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ABSTRACT

Author: Horacio Esteban Sepic Kriskovich
Title: The Effects of Elasticity in the Foundation on the Flutter of a Metallic High
Aspect Ratio Wing

Institution: Embry-Riddle Aeronautical University

Degree: Master of Science in Aerospace Engineering

Year: 2009

The goal of this thesis is to study the flutter characteristics of a metallic high-
aspect ratio wing, with linearly varying chord across the semis-span, and a simulated
elastic foundation. The general planform of the wing is similar to the one found in a High-
Altitude Long-Endurance Uninhabited Aerial Surveillance Vehicle (HALE USAV).

The problem is studied using a simplified aerodynamic loading based on thin-airfoil
theory, which is then combined with a Lagrangian formulation to solve the system as
stationary. The wing has no control surfaces or external stores, and is modeled as a
uniform beam with known mechanical properties, being attached to a combination of
torsion springs at the root to reproduce the elastic foundation.

The analysis of the problem includes the development of a Matlab code, which
permits different root conditions to be defined, and computes the flutter speed and
frequency, outputting information in the form of plots and data lists, making the analysis

easy to follow.
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1. INTRODUCTION

The study and understanding of the flutter characteristics of a wing is extremely
important during the aircraft design process. This structural dynamics phenomenon is
responsible for limiting the flight speed due to its unstable nature, and represents a
potentially catastrophic condition if not taken properly into account.

Flutter is understood as the harmonic oscillations of a structural member as a
result of its interaction with the surrounding fluid stream. In the case of wing flutter, the
wing is subjected to aerodynamic loads as it moves into the airstream, and the critical
condition appears when harmonic oscillations for bending and torsion are coupled wit-h no
damping. At this particular point, any increase in the airspeed will introduce an increase in
the amplitude of oscillations, making the structure unstable and leading to the risks which
this represents. When the airspeed has met this point, the structure is said to reach its
critical flutter speed.

The flutter phenomenon related to aircraft structures has been studied for many
years, for almost all different types of wing configurations and airspeed regimes such as
subsonic incompressible flow (sailplanes, general aviation aircraft, etc.), transonic
compressible flow (high speed turboprops, jet liners, propeller and turbo machinery
blades, etc.), supersonic compressible flow with the effects of temperature (jet fighters
and jet liners, missiles, etc.), and hypersonic compressible flow with heat interaction for
space reentry vehicles.

In the classical theoretical approach for the flutter of a cantilever wing, the wing’s
root boundary conditions are typically fixed constraints requiring all displacements and
rotations at the boundary to be zero with no damping. These conditions make solution to

the problem tractable and complete.



Using this classical approach and a simplified aerodynamic load, the flutter of a
uniform cantilever wing was studied by the author of this report in a previous work [1]
(using a similar model to the one developed by Dhainaut [2] to study the aeroelastic
behavior of sweep wings) that was validated with results obtained by Goland [3] in his
work on the flutter of a uniform wing.

For the case under consideration, a Lagrangian formulation is employed to
formulate the equations of motion of the system according to the formulation used by the
author [1] and Dhainaut [2]. In this report, a Matlab code has been developed to calculate
the flutter boundary for the problem based on the previous works of Dhainaut [2] and the
author [1], which has the ability to introduce the effects of an elastic foundation by
combining torsion springs located at the root of the wing, as well as analyzing the problem
with an ideal clamp.

The idea of studying the aeroelastic behavior of a wing with elastic foundation is
not new, as the work done by De Baets, Battoo and Mavris [4] studying the root flexibility
effects on the aeroelastic characteristics of a uniform high-aspect ratio composite
wingbox, simulating the elastic root with a beam element (DBE2).

As part of this work, a similar idea has been taken into account to simulate the root
flexibility for the actual problem by employing a combination of torsion springs located at
the wing’s elastic axis, instead of a beam. However, the case under study corresponds to
a metallic high-aspect ratio wing, with linearly varying chord (due to the wing’s tapper
ratio) and, therefore, all mass, mechanical and geometrical properties vary along the
semi-span, which adds to the complexity of the problem.

The Matlab code developed for this work enables the user to analyze the problem
using either clamped or elastic roots, which allows validation of classical clamped cases.
For the elastic foundation however, the available sources to this type of problems are

limited, and in the particular case of root flexibility on a subsonic metallic high-aspect ratio
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wing, with varying properties along the semi-span, there is no reference available to the
best of the author’s knowledge.

For this reason, the construction of a wind tunnel model would be an enormous
tool to obtain data that made validation possible, in a similar way that Dhainaut, Desmond
and Gangadharan [5] validated their results for a uniform model wing in a low-speed wind
tunnel.

A scaled model for this purpose could be easily modeled in CATIA and machined
with the Komo 3D CNC router at the ERAU Manufacturing Laboratory. Also the Wind
Tunnel Laboratory facility available at ERAU could be used to test the model, ,and
considering that the university counts with different measuring devices, a similar task to
the work done by De Marqui Junior, Rebolho, Belo and Marques [5], where the flutter
parameters of a uniform wing model were identified during wind tunnel testing by using a
combination of strain gages and accelerometers mounted in a flexible mounting structure,
might be considered as a model instrumentation option.

The main purpose of this current work is to develop a preliminary design tool to
study the flutter behavior of general-shaped subsonic wings and, if future work permits,

validate this tool via comparison with a low-speed wind tunnel model.



2. THE STUDY MODEL

The proposed case of study has its application on the relatively new High-Altitude
Long-Endurance Uninhabited Aerial Surveillance Vehicle (HALE USAV) RQ-4 Block 20
Global Hawk manufactured by Northrop-Grumman in the United States of America.

This aircraft's main role is surveillance, and it has been serving the US Armed
Forces and Intelligence services since it was first deployed in the late 90’s.

The Global Hawk has a low-mounted, high aspect ratio, linearly tapered cantilever
wing, with a clean semi-span length of nearly 20 m, which serves as a high-surface, low-
drag wing plan form ideal for high-altitude missions with extended periods of operation.

Although most of the general characteristics of this HALE USAV aircraft are
known, for the purpose of this work a simplified model of this wing is introduced by the
author with some particular characteristics to make the approach of the problem easier,
thus a solid model is chosen reducing enormously the modeling task, and focusing strictly
on the flutter problem.

Based on the previous data, the new conceptual aircraft was modeled in CATIA by

the author, with the following characteristics:

Specifications: HALE USAV

WINGSPAN ...ttt 131.2 ft (40 m)

Length.. ..o 47.6 ft (14.5 m)
HEIGR oo 15.4 ft (4.7 m)

Max Take-Off Weight (MTOW)........cccooveviinininceene 32,500 Ib (14,736 Kg)
Max Fuel Weight (MFW) ..........ccoeiirieieeeeieee 14,500 Ib (6,575 Kg)
Cruise AItItUde (Hor) ..veooverereeieieeceeseee e 32,800 ft (10.0 Km)
Cruise VeloCity (Vi) uveeeeeerieeeiiiiieiie e eesriiieeeee e 343 KTAS (635 Km/h)



Wing:

WINGSPaN (By) ...cooveuceeieieeeeeeeeeeeeeee e 131.2 ft (40 m)
ROOt ChOrd (€)oo 8.20 ft (2.5 m)
Tip Chord (Cr) .o, 2.95ft (0.9 m)
Mean Geometric Chord (MGC) ............ccooovevveeeeeeerene. 5.58 ft (1.7 m)
Wing SUMace (Sy) ....veveeeeeeeieieieeeeeeeeie e 732 ft? (68 m%)
Aspect Ratio (AR) .....ooueeeeeeeeceeeeeee e 23.53

Tapper Ratio (A)....cccueeeiioeieee e 0.36

AC line sweep back angle (Aac)....oocveveeeeriveeeeeieeeaeenne. 6°

The following pictures correspond to this conceptual aircraft modeled in CATIA:

—

Figure 2a: A view of the HALE USAV.

Figure 2b: The conceptual HALE USAV CATIA model.



It was stated above that the first step Is to consider an airfoll for the wing that
allows meeting the operational requirements as close as possible for the design condition

In the case under consideration, the design condition Is the cruise condition, that 1s

S, =68m’
W, = MTOW—@ZE=11,448 5Kg

IV, =634 6Km/h=1763m/s (2-1)
H,, =10,000m

p., =04127Kg / m’
4, =000001457Ns / m*

In the expression 2-1, the new parameters introduced are W, (average cruise
weight), o, (cruise air density, according to ISA [11] and [17]) and 4 (cruise air viscosity,

from [11] and [17]) From basic Aerodynamics [7], the Iift of an aircraft while flying level

and steady can be expressed as

L = WL‘I = %K‘rzSWCL (2-2)

-=cr

Substituting data from expression 2-1 into 2-2 and solving for the aircraft Ilift

coefficient it yields

27, 15,
L a =—2

=02575 (2-3)

Since the wing has a large aspect ratio (>23), the 3-D effects may be neglected,
and the local Iift coefficient (airfoll design Iift coefficient) may be taken as the wing’s Iift

coefficient (cruise lift coefficient for the aircraft), thus

=C

aufoil L—cr

G

=02575 (2-4)

—design

The Mean Aerodynamic Chord (MAC) i1s defined as the follows [7]

2 b/2
—_—— 2 -
MAC =2 jc(y) dy (2-5)

w 0



The new wing’s chord distribution is expressed in meters as:

lc(y)=2.50-0.08y|  (2-6)

Substituting expression 2-6 into 2-5, it yields:

\MAC =1.825m| (2-7)

Having calculated the airfoil lift coefficient, for simplicity a symmetric airfoil will be
chosen, thus avoiding the introduction of the wing off set angle; the cruise Reynolds

number at MAC is:

Re — pCI‘I/v('I'mC
Ay

With the design lift coefficient and the Reynolds number for the defined condition,

=9.114¢° (2-8)

the choice of the airfoil is narrowed to 6-series airfoil, since it presents a region where, for
a particular lift coefficient, the drag coefficient is comparatively low (the so called laminar
bucket). After a basic search through [12], the selected airfoil is the NACA 63,-012, with

the following characteristics:
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Figure 2c: Airfoil lift and polar curves [12].



From these curves, at the desired lift coefficient (C)), drag coefficient (C4), angle of

attack (AOA), the ratio C/ C,, and the lift slope of the airfoil (C,,) are obtained:

C

I—cr

C—vr
! C 142.92 (2-9)

d

C,, =6.446/rad

=0.2575@ A04=2.6° = C, 0 0.006

From the previous expression, it can be seen that the drag coefficient is much
smaller than the lift coefficient, and therefore, it can be neglected, leaving aerodynamic
forces due to lift only. Additionally, according to the work done by Dhainaut, Desmond and
Gangadharan [5], the aerodynamic moment is also neglected.

As the general geometry of the wing has been already introduced, the following
step is to model the wing in CATIA, which will allow having a detailed 3-D model that will
be later imported to NASTRAN to obtain the cross sectional properties and to validate the

free vibration analysis.



2.1. The Wing Model

The airfoil's geometry from [12] was used to model the wing in CATIA; the

following table gives the geometrical coordinates:

z v 2
(per cent c) | (per cent ¢) /¥ 4 /¥
0 [ (1} 0 2 336
06 0985 0750 0 866 1 696
075 1164 0.925 0962 1513
126 1619 1005 1003 1266
25 2102 1120 1063 0933
50 2925 1217 1103 0682
76 3.542 1261 1123 0 6569
10 4.039 1204 1138 0484
15 4799 1330 1163 0387
20 5342 1349 1161 0 326
25 5712 1362 1167 0283
30 5930 1370 1170 0249
35 6 000 1366 1169 0.221
40 5920 1348 1161 0196
45 5704 1317 1148 0174
50 5370 1276 1130 0165
55 4 935 1229 1109 0137
60 4420 1181 1087 0121
65 3840 1131 1063 0108
70 3210 1076 1037 0091
75 2 556 1023 1011 0079
80 1902 0 969 0984 0067
85 1274 0920 0959 0055
90 0707 0871 0933 0042
95 0250 0826 0909 0.020
100 (1] 0791 0889 0
L.E radius. 1 087 per cent ¢
NACA 63,-012 Basic Thickness Form

Figure 2.1a: Airfoil coordinates [12].
With this geometry an Excel file 1s created which 1s imported to CATIA to get the
basic profile to make the solid model.

The CATIA model has the following characteristics:

SeMI-SPAN (Dy/2) et 20.00 m
ROOt ChOrd (€;) .. eveeveeeeeeeeeeeeeeeeeeeee et 250 m
TIP ChOrd (Cr) «eeeeeeivereeeeieeeeeeeee e 0.90 m
Root maximum thickness (fr-max) -..-oceoveeeriiiieiiiiieieees 0.30 m
Tip maximum thickness (fimax) .....ccooveees cvvviiiniiiee e 0.108 m
Mean Geometric Chord (MGC) ..... ..ccveiiiiiiiiiiiieeieeieinees 1.70m
Mean Aerodynamic Chord (MAC)..........cccccceeniiveniies coeeenne 1.825m



ASPECt Ratio (AR) ..o 23.53

Tapper RAtO (A).........o.oioiiiieeeeeeeeeeeeee e 0.36
AC line sweep back angle (Bac) ......oooeeeereeeeerererereneen. 6°

LE line sweep back angle (A.g) ........cooeeeeeoeeeeeeeeeeeenn. 7.19°
TE line sweep back angle (A7g).......ooeeeeeeeeereeeeeeeeeeeeeeeeees 2.65°

The next two figures show the drawing and a general isometric view (both

obtained from CATIA) respectively:

I S B

Figure 2.1b: Half-wing general drawing.

Figure 2.1c: Isometric view.

After the creation of the CATIA model, the semi-wing Is divided into 5 stations
upon which the cross-sectional properties will be computed from NASTRAN. Each station
is created as a solid for the corresponding span-wise station, and saved as igs format files
to be imported from NASTRAN. The location of these spanwise stations is detailed in
table 2.1-2 (see following pages).

The coordinate system to create the model in CATIA is shown in the next figure:

10
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Figure 2.1d: VW]g's coordinate system from CATIA and spanwise stations.

The accuracy of the computation of cross-sectional properties as function of the

semi-span coordinate depends on the number of cross-sectional stations chosen. After a

trial and error selection, the number of cross-sectional station was fixed to five, which

provides enough accuracy to compute these varying properties, which at the most have

the shape of a third grade polynomial function.

The geometric properties for each of the cross-sectional stations, as they are

calculated from NASTRAN, are presented below (in the following data the suffixes y and z

indicate local orientation for cross sectional elements, not being related to the global

coordinate system of the wing. All units are S| system):

STATION 01

Orientation of Section Properties:

Origin: X= 0. Y= 0. 2=
Y Ax1s: X= il Y= 0. 2z=
7 Axls: X= 0. M= 05 &=

Section Froperties:

Area A= 0.47161
Centroid (from Origin): Cy= 1.01991
Moment of Inertia: Iyy= 0.0023897
Iyz= 0.

Principal Moment of Inertia: Il= 0.1385
Radius of Gyration: Ry= 0.071183
Angle to Principal Axes: Ang= -8.44797E-9
Polar Moment of Inertia: Ip= 0.14089
Shear Center (from Origin): SCy= 0.88854
Shear Center (from Centroid): SCy= ~0.13137
Shear Area: Asy= 0.44148
Torsional Constant: J= 0.0093632
Warping Constant: W= 0.00033995

0.

0.

