison 

for the three missions and the certification spectrum [10]. The results indicate that the different 

mission profiles have very different usage spectrums. The Atlanta Short Haul mission tended to 

be more damaging than the certification spectrum, while the Morgan City and Gulf Coast 

missions tended to be less damaging than the certification spectrum. The Bell studies utilized a 

Bell 412 rotorcraft, which is a twin-engine turbine rotorcraft, while this study will focus on a 

single-engine reciprocating rotorcraft. 

Two FRR papers released during the course of this thesis deserve mentioning. The first 

paper details a FRR algorithm, which uses HMM to perform the regime recognition [11]. The 

HMM approach to FRR uses a HMM tuned to each flight regime. The model training data was 

from an Army UH-60L helicopter and was military spectrum. The study used additional data 

from the UH-60L to test the HMM. This test data was used to compare the HMM with other 

mathematical approaches including neural networks, discriminant analysis, regression trees, 

naive bayes, and k-nearest neighbor. The HMM method significantly outperformed all other 

methods. The HMM is developed similarly to the Kalman filter with the training and testing 

stages. 

The second paper uses Kalman filtering to predict the future flight parameters and feeds 

this parameter estimation to the HMM described in the first paper [12]. The regime prediction 

approach is not a new FRR algorithm; rather it is an extension of regime recognition. A Kalman 

filter estimates the rate of change of the flight parameters. The parameter value for the next 

time step is estimated using this rate of change. The estimated parameters are then input to the 

HMM for regime recognition, and the predicted regimes are output. The regime prediction 

approach maintains 93% accuracy with ten seconds of future prediction; however, this accuracy 

drops steadily after ten seconds. The advantage of regime prediction is the ability to warn a pilot 

of a damaging maneuver before entering the maneuver. One highlighted application of the 
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regime prediction is for heavy lift maneuvers. The regime prediction algorithm could alert the 

pilot if the power required is greater than the power generated. 

Although the two papers mentioned above perform analysis on a military flight 

spectrum, it is conceivable that a commercial spectrum could be modeled using these methods. 

Additionally the Kalman filtering approach to FRR developed in this thesis could apply the 

regime prediction method described in the second paper. The training helicopters used to 

gather the commercial flight spectrum data for this thesis could utilize the regime prediction to 

alert student pilots to potentially damaging flight conditions. Thus, the FRR algorithm developed 

herein will represent an important advancement in public domain FRR research. 

2.4 Hypothesis 

FRR algorithms must be developed to identify commercial spectrum rotorcraft 

maneuvers using recorded flight parameters. The FRR code will utilize real-time Kalman Filters 

to determine the regime flown. Post processing analysis will verify the real-time processing 

performed by the FRR algorithms and Kalman Filters. Additionally a graphical interface will be 

developed to show the identified regime in real-time. 

If the FRR algorithms perform properly then the correct regime will be identified and 

verified both in real-time and post processing. If the FRR algorithms and graphical interface 

perform properly then real-time transitions between regimes will be observed on the graphical 

interface. If the FRR algorithms and Kalman filters perform properly then the application of 

Kalman filters to FRR algorithms will be successful and represent an advancement of FRR 

technologies. 
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3. METHODS 

3.1 Design and Instrumentation 

The intended regime set for this study is adapted from the studies performed by Bell 

Helicopter Textron, Inc [9] and is included in Appendix B. The intended flight parameter set for 

this study is adapted from the Schweizer 300 Flight Test program performed by the Embry-

Riddle Aeronautical University (ERAU) HUMS team is included in Appendix C. All code 

development will be performed using Mathworks MATLAB and Simulink. Representative data 

will be obtained using the Schweizer 300 Flight Test Data gathered by the ERAU HUMS team. 

Real-time processing of the data will be performed using a COTS PC. 

3.2 Data Analysis 

The COTS PC will utilize a Matlab code that reads in the HUMS data using look up tables. 

The data will be played through the Kalman filter. The filter will identify the performance index 

for each regime identified. These performance index values are displayed to the user via 

graphical interface and vary in real-time. The state estimates of the Kalman filter will be graphed 

during the flight using Matlab and the graph can be observed once the flight is completed. The 

state estimates of the Kalman filter will be saved to an Excel file for post processing. 
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4. PROCEDURE 

The development of a Kalman filter for FRR begins with determining the type of system 

modeled. In this case, the Kalman filter will output a performance index for each identified 

regime. This performance index is a constant, which changes during the flight based on the flight 

parameters. A zero order polynomial models the estimation of a constant using differential 

equations. 

4.1 General Differential Equations for Zero Order Polynomial 

The estimation of a flight regime from measured flight parameters uses differential 

equations to estimate a zero-order polynomial. In this case the flight regime estimate is a 

constant value, x = a0. The constant is a performance index, which represents the potential 

that the rotorcraft is in that regime. In general for a polynomial x = Fx + w. where i i s the 

derivative of x, F is the system dynamics matrix which relates the derivative to the value of x, 

and w is a white Gaussian noise distribution. For a zero order polynomial x = 0 , but 

j c * 0 , w * 0 , t h u s F = 0. 

