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ABSTRACT 

Author: Horacio Esteban Sepic Kriskovich 

Title: The Effects of Elasticity in the Foundation on the Flutter of a Metallic High 

Aspect Ratio Wing 

Institution: Embry-Riddle Aeronautical University 

Degree: Master of Science in Aerospace Engineering 

Year: 2009 

The goal of this thesis is to study the flutter characteristics of a metallic high-

aspect ratio wing, with linearly varying chord across the semis-span, and a simulated 

elastic foundation. The general planform of the wing is similar to the one found in a High-

Altitude Long-Endurance Uninhabited Aerial Surveillance Vehicle (HALE USAV). 

The problem is studied using a simplified aerodynamic loading based on thin-airfoil 

theory, which is then combined with a Lagrangian formulation to solve the system as 

stationary. The wing has no control surfaces or external stores, and is modeled as a 

uniform beam with known mechanical properties, being attached to a combination of 

torsion springs at the root to reproduce the elastic foundation. 

The analysis of the problem includes the development of a Matlab code, which 

permits different root conditions to be defined, and computes the flutter speed and 

frequency, outputting information in the form of plots and data lists, making the analysis 

easy to follow. 
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1. INTRODUCTION 

The study and understanding of the flutter characteristics of a wing is extremely 

important during the aircraft design process. This structural dynamics phenomenon is 

responsible for limiting the flight speed due to its unstable nature, and represents a 

potentially catastrophic condition if not taken properly into account. 

Flutter is understood as the harmonic oscillations of a structural member as a 

result of its interaction with the surrounding fluid stream. In the case of wing flutter, the 

wing is subjected to aerodynamic loads as it moves into the airstream, and the critical 

condition appears when harmonic oscillations for bending and torsion are coupled with no 

damping. At this particular point, any increase in the airspeed will introduce an increase in 

the amplitude of oscillations, making the structure unstable and leading to the risks which 

this represents. When the airspeed has met this point, the structure is said to reach its 

critical flutter speed. 

The flutter phenomenon related to aircraft structures has been studied for many 

years, for almost all different types of wing configurations and airspeed regimes such as 

subsonic incompressible flow (sailplanes, general aviation aircraft, etc.), transonic 

compressible flow (high speed turboprops, jet liners, propeller and turbo machinery 

blades, etc.), supersonic compressible flow with the effects of temperature (jet fighters 

and jet liners, missiles, etc.), and hypersonic compressible flow with heat interaction for 

space reentry vehicles. 

In the classical theoretical approach for the flutter of a cantilever wing, the wing's 

root boundary conditions are typically fixed constraints requiring all displacements and 

rotations at the boundary to be zero with no damping. These conditions make solution to 

the problem tractable and complete. 
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Using this classical approach and a simplified aerodynamic load, the flutter of a 

uniform cantilever wing was studied by the author of this report in a previous work [1] 

(using a similar model to the one developed by Dhainaut [2] to study the aeroelastic 

behavior of sweep wings) that was validated with results obtained by Goland [3] in his 

work on the flutter of a uniform wing. 

For the case under consideration, a Lagrangian formulation is employed to 

formulate the equations of motion of the system according to the formulation used by the 

author [1] and Dhainaut [2]. In this report, a Matlab code has been developed to calculate 

the flutter boundary for the problem based on the previous works of Dhainaut [2] and the 

author [1], which has the ability to introduce the effects of an elastic foundation by 

combining torsion springs located at the root of the wing, as well as analyzing the problem 

with an ideal clamp. 

The idea of studying the aeroelastic behavior of a wing with elastic foundation is 

not new, as the work done by De Baets, Battoo and Mavris [4] studying the root flexibility 

effects on the aeroelastic characteristics of a uniform high-aspect ratio composite 

wingbox, simulating the elastic root with a beam element (DBE2). 

As part of this work, a similar idea has been taken into account to simulate the root 

flexibility for the actual problem by employing a combination of torsion springs located at 

the wing's elastic axis, instead of a beam. However, the case under study corresponds to 

a metallic high-aspect ratio wing, with linearly varying chord (due to the wing's tapper 

ratio) and, therefore, all mass, mechanical and geometrical properties vary along the 

semi-span, which adds to the complexity of the problem. 

The Matlab code developed for this work enables the user to analyze the problem 

using either clamped or elastic roots, which allows validation of classical clamped cases. 

For the elastic foundation however, the available sources to this type of problems are 

limited, and in the particular case of root flexibility on a subsonic metallic high-aspect ratio 
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wing, with varying properties along the semi-span, there is no reference available to the 

best of the author's knowledge. 

For this reason, the construction of a wind tunnel model would be an enormous 

tool to obtain data that made validation possible, in a similar way that Dhainaut, Desmond 

and Gangadharan [5] validated their results for a uniform model wing in a low-speed wind 

tunnel. 

A scaled model for this purpose could be easily modeled in CATIA and machined 

with the Komo 3D CNC router at the ERAU Manufacturing Laboratory. Also the Wind 

Tunnel Laboratory facility available at ERAU could be used to test the model, .and 

considering that the university counts with different measuring devices, a similar task to 

the work done by De Marqui Junior, Rebolho, Belo and Marques [5], where the flutter 

parameters of a uniform wing model were identified during wind tunnel testing by using a 

combination of strain gages and accelerometers mounted in a flexible mounting structure, 

might be considered as a model instrumentation option. 

The main purpose of this current work is to develop a preliminary design tool to 

study the flutter behavior of general-shaped subsonic wings and, if future work permits, 

validate this tool via comparison with a low-speed wind tunnel model. 
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2. THE STUDY MODEL 

The proposed case of study has its application on the relatively new High-Altitude 

Long-Endurance Uninhabited Aerial Surveillance Vehicle (HALE USAV) RQ-4 Block 20 

Global Hawk manufactured by Northrop-Grumman in the United States of America. 

This aircraft's main role is surveillance, and it has been serving the US Armed 

Forces and Intelligence services since it was first deployed in the late 90's. 

The Global Hawk has a low-mounted, high aspect ratio, linearly tapered cantilever 

wing, with a clean semi-span length of nearly 20 m, which serves as a high-surface, low-

drag wing plan form ideal for high-altitude missions with extended periods of operation. 

Although most of the general characteristics of this HALE USAV aircraft are 

known, for the purpose of this work a simplified model of this wing is introduced by the 

author with some particular characteristics to make the approach of the problem easier, 

thus a solid model is chosen reducing enormously the modeling task, and focusing strictly 

on the flutter problem. 

Based on the previous data, the new conceptual aircraft was modeled in CATIA by 

the author, with the following characteristics: 

Specifications: HALE USAV 

Wingspan 131.2 ft (40 m) 

Length 47.6 ft (14.5 m) 

Height 15.4 ft (4.7 m) 

Max Take-Off Weight (MTOW) 32,500 lb (14,736 Kg) 

Max Fuel Weight (MFW) 14,500 lb (6,575 Kg) 

Cruise Altitude (Hcr) 32,800 ft (10.0 Km) 

Cruise Velocity (Vcr) 343 KTAS (635 Km/h) 
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Wing: 

Wingspan (bw) 131.2 ft (40 m) 

Root Chord (cr) 8.20 ft (2.5 m) 

Tip Chord (c,) 2.95 ft (0.9 m) 

Mean Geometric Chord (MGC) 5.58 ft (1.7 m) 

Wing Surface (Sw) 732 ft2 (68 m2) 

Aspect Ratio (AR) 23.53 

Tapper Ratio (A) 0.36 

AC line sweep back angle (AAC) 6° 

The following pictures correspond to this conceptual aircraft modeled in CATIA: 

Figure 2a: A view of the HALE USAV. 

Figure 2b: The conceptual HALE USAV CATIA model. 
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It was stated above that the first step is to consider an airfoil for the wing that 

allows meeting the operational requirements as close as possible for the design condition 

In the case under consideration, the design condition is the cruise condition, that is 

[S =68w2 

(2-1) 

MFW 
Wu = MTOW — = 11,448 5Kg 

Vcr=634 6Km/h = l76 3m/s 

Hcr=l0,000m 

pa = 0 4127Kg /m3 

fiu = 0 00001457A^ lm-
* 

In the expression 2-1, the new parameters introduced are Wcr (average cruise 

weight), pcr (cruise air density, according to ISA [11] and [17]) and pcr (cruise air viscosity, 

from [11] and [17]) From basic Aerodynamics [7], the lift of an aircraft while flying level 

and steady can be expressed as 

L = W =±-^V 2S CT 
a /-y cr w L-

(2-2) 

Substituting data from expression 2-1 into 2-2 and solving for the aircraft lift 

coefficient it yields 

C._-25^.02575 
P v -
rcr cr 

'L a (2-3) 

Since the wing has a large aspect ratio (>23), the 3-D effects may be neglected, 

and the local lift coefficient (airfoil design lift coefficient) may be taken as the wing's lift 

coefficient (cruise lift coefficient for the aircraft), thus 

c,. design an foil 
= CL_cr= 0 2575 (2-4) 

The Mean Aerodynamic Chord (MAC) is defined as the follows [7] 

~ A/2 

MAC = — \c(y)2dy (2-5) 
' » o 
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The new wing's chord distribution is expressed in meters as: 

(2-6) c(y) = 2.50-OMy 

Substituting expression 2-6 into 2-5, it yields: 

MAC = l.S25m (2-7) 

Having calculated the airfoil lift coefficient, for simplicity a symmetric airfoil will be 

chosen, thus avoiding the introduction of the wing off set angle; the cruise Reynolds 

number at MAC is: 

Re=P^rMAC = 9U4e6 
(2-8) 

With the design lift coefficient and the Reynolds number for the defined condition, 

the choice of the airfoil is narrowed to 6-series airfoil, since it presents a region where, for 

a particular lift coefficient, the drag coefficient is comparatively low (the so called laminar 

bucket). After a basic search through [12], the selected airfoil is the NACA 63 r012, with 

the following characteristics: 
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Figure 2c: Airfoil lift and polar curves [12]. 
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From these curves, at the desired lift coefficient (Q), drag coefficient (Cd), angle of 

attack (AOA), the ratio C/ Cd, and the lift slope of the airfoil (Cte) are obtained: 

C,_cr= 0.2575 @AOA--

Cl-cr/c • 42.92 

C / t t= 6.446 Irad 

= 2.6° => Q D 0.006 

From the previous expression, it can be seen that the drag coefficient is much 

smaller than the lift coefficient, and therefore, it can be neglected, leaving aerodynamic 

forces due to lift only. Additionally, according to the work done by Dhainaut, Desmond and 

Gangadharan [5], the aerodynamic moment is also neglected. 

As the general geometry of the wing has been already introduced, the following 

step is to model the wing in CATIA, which will allow having a detailed 3-D model that will 

be later imported to NASTRAN to obtain the cross sectional properties and to validate the 

free vibration analysis. 
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2.1. The Wing Model 

The airfoil's geometry from [12] was used to model the wing in CATIA; the 

following table gives the geometrical coordinates: 

X 

(per cent c) 

0 
0 5 
0 76 
126 
2 6 

6 0 
7 5 

10 
15 
20 

25 
30 
36 
40 
45 

50 
55 
60 
65 
70 

75 
80 
85 
90 
05 

100 

V 
(per cent e) 

0 
0 086 
1.104 
1610 
2102 

2925 
3.542 
1030 
4 700 
5342 

5 712 
5030 
6000 
5920 
5704 

5 370 
4 935 
4420 
3840 
3210 

2556 
1002 
1274 
0 707 
0250 

0 

(f/n2 

0 
0 750 
0.025 
1005 
1129 

1217 
1261 
1294 
1330 
1340 

1362 
1370 
1366 
1348 
1317 

1276 
1229 
1181 
1131 
1076 

1023 
0060 
0920 
0 871 
0 826 

0 701 

v/V 

0 
0 866 
0 062 
1003 
1063 

1103 
1 123 
1138 
1 163 
1 161 

1167 
1170 
11G9 
1 161 
1148 

1 130 
1109 
1087 
1063 
1037 

1011 
0084 
0 059 
0933 
0 909 

0889 

toJV 

2 336 
1606 
1513 
1266 
0 033 

0682 
0 550 
0 484 
0 387 
0 326 

0283 
0 249 
0.221 
0106 
0 174 

0165 
0137 
0121 
0 108 
0091 

0 079 
0 067 
0055 
0042 
0.029 

0 

L.E radius. 1 087 per cent e 

NACA 63i-012 Basic Thickness Form 

Figure 2.1a: Airfoil coordinates [12]. 

With this geometry an Excel file is created which is imported to CATIA to get the 

basic profile to make the solid model. 

The CATIA model has the following characteristics: 

Semi-span (bJ2) 20.00 m 

Root Chord (cf) 2.50 m 

Tip Chord (ct) 0.90 m 

Root maximum thickness {tr-max) 0.30 m 

Tip maximum thickness {tt.max) 0.108 m 

Mean Geometric Chord {MGC) 1.70 m 

Mean Aerodynamic Chord (MAC) 1.825 m 
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Aspect Ratio (AR) 23.53 

Tapper Ratio (A) 0.36 

AC line sweep back angle (AAC) 6° 

LE line sweep back angle (ALE) 7.19° 

TE line sweep back angle (ATE) 2.65° 

The next two figures show the drawing and a general isometric view (both 

obtained from CATIA) respectively: 

2.5 m 

Figure 2.1b: Half-wing general drawing. 

Figure 2.1c: Isometric view. 

After the creation of the CATIA model, the semi-wing is divided into 5 stations 

upon which the cross-sectional properties will be computed from NASTRAN. Each station 

is created as a solid for the corresponding span-wise station, and saved as igs format files 

to be imported from NASTRAN. The location of these spanwise stations is detailed in 

table 2.1-2 (see following pages). 

The coordinate system to create the model in CATIA is shown in the next figure: 
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• 

I 

* 

Station 1 
Station 2 

I 
; — - — — 

• 

i 

Figure 2.1 d: Wing's coordinate system from CATIA and spanwise stations. 

The accuracy of the computation of cross-sectional properties as function of the 

semi-span coordinate depends on the number of cross-sectional stations chosen. After a 

trial and error selection, the number of cross-sectional station was fixed to five, which 

provides enough accuracy to compute these varying properties, which at the most have 

the shape of a third grade polynomial function. 

The geometric properties for each of the cross-sectional stations, as they are 

calculated from NASTRAN, are presented below (in the following data the suffixes y and z 

indicate local orientation for cross sectional elements, not being related to the global 

coordinate system of the wing. All units are SI system): 

STATION 01 

Orientation of Section Properties: 

Origin: 
Y Axis: 
Z Axis: 

X= 
x= 
x= 

0. 
1. 
0. 

Y = 
Y = 
Y = 

Section Properties: 

Area 
Centroid (from Origin): 
Moment of Inertia: 
Iyz= 0. 
Principal Moment of Inertia: 
Radius of Gyration: 
Angle to Principal Axes: 
Polar Moment of Inertia: 
Shear Center (from Origin): 
Shear Center (from Centroid): 
Shear Area: 
Torsional Constant: 
Warping Constant: 

A= 
cy= 
Iyy= 

11 = 
Ry= 
Ang= 
Ip= 
SCy= 
SCy= 
Asy= 
J= 
W= 

0. z = 
0. z= 
0. z= 

0.47161 
1.01991 
0.0023897 

0.1385 
0.071183 
-8.44797E-9 
0.14089 
0.88854 
-0.13137 
0.44148 
0.0093632 
0.00033995 

0. 
0. 
1. 

Cz= 6.43838E-11 
Izz= 0.1385 

12= 0.0023897 
Rz= 0.54191 

SCz= -1.5298E-6 
SCz= -1.5298E-6 
Asz= 0.17417 
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STATION 02 

Orientation of Section Properties: 

Origin: X= 0. Y= 
Y Axis: X= 1. y= 
Z Axis: X= 0. Y= 

Section Properties: 

Area A= 
Centroid (from Origin): Cy= 
Moment of Inertia: lyy= 
Iyz= 1.67603E-10 
Principal Moment of Inertia: 11= 
Radius of Gyration: Ry= 
Angle to Principal Axes: Ang= 1 
Polar Moment of Inertia: Ip= 
Shear Center (from Origin) : SCy: 

Shear Center (from Centroid) : SCy: 

Shear Area: Asy: 

Torsional Constant: J= 
Warping Constant: W= 

0. Z= 
0. Z= 
0. Z= 

0.33277 
0.85672 
0.0011897 

0.068953 
0.059794 

4171E-7 
0.070143 
0.74637 
-0.11035 
0.31151 
0.0046616 
0.00012015 

0. 
0. 
1. 

Cz= -7.70955E-10 
Izz= 0.068953 

12= 0.0011897 
Rz= 0.4552 

SCz= -1.2718E-6 
SCz= -0.000001271 
Asz= 0.12289 

STATION 03 

Orientation of Section 

Origin: X= 0. 
Y Axis: X= 1. 
Z Axis: X= 0. 

Properties: 

Y= 
Y= 
Y= 

0. 
0. 
0. 

z 
z 
z 

Section Properties: 

Area 
Centroid (from Origin): 
Moment of Inertia: 
Iyz= 2.88207E-10 
Principal Moment of Inertia: 
Radius of Gyration: 
Angle to Principal Axes: 
Polar Moment of Inertia: 
Shear Center (from Origin): 
Shear Center (from Centroid): 
Shear Area: 
Torsional Constant: 
Warping Constant: 

A= 0.21807 
Cy= 0.69355 
Iyy= 0.00051094 

Cz= -2.13231E-9 
Izz= 0.029611 

11= 
Ry= 
Ang= 
Ip= 
SCy= 
SCy= 
Asy= 
J= 
W= 

0.029611 
0.048404 
5.6746E-7 
0.030122 
0.60422 
-0.089333 
0.20414 
0.002002 
0.000033602 

12 = 
Rz = 

SCz = 
SCz= 
Asz = 

0, 
0. 