1.
Cz= 6.43838E-11
Izz= 0.1385

I2= 0.0023897
Rz= 0.54191

SCz= -1.5298E-6
SCz= -1.5298E-6
Asz= 0.17417

11



STATION 02

Orientation of Section Properties:
Origin: X= 0. Y=
Y Axis: X= 1. Y=
Z Ax1s: X= 0. Y=

Section Properties:

Area A=
Centroid (from Origin): Cy=
Moment of Inertia: Iyy=
Iyz= 1.67603E-10

Principal Moment of Inertia: Il=
Radius of Gyration: Ry=
Angle to Praincipal Axes: Ang=
Polar Moment of Inertia: Ip=
Shear Center (from Origin): SCy=
Shear Center (from Centroid): SCy=
Shear Area: Asy=
Torsional Constant: J=
Warping Constant: W=

STATION 03

Orientation of Section Properties:
Origin: X= 0. Y=
Y Axis: X= 1. Y=
Z Axis: X= 0. Y=

Section Properties:

Area A=
Centroid (from Origain): Cy=
Moment of Inertia: Iyy=
Iyz= 2.88207E-10

Principal Moment of Inertia: Il=
Radius of Gyration: Ry=
Angle to Principal Axes: Ang=
Polar Moment of Inertia: Ip=
Shear Center (from Origin): SCy=
Shear Center (from Centroid): SCy=
Shear Area: Asy=
Torsional Constant: J=
Warping Constant: W=

STATION 04

Orientation of Section Properties:
Origin: X= 0. Y=
Y Axis: X= 1. Y=
Z Axis: X= 0. Y=

Section Properties:

Area A=
Centroid (from Origain): Cy=
Moment of Inertia: Iyy=
Iyz= 0.

o
W

0.33277
0.85672
0.0011897

.068953
.059794
.4171E-7
.070143
.74637
-0.11035
0.31151
0.0046616
0.00012015

O O r OO

o

.21807
.69355
.00051094

(e ]

.029611
.048404
.6746E-7
.030122
0.60422
-0.089333
0.20414
0.002002
0.000033602

[N NelNe]

0.12752
0.53036
0.00017472

Cz=
Izz=

I2=
Rz

SCz=
SCz=
Asz=

Cz=
Izz=

I2=

SCz=
SCz=
Asz=

Cz=

o

-7.70955E-10
0.068953

0.0011897
0.4552

-1.2718E-6
-0.000001271
0.12289

[eNe]

-2.13231E-9
0.029611

0.00051094
0.36849

8.3335E-7
8.3548E-7
0.08054

o

4.57334E-11

Izz= 0.010126
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Principal Moment of Inertia: Il=
Radius of Gyration: Ry=
Angle to Principal Axes: Ang=
Polar Moment of Inertia: Ip=
Shear Center (from Origin): SCy=
Shear Center (from Centroid): SCy=
Shear Area: Asy=
Torsional Constant: J=

Warping Constant: W=

STATION 05

Orientation
Origin: X=
Y Axis: X=
Z Axis: X=
Section Prop
Area
Centroid (fr
Moment of In
Iyz= -1.325

Principal Moment of Inertia:
Radius of Gyration:

to Pri
Moment
Center
Shear Center
Shear Area:

Torsional Co
Warping Cons

Angle
Polar
Shear

In this work, the study model of the wing consists of a

of Section Properties:

0. Y=

1. Y=

0. Y=
erties:

A=
om Origin): Cy=
ertia: Iyy=
27E-12

I1=

Ry=
ncipal Axes: Ang=

of Inertia: Ip=
(from Origin): SCy=
(from Centroid): SCy=

Asy=
nstant: J=
tant: W=

0.010126
0.037015
-8.2594E-9
0.010301
0.46205
-0.068311
0.11937
0.00068462
0.0000067419

0.06112
0.36717
0.000040136

0.0023261
0.025626
-3.32169E-8
0.0023662
0.31988
-0.047293
0.057215
0.00015727
0.0000007398

out of aluminum 2024 T351, with the following characteristics:

Table 2.1-1: Wing'’s general data

I2=
Rz=

SCz=
SCz=
Asz=

Cz=
Izz=

I2=

SCz=
SCz=
Asz=

0.00017472
0.28179

-9.11391E-7
-9.11437E-7
0.047097

o o

1.55445E-9
0.0023261

o

.000040136
.19508

o

-6.15603E-7
-6.17158E-7
0.022573

solid piece of metal made

c-root [m] 2.500
c-tip [m] 0.900

b/2 [m] 20.000
Material Al 2024 T351
Density [kg/m3] 2.765E+03
E [Pa] 7.385E+10
G [Pa] 2.870E+10
n 0.33
Airfoil NACA 63,-012
AC [x/c] 0.265
CL-alpha [1/rad] 6.446

13



Based on table 2.1-1 and the data for the cross-sectional stations calculated from

NASTRAN, the following tables are obtained:

Table 2.1-2: Cross-sectional properties

Station 1 2 3 4 5

y [m] 0 5 10 15 20
c [m] 250 2.10 1.70 1.30 0.90
A [m2] 4.716E-01 3.328E-01 2.181E-01 1.275E-01 6.112E-02
m [kg/m] 1304.00 920.11 602.96 352.59 169.00
Ixx [m4] 2.390E-03|  1.190E-03|  5.109E-04|  1.747E-04|  4.014E-05
Ip [m4] 1.409E-01 7.014E-02|  3.012E-02|  1.030E-02|  2.366E-03
J [m4] 9.363E-03| 4.662E-03|  2.002E-03| 6.846E-04|  1.573E-04
Cx [m] LE 1.020E+00|  8.567E-01  6.936E-01|  5.304E-01|  3.672E-01
SCx [m] LE 8.885E-01 7.464E-01|  6.042E-01  4.621E-01 3.199E-01
SCx - Cx [m] -1.314E-01|  -1.104E-01| -8.933E-02| -6.831E-02| -4.729E-02
b=Cx - SCx [m] 1.314E-01 1.104E-01]  8.933E-02|  6.831E-02|  4.729E-02
Xac [m] LE 6.625E-01 5565E-01]  4.505E-01|  3.445E-01|  2.385E-01
a=CSx - Xac [m] 2.260E-01 1.899E-01 1.537E-01 1.176E-01|  8.138E-02

1.765E+08| 8.786E+07| 3.773E+07| 1.290E+07| 2.964E+06

2.687E+08| 1.338E+08| 5.746E+07| 1.965E+07| 4.514E+06
GJ/EIxXx 1.523 1.523 1.523 1.523 1.523

From table 2.1-2 it can be seen the semi-span varying properties: moments of

inertia and torsion constant, chord, area and mass per unit length, location of EA, AC and

CG, etc. With this data, the following plots are obtained from Excel, showing the

distribution along the semi-span of all these properties:
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Chord and Unbalance Distribution
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Figure 2.1e- Chord and unbalance distribution (a and b).
Cross Sectional Area Distribution
5.00E-01
2 | 18 |
4.50E-01 - ‘ ‘ e
i
4.00E-01 : — - —+
1 =
3.50E-01 ' S e T * Alm?2
“ ! y = 4,829E-04x2 - 3.018E-02x + 4.716E-01 J 1
3.00E-01 + R? = 1.000E+00 -
— Poly. (A
& 2.50E-01 | = | L] [m~2])
Eeoeo [ |
2.00E-01 Jf ol d—t B ] --~ji~—i—
[ i
1.50E-01 |- - 4— «L ! — T+
i : \b\ i “
1.00E-01 | 1= o (T et -~~—~T I
. 5 '\ 1
5.00E-02 —y—r + R R k i
{ ‘ ‘ \ |
0.00E+00 L— ' | J : y [m]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 2.1f- Cross-sectional area distribution.
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Mass/Unit Length Distribution
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Figure 2.1g- Mass per unit length distribution.
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Figure 2.1h- Location of EA, CG and AC.
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Figure 2.1i- Inertial and torsional constant distribution.
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Figure 2.1j- Rigidity distribution.
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From figure 2.1e, the distributions of chord (c), mass unbalance (b, distance from
CG to EA) and aerodynamic unbalance (a, distance from AC to EA) are obtained (all

values in [m]):

c(y)=2.5-0.08y
b(y)=0.1314-4.203¢y (2.1-1)
a(y)=0.226-7.233¢y

From figure 2.1f, the distribution of cross-sectional area (A) is obtained (all values

in [m?)):

A(y) = 4.8290¢7y? —3.018¢ 2y +4.716¢™ (2.1-2)

From figure 2.1g, the distribution of mass per unit length (E) is given by (all

values in [Kg/m]):

m(y)=1.335y —83.46y +1304 (2.1-3)

From figure 2.1h, the distributions of location from LE for EA, AC and CG are

expressed as (all values in [m]):

x.,(y)=—2.843¢7y +8.885¢™
X6 (¥)=-0.0326y +1.0199 (2.1-4)
x,0(¥)=-0.0212y +0.6625

From figure 2.1i, the distributions of moment of inertia (/,,), torsional constant (J)

and polar moment of inertia (/,) are given as (all values in [m*]):

I_(y)=-2.131e77y’ +1.346¢” y* ~3.014¢™*y +2.389¢>

J(y) =-8.346e"y’ +5.273¢7y* —~1.181e™ y +9.361¢> (2.1-5)
6%

I (y)=-1.256e7y* +7.934¢™*y* —=1.777e*y +1.409¢™
(v

Finally, from figure 2.1j, the distributions of bending rigidity (El,,) and torsional

rigidity (GJ) are (all values in [Nm?)):

EI(y)=-1574¢"y’ +9.939¢°y* —2.226¢’y +1.7642¢°

(2.1-6)
GJ(y) = —2.395¢'y’ +1.513¢°y* ~3.389¢" y + 2.6879¢°
)
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3. FORMULATION OF EQUATIONS OF MOTION

Consider current wing's planform is sketched in the following figure, where the
coordinate system is aligned with the EA (similar approach used in [1] by the author and

[2] by Dhainaut):

— Effective Length
e

————

—_— 1'\ Elastic Axis
' Sweep Back Angle

SE==

Figure 3a: Wing’s planform and coordinate system.
Any deformation is then referenced to the elastic axis, and described by two
quantities: bending and pitching about this axis. The sweep back angle of the elastic axis

(EA) is referred as 4. At any span-wise location, these quantities can be denoted by a set

of generalized coordinates:

h(y,t) = b,@,(¥)g,(1)

(3-1)
a(yv,t)=¢,(y)q,(1)

where:

e q,(t): generalized coordinate for bending as function of time.

e q.(t): generalized coordinate for torsion as function of time.
e  @,(y): shape function of deformation for bending [m].
o @,(y): shape function of deformation for torsion [rad].

e by reference length [m].
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3.1. Aerodynamic Forces

The aerodynamic loads will be treated by means of the Strip-Theory [7], which
states that for any arbitrary span-wise station (4y), the aerodynamic Iift force (4L) can be
expressed by

AL =0 C, a;cAy (31-1)
where
* Qo free stream dynamic pressure [Pa]
e ¢ local chord [m]

e C/, local aerodynamic Iift slope [1/rad]

e a7 streamwise angle of attack (AOA) [rad]

Assuming semi-rigid chord-wise segments, it I1s derived from figure 3b that the
streamwise AOA resulting from elastic deformation 1s made out of a component due to

pitch, and another one due to bending slope, as follows

o, =acosA+a—hsmA (3.1-2)

Where A , Is the wing’s sweepback angle of the aerodynamic center line

ﬂ
J él h
- - - )

Figure 3.1a: Streamwise AOA [2]
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Substituting expression 3.1-2 into expression 3.1-1, integrating across the semi-
span’s effective length (/ ) and dividing by two, the aerodynamic lift force is obtained for

half-wing:

[/

C,
Ll Q2a

e
acosA+——smA dy (3.1-3)
fel ot Gonn

In the previous expression, the effective semi-span length is:

b, /2
cos A

l

7= (3.1-4)

Now some empirical correction factor must be introduced in order to compute the
wing’s lift coefficient (C,,) as accurately as possible. For a subsonic wing (M<0.85) a fairly

enough approximation for a three-dimensional wing is given by [7] as follows:

TAR

2
T AR
1+\/1+( C,acosAAc)

Recalling the semi-rigid assumption for streamwise segments, the moment

C, (3.1-5)

a =

produced by the lift about the elastic axis, unaffected by wing deformations, is:

M., =La (3.1-6)

Where a is the distance between the aerodynamic center (AC) and the elastic axis

(EA) as shown in the following figure:

h
L

Mgy

Figure 3.1b: Airfoil cross-section and aerodynamic forces diagram.
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It is to be noted that only the influence of the aerodynamic lift force is considered

for the analysis while the drag and moment are neglected.
The generalized non-conservative force term for Lagrange’s equations of motion

can be derived by applying the principle of virtual work. Thus the partial work done by the

aerodynamic lift force is:

Wy =—§(5ZAC)=—§5(h—aaT) (3.1-7)

Substituting expressions 3-1, 3.1-2 and 3.1-3 into 3.1-7, it yields:

- Creluung :
5WNC=Q__M J'c ~54,q, ¢ha—¢”sinA—a(%) sin? A |+
2 0 oy oy

=044, [:¢/7¢a cos A - a%% SinACOSA} + (3.1-8)

..+dq,.9, {a%qﬁa sin A cos A} +

t+6q,9, [a(zﬁj cos’ A]} dy

3.2. Kinetic Energy

While the wing is in motion the total kinetic energy ([J/m]) per unit span can be

written as:
— 1
K =—m +—Iw (3.2-1)

Where the terms involved represent the kinetic energy due to bending and torsion
respectively. Integrating the previous expression across the semi-span’s effective length
(Ip), it yields:

Ly

/
_ 1 ¢/7_ 3 N 1 —- .5
K. =3 a[m(h+ba) dy+5 JICGa dy (3.2-2)
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where:

o« m: wing’s mass per unit length [Kg/m].

h: bending velocity [m/s].

b: distance from center of mass (CG) to elastic axis (EA) [m].

a : pitching velocity [rad/s].

o Icg: wing’s mass moment of inertia per unit length [Kg*m].

Substituting expression 4-1 into 4.2-2, the total kinetic energy per unit span is:

I [}
1 — 2. .. . 2 1 = -2 7
Ko = [m[Bidid} +2bbid,d. 90, + D002 Jdy+— [leotididy|  @29)
0

0

3.3. Potential Energy

The strain energy ([J/m]) per unit span can be written as the contribution from both
the uncoupled modes for bending and torsion as follows:

= 1 1
Ve =EKhhq; +5Kaaq§ (3‘3'1)

where:

2 —
e |[K,,=o,M,|and K, =w,M,|

e w,: fundamental uncoupled bending frequency [rad/s].
e w, fundamental uncoupled torsion frequency [rad/s].

e M,,and M,,: wing’s mass terms (see following section).

Therefore, the total potential energy per unit span can be rewritten as:
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f/: = ; Mhhqh +’;'w2Maaq§ (3.3-2)

3.4 Lagrange’s Equation

The general expression for the Lagrange’s equations of motion is:

o(oL) oL
— =0W,_, 3.4-1
at(aq,] aq, =0 _ne - (3.4-1)

where:

. |L=K. —_V:: is the Lagrangian.

e g, :generalized coordinate.

e O_yc =0W_,.: work done by non-conservative forces.

Combining expressions 3.2-3 and 3.3-2, the Lagrangian becomes:

[L-t] IL//

- 1 - 2. ) .. 2. 7 .2 2

L= 5{ [m[B3aid; +2bby3,d,8,8, +b°328 |+ [Tecqldldy—[ 0} M,ug; + M, ]}
0 0

(3.42)

Substituting expression 3.4-2 into the left hand side of expression 3.4-1:

0| oL L/
at[a ] thmb¢,, dy+qajmbb¢h¢)

a( oL '”
-5 = ( J qa I(mb +]CG)¢ dy+qh J'm bb¢h¢ )
ot\ 0q, 0 (3.4-3)

Identifying terms from the previous expression, the mass matrix for the system is:
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Iqr_
Mhh = J.'n¢hzdy
b M, b, M, b
M L M — hh™0 ha™0 4-4
Oj 0,8,y = —[M] {Mahbo v ] (3.44)
I,, _
= [ +Tee i
0 ;ﬁ,__/
And the stiffness matrix is:
by |
Ky, =@} [mgidy
0 Kb 0
K,, _Ozfah >—>[K]={ "(’; 0 K. (3.4-5)
Kaa i j(mb +]cc)¢ dy
0

Ics

The right hand side of the Lagrange’s equations of motion has been derived

previously; therefore, from expression 3.1-8 the aerodynamic loads matrix is assembled

by identifying the following terms:

-C
Ay, = ;mmmg _[ {% aay¢" sin A — a( ;;hj sin’ A} dy
- CLa e ¢
4, =—"E Ic{%% cosA—a—" ¢ s1nAcosA}dy 2
2 0 s [A] _ A,by  A4,,b,
lar ¢ Aath Aaa
A, = e I c[a “ ¢, sin A cos A} dy
0
Ly
Aa selmwmg Ic a¢ COS A y
0

(3.4-6)

Combining the matrices from expressions 3.4-4, 3.4-5 and 3.4-6, and rearranging

for the corresponding degrees of freedom, the equations of motion for the system are

obtained:
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[M hhbo2 M, b, | |4, + K hhbg 0 In =0 Ahhbg Ay {q" } (3.4-7)
M ah bO M aa qa 0 K aa qa ” Aath Aaa qa
) —— —_—

A I vV
(M] {a} (K] {q} (4] {9}

3.5. The Flutter Problem

Assuming a harmonic solution, for the equation in expression 3.4-7, of the form:

{Qh} _ {qho}emﬂ (3.5-1)
qa an

—— e
{a} {40}

After rearranging expression 3.4-7, the equations of motion for the problem are:

Kby -0.4,b -Q.A4,.b M,b M,b or
— hh™0 hh™~0 ha ™0 —0)2 hh™0 ha™0 {qo}e ={O}
_anAath Kaa _Qquaa Math M

aa

[K]-0.[4]]-' [M]){a}e” = {0}  @s2

The matrix [[K]-Q/A]] is a function of the dynamic pressure (Q). For a given

value of this dynamic pressure, the stability behavior of the system can be studied by

solving the eigenvalue problem. As the dynamic pressure increases, the eigenvalues («?)

for the different modes (in the case under study, the shape modes considered are the first
uncoupled mode for bending and the first for torsion) merge to a complex conjugate pair
that leads to an unstable system. The real part of the complex conjugate is the flutter
uncoupled frequency, while the imaginary part represents the structural damping ratio.

The transition from stable to unstable defines the flutter boundary, as seen on figure 3.5a:

26



.............................

o, rad/sec

{)
[ '
] '
'
1 | ]
H 1 H

Dynamic Pressure, Q
Figure 3.5a: Flutter boundary for a two-mode analysis [2].

From figure 3.5a, the flutter boundary is established and is represented by a
particular value for the dynamic pressure (and therefore, flight speed for a given flight
altitude). At this point, the structure is said to be at the flutter condition, and the motion is
governed by a combination of bending and torsion modes acting at the same time and
constant amplitude. Any increase in the dynamic pressure (or flight speed) will turn this
phenomenon to the unstable region, where the amplitude of motion increases and could

cause, if not take any corrective action, catastrophic damage to the structure.

3.6. The Divergence Problem

The wing divergence is a situation where, at very low angle of attack (AOA) and
high speed, the pressure centers develop, pushing the front portion of the wing downward
and the rear portion upward. This aerodynamic twisting effect on the wing structure while
the rest of the aircraft is following the flight path decreases the AOA even more. The
action finally exceeds the capability of the wing structure to resist the torsion stress, and

causes the wing to separate from the airframe with no warning.
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Once again, semi-rigid chord-wise segments are assumed, but this time the
divergence state occurs when the term due to bending slope in expression 3.1-2 becomes

negative:

oy =0acosA— Q}isin A (3.6-1)
Oy

Substituting expression 3.6-1 into expression 3.1-1, integrating across the semi-
span’s effective length and dividing by two, the aerodynamic divergence lift force is

obtained for half-wing:

[L‘

ff
L = LG _[c acosA —%sin A |dy (3.6-2)
seming 2 dy

Identically as for section 3.1, the same assumptions apply for the lift coefficient

and for the moment produced by the lift about the elastic axis:

M, =La (3.6-3)

As before, the influence of the aerodynamic drag force and aerodynamic moment
are not taken into account here either, according to the theory developed by Dhainaut [2].