4.2 General Equations for a Discrete Kalman Filter 

The Kalman filter used for this study is a discrete filter. Thus instead of estimating x , it 

estimates xk, which represents the value of x at the next time step. The general filter equations 

for a Discrete Kalman Filter are: 

K = * A - i + w* 

Additionally the Riccati Equations for a Discrete Kalman Filter are: 
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Kk=MkH
T(HMkH

T + Rky 

Pk={l-KVH)MV 

Any Kalman filtering text that discusses filter development and application should 

contain these equations [13]. This thesis does not derive the discrete Kalman filter equations, 

rather it presents an application of the equations. The Kalman filter developed for this thesis 

calculates the last four equations listed above. The first two equations were used during the 

filter tuning process. 

4.3 General Discrete Kalman Filter for FRR 

The Kalman filter developed for this study outputs an estimated performance index 

value for each flight regime, xk, where the number of flight regimes is 

xk =[xk \xk \...\xk ;...;jct ] . The estimated performance index corresponds to the state estimate 

in Kalman filtering theory. The estimated performance index value for a particular flight regime 

will increase as the filter determines that this is the regime currently being flown, and decrease 

at the rotorcraft leaves that flight regime. One specific criterion for the FRR Kalman filter 

developd herein is that it must calculate these performance indices independently of one 

another. 

The filter measurement inputs for this study are the rotorcraft flight parameters, zk . 

The number of flight parameters zk = {zk ;zk ;...;z t; .\zk } , are those parameters which can be 

used to identify a particular flight regime. The number of flight parameter inputs must be the 

same as the number of regimes identified to ensure that the matrices used within the filter 

remain square. It is possible for one parameter to help determine multiple regimes, however 

this makes the performance indices of the regimes dependent upon one another. 

The filter signal variance inputs for this study are the sensor manufacturer's sensitivity 

values, rk . The signal variance matrix is an nxn diagonal matrix of the rk values. The filter 

interprets the signal variance values as a weighting factor for each measurement. Smaller signal 
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variance values indicate a more accurate measurement, and thus that measurement more 

heavily determines the performance index estimates. 
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The filter input values for initial covariance, Pk , are large to allow the filter to converge 

on a solution after some time. The filter interprets large initial covariance values as a large 

uncertainty in the initial performance index estimates. Due to this uncertainty, the filter will 

utilize the measurements to obtain more accurate performance index estimates. The initial 

performance index estimates, xk , are zero which is interpreted by the filter as uncertainty in 

these initial estimates. 
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The filter process noise inputs, Qk , for this study are assumed to be white Gaussian 

noise with a zero-mean distribution. The process noise is represented by an nxn diagonal 

matrix of the Qk values. The filter interprets the process noise values as uncertainty in the 

performance index estimate based on the equations used to model the system. This uncertainty 

allows the filter to account for short-duration parameter jumps without causing the 

performance index estimate to jump. For example, if a large pitch rate occurs for a short 

amount of time, from a wind gust, during level flight the filter would continue to estimate level 

flight rather than a short duration climb. 
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The state transition matrix, 0>k, is the connection between the performance index 

estimate at the current time step and the performance index estimate at the next time step. 

The FRR Kalman filter has no a priori information about the future flight regimes, nor does it 

have a posteriori information about the past flight regimes. The best estimate for the 

performance index at the next time step is that it will be the same as the current time step, thus 

the state transition matrix is an identity matrix. 
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The connection matrix, Hk, is the connection between the measured flight parameters 

and the performance index estimate. The connection matrix is determined based on how the 

flight parameter will affect the decision for the performance index. For example, if a parameter 

clearly indicates a particular regime, and only that regime, then the row of the connection 

matrix for that parameter and column for that regime would be approximately one. All other 

columns for that parameter and rows for that regime would be zero. If the connection matrix is 

a diagonal matrix, each parameter determines only one regime and thus the performance 

indices are entirely independent of one another. 
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The general discrete FRR Kalman filter inputs and outputs listed above were used to 

develop the Schweizer 300 FRR Kalman filter. It is important that the performance indices be 

calculated independently of one another to demonstrate the effectiveness of the FRR Kalman 

filter. The FRR algorithms discussed in the Section 2.3 Review of Related Literature use 

independent regimes. The calculation of independent regimes is rather simple for a discrete FRR 

algorithm but contributes to the lack of regime transition identification. The FRR algorithm 

developed herein uses a discrete Kalman filter for a continuous recognition application. The FRR 

Kalman filter should be able to calculate regimes independently while allowing the user to 

observe real-time regime transitions. 