8. 
8, 
0, 

.00051094 

.36849 

.3335E-7 

.3548E-7 

.08054 

STATION 04 

Orientation of Section 

Origin: X= 0. 
Y Axis: X= 1. 
Z Axis: X= 0. 

Properties: 

Y= 
Y= 
Y= 

0. 
0. 
0. 

Z 
Z 
Z 

0. 
0. 
1. 

Section Properties: 

Area 

Centroid (from Origin): 
Moment of Inertia: 
Iyz= 0. 

A= 0.12752 
Cy= 0.53036 
Iyy= 0.00017472 

Cz= 4.57334E-11 
Izz= 0.010126 
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Principal Moment of Inertia: 11= 0.010126 
Radius of Gyration: Ry= 0.037015 
Angle to Principal Axes: Ang= -8.2594E-9 
Polar Moment of Inertia: Ip= 0.010301 
Shear Center (from Origin): SCy= 0.46205 
Shear Center (from Centroid): SCy= -0.068311 
Shear Area: 
Torsional Constant: j= 
Warping Constant: w= 

Asy= 0.11937 
0.00068462 
0.0000067419 

STATION 05 

O r i e n t a t i o n of S e c t i o n 

O r i g i n : X= 0. 
Y A x i s : X= 1 . 
Z A x i s : X= 0. 

P r o p e r t i e s : 

Y= 
Y= 
Y= 

0 . 
0 . 
0 . 

Z 
Z 
Z 

Section Properties: 

Area 
Centroid (from Origin): 
Moment of Inertia: 
Iyz= -1.32527E-12 

Principal Moment of Inertia: 
Radius of Gyration: 
Angle to Principal Axes: 
Polar Moment of Inertia: 
Shear Center (from Origin): 
Shear Center (from Centroid) 
Shear Area: 
Torsional Constant: 
Warping Constant: 

A= 0.06112 
Cy= 0.36717 
Iyy= 0.000040136 

11= 0.0023261 
Ry= 0.025626 
Ang= -3.32169E-8 
Ip= 0.0023662 
SCy= 0.31988 
SCy= -0.047293 
Asy= 0.057215 
J= 0.00015727 
W= 0.0000007398 

12= 0.00017472 
Rz= 0.28179 

SCz= -9.11391E-7 
SCz= -9.11437E-7 
Asz= 0.047097 

0. 
0. 
1. 

Cz= 1.55445E-9 
Izz= 0.0023261 

12= 0.000040136 
Rz= 0.19508 

SCz= -6.15603E-7 
SCz= -6.17158E-7 
Asz= 0.022573 

In this work, the study model of the wing consists of a solid piece of metal 

out of aluminum 2024 T351, with the following characteristics: 

Table 2.1-1: Wing's general data 

c-root [m] 

c-tip [m] 

b/2 [m] 

Material 

Density [kg/m3] 

E[Pa] 

G[Pa] 

n 

Airfoil 

AC [x/c] 

CL-alpha [1/rad] 

2.500 

0.900 

20.000 

Al 2024 T351 

2.765E+03 

7.385E+10 

2.870E+10 

0.33 

NACA 63r012 

0.265 

6.446 



Based on table 2.1-1 and the data for the cross-sectional stations calculated from 

NASTRAN, the following tables are obtained: 

Table 2.1-2: Cross-sectional properties 

Station 

y[m] 
c[m] 

L[m2] 

m [kg/m] 

Ixx [m4] 

Ip [m4] 

J [m4] 

Cx [m] LE 

SCx [m] LE 

SCx - Cx [m] 

b=Cx - SCx [m] 

kac [m] LE 

|a=CSx - Xac [m] 

Elxx [N*m2] 

GJ [N*m2] 

GJ/Elxx 

1 

0 

2.50 

4.716E-01 

1304.00 

2.390E-03 

1.409E-01 

9.363E-03 

1.020E+00 

8.885E-01 

-1.314E-01 

1.314E-01 

6.625E-01 

2.260E-01 

1.765E+08 

2.687E+08 

1.523 

2 

5 

2.10 

3.328E-01 

920.11 

1.190E-03 

7.014E-02 

4.662E-03 

8.567E-01 

7.464E-01 

-1.104E-01 

1.104E-01 

5.565E-01 

1.899E-01 

8.786E+07 

1.338E+08 

1.523 

3 

10 

1.70 

2.181E-01 

602.96 

5.109E-04 

3.012E-02 

2.002E-03 

6.936E-01 

6.042E-01 

-8.933E-02 

8.933E-02 

4.505E-01 

1.537E-01 

3.773E+07 

5.746E+07 

1.523 

4 

15 

1.30 

1.275E-01 

352.59 

1.747E-04 

1.030E-02 

6.846E-04 

5.304E-01 

4.621 E-01 

-6.831 E-02 

6.831 E-02 

3.445E-01 

1.176E-01 

1.290E+07 

1.965E+07 

1.523 

5 

20 

0.90 

6.112E-02 

169.00 

4.014E-05 

2.366E-03 

1.573E-04 

3.672E-01 

3.199E-01 

-4.729E-02 

4.729E-02 

2.385E-01 

8.138E-02 

2.964E+06| 

4.514E+06 

1.523 

From table 2.1-2 it can be seen the semi-span varying properties: moments of 

inertia and torsion constant, chord, area and mass per unit length, location of EA, AC and 

CG, etc. With this data, the following plots are obtained from Excel, showing the 

distribution along the semi-span of all these properties: 
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From figure 2.1e, the distributions of chord (c), mass unbalance (b, distance from 

CG to EA) and aerodynamic unbalance (a, distance from AC to EA) are obtained (all 

values in [m]): 

c(y) = 2.5-0.08y 

Z>Cy) = 0.1314-4.203e-3j; 

a(y) = 0.226-7.233e~3y 

(2.1-1) 

From figure 2.1f, the distribution of cross-sectional area (A) is obtained (all values 

in [m2]): 

A(y) = 4.8290e-y -3M8e-2y + 4.7l6e-1 
(2.1-2) 

From figure 2.1g, the distribution of mass per unit length (m) is given by (all 

values in [Kg/m]): 

m(y) = 1.335y2 -83A6y +1304 (2.1-3) 

From figure 2.1 h, the distributions of location from LE for EA, AC and CG are 

expressed as (all values in [m]): 

xEA (y) = -2.843e'2y + 8.885e 

xCG{y) = -0.0326y + \.0\99 

xAC(y) = -0.0212^ + 0.6625 

- i 

(2.1-4) 

From figure 2.1i, the distributions of moment of inertia (lxx), torsional constant (J) 

and polar moment of inertia (/p) are given as (all values in [m4]): 

Ixx(y) = -2.l3le-1y3 + l.346e'5y2-3.0l4e-Ay + 2.389e-3 

J(y) = -8.346e_V + 5.273e'5y2 -1.18 le^y + 9.361e"3 

^ ( 7 ) = -1.256e-y + 7 . 9 3 4 e y -1.777e_> + 1.409e" 

(2.1-5) 

Finally, from figure 2.1j, the distributions of bending rigidity (E/Xx) and torsional 

rigidity (GJ) axe (all values in [Nm2]): 

EIxx(y) = -1.574e4y3 +9.939e5y2 -2.226e7y + \.7642e* 

GJ(y) = -2.395eV + 1.513e6y2 - 3.389e7>> + 2.6879e8 
(2.1-6) 
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3. FORMULATION OF EQUATIONS OF MOTION 

Consider current wing's planform is sketched in the following figure, where the 

coordinate system is aligned with the EA (similar approach used in [1] by the author and 

[2] by Dhainaut): 

k z 

l« 

LE 

TE 

V 

I Free Stream 

V | 

Elastic Axis"—"_—————^rrr^—-——____ 

1 

i 

X 

—_ Effective Length 
— ___ A Elastic Axis 

* ' Sweep Back Angle 

Figure 3a: Wing's planform and coordinate system. 

Any deformation is then referenced to the elastic axis, and described by two 

quantities: bending and pitching about this axis. The sweep back angle of the elastic axis 

(EA) is referred as A. At any span-wise location, these quantities can be denoted by a set 

of generalized coordinates: 

h(yj) = b0fa(y)qh(t)\ 

a()'*t) = fa(y)<!a(t) | 

where: 

• qh(t): generalized coordinate for bending as function of time. 

• qa(t): generalized coordinate for torsion as function of time. 

• ^h(y)' shape function of deformation for bending [m]. 

• @a(y)'- shape function of deformation for torsion [racf]. 

• b0: reference length [m\. 
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3.1. Aerodynamic Forces 

The aerodynamic loads will be treated by means of the Strip-Theory [7], which 

states that for any arbitrary span-wise station (Ay), the aerodynamic lift force (AL) can be 

expressed by 

AL = QSlaaTcAy (3 1-1) 

where 

• Qco free stream dynamic pressure [Pa] 

• c local chord [m] 

• C/a local aerodynamic lift slope [1/rad] 

• otT streamwise angle of attack (AOA) [rad\ 

Assuming semi-rigid chord-wise segments, it is derived from figure 3b that the 

streamwise AOA resulting from elastic deformation is made out of a component due to 

pitch, and another one due to bending slope, as follows 

A d h A aT = a cos AH-—sin A 
dy 

(3.1-2) 

Where A , is the wing's sweepback angle of the aerodynamic center line 

Figure 3.1a: Streamwise AOA [2 
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Substituting expression 3.1-2 into expression 3.1-1, integrating across the semi-

span's effective length (/eff) and dividing by two, the aerodynamic lift force is obtained for 

half-wing: 

I . n r k T p)h 1 I 
(3.1-3) 

In the previous expression, the effective semi-span length is: 

i , ^ 1 1 
Veff 

cos A 
(3.1-4) 

Now some empirical correction factor must be introduced in order to compute the 

wing's lift coefficient (CLa) as accurately as possible. For a subsonic wing (M<0.85) a fairly 

enough approximation for a three-dimensional wing is given by [7] as follows: 

(3.1-5) cLa 

1 + 1 h 
xAR 

'' nAR/ 
v /C,a 

cosA^c 1 
Recalling the semi-rigid assumption for streamwise segments, the moment 

produced by the lift about the elastic axis, unaffected by wing deformations, is: 

MEA=La (3.1-6) 

Where a is the distance between the aerodynamic center (AC) and the elastic axis 

(EA) as shown in the following figure: 

a b 

Figure 3.1b: Airfoil cross-section and aerodynamic forces diagram. 
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It is to be noted that only the influence of the aerodynamic lift force is considered 

for the analysis while the drag and moment are neglected. 

The generalized non-conservative force term for Lagrange's equations of motion 

can be derived by applying the principle of virtual work. Thus the partial work done by the 

aerodynamic lift force is: 

WK=--(8zAC) = --5(h-aaT) (3.1-7) 

Substituting expressions 3-1, 3.1-2 and 3.1-3 into 3.1-7, it yields: 

swNC = 
Q,ci La semiwing 

c< -S^h dy \dy 
sin A + 

••-5qhqa 
dA 

</>h0a cos A - a —— </>a sin A cos A + 

a——S sin A cos A 
dy Ya 

- + $<la<lh 

- + ^ < ? a [ ^ a C O s 2 A ] } ^ ; 

(3.1-8) 

3.2. Kinetic Energy 

While the wing is in motion the total kinetic energy ([J/m]) per unit span can be 

written as: 

K =—mv2+—Ia)2 

e 2 2 
(3.2-1) 

Where the terms involved represent the kinetic energy due to bending and torsion 

respectively. Integrating the previous expression across the semi-span's effective length 

(IJ, it yields: 

Ke=- \m{h + bd)2dy + - \lccd2dy (3.2-2) 
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where: 

• m : wing's mass per unit length [Kg/m]. 

• h: bending velocity [m/s]. 

• b: distance from center of mass (CG) to elastic axis (EA) [m]. 

• a : pitching velocity [rad/s]. 

• ICG : wing's mass moment of inertia per unit length [Kg*m]. 

Substituting expression 4-1 into 4.2-2, the total kinetic energy per unit span is: 

-i lcff 1 hff _ 

Ke=- ^m^b2ql(/>2+2bb0qhqJh^ \lccq2J2dy (3.2-3) 

3.3. Potential Energy 

The strain energy ([J/m]) per unit span can be written as the contribution from both 

the uncoupled modes for bending and torsion as follows: 

K=^Khhq2
h+±Kaaq

2
a (3.3-1) 

where: 

Khh=cohMhh and Kaa = (°aMaa 

a)h\ fundamental uncoupled bending frequency [rad/s]. 

cVa- fundamental uncoupled torsion frequency [rad/s]. 

Mhh and Mad- wing's mass terms (see following section). 

Therefore, the total potential energy per unit span can be rewritten as: 
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Ve=\<o2
hMhhql+\colMaaq

2
a (3.3-2) 

3.4 Lagrange's Equation 

The general expression for the Lagrange's equations of motion is: 

dt 
(3.4-1) 

where: 

L = Ke-V„ is the Lagrangian. 

• q,: generalized coordinate. 

• QI-NC
 =

 8W,-NC '• w o r k done by non-conservative forces. 

Combining expressions 3.2-3 and 3.3-2, the Lagrangian becomes: 

(3.4-2) 

Substituting expression 3.4-2 into the left hand side of expression 3.4-1: 

d 

dt 

d 
- » — 

dt 

/ , 7 \ '< 

= ijh \m(b2<f>2
h)dy + qa ]m(b0fyhja)dy 

o o 
V _ lcff 

= qa j(mb2+Icc)<j>tdy + qh \m(b0b<f>h<f>a)dy 
( dl ^ '*• 

d<ia \"1a J (3.4-3) 

dL 2. 

dqh 

dqa 

Identifying terms from the previous expression, the mass matrix for the system is: 
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Iff 

Mhh = \mfidy 
0 

Mha= \mb</>h<f>ady = Mah 

0 

Ka= j(mb2+Icc)fidy 

I LA 

->M= 
M « ^ 0 M « « J 

(3.4-4) 

And the stiffness matrix is: 

'en 

Khh=o>2
h \mt>2

hdy 

Kha -° = Kah 
•en 

Kaa=co;\{mb2
+lccyady 

0 ~̂ 
ICA 

\K] = KhhK o 
0 Km 

(3.4-5) 

The right hand side of the Lagrange's equations of motion has been derived 

previously; therefore, from expression 3.1-8 the aerodynamic loads matrix is assembled 

by identifying the following terms: 

-C 
Ah=-

La semming 

Ana 

A 
Aah 

4 

= 

= 

-C l 

L& I semming 

cLa 

c, 
La 

2 

semming 

2 

I 
\semiwmg 

f 
J 
0 
1.1 

f 

dy 
<f>h-P-sinA-a 

fdj^2 

\dy j 
sin2 A dy 

M <j)h<j>a cos A - a—^A sin A cos A 
dy 

dy 

a——d>„ sin A cos A 

fc[a^cos 2 AJdy 

dy 

-+[A] = 
AahK Aaa 

(3.4-6) 

Combining the matrices from expressions 3.4-4, 3.4-5 and 3.4-6, and rearranging 

for the corresponding degrees of freedom, the equations of motion for the system are 

obtained: 
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3.5. The Flutter Problem 

Assuming a harmonic solution, for the equation in expression 3.4-7, of the form: 

i *. \<lhO \ I M 

kooj 
(3.5-1) 

After rearranging expression 3.4-7, the equations of motion for the problem are: 

{ft}^={o} 
Khhbl - Q*Ahhbl -Q*Ahab0 

-co 
Mhhb, Mhab0 

MaA Maa 

;[[^]-ej^]]-^[M]]{,0}^-{o} (3.5-2) 

The matrix [[K]-Qco[A]] is a function of the dynamic pressure (Q«,). For a given 

value of this dynamic pressure, the stability behavior of the system can be studied by 

solving the eigenvalue problem. As the dynamic pressure increases, the eigenvalues (of) 

for the different modes (in the case under study, the shape modes considered are the first 

uncoupled mode for bending and the first for torsion) merge to a complex conjugate pair 

that leads to an unstable system. The real part of the complex conjugate is the flutter 

uncoupled frequency, while the imaginary part represents the structural damping ratio. 

The transition from stable to unstable defines the flutter boundary, as seen on figure 3.5a: 
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Dynamic Pressure, Q 
Figure 3.5a: Flutter boundary for a two-mode analysis [2]. 

From figure 3.5a, the flutter boundary is established and is represented by a 

particular value for the dynamic pressure (and therefore, flight speed for a given flight 

altitude). At this point, the structure is said to be at the flutter condition, and the motion is 

governed by a combination of bending and torsion modes acting at the same time and 

constant amplitude. Any increase in the dynamic pressure (or flight speed) will turn this 

phenomenon to the unstable region, where the amplitude of motion increases and could 

cause, if not take any corrective action, catastrophic damage to the structure. 