Substituting expressions 3.6-1, 3.6-2 and 3-1 into expression 3.1-7 results:

Loy
W, = ——— e 5[ {&]hqh [qﬁh ) smA+a( szhj sin’ A:]+

.—0q,4, [qﬁhqﬁ cosA+a— aﬁ"(b sinAcosA}+ 5.64)

-449,9, {a%% sin A cos A] +

..—04,4, l:a¢j cos’ A]} dy

Recalling the expressions developed in sections 3.2 and 3.3, the kinetic and

potential energy per unit span are, respectively:
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[}

1}
= . . . 1=
Ke== [m[B6d; +26bd,d. 0, + 0434 |y +— [Teodiich|  369)
0 0

7e = %w;Mhhqlf +%“’2Maa‘1i (3.6-6)

In addition, the Lagrange’s equation applies to obtain the equations of motion for
this particular problem. Recalling the Lagrangian from expression 3.4-2, and carrying out
a similar analysis as in section 4.4, the mass matrix, the stiffness matrix and the

aerodynamic divergence loads matrix become, respectively:

ler
M,, = I"W:dy
[/1 2
M,b, M, b
In1b¢h¢ dy = —[M]= [M:: b(:, AZ‘,O} (3.6-7)
Ief/ _
M, = [(mb*+Tcc)gldy
T
-
ler
K,, =, Imqﬁfdy
° Kb 0
Kha =0 =Ifah r—> [K] = |: l’(}; 0 Kaa (3.6-8)
K, =@ [(mb®+Tcc)gldy
T

c, b o4, 7
4 = LG lsemwing __Lalsemwing c ¢h SlnA+a( h] Sin2 A dy
hh ('J'. |: ay ay
Loy
o4,
A 3 — _ Olsemiwing semmmg C|:¢h¢ COSA+G h ¢ SlnACOSA dy )
h 6[ ay ?—)[A] liAhth Ahab :I
lep Aath Aaa
Aah — @ | semiwing Ic[a ¢h ¢ SlnACOSAjl dy
0
Ly
Aaa — T lsemiwing Scmmmg J‘c a¢ cos A
0

(3.6-9)

29


file:///n4ldy
file:///semiwing

Combining the previous matrices and rearranging for the corresponding degrees of

freedom, the equations of motion for the divergence problem turn out to be:

K,b. 0 |(g, _o. A, Aby || 9 (3.6-10)
0 Kaa qa Aath Aaa qa’
- T —_—
(K] {a) [4] {a}
Since the divergence phenomenon is a static problem, the solution of the system
can be found by rearranging expression 3.6-10:

. Kl1hb()2_QcoAhhb()2 Q. 4,,b, g, ={0}
_Q A bO Kazz _anAaa qa

o ah

~[K-q,4]{q} ={0} (3.6-11)

Again, the matrix [[K]-Q/A]] is function of the dynamic pressure (Qw). Solving the

problem, the lowest value gives the divergence dynamic pressure, and therefore the

speed at this condition.

3.7. Correction for Compressibility Effects: Theodorsen’s Curve

Due to the fact that the wing under study travels at speeds higher than M=0.3
(considered the limit where compressibility effect may be neglected) compressibility
corrections must be taken into account. In order to do so, a curve provided from
experimental analysis by the work done by Theodorsen (taken from [2]) is employed.

This experimental curve allows the correction by compressibility effects of a
particular flutter speed. Inputting a dimensionless parameter (called here x;) a factor is
obtained that relates the new corrected speed to the original one.

Table 3.7-1 and figure 3.7a illustrate Theodorsen’'s experiment data and his
correction factor curve, where k; represents the ratio of corrected to uncorrected speeds,

(Viorrected’V)- In the abscise axis the dimensionless parameter x; is defined as:
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k_f

where:
[ ]

X,

_ Crsoupn®@

KTAS

flutter

flutter

Whuer- flutter frequency [rad/s).

KTAS e flutter air speed [kts].

Crsub/2: Chord at 75% of semi-span [ff].

(3.7-1)

Table 3.7-1: Theodorsen’s experimental data.

X k_f X k f K¢ k_f Xs k_f
0.000 1.000f 0.60[ 1.260f 1.20] 1.340] 1.70] 1.370
0.20f 1.100[ 0.80 1.300 1.30] 1.350] 1.80] 1.375
0.30, 1.175( 0.90[ 1.310f 1.40[ 1.355 1.90] 1.380
0.40f 1.2100 1.000 1.320, 1.50 1.360] 2.00] 1.385
0.50] 1.240] 1.10] 1.330, 1.60] 1.365
Theodorsen's Curve for Compressibility Effects
140 i”' mys ’—li.—__‘_!”*'—"“—"‘—_]_A—"“‘F“AA — 1 1 1
e o e
1.35 P & it
S e s e AN S
+* 4
1.30
|
1.25 y =-4.084E-02x* + 2.585E-01x> - 6.232E-01x? + 7.336E-01x + 9.952E-01
' * R?=9.972E-01
1.20 + e 25 0 ¢ Theodersen
5 e o 1F: 1 2 o Curve
1.15 |
Poly.
(Theodersen '
110 —- e = Curve)
|
1.05 { B B
- )_ {L
1.00 1]
095 — iy ———
| |
g e e J j = ===
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Figure 3.7a- Theodorsen’s curve.

The Theodorsen’s curve is represented by a trend line that best fits the

experimental data; thus:

k/

4.084¢ x! +2.585¢ 'x' —6.232¢ 'x> +7.336¢ 'x, +9.952¢

(3.7-2)
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4. FREE VIBRATION ANALYSIS

The analysis of the system under free vibration provides the natural frequencies,
which are associated with a particular vibration mode of the structures. Of all these
vibration modes, and their corresponding natural frequencies, only two are of interest: the
fundamental natural frequency for bending (this is the lowest natural frequency associated
with the first bending mode), and the natural frequency for torsion (which is the lowest
value for natural frequencies associated with the first torsion mode). The reason these two
particular frequencies are so important is due to the facts that this particular flutter
problem is studied assuming only two uncoupled vibration modes: first bending mode.and
first torsion mode. When these two modes start coupling, the structure exhibits flutter
behavior, and at this point the harmonic oscillations the wing undergoes have no-
damping; therefore, any increase in the airspeed will lead to higher-amplitude oscillations
and, consequently, to catastrophic failure of the structure.

In order to compute the natural frequencies adequately, two different procedures
(programmed in Matlab by the author) are employed: Rayleigh-Ritz method and Finite

Element Method. Both of these techniques, are later validated by means of NASTRAN,

and compared to each other.

4.1. Rayleigh-Ritz Method (RRM) [10]

This method is an extension of the Rayleigh’s method (RM), and is based on the
principle of conservation of energy. The Rayleigh-Ritz method assumes a deflection mode

shape (@(y)), that’s satisfies all boundary conditions, which is a combination of several

functions multiplied by a constant (a,®(y)):

d(y)=ad(y)+ad,(y)+..+a,8,(») @4.1-1)
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The number of frequencies that can be obtained with this technique depends on
the number of independent functions combined for the deflection curve, and in general,
the main advantage of RRM with respect to RM is that not only the first natural frequency
can be obtained, but all the subsequent ones w;, w,... w,., with a better accuracy than its

predecessor.

The frequencies are found, as a function of the constants a;, a,... a,, after the

maximum kinetic energy (Ke.max) is equated with the maximum potential energy (Ve.max):

K =V (4.1-2)

e—max e—max

From this point, the condition that the frequency is a minimum results in:

R _

—=0 4.1-3
2a ( )

4.1.1. The Bending Problem (BF_RRM)

The functions that are selected must satisfy the boundary conditions of the
problem, in the case of a cantilever wing, the coordinate system lays on the elastic axis (y-

axis) and, since is a clamped beam, the boundary conditions are:

62
@y=0-10¢ _ @y=ly— o (4.1.1-1)
oy 5}:0

This indicates that at the root, the beam has neither deflection nor slope, and at
the free end, the beam is stress free and has no shear loading.

A deflection curve, based on two terms, that satisfies all boundary conditions is:
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-

$(») = (l—y—]
4 (4.1.1-2)

$(») = ad(») +ap(y) >
¢2(y>=1—cos[ ”y)

2,

The kinetic and potential energy for the beam under transverse motion is:

o 2
Kg—l Im(%) a
20 o
4 , , (4.1.1-3)
1 az¢]
V,== |El,| — | &
LA

If the beam is assumed to vibrate in harmonic motion, then the transvérse

displacement at EA (w(y,t)) can be expressed as:

[w(y,1) = §(y)sin ot (4.1.1-4)

Plugging this expression into 4.1.1-3, the maximum kinetic energy (Ke_.2x) and the

maximum potential energy (Ve.max) result:

(4.1.1-5)

Equating the maximum kinetic energy to the maximum potential energy, the

general expression for the natural frequencies is found to be:

lmj El (%?Jz dy

o = (4.1.1-6)

by
[mep*ay
[}

Rearranging the previous expression, a new function R is defined as:

X [; l
0

d2¢ ]2 2 Ieif[ — 2
dy—a° | mg-dy (4.1.1-7)
ay’ ;
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Now, if the condition on expression 4.1-3 is applied to expression 4.1.1-7, the

following system of equations results:
d’¢
El d a
aal{j [dy] a wjmqj y}
0 d¢
EI d d
aaz[j (dyj - WJW y}

Solution to this system of equations provides the first and second natural

(4.1.1-8)

frequencies for bending (since only a two term deflection curve was assumed originally).
From these two solutions, the minimum value represents the fundamental bencjing
frequency.

In order to reduce the amount of calculations, this method is included in the Matlab
code for this project under the name BF_RRM, and is used for the validation of the free

vibration model along with FEM and NASTRAN.

4.1.2. The Torsion Problem (TF_RRM)

Similarly as stated in the preceding sub-section, the torsion problem is also

approached with the Rayleigh-Ritz method; in this case, the boundary conditions are:

2
@y=0->¢=0 @y=lef,—>gy—?=0 (4.1.2-1)

This indicates that at the root, the beam has no rotation about the elastic axis, and
at the free end, the beam is stress free. Again, a two-term deflection curve that satisfies all

boundary conditions is:

4 =2

eff

#(y)= al¢|()’)+a2¢2(y) — 1
$,() = sm[ 2’7 )

(4.1.2-2)
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The kinetic and potential energy for the beam under transverse motion is:

(4.1.2-3)

The beam is assumed to vibrate in harmonic motion, then the rotational

displacement (&(y,t))can be expressed as:

16(3,1) = ¢(y)sin a |

(4.1.2-4)

Plugging this expression into 4.1.2-3, the maximum kinetic energy (Ke.max) and the

maximum potential energy (Ve_max) resuit:

14

e—max

17
_@ 7
e—max - 2 6[] A¢ dy

1fog)¢

(4.1.2-5)

Equating the maximum kinetic energy to the maximum potential energy, the

general expression for the natural frequencies is found to be:

)

fol ]

2 _0

T
IIEA¢2dy
0

(4.1.2-6)

Rearranging the previous expression, a new function R is defined as:

e

(4.1.2-7)

Once again the condition on expression 4.1-3 is applied to expression 4.1.2-7.

resulting:
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oa,

/ 2 /
a efl e/f_
j GJ[@] dy — o’ j Teag’dy | =0
0 dy 0

oa,

5 Ly 2 Ly
| GJ(@J dy-0’ [Ieg’dy |=0
0 dy 0

(4.1.2-8)

Solution to this system of equations provides the first and second natural
frequencies for torsion (only a two term deflection curve was assumed). From these two
solutions, the minimum value represents the fundamental torsion frequency.

Also in this case the method is included in the Matlab code under the name
TF_RRM, and is used for the validation of the free vibration model along with FEM and

NASTRAN.

4.2. Finite Element Method (FEM) [13]

The Finite Element Method (FEM)is a numerical technique to find approximate
solutions of partial differential equations (PDE) as well as of integral equations. For this
particular problem, the wing is modeled as a beam in which all the mechanical properties
are known and expressed as function of the semi-span coordinate y along the elastic axis.

The previous section treated the beam as a continuous function; in the FEM
approach the beam will be divided into several elements (each of them defined with two
nodes, one located at the beginning of the element and another one at the end) that,
combined with each other, will provide a matrix system of equations.

In order to find the solution for the system, the eigenvalue problem is solved, from
which the natural frequencies are obtained (there are as many solutions as degrees of
freedom has the system).

In general, the FEM solution gives very good accuracy when compared to RRM,

and it can be increased by adjusting the number of elements chosen. The main purpose
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to have a FEM model is that it gives the capability to modify the mechanical properties in

each element, providing the means that will allow the simulation of elastic foundations.

4.2.1. The Bending Problem (BF_FEM)

In FEM, the free vibration analysis of a beam undergoing transverse motion can be

represented with the following equation:

(Mg +[K)lg) =10} w2

Where [M] is the mass matrix, [K] is the stiffness matrix, and {q} is the vector of
generalized coordinates.

In order to gain accuracy, the entire beam will be divided into many small
elements; their mechanical, geometrical and mass properties are known since all these
parameters have already been defined for the entire wing in section 2. These properties
are then evaluated at each node, and their average values represent the properties in the
corresponding element.

Since the beam is divided into several elements, each of these elements will have
a total of four degrees of freedom (DOF), two at each node: a transverse displacement (w,

along z-axis) and a rotation (6, around x-axis):

w, - w
i EIxx,pA 2
N (/@9»2
______________________ 3
<D |
l'elm ‘
1 2

Figure 4.2.1a: Beam element for bending analysis with FEM.
The mass matrix of the beam element for bending analysis (from Galerkin's

method) is:
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156 22L, 54 -13L,,
2 2
[M ] = Peim Aelm Lelm 22Le/m 4L"1'" 13Lel'" —3Lelm (4.2.1-2)
elm 420 54 13L,,, 156 -22L,,
-13 Lelm —3Li1m "22Le1m 4Lilm
And the stiffness matrix for the element is:
12 6L,, -12 6L,,
2
[K] - Eelm],ur—elm 6Lelm 4L§Im _6Lelm 2Le/m (4.2.1-3)
el L:Zl/n - l 2 —6Lelm 1 2 _6Lelm
6L 212, —6L 41’

‘elm elm ‘elm elm

Assuming a harmonic solution for the equation of motion of the system (expression

4.2.1-1) of the form:

{q}={C}e” (4.2.1-4)
In the previous expression C is a vector containing constants for the corresponding

DOF'’s. Plugging this expression into 4.2.1-1, the system reduces to:

l[K]—a)2 [M]’ =0 (4.2.1-5)

Expression 4.2.1-5 represents the eigenvalue problem for the system; its solution
gives the natural frequencies for the beam undergoing transverse vibration. The minimum
value of these frequencies corresponds to the fundamental bending natural frequency.

In order to make a program accurate enough and reducing the amount of
calculations, this method is included in the Matlab code under the name BF_FEM, and is

used for the validation of the free vibration model along with RRM and NASTRAN.

4.2.2. The Torsion Problem (TF_FEM)

In this case the equation of motion for the rod undergoing rotational vibration is:

[1){6} +[K]{6} = {0} (4.2.2-1)
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Where [I] is the mass moment of inertia matrix, [K] is the stiffness matrix, and {6} is
the vector of generalized coordinates.
Once again, the rod is divided into several elements; each of these elements has a

total of two DOF, one per node: a rotation (&, around y-axis):

Figure 4.2.2a: Rod element for torsion analysis with FEM
The mass moment of inertia about EA matrix of the rod element for torsion
analysis (lumped method) is:
T, 1 0]
[1] - 154—(//71[“ I (4'22_2)
clm 2 I_O l _|

And the stiffness matrix for the element is:

Gt 1 —1]
[K]/=—_'L’ Ll : J (4.2.2-3)

Similarly as before, a harmonic solution is assumed:
10} =1{C}e™ (4.2.2-4)
C is a vector containing constants for the corresponding DOF's. Plugging this

expression into 4.2.2-1, the system reduces to:

[K]-@’[1]=0 (4.2.2-5)

The solution of expression 4.2.2-5 gives the natural frequencies for the rod
undergoing rotational vibration. The minimum value of these frequencies corresponds to
the fundamental torsion natural frequency.

This method is included in the Matlab code under the name TF_FEM, and is used

for the validation of the free vibration model along with RRM and NASTRAN.
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4.3. Validation of Free Vibration Model (RRM-FEM-NASTRAN)

The validation consists in the comparison of the two analytical methods described
before (RRM and FEM), with the addition of NASTRAN.

The result from RRM and FEM are obtained simultaneously in Matlab when the
program runs. In the case of the results shown below, the FEM model has been run with
100 elements.

The NASTRAN analysis is taken as the reference parameter, and is based on the
model created in CATIA; its geometry is then imported with NASTRAN and a normal
modes/eigenvalues analysis is run using the Aluminum 20204 T351 material properties
from NASTRAN's library.

All figures and direct program output from the Matlab code are shown in the
Appendix A, section A3.