4.4 Flow Chart of Discrete FRR Kalman Filter Equations 

The following flow chart, Figure 1, depicts the course of data through the FRR Kalman 

filter. The flow chart highlights major equations calculated, filter inputs, and filter outputs. The 
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FRR Kalman filter runs at 10Hz. This calculation rate is sufficient because the Schweizer 300 

sample rate was 6Hz for all data captured by the HUMS. 

Mk=9kPk^k+Q^ 

P,=(/- t f ,H)M, 

1 
^ 

»T A«M V J I ^ ^ K i ^ ^ ^ ^ ' V I V ^ 

Outputs 

/ ^ / ' 

^gsg ^ % 4 *%• 

10Hz Loop 

A fc"jr 

Figure 1: Flowchart of Equations for FRR Kalman Filter 

The following screenshots represent the FRR Kalman filter Simuhnk model. Figure 2 is 

the model top level. This figure shows the flight parameters and the scaling used on these 

inputs. Figure 3 shows the top level of the Kalman filter. The four Kalman filtering equations are 

calculated within this portion of the model. 
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Figure 3: Screenshot of FRR Kalman Filter Top Level 

The figures presented above depict the FRR Kalman filtering model and data flow. The 

filter input parameters are obtained from Schweizer 300 flight test data. The filter output is the 

regime performance indices displayed in real-time and saved to an Excel file. 
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4.5 Sample Kalman Filter for FRR 

The following example is the filter used to analyze the Schweizer 300 flight test data. 

Sample input and output data vectors are provided with this example, however, Section 5.2 Post 

Processing Regime Specific FRR discusses the regime identification in further detail. 

4.5.1 Inputs 

The following aircraft parameters, selected from the flight data recorded on the 

Schweizer 300, each identify a single regime. The model scales the input parameters such that 

they are all on the same order of magnitude. 
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The following signal variance matrix uses values obtained from the published sensor 

specifications and outlined in the Installation Document for the Schweizer 300 flight test [14]. 
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The following process noise values, determined by experience with the Kalman filter, 

ensure that the filter can handle short duration parameter jumps. 
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The following state transition matrix estimates that the next flight regime will be the 

same as the current flight regime based on the lack of a priori information. 
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The following initial covariance values allow the filter to converge on the performance 

index estimates. Large values in the covariance matrix indicate that the filter is unsure about 

the initial state estimates and should weight the current parameter measurements more heavily 

than the state estimate to determine the next state estimate. 
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The following initial state values were chosen because there is no certainty about what 

flight regime will be the current regime when the filter begins receiving data. These values 

allow the filter to converge on a more appropriate state estimate. 
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The following connection matrix determines the flight regime performance index 

estimates independently of one another. Additionally, the input flight parameters solely 

calculate the flight regime performance indices. To ensure that the performance index value 

would be large when the flight parameter value was large the connection matrix values are 

nearly 1. This indicates that the performance index value will be nearly 100% of the flight 

parameter value. This matrix is tuned to the flight data specific to the Schweizer 300. 
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00 00 00 00 00 00 08 00 
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The number of flight regimes identified provides the dimensions for the identity matrix 

used by the filter. 
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4.5.2 Outputs 

The Kalman filter can identify the regimes listed below. It is important to note that a 

maneuver combining the regimes below, such as a high speed descending left turn, will have 

high performance index values for all of the identified regimes. 
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4.5.3 Sample Data 

The following vectors represent sample input and output data for the FRR Kalman Filter. 

The scaled aircraft parameters are the input data and the performance indices are the output 

data. The regime identified is High Speed flight. Figure 4 is a graph of the performance indices 

and confirms that the rotorcraft FRR algorithm has identified High Speed flight for the time 

snapshot indicated. The input and output vectors are from time step 603. 
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Figure 4: Sample FRR Identification 

The sample identification shown in Figure 4 clearly indicates High Speed as the most 

likely regime. There appears to be some climbing during two instances 615 to 650 seconds and 

700 to 750 seconds. The remaining time intervals indicate that the rotorcraft is also in Level 

flight. The event code within the flight test data confirmed that the rotorcraft was in High Speed 

Level flight during this time interval. 
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5. ANALYSIS 

The FRR algorithm developed for this study enables the user to perform real-time or 

post processing analysis. The real-time FRR analysis performed for this study allows the user to 

observe the identified regime and transitions between regimes via the real-time display. Post 

processing regime specific analysis of the FRR data highlights the dominant regime 

determination and identifies combination maneuvers. Post processing regime transition 

identification focuses on the observation of regime transitions during snapshot time intervals. 

The final analysis technique presented demonstrates the affect of varying the process noise 

input on the regime identification and observation of regime transitions. The post processing 

analysis utilize the Excel data files created upon completion of a Schweizer 300 flight by the FRR 

algorithm. 