3.6. The Divergence Problem 

The wing divergence is a situation where, at very low angle of attack (AOA) and 

high speed, the pressure centers develop, pushing the front portion of the wing downward 

and the rear portion upward. This aerodynamic twisting effect on the wing structure while 

the rest of the aircraft is following the flight path decreases the AOA even more. The 

action finally exceeds the capability of the wing structure to resist the torsion stress, and 

causes the wing to separate from the airframe with no warning. 
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Once again, semi-rigid chord-wise segments are assumed, but this time the 

divergence state occurs when the term due to bending slope in expression 3.1-2 becomes 

negative: 

A dk ' A I 
aT =a cos A sin A (3.6-1) 

fy 

Substituting expression 3.6-1 into expression 3.1-1, integrating across the semi-

span's effective length and dividing by two, the aerodynamic divergence lift force is 

obtained for half-wing: 

&£ 
0 

A dh . arcosA sinA 
dy 

dy (3.6-2) 

Identically as for section 3.1, the same assumptions apply for the lift coefficient 

and for the moment produced by the lift about the elastic axis: 

(3.6-3) MEA=La 

As before, the influence of the aerodynamic drag force and aerodynamic moment 

are not taken into account here either, according to the theory developed by Dhainaut [2]. 

Substituting expressions 3.6-1, 3.6-2 and 3-1 into expression 3.1-7 results: 

$wNC = 
Q~ct La 

'cjr 
semiwing 

c< s1h<lh 
, d6. . 

dy 

fd_^ 

\dy j 
sin A 

-Sqkqa 
dA 

</>!<!> cos A + a——<j>a sin A cos A 
dy 

+ 

a——6„ sin A cos A 
dy Ya 

•»-8qaqh 

.••-8qaqa\a<l>lcos2 h§dy 

+ 

(3.6-4) 

Recalling the expressions developed in sections 3.2 and 3.3, the kinetic and 

potential energy per unit span are, respectively: 
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1 e'l -I •ejl __ 

Ke=~ lrn[b2q2J2+2bb0qhqJhA+b2q2J2]dy + - jlcoq2J2dy 
1 'eff 

2 
(3.6-5) 

Ve=-4Mhhql+-CD2
aMaaq

2
a (3.6-6) 

In addition, the Lagrange's equation applies to obtain the equations of motion for 

this particular problem. Recalling the Lagrangian from expression 3.4-2, and carrying out 

a similar analysis as in section 4.4, the mass matrix, the stiffness matrix and the 

aerodynamic divergence loads matrix become, respectively: 

•en 

Mhh = \n4ldy 
o 

'-— 
Mha= \mbAAdy = Mah 

0 

l"l _ 

Maa= l(mb2+Ica)</>2dy 

IEA 

>-> [M] = Mhhb
2 MhabQ 

MahK Maa . 
(3.6-7) 

hff 

Khh=®l jmfidy 
0 

Kha = ° = Kah 

Kaa=o>2
a\(mb2+Iccyady 
0 v - -v ' 

IEA J 

—w- Ki,hbl 
0 

0 

Kaa] 
(3.6-8) 

c, A _ i a 

'off 

semiwing j* 
"hh ~ J 

1 0 

-cLa\ .. 
^ La \semming ha ~ 2 

-C 1 
^ La \ semi wing 

Aah ~ 2 

A La \semiwing 

A~—sinA + a 
dy 

{d_A}2 

\dy j 

dA 

sin A dy 

AAC0S^-+a ~ ^ Asul A c o s A 
5y 

dy 

>-> 

a—^-^a sin A cos A 
e/i 

I-
0 

\c\a<fi2 cos2 AJ d>> 

<iy 

M= 4A AA 

(3.6-9) 
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Combining the previous matrices and rearranging for the corresponding degrees of 

freedom, the equations of motion for the divergence problem turn out to be: 

KhhK o 
0 K„ 

\1h 
• = fic 

Aih"0 ^ha^O 

Aah"0 -^aa 

\4K 

k, 
(3.6-10) 

[K] Wj [A] W 

Since the divergence phenomenon is a static problem, the solution of the system 

can be found by rearranging expression 3.6-10: 

nrqh" Khhb
2-QxAhhb

2 -Q„Ahab0 

-Q«,AhK Kaa-QxAa_ 

.[K-qnA]{q} = {0} 

<la) 

(3.6-11) 

= {0} 

Again, the matrix [[K]-Qoo[A]] is function of the dynamic pressure (CU). Solving the 

problem, the lowest value gives the divergence dynamic pressure, and therefore the 

speed at this condition. 

3.7. Correction for Compressibility Effects: Theodorsen's Curve 

Due to the fact that the wing under study travels at speeds higher than M-0.3 

(considered the limit where compressibility effect may be neglected) compressibility 

corrections must be taken into account. In order to do so, a curve provided from 

experimental analysis by the work done by Theodorsen (taken from [2]) is employed. 

This experimental curve allows the correction by compressibility effects of a 

particular flutter speed. Inputting a dimensionless parameter (called here xf) a factor is 

obtained that relates the new corrected speed to the original one. 

Table 3.7-1 and figure 3.7a illustrate Theodorsen's experiment data and his 

correction factor curve, where kf represents the ratio of corrected to uncorrected speeds, 

(Vcorrectec/V). In the abscise axis the dimensionless parameter xf is defined as: 
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C75%b/2Ct*fluller 

KTAS flutter 

(3-7-1) 

where: 
C75%b/2- chord at 75% of semi-span [ff]. 

^nutter- flutter frequency [rad/s]. 

KTASfiutter' flutter air speed [kts]. 

Table 3.7-1: Theodorsen's experimental data. 

Xf 

0.00 

0.20 

0.30 

0.40 

0.50 

k f 

1.000 

1.100 

1.175 

1.210 

1.240 

Xf 

0.60 

0.80 

0.90 

1.00 

1.10 

k f 

1.260 

1.300 

1.310 

1.320 

1.330 

Xf 

1.20 

1.30 

1.40 

1.50 

1.60 

k f 

1.340 

1.350 

1.355 

1.360 

1.365 

Xf 

1.70 

1.80 

1.90 

2.00 

k f 

1.370 

1.375 

1.380 

1.385 

1.40 

1.35 

1.30 

1.25 

1.20 

"I 1 1 5 

1.10 

1.05 

1.00 

0.95 

0.90 

\ 

• 

Theodorser 

• > 

's Curve for Compressibility Effects 

• 

• ' 
4-

; • ' 

y = -4.084E-02x4 + 2.585E-01x3 - 6.232E-01x2 + 7.336E-01x + 9.952E-01 
R2 = 9.972E-01 

, 

• Theodersen 

Poly. 
(Theodersen 
Curve) 

X , 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Figure 3.7a- Theodorsen's curve. 

The Theodorsen's curve is represented by a trend line that best fits the 

experimental data; thus: 

kf =-4.084* "VJ +2.585e ]x) -6.232e~]x) +7.336e ]xf +9.952e (3.7-2) 
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4. FREE VIBRATION ANALYSIS 

The analysis of the system under free vibration provides the natural frequencies, 

which are associated with a particular vibration mode of the structures. Of all these 

vibration modes, and their corresponding natural frequencies, only two are of interest: the 

fundamental natural frequency for bending (this is the lowest natural frequency associated 

with the first bending mode), and the natural frequency for torsion (which is the lowest 

value for natural frequencies associated with the first torsion mode). The reason these two 

particular frequencies are so important is due to the facts that this particular flutter 

problem is studied assuming only two uncoupled vibration modes: first bending mode and 

first torsion mode. When these two modes start coupling, the structure exhibits flutter 

behavior, and at this point the harmonic oscillations the wing undergoes have no-

damping; therefore, any increase in the airspeed will lead to higher-amplitude oscillations 

and, consequently, to catastrophic failure of the structure. 

In order to compute the natural frequencies adequately, two different procedures 

(programmed in Matlab by the author) are employed: Rayleigh-Ritz method and Finite 

Element Method. Both of these techniques, are later validated by means of NASTRAN, 

and compared to each other. 

4.1. Rayleigh-Ritz Method (RRM) [10] 

This method is an extension of the Rayleigh's method (RM), and is based on the 

principle of conservation of energy. The Rayleigh-Ritz method assumes a deflection mode 

shape (0(y)), that's satisfies all boundary conditions, which is a combination of several 

functions multiplied by a constant (af0f(y)): 

</>(y) = aA(y)+a2</>2(y)+'--+aiMy) (4.1-1) 
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The number of frequencies that can be obtained with this technique depends on 

the number of independent functions combined for the deflection curve, and in general, 

the main advantage of RRM with respect to RM is that not only the first natural frequency 

can be obtained, but all the subsequent ones CDU CO2... con., with a better accuracy than its 

predecessor. 

The frequencies are found, as a function of the constants a1} a2... am after the 

maximum kinetic energy (Ke.max) is equated with the maximum potential energy (Ve.max): 

(4.1-2) K = Vm e-max e-max 

From this point, the condition that the frequency is a minimum results in: 

(4.1-3) 
dR 
da. 

= 0 

4.1.1. The Bending Problem (BF_RRM) 

The functions that are selected must satisfy the boundary conditions of the 

problem, in the case of a cantilever wing, the coordinate system lays on the elastic axis (y-

axis) and, since is a clamped beam, the boundary conditions are: 

!j> = 0 - > 

<f> = 0 
d 0 
dy 
d-± = 0 @y = i, eff 

dy2 

d3<f> 

w 

= 0 

0 

(4.1.1-1) 

This indicates that at the root, the beam has neither deflection nor slope, and at 

the free end, the beam is stress free and has no shear loading. 

A deflection curve, based on two terms, that satisfies all boundary conditions is: 
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</>{y) = a^{y) + a2A{y)^ 

400 = 
( ^2 

y_ 

A(y) = i~cos 
( \ 

Tiy 

(4.1.1-2) 

The kinetic and potential energy for the beam under transverse motion is: 

*-4'Hff* 
,4k( 

(4.1.1-3) 

d2c/> 

dy2 
dy 

If the beam is assumed to vibrate in harmonic motion, then the transverse 

displacement at EA (w(y,t)) can be expressed as: 

w(y,t) = (j)(y) sin cot (4.1.1-4) 

Plugging this expression into 4.1.1-3, the maximum kinetic energy (Ke.max) and the 

maximum potential energy (Ve.max) result: 

Ke-^=^r\rruf,2dy 

l ' r r , f</V = iJ": 
^ V 

dy2 
dy 

(4.1.1-5) 

Equating the maximum kinetic energy to the maximum potential energy, the 

general expression for the natural frequencies is found to be: 

co2=^ 

•eff d ^ 1 

dy 

•etl 

[rrujfdy 

(4.1.1-6) 

Rearranging the previous expression, a new function R is defined as: 

(4.1.1-7) 
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Now, if the condition on expression 4.1-3 is applied to expression 4.1.1-7, the 

following system of equations results: 

d 

da, 

d 

da2 

0 

\EI„ 
0 

'd2f\ 
,dy2) 

(d2f 
U2> 

2 ' * _ 
dy-co2 \m02dy 

0 

2 V _ 
dy-co2 \nvf>2dy 

0 

= 0 

= 0 

(4.1.1-8) 

Solution to this system of equations provides the first and second natural 

frequencies for bending (since only a two term deflection curve was assumed originally). 

From these two solutions, the minimum value represents the fundamental bending 

frequency. 

In order to reduce the amount of calculations, this method is included in the Matlab 

code for this project under the name BF_RRM, and is used for the validation of the free 

vibration model along with FEM and NASTRAN. 

4.1.2. The Torsion Problem (TF_RRM) 

Similarly as stated in the preceding sub-section, the torsion problem is also 

approached with the Rayleigh-Ritz method; in this case, the boundary conditions are: 

c)2(h 
@ j , = 0 - > ^ = 0 @y = leff^~r = 0 (4.1.2-1) 

dy" 

This indicates that at the root, the beam has no rotation about the elastic axis, and 

at the free end, the beam is stress free. Again, a two-term deflection curve that satisfies all 

boundary conditions is: 

<l>(y) = <*A(y)+a2My)-* 

My) = 
y_ 

L eff 

&0>) = sin 
f \ 

ny 

(4.1.2-2) 
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The kinetic and potential energy for the beam under transverse motion is: 

? J Pi , 

(4.1.2-3) 

W. 
dy 

The beam is assumed to vibrate in harmonic motion, then the rotational 

displacement (0(y,t))can be expressed as: 

0{y, t) = <p(y) sin cot (4.1.2-4) 

Plugging this expression into 4.1.2-3, the maximum kinetic energy (Ke.max) and the 

maximum potential energy (Ve.max) result: 

K„ 
CO c-

[lEAcfdy 
~ 0 

Se\Gj[^\dy 
20

J [dy) 

(4.1.2-5) 

Equating the maximum kinetic energy to the maximum potential energy, the 

general expression for the natural frequencies is found to be: 

(4.1.2-6) 

Rearranging the previous expression, a new function R is defined as: 

(4.1.2-7) 

Once again the condition on expression 4.1-3 is applied to expression 4.1.2-7, 

resulting: 
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d 

a 
da2 

J [dy) 

LoJ {dyj 

2 '*_ 
dy-co2 \lEA<l>2dy 

0 

2 '*_ 
dy-co2 llEA02dy 

0 

= 0 

= 0 

Solution to this system of equations provides the first and second natural 

frequencies for torsion (only a two term deflection curve was assumed). From these two 

solutions, the minimum value represents the fundamental torsion frequency. 

Also in this case the method is included in the Matlab code under the name 

TF_RRM, and is used for the validation of the free vibration model along with FEM and 

NASTRAN. 

4.2. Finite Element Method (FEM) [13] 

The Finite Element Method (FEM) is a numerical technique to find approximate 

solutions of partial differential equations (PDE) as well as of integral equations. For this 

particular problem, the wing is modeled as a beam in which all the mechanical properties 

are known and expressed as function of the semi-span coordinate y along the elastic axis. 

The previous section treated the beam as a continuous function; in the FEM 

approach the beam will be divided into several elements (each of them defined with two 

nodes, one located at the beginning of the element and another one at the end) that, 

combined with each other, will provide a matrix system of equations. 

In order to find the solution for the system, the eigenvalue problem is solved, from 

which the natural frequencies are obtained (there are as many solutions as degrees of 

freedom has the system). 

In general, the FEM solution gives very good accuracy when compared to RRM, 

and it can be increased by adjusting the number of elements chosen. The main purpose 
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to have a FEM model is that it gives the capability to modify the mechanical properties in 

each element, providing the means that will allow the simulation of elastic foundations. 

4.2.1. The Bending Problem (BF_FEM) 

In FEM, the free vibration analysis of a beam undergoing transverse motion can be 

represented with the following equation: 

(4.2.1-1) [M]{q} + [K]{q} = {0} 

Where [M] is the mass matrix, [K] is the stiffness matrix, and {q} is the vector of 

generalized coordinates. 

In order to gain accuracy, the entire beam will be divided into many small 

elements; their mechanical, geometrical and mass properties are known since all these 

parameters have already been defined for the entire wing in section 2. These properties 

are then evaluated at each node, and their average values represent the properties in the 

corresponding element. 

Since the beam is divided into several elements, each of these elements will have 

a total of four degrees of freedom (DOF), two at each node: a transverse displacement (w, 

along z-axis) and a rotation (0, around x-axis): 

Figure 4.2.1a: Beam element for bending analysis with FEM. 

The mass matrix of the beam element for bending analysis (from Galerkin's 

method) is: 
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IML = relm elm elm 

420 

156 221. 'elm 

22L 'elm 4L 'elm 

54 131. elm 

-\3Lelm -3L2
elm 

54 

156 

131 'elm 

-3L 'elm 

-22L, 'elm 

-221 'elm 4L: 'elm 

(4.2.1-2) 

And the stiffness matrix for the element is: 

F J 

[ f{] _ nelm1 jcc-elm 
\elm r3 uelm 

12 6Lelm 

-12 -6L. 

-12 6Lelm 

Skim 2Llm 

'elm 12 - 6 1 . 'elm 

6LeIm 2I^elm ~6Lelm 4Lllm 

(4.2.1-3) 

Assuming a harmonic solution for the equation of motion of the system (expression 

4.2.1-1) of the form: 

{q} = {C}<?" (4.2.1-4) 

In the previous expression C is a vector containing constants for the corresponding 

DOF's. Plugging this expression into 4.2.1-1, the system reduces to: 

(4.2.1-5) |#]-*r[M = 0 

Expression 4.2.1-5 represents the eigenvalue problem for the system; its solution 

gives the natural frequencies for the beam undergoing transverse vibration. The minimum 

value of these frequencies corresponds to the fundamental bending natural frequency. 

In order to make a program accurate enough and reducing the amount of 

calculations, this method is included in the Matlab code under the name BF_FEM, and is 

used for the validation of the free vibration model along with RRM and NASTRAN. 

4.2.2. The Torsion Problem (TF_FEM) 

In this case the equation of motion for the rod undergoing rotational vibration is: 

(4.2.2-1) [/]{*}+[*]{*}={<>} 
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Where [I] is the mass moment of inertia matrix, [K] is the stiffness matrix, and {0} is 

the vector of generalized coordinates. 

Once again, the rod is divided into several elements; each of these elements has a 

total of two DOF, one per node: a rotation (0, around y-axis): 

Figure 4.2.2a: Rod element for torsion analysis with FEM 

The mass moment of inertia about EA matrix of the rod element for torsion 

analysis (lumped method) is: 

I" r ] _ jEA-clm^clm 
L lelm --) 

l 0 

0 1 
(4.2.2-2) 

And the stiffness matrix for the element is: 

[KL,-—-j— 
LJ..I„, 

l " I 
(4.2.2-3) 

Similarly as before, a harmonic solution is assumed: 

{0} = {C}eieot (4.2.2-4) 

C is a vector containing constants for the corresponding DOF's. Plugging this 

expression into 4.2.2-1, the system reduces to: 

(4.2.2-5) [K]-co2[l] 0 

The solution of expression 4.2.2-5 gives the natural frequencies for the rod 

undergoing rotational vibration. The minimum value of these frequencies corresponds to 

the fundamental torsion natural frequency. 