The following table presents the values of this comparison, along with the

percentage of error in each case:

Table 4.3-1: Free vibration model validation

Fundamental Frequencies [Hz]
Method
RRM FEM NASTRAN
Case % error % error
Bending 0.76230| 1.79284 0.75734| 1.13011 0.74887
Torsion 19.26600] -0.17120| 19.04410| -1.32100{ 19.29904(*)
Ratio 25.27 25.15 2577

From this table, it can be seen that both methods, RRM and FEM, are very
accurate with overall error lower than 2%. Although the RRM results are more accurate
than the ones obtained from FEM, it cannot simulate the elastic foundation, and will not be

employed in the further analysis.

Note (*): although NASTRAN does not provide the natural frequency of torsion when it
performs the free vibration analysis, this value has been found to be the closest to the theoretical
calculations by RRM and FEM, and therefore is taken just as a reference (see Appendix A3).
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5. METHOD OF RESOLUTION

The flutter analysis is carried out completely in Matlab thanks to a code specially
designed for this purpose. The Matlab code has a main program which uses a series of
subroutines through the different stages of calculation. These details are given in the

following subsection.

5.1. Program Flow and Subroutines

As mentioned before, the code uses a main program that calls different
subroutines to analyze the problem. These different subroutines are listed below:

Flutter Analysis FEM EF: this is the main program, contains the principal

loops, and calls the other subroutines, plots and displays all the results in the Matlab
Command Window. For a given problem, this is the only program that has to be run.

Data_Input: this is the first subroutine called by the main program; it contains
the information of the wing (mechanical, geometrical and mass properties) and
converts the atmospheric parameters used later by the other subroutines.

BF FEM EF: this program computes the fundamental natural frequency of
vibration in bending with the elastic effects taken into account.

TF_FEM EF: this program computes the fundamental natural frequency of
vibration in torsion with the elastic effects taken into account.

Flutter Subroutine: this subroutine computes the vibration frequencies of the
structures and the corresponding air speed of the excitation, that are used later to
calculate the flutter speed and frequency.

Divergence Subroutine: this subroutine computes the divergence speed of

the wing that is employed later to calculate the limit speed of flight.
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Flutter_Analysis_FEM_EF

Data_Input

BF_FEM_EF TF_FEM_EF
\ FIa i

[ B |

|
Divergence_Subroutine | Flutter_Subroutine ‘

i1

i

{ Results i
-\-"‘-\-\__ _/_,_/- .

Figure 5.1a: Information flow within the Matlab code.
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6. PROGRAM VALIDATION: THE GOLAND’S WING

The Goland’s wing [3] is a very widely used case of study, because it provides an
excellent tool to validate results. It consists of a rectangular-straight-cantilever wing,
perfectly clamped at one end, and free in the opposite. The aerodynamic shape of this
particular wing is considered to be an ideal thin airfoil. The flight speed is 400mph
(~178m/s) and flight altitude is sea level (SL) under ISA (International Standard
Atmosphere) conditions.

The Goland’s wing is used to show that the results obtained from the Matlab code
are consistent with the ones coming from another different theory, which proves right the

use of this simplified approach.

6.1. Data Input File

In Appendix A1 there is an example of the Data Input file from the Matlab code
(the units of the parameters used originally by Goland have been converted into SI

system, for more details refer to [3]).
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6.2. Validation

Running the program for the previous data input file, the results are the following:

S Program Outpute------=-----mcsssrrsmommmon oo
Uncoupled Bending Frequency: Omega_h = 8.05324 Hz
Uncoupled Torsion Frequency: Omega_a = 13.8465 Hz

Current Flight Altitude: H=0m

Flutter QUIpUL-======s=-=====s=m=mmcnesmcnceorno oo
Flutter@ Q=17590.1 Pa
Flutter@ V = 169.465 m/s
Flutter @ Mach = 0.498046

Flutter Frequency: Omega_fl = 11.2442 Hz

From this data the plots have been omitted since all the important information is

already provided above. When compared to the values from [3] the result is the following:

Table 6.2-1: Code validation with the Goland’s wing

Method
Code Goland | % error
Parameter
V-flutter [m/s] 169.5 174.7 -2.96)
Omega-flutter [Hz] 11.24 10.53 6.74

From table 6.2-1, it can be seen that the accuracy of the method used in the code
gives a reasonable approximation to the data obtained by Goland (his results are not

corrected by compressibility effects).
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7. ELASTIC FOUNDATION MODEL

The following sub-sections deal with the contribution of the set of torsion springs at

the root location of the wing’s elastic axis and their effects on the FEM model.

7.1. Contribution Using FEM (FEM_EF)

As mentioned in the introduction, the elastic foundation will be simulated by adding
a combination of torsion springs to some particular DOF’s in the FEM model. These
particular DOF’s are: rotation or slope for bending at root (at the first node of the first
beam element), and rotation for torsion at root (at the first node of the first rod element).

The contribution of these two torsion springs allows to simulate the elasticity that a
real wing would have when mounted to the aircraft fuselage. Their stiffness values are
variable, and are expressed as a percentage of the critical stiffness that simulates a
perfect clamping condition (when these values are set to be 100%, they represent the

perfect clamping condition).

7.1.1. The Bending Problem (BF_FEM_EF)

As stated on section 4.2.1, the free vibration analysis with FEM of a beam

undergoing transverse motion can be represented with the following equation:

[M]{g}+[Klap={0}] @)

Where [M] is the mass matrix, [K] is the stiffness matrix, and {q} is the vector of

generalized coordinates.
The beam is divided into several elements; each of these elements has a total of

four DOF'’s as detailed in section 4.2.1.
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The contribution of the torsion spring is added to the boundary conditions of first

element, which now has a rotation (6, around x-axis), controlled by the torsion spring (Ks

[N*m]) at the first node:
w - w
13 Elxx , pA '
(2}
7 2
I'elm ‘
1 2

Figure 7.1.1a: First beam element and its elastic contribution.
The mass matrix of all the beam elements is exactly the same as the one shown in
expression 4.2.1-2.
The stiffness matrix, however, is different for the first element since it has the

contribution of the spring in the rotation of the first node (the second DOF out of four in the

element), thus:

12 61, ~12 6L,
(K] - El., | 6L 4L+K, —6L 2L 7412
R | -12 6L, 12 -6L,
6L, 2L 6L, 4L

In the previous expression the suffix indicates that this is only for the first element,

3
K, :M{ (7.1.1-3)
EII\\-I ‘

The stiffness matrix for the rest of the beam elements remains exactly the same as

and the term I?B represents:

in expression 4.2.1-3.

Once again, the harmonic solution is assumed; therefore, the system reduces to:

ML—‘U: [Mllio‘ (7.1.14)
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Solving the eigenvalue problem the natural frequencies of bending vibration are
obtained. The minimum value of these frequencies corresponds to the fundamental
natural bending frequency.

As before, this method is included in the Matlab code under the name
BF_FEM_EF, and is used for the validation of the free vibration model along with

TF_FEM_EF and NASTRAN.

7.1.2. The Torsion Problem (TF_FEM_EF)

From section 4.2.2, the free vibration analysis with FEM of a rod undergoing

torsion motion can be represented with the following equation:

‘[]]{6’} +[K]{6) =m (7.1.24)

Where [I] is the mass moment of inertia matrix, [K] is the stiffness matrix, and {6} is

the vector of generalized coordinates.

The beam is once again divided into several elements; each of these elements has
a total of two DOF’s as detailed in section 5.2.2.

The contribution of the torsion spring is added to the boundary conditions of first

element, which now has a rotation (6, around y-axis), controlled by the torsion spring (Kr

[N*m]) at the first node:
GJ, Iga o,
KT[@ ----------------- I—B—o i
| L
elm
1 2

Figure 7.1.2a: First rod element and its elastic contribution.
The mass moment of inertia about EA matrix of all the beam elements is exactly

the same as the one shown in expression 4.2.2-2.
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The stiffness matrix, however, is different for the first element since it has the

contribution of the spring in the rotation of the first node (the first DOF out of two in the

element), thus:
K], zﬁ{“KT _11} (7.1.2-2)

In the previous expression the suffix indicates that this is only for the first element,

and the term IZ’T represents:

ET — KTLI
GlJl

(7.1.2-3)

The stiffness matrix for the rest of the beam elements remains exactly the same as

in expression 4.2.2-3.

Once again, the harmonic solution is assumed; therefore, the system reduces to:

[K]-@*[1]=0 (7.1.2-4)

Solving the eigenvalue problem the natural frequencies of torsion vibration are
obtained. The minimum value of these frequencies corresponds to the fundamental
natural torsion frequency.

As before, this method is included in the Matlab code under the name
TF_FEM_EF, and is used for the validation of the free vibration model along with

BF_FEM_EF and NASTRAN.

7.2. Validation of the Model (FEM_EF & FEM)

The validation consists in the comparison of the two FEM models with elastic
foundation using spring values that simulate a perfect clamp, and the FEM model perfectly

clamped. The preset values simulating the ideal clamp condition at the root are:
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K, =2.926e"[Nm/rad]
K, =3.485¢"[Nm/ rad]

(7.2-1)

The following table presents the values of this comparison; along with the

percentage of error in each case (FEM model with 100 elements):

Table 7.2-1: Elastic foundation validation

Fundamental Frequencies [Hz]
Methad FEM_EF FEM
Case K % error
Bending 0.75734| 0.00000 0.75734
Torsion 18.97570{ 0.00000 18.97570
Ratio 25.06 25.06

From table 7.2-1 it can be seen that the values for the spring constants are large
since they have been applied to a single point along the root (elastic axis), idealizing the
flexibility of the complete structure that would support the wing in a real aircraft.

A slight modification in the expression 7.2-1 gives:

K, =1.812e”[Nm/ rad]

1 (7.2-2)
K, =1.700e" [Nm/ rad]

This change on the springs produces a small error on the simulation of the clamp:

Table 7.2-2: Modified elastic foundation validation

Fundamental Frequencies [Hz]
Method
FEM_EF FEM
Case % error
Bending 0.75444| -0.38292 0.75734
Torsion 18.97230| -0.37702| 19.04410
Ratio 2515 25.15

These new values are smaller than the ones in expression 7.2-1, but their
contribution to the fundamental frequencies is almost negligible; therefore, they will be

used from now on in the simulation of the ideal clamp.

50



8. RESULTS

Different cases where analyzed in order to compute the effects of the main

parameters involved: the torsion spring constants and the flight altitude. These cases are

detailed as follows:

e Case |: the effects of the elasticity in torsion are studied.

o Case Il: the effects of the elasticity in bending are studied.

e Case lIl: the effects of the flight altitude are studied.

8.1. Case I: Effects of Elastic Foundation in Torsion

In this case the bending mode is analyzed as clamped, whereas the torsion mode
has the possibility to change its spring elastic constant at root, for cruise flight altitude.
The variation of the elasticity depends on an input vector that changes the ratio of the
preset torsion spring of the ideal clamp condition:

K, =Ry 1.700e"*[Nm / rad] (8.1-1)

The vector or elastic ratio is:

Ry =|:2e‘4 3¢ 4e* Se™ 6e'4] (8.1-2)

The results are shown in Appendix A2 in order of appearance according to the

elastic ratio vector.
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Frequency vs KTAS @ Cument FL
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Figure 8.1d: Frequency vs. Mach number.
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8.2. Case Il Effects of Elastic Foundation in Bending

In this case the torsion mode is analyzed with the highest elasticity ratio that

produced flutter in Case I:

R, =6¢* (8.2-1)

B

The bending mode has the possibility to change its spring elastic constant at root,
for cruise flight altitude. The variation of the elasticity depends on an input vector that
changes the ratio of the preset bending spring of the ideal clamp condition:

K, =R 1.812¢*[Nm/rad] (8.2-2)

The vector or elastic ratio is:

R, =[1e-9 le” le® le? le"] (8.2-3)

The results are shown in Appendix A2 in order of appearance according to the

elastic ratio vector.
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8.3. Case lI: Effects of Flight Altitude

In this case the torsion mode is analyzed with the highest elasticity ratio that

produced flutter in Case I:

R, =6e™ (8.3-1)

T

The bending mode is considered to have an elasticity ratio to clamp condition

equal to one (highest value from Case |l):

RK,, =1 (8.3-2)

Since the effects of flight altitude want to be studied, the input this time will bg an

altitude vector, expressed as:

H,=[0 2500 5000 7500 10000](] (8.3-3)

The results are shown in Appendix A2 in order of appearance according to the

altitude vector.
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9. ANALYSIS

The analysis of the results is discussed for each of the cases described previously.

9.1. Case I: Effects of Elastic Foundation in Torsion

The results obtained from Matlab are summarized in the following table:

Table 9.1-1: Case | results

CASE |
Torsion Elasticity Ratio |
AT 2.00E-04 | 3.00E-04 | 4.00E-04 | 5.00E-04 | 6.00E-04 |
Bending Frequency [Hz] 0.7544] 0.7544] 0.7544] 0.7544] 0.7544
Torsion Frequency [Hz] 1.5917|  1.9475] 22465 25092 2.7459
Frequency Ratio (Torsion/Bending) 2.11 2.58 2.98 3.33 3.64
Flutter Frequency [Hz] 1.0231]  1.1135 1.1863] 1.2494] 1.3062
Flutter Dynamic Pressure-Corr [Pa] 3273.7|  5790.7| 8409.0{ 11068.6] 13746.5
Flutter Speed-Corr [m/s] 126.0 1675 201.9 231.6 258.1
Flutter Mach-Corr 0.4207| 0.5595 0.6742 0.7735| 0.8620
Reduced Flutter Frequency-Corr 0.0434) 0.0355 0.0314  0.0288  0.0270
Divergence Dynamic Pressure [Pa] 9440.9] 13821.7| 18029.0| 22089.5 26023.4
Divergence Speed [m/s] 213.9 258.8 295.6 327.2 355.1
Divergence Mach 0.7144 0.8643] 09872 1.0927, 1.1860

From table 9.1-1, the suffix “corr” means that the current value has been already
corrected for compressibility effects by Theodorsen'’s curve.

In order to interpret these results properly, plots of the most important parameters
(such as: torsion frequency and flutter frequency, flutter dynamic pressure, flutter Mach,

etc.) are provided to observe their variation with the elastic foundation:
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Flutter and Torsion Frequencies vs. Root Elasticity
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Figure 9.1b: Effect on flutter and divergence dynamic pressure.
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It can be seen from figure 9.1a, that both the flutter frequency and the natural
torsion frequency increase when the elasticity ratio for torsion increases. This make
sense, provided that a high enough value for the elasticity ratio would produce a perfect
clamp condition, in which case this wing in particular does not experience fiutter at all.

The following three figures, 9.1b, ¢ and d, are related since they all represent
either speed (true air speed, TAS) or functions depending on this parameter (such as
dynamic pressure or Mach number). From there the curves for divergence and flutter are
given, both varying increasingly with the elasticity ratio. Again, the same reason applies
here since any increase in the elasticity ratio will carry an increase in the root flexibility,
and therefore the flutter envelopes displaces to higher levels of speed. This fact is clearly
seen on figures 8.1a to d, in the resuits section.

Figure 9.1e shows the reduced flutter frequency (also refer as Strouhal number in

[9]), a dimensionless parameters that relates the flutter frequency, the MGC and the flutter
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speed. The benefit of this parameter is that flutter speed and frequency can be analyzed
at the same time. The reason it decays in that fashion is due to the fact that although the
flutter frequency increases, the flutter speed also does it, but faster.

It can be concluded that the contribution of the elasticity in the foundation for
torsion vibration is extremely important; when flutter occurs, any change in this value will
automatically change drastically the flutter envelope, as seen on figures 8.1a to d, and this
means that a wing could be flutter free if the elasticity in the torsion at the root is strong

enough.
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9.2. Case ll: Effects of Elastic Foundation in Bending

The results obtained from Matlab are summarized in the following table:

Table 9.2-1: Case |l results
CASE I

Bending Elasticity Ratio

1.00E-09 | 1.00E-07 | 1.00E-05 | 1.00E-03 | 1.00E+00

Parameter
Bending Frequency [Hz] 0.0147| 0.1443] 06771 0.7544] 0.7544
Torsion Frequency [Hz] (R_KT=6e-4) 2.7459] 27459 2.7459] 27459 2.7459
Frequency Ratio (Torsion/Bending) 187.17] 19.03 4.06| 3.64 3.64
Flutter Frequency [Hz] 2 4 1.2390 1.3062 1.3062

Flutter Dynamic Pressure-Corr [Pa] 14280.5| 13746.6| 13746.5

: - 263.1 258.1 258.1

Flutter Mach-Corr - { 0.8786 0.8620 0.8620
Reduced Flutter Frequency-Corr J 4 0.02520 0.0270 0.0270

Flutter Speed-Corr [m/s]

Divergence Dynamic Pressure [Pa] | 148603 17009.2| 25463.0] 260234 26023.4
Divergence Speed [m/s] 268.4 287.1 351.3 355.1 355.1
Divergence Mach 0.8962| 0.9588 1.1732] 1.1860] 1.1860

Notice that for the first two values of bending elasticity ratio, the wing does not
experience flutter at all.

In order to better interpret these results, plots of the most important parameters
(such as: bending frequency, flutter frequency, flutter dynamic pressure, flutter Mach, etc.)

are provided to observe their variation with the elastic foundation:
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Figure 9.2b: Effect on flutter and divergence dynamic pressure.
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Figure 9.2c: Effect on flutter and divergence speed.

Flutter and Divergence Mach Number vs. Root Elasticity
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Figure 9.2d: Effect on flutter and divergence Mach number.
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N Reduced Flutter Frequency vs. Root Elasticity
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Figure 9.2¢: Effect on flutter reduced frequency.