5.1 Real-Time FRR via Display 

The FRR real-time analysis focuses on the observation of the identified regimes and 

transitions between the regimes. The real-time graphical display needs to be user-friendly and 

have at-a-glance readability. The following figures are snapshots of the real-time display. The 

highest bar represents the current identified regime. The bar heights change as the performance 

indices change, thus the transition between regimes is observable. 

5-1.1 Single Regime Identification 

Figure 5 represents the real-time identification that the rotorcraft is on the ground. The 

figure shows that On Ground is the highest performance index. The other performance indices 

indicated are High Speed and Low Speed. Although the speed based performance indices are 

non-zero, they are significantly lower than On Ground. In this situation, the user deducts that 

the rotorcraft is, in fact, on the ground. The on ground condition is readily verifiable in real-time 

by a pilot or test engineer. 
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Figure 5: Real-Time On Ground Recognition 

Figure 6 represents the real-time identification that the rotorcraft is in high-speed flight. 

The figure shows that High Speed is the highest performance index. The other performance 

indices indicated are Level Flight and Left Turn. Although these performance indices are non

zero, they are significantly lower than High Speed. Additionally, the Level Flight performance 

index is higher than the Left Turn performance index. In this situation, the user deducts that the 

rotorcraft is, in fact, in high-speed flight. The user can also reason that the rotorcraft is in Level 

Flight. Thus, the real-time FRR is that the rotorcraft is in High Speed Level Flight. The high-speed 

level flight condition is readily verifiable in real-time by a pilot or test engineer. 
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Figure 6: Real-Time High Speed Level Recognition 

Figure 7 represents the real-time identification that the rotorcraft is in low-speed level 

flight. The figure shows that Low Speed and Level Flight are the highest performance indices. 

The other performance indices indicated are Left Turn and High Speed. Although these 

performance indices are non-zero, they are significantly lower than Low Speed and Level Flight. 

The Level Flight and Low Speed performance indices are nearly the same value. In this situation, 

the user deducts that the rotorcraft is in low-speed level flight. Neither Low Speed nor Level 

Flight is the dominant regime, however, they are both dominant over the remaining regimes. 

Thus, the real-time FRR is that the rotorcraft is in Low Speed Level Flight. The low-speed level 

flight condition is readily verifiable in real-time by a pilot or test engineer. 
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Figure 7: Real-Time Low Speed Level Recognition 

Figure 7 represents the real-time condition that the performance index values for the 

dominant regimes are not significantly large values, but are the largest of the indicated values. 

In this situation, the user estimates that the largest performance indices still indicate the current 

regime. Additionally, Figure 6 and Figure 7 demonstrate that the rotorcraft is rarely in a single 

regime. The real-time display shows the current value for performance index, and more than 

one index may have a large value. If more than one index is indicated, the user determines that 

a combination maneuver is being flown. 

5.1.2 Combination Maneuver Identification 

It is possible for the rotorcraft to perform a maneuver that combines several of the 

identifiable regimes. In this situation, the filter will first identify that the rotorcraft is or is not on 

the ground. Then, based on the input parameter values, it will identify the speed condition, low 

or high. The filter next identifies if the rotorcraft is turning, and if so, whether it is a right or left 

turn. Next, the algorithm determines if the rotorcraft is climbing or descending. Lastly, it 

recognizes if there is a level flight condition. The combination maneuver causes several 

performance indices to have high values, recognized in the order listed above. The graphical 
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display indicates multiple bars with close performance index values. The figures below represent 

compound maneuvers. 

Figure 8 shows a high-speed climb. The performance index values for High Speed and 

Climb are significantly larger than the other performance indices. Additional regimes identified 

are Level Flight, Low Speed, and Left Turn. In this situation, the user determines that the 

rotorcraft is in a High Speed Climb. The user ignores the Level Flight, Low Speed, and Left Turn 

indications because their performance indices are significantly smaller than High Speed and 

Climb. The pilot or test engineer can verify the high-speed climb condition. 
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Figure 8: Real-Time High Speed Climb Recognition 

Figure 9 shows a high-speed climbing right turn. The performance index values for High 

Speed, Climb, and Right Turn are significantly larger than the other performance indices. The 

additional regime identified is Level Flight. In this situation, the user determines that the 

rotorcraft is in a High Speed Climbing Right Turn. The user ignores the Level Flight indication 

because its performance index is significantly smaller than High Speed, Climb, and Right Turn. 

The pilot or test engineer can verify the high-speed climbing right turn condition. 

i _i 
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Figure 9: Real-Time High Speed Climbing Right Turn Recognition 

The real-time analysis results described herein show that the application of a Kalman 

fi l ter for a real-time FRR algorithm has been successful. Observation of regime identification and 

regime transisitions has been the primary purpose of the real-time analysis. The figures above 

infer that real-time regime transitions are observable because the screenshots each show a 

different FRR. In order for different regimes to be identified the real-time display must show the 

transitions between the regimes. 