This method is included in the Matlab code under the name TF_FEM, and is used 

for the validation of the free vibration model along with RRM and NASTRAN. 
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4.3. Validation of Free Vibration Model (RRM-FEM-NASTRAN) 

The validation consists in the comparison of the two analytical methods described 

before (RRM and FEM), with the addition of NASTRAN. 

The result from RRM and FEM are obtained simultaneously in Matlab when the 

program runs. In the case of the results shown below, the FEM model has been run with 

100 elements. 

The NASTRAN analysis is taken as the reference parameter, and is based on the 

model created in CATIA; its geometry is then imported with NASTRAN and a normal 

modes/eigenvalues analysis is run using the Aluminum 20204 T351 material properties 

from NASTRAN's library. 

All figures and direct program output from the Matlab code are shown in the 

Appendix A, section A3. 

The following table presents the values of this comparison, along with the 

percentage of error in each case: 

Table 4.3-1: Free vibration model validation 

Fundamental Frequencies [Hz] 
Method 

Case 

Bending 

Torsion 

Ratio 

RRM 

0.76230 

19.26600 

25.27 

% error 

1.79284 

-0.17120 

FEM 

0.75734 

19.04410 

25.15 

% error 

1.13011 

-1.32100 

NASTRAN 

0.74887 

19.29904(*) 

25.77 

From this table, it can be seen that both methods, RRM and FEM, are very 

accurate with overall error lower than 2%. Although the RRM results are more accurate 

than the ones obtained from FEM, it cannot simulate the elastic foundation, and will not be 

employed in the further analysis. 

Note (*): although NASTRAN does not provide the natural frequency of torsion when it 
performs the free vibration analysis, this value has been found to be the closest to the theoretical 

calculations by RRM and FEM, and therefore is taken just as a reference (see Appendix A3). 
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5. METHOD OF RESOLUTION 

The flutter analysis is carried out completely in Matlab thanks to a code specially 

designed for this purpose. The Matlab code has a main program which uses a series of 

subroutines through the different stages of calculation. These details are given in the 

following subsection. 

5.1. Program Flow and Subroutines 

As mentioned before, the code uses a main program that calls different 

subroutines to analyze the problem. These different subroutines are listed below: 

Flutter Analysis FEM EF: this is the main program, contains the principal 

loops, and calls the other subroutines, plots and displays all the results in the Matlab 

Command Window. For a given problem, this is the only program that has to be run. 

Data Input: this is the first subroutine called by the main program; it contains 

the information of the wing (mechanical, geometrical and mass properties) and 

converts the atmospheric parameters used later by the other subroutines. 

BF FEM EF: this program computes the fundamental natural frequency of 

vibration in bending with the elastic effects taken into account. 

TF FEM EF: this program computes the fundamental natural frequency of 

vibration in torsion with the elastic effects taken into account. 

Flutter Subroutine: this subroutine computes the vibration frequencies of the 

structures and the corresponding air speed of the excitation, that are used later to 

calculate the flutter speed and frequency. 

Divergence Subroutine: this subroutine computes the divergence speed of 

the wing that is employed later to calculate the limit speed of flight. 
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Flutter Analysis FEM EF 

Data Input 

BF FEM EF TF FEM EF 

I I 
Oivergence_ Subroutine Flutter Subroutine 

if 

Results } 

Figure 5.1a: Information flow within the Matlab code. 
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6. PROGRAM VALIDATION: THE GOLAND'S WING 

The Goland's wing [3] is a very widely used case of study, because it provides an 

excellent tool to validate results. It consists of a rectangular-straight-cantilever wing, 

perfectly clamped at one end, and free in the opposite. The aerodynamic shape of this 

particular wing is considered to be an ideal thin airfoil. The flight speed is 400mph 

(~178m/s) and flight altitude is sea level (SL) under ISA (International Standard 

Atmosphere) conditions. 

The Goland's wing is used to show that the results obtained from the Matlab code 

are consistent with the ones coming from another different theory, which proves right the 

use of this simplified approach. 

6.1. Data Input File 

In Appendix A1 there is an example of the Data Input file from the Matlab code 

(the units of the parameters used originally by Goland have been converted into SI 

system, for more details refer to [3]). 
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6.2. Validation 

Running the program for the previous data input file, the results are the following: 

-Program Output-

Uncoupled Bending Frequency: Omega_h = 8.05324 Hz 

Uncoupled Torsion Frequency: Omega_a = 13.8465 Hz 

Current Flight Altitude: H = 0m 

Flutter Output 

Flutter® Q= 17590.1 Pa 

Flutter @ V= 169.465 m/s 

Flutter® Mach = 0.498046 

Flutter Frequency: OmegaJI -11.2442 Hz 

From this data the plots have been omitted since all the important information is 

already provided above. When compared to the values from [3] the result is the following: 

Table 6.2-1: Code validation with the Goland 

Method 

Parameter 

V-flutter [m/s] 

Omega-flutter [Hz] 

Code 

169.5 

11.24 

Goland 

174.7 

10.53 

's wing 

% error 

-2.96 

6.74 

From table 6.2-1, it can be seen that the accuracy of the method used in the code 

gives a reasonable approximation to the data obtained by Goland (his results are not 

corrected by compressibility effects). 
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7. ELASTIC FOUNDATION MODEL 

The following sub-sections deal with the contribution of the set of torsion springs at 

the root location of the wing's elastic axis and their effects on the FEM model. 

7.1. Contribution Using FEM (FEM_EF) 

As mentioned in the introduction, the elastic foundation will be simulated by adding 

a combination of torsion springs to some particular DOF's in the FEM model. These 

particular DOF's are: rotation or slope for bending at root (at the first node of the first 

beam element), and rotation for torsion at root (at the first node of the first rod element). 

The contribution of these two torsion springs allows to simulate the elasticity that a 

real wing would have when mounted to the aircraft fuselage. Their stiffness values are 

variable, and are expressed as a percentage of the critical stiffness that simulates a 

perfect clamping condition (when these values are set to be 100%, they represent the 

perfect clamping condition). 

7.1.1. The Bending Problem (BF_FEM_EF) 

As stated on section 4.2.1, the free vibration analysis with FEM of a beam 

undergoing transverse motion can be represented with the following equation: 

(7.1.1-1) M(?)+WW=(o} 

Where [M] is the mass matrix, [K] is the stiffness matrix, and {q} is the vector of 

generalized coordinates. 

The beam is divided into several elements; each of these elements has a total of 

four DOF's as detailed in section 4.2.1. 
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The contribution of the torsion spring is added to the boundary conditions of first 

element, which now has a rotation (0, around x-axis), controlled by the torsion spring (KB 

[N*m]) at the first node: 

Figure 7.1.1a: First beam element and its elastic contribution. 

The mass matrix of all the beam elements is exactly the same as the one shown in 

expression 4.2.1-2. 

The stiffness matrix, however, is different for the first element since it has the 

contribution of the spring in the rotation of the first node (the second DOF out of four in the 

element), thus: 

EJ 
M,=^f 

12 61, -12 6L, 

61, 
-12 

6L, 

4L]+KB 

-61, 
2L\ 

-61, 
12 

-61, 

2L\ 
-6L 

4L] 

(7.1.1-2) 

In the previous expression the suffix indicates that this is only for the first element, 

and the term KB represents: 

- = KBL\ 

£ / , - , 
(7.1.1-3) 

The stiffness matrix for the rest of the beam elements remains exactly the same as 

in expression 4.2.1-3. 

Once again, the harmonic solution is assumed; therefore, the system reduces to: 

(7.1.1-4) [/^]-*r[M]| = 0 
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Solving the eigenvalue problem the natural frequencies of bending vibration are 

obtained. The minimum value of these frequencies corresponds to the fundamental 

natural bending frequency. 

As before, this method is included in the Matlab code under the name 

BF_FEM_EF, and is used for the validation of the free vibration model along with 

TF_FEM_EF and NASTRAN. 

7.1.2. The Torsion Problem (TF_FEM_EF) 

From section 4.2.2, the free vibration analysis with FEM of a rod undergoing 

torsion motion can be represented with the following equation: 

[I]{0}+[K]{0} = {0) (7.1.2-1) 

Where [I] is the mass moment of inertia matrix, [K] is the stiffness matrix, and {0} is 

the vector of generalized coordinates. 

The beam is once again divided into several elements; each of these elements has 

a total of two DOF's as detailed in section 5.2.2. 

The contribution of the torsion spring is added to the boundary conditions of first 

element, which now has a rotation (0, around y-axis), controlled by the torsion spring (KT 

[N*m]) at the first node: 

Figure 7.1.2a: First rod element and its elastic contribution. 

The mass moment of inertia about EA matrix of all the beam elements is exactly 

the same as the one shown in expression 4.2.2-2. 
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The stiffness matrix, however, is different for the first element since it has the 

contribution of the spring in the rotation of the first node (the first DOF out of two in the 

element), thus: 

i * i -
GJX \ + KT - 1 

(7.1.2-2) 
-1 1 

In the previous expression the suffix indicates that this is only for the first element, 

and the term KT represents: 

- _ KTL{ 
j f Y r — 

GXJX 

(7.1.2-3) 

The stiffness matrix for the rest of the beam elements remains exactly the same as 

in expression 4.2.2-3. 

Once again, the harmonic solution is assumed; therefore, the system reduces to: 

|[*]-^[/]| = o (7.1.2-4) 

Solving the eigenvalue problem the natural frequencies of torsion vibration are 

obtained. The minimum value of these frequencies corresponds to the fundamental 

natural torsion frequency. 

As before, this method is included in the Matlab code under the name 

TF_FEM_EF, and is used for the validation of the free vibration model along with 

BF FEM EF and NASTRAN. 

7.2. Validation of the Model (FEM_EF & FEM) 

The validation consists in the comparison of the two FEM models with elastic 

foundation using spring values that simulate a perfect clamp, and the FEM model perfectly 

clamped. The preset values simulating the ideal clamp condition at the root are: 
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(7.2-1) 
JKB=2.926e50[Nm/rad] 

\KT =3.4%5e'\Nm I rad] 

The following table presents the values of this comparison; along with the 

percentage of error in each case (FEM model with 100 elements): 

Table 7.2-1: Elastic foundation validation 

Fundamental Frequencies [Hz] 
Method 

Case 

Bending 

Torsion 

Ratio 

FEM_EF 

0.75734 

18.97570 

25.06 

% error 

0.00000 

0.00000 

FEM 

0.75734 

18.97570 

25.06 

From table 7.2-1 it can be seen that the values for the spring constants are large 

since they have been applied to a single point along the root (elastic axis), idealizing the 

flexibility of the complete structure that would support the wing in a real aircraft. 

A slight modification in the expression 7.2-1 gives: 

KB=\.S\2e23[Nm/rad] 

KT=\J00e]*[Nm/rad] 
(7.2-2) 

This change on the springs produces a small error on the simulation of the clamp: 

Table 7.2-2: Modified elastic foundation validation 

Fundamental Frequencies 
Method 

Case 

Bending 

Torsion 

Ratio 

FEM_EF 

0.75444 

18.97230 

25.15 

% error 

-0.38292 

-0.37702 

[Hz] 

FEM 

0.75734 

19.04410 

25.15 

These new values are smaller than the ones in expression 7.2-1, but their 

contribution to the fundamental frequencies is almost negligible; therefore, they will be 

used from now on in the simulation of the ideal clamp. 
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8. RESULTS 

Different cases where analyzed in order to compute the effects of the main 

parameters involved: the torsion spring constants and the flight altitude. These cases are 

detailed as follows: 

• Case I: the effects of the elasticity in torsion are studied. 

• Case II: the effects of the elasticity in bending are studied. 

• Case III: the effects of the flight altitude are studied. 

8.1. Case I: Effects of Elastic Foundation in Torsion 

In this case the bending mode is analyzed as clamped, whereas the torsion mode 

has the possibility to change its spring elastic constant at root, for cruise flight altitude. 

The variation of the elasticity depends on an input vector that changes the ratio of the 

preset torsion spring of the ideal clamp condition: 

KT =RKT\J00e]\Nm/rad] (8.1-1) 

The vector or elastic ratio is: 

RKr=[2e-* le-4 \e+ 5e^ 6 ^ ] (8.1-2) 

The results are shown in Appendix A2 in order of appearance according to the 

elastic ratio vector. 
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8.2. Case II: Effects of Elastic Foundation in Bending 

In this case the torsion mode is analyzed with the highest elasticity ratio that 

produced flutter in Case I: 

RK =6e~ (8.2-1) 

The bending mode has the possibility to change its spring elastic constant at root, 

for cruise flight altitude. The variation of the elasticity depends on an input vector that 

changes the ratio of the preset bending spring of the ideal clamp condition: 

KB=RK\.%\2eli[Nmlrad] 

The vector or elastic ratio is: 

(8.2-2) 

RKB=[le~9 le~7 le~5 le~3 le°] (8.2-3) 

The results are shown in Appendix A2 in order of appearance according to the 

elastic ratio vector. 
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8.3. Case III: Effects of Flight Altitude 

In this case the torsion mode is analyzed with the highest elasticity ratio that 

produced flutter in Case I: 

RK =6e~ (8.3-1) 

The bending mode is considered to have an elasticity ratio to clamp condition 

equal to one (highest value from Case II): 

(8.3-2) RK = 1 

Since the effects of flight altitude want to be studied, the input this time will be# an 

altitude vector, expressed as: 

(8.3-3) ^ = [ 0 2500 5000 7500 10000][/w] 

The results are shown in Appendix A2 in order of appearance according to the 

altitude vector. 
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9. ANALYSIS 

The analysis of the results is discussed for each of the cases described previously. 

9.1. Case I: Effects of Elastic Foundation in Torsion 

The results obtained from Matlab are summarized in the following table: 

Table 9.1-1: Case I results 

CASE I 

Torsion Elasticity Ratio 

Parameter 

Bending Frequency [Hz] 

Torsion Frequency [Hz] 

Frequency Ratio (Torsion/Bending) 

Flutter Frequency [Hz] 

Flutter Dynamic Pressure-Corr [Pa] 

Flutter Speed-Corr [m/s] 

Flutter Mach-Corr 

Reduced Flutter Frequency-Corr 

Divergence Dynamic Pressure [Pa] 

Divergence Speed [m/s] 

Divergence Mach 

2.00E-04 

0.7544 

1.5917 

2.11 

1.0231 

3273.7 

126.0 

0.4207 

0.0434 

9440.9 

213.9 

0.7144 

3.00E-04 

0.7544 

1.9475 

2.58 

1.1135 

5790.7 

167.5 

0.5595 

0.0355 

13821.7 

258.8 

0.8643 

4.00E-04 

0.7544 

2.2465 

2.98 

1.1863 

8409.0 

201.9 

0.6742 

0.0314 

18029.0 

295.6 

0.9872 

5.00E-04 

0.7544 

2.5092 

3.33 

1.2494 

11068.6 

231.6 

0.7735 

0.0288 

22089.5 

327.2 

1.0927 

6.00E-04 

0.7544 

2.7459 

3.64 

1.3062 

13746.5 

258.1 

0.8620 

0.0270 

26023.4 

355.1 

1.1860 

From table 9.1-1, the suffix "corr" means that the current value has been already 

corrected for compressibility effects by Theodorsen's curve. 

In order to interpret these results properly, plots of the most important parameters 

(such as: torsion frequency and flutter frequency, flutter dynamic pressure, flutter Mach, 

etc.) are provided to observe their variation with the elastic foundation: 
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Flutter and Torsion Frequencies vs. Root Elasticity 
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2.0E-04 2.5E-04 3.0E-04 3.5E-04 4.0E-04 4.5E-04 5.0E-04 5.5E-04 6.0E-04 

Figure 9.1a: Effect on flutter and torsion frequencies. 
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Figure 9.1b: Effect on flutter and divergence dynamic pressure. 
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Figure 9.1 d: Effect on flutter and divergence Mach number. 
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Figure 9.1 e: Effect on flutter reduced frequency. 

It can be seen from figure 9.1a, that both the flutter frequency and the natural 

torsion frequency increase when the elasticity ratio for torsion increases. This make 

sense, provided that a high enough value for the elasticity ratio would produce a perfect 

clamp condition, in which case this wing in particular does not experience flutter at all. 

The following three figures, 9.1b, c and d, are related since they all represent 

either speed (true air speed, TAS) or functions depending on this parameter (such as 

dynamic pressure or Mach number). From there the curves for divergence and flutter are 

given, both varying increasingly with the elasticity ratio. Again, the same reason applies 

here since any increase in the elasticity ratio will carry an increase in the root flexibility, 

and therefore the flutter envelopes displaces to higher levels of speed. This fact is clearly 

seen on figures 8.1a to d, in the results section. 

Figure 9.1e shows the reduced flutter frequency (also refer as Strouhal number in 

[9]), a dimensionless parameters that relates the flutter frequency, the MGC and the flutter 

63 



speed. The benefit of this parameter is that flutter speed and frequency can be analyzed 

at the same time. The reason it decays in that fashion is due to the fact that although the 

flutter frequency increases, the flutter speed also does it, but faster. 

It can be concluded that the contribution of the elasticity in the foundation for 

torsion vibration is extremely important; when flutter occurs, any change in this value will 

automatically change drastically the flutter envelope, as seen on figures 8.1a to d, and this 

means that a wing could be flutter free if the elasticity in the torsion at the root is strong 

enough. 
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9.2. Case II: Effects of Elastic Foundation in Bending 

The results obtained from Matlab are summarized in the following table: 

Table 9.2-1: Case II results 

CASE II 

Bending Elasticity Ratio 

Parameter 

Bending Frequency [Hz] 

Torsion Frequency [Hz] (R_KT=6e-4) 

Frequency Ratio (Torsion/Bending) 

Flutter Frequency [Hz] 

Flutter Dynamic Pressure-Corr [Pa] 

Flutter Speed-Corr [m/s] 

Flutter Mach-Corr 

Reduced Flutter Frequency-Corr 

Divergence Dynamic Pressure [Pa] 

Divergence Speed [m/s] 

Divergence Mach 

1.00E-09 

0.0147 

2.7459 

187.17 

. 