It can be seen from figure 9.2a, that both the flutter frequency and the natural
torsion frequency have the same tendency: first they increase when the elasticity ratio for
torsion increases at very low ranges, and then remain steady from that point until reaching
the unity. This behavior is due to the fact that in order to make significant changes in the
fundamental bending frequency, the values of elasticity ratios have to be important, and
this means reducing the spring constant almost to a point where the wing changes the
root's boundary condition from a clamp to a hinged support. In a case like this, the wing is
flutter free, since the very low frequencies of vibration in bending are not important
enough to couple the torsion mode to produce the flutter critical point.

The three following three figures, 9.2b, c and d, are related too (they represent true
air speed, dynamic pressure and Mach number); there the curves for divergence and
flutter are shown, both presenting the same phenomenon explained above when the

elastic ratios change. The same happens to the reduced flutter frequency.
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Overall, any increase in the elasticity ratio (this is making the connection stiffer) will
carry an increase in the root flexibility, but the flutter envelopes are displaced only slightly
to higher levels of speed, if not producing no flutter at all (because of the weakness of the
bending mode). This fact is clearly seen on figures 8.1a to d, in the results section.

It can be concluded that the changes in the bending elasticity ratios are not as

important as the torsion ratios are when the flutter occurs.
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9.3. Case lll: The Effects of Flight Altitude

The results obtained from Matlab are summarized in the following table:

Table 9.3-1: Case lll results

CASE Il
Gilapt Mitude i) 0 2500 | 5000 | 7500 | 10000
Parameter

Bending Frequency [Hz] (R_KB=1) 0.7544| 0.7544] 0.7544] 0.7544] 0.7544
Torsion Frequency [Hz] (R_KT=6e-4) 2.7459| 2.7459| 2.7459| 27459 2.7459
Frequency Ratio (Torsion/Bending) 3.64 3.64 3.64 3.64 3.64
Flutter Frequency [Hz] 1.3050] 1.3063| 1.3056] 1.3056 1.3062
Flutter Dynamic Pressure-Corr [Pa] 14641.9| 14377.3] 14170.6] 13958.1] 13746.5
Flutter Speed-Corr [m/s] 1546 1734 1962 2240 2581
Flutter Mach-Corr 0.4544] 0.5245| 0.6122| 0.7221] 0.8620
Reduced Flutter Frequency-Corr 0.0451] 0.0402 0.0355 0.0311] 0.0270)
ami 26023.4] 26023.4| 26023.4] 26023.4] 26023.4
206.1] 2332 2659 3058/  355.1

0.6058| 0.7056| 0.8297| 0.9860] 1.1860

In order to better interpret these results, plots of the most important parameters

(such as: flutter frequency, flutter dynamic pressure, flutter Mach, etc.) are

observe their variation with the flight altitude:

provided to
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Flutter Frequency vs. Flight Altitude
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Figure 9.3a: Effect on flutter frequency.

Flutter and Divergence Dynamic Pressure vs. Flight Altitude
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Figure 9.3b: Effect on flutter and divergence dynamic pressure.
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Flutter and Divergence Speed vs. Flight Altitude
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Figure 9.3c: Effect on flutter and divergence speed.
Flutter and Divergence Mach Number vs. Flight Altitude
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Figure 9.3d: Effect on flutter and divergence Mach number.

72



0050 Reduced Flutter Frequency vs. Flight Altitude
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Figure 9.3e: Effect on flutter reduced frequency.

From figure 9.3a it can be seen that the flutter frequency has a linear tendency, at
a constant value around 7.305Hz. Figure 9.3b shows a constant behavior of the
divergence dynamic pressure, and a linearly decaying tendency for the flutter dynamic
pressure. Figures 9.3c and d show that the speed and Mach number increase when flight
altitude increases, which is consistent with what was observed from figure 9.3b, for an
almost linear variation of the flutter dynamic pressure, the rise in altitude will carry a rise in
the associated flutter speeds because the air density changes faster than the dynamic
pressure with the altitude. Figure 9.3e shows the reduced flutter frequency, and its linear
decay can be explained as it was in the figure 9.1e from Case |. Overall it is observed that
the increment in the flight altitude increases the flutter critical speed, therefore, giving a

larger flutter free zone at higher altitudes.
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10. CONCLUSIONS

Throughout this work there are many details observed and many lessons learned.
It is clear now that the flutter phenomenon is not trivial at all, and even when using a
simplified approach, the complexity in the procedure and the processing of results might
be tedious.

The very first obstacle found was the lack of examples to solve completely a flutter
problem, even for a typical wing configuration such as a straight rectangular wing. This
was a complete disadvantage, since almost 90% of the papers and books deal with this
problem and less than 5% percent have the procedures complete. The other drawb;\ck is
that many references did not validate results for their models.

Either way, the formulation of such a difficult problem started with a theory using
Lagrangian formulations ([1] and [2]) and an old paper (Goland’s wing [3]).

It was clear since the very beginning that the results obtained from this problem
would be difficult to validate, and the idea of a wind tunnel model came to picture.
However, as it was found out later, the wind tunnel model construction proved to be really
difficult, and its completion to validate this model was out of the reach of this work.
Without this, the theoretical approach employed to study the effects of elastic foundations
in the flutter behavior a high-aspect ratio wing with varying properties along the semi-span
will remain unconcluded until a wind tunnel model can be properly designed and tested.

The selection of the type of wing to be studied came with the idea to contribute
with new data to what has been done so far in the subject, as mentioned previously, most
of the examples deal with rectangular straight wings; therefore the choose of a very high-
aspect ratio wing with non-constant properties along the semi-span, made out of metal

with a particular set of torsion springs at the root would give a valuable piece of

information to be considered in future studies.
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The use of CATIA, NASTRAN, and Matlab helped to accomplish the goals of this
thesis. The wing was first designed in CATIA based on the wing of the Northrop-Grumman
RQ-4 Block 20 “Global Hawk” this geometric model was imported from NASTRAN and
the cross-section properties were obtained for a determined number of span-wise
stations. This information was later introduced in Excel tables where all the cross-section
properties (mass and mechanical) were plotted and obtained them as functions of the
span-wise coordinate (y-axis), as shown in section 3.

Later the free vibration analysis was carried out in NASTRAN to compute natural
frequencies and validate the theoretical models: Rayleigh-Ritz Method (RRM) and Finite
Element Method (FEM). As it was proven in section 4.3, where the overall errors were
less than 2%, validating the theoretical methods.

At this point, a Matlab code able to calculate the flutter envelope of a clamped
wing was ready to be used, therefore validation was necessary. To do so, the Goland’s
wing [3] was employed by simply changing some data input parameters in the Matlab
code; after validation (section 7.2) the error for flutter frequency was less than 7% and
less than 3% in the case of flutter speed, demonstrating the accuracy of the code.

Further modifications were made to the code in order to simulate the elasticity in
the foundation. The contribution of a pair of torsion springs was added to the FEM models
(section 7.1), and their results were once again validated using values to replicate those
from an ideal clamp condition (section 7.2), resulting in errors less than 0.4%.

With the Matlab code ready, the analysis was conducted in different steps, to
properly account the effects of each of the main parameters to be studied (characterized
as cases in section 8). Particularly in Case | the values of the elasticity ratio had to be
manipulated in such a way that, for a perfect clamp in the bending mode, would produce
flutter (the wing analyzed as perfectly clamped is flutter free). In each case, the elapsed

time was about 300 seconds.
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After analyzing all the cases, it was observed that the contribution of the torsion
mode elasticity is extremely remarkable on the flutter behavior, and even of greater
importance than the bending mode elasticity, as it was pointed out in sections 9.1 and 2.
Also, the effect of the flight altitude on the flutter limit speed has been proven to be
beneficiary, since the increase in the altitude enlarges the flutter free zone (section 9.3).

The work done so far with this project allows the study of basic structural
parameters such as the elastic foundation in the dynamic behavior of a wing, but is not
limited to it. Besides the elastic foundation or flight altitude, the effect of aspect ratio can
also be studied, or the sweep back angle, etc.

The author of this work has some recommendations for future research project:
the improvement of the post-processing tools or development of new ones to be coupled
to the Matlab code; the improvement of the aerodynamic loading by using in a first stage
Lifting Line Method, and later Vortex Lattice Method; improvement of the FEM model;
development of a non-stationary model, etc.

Also, it is highly recommended that future students or researchers continue with
this line of work and validate the theoretical model with experimental data obtained from
wind tunnel testing. That contribution would add the project a very respectable basis to be

taken into account as a proper tool to study the elasticity effects on the flutter behavior.
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A1. DATA INPUT FILE SAMPLE

ok W ok ok ok kA ko . ok R Ak ok E A R R R T I T U SR S S
“““““““““““““““““ -DATA INFPUT- - e e e A ek T
AW Wk ok od ko ok kR ok ok kR *ohkohok koA ko kR Rk ok g S O T S T S TR I R U S T R R B kb

. .MATERIAL.....

E =7.385el0; Al 2024 T-351 Young's Modulus [Pa].
G =2.870el0; Al 2024 T-351 Shear Modulus [Pal.
Rho=2.765e3; Al 2024 T-351 Material's it

L =6.296; Seml-span, cantilever wing's length [m].

cr=1.829; Eoot's cord
ct=1.829; Eoot's cord [m].

Sweep_ac=0.00; AC Sweep back

c= 1.829; Thord distrcibution, [m].
b= 3.109%e-1; Distance from ©G to EA, b= (Xcg-Xe I
1.463e-1; Distance from EA to AT, a=(Xea-Xac) [m].

EIxx= 1.132e9; Flewural rigidity akout x-axis, EIxmx(y) [Pa].

GJ= 1.144e8; Tor=sional rigidaty, GI(y) [Fal.

m= 35.7169; Mass/unit length, m(y) [ka’/m].

s= 6.525; Jnkbalance mass/unit length, s(y) [Kg].

Iea= 8.643; Mazs moment of 1nertla about EA/unit length, Iea [Fo'mj.

CL_airfoil=2*pi; Airtorl li1ft coefficient slops

CL_a=pi*(AR/(1+sqrt(l+(pi*AR/(CL_airfoil*cos(Delta_ac)))A2))); Wing's
li1ft coefficlent.



A2. STUDY CASES PROGRAM OUTPUT

Case I: Effects of Elastic Foundation in Torsion

Program Output
Uncoupled Bending Frequency: Omega_h = 0.754437 Hz
Uncoupled Torsion Frequency: Omega_a = 1.59171 Hz
Fundamental Frequencies Ratio: Ratio = 0.473979

Current Flight Altitude: H=10000 m

Divergence Output
Divergence @ Q =9440.86 Pa

Divergence @ V =213.901 m/s

Divergence @ V =770.043 Km/h

Divergence @ KTAS = 416.24

Divergence @ Mach = 0.714353

Flutter Output
Flutter @ Q= 2833.74 Pa

Flutter@ V=117.189 m/s

Flutter @ V =421.88 Km/h

Flutter @ KTAS = 228.043

Flutter @ Mach = 0.391369

Flutter Frequency: Omega_fl = 1.02306 Hz
Reduced Flutter Frequency (Strouhal): Str = 0.0466245

Data Corrected for Compressibility Effects by Theodorsen

Theodorsen X-factor (Equivalent Strouhal): X _f=0.119613
Theodorsen Compressibility Correction Factor: K_f = 1.07482
Corrected Flutter Speed is: V_fl_corr = 125.958 m/s

Corrected Flutter Speed is: V_fl_corr = 4563.448 Km/h

Corrected Flutter Speed is: KTAS_corr = 245.107

Corrected Flutter Speed is:  M_corr = 0.420653

Corrected Flutter Dynamic Pressure is: Q_corr = 3273.67 Pa

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.0433787

e dede g A g e A e e ok de Aok e e ek e o e sk o A e ok A ek e ke ek e e ek ke ok ek ke %% ok ks



Program Output
Uncoupled Bending Frequency: Omega_h = 0.754437 Hz
Uncoupled Torsion Frequency: Omega_a = 1.94748 Hz
Fundamental Frequencies Ratio: Ratio = 0.38739

Current Flight Altitude: H=10000 m

Divergence Output
Divergence @ Q= 13821.7 Pa

Divergence @ V =258.814 m/s

Divergence @ V =931.729 Km/h

Divergence @ KTAS = 503.637

Divergence @ Mach = 0.864345

Flutter Output

Flutter@ Q=5146.18 Pa

Flutter @ V =157.924 m/s

Flutter @ V =568.528 Km/h

Flutter @ KTAS = 307.312

Flutter @ Mach = 0.527411

Flutter Frequency: Omega_fl = 1.11351 Hz

Reduced Flutter Frequency (Strouhal): Str = 0.0376567

Data Corrected for Compressibility Effects by Theodorsen
Theodorsen X-factor (Equivalent Strouhal): X_f = 0.0966068

Theodorsen Compressibility Correction Factor: K_f = 1.06077

Corrected Flutter Speed is: V_fl_corr = 167.522 m/s

Corrected Flutter Speed is: V_fl_corr = 603.08 Km/h

Corrected Flutter Speed is: KTAS_corr = 325.989

Corrected Flutter Speed is: M_corr = 0.559464

Corrected Flutter Dynamic Pressure is: Q_corr=5790.7 Pa

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.0354993
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Program Output
Uncoupled Bending Frequency: Omega_h = 0.754437 Hz
Uncoupled Torsion Frequency: Omega_a = 2.24651 Hz
Fundamental Frequencies Ratio: Ratio = 0.335826

Current Flight Altitude: H = 10000 m

Divergence Output
Divergence @ Q= 18029 Pa

Divergence @ V =295.592 m/s

Divergence @ V = 1064.13 Km/h

Divergence @ KTAS = 575.207

Divergence @ Mach = 0.987172

Flutter Output
Flutter@ Q=7578.92 Pa

Flutter@ V =191.651m/s

Flutter @ V =689.943 Km/h

Flutter @ KTAS = 372.942

Flutter @ Mach = 0.640045

Flutter Frequency: Omega_fl = 1.18625 Hz

Reduced Flutter Frequency (Strouhal): Str = 0.0330571

Data Corrected for Compressibility Effects by Theodorsen
Theodorsen X-factor (Equivalent Strouhal): X_f = 0.0848066

Theodorsen Compressibility Correction Factor: K_f = 1.05334

Corrected Flutter Speed is: V_fl_corr = 201.874 m/s

Corrected Flutter Speed is: V_fl_corr = 726.746 Km/h

Corrected Flutter Speed is: KTAS_corr = 392.835

Corrected Flutter Speed is: M_corr = 0.674186

Corrected Flutter Dynamic Pressure is: Q_corr = 8409.04 Pa

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.0313831
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Program Output
Uncoupled Bending Frequency: Omega_h = 0.754437 Hz
Uncoupled Torsion Frequency: Omega_a = 2.50916 Hz
Fundamental Frequencies Ratio: Ratio = 0.300673

Current Flight Altitude: H = 10000 m

Divergence Output
Divergence @ Q =22089.5 Pa

Divergence @ V =327.19 m/s

Divergence @ V = 1177.88 Km/h

Divergence @ KTAS = 636.694

Divergence @ Mach = 1.0927

Flutter Output:
Flutter @ Q= 10065.1 Pa

Flutter@ V =220.86 m/s

Flutter @ V =795.095 Km/h

Flutter @ KTAS = 429.781

Flutter @ Mach = 0.737592

Flutter Frequency: Omega_fl = 1.24935 Hz

Reduced Flutter Frequency (Strouhal): Str = 0.0302112

Data Corrected for Compressibility Effects by Theodorsen
Theodorsen X-factor (Equivalent Strouhal): X_f = 0.0775055

Theodorsen Compressibility Correction Factor: K_f = 1.04867

Corrected Flutter Speed is: V_fl_corr = 231.608 m/s

Corrected Flutter Speed is: V_fl_corr = 833.789 Km/h

Corrected Flutter Speed is: KTAS_corr = 450.697

Corrected Flutter Speed is: M_corr = 0.773488

Corrected Flutter Dynamic Pressure is: Q_corr=11068.6 Pa

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.0288091
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Program Output
Uncoupled Bending Frequency: Omega_h = 0.754437 Hz
Uncoupled Torsion Frequency: Omega_a = 2.74589 Hz
Fundamental Frequencies Ratio: Ratio = 0.274751

Current Flight Altitude: H = 10000 m

Divergence Output
Divergence @ Q = 26023.4 Pa

Divergence @ V =355.131 m/s

Divergence @ V = 1278.47 Km/h

Divergence @ KTAS = 691.066

Divergence @ Mach = 1.18601

Flutter Output

Flutter@ Q= 12578.1 Pa

Flutter @ V =246.896 m/s

Flutter @ V = 888.825 Km/h

Flutter @ KTAS = 480.446

Flutter @ Mach = 0.824544

Flutter Frequency: Omega_fl = 1.30618 Hz

Reduced Flutter Frequency (Strouhal): Str = 0.0282544

Data Corrected for Compressibility Effects by Theodorsen
Theodorsen X-factor (Equivalent Strouhal): X_f=0.0724856

Theodorsen Compressibility Correction Factor: K_f = 1.04542

Corrected Flutter Speed is: V_fl_corr = 258.109 m/s

Corrected Flutter Speed is: V_fl_corr = 929.192 Km/h

Corrected Flutter Speed is: KTAS_corr = 502.266

Corrected Flutter Speed is: M_corr = 0.861991

Corrected Flutter Dynamic Pressure is: Q_corr = 13746.5 Pa

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.027027

xxxxxxxxxxx
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Case lI: Effects of Elastic Foundation in Bending

Program Output
Uncoupled Bending Frequency: Omega_h = 0.0146704 Hz
Uncoupled Torsion Frequency: Omega_a = 2.74589 Hz
Fundamental Frequencies Ratio: Ratio = 0.00534269

Current Flight Altitude: H = 10000 m

Divergence Output
Divergence @ Q = 14860.3 Pa

Divergence @ V =268.361 m/s

Divergence @ V =966.101 Km/h

Divergence @ KTAS = 522.217

Divergence @ Mach = 0.896231

Program Output
Uncoupled Bending Frequency: Omega_h = 0.144289 Hz
Uncoupled Torsion Frequency: Omega_a = 2.74589 Hz
Fundamental Frequencies Ratio: Ratio = 0.0525472

Current Flight Altitude: H = 10000 m

Divergence Output
Divergence @ Q= 17009.2 Pa

Divergence @ V =287.11m/s

Divergence @ V = 1033.6 Km/h

Divergence @ KTAS = 558.7

Divergence @ Mach = 0.958844

e e e e e e e s e e e e e e e e e e e e ok e ok ok e ok e ke ke e ke ok o ke ke e ok o ok ek e ke e ke o o ok ke e e e ok e e e ok o e ok e o e e o e e e o sk e ok e e e ol e e e e e e e ke e e ke e e e e ke ok ok o o ok ok ok ok e e ke

Note: the previous two sub-cases did not experience flutter.