5.2 Post Processing Regime Specific FRR 

The fol lowing vectors represent input and output data for specific regimes. The inputs 

are the scaled flight parameters and the outputs are the performance indices for all regimes. 

The target regime should represent the highest performance index value for proper FRR by the 

Kalman filter. The vectors are presented in the following format. A snapshot graph for each 

regime identif ication is generated from the performance index Excel file. 
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Figure 10: Sample FRR Graph 

Figure 10 is the FRR for all of Flight 9. The graphs included with the individual regime 

identification are snapshots of time intervals. The snapshot graphs highlight the regime 

described and typically include some identification for additional regimes. The purpose of the 

snapshot graphs is to demonstrate proper identification of a single regime. 

5.2.1 OnGround 

A large value for WOW identifies that the rotorcraft is on the ground. While On Ground 

is the dominant regime, the user primarily ignores other regimes identified. The data below 

represents a typical On Ground identification. Figure 11 is a graph of the first 300 seconds of 

Flight 1. This selection contains On Ground and Steady Hover data, the input parameter and 

output regime values are from time step 118.1. 
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Figure 11: On Ground Identification 

The WOW value is discrete represented by 0 and 100. The data above demonstrates 

that when the rotorcraft is on the ground prior to takeoff, WOW is the highest parameter value. 

The value for WOW is significantly larger than the other aircraft parameters, thus the 

performance index for On Ground is larger than the other performance indices. The next highest 

regimes, Low Speed and Level, correspond to the next highest parameter values. 

Running Landing, shown in Figure 12, was one On Ground combination maneuver 

tested. During the running landing, the Low Speed performance index is also quite high. The 

data below represents the on ground identification of the running landing. Note the high value 

for the Low Speed Performance index compared to the typical On Ground identification above. 

The input parameter and output regime values are from time step 2176.2. 
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Figure 12: Running Landing Identification 

Autorotation, shown in Figure 13, was the other On Ground combination maneuver 

tested. During a full-down autorotation, straight-in or turning, the Low Speed, High Speed, or 

Descend performance indices may also be rather large. The data below represents the end of a 

full-down autorotation. The FRR algorithm identifies the landing portion of the autorotation as 

On Ground, but the Low Speed performance index value is also large. 
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Figure 13: Autorotation Identification 

The FRR algorithm can clearly identify when the rotorcraft is on the ground using the 

WOW value. The additional regimes identified with On Ground indicate combination 

maneuvers. Post processing analysis that looks at snapshots of data can more clearly identify On 

Ground combination maneuvers. Figure 11 shows a typical On Ground condition during the 

engine run up at the beginning of the flight. The high-speed entry into the on ground condition 

identified in Figure 12 can indicate a running landing. During the on ground portion, the 

rotorcraft transitions to a lower speed as indicated on the graph. The Autorotation, shown in 

Figure 13, can be identified by the high-speed descent that occurs just before the transition to 

on ground. Although this was a full-down autorotation, the rotorcraft did not remain on ground 

for long as indicated by the low speed level condition indentified after the on ground condition. 
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5.2.2 Highspeed 

A large value for Indicated Airspeed (IAS) identifies that the rotorcraft is in a High Speed 

condition. The performance index for high-speed flight is proportional to the value for IAS. 

While High Speed is the dominant regime, the other regimes identified indicate combination 

maneuvers. The data below represents a typical High Speed identification. Figure 14 is a graph 

of the 600 to 900 second time interval of Flight 1. This selection contains High Speed, Climb, and 

Level Flight data. The input parameter and output regime values are from time step 720.4. 
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Figure 14: High Speed Identification 

Figure 14 shows two High Speed combination maneuvers. High-speed climb occurs 

during two time intervals, 615 to 650 seconds and 700 to 750 seconds. An increasing vertical 

velocity causes the Climb regime identification. The second combination maneuver is High 

Speed Level flight. The level flight performance index is inversely proportional to the value for 
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altitude rate. Level flight is indicated during the first climb on Figure 14 because it is a steady 

climb with a low value for altitude rate and increasing vertical velocity. 

5.2.3 Low Speed 

A small value for IAS identifies that the rotorcraft is in a Low Speed condition. The 

performance index for low speed flight is inversely proportional to the value for IAS. While Low 

Speed is the dominant regime, the other regimes identified indicate combination maneuvers. 

The data below represents a typical Low Speed identification. Figure 15 is a graph of the 1800 to 

2100 second time interval of Flight 2. This selection contains Low Speed Level Flight data. The 

input parameter and output regime values are from time step 1962. 
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Figure 15: Low Speed Identification 

Figure 15 demonstrates the FRR for the Low Speed regime, with an additional 

identification of Level flight. Low-speed flight was difficult to separate from high-speed flight 
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because both regimes rely on IAS for recognition. Ultimately, input scaling was necessary to 

ensure that the FRR Kalman filter identified low-speed flight at the proper time. Figure 15 clearly 

shows a transition between high-speed and low-speed flight, which demonstrates that the FRR 

algorithm can differentiate between the two conditions. 