_ 

_ 

_ 

_ 

14860.3 

268.4 

0.8962 

1.00E-07 

0.1443 

2.7459 

19.03 

. 

_ 

_ 

. 

. 

17009.2 

287.1 

0.9588 

1.00E-05 

0.6771 

2.7459 

4.06 

1.2390 

14280.5 

263.1 

0.8786 

0.0252 

25463.0 

351.3 

1.1732 

1.00E-03 

0.7544 

2.7459 

3.64 

1.3062 

13746.6 

258.1 

0.8620 

0.0270 

26023.4 

355.1 

1.1860 

1.00E+00 

0.7544 

2.7459 

3.64 

1.3062 

13746.5 

258.1 

0.8620 

0.0270 

26023.4 

355.1 

1.1860 

Notice that for the first two values of bending elasticity ratio, the wing does not 

experience flutter at all. 

In order to better interpret these results, plots of the most important parameters 

(such as: bending frequency, flutter frequency, flutter dynamic pressure, flutter Mach, etc.) 

are provided to observe their variation with the elastic foundation: 
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Reduced Flutter Frequency vs. Root Elasticity 
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Figure 9.2e: Effect on flutter reduced frequency. 

It can be seen from figure 9.2a, that both the flutter frequency and the natural 

torsion frequency have the same tendency: first they increase when the elasticity ratio for 

torsion increases at very low ranges, and then remain steady from that point until reaching 

the unity. This behavior is due to the fact that in order to make significant changes in the 

fundamental bending frequency, the values of elasticity ratios have to be important, and 

this means reducing the spring constant almost to a point where the wing changes the 

root's boundary condition from a clamp to a hinged support. In a case like this, the wing is 

flutter free, since the very low frequencies of vibration in bending are not important 

enough to couple the torsion mode to produce the flutter critical point. 

The three following three figures, 9.2b, c and d, are related too (they represent true 

air speed, dynamic pressure and Mach number); there the curves for divergence and 

flutter are shown, both presenting the same phenomenon explained above when the 

elastic ratios change. The same happens to the reduced flutter frequency. 
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Overall, any increase in the elasticity ratio (this is making the connection stiffer) will 

carry an increase in the root flexibility, but the flutter envelopes are displaced only slightly 

to higher levels of speed, if not producing no flutter at all (because of the weakness of the 

bending mode). This fact is clearly seen on figures 8.1a to d, in the results section. 

It can be concluded that the changes in the bending elasticity ratios are not as 

important as the torsion ratios are when the flutter occurs. 
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9.3. Case III: The Effects of Flight Altitude 

The results obtained from Matlab are summarized in the following table: 

Table 9.3-1: Case III results 

CASE III 

Flight Altitude [m] 

Parameter 

Bending Frequency [Hz] (R_KB=1) 

Torsion Frequency [Hz] (R_KT=6e-4) 

Frequency Ratio (Torsion/Bending) 

Flutter Frequency [Hz] 

Flutter Dynamic Pressure-Corr [Pa] 

Flutter Speed-Corr [m/s] 

Flutter Mach-Corr 

Reduced Flutter Frequency-Corr 

Divergence Dynamic Pressure [Pa] 

Divergence Speed [m/s] 

Divergence Mach 

0 

0.7544 

2.7459 

3.64 

1.3050 

14641.9 

154.6 

0.4544 

0.0451 

26023.4 

206.1 

0.6058 

2500 

0.7544 

2.7459 

3.64 

1.3063 

14377.3 

173.4 

0.5245 

0.0402 

26023.4 

233.2 

0.7056 

5000 

0.7544 

2.7459 

3.64 

1.3056 

14170.6 

196.2 

0.6122 

0.0355 

26023.4 

265.9 

0.8297 

7500 

0.7544 

2.7459 

3.64 

1.3056 

13958.1 

224.0 

0.7221 

0.0311 

26023.4 

305.8 

0.9860 

10000 

0.7544 

2.7459 

3.64 

1.3062 

13746.5 

258.1 

0.8620 

0.0270 

26023.4 

355.1 

1.1860 

In order to better interpret these results, plots of the most important parameters 

(such as: flutter frequency, flutter dynamic pressure, flutter Mach, etc.) are provided to 

observe their variation with the flight altitude: 
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Figure 9.3a: Effect on flutter frequency. 
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Figure 9.3b: Effect on flutter and divergence dynamic pressure. 
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Flutter and Divergence Speed vs. Flight Altitude 
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Figure 9.3c: Effect on flutter and divergence speed. 
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Figure 9.3e: Effect on flutter reduced frequency. 

From figure 9.3a it can be seen that the flutter frequency has a linear tendency, at 

a constant value around 1.305Hz. Figure 9.3b shows a constant behavior of the 

divergence dynamic pressure, and a linearly decaying tendency for the flutter dynamic 

pressure. Figures 9.3c and d show that the speed and Mach number increase when flight 

altitude increases, which is consistent with what was observed from figure 9.3b, for an 

almost linear variation of the flutter dynamic pressure, the rise in altitude will carry a rise in 

the associated flutter speeds because the air density changes faster than the dynamic 

pressure with the altitude. Figure 9.3e shows the reduced flutter frequency, and its linear 

decay can be explained as it was in the figure 9.1e from Case I. Overall it is observed that 

the increment in the flight altitude increases the flutter critical speed, therefore, giving a 

larger flutter free zone at higher altitudes. 
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10. CONCLUSIONS 

Throughout this work there are many details observed and many lessons learned. 

It is clear now that the flutter phenomenon is not trivial at all, and even when using a 

simplified approach, the complexity in the procedure and the processing of results might 

be tedious. 

The very first obstacle found was the lack of examples to solve completely a flutter 

problem, even for a typical wing configuration such as a straight rectangular wing. This 

was a complete disadvantage, since almost 90% of the papers and books deal with this 

problem and less than 5% percent have the procedures complete. The other drawback is 

that many references did not validate results for their models. 

Either way, the formulation of such a difficult problem started with a theory using 

Lagrangian formulations ([1] and [2]) and an old paper (Goland's wing [3]). 

It was clear since the very beginning that the results obtained from this problem 

would be difficult to validate, and the idea of a wind tunnel model came to picture. 

However, as it was found out later, the wind tunnel model construction proved to be really 

difficult, and its completion to validate this model was out of the reach of this work. 

Without this, the theoretical approach employed to study the effects of elastic foundations 

in the flutter behavior a high-aspect ratio wing with varying properties along the semi-span 

will remain unconcluded until a wind tunnel model can be properly designed and tested. 

The selection of the type of wing to be studied came with the idea to contribute 

with new data to what has been done so far in the subject, as mentioned previously, most 

of the examples deal with rectangular straight wings; therefore the choose of a very high-

aspect ratio wing with non-constant properties along the semi-span, made out of metal 

with a particular set of torsion springs at the root would give a valuable piece of 

information to be considered in future studies. 
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The use of CATIA, NASTRAN, and Matlab helped to accomplish the goals of this 

thesis. The wing was first designed in CATIA based on the wing of the Northrop-Grumman 

RQ-4 Block 20 "Global Hawk"\ this geometric model was imported from NASTRAN and 

the cross-section properties were obtained for a determined number of span-wise 

stations. This information was later introduced in Excel tables where all the cross-section 

properties (mass and mechanical) were plotted and obtained them as functions of the 

span-wise coordinate (y-axis), as shown in section 3. 

Later the free vibration analysis was carried out in NASTRAN to compute natural 

frequencies and validate the theoretical models: Rayleigh-Ritz Method (RRM) and Finite 

Element Method (FEM). As it was proven in section 4.3, where the overall errors were 

less than 2%, validating the theoretical methods. 

At this point, a Matlab code able to calculate the flutter envelope of a clamped 

wing was ready to be used, therefore validation was necessary. To do so, the Goland's 

wing [3] was employed by simply changing some data input parameters in the Matlab 

code; after validation (section 7.2) the error for flutter frequency was less than 7% and 

less than 3% in the case of flutter speed, demonstrating the accuracy of the code. 

Further modifications were made to the code in order to simulate the elasticity in 

the foundation. The contribution of a pair of torsion springs was added to the FEM models 

(section 7.1), and their results were once again validated using values to replicate those 

from an ideal clamp condition (section 7.2), resulting in errors less than 0.4%. 

With the Matlab code ready, the analysis was conducted in different steps, to 

properly account the effects of each of the main parameters to be studied (characterized 

as cases in section 8). Particularly in Case I the values of the elasticity ratio had to be 

manipulated in such a way that, for a perfect clamp in the bending mode, would produce 

flutter (the wing analyzed as perfectly clamped is flutter free). In each case, the elapsed 

time was about 300 seconds. 
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After analyzing all the cases, it was observed that the contribution of the torsion 

mode elasticity is extremely remarkable on the flutter behavior, and even of greater 

importance than the bending mode elasticity, as it was pointed out in sections 9.1 and 2. 

Also, the effect of the flight altitude on the flutter limit speed has been proven to be 

beneficiary, since the increase in the altitude enlarges the flutter free zone (section 9.3). 

The work done so far with this project allows the study of basic structural 

parameters such as the elastic foundation in the dynamic behavior of a wing, but is not 

limited to it. Besides the elastic foundation or flight altitude, the effect of aspect ratio can 

also be studied, or the sweep back angle, etc. 

The author of this work has some recommendations for future research project: 

the improvement of the post-processing tools or development of new ones to be coupled 

to the Matlab code; the improvement of the aerodynamic loading by using in a first stage 

Lifting Line Method, and later Vortex Lattice Method; improvement of the FEM model; 

development of a non-stationary model, etc. 

Also, it is highly recommended that future students or researchers continue with 

this line of work and validate the theoretical model with experimental data obtained from 

wind tunnel testing. That contribution would add the project a very respectable basis to be 

taken into account as a proper tool to study the elasticity effects on the flutter behavior. 
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APPENDIX A 

A1 



A1. DATA INPUT FILE SAMPLE 

-DATA INPUT-

.MATERIAL. 

E =7.385el0; Al 2024 T-351 Young's Modulus I Paj . 
G =2.870el0; Al 2024 T-351 Shear Modulus [Pal. 
Rho=2.765e3; Al 2024 T-351 Material's density [Kg/mA3] 

GEOMETPY. 

L =6.296 
cr=1.829 
ct=1.829 

Semi-span, cantilever wing's length [m]. 
Root • s cr,id [m] . 
Root' s cord I in] . 

Sweep_ac=0.00; AC Sweep back angle [degrees]. 

c= 1.829; Chord distribution, [m]. 
b= 3.109e-l; Distance from CG to EA, b=(Xcg-Xea) [m]. 
a= 1.463e-l; Distance from EA to AC, a=(Xea-Xac) [m]. 

:ROS SECTIONAL PROPERTIES. 

EIxx= 1.132e9; 
GJ= 1.144e8; 
m= 35.7169; 
s= 6.525; 
Iea= 8.643; 

Flexural rigidity about x-axis, Elxx(y) [Paj. 
Torsional rigidity, GJ(y) [Pa]. 
Ma s s/unit length, m(y) [kg ' m] . 
Unbalance mass/unit length, s(y) [Kg]. 
Mass moment of inertia about EA/unit length, lea [Ka*mj 

CL_airfoil=2*pi; 

. . .AERODYNAMICS 

Airfoil lrft coefficient slope 

CL_a=pi*(AR/(1+sqrt(1+(pi*AR/(CL_airfoil*cos(Delta_ac)))A2))); Wing's 
lift coefficient. 



A2. STUDY CASES PROGRAM OUTPUT 

Case I: Effects of Elastic Foundation in Torsion 

PrQgram OutpUt 

Uncoupled Bending Frequency: Omega_h = 0.754437 Hz 

Uncoupled Torsion Frequency: Omega__a = 1.59171 Hz 

Fundamental Frequencies Ratio: Ratio = 0.473979 

Current Flight Altitude: H = 10000 m 

Divergence Output 

Divergence @ Q = 9440.86 Pa 

Divergence @ V= 213.901 m/s 

Divergence @ V = 770.043 Km/h 

Divergence @ KTAS = 416.24 

Divergence @ Mach = 0.714353 

Flutter Output-

Flutter® Q = 2833.74 Pa 

Flutter® V= 117.189 m/s 

Flutter® V= 421.88 Km/h 

Flutter® KTAS = 228.043 

Flutter® Mach = 0.391369 

Flutter Frequency: OmegaJI = 1.02306 Hz 

Reduced Flutter Frequency (Strouhal): Str = 0.0466245 

Data Corrected for Compressibility Effects by Theodorsen 

Theodorsen X-factor (Equivalent Strouhal): XJ = 0.119613 

Theodorsen Compressibility Correction Factor: K_f= 1.07482 

Corrected Flutter Speed is: VJI_corr = 125.958 m/s 

Corrected Flutter Speed is: VJI_corr = 453.448 Km/h 

Corrected Flutter Speed is: KTAS_corr = 245.107 

Corrected Flutter Speed is: M_corr = 0.420653 

Corrected Flutter Dynamic Pressure is: 0_corr = 3273.67 Pa 

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.0433787 



pr0gram OutpUt 

Uncoupled Bending Frequency: Omegaji = 0.754437 Hz 

Uncoupled Torsion Frequency: Omega__a = 1.94748 Hz 

Fundamental Frequencies Ratio: Ratio = 0.38739 

Current Flight Altitude: H = 10000 m 

Divergence Output 

Divergence @ 0=13821.7 Pa 

Divergence @ V= 258.814 m/s 

Divergence @ V= 931.729 Km/h 

Divergence ® KTAS = 503.637 

Divergence @ Mach = 0.864345 

Flutter Output 

Flutter® 0 = 5146.18 Pa 

Flutter @ V = 157.924 m/s 

Flutter @ V= 568.528 Km/h 

Flutter® KTAS = 307.312 

Flutter® Mach = 0.527411 

Flutter Frequency: Omegaji =1.11351 Hz 

Reduced Flutter Frequency (Strouhal): Str = 0.0376567 

Data Corrected for Compressibility Effects by Theodorsen 

Theodorsen X-f actor (Equivalent Strouhal): XJ = 0.0966068 

Theodorsen Compressibility Correction Factor: KJ= 1.06077 

Corrected Flutter Speed is: VJI_corr = 167.522 m/s 

Corrected Flutter Speed is: VJI_corr = 603.08 Km/h 

Corrected Flutter Speed is: KTAS_corr = 325.989 

Corrected Flutter Speed is: M_corr = 0.559464 

Corrected Flutter Dynamic Pressure is: Ojcorr = 5790.7 Pa 

Corrected Reduced Flutter Frequency (Strouhal): Strjcorr = 0.0354993 



***********************************************************^^ 
pr0gram Output 

Uncoupled Bending Frequency: Omega J = 0.754437 Hz 

Uncoupled Torsion Frequency: Omega_a = 2.24651 Hz 

Fundamental Frequencies Ratio: Ratio = 0.335826 

Current Flight Altitude: H = 10000 m 

Divergence Output 

Divergence @ Q= 18029 Pa 

Divergence @ V = 295.592 m/s 

Divergence @ V=1064.13 Km/h 

Divergence @ KTAS = 575.207 

Divergence @ Mach = 0.987172 

Flutter Output 

Flutter® 0=7578.92 Pa 

Flutter® V = 191.651 m/s 

Flutter @ V= 689.943 Km/h 

Flutter @ KTAS = 372.942 

Flutter® Mach = 0.640045 

Flutter Frequency: Omegaji = 1.18625 Hz 

Reduced Flutter Frequency (Strouhal): Str = 0.0330571 

Data Corrected for Compressibility Effects by Theodorsen 

Theodorsen X-f actor (Equivalent Strouhal): XJ = 0.0848066 

Theodorsen Compressibility Correction Factor: KJ= 1.05334 

Corrected Flutter Speed is: VJl_corr = 201.874 m/s 

Corrected Flutter Speed is: VJI_corr = 726.746 Km/h 

Corrected Flutter Speed is: KTAS_corr = 392.835 

Corrected Flutter Speed is: M_corr =0.674186 

Corrected Flutter Dynamic Pressure is: Q_corr = 8409.04 Pa 

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.0313831 

************************************************************************** 



******************************************************************************************************** 
Program Output 

Uncoupled Bending Frequency: Omega J = 0.754437 Hz 

Uncoupled Torsion Frequency: Omega_a = 2.50916 Hz 

Fundamental Frequencies Ratio: Ratio = 0.300673 

Current Flight Altitude: H = 10000 m 

Divergence Output 

Divergence @ 0 = 22089.5 Pa 

Divergence @ V = 327.19 m/s 

Divergence @ V= 1177.88 Km/h 

Divergence @ KTAS = 636.694 

Divergence @ Mach = 1.0927 

Flutter Output 

Flutter® 0=10065.1 Pa 

Flutter® V= 220.86 m/s 

Flutter @ V= 795.095 Km/h 

Flutter@ KTAS = 429.781 

Flutter® Mach = 0.737592 

Flutter Frequency: Omegaji = 1.24935 Hz 

Reduced Flutter Frequency (Strouhal): Str = 0.0302112 

Data Corrected for Compressibility Effects by Theodorsen 

Theodorsen X-f actor (Equivalent Strouhal): XJ = 0.0775055 

Theodorsen Compressibility Correction Factor: KJ= 1.04867 

Corrected Flutter Speed is: VJl_corr = 231.608 m/s 

Corrected Flutter Speed is: VJI_corr = 833.789 Km/h 

Corrected Flutter Speed is: KTAS_corr = 450.697 

Corrected Flutter Speed is: M_corr = 0.773488 

Corrected Flutter Dynamic Pressure is: Q_corr = 11068.6 Pa 

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.0288091 

******************************************************************************************************** 

A6 



* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ^ ^ ^ ^ ^ l t ^ < r ^ ^ J r ^ ^ 1 f r ^ ^ ^ A * + J P J r * * ^ * * * < f * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Program Output 

Uncoupled Bending Frequency: Omega J = 0.754437 Hz 

Uncoupled Torsion Frequency: Omega_a = 2.74589 Hz 

Fundamental Frequencies Ratio: Ratio = 0.274751 

Current Flight Altitude: H = 10000 m 

Divergence Output 

Divergence @ Q = 26023.4 Pa 

Divergence @ V = 355.131 m/s 

Divergence @ V= 1278.47 Km/h 

Divergence @ KTAS = 691.066 

Divergence @ Mach = 1.18601 

Flutter Output-

Flutter® 0 = 12578.1 Pa 

Flutter @ V = 246.896 m/s 

Flutter ® V= 888.825 Km/h 

Flutter @ KTAS = 480.446 

Flutter® Mach = 0.824544 

Flutter Frequency: Omega J = 1.30618 Hz 

Reduced Flutter Frequency (Strouhal): Str = 0.0282544 

Data Corrected for Compressibility Effects by Theodorsen 

Theodorsen X-f actor (Equivalent Strouhal): XJ = 0.0724856 

Theodorsen Compressibility Correction Factor: KJ= 1.04542 

Corrected Flutter Speed is: VJl_corr = 258.109 m/s 

Corrected Flutter Speed is: VJ_corr = 929.192 Km/h 

Corrected Flutter Speed is: KTAS_corr = 502.266 

Corrected Flutter Speed is: M_corr = 0.861991 

Corrected Flutter Dynamic Pressure is: 0_corr = 13746.5 Pa 

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.027027 

******************************************************************************************************** 

Elapsed time is 308.616063 seconds. 