Program Output
Uncoupled Bending Frequency: Omega_h = 0.677056 Hz
Uncoupled Torsion Frequency: Omega_a = 2.74589 Hz
Fundamental Frequencies Ratio: Ratio = 0.246571

Current Flight Altitude: H=10000 m

Divergence Output
Divergence @ Q = 25463 Pa

Divergence @ V =351.287 m/s

Divergence @ V = 1264.63 Km/h

Divergence @ KTAS = 683.585

Divergence @ Mach = 1.17317

Flutter Output
Flutter@ Q=13152.8Pa

Flutter@ V =252.474 m/s

Flutter @ V =908.906 Km/h

Flutter @ KTAS = 491.301

Flutter @ Mach = 0.843173

Flutter Frequency: Omega_fl = 1.23897 Hz

Reduced Flutter Frequency (Strouhal): Str = 0.0262086

Data Corrected for Compressibility Effects by Theodorsen
Theodorsen X-factor (Equivalent Strouhal): X_f = 0.0672369

Theodorsen Compressibility Correction Factor: K_f = 1.04199

Corrected Flutter Speed is: V_fl_corr = 263.075 m/s

Corrected Flutter Speed is: V_fl_corr = 947.068 Km/h

Corrected Flutter Speed is: KTAS_corr = 511.929

Corrected Flutter Speed is: M_corr = 0.878575

Corrected Flutter Dynamic Pressure is: Q_corr = 14280.5 Pa

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.0251525
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Program Output
Uncoupled Bending Frequency: Omega_h = 0.754438 Hz
Uncoupled Torsion Frequency: Omega_a = 2.74589 Hz
Fundamental Frequencies Ratio: Ratio = 0.274752

Current Flight Altitude: H = 10000 m

Divergence Output
Divergence @ Q = 26023.4 Pa

Divergence @ V =355.131 m/s

Divergence @ V = 1278.47 Km/h

Divergence @ KTAS = 691.066

Divergence @ Mach = 1.18601

Flutter Output

Flutter@ Q=12578.1Pa

Flutter @ V = 246.896 m/s

Flutter @ V =888.825 Km/h

Flutter @ KTAS = 480.446

Flutter @ Mach = 0.824544

Flutter Frequency: Omega_fl = 1.30618 Hz

Reduced Flutter Frequency (Strouhal): Str = 0.0282545

Data Corrected for Compressibility Effects by Theodorsen
Theodorsen X-factor (Equivalent Strouhal): X _f=0.0724856

Theodorsen Compressibility Correction Factor: K_f = 1.04542

Corrected Flutter Speed is: V_fl_corr = 258.109 m/s

Corrected Flutter Speed is: V_fl_corr = 929.192 Km/h

Corrected Flutter Speed is: KTAS_corr = 502.266

Corrected Flutter Speed is: M_corr = 0.861991

Corrected Flutter Dynamic Pressure is: Q_corr = 13746.5 Pa

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.027027

e e e e e e e e e e e e e e ok e e e e e e e ke o e ke g ko ke ke e e e e e e o ol e e ke e e ke e ok ke e e e e ek e e ke e e ek ok kR R kA R kAR A AR A AR ARk dokk Ak k hk ok ke ke
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Program Output
Uncoupled Bending Frequency: Omega_h = 0.754437 Hz
Uncoupled Torsion Frequency: Omega_a = 2.74589 Hz
Fundamental Frequencies Ratio: Ratio = 0.274751

Current Flight Altitude: H=10000 m

Divergence Output
Divergence @ Q = 26023.4 Pa

Divergence @ V =355.131m/s

Divergence @ V = 1278.47 Km/h

Divergence @ KTAS = 691.066

Divergence @ Mach = 1.18601

Flutter Output

Flutter@ Q= 12578.1Pa

Flutter @ V =246.896 m/s

Flutter @ V =888.825 Km/h

Flutter @ KTAS = 480.446

Flutter @ Mach = 0.824544

Flutter Frequency: Omega_fl = 1.30618 Hz

Reduced Flutter Frequency (Strouhal): Str = 0.0282544

Data Corrected for Compressibility Effects by Theodorsen
Theodorsen X-factor (Equivalent Strouhal): X_f =0.0724856

Theodorsen Compressibility Correction Factor: K_f = 1.04542

Corrected Flutter Speed is: V_fl_corr = 258.109 m/s

Corrected Flutter Speed is: V_fl_corr = 929.192 Km/h

Corrected Flutter Speed is: KTAS_corr = 502.266

Corrected Flutter Speed is: M_corr = 0.861991

Corrected Flutter Dynamic Pressure is: Q_corr = 13746.5 Pa

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.027027

uuuuuuuuuuuuuuuuuuuuuuu
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Case llI: Effects of Flight Altitude

Program Output
Uncoupled Bending Frequency: Omega_h = 0.754437 Hz
Uncoupled Torsion Frequency: Omega_a = 2.74589 Hz
Fundamental Frequencies Ratio: Ratio = 0.274751

Current Flight Altitude: H=0m

Divergence Output
Divergence @ Q = 26023.4 Pa

Divergence @ V =206.124 m/s

Divergence @ V =742.047 Km/h

Divergence @ KTAS = 401.107

Divergence @ Mach = 0.605785

Flutter Output
Flutter @ Q= 12603.8 Pa

Fiutter @ V =143.449m/s

Flutter @ V =516.416 Km/h

Flutter @ KTAS = 279.144

Flutter @ Mach = 0.421586

Flutter Frequency: Omega_fl = 1.30502 Hz
Reduced Flutter Frequency (Strouhal): Str = 0.0485869

Data Corrected for Compressibility Effects by Theodorsen

Theodorsen X-factor (Equivalent Strouhal): X_f=0.124648
Theodorsen Compressibility Correction Factor: K_f = 1.07782
Corrected Flutter Speed is: V_fl_corr = 1564.613 m/s

Corrected Flutter Speed is: V_fi_corr = 5566.606 Km/h

Corrected Flutter Speed is: KTAS_corr = 300.868

Corrected Flutter Speed is: M_corr = 0.454396

Corrected Flutter Dynamic Pressure is: Q_corr = 14641.9 Pa

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.0450787
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Program Output
Uncoupled Bending Frequency: Omega_h = 0.754437 Hz
Uncoupled Torsion Frequency: Omega_a = 2.74589 Hz
Fundamental Frequencies Ratio: Ratio = 0.274751

Current Flight Altitude: H=2500m

Divergence Output
Divergence @ Q =26023.4 Pa

Divergence @ V =233.225m/s

Divergence @ V =839.612 Km/h

Divergence @ KTAS = 453.844

Divergence @ Mach = 0.705618

Flutter Output
Flutter@ Q = 12575 Pa

Flutter@ V=162.124m/s

Flutter @ V =583.646 Km/h

Flutter @ KTAS = 315.484

Flutter @ Mach = 0.490502

Flutter Frequency: Omega_fl = 1.30632 Hz

Reduced Flutter Frequency (Strouhal): Str = 0.0430328

Data Corrected for Compressibility Effects by Theodorsen
Theodorsen X-factor (Equivalent Strouhal): X_f=0.110399

Theodorsen Compressibility Correction Factor: K_f = 1.06927

Corrected Flutter Speed is: V_fl_corr = 173.354 m/s

Corrected Flutter Speed is: V_fl_corr = 624.073 Km/h

Corrected Flutter Speed is: KTAS_corr = 337.337

Corrected Flutter Speed is: M _corr = 0.524477

Corrected Flutter Dynamic Pressure is: Q_corr = 14377.3 Pa

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.0402452

xxxxx
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Program Output
Uncoupled Bending Frequency: Omega_h = 0.754437 Hz
Uncoupled Torsion Frequency: Omega_a = 2.74589 Hz
Fundamental Frequencies Ratio: Ratio = 0.274751

Current Flight Altitude: H=5000m

Divergence Output
Divergence @ Q =26023.4 Pa

Divergence @ V =265.907 m/s

Divergence @ V =957.265 Km/h

Divergence @ KTAS = 517.441

Divergence @ Mach = 0.82967

Flutter Output
Flutter@ Q=12591.9 Pa

Flutter @ V = 184.967 m/s

Flutter @ V =665.881 Km/h

Flutter @ KTAS = 359.935

Flutter @ Mach = 0.577124

Flutter Frequency: Omega_fl = 1.30555 Hz
Reduced Flutter Frequency (Strouhal): Str = 0.0376964

Data Corrected for Compressibility Effects by Theodorsen

Theodorsen X-factor (Equivalent Strouhal): X_f=0.0967084
Theodorsen Compressibility Correction Factor: K_f = 1.06084
Corrected Flutter Speed is: V_fl_corr = 196.22 m/s

Corrected Flutter Speed is: V_fi_corr = 706.391 Km/h

Corrected Flutter Speed is: KTAS_corr = 381.833

Corrected Flutter Speed is: M_corr = 0.612235

Corrected Flutter Dynamic Pressure is: Q_corr=14170.6 Pa

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.0355345
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Program Output:
Uncoupled Bending Frequency: Omega_h = 0.754437 Hz
Uncoupled Torsion Frequency: Omega_a = 2.74589 Hz
Fundamental Frequencies Ratio: Ratio = 0.274751

Current Flight Altitude: H=7500m

Divergence Output
Divergence @ Q =26023.4 Pa

Divergence @ V =305.791 m/s

Divergence @ V = 1100.85 Km/h

Divergence @ KTAS = 595.054

Divergence @ Mach = 0.985965

Flutter Output
Flutter@ Q= 12591 Pa

Flutter@ V=212.703 m/s

Flutter@ V =765.73 Km/h

Flutter @ KTAS = 413.908

Flutter @ Mach = 0.685819

Flutter Frequency: Omega_fl = 1.3056 Hz
Reduced Flutter Frequency (Strouhal): Str = 0.0327819

Data Corrected for Compressibility Effects by Theodorsen

Theodorsen X-factor (Equivalent Strouhal): X_f =0.0841006
Theodorsen Compressibility Correction Factor: K_f = 1.05289
Corrected Flutter Speed is: V_fi_corr = 223.953 m/s

Corrected Flutter Speed is: V_fl_corr = 806.231 Km/h

Corrected Flutter Speed is: KTAS_corr = 435.801

Corrected Flutter Speed is:  M_corr = 0.722093

Corrected Flutter Dynamic Pressure is: Q_corr = 13958.1 Pa

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.0311351
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Program Output
Uncoupled Bending Frequency: Omega_h = 0.754437 Hz
Uncoupled Torsion Frequency: Omega_a = 2.74589 Hz
Fundamental Frequencies Ratio: Ratio = 0.274751

Current Flight Altitude: H = 10000 m

Divergence Output
Divergence @ Q = 26023.4 Pa

Divergence @ V =355.131 m/s

Divergence @ V = 1278.47 Km/h

Divergence @ KTAS = 691.066

Divergence @ Mach = 1.18601

Flutter Output.
Flutter@ Q= 12578.1Pa

Flutter@ V =246.896 m/s

Flutter @ V =888.825 Km/h

Flutter @ KTAS = 480.446

Flutter @ Mach = 0.824544

Flutter Frequency: Omega_fl = 1.30618 Hz
Reduced Flutter Frequency (Strouhal): Str = 0.0282544

Data Corrected for Compressibility Effects by Theodorsen

Theodorsen X-factor (Equivalent Strouhal): X_f = 0.0724856
Theodorsen Compressibility Correction Factor: K_f = 1.04542
Corrected Flutter Speed is: V_fl_corr = 258.109 m/s

Corrected Flutter Speed is: V_fl_corr = 929.192 Km/h

Corrected Flutter Speed is: KTAS_corr = 502.266

Corrected Flutter Speed is: M_corr = 0.861991

Corrected Flutter Dynamic Pressure is: Q_corr = 13746.5 Pa

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.027027

Elapsed time is 315.055754 seconds.

xxxxxxxxxxxxxxxxxxxxxxxx
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A3. VALIDATION OF FREE VIBRATION MODEL OUTPUT

The fundamental natural frequency output from the program subroutines RRM_BF
and RRM_TF is presented below (b1 denotes bending; t1 denotes torsion, all values in
Hz):

Omega_b1 =
0.7623
ans =
0.7623
Omega_t1 =
19.2660
ans =

19.2660

The fundamental natural frequency output from the program subroutines FEM_BF
and FEM_TF is shown below (all values in Hz):
Uncoupled Bending Frequency: Omega_h = 0.757337 Hz
ans =
0.7573
Uncoupled Torsion Frequency: Omega_a = 18.9757 Hz
ans =
18.9757
The fundamental natural frequency output from NASTRAN is detailed below (the
torsion frequency represents an approximation given by NASTRAN):

Bending: Omega_b =0.7488739 Hz
Torsion: Omega_t = 19.29904 Hz

The following figures have been taken from NASTRAN windows:
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Figure A.3a: NASTRAN model already meshed and constrained.

Dutput Set: MODE 1, FREQ =0 7438739
Detormed(0.39) TOTAL TRANSLATION

Conlour: TOTAL TRANSLATION e
Figure A.3b: NASTRAN model first vibration mode (pure bending).
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Figure A.3c: NASTRAN model first vibration mode (top view).

MODE 1. FREQ=0 7488739
ed(0.39) TOTAL TRANSLATION
Contour. TOTAL TRANSLATION

A19



03563

YU i+ ’
.muw:rw L o,

1 ‘a® wu’ﬁunlx"' e 44 0287
ﬁﬂ'}“ .41{-‘&'}' f-f f

Dutput Set: MODE 7. FREG=13 233040
Deformedi) 574} TOTAL TRANSLATION
Contour: TOTAL TRANS N

Figure A.3e: NASTRAN model first torsion mode approximation (mode 7).

Output Set MODE 7 FREQ=19 293040
Detormed(0.574) TOTAL TRANSLATION
Contour: TOTAL TRANSLATION

Figure A.3f: NASTRAN model first torsion mode approximation (top view).
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gre A.3g: NASTRAN model first torsion mode approximation (front view).
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A4. MATLAB CODE

SR TR IR S 2RI SRR SRR USRI S U IR I IS R S S S S I S e O T R S U U I S SO S S ST L S Ut TR S AR LA

seoes——=e~-c==RLJTTER ANALYSIS @F WINES BY EMERGY METROPS==-=--=---=---—==—=

Sk AR E AT A A RR R AR AR AT R AR AR A RAAR I AN AR A A b b rd AR A A F I A b hdd kP ad bl A bbb kbW

P --Horacio E. Sepic Kriskovich - MSAE - October 2003------------ e
LA RS SR EEE NS R e e R R R R E SRR R R R R RS E N E SR SR SR
S e e - HALE ATRERAETN WIONG- —— - ———--- - oo oo o= oo
Codkdkk ko kkk Ak ok Ak ok dkd bk ek ok ko k kk ok k bk kb kR kA rrhk bRk kT F Rk ks AR ko kb R e d
tic
———————————————————— BELTER ANRERSIS -~ —==———— - === —
e e et VARTAPLE, BRARA = -z === ————————————— ===
........................... PROGEAM PRRAMETERS. .. ... .. i
n_max=1000; Max®lmum numkber <f lteratlons for the program
(recommended: 1000).
n_elm=100; ¢ Number of elements for Bending and Torsicon Free
% Vibration Analysis by FEM (recommended: 100).
Omega err=1.0e-5; Precision for flutter frequency computatlons,

H fl vctr=[10000]; Altitude vector [m].
fere m='1 kA

H_fl=H_fl vctr(n);

LELASTIC FOUNMDATION PARAMETER

R_kb_vctr=(1]; FRatic

elastic to clamp foundation in bending

R_kb=R_kb_vctr(k);

foundation in

R_kt_vctr=[2e—4, ce-4]; Ratloc elastlc tc
for J=1:2

R _kt=R_kt_vctr(j);

K_b_ref=2.926e50; Torsional spring tg mulate a perfect
lamp in bending mode, [N*m/rad)

(recommended: 2,.926e50) .

K_t_ref=l.743e18; Torzional spring t simulate a perfect

¢

clamp in torsion mode, [N*m/rad)
% (recommentded: 1.743e18)
K b=R_kb*K b _ref; Torsional spring to simulate slasti
- - foundation 1n bending mode, [N*m/rad]
K t=R kt*K t_ref; Torsional spring t simulate elastlic
- - ¢ foundation in torsion meds, [(N*m/rad]



Data_Input;

. . FUNDAMENTAL UNCOUPLED MATURAL FREQUENCIES. ..

[Omega_bl]=BF FEM _EF(n_elm,L _eff,m Cl,m C2,m C3,Ixx_Cl,...

Ixx C2,Ixx _C3,Ixx C4,A C1l,A C2,A C3,...
d 1,d 2,E,K by

(Omega_t1]=TF_FEM EF(n_elm,L eff,Ip Cl,Ip C2,Ip C3,Ip_C4,...