5.2.4 RightTum 

A large positive value for bank angle identifies that the rotorcraft is in a right turn. The 

performance index for Right Turn is proportional to the value for bank angle. While Right Turn is 

the dominant regime, the other regimes identified indicate combination maneuvers. The data 

below represents a typical Right Turn identification. Figure 16 is a graph of the 1500 to 1800 

second time interval of Flight 3. This selection contains Right Turn, High Speed, Climb, and 

Descent data. The input parameter and output regime values are from time step 1764. 
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Figure 16: Right Turn Identification 
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Figure 16 demonstrates the regime recognition for Right Turn. The right turn condition 

identified by the filter is proportional to the value of bank angle. This means that the turns 

identified by the filter are banked turns, not pedal turns. The banked turns performed for the 

flight test included S-Turns that are indicated by a right-left-right or left-right-left turn pattern. 

5.2.5 LeftTurn 

A large negative value for bank angle identifies that the rotorcraft is in a left turn. The 

performance index for Left Turn is proportional to the value for bank angle. While Left Turn is 

the dominant regime, the other regimes identified indicate combination maneuvers. The data 

below represents a typical Left Turn identification. Figure 17 is a graph of the 900 to 1200 

second time interval of Flight 3. This selection contains Left Turn, High Speed, and Climb data. 

The input parameter and output regime values are from time step 1139. 
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Figure 17: LeftTurn Identification 
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Figure 17 demonstrates the regime recognition for Left Turn. The left turn condition 

identified by the filter is proportional to the value of bank angle. Figure 17 includes a snapshot 

of a left-right-left S-Turn from 900 to 1050 seconds. Post processing analysis of the FRR output 

data is required to identify this type of combination maneuver. Additionally, banked turns are 

relatively quick maneuvers identified for short time steps, as seen in Figure 17. 

5.2.6 Climb 

A large value for vertical velocity identifies that the rotorcraft is in a climb. The 

performance index for Climb is proportional to the value for vertical velocity. While Climb is the 

dominant regime, the other regimes identified indicate combination maneuvers. The data below 

represents a typical Climb identification. Figure 18 is a graph of the 300 to 600 second time 

interval of Flight 1. This selection contains Climb and High Speed data. The input parameter and 

output regime values are from time step 351.5. 
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Figure 18: Climb Identification 

Figure 18 clearly indicates a high-speed climb as the regime identified during the 315 to 

400 second time interval. The performance indices for High Speed and Climb are the highest, 

and the other regimes all have values near zero during this time interval. The graph also shows a 

short duration high-speed climb around 550 seconds. Short duration climbs were performed 

during the flight tests. Short duration climbs helped the pilot maintain a safe altitude or to set

up for the next maneuver. 

5.2.7 Descend 

A large negative value for Rate of Climb (ROC) identifies that the rotorcraft is in a 

descent. The performance index for Descend is proportional to the value for ROC. While 

Descend is the dominant regime, the other regimes identified indicate combination maneuvers. 

The data below represents a typical Descend identification. Figure 19 is a graph of the 2400 to 

2700 second time interval of Flight 1. This selection contains Descend, High Speed, and On 

Ground data. The input parameter and output regime values are from time step 2657. 
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Figure 19: Descend Identification 

The high-speed descent shown in Figure 19 prior to landing indicates an Autorotat ion. 

The graph also shows a high-speed right descending turn f rom 2470 to 2500 seconds. Descents 

identif ied by the FRR algorithm are typically short duration maneuvers. Short duration descents 

were performed during the fl ight test program. The short duration descents helped the pilot fly 

safely or to end the test maneuver performed. 

5.2.8 Steady/Level Flight 

A small value for ROC identifies that the rotorcraft is in Steady or Level Flight. The 

performance index for Steady/Level Flight is inversely proportional to the value for ROC. While 

Steady/Level Flight is the dominant regime, the other regimes identified indicate a combination 

maneuver. The data below represents a typical Steady/Level Flight identif ication. Figure 20 is a 

graph of the 1800 to 2100 second t ime interval of Flight 2. This selection contains Steady/Level 
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Flight, Low Speed, and High Speed data. The input parameter and output regime values are from 

time step 1970. 
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Figure 20: Steady/Level Flight Identification 

Steady Flight is typically hover or a climbing maneuver, while Level Flight is typically a 

speed-based maneuver. The data examples provided throughout Section 5.2 demonstrate that 