******************************************************************************************************** 



Case II: Effects of Elastic Foundation in Bending 

• • • A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Program Output 

Uncoupled Bending Frequency: Omega J = 0.0146704 Hz 

Uncoupled Torsion Frequency: Omega_a = 2.74589 Hz 

Fundamental Frequencies Ratio: Ratio = 0.00534269 

Current Flight Altitude: H = 10000 m 

Divergence Output 

Divergence @ 0= 14860.3 Pa 

Divergence @ V= 268.361 m/s 

Divergence @ V = 966.101 Km/h 

Divergence @ KTAS = 522.217 

Divergence @ Mach = 0.896231 

******************************************************************************************************** 

******************************************************************************************************** 

Program Output 

Uncoupled Bending Frequency: Omega J = 0.144289 Hz 

Uncoupled Torsion Frequency: Omega_a = 2.74589 Hz 

Fundamental Frequencies Ratio: Ratio = 0.0525472 

Current Flight Altitude: H = 10000 m 

Divergence Output 

Divergence @ 0=17009.2 Pa 

Divergence @ V = 287.11 m/s 

Divergence @ V= 1033.6 Km/h 

Divergence @ KTAS = 558.7 

Divergence ® Mach = 0.958844 

******************************************************************************************************** 

Note: the previous two sub-cases did not experience flutter. 



******************************************************************************************************** 
Program Output 

Uncoupled Bending Frequency: Omega J = 0.677056 Hz 

Uncoupled Torsion Frequency: Omega_a = 2.74589 Hz 

Fundamental Frequencies Ratio: Ratio = 0.246571 

Current Flight Altitude: H = 10000 m 

Divergence Output 

Divergence @ Q = 25463 Pa 

Divergence @ V= 351.287 m/s 

Divergence @ V=1264.63 Km/h 

Divergence @ KTAS = 683.585 

Divergence @ Mach = 1.17317 

Flutter Output 

Flutter® 0=13152.8 Pa 

Flutter® V = 252.474 m/s 

Flutter ® V= 908.906 Km/h 

Flutter® KTAS = 491.301 

Flutter® Mach = 0.843173 

Flutter Frequency: Omegaji = 1.23897 Hz 

Reduced Flutter Frequency (Strouhal): Str = 0.0262086 

Data Corrected for Compressibility Effects by Theodorsen 

Theodorsen X-f actor (Equivalent Strouhal): XJ = 0.0672369 

Theodorsen Compressibility Correction Factor: KJ= 1.04199 

Corrected Flutter Speed is: VJl_corr = 263.075 m/s 

Corrected Flutter Speed is: VJl_corr = 947.068 Km/h 

Corrected Flutter Speed is: KTAS_corr = 511.929 

Corrected Flutter Speed is: M_corr = 0.878575 

Corrected Flutter Dynamic Pressure is: Q_corr = 14280.5 Pa 

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.0251525 

******************************************************************************************************** 



******************************************************************************************************** 
Program Output 

Uncoupled Bending Frequency: Omega J = 0.754438 Hz 

Uncoupled Torsion Frequency: Omega_a = 2.74589 Hz 

Fundamental Frequencies Ratio: Ratio = 0.274752 

Current Flight Altitude: H = 10000 m 

Divergence Output 

Divergence @ Q = 26023.4 Pa 

Divergence @ V= 355.131 m/s 

Divergence @ V= 1278.47 Km/h 

Divergence @ KTAS = 691.066 

Divergence @ Mach = 1.18601 

Flutter Output-

Flutter® 0 = 12578.1 Pa 

Flutter ® V= 246.896 m/s 

Flutter @ V= 888.825 Km/h 

Flutter @ KTAS = 480.446 

Flutter @ Mach = 0.824544 

Flutter Frequency: Omegaji =1.30618 Hz 

Reduced Flutter Frequency (Strouhal): Str = 0.0282545 

Data Corrected for Compressibility Effects by Theodorsen 

Theodorsen X-f actor (Equivalent Strouhal): XJ = 0.0724856 

Theodorsen Compressibility Correction Factor: KJ= 1.04542 

Corrected Flutter Speed is: VJI_corr = 258.109 m/s 

Corrected Flutter Speed is: VJI_corr = 929.192 Km/h 

Corrected Flutter Speed is: KTAS_corr = 502.266 

Corrected Flutter Speed is: M_corr = 0.861991 

Corrected Flutter Dynamic Pressure is: Q_corr = 13746.5 Pa 

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.027027 

******************************************************************************************************** 



******************************************************************************************************** 
Program Output 

Uncoupled Bending Frequency: Omega J = 0.754437 Hz 

Uncoupled Torsion Frequency: Omega_a = 2.74589 Hz 

Fundamental Frequencies Ratio: Ratio = 0.274751 

Current Flight Altitude: H = 10000 m 

Divergence Output 

Divergence ® 0 = 26023.4 Pa 

Divergence @ V = 355.131 m/s 

Divergence @ V= 1278.47 Km/h 

Divergence @ KTAS = 691.066 

Divergence @ Mach = 1.18601 

Flutter Output 

Flutter® 0=12578.1 Pa 

Flutter @ V= 246.896 m/s 

Flutter ® V= 888.825 Km/h 

Flutter® KTAS = 480.446 

Flutter® Mach = 0.824544 

Flutter Frequency: Omegaji = 1.30618 Hz 

Reduced Flutter Frequency (Strouhal): Str = 0.0282544 

Data Corrected for Compressibility Effects by Theodorsen 

Theodorsen X-f actor (Equivalent Strouhal): XJ = 0.0724856 

Theodorsen Compressibility Correction Factor: KJ= 1.04542 

Corrected Flutter Speed is: VJljcorr = 258.109 m/s 

Corrected Flutter Speed is: VJI_corr = 929.192 Km/h 

Corrected Flutter Speed is: KTAS_corr = 502.266 

Corrected Flutter Speed is: M_corr = 0.861991 

Corrected Flutter Dynamic Pressure is: Q_corr = 13746.5 Pa 

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.027027 

******************************************************************************************************** 

Elapsed time is 315.404327 seconds. 

******************************************************************************************************** 



Case III: Effects of Flight Altitude 

• • A * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ^ * ^ ^ * ^ ^ ^ ^ ^ ^ ^ * * * ^ ^ ^ * ^ ^ * * * ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

Program Output 

Uncoupled Bending Frequency: Omega J = 0.754437 Hz 

Uncoupled Torsion Frequency: Omega_a = 2.74589 Hz 

Fundamental Frequencies Ratio: Ratio = 0.274751 

Current Flight Altitude: H = 0 m 

Divergence Output 

Divergence @ Q = 26023.4 Pa 

Divergence @ V= 206.124 m/s 

Divergence @ V= 742.047 Km/h 

Divergence @ KTAS = 401.107 

Divergence @ Mach = 0.605785 

Flutter Output 

Flutter® 0=12603.8 Pa 

Flutter @ V= 143.449 m/s 

Flutter @ V = 516.416 Km/h 

Flutter® KTAS = 279.144 

Flutter® Mach = 0.421586 

Flutter Frequency: Omegaji = 1.30502 Hz 

Reduced Flutter Frequency (Strouhal): Str = 0.0485869 

Data Corrected for Compressibility Effects by Theodorsen 

Theodorsen X-factor (Equivalent Strouhal): XJ = 0.124648 

Theodorsen Compressibility Correction Factor: KJ= 1.07782 

Corrected Flutter Speed is: VJI_corr = 154.613 m/s 

Corrected Flutter Speed is: VJI_corr = 556.606 Km/h 

Corrected Flutter Speed is: KTAS_corr = 300.868 

Corrected Flutter Speed is: M_corr = 0.454396 

Corrected Flutter Dynamic Pressure is: Q__corr = 14641.9 Pa 

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.0450787 

******************************************************************************************************** 



******************************************************************************************************** 
Program Output 

Uncoupled Bending Frequency: Omega J = 0.754437 Hz 

Uncoupled Torsion Frequency: Omega_a = 2.74589 Hz 

Fundamental Frequencies Ratio: Ratio = 0.274751 

Current Flight Altitude: H = 2500 m 

Divergence Output 

Divergence @ Q = 26023.4 Pa 

Divergence @ V = 233.225 m/s 

Divergence @ V= 839.612 Km/h 

Divergence @ KTAS = 453.844 

Divergence @ Mach = 0.705618 

Flutter Output 

Flutter® 0=12575 Pa 

Flutter® V= 162.124 m/s 

Flutter @ V= 583.646 Km/h 

Flutter® KTAS = 315.484 

Flutter® Mach = 0.490502 

Flutter Frequency: Omegaji = 1.30632 Hz 

Reduced Flutter Frequency (Strouhal): Str = 0.0430328 

Data Corrected for Compressibility Effects by Theodorsen 

Theodorsen X-f actor (Equivalent Strouhal): XJ =0.110399 

Theodorsen Compressibility Correction Factor: KJ= 1.06927 

Corrected Flutter Speed is: VJl_corr = 173.354 m/s 

Corrected Flutter Speed is: VJi_corr = 624.073 Km/h 

Corrected Flutter Speed is: KTAS_corr = 337.337 

Corrected Flutter Speed is: Mjcorr = 0.524477 

Corrected Flutter Dynamic Pressure is: Q_corr = 14377.3 Pa 

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.0402452 

******************************************************************************************************** 



******************************************************************************************************** 
Program Output 

Uncoupled Bending Frequency: Omega J = 0.754437 Hz 

Uncoupled Torsion Frequency: Omega_a = 2.74589 Hz 

Fundamental Frequencies Ratio: Ratio = 0.274751 

Current Flight Altitude: H = 5000 m 

Divergence Output 

Divergence @ 0 = 26023.4 Pa 

Divergence @ V= 265.907 m/s 

Divergence @ V= 957.265 Km/h 

Divergence @ KTAS = 517.441 

Divergence ® Mach = 0.82967 

Flutter Output-

Flutter® 0=12591.9 Pa 

Flutter® V= 184.967 m/s 

Flutter @ V= 665.881 Km/h 

Flutter® KTAS = 359.935 

Flutter® Mach = 0.577124 

Flutter Frequency: Omegaji = 1.30555 Hz 

Reduced Flutter Frequency (Strouhal): Str = 0.0376964 

Data Corrected for Compressibility Effects by Theodorsen 

Theodorsen X-f actor (Equivalent Strouhal): XJ = 0.0967084 

Theodorsen Compressibility Correction Factor: KJ= 1.06084 

Corrected Flutter Speed is: VJl_corr = 196.22 m/s 

Corrected Flutter Speed is: VJi_corr= 706.391 Km/h 

Corrected Flutter Speed is: KTAS_corr = 381.833 

Corrected Flutter Speed is: M_corr =0.612235 

Corrected Flutter Dynamic Pressure is: 0_corr = 14170.6 Pa 

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.0355345 

******************************************************************************************************** 



*******************************************#**^******^^**w#********************************************* 
Program Output 

Uncoupled Bending Frequency: Omega J = 0.754437 Hz 

Uncoupled Torsion Frequency: Omega_a = 2.74589 Hz 

Fundamental Frequencies Ratio: Ratio = 0.274751 

Current Flight Altitude: H = 7500 m 

Divergence Output 

Divergence @ 0 = 26023.4 Pa 

Divergence @ V= 305.791 m/s 

Divergence @ V= 1100.85 Km/h 

Divergence @ KTAS = 595.054 

Divergence @ Mach = 0.985965 

Flutter Output 

Flutter® 0=12591 Pa 

Flutter® V= 212.703 m/s 

Flutter @ V= 765.73 Km/h 

Flutter® KTAS = 413.908 

Flutter® Mach = 0.685819 

Flutter Frequency: Omegaji = 1.3056 Hz 

Reduced Flutter Frequency (Strouhal): Str = 0.0327819 

Data Corrected for Compressibility Effects by Theodorsen 

Theodorsen X-factor (Equivalent Strouhal): XJ = 0.0841006 

Theodorsen Compressibility Correction Factor: KJ= 1.05289 

Corrected Flutter Speed is: VJI_corr = 223.953 m/s 

Corrected Flutter Speed is: VJl_corr = 806.231 Km/h 

Corrected Flutter Speed is: KTAS_corr = 435.801 

Corrected Flutter Speed is: M_corr = 0.722093 

Corrected Flutter Dynamic Pressure is: Q_corr = 13958.1 Pa 

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.0311351 

******************************************************************************************************** 



******************************************************************************************************** 
Program Output 

Uncoupled Bending Frequency: Omega J = 0.754437 Hz 

Uncoupled Torsion Frequency: Omega_a = 2.74589 Hz 

Fundamental Frequencies Ratio: Ratio = 0.274751 

Current Flight Altitude: H = 10000 m 

Divergence Output 

Divergence @ Q = 26023.4 Pa 

Divergence @ V= 355.131 m/s 

Divergence @ V = 1278.47 Km/h 

Divergence @ KTAS = 691.066 

Divergence @ Mach = 1.18601 

Flutter Output-

Flutter® 0=12578.1 Pa 

Flutter @ V= 246.896 m/s 

Flutter @ V= 888.825 Km/h 

Flutter @ KTAS = 480.446 

Flutter® Mach = 0.824544 

Flutter Frequency: Omegaji = 1.30618 Hz 

Reduced Flutter Frequency (Strouhal): Str = 0.0282544 

Data Corrected for Compressibility Effects by Theodorsen 

Theodorsen X-factor (Equivalent Strouhal): XJ = 0.0724856 

Theodorsen Compressibility Correction Factor: KJ= 1.04542 

Corrected Flutter Speed is: VJI_corr = 258.109 m/s 

Corrected Flutter Speed is: VJl_corr = 929.192 Km/h 

Corrected Flutter Speed is: KTAS_corr = 502.266 

Corrected Flutter Speed is: Mjcorr = 0.861991 

Corrected Flutter Dynamic Pressure is: Q_corr = 13746.5 Pa 

Corrected Reduced Flutter Frequency (Strouhal): Str_corr = 0.027027 

******************************************************************************************************** 

Elapsed time is 315.055754 seconds. 

******************************************************************************************************** 



A3. VALIDATION OF FREE VIBRATION MODEL OUTPUT 

The fundamental natural frequency output from the program subroutines RRMBF 

and RRM_TF is presented below (b1 denotes bending; t1 denotes torsion, all values in 

Hz): 

Omega_b1 = 

0.7623 

ans = 

0.7623 

Omegaji = 

19.2660 

ans = 

19.2660 

The fundamental natural frequency output from the program subroutines FEM_BF 

and FEM_TF is shown below (all values in Hz): 

Uncoupled Bending Frequency: Omega J = 0.757337 Hz 

ans = 

0.7573 

Uncoupled Torsion Frequency: Omega_a = 18.9757 Hz 

ans = 

18.9757 

The fundamental natural frequency output from NASTRAN is detailed below (the 

torsion frequency represents an approximation given by NASTRAN): 

Bending: Omega J = 0.7488739 Hz 

Torsion: OmegaJ = 19.29904 Hz 

The following figures have been taken from NASTRAN windows: 
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Figure A.3a: NASTRAN model already meshed and constrained. 

Output Set MODE 1 FREO-0 7488739 
Detormed(0 39) TOTAL TRANSLATION 
Contour TOTAL TRANSLATION 

Figure A.3b: NASTRAN model first vibration mode (pure bending). 
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Figure A.3c: NASTRAN model first vibration mode (top view). 