Rho,m _Cl,m C2,m C3,b 1,b 2,d 1,d 2,...
J e, 562,083, et B R, E) 4

Omega_h=Omega_bl* (2*pi1); Fundamental uncouplsd bending shaps
fredefuerney [tadfsy.
Omega_a=Omega tl*(2*pi); " & torsion " .

frequency |[rad

o

[Omega_flutter,Q flutter]=Flutter_ Subroutine(c,b,a,bo,L_eff,...

m,Iea,Phi_h,Phi_h 1,Phi_a,Omega_h, ...
Omega_a,Delta_ac,CL_a,Q_fl max,n_max);

[Q_divergencel=Divergence_Subroutine(c,b,a,bo,L_eff,m, Iea, ...

fprintf ('
mtput------

fprintf ('
fprintf ('
fprintf ('
fprintf ('
fprinet '
mtput-—---
fprintf ('

fprintf ('

fprintf ('

I

r

9]

!

1

r

Phi_h,Phi_h 1,Phi_a,Omega_h,Omega_a,Delta ac,...
CL_a,Q_fl_max,n_max);

--------------------------- = n')
Incoupled Bending Fregquency: OmeJga b o= g Hz wn', ...
~ Omega_h/(2*pi))
Uncoupled Torsion Fregquency: Omeda_a = g Hz wn', ...
Omega_a/ (2*pi))
Furdamental Freguencles Ratlo: Ratlo = g an', ...
Omega_h/Omega_a)
Turrent Flight Altitode: H = 3 i L PR
H fl

"""""""""""" n')
[Melgence (@ W = g Fa 'n',Q divergence)
Livergence (8 W = 3 m/e T I

sqrt (2*Q_divergence/Rho_f1l))

Ve gence @ Wil 1= 5 kmfh Ne', .

sqrt (2*Q_divergence/Rho_fl) *3.6)
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fprintf ('\n Divergence @ KTAS = 3 'n',...
sqrt(2*Q_divergence/Rho_f1)*3.6/1.85
fprintf('\n Divergence ¢ Mach = -3 '‘n',...

)

sqrt (2*Q_divergence/Rho_fl)/(ac*sqrt (T_£1/To)))

for 1=1:n_max
Omega_diff=Omega_ flutter(i,1l)-Omega_flutter(i,2);
Omega_avg=(Omega_ flutter(i,1)+Omega_ flutter(i,2))/2;

1f Omega diff<Omega err

J

e (R B S e e et e L T B
rte & 1 e e e e n')

fprintf(''n Flutter @ J = a1 Fs n',Q flutter (1))
fprintf(''n Flutter @ V = =g m/s \n',...

sqrt (2*Q_flutter (i) /Rho_£1l))
fprintf(''n Flutter @& f = %g Hm¢h An', ... -

sqgrt (2*Q_flutter (i) /Rho_£f1)*3.6)
fprintf('‘n Flutter @ ETAS = -g ‘n',...

sqgrt (2*Q flutter(i)/Rho fl)*3.6/1.85)
fprintf(''n Flutter 6 Mach = g '‘n',...

sqrt (2*Q flutter (i) /Rho_fl)/(ac*sqrt(T_£f1/To)))
fprintf('\n Flutter Freguency: Jmega £l o=

Omega_avg)

fprintf (''n Feduced Flutter Freguency (Strouhal):

Omega_avg*2*pi* (MGC/2) /sqrt(2*Q_flutter(1)/Rho_f1l))

fprintf ("“Nn ---=-=---c-ce-o--o-—-———---Oata Ugrrected
mpr=ssibility Effects by Theodorsen------------------------—--—-~ n')

X _f=(c_75/0.3048)* (Omega_avg* (2*p1)) / (sqrt(2*...
Q flutter(i)/Rho_f1l)*3.6/1.85);
Theodo: T m—factar nLs r rreciion 1 "
K_f=K_f Cl*X_f"4+K_f C2*X f73+K_f C3*X_f"2+K_f C4*X_f...
+K_f C5; P I rect N EESEEnTt
V_flutter_ corrected=K_f*sqrt (2*Q_flutter(i)/Rho_fl);
o= 5 (N A {F

fprintf(''n Thecdorsen X-tactor (Equivalent al
9 \n',
X f)
fprintf (''n Thecder=on ] Y YrreZticen Factor:
rty
K_f)
fprintf('\n CTurrected Flutter Speed 13: V fl eorr =

V_flutter_corrected)
fprintf (' r rrected Flutter Speed a=: il Y o= g

v_flutter_corrected*3.6)
fprintf(''n Terrected Fluttey Speed is: ETAS oorr J

V_flutter corrected*3.6/1.85)
fprintf ('\n Corrected Fluttar Speed is: M _Terr = w.g

V_flutter_corrected/ (ac*sqrt(T f1/To)))
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fprintf('\n Car: ted Flutter Fressure 1s:

Q _cerr = %g Pa \n',
1/2*Rho_f1*V_flutter corrected"2)
fprintf (' 'n orrected | 8 Flutter Freque
(Strouhal): Str_corr ) A
Omega_avg*2*pi* (MGC/2)/V_flutter corrected)
DI G KL et e P=ppeyypepy=peppay=rmm_r oL BT Plots
are o1 11 1l to S--=-------=- e T —————— ')
fprintf (' n n')
bhreak
else
inue
end
!
figure (1)
plot (Q_flutter,Omega_flutter(:,1),Q flutter,Omega flutter(:,2));
grid on;
xlabel ('Dynamic Fressure, o [Pal')
ylabel ('Freguency, (Hz}')
hold r
title('Fr=guency ve. Dynamic Pressure (@ Current FL')
figure(2)

V_flutter=sqrt(2*Q_flutter/Rho_fl);

plot(V_flutter,Omega_flutter(:,1),V_flutter,Omega_flutter(:,2));
grid or
zlabel (
yvlabel (
hold o1
title (' T Y vs. Speed o jrrent FL')

'Spesd, Im/s]")
Hzl"')

(= - .
Freguen

figure (3)

V_flutter=sqrt(2*Q flutter/Rho_£fl)*3.6;
plot(V_flutter,Omega_flutter(:,1),V_flutter,Omega_flutter(:,2));
grid on;

%label ('re=d, Km/hj ')

yvlabel (' i iz] ")

hold 1

title( ) ve, Speed B Current FL')

figure (4)

V_flutter=sqrt(2*Q_flutter/Rho_£f1)*3.6/1.85;

plot (Vv_flutter,Omega_flutter(:,1),V_flutter,Omega flutter(:,2));
grid n;

®label ('t TAS")

ylabel ('Frequency, [Hz]')

hold

title ('Freguer IS § G FLi*)

figure (5)

M flutter=sqrt(2*Q_flutter/Rho_fl)/(an*sqrt(T_£1/To));
plot (M_flutter,Omega_flutter(:,1),M flutter,Omega flutter(:,2));
grid @ n;

zlabel (' ")
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ylabel {('Frequency, [Hz]"')
hold on

title('Frequency vs. Mach Number

Current FL')

fprintf (" \n —— - mm o e
Program has ended--=-=-—-=---—-—-—-— -+ ¢ oo \n'

fprintf('\n \n'")
end

end

E =7.385e10; ARl
G =2.870e10; Bl 2 -3
Rho=2.765e3; i

lea]

i
j

I, “=20 -10'0:;
cr=2.50;
ct=0.90;

Sweep_ac=6.00; AC Sweep back angle [(degre

c_1=-0.080;
c_2= 2.500;

c=c_l*y+c_2;

b _1=-4.204e-3;
bliz= 158l 4=y ! I r y

b=b_1*y+b 2; [ =t ance Lo

[

a_1=-7.238e-3; | =n
a 2= 2.260e-1; i

N
[N

A Cl= 4.829%e-4;
A C2=-3.018e-2; 5e 1ent
A_C3= 4.716e-1; A Lndeper

[

[ Bal) .
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A =A _Cl*y~2+A_C2*y+A_C3; Cross sectional area distribution, A{y) [m"2]
Ixx_Cl=-2.131e-7; Ixx principal coefficient, [m].
Ixx_C2= 1.346e-5; Ix# second coefficient, [m"2].
Ixx_C3=-3.014e-4; Igx third gosfficlent, [m*3].
Ixx_C4= 2.389%e-3; independent term, [m 4],
Ixx =Ixx_Cl*y"3+Ixx_C2*y"2+Ixx_C3*y+Ixx_C4; Area moment of inertia
sbout ®-axis, Ixx(y) [m"4]
J Cl=-8.346e-7; ] principal coefficient, [m].
J C2=l5.2"3e=5; I second coefficient, [m"2].
J 1e3==1 {1181 e=3) J third coefficient, [m™3].
J_C4=1 9. 36le—33 I independent term, [m™4]
J =J_Cl*y"3+J_C2*y"2+J _C3*y+J C4; % Torsienal constant, J(y) [m"4
Ip,. Cl=-1.256@~5; Ip principal coefficien [m]
Ip_C2= 7.934e-4; Ip second efficient, [m”2).
I E3==i {7 e =25 Ip third coefficient, [(m"3].
Ip C4= 1.409%e-1; Ip independent term, [m”4)
Ip =Ip_Cl*y"3+Ip C2*y~2+Ip_C3*y+Ip C4; Polar moment inertia,
Ip(y) [(m~4].
m _Cl= 1.335; m principal cosfficient, [Kg
m_C2=-8.346el; m second effigcient, [Kg/m”2]
m_C3= 1.304e3; m independent term, [Kg/m)
m =m_Cl*y"2+m_C2*y+m_C3; Mass/un length, m(y) [kg/m
Iea=Ip*Rho+m* (b"2+d"2); Mass moment of inertia about EA/unit length
Iea [Ky*m]
........................... FIXED PARAMETERS. . .. i it i e it e et et et et e en e
MGC=(cr+ct) /2; Mean Geometric Chord [m)
AR=2*L/MGC; pect ratio.
Delta_ac=Sweep_ac*pi/180; eep back angle (rad)].
bo=L; Arbitrary reference length
L_eff=L/cos(Delta_ac); Wing's effective semispan [n
AERODYNAMICE. . ... .. ... ........
CL_airfoil=6.446; MALC = 1= SdEfiodil 11E) fficient slops
i'\ Tt
CL_a=pj_*(AR/(1+sqrt(l+(pi*AR/(CL_airfoil*COS(Delta_aC)))AZ))),' ing's
A il cfficient
................................ DE HAFE
Phi h=l-cos(pi*y/(2*L_eff)); Eend)
Phi_a=sin(pi*y/ (2*L_eff)): Torsicon " S
Phi_h 1=diff (Phi_h,y)’
Phi_a 1=diff(Phi_a,y)’ 3 i
e ARAMETEF iy



Rho SL=1.225; Eir ddensar Fag/ldm 3.

Rho FL110=0.3639; : @ FLI [ g/
ao=340.26; Speed ot urid @ SL | :
To=288.15; C K

1f  H_£1<=11000

Rho_fl=Rho SL*(1-0.0065*H _f1/To)" (4.2561);
T f1=To-6.5*H_f1/1000;

else Rho_fl=Rho FL110*exp(-157.69* (H_£1-11000)/1076);
T f1=216.65;

=nd

V_fl1=M_fl*(ac*sqrt(T_£f1/To)): <. A1 .
Q_fl max=1/2*Rho_ fl1*V fl1"2; ¥ v )y nge
y_75=0.75*L eff; ! el gan,
c_T5=c_1*y_75+c_2; &) Eml-span,

K _f Cl=-4.084e-2;

K_f_GZ=12.,585a=1 i econd t

K_f C3=-6.232e-1 Theodor ser

K_f C4= 7.366e-1 iciznt

K £ C5= 9.952e-1 Theadd =

function [Omega_bl)}=BF_FEM_EF(n_elm,L_eff,m Cl,m C2,m_C3,Ixx_Cl,Ixx_C2,...
Ixx_C3,Ixx_C4,A_C1,A_C2,A C3,d_1,d_2,E,K_b)

nﬁnds=n_elm+1; ! o des,

L_elm=L_eff/n_elm; ‘ ! e 1

Ctr=[1]; , ntal fie DOF's that Sre fized
(ot . rotationzsl DOE)

Ext=zeros(n_elm,2);

for 1=1:n_elm

Ext (1,1)=1;
Ext(1,2)=1+1;

end

it P 1 Nt e Lareir el =ndiod nodie

Ext;

e
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element.
m =2eros(n_elm,1);
for i=1:n _elm

y_sw_l=(i—1)*L_elm;

y_sw_2=1i*L elm;

m(i,l)={((m_Cl*y sw_172+m_C2*y sw_l4m_C3)+(m _Cl*y sw_2"2+m _C2*y sw_2+...
m_C3))/2;

m; Mass t length wvector, m for

Ixx=zeros(n_elm,1);
for 1=1:n_elm

y_sw_1=(1-1)*L elm;

y_sw 2=1*L elm; .

Ixx_sw_1=(Ixx_Cl*y sw_173+Ixx_C2*y_sw_1"2+Ixx_C3*y sw_1+Ixx C4)+...
(A_Cl*y_sw_1"2+A C2*y sw_1+A C3)*(d_1l*y_sw_1l+d 2)"2;

Ixx_sw_2=(Ixx_Cl*y sw_2"3+Ixx_C2*y sw_2"2+Ixx_C3*y_sw_2+Ixx_C4)+...
(A_Cl*y sw_2"2+A C2*y sw_2+A C3)*(d_1l*y_ sw_2+d_2)"2;

Ixx(1,1)=(Ixx_sw_1+Ixx_sw_2)/2;

end
Ixx; T =ach o n
M eg=m.*L elm/420; BEquivalent mass for sach element
(to be assembled 1n M), [KEg].
K _eq=E*Ixx./L_elm”3; Bguivalent =tiffness for cach slzment
(ta be assembled in K), [N/m]

M=zeros(n_nds*2,n_nds*2);
K=zeros(n_nds*2,n_nds*2);

fcr 1=1:n_elm

M(Ext (1,1)*2-1,Ext(1,1)*2-1)=M(Ext(1,1)*2-1,Ext{1,1)*2-1)+M eq(1)*...

156;

M(Ext(i,1)*2-1,Ext(i,1)*2) =M(Ext(i,1)*2-1,Ext(1,1)*2) +M eq(i)*...
22*L_elm;

M(Ext(1,1)*2-1,Ext(i,2)*2-1)=M(Ext(1,1)*2-1,Ext(1,2)*2-1)+M eq(i)*...
54;

M(Ext (i,1)*2-1,Ext(i,2)*2) =M(Ext(i,1)*2-1,Ext(1,2)*2) -M_eq(i)*...
13*L_elm;

M(Ext (1,1)*2,Ext(1,1)*2-1)=M(Ext(1,1)*2,Ext(1,1)*2-1)+M eq(l)*...

22*L_elm;

M(Ext (1,1)*2,Ext(1,1)*2) =M(Ext(1,1)*2,Ext(1,1)*2) M eq(1)*. ..
4*L elm~2;
M(Ext(i,1)*2,Ext(1,2)*2-1)=M(Ext(1,1)*2,Ext(1,2)*2-1)+M eq(1)*. ..
13*L_elm;
M(Ext (i,1)*2,BExt(1,2)*2) =M(Ext(1,1)*2,Ext(1,2)*2) -M eq(1)*...
3*L_elmA2;

M(Ext (i,2)*2-1,Ext (1,1)*2-1)=M(Ext (1,2) *2-1,Ext (1,1)*2-1)+M eq(i)*...
54;
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M(Ext (i,2)*2-1,Ext (i,1)*2) =M(Ext(i,2)*2-1,Ext(i,1)*2) +M eq(i)*...
13*L_elm;
M(Ext (i,2)*2-1,Ext (i,2)*2-1)=M(Ext (i,2)*2-1,Ext (i, 2)*2-1)+M_eq(i)*...

156;
M(Ext (i,2)*2-1,Ext(i,2)*2) =M(Ext(i,2)*2-1,Ext(i,2)*2) -M eq(i)*...
22*L_elm;
M(Ext (i,2)*2,Ext(i,1)*2-1)=M(Ext (i,2)*2,Ext(i,1)*2-1)-M eq(i)*...
13*L_elm;
M(Ext (i,2)*2,Ext (i,1)*2) =M(Ext(i,2)*2,Ext(i,1)*2) -M_ eq(i)*...
3*L_elm”2;
M(Ext (1,2)*2,Ext (i,2)*2-1)=M(Ext (i,2)*2,EXt (i,2)*2-1)-M_eq(i)*...
22*L_elm;
M(Ext (1,2)*2,Ext(1,2)*2) =M(Ext(i,2)*2,Ext(i,2)*2) +M_eq(i)*...
4*L_elm"2;
K(Ext (i, 1)*2-1,Ext (i,1)*2-1)=K(Ext(i,1)*2-1,Ext(i,1)*2-1)+K_eq(i)*...
12;
K(Ext (i,1)*2-1,Ext (i,1)*2) =K(Ext(i,1)*2-1,Ext(i,1)*2) +K eqg(i)*...
6*L_elm;
K(Ext (i,1)*2-1,Ext(1,2)*2-1)=K(Ext(i,1)*2-1,Ext(i,2)*2-1)-K_eq(i)*..
12;
K(Ext (i,1)*2-1,Ext(i,2)*2) =K(Ext(i,1)*2-1,Ext(i,2)*2) +K_ eq(i)*...
6*L_elm;
K(Ext (i,1)*2,Ext(i,1)*2-1)=K(Ext(i,1)*2,Ext(i,1)*2-1)+K_eqg(i)*...
6*L_elm;
K(Ext (i,1)*2,BExt(i,1)*2) =K(Ext(i,1)*2,Ext(i,1)*2) +K_ eq(i)*...
4*L elm”"2;
K(Ext(i,1)*2,Ext(1,2)*2-1)=K(Ext(1,1)*2,Ext(i,2)*2-1)-K eq(i)*...
6*L_elm;
K(Ext (i,1)*2,Ext(i,2)*2) =K(Ext(i,1)*2,Ext(i,2)*2) +K_ eqg(i)*...
2*L_elm~2;
K(Ext (1,2)*2-1,BExt (i,1)*2-1)=K(Ext (i,2)*2-1,Ext (i,1)*2-1)-K_eq(i)*...
12;
K(Ext (i, 2)*2-1,Ext(i,1)*2) =K(Ext(i,2)*2-1,Ext(i,1)*2) -K_eg(i)*...
6*L _elm;
K(Ext (i,2)*2-1,Ext(i,2)*2-1)=K(Ext (i,2)*2-1,Ext (i,2)*2-1)+K_eq(i)*...
2}
K(Ext(i,2)*2-1,Ext(i,2)*2) =K(Ext(i,2)*2-1,Ext(i,2)}*2) -K eg(i)*...
6*L_elm;
K(Ext (1,2)*2,Ext (1,1)*2-1)=K(Ext (1,2)*2,Ext (i, 1) *2-1)+K_eq(i)*...
6*L_elm:

K(Ext(i,2)*2,Ext(i,1)*2) =K(Ext(1,2)*2,Ext(i,1)*2) +K_ eq(i)*...
2*L_elm"2;
K(Ext (i,2)*2,Ext(i,2)*2-1)=K(Ext(i,2)*2,Ext(i,2)*2-1)-K_eq(i)*.