Steady/Level is rarely identified as the dominant flight regime. This is a difficult flight regime to 

identify without additional data. It is currently impossible for the FRR algorithm to distinguish 

between the steady flight and level flight conditions. Post processing analysis can help 

determine if a steady flight or level flight condition existed. This type of post processing analysis 

relies upon user experience and practical flight knowledge. 
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5.3 Post Processing Regime Transition Identification 

Regime transition identification focuses on the observation of the FRR for snapshots of 

the entire flight. The FRR algorithm generates an Excel file of the performance index values upon 

completion of a flight. Graphing these performance indices allows the user to observe the FRR 

for the entire flight. Regime transition identification requires graphs showing snapshots of a 

flight. The following figure represents a snapshot of regime transitions. 
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Figure 21: Regime Transitions 

Figure 21 is a snapshot of Flight 1 during the 2400 to 2700 second time interval. Each of 

the eight regimes identified by the FRR Kalman filter appears on the graph. Additionally, seven 

of the eight regimes are clearly identified as a dominant regime on the graph. The graph begins 

with the rotorcraft in a high-speed climb. The aircraft then begins a right-left-right turning 

pattern. The final right turn of the pattern is a decelerating descending right turn. At 

approximately 2470 seconds, the rotorcraft transitions from high-speed to low-speed flight. The 

low-speed flight is relatively level. The aircraft then begins a high-speed climb with some slight 

right turning. At approximately 2650 seconds, the aircraft transitions to a high-speed descending 

left turn prior to landing. This final pattern indicates a left turn full-down autorotation. The 

maneuvers identified by this data snapshot were all performed as part of Flight 1. Figure 10 

shows that the FRR algorithm appears to capture regime transitions appropriately for an entire 

flight. 
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5.4 Variation of Process Noise 

Another application of post processing FRR analysis demonstrates the affect of varying 

process noise on the regime transition identification. Process noise accounts for uncertainty in 

the regime estimation based on the equations used to model the system. This is particularly 

useful to allow the filter to handle short duration parameter variations, such as from a gust of 

wind. Figure 21 shows the regime transitions for a process noise value of 0.001, which is the Qk 

value used to obtain results for this thesis. The following figures show the affect of changing the 

process noise value on the regime identification. The data snapshots are from the 2400 to 2700 

second time interval for Flight 1. 
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Figure 22: Regime Transitions with Qk = 1 

Figure 22 shows the FRR with a process noise value of 1. The Kalman filter still identifies 

regime transitions. The On Ground and High Speed regime identification appears mostly 

unchanged with the increased noise. The Low Speed regime is identified as the dominant regime 

more often, but there are large spikes in this regime's recognition. The short duration large 

jumps in Low Speed indicate a misidentification or out of bounds value at those time intervals. 

These inaccurate Low Speed performance indices represent noise which the filter is using as 

valid data. The large process noise value seems to better identify the Right Turn, Left Turn, 

Climb, and Descend regimes without creating misidentification or out of bounds values. 

Additional scaling or saturation are required on the Low Speed input parameter to utilize this 

higher process noise value. 
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Figure 23: Regime Transitions with Qk = 0.00001 

Figure 23 shows the FRR wi th a process noise value of 0.00001. The Kalman fi lter still 

identifies regime transitions, but much of the valid data is ignored by the filter. The Low Speed, 

Level Flight, and Descend regimes are barely identif ied. The High Speed, Climb, Right Turn, and 

LeftTurn regimes are identif ied but the performance indices are severely degraded by the lower 

noise threshold. A process noise value of 0.00001 is simply unfit for this FRR algorithm. 

However, the process noise values displayed in Figure 22 and Figure 23 can help develop a noise 

band which is acceptable for the FRR Kalman filter. 
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Figure 24: Regime Transitions with Qk = 0.01 

Figure 24 shows an acceptable value for process noise in the FRR algorithm developed 

for this thesis. The Low Speed and Descend regimes are more clearly identif ied by raising the 
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acceptable noise threshold. The High Speed, On Ground, Climb, Right Turn, and Left Turn 

regimes appear unaffected by the change in process noise. This represents a higher process 

noise value than was used for the analysis herein, but is an acceptable upper bound for the 

process noise band in the FRR Kalman filter. 
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Figure 25: Regime Identification with Qk = 0.0005 

Figure 25 shows an acceptable value for process noise in the FRR algorithm developed 

for this thesis. The regimes are still identified with acceptable accuracy. The Low Speed and 

Descend regimes are still identified, even though the acceptable noise threshold is lower. The 

High Speed and On Ground regimes appear relatively unaffected by the change in process noise. 

The Climb, Right Turn, and Left Turn regimes are affected by the change but remain properly 

identified. The Level Flight regime identification is difficult with the lower process noise value, 

thus a better identifying parameter would be required if this noise threshold was used. The 

process noise value shown in Figure 25 represents a lower bound for the process noise band of 

the FRR Kalman filter. 