Figure A.3d: NASTRAN model first vibration mode (front view). 
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Figure A.3e: NASTRAN model first torsion mode approximation (mode 7). 
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Figure A.3f: NASTRAN model first torsion mode approximation (top view). 
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Figure A.3g: NASTRAN model first torsion mode approximation (front view). 
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A4. MATLAB CODE 

FLUTTER ANALYSIS OF WINGS BY ENERGY METHODS 

-Horacio E. Sepic Kriskovich - MSAE - October 1:009-

H A L E AIRCRAFT WING 

tic 

-FLUTTER ANALYSIS--

--VARIABLE DATA 

.PROGRAM PARAMETERS 

n_max=1000; Maximum number of iterations for the program 
(recommended: 1000). 

n_elm=100; Number of elements for Bending and Torsion Fr^ 
Vibration Analysis by FEM (recommended: 100). 

Omega_err=l.Oe-5; Precision for flutter frequency computations, 
, [Hz] (recommended: 1.0e-5). 

FLIGHT PARAMETERS 

M_fl=0.85; Max. Mach range (recommended: 0.35) 

H_fl_vctr=[10000]; Altitude vector [m]. 

for n=l:l 

H fl=H fl vctr(n); 

ELASTIC FOUNDATION PARAMETERS 

R_kb_vctr=[1]; Ratio elastic to clamp foundation in bending vector. 

for k=l:l 

R kb=R kb vctr (k); 

R_kt_vctr=[2e-4, 6e-4]; Ratio elastic to clamp foundation in 
toisi on vector. 

for j=l:2 

R_kt=R_kt_vctr(j ) ; 

K_b_ref=2.926e50; Torsional spring to simulate a perfect 
c 1 amp i n bend 1 ng mode, [ N * mi / r ad j 
(recomme r i ded: 2.92 6e50 I . 

K_t_ref=l.743el8; Torsional spring to simulate a perfect 
i • J amp in torsi on mode, [N*m'radt 

'. (i ecommended: 1 . 74 3el8) . 
K_b=R_kb*K_b_ref; Torsional spring to simulate elastic 

foundation in bending mode, [N*m rad] 
K_t=R_kt*K_t_ref; rorsiona] spring to simulate elastic 

% foundation in torsion mode, [N*m/rad] 



-FLUTTER ANALYSIS-

...DATA INPUT.... 

Data_Input; 

FUNDAMENTAL UNCOUPLED NATURAL FREQUENCIES 

[Omega_bl]=BF_FEM_EF(n_elm,L_eff,m_Cl,m_C2,m_C3,Ixx_Cl,... 
Ixx_C2,Ixx_C3,Ixx_C4,A_C1,A_C2,A_C3,... 
d_l,d_2,E,K_b); 

[Omega_tl]=TF_FEM_EF(n_elm,L_eff,Ip_Cl,Ip_C2,Ip_C3,Ip_C4,... 
Rho,m_Cl,m_C2,m_C3,b_l,b_2,d_l,d_2,... 
J CI,J C2,J C3,J C4,G,K t); 

Omega_h=Omega_bl*(2*pi) 

Omega_a=Omega_tl*(2*pi) 

Fundamental jncoupled bending shap<E 
f requ ency [ ra d ' s] . 

torsion " • 
f requency [ rad ••' s j . 

-FLUTTER SUBROUTINE-

[Omega_flutter,Q_flutter]=Flutter_Subroutine(c,b,a,bo,L_eff,.. 
m,lea,Phi_h,Phi_h_l,Phi_a,Omega_h,.. 

Omega_a,Delta_ac,CL_a,Q fl_max,n_max) 

-DIVERGENCE JBROUTINE-

[Q_divergenee]=Divergence_Subroutine(c,b,a,bo,L_eff,m,lea,... 
Phi_h,Phi_h_l,Phi_a,Omega_h,Omega_a,Delta_ac,. 
CL a,Q fl max,n max); 

fprintf( 
Pr ogram 0utput 

fprintf( 

fprintf( 

fprintf( 

fprintf( 

Diverqen 

f p r i n t f i 
output 

f p r i n t f ( 

f p r i n t f ( 

fprintf( 

r. ') 

n Uncoupled Bending Frequency: Omega_b = g Hi \ n ' , . . 
Omega_h/(2*pi)) 

n Uncoupled Torsion Frequency: Omega a = g Hz • n ' , . . 
Omega_a/(2*pi)) 

•. n Fundamental Frequencies Ratio: Patio = g \n',... 
Omega_h/Omega_a) 

n Current Flight Altitude: H = :. g m n',... 
H fl) 

n') 

n Divergence Cd Q = -g Pa \n',Q_divergence) 

n Divergence Cd V = -g m/s \n', . . , 

sqrt(2*Q_divergence/Rho_f1)) 

n Divergence (d V = g Km/h \n', . . . 

sqrt(2*Q_divergence/Rho fl)*3.6) 
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fprintf('\n Divergence @ KTAS = g \n',... 

sqrt(2*Q_divergence/Rho_fl)*3.6/1.85) 

fprintf ( ' \n Divergence Ld Mach = -:g n',... 

sqrt(2*Q_divergence/Rho_f1)/(ao*sqrt(T_f1/To))) 

for i=l:n_max 

Omega_diff=Omega_flutter(i,1)-Omega_flutter(i,2); 

Omega_avg=(Omega_flutterd,1)+Omega_flutter(i,2))/2; 

if Omega_diff<Omega_err 

fprintf(''n 

tter Output n ' ) 
fprintf('\n Flutter @ Q = -g Pa n',Q_flutter(i)) 

fprintf ('\n Flutter @ V = g m/s \n',... 
sqrt(2*Q_flutter(i)/Rho_f1)) 

fprintf ( ' > n Flutter @ V = - g Km/h n ' , . . . 
sqrt(2*Q_flutter(l)/Rho_fl)*3.6) 

fprintf ('n Flutter @ KTAS = -g n',... 
sqrt(2*Q_flutter(i)/Rho_fl)* 3.6/1.85) 

fprintf (' n Flutter Cd Mach = -g n*,... 
sqrt(2*Q_flutter(l)/Rho_f1)/(ao*sqrt(T_f1/To))) 

fprintf('\n Flutter Frequency: Omega_fl = : g 

Omega_avg) 

fprintf('n Reduced Flutter Frequency (Strouhal): Str = g 

0mega_avg*2*pi*(MGC/2)/sqrt(2*Q_flutter(l)/Rho_f1)) 

fprintf ( ' \ n Da t a Corrected 

pressibility Effects by Theodorsen \n') 

X_f=(c_75/0.304 8)*(Omega_avg*(2*pi))/(sqrt (2*. . . 
Q_flutter(l)/Rho_fl)* 3.6/1.85) ; 

Theod L 'sn x-factor tc enter the correction plot. 
K_f=K_f_Cl*X_fA4+K_f_C2*X_f"3+K_f_C3*X_f"2+K_f_C4*X_f... 

+K_f_C5; Theodorsen rorrection factor. 
V_flutter_corrected=K_f*sqrt(2*Q_flutter(l)/Rho_f1); 

• rre ted rj tter speed for rompressibility effects, 

fprintf(*\n Theodorsen X-factoi (Equivalent Strouhal): 

g n ' , . . . 

X_f) 
fprintf('\n Theoderson Compressibility Correction Factor: 

q r, ' , . . . 
K_f) 

fprintf ('\n Corrected Flutter Speed is: V_fl_corr = ---g m/ 

V_flutter_corrected) 

fprintf(' n Corrected Flutter Speed as: V fl corr = -.g 

, . . . 
V_flutter_corrected*3.6) 

fprintf (* n Corrected Flutter Speed is: KTAS_corr = g 

V_flutter_corrected*3.6/1.85) 

fprintf(' n Corrected Flutter Speed is: M corr - g 

V flutter_corrected/(ao*sqrt(T f1/To))) 
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fprintf ( ' \n Corrected Flutter Dynamic Pressure is: 
Q_corr = .g Pa \n ' , . . . 

l/2*Rho_fl*V_flutter_correctedA2) 
fprintf ('\n Corrected Reduced Flutter Frequency 

(Strouhal): Str_corr = g \n',... 
0mega_avg*2*pi*(MGC/2)/V_flutter_corrected) 

fprintf(f n Plots 
are iisp 1 ayed on figures 1 to 5 • n ' ) 

fprintf (' n n ' ) 

break 

else 

continue 

end 

end 

figure (1) 
plot(Q_flutter,Omega_flutter(:,1),Q_flutter,Omega_flutter(:,2)); 
grid on; 
xlabel ( 'Dynamic Pressure, q [Pa]1) 
ylabel('Frequency, (Hz J ') 
hold on 
title('Frequency vs. Dynamic Pressure @ Current FL') 

figure(2) 
V_flutter=sqrt(2*Q_flutter/Rho_f1); 
plot(V_flutter,Omega_flutter(:,1),V_flutter,Omega_flutter(:,2)); 
grid Dn; 
xlabel('Speed, [m/s]') 
ylabel('Frequency, [Hz]') 
hold J 
title ('Frequency vs. Speed ld Current FL' ) 

figure (3) 
V_flutter=sqrt(2*Q_flutter/Rho_f1)*3.6; 
plot(V_flutter,Omega_flutter(:,1),V_flutter,Omega_flutter(:,2)); 
grid on; 
xlabel ( • Speed, I Km h | ' ) 
ylabel('Frequency, [Hz I ') 
hold i 
title('Frequency vs. Speed 0 Current FL') 

figure(4) 
V_flutter=sqrt(2*Q_flutter/Rho_fl)*3.6/1.85; 
plot(V_flutter,Omega_flutter(:,1),V_flutter,Omega_flutter(:,2)); 

grid on; 
xlabel('KTAS') 
ylabel('Frequency, I Hz] *) 
hold . r, 
title ('Frequency vs. KTAS (d Current FL') 

figure(5) 
M_flutter=sqrt(2*Q_flutter/Rho_f1)/(ao*sqrt(T_fl/To)); 
plot(M_flutter,Omega_flutter(:,1) ,M_flutter,Omega_flutter ( :,2) ) ; 

grid on; 
xlabel('Mach M mber') 
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ylabel('Frequency, I Hz J') 
hold on 
title (' Frequency vs. Mach Number Cd Current FL' ) 

fprintf('\n 
Program has ended \n r 

fprintf('\n \n') 

end 

end 

end 

toe 

-DATA INPUT-

syms y 

.MATERIAL. 

E =7.385el0; Al 2024 T-351 Young's Modulus [Pa]. 
G =2.870el0; Al 2024 T-351 Shear Modulus [Pa]. 
Rho=2.765e3; Al 2014 T-351 Material's density [Kg/mA3]. 

E :"K:; 

L =20.00; 
cr=2.50; 
ct=0.90; 

Semi-span, cantilever wing's length 
Root's cord [ mi ] . 
Re t's cord [m]. 

Sweep ac=6.00; AC Sweep back angle [degr* 

c_l=-0.080; 
c 2= 2.500; 

principal coefficient 
independent term, [m] 

c=c_l*y+c_2; ^hord distribution, 

b_l=-4.204e-3; 
b 2= 1 .314e-l; 

b principaJ :oefficient. 
b lndepen lent term, [m]. 

b=b l*y+b_2; i J n FA, b=C 

a_l=-7.233e-3; 
a 2= 2.260e-l; 

principal e f f ici en t. 
independent term, [m]. 

a=a_l*y+a_2; . : ._ i n n : f i c m EA t o AC, a - (.' 

d _ l = 0 . 0 ; 
d 2= 0 . 0 ; 

j p r i i i p a ] e f f i c i e n t . 
j indei en lenl te rm, [m] . 

d=d l * y + d _ 2 ; t i - :a ' l i s a n :e f rom t o EA, 1= (:. r a ) I m J 

•R< SS IECTIC NA1 PROI ERTIE5 

A_C1 = 4 . 8 2 9 e - 4 
A _ C 2 = - 3 . 0 1 8 e - 2 
A C3= 4 . 7 1 6 e - l 

p. p r i n Lpal : © e f f i c i e n t . 
h se c o n d •• 1 i i e r t , [rr . 
A i r !<- pen len r_ t e r m , [rr 2 . 



=A_Cl*y/s2+A_C2*y+A_C3; \c11 onal are d 1 s t r i b u 11 o n , A (y) [ m ' 2 ] 

I x x _ C l = - 2 . 1 3 1 e - 7 
Ixx_C2= 1.346e-5 
Ixx_C3=-3.014e-4 
Ixx C4 = 2.389e-3 

Ixx principal coefficient, [m] 
Ixx second coe1ficient, Im 2 J . 
I xx t h i r d coef ficient, Im 3] . 
Ixx independent term, |m 4] . 

Ixx =Ixx_Cl*y"3+Ixx_C2*y"2+Ixx_C3*y+Ixx_C4; i Area moment of inertia 
a bou t x - a x i s , Ix x(y) [ m' 4 ; 

J_Cl=-8.346e-7 
J_C2= 5.273e-5 
J_C3=-1.181e-3 
J C4= 9.361e-3 

1 principa1 coefficient, [m] . 
J second coefficient, [m 2 1. 
J third coefficient, [m A3]. 
J independent term, [m 4 ] . 

=JjJl*y A3+Jj22*y"2+J_C3*y+J_C4; Torsional constant, J(y) [m A4]. 

Ip_Cl=-l.256e-5 
Ip_C2= 7.934e-4 
Ip_C3=-1.777e-2 
Ip_C4= 1.409e-l 

Ip prlncipa 1 coefficient, [m . 
I p se con d coef f ic ient, [m'2] . 
Ip third coefficient, [m A3]. 
Ip independent term, [rn"41. 

IP =Ip_Cl*y"3+Ip_C2*yA2+Ip_C3*y+Ip_C4; Polar moment of 
Ip(y) [rr, 4] . 

m_Cl= 1.335; 
m_C2=-8.346el; 
m C3= 1.304e3; 

m principal coefficient, [Kg/rn 3] 
m second coefficient, [Kg/m 2 ] . 
m independent term, [Kg/m]. 

=m_Cl*y"2+m_C2*y+m_C3; Mass/unit length, m(y) [kg n . 

Iea=Ip*Rho+m*(b"2+d"2) Mass moment of inertia about EA/unit length, 
Tea [Kg*m]. 

.FIXED PARAMETERS. 

MGC= (cr+ct)/2; 
AR=2*L/MGC; 
Delta_ac=Sweep_ac*pi/180; 

Mean Geometric Chord [m]. 
Aspect ratio. 
AC Sweep hack angle Irad]. 

bo = L; 
L eff=L/cos(Delta a c ) ; 

Arbitrary reference length [m] 
Wing's ef f ect I ve s emi spar. [m] . 

.AERODYNAMU 

CL a i r f o i l = 6 . 4 4 6 ; ifficient slope NACA 63-1-012 airfoil lift 
[ 1/rad] . 

CL_a=pi*(AR/(1+sqrt(1+(pi*AR/(CL_airfoil*cos(Delta_ac))) A2))); Wing's 
1ift coefficient. 

i E HAPE^ 

Phi_h=l-cos(pi*y/(2*L_eff)); Bending admissible function 
P h i ~ a = s i n ( p i * y / ( 2 * L _ e f f ) ) ; 1 rsi r " 

P h i _ h _ l = d i f f ( P h i _ h , y ) ; 
Phi a l = d i f f (Phi a , y ) ; 

Bending f i r s l s p a t i a l d e r i v a t i v e . 
11 i s i on " " 

I SA PARAMETER: 



Rho_SL=1.225; 

Rho_FL110=0.3639; 

ao=340.26; 

To=288.15; 

Aii lensity @ SL |Kg m - I . 

(3 FL1 10 I K j m -

Speed of ' 'in j @ SI I n ; | . 

St andard te mr erature Cd SL I K 

if H_fl<=11000 

Rho_fl=Rho_SL* (1-0.00 6 5*H_f1/To)A (4 .2561) ; 
T_fl=To-6.5*H_f1/1000; 

else Rho_fl=Rho_FL110*exp(-157.69*(H_fl-11000)/10A6); 

T f1=216.65; 

end 

V_fl=M_fl*(ao*sqrt(T_f1/To)); 
Q fl max=l/2*Rho fl*V flA2; Ma 

speed range 

h, nam i : pre 

I rr • h ] . 
r j i e i a i a -I Raj . 

y_75=0.75*L_eff; 

c_75=c_l*y_75+c_2; 

K_f_Cl=-4.084e-2 
K_f_C2= 2. 585e-l 
K_f_C3=-6.232e-l 
K_f_C4= 7.366e-l 
K f C5= 9.952e-l 

"HE [ JRSEN PARAMETERS . 

of vv ing ' s : em i -span , [ m j 

.'L :>rd f : t 7 5 3emi -spar , | m 1 

Theodorser :urve principaj :oefficieni 
The^ 1 rsei :urve second :oef f icient. 
Theodorsen curve third roefficient. 
The iorsen :urve fourth roefficient. 
rhe >d- rsen :ur "e indepei lent term. 