6*L_elm;
K(Ext(i,2)*2,Ext(i,2)*2) =K(Ext(i,2)*2,Ext(i,2)*2) +K eqg(i)*...
4*L elm™2;
end
K;
K(2,2)=K(2,2)+K _b/K_eq(l); ntribstion of the =lastic fourdatien te the
versl]l stiffness matra
M=double (M) ; [Egl.
K=double (K) ; [M/m] .
................................. SOLVER
Salution of thie eigenvalug problem 1or o i1 freque e
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M inv=inv (M) ;
H =M_inv*K;

for i=1l:length(Ctr)

H(Ctr(i)-i+1,:)=[];
H(:,Ctr(i)-i+1)=(];

end

E=eig(H);
T e, T

Omega_bl=sqrt (E)/(2+pi); % Bending fremuencies vector, w's [Hz).

Omega_bl=min (double (Omega_bl)); - Fundamental bending frequency, wl [Hz].

fprintf ('\n Uncoupled Bending Frequency: Omega_h = =g Hz \n',Omega_bl)

R T O T e S S TR S S I S S SR S R S S S U R T S S I S R S S S S T SR O

R i R I R I I R O I O I R R T S

~—------------TOESION FREQUENCY BY FINITE ELEMENTS METHOD----- ----

T I S S S O S T S T S S I e e e E R hok ok ok kR ok ok ow ok k ke ko ok ok ke

—————— -- “WITH ELASTIC FOUNDATION-----—-==—---——==———————.

R T R I R O I S JE

function [Omega_tl]=TF_FEM EF(n_elm,L eff,Ip C1,Ip_C2,Ip_C3,Ip _C4,Rho, ...
mCl,m C2,m _C3,b_1,b 2,d 1,d 2,J C1,J C2,J_C3,J C4,..

G,K_t)

————————————————— ~-FINITE ELEMENT PARAMETERS----- - -—-—--- --

n_nds=n_elm+1; Humber <f nodes.
L_elm=L_eff/n_elm; Element length, [m].

Ctr=1[]; Canstraints vector, contalins the DOF's that are fixed

(only rotational DOF's) .

Ext=zeros(n_elm,2);
for i=l:n_elm

Ext(i,1)=1;
Ext(i,2)=1+1;

Iea=zeros(n_elm,1);
for i=l:n_elm

y_sw_l=(i-1)*L_elm;
y sw_2=i*L elm;
Iea sw 1=(fp Cl*y sw_173+Ip_C2*y_sw_172+Ip_C3*y_sw_1l+Ip_C4) *Rho+...
T T (m Cl*y sw_1°2+m C2*y sw_1¥m_C3)*((b_l*y_sw_1+b 2)"2+. ..
(d_1*y sw_1+d_2)"2);
Iea sw_2=(15 Cl:y_sw_2A3+Ip_C2*y_sw_2A2+Ip_C3*y_sw_2+Ip_C4)*Rho+...
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(m_Cl*y_sw_2A2+m_C2*y_sw_2+m_C3)*((b_l*y_sw_2+b_2)A2+...
(d_1*y_sw_l+d_2)"2);
Iea(i,l)=(lea_sw_l+Iea_sw_2)/2;

Iea; Mass polar moment of inertia about EA vector, contains lea for each
element, [Kg*m].

J=zeros(n_elm, 1);
for i=l:n_elm

y_sw_1=(i-1)*L_elm;

y_sw_2=i*L_elm;

J(i,1)=((J_Cl*y_sw_1"3+J C2*y sw_1"2+J C3*y sw_1+J C4)+...
(J_Cl*y_sw_273+J_C2*y sw_2"2+J_C3*y_sw_2+J C4))/2;

end

J; Torsional constant vector, contains J for each element, [m"4] ..

I_eg=Iea.*L_elm/2; Equlvalent mass polar moment of 1inertia about ER for
cach element (to be assembled 1n I), [(Fg*m 2].

K_eg=G*J./L_elm; Equivalent stiffness for each element (to be

assembled in FK), [MN*m].

————————————————— MATRIX ASSEMELY-----------=--—-=-———-——~———~—-~ -~~~

I=zeros(n_nds,n_nds);
K=zeros (n_nds,n_nds);

for i=l:n_elm

I(Ext(i,1),Ext(i,1)) =I(Ext(i,1),Ext(i, 1)) +I_eq(i);
I(Ext(i,1)+1,Ext(1,1)+1)=I(Ext(i,1)+1,Ext(i,1)+1)+I_eq(i);

K(Ext(i,1),Ext(1,1)) =K(Ext(i,1l),Ext(i,1)) +K_ eq(i);
K(Ext (i, 1),Ext(i,1)+1)=K(Ext(i,1),Ext(i,1)+1)-K _eqg(i);

K(Ext(i,1)+1,Ext(i,1)) =K(Ext(i,1)+1,Ext(i,1)) -K_ eqg(i);
K(Ext (i,1)+1,Ext(i,1)+1)=K(Ext(i,1)+1,Ext(i,1)+1)+K_eq(i);

end
K;

K(2,2)=K(2,2)+K_t/K_eq(l); Cantribution of the elastic foundation to the
averall stiffness matrix.

I=double(I); [Rg*m*2].

K=double (K) ; [N*m] .
1< KA 4 O
Solution of the &1 nvalue problem for natural frequencies

I _inv=inv(I);

H =I_inv*K;

for i=l:length(Ctr)

H(Ctr(i)-i+1,:)=I[1;
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H(:,Ctr(i)-1+1)=1[1:

end
E=eig (H);
T e, T
Omega_tl-sqrt () /(2*pi); % Toralen frequenciss wactor, w's [Hzl.
Omega_tl=min(double (Omega_tl)); Fundamental torsion frequency, wl [Hz]
fprintf ('\n Uncoupled Torsion Frequency: Omega_a = -g Hz ‘n',Omega_tl)
e e e e e e e o o e R S R e ok T e o o Rk e e e o
.................. -k T O O S T e T TR .
——————————— FLUTTER SUBROUTINE------------------- a

function [(Omega_flutter,Q flutter]=Flutter Subroutine(c,b,a,bo,L eff,m,...
Iea,Phi_h,Phi_h_1,Phi_a,Omega_h, ...
Omega_a,Delta_ac,CL_a,Q_fl_max,n_max)

syms vy

WTB=waltbar (0, 'Calculating Flutter Envelcpe...');

. .MATRIX ASSEMBLY. .

Definlition of mass terms [M]:
M hh=int (m* (Phi_h)"*2,y,0,L_eff);
M ha=int (m*b* (Phi h)*(Phi_a),y,0,L_eff);

M ah=M ha;
M aa=int(Iea*(Phi_a)"2,y,0,L_eff);

Befinitien af elastic tewms [K]:
K _hh=(Omega_h) "2*M_hh;
K_aa=(Omega_a) "2*M_aa;

efinition of zercdynamic terms [A]:
A_hh=-CL_a/2*int (c*(Phi_h*Phi_h_1*sin(Delta_ac)-a*Phi_h_ 172+...
(sin(Delta_ac))"2),y,0,L_eff);
A_ha=-CL_a/2*int(c*(Phi_h*Phi_a*cos(Delta_ac) Za¥Phl_h JIWRhY_cathd
sin(Delta_ac) *cos(Delta_ac)),y,0,L eff);
A_ah= CL_a/2*int(c*(a*Phi_h 1*Phi_a*sin(Delta_ac) *cos(Delta_ac)),y,0, ...
L eff);
A_aa= CL_a/2*int(c* (a*Phi_a"2* (cos(Delta_ac))"2),y,0,L_eff);

7, =
ASSEmMY

A ly of equarions of motlcn 1n mz farm:
M 11=M hh*bo"2;

M 12=M_ha*bo;

M 21=M_ah*bo;

M 22=M aa;

K_11=K_hh*bo"2;

K 12=0;

K 21=0;

K_22=K_aa;

A_11=A_hh*bo"2;
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A_12=A _ha*bo;
A 21=A ah*bo;
A _22=A aa;

=[M_11 M_12;

step_g=0Q_ fl max/n_max; Step for dynamic pressure.
Q_flutter=zeros(n_max,1);
Omega_flutter=zeros(n_max,2);

for i=1:n max
waitbar (i/n_max, WTB)

g=0:step_q:Q fl max;
a=q{i);

D 11=K 11-g*A_11;
D_12=K_12-g*A_12;
D_21=K_21-g*A_21;
D 22=K 22-q*A 22;

Sclving the characteristic eguation:
A=M 11*M_22-M 12*M 21;
B=-D_11*M 22-D 22*M 11+D_21*M_12+D 12*M 21;
C=D_11*D_22-D_12*D_21;

A=double (A)
B=double (B) :
C=double(C):

rootl=(-B+sqrt (B"2-4*A*C) )/ (2*A);
root2=(-B-sqrt (B*"2-4*A*C)) /(2*A);

Omega_flutter (i, 1l)=sqrt(rootl)/(2*pi);
Omega_flutter (i, 2)=sqrt(root2)/(2*pi):
Q flutter(i)=q;

end

close (WTB)

R R R RS R N I ok ok E ok O R R R R R R R R R EE SRR

-~ ~DIVERGENCE SUBROUTINE- - - —---v oo o

function [Q divergence]=Divergence_Subroutine(c,b,a,bo,L eff,m, Iea, ...
. Phi h,Phi_h 1,Phi_a,Omega_h,Omega_a,Delta ac,...
CL_a,Q fl max,n_max) -
sSyms vy
WTB=waitbar (0, 'Calculating Divergence...');

__________________ coo-.....MATRI* ASSEMBLY

Definition of mass terms [M]:
M_hh=int(m*(Phi_h)A2,y,O,L_eff);
M_ha=int(m*b*(Phi_h)*(Phi_a),y,O,L_eff);
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M ah=M_ha;
M _aa=int (Iea* (Phi_a)"2,y,0,L_eff);

@

Definition of elastic terms [K]:
K_hh=(Omega_h) “2*M hh;
K_aa=(Omega_a) "2*M_aa;

Definition of aerodynamic terms [A]:
A_hh= CL_a/2*int(c*(Phi_h*Phi_h l*sin(Delta_ac)+a*Phi_h_172*...
(sin(Delta_ac))A2),y,O,L_eff);
A _ha=-CL_a/2*int (c* (Phi_h*Phi_a*cos(Delta_ac) +a*Phi_h_1*Phi_a*...
sin(Delta_ac)*cos(Delta_ac)),y,O,L_eff);
A_ah=-CL _a/2*int(c*(a*Phi_h 1*Phi a*sin(Delta ac)*cos(Delta_ac)),y,0,...
L_eff);
A_aa=-CL_a/2*int(c* (a*Phi_a”"2* (cos(Delta_ac))"2),y,0,L_eff);
Assembly of equations of motion in matrix form:
K_11=K_hh*bo"2;
K 12=0;
K 21=0;
K_22=K_aa;

A_11=A hh*bo"2;
A _12=A ha*bo;
A_21=A ah*bo;
A 22=A aa;

K=[K_11 K_12; K_21 K_22];
A=[A_11 A_12; A_21 A_22];

% Solving the characteristic equation, (D]=[K]-g*[A]:

A=A _11*A 22-A 12*A_21;
B=-K_11*A 22-K_22*A 11;
C=K_11*K_22;

A=double(A) ;
B=double (B) ;
C=double (C) ;

Q divergence_l=(-B+sqrt (B"2-4*A*C))/(2*A);
Q_divergence_2=(-B-sqrt(B"2-4*A*C))/(2*A);

Q_divergence=abs (Q_divergence_1);

close (WTB)

Gk ok ko kohokodk ok ok ohodkok ok ok ok kok ok ok k ko ko ok ok ok ok ok ok ok ok ok ok kR ok ko ok ko k ko ko ke ok ok ko ok ok ok ok ok ok ek ok ok R ok ok ok ok ok ok

Gk ok hh hkkkh ok k ok kd khh k kA ok hh kb kb hk k kk ok kh kk ko kk kk ok ko b kok ok hoh ok kk ok ok ok kb ko kb kb b ohd ok d &

Phil=(y/L_eff)"2; Admissible functions, Phi(y).
Phi2=1-cos (pi*y/(2*L_eff));

Phil 1=diff (Phil,y); o 1lst. spatial derivatives.
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Phi2_1=diff (Phi2,y);

Phil_2=diff(Phil 1,y); © 2nd. spatial derivatives.
Phi2 2=diff(Phi2 1,vy);

Solution of the eigenvalue problem, which 1s represented by the
expression det ([N]-w"2*[D])=0.

Definition of [N]) matrimx:
N_1l=int (E*Ixx* (Phil _2)"2,y,0,L eff);
N 12=int (E*Ixx*(Phil 2)* (Phi2 2),y,0,L eff);
N _21=N_12; B B B
N_22=int (E*Ixx* (Phi2 2)"2,y,0,L eff);

N=[N_11 N_12; N_21 N_22};
N=double (N) ;

Definition of [D] matrix:
D_1ll=int (m* (Phil)"2,y,0,L_eff);
D_12=int (m* (Phil) * (Phi2),y,0,L eff);
D 21=D_12;
D_22=int (m* (Phi2)"2,y,0,L_eff);

D=[D_11 D_12;D_21 D_22];
D=double (D) ;

Solution of the characteristic equation;
AA=D 11*D 22-D_12"2;
BB=2*N_12*D_12-N_11*D_22-D_11*N_22;
CC=N_11*N_22-N_12"2;

DD=BB"2-4*AA*CC;

CUTBUT s s =500 a0 s 5s 55 0 855 552 05 s baa a2 o
Omega_bl=sqrt ((-BB-sqrt (DD))/ (2*AA))/ (2*pi); 1zt kending freqguency, [Hz].
Omega_b2=sqrt ((-BB+sqrt (DD) )/ (2*AA))/(2*pi); Znd kending frequency, (Hz].

Omega_bl=double (Omega_bl);
Omega_b2=double (Omega_b?2) ;

R R R e R R R ]

——————————————— TORSIONAL FREQUENCY BY RAYLEIGH-RITZ METHOD-----------w-—-—-

e T R e R R R Rl O T T S T O 20 U W S S N O S S SO e

function [Omega_t1]=TF_RRM(L_eff,G,J, Iea)

e ol 0o Moo o R Mo e BDMIEZSIELE FUNCTION

Thetal=(y/L_eff);
Theta2=sin(pi*y/(2*L_eff));

Thetal 1=diff (Thetal,y); “ 1st. spati1al derivatives.
)i

Solution of the =igenvalue problem, which 13
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expression det ((D] " (-1)*[N]-w"2*[I])=0.

% Definition of [N] matrix:
N_11=int (G*J* (Thetal_1)"2,y,0,L eff);

N_12=int (G*J* (Thetal 1)* (Theta2 1),y,0,L eff);

N_21=N_12;
N_22=int (G*J*(Theta2_1)"2,y,0,L eff);

N=[N_11 N_12; N 21 N _22};
N=double (N) ;

Definition of (D) matrix:
D_1ll=int(Iea*(Thetal)"2,y,0,L_eff);
D_12=int (Iea*(Thetal) * (Theta2),y,0,L_eff);
D_21=D_12;

D_22=int (Iea* (Theta2)"2,y,0,L_eff);

D=[D_11 D 12;D_21 D_22];
D=double (D) ;

Scolution of the characteristic eguation;
AA=D 11*D 22-D 12"2;
BB=2*N_12*D 12-N_11*D_22-D_11*N_22;
CC=N_11*N_22-N_12"2;
DD=BB"2-4*AA*CC;

Omega_tl=sqgrt((-BB-sqrt (DD)
Omega_t2=sqrt ((-BB+sqrt (DD)

)/
)/

Omega_tl=double (Omega_t1l);
Omega_t2=double (Omega_t2) ;

(2*AR)) / (2*pi) ;
(2*ARD)) / (2*p1);

lst torsion fregquency,
Znd torsion frequency,

dok ok ko ok ok b ok b ok ok kK ok ok ok kb ok ok ok Ak ok ok ok Kk ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ko ko k ok ok ok ok ok ok ok k ok ko ok K ok Xk ko k k & ok ok ok ko
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