The figures above demonstrate the affect of varying process noise on the FRR 

performed by the Kalman filter developed for this study. The acceptable process noise band, 

shown in Figure 24 and Figure 25, is Qk = 0 . 0 1 ^ 0 . 0 0 0 5 . As the process noise value is 

increased the filter relies on more of the input data to determine the performance index 

estimates. This allows short duration parameter jumps to affect the regime performance 

indices. This also creates a possibility for short duration regime transitions to be identified by 
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the FRR algorithm. More regime transition points are captured by increasing the process noise 

value, but these may not necessarily be actual regime transitions. 

As the process noise value is decreased the filter relies more on the state model and less 

on the input data [13]. Recall that the State Transition Matrix, <&k, is an identity matrix. This 

tells the filter to estimate the performance index at the next time step to be the same as the 

current time step based on the Kalman filter equation, xk = ®kxkl + wk. When the process noise 

value is low and less input data is used to estimate the performance indices, the filter uses more 

of the previous performance index estimate to determine the current regime. This creates a 

possibility for valid data to be ignored by the filter and degrades the regime identification. 

Fewer regime transition points are identified by decreasing the process noise value. Actual 

regime transition points may be missed by the filter if the process noise value is too low. 
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6. CONCLUSIONS 

This study uses a Kalman filter to perform real-time FRR analysis. The Kalman filtering 

approach provided herein performs FRR to identify when the rotorcraft is in the flight regimes 

listed in Appendix A. The recorded flight parameters, listed in Appendix B, allow the Kalman 

filter to identify the flight regimes. The data used in this study was gathered during the ERAU 

HUMS Schweizer 300 Flight Test Program. The ERAU HUMS team used the Kalman filter 

developed during this thesis for FRR analysis. The use of a Kalman filter to perform FRR appears 

to be a new application of Kalman filtering. 

The FRR algorithm detailed herein has been successful in performing real-time FRR 

analysis. A real-time graphical display shows the performance index values and allows the user 

to observe regime transitions. Recorded flight parameters determine the performance index 

values. Each parameter corresponds to one and only one regime. This ensures that the 

performance index value for one regime is not dependent on the value for another regime. The 

independent calculation of the performance indices was used to prove that the FRR algorithm 

developed herein works properly. Future work with this FRR algorithm may utilize dependent 

regimes to expand the number of regimes identified. Typically, it is preferable to identify a 

regime using several flight parameters. Future work with this FRR algorithm should enable the 

Kalman filter to identify a regime using multiple parameters. 

The FRR algorithm developed herein identifies eight major flight regimes using eight 

flight parameters. The algorithm also indicates combination maneuvers which the user verifies 

via the real-time graphical display or post processing graphical analysis. Transitions between 

flight regimes are observable both on the real-time display and post processing results. Regime 

identification and regime transisition points are dependent upon the process noise values. An 

acceptable process noise band presented for this FRR algorithm is Qk - 0.01 —> 0.0005 . Future 

work with this algorithm to add regimes or include dependent regimes may require a different 

process noise band. 

The Kalman filter is the basis of the FRR algorithm described herein. The filter is readily 

accessible and modifiable within the MATLAB code. This accessibility is a major benefit of 
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Kalman filtering. Another benefit is the inherent handling of noise. The measurement noise, or 

signal variance, filter input is the OEM listed sensitivity value for each sensor. In addition to 

measurement noise, the filter treats process noise. Mathematically process noise is the 

uncertainty in the state estimate due to equation error. Physically process noise allows the filter 

to account for short duration jumps in the input parameter values. This ensures that a gust of 

wind will not cause the filter to misidentify the regime or change regimes for a short duration. 

Another benefit of the Kalman filter is that it can utilize a priori and a posteriori 

information. The FRR application described herein does not have a priori information because 

there is no information about what regime the rotorcraft is in prior to entering that regime. 

However, a posteriori information can be utilized by feeding back the state estimates. This 

would enable a regime to be identified only after another regime has been entered. For 

example, a takeoff will only be identifiable if the rotorcraft has previously been on the ground. 

The simple regime identification demonstrated in this paper does not use state feedback, but it 

would be relatively easy to add to this filter. 

Many HUMS applications require real-time or post-processing analysis of FRR results. 

These applications include conditioned based maintenance and actual flight spectrum analysis. 

The post processing analysis results described herein show that the application of a Kalman filter 

for a real-time FRR algorithm has been successful. The real-time graphical display developed 

herein is user friendly and allows the user to observe regime identification and transitions. 
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8. APPENDIX A: IDENTIFIED REGIMES 

Regime 

On Ground 

Level Flight 

Climb 

Descend 

LeftTurn 

RightTum 

High Speed 

Low Speed 
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9. APPENDIX B: FLIGHT PARAMETERS 

Paramter 
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ROC (Ell Alt) negative 
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4> positive 

cj) negative 
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