-BENDING FREQUENCE BY FINITE ELEMENTS METHOD-

W1IH ELASTIC FOUNDATION 

function [Omega_bl]=BF_FEM_EF(n_elm,L_eff,m_Cl,m_C2,m_C3,Ixx_Cl,Ixx_C2,. 
Ixx C3,Ixx C4,A CI,A C2,A C3,d l,d 2,E,K b) 

-F INITE ELEMENI PARAMEI EF . 

n_nds=n_elm+l; Mumbej n le . 
L elm=L eff/n elm; Element Lei jth, m 

Ctr=[l]; 

Ext=zeros(n elm,2) 

for i=l:n_elm 

Ext (I,1)=i; 

Ext (i,2)=i + l; 

. • li, ' i - i l i ; t . ; 

( Id # : tran 

:tor, i i 

r e ] e [ ;>F, - ve 
he [ F' 5 t hat ai e f ixe :i 
I : i ta t i na1 DOF) . 

end 

Ext; , ,_ r.s tnc start 11 rndu I i ies 



element. 

m =zeros(n_elm,1); 

for i=l:n_elm 

y_sw_l=(i-1)*L_elm; 

y_ s w_2 = i * L_e 1 m ; 
m(i,1)=((m_Cl*y_sw_lA2+m_C2*y_sw_l+m_C3)+(m_Cl*y_sw_2A2+m_C2*y_sw_2+. 

mC3))/2; 

end 

m; Mass unit length 

Ixx=zeros(n_elm,1); 

for i=l:n elm 

Tor, contains m for each element, [Kg/m]. 

y_sw_l=(i-1)*L_elm; 
y_sw_2=i*L_elm; 
Ixx_sw_l=(Ixx_Cl*y_sw_lA3+Ixx_C2*y_sw_lA2+Ixx_C3*y_sw_l+Ixx_C4)+ . . . 

(A_Cl*y_sw_lA2+A_C2*y_sw_l+A_C3)*(d_l*y_sw_l+d_2)A2; 
Ixx_sw_2=(Ixx_Cl*y_sw_2A3+Ixx_C2*y_sw_2A2+Ixx_C3*y_sw_2+Ixx_C4)+ ... 

(A_Cl*y_sw_2A2+A_C2*y_sw_2+A_C3)* (d_l*y_sw_2+d_2)A2; 
Ixx(i,1)=(Ixx sw 1+Ixx sw 2)/2; 

snd 

Ixx; Inertia/unit length vector, contains Ixx for each element, [n 4]. 

M_eq=m.*L_elm/420; Equivalent mass for each element 
(to be assembled in M), [Kg]. 

K_eq=E*Ixx./L_elmA3; Equivalent stiffness for each element 
(to be assembled in F), [N/m]. 

MATRIX ASSEMBLE 

M=zeros(n_nds*2,n_nds*2); 
K=zeros(n_nds*2,n_nds*2); 

for i=l:n_elm 

M(Ext(i,1)*2-1,Ext(i,l)*2-l)=M(Ext(i,1)*2-l,Ext(i,1)*2-l)+M_eq(i) 
156; 

M(Ext(i,l)*2-l,Ext (i,1)*2) =M(Ext(i,1)*2-l,Ext(i,l)*2) +M_eq(i)*. . . 
22*L_elm; 

M(Ext(i,1)*2-l,Ext(i,2)*2-l)=M(Ext(i,1)*2-1,Ext(i,2)*2-l)+M_eq(i)*... 
54; 

M(Ext (i,1) *2-l,Ext (i,2)*2) =M(Ext(i,1)*2-l,Ext(i,2)*2) -M_eq(i)*. . . 
13*L_elm; 

M(Ext(i,1)*2,Ext(i,1)*2-l)=M(Ext(i,1)*2,Ext(i,1)*2-l)+M_eq(i)*... 
22*L_elm; 

M(Ext(1,1)*2,Ext(l,1)*2) =M(Ext(i,l)*2,Ext(i,l)*2) +M_eq(i)*... 
4*L_elmA2; 

M(Ext(i,l)*2,Ext(1,2)*2-l)=M(Ext(i,1)*2,Ext(i,2)*2-l)+M_eq(i)*... 
13*L_elm; 

M(Ext(i,l)*2,Ext(i,2)*2) =M(Ext(i,1)*2,Ext(i,2)*2) -M_eq(i)*... 
3*L elmA2; 

M(Ext (i,2) *2-l,Ext (i,l) *2-l)=M(Ext(i,2) *2-l,Ext (i,l) *2-l) +M_eq (i) 

54; 



M(Ext 

M(Ext 

M(Ext 

M(Ext 

M(Ext 

M(Ext 

M(Ext 

i,2)*2-l,Ext(i,1)*2) =M(Ext(i,2)*2-l,Ext(i,1)*2) +M_eq(i)*... 
13*L_elm; 

i,2)*2-l,Ext(i,2)*2-l)=M(Ext(i,2)*2-l,Ext(i,2)*2-l)+M_eq(i)*... 
156; 

i,2)*2-l,Ext (i,2)*2) =M(Ext(i,2)*2-l,Ext(i,2)*2) -M_eq(i)*... 
22*L_elm; 

i,2)*2,Ext (i,1)*2-l)=M(Ext(i,2)*2,Ext(i,1)*2-l)-M_eq(i)*... 
13*L_elm 

i,2)*2,Ext (i,1)*2) =M(Ext(i,2)*2,Ext(i,1)*2) -M_eq(i)*.. . 
3*L_elmA2 

i,2)*2,Ext(i,2)*2-l)=M(Ext(i,2)*2,Ext(i,2)*2-l)-M_eq(i)*... 
22*L_elm 

i,2)*2,Ext(i,2)*2) =M(Ext(i,2)*2,Ext(i,2)*2) +M_eq(i)*... 
4*L elmA2 

K(Ext 

K(Ext 

K(Ext 

K(Ext 

K(Ext 

K(Ext 

K(Ext 

K(Ext 

K(Ext 

K(Ext 

K(Ext 

K(Ext 

K(Ext 

K(Ext 

K(Ext 

K(Ext 

i,1)* 2-1,Ext(i,1)*2-l)=K(Ext(i,1)*2-1,Ext(i,1)*2-l)+ K_eq(i)*. . . 
12 

i,1)*2-l,Ext(i,1)*2) =K(Ext(i,1)*2-1,Ext (i,1)*2) +K_eq(i)*... 
6*L_elm 

i, 1) *2-l,Ext (i,2) *2-l)=K(Ext (i,l) *2-l, Ext (i, 2) *2-l) -K_eq(i) *.. . . 
12 

i,1)*2-l,Ext (i,2)*2) =K(Ext(i,1)*2-l,Ext(i,2)*2) +K_eq(i)*... 
6*L_elm 

i,1)*2,Ext(i,1)*2-l)=K(Ext(i,1)*2,Ext(i,1)*2-l)+K_eq(i)*... 
6*L_elm 

i,l)*2,Ext(i,l)*2) =K(Ext(i,1)*2,Ext (i,1)*2) +K_eq(i)*... 
4*L_elmA2 

i, 1)*2,Ext(i,2)*2-l)=K(Ext(i,1)*2,Ext(i,2)*2-l)-K_eq(i)*. . . 
6*L_elm 

i,1)*2,Ext (i,2)*2) =K(Ext(i,1)*2,Ext (i,2)*2) +K_eq(i)*. .. 
2*L_elmA2 

i,2)*2-l,Ext(i,1)*2-l)=K(Ext(i,2)*2-l,Ext(i,1)*2-l)-K_eq(i)*... 
12 

i,2)*2-l,Ext (i,1)*2) =K(Ext(i,2)*2-l,Ext (i,1)*2) -K_eq(i)*. .. 
6*L_elm 

i,2)*2-l,Ext(i,2)*2-l)=K(Ext(i,2)*2-l,Ext(i,2)*2-l)+K_eq(i)*... 
12 

i,2)*2-l,Ext(i,2)*2) =K(Ext(i,2)*2-1,Ext(i,2)*2) -K_eq(i)* . . . 
6*L_elm 

i,2)*2,Ext(i,1)*2-l)=K(Ext(i,2)*2,Ext(i,1)*2-l)+K_eq(i)*... 
6*L_elm 

i,2)*2,Ext(i,1) *2) =K(Ext(i,2)*2,Ext(i,1)*2) +K_eq(i) 
2*L_elmA2 

i,2)*2,Ext(i,2)*2-l)=K(Ext(i,2)*2,Ext(i,2)*2-l)-K_eq(i)*... 
6*L_elm 

i,2)*2,Ext(i,2) *2) =K(Ext(i,2)*2,Ext(i,2)*2) +K_eq(i)*... 
4*L elmA2 

end 

K; 
K(2,2)=K(2,2)+K_b/K_eq(l); 

M=double(M); [Kg!. 
K=double(K); |N/m!. 

ontribution »f the elastic foundatic 
>veralJ stiffness matrix. 

SOLVER. 

S o l u t i o n of t h - c > r c a i L - pn 'Mern for n 



M_inv=inv(M); 
H =M_inv*K; 

for i=l:length(Ctr) 

H(Ctr(i)-i+l,:) = []; 
H(:,Ctr(i)-i+l)=[]; 

end 

E=eig(H); 

: OUTPUT 

Omega_bl=sqrt(E)/(2*pi); - Bending frequencies vector, w's [Hz]. 

Omega_bl=min(double(Omega_bl)); \ Fundamental bending frequency, wl [Hz]. 

fprintf ('\n Uncoupled Bending Frequency: Omega_h = %g Hz \n',Omega_bl) 

t r k k + + + + * + + * + *k+-k-k-kk-k-k-k-k-k-k-k-kk-kk+-k + + k-k-k+ + *-k-k-kk: 

-TORSION FREQUENCY BY FINITE ELEMENTS METHOD-

-WITH ELASTIC FOUNDATION 
k k k k * if k -k -k * k -k -k * * • * * - * * • * * * * * * * * * * k-k-k-kkk-k-k-kkr-k-k k -k * ~k + -k J 

function [Omega_tl]=TF_FEM_EF(n_elm,L_eff,Ip_Cl,Ip_C2,Ip_C3,Ip_C4,Rho,. 
m_Cl,m_C2,m_C3,b_l,b_2,d_l,d_2,J_C1,J_C2,J_C3,J_C4, 
G,K t) 

-FINITE ELEMENT PARAMETERS-

n_nds=n_elm+l; Number of nodes. 
L elm=L eff/n elm; Element length, [m] 

Ctr=[]; Constraints vector, contains the DOF's that are fixed 

(only rotational DOF's). 

Ext=zeros(n_elm,2); 

for i=l:n_elm 

Ext(i,l)=i; 
Ext (i,2)=i+l; 

end 

Ext; Extremes vector, connects the starting and endind nodes of 
each element. 

Iea=zeros(n_elm,1); 

for i=l:n_elm 

y_sw_l=(i-1)*L_elm; 
y_sw_2=i*L_elm; 
Iea_sw_l=(Ip_Cl^y_sw_lA3+Ip_C2*y_sw_lA2+Ip_C3*y_sw_l+Ip_C4)*Rho+... 

(m_Cl*y_sw_lA2+m_C2*y_sw_l+m_C3)*((b_l*y_sw_l+b_2)A2+... 
(d~l*y_sw_l+d_2)A2); 

Iea_sw_2=(Ip_Cl^y_sw_2A3+Ip_C2*y_sw_2A2+Ip_C3*y_sw_2+Ip_C4)*Rho+... 



(m_Cl*y_sw_2A2+m_C2*y_sw_2+m_C3)*((b_l*y_sw_2+b_2)A2+... 
(d_l*y_sw_l+d_2)A2); 

lea (i,1) = (Iea_sw_l+Iea_sw_2)/2; 

end 

lea; Mass polar momient of inertia about EA vector, contains lea for each 
% element, [Kg*mJ . 

J=zeros(n_elm,1); 

for i=l:n_elm 

y_sw_l=(i-1)*L_elm; 
y_sw_2=i*L_elm; 
J(i,1)=((J_Cl*y_sw_lA3+J_C2*y_sw_lA2+J_C3*y_sw_l+J_C4)+... 

(J_Cl*y_sw_2A3+J_C2^y_sw_2A2+J_C3*y_sw_2+J_C4))/2; 

end 

J; Torsional constant vector, contains J for each element, [rr04J.. 

I_eq=Iea.*L_elm/2; Equivalent miass polar moment of inertia about EA for 
: each element (to be assembled in I), [Kg*mA2]. 

K_eq=G*J./L_elm; \ Equivalent stiffness for each element (to be 
assembled in K), [N*m]. 

MATRIX ASSEMBLY 

I=zeros(n_nds,n_nds); 
K=zeros(n_nds,n_nds); 

for i=l:n_elm 

I (Ext (i, 1) , Ext (i, 1) ) =1 (Ext (i, 1) , Ext (i, 1) ) +I__eq(i) ; 
I(Ext (i,1)+l,Ext(i,l)+l)=I(Ext(i,1)+l,Ext(i,1)+1)+I_eq(i) ; 

K(Ext (i,1),Ext (i,1) ) =K(Ext(i,1),Ext(i,1) ) +K_eq(i) ; 
K(Ext(i,1),Ext(i,1)+l)=K(Ext(i,1),Ext(i,1)+1)-K_eq(i); 

K(Ext (i,l)+l,Ext(i,1) ) =K(Ext(i,1)+l,Ext(i,1) ) -K_eq(i) ; 
K(Ext(i,1)+lfExt(i,1)+l)=K(Ext(i,1)+l,Ext(i,1)+1)+K_eq(i); 

end 

K; 
K(2,2)=K(2,2)+K_t/K_eq(l); Contribution of the elastic foundation to the 

over a 11 stiffness ma t rix. 

I=double(I); [Kg*mA2]. 
K=double(K); [N*m]. 

SOLVER 

Solution of the eigenvalue problem for natural frequencies 
I_inv=inv(I); 
H =I_inv*K; 

for i=lilength(Ctr) 

H(Ctr(i)-i + l, :) = [] ; 



H(:,Ctr(i)-i + l) = [] ; 

end 

E=eig(H); 

% OUTPUT 

Omega_tl=sqrt(E)/(2*pi); S Torsion frequencies vector, w's [Hz]. 

Omega_tl=min(double(Omega_tl)); Fundamental torsion frequency, wl [Hz] 

fprintf('\n Uncoupled Torsion Frequency: Omega a = %q Hz \n',Omega_tl) 

-FLUTTER SUBROUTINE--

function [Omega_flutter,Q_flutter]=Flutter_Subroutine(c,b,a,bo,L_eff,m,.. 
Iea,Phi_h,Phi_h_l,Phi_a,Omega_h, . .. 
Omega_a,Delta_ac,CL_a,Q_fl_max,n_max) 

syms y 
WTB=waitbar (0, 'Calculating Flutter Envelope...'); 

.MATRIX ASSEMBLY 

Definition of mass terms [M]: 
M_hh=int(m*(Phi_h)A2,y,0,L_eff); 
M_ha=int(m*b*(Phi_h)*(Phi_a),y,0,L_eff); 
M_ah=M_ha; 
M_aa=int(lea*(Phi_a)A2,y,0,L_eff); 

Definition of elastic terms fKJ : 
K_hh=(Omegaji)A2*M_hh; 
K_aa=(Omega_a)A2*M_aa; 

Definition of aerodynamic terms [A]: 
A_hh=-CL_a/2*int(c*(Phi_h*Phi_h_l*sin(Delta_ac)-a*Phi_h_lA2*... 

(sin (Delta_ac))A2),y,0,L_eff) 
A_ha=-CL_a/2*int(c*(Phi_h*Phi_a*cos(Delta_ac) -a*Phi_h_l*Phi_a*... 

sin(Delta_ac)*cos(Delta_ac)),y,0,L_eff) 
A_ah= CL_a/2*int(c*(a*Phi_h_l*Phi_a*sin(Delta_ac)*cos(Delta_ac)),y,0,... 

L_eff) 
A aa= CL a/2*int(c*(a*Phi_aA2*(cos(Delta_ac))A2) , y, 0, L eff); 

Assembly of equations of motion in matrix form 
M_ll=M_hh*boA2; 
M_12=M_ha*bo; 
M_21=M_ah*bo; 
M_22=M_aa; 

K_ll=K_hh*boA2; 
K_12=0; 
K_21=0; 
K 22=K aa; 

A 11=A hh*boA2; 



A_12=A_ha*bo; 
A_21=A_ah*bo; 
A 22=A aa; 

M=[M_11 M_12; M_21 M_22] 
K=[K_11 K_12; K_21 K_22] 
A=[A 11 A 12; A 21 A 22] 

.SOLVER. 

'.- Solving the eigenvalue problem (frequency domain): 
step_q=Q_fl_max/n_max; Step for dynamic pressure. 
Q_flutter=zeros(n_max,1); 
Omega_flutter=zeros(n_max,2); 

for i=l:n_max 

waitbar(i/n_max,WTB) 

q=0:step_q:Q_fl_max; 
q=q(i); 

D_ll=K_ll-q*A_ll 
D_12=K_12-q*A_12 
D_21=K_21-q*A_21 
D_22=K_22-q*A_22 

\ Solving the characteristic equation: 
A=M_11*M_22-M_12*M_21; 
B=-D_11*M_22-D_22*M_11+D_21*M_12+D_12*M_21; 
C=D 11*D 22-D 12*D 21; 

A=double(A) 
B=double(B) 
C=double(C) 

rootl=(-B+sqrt(BA2-4*A*C))/(2*A); 
root2=(-B-sqrt(BA2-4*A*C))/(2*A); 

Omega_flutter(i,l)=sqrt(rootl)/(2*pi) , 
Omega_flutter(i,2)=sqrt(root2)/(2*pi) 
Q_flutter(i)=q; 

end 

close(WTB) 

-DIVERGENCE SUBROUTINE-

function [Q_divergence]=Divergence_Subroutine(c,b,a,bo,L_eff,m,lea,.. 
Phi_h,Phi_h_l,Phi_a,Omega_h,Omega_a,Delta_ac, 
CL_a,Q_fl_max,n_max) 

syms y 
WTB=waitbar (0, 'Calculating Divergence...'); 

.MATRIX ASSEMBLE 

Definition of mass terms [M]: 
M_hh=int(m*(Phi_h)A2,y,0,L_eff); 
M ha=int(m*b*(Phi_h)* (Phi_a),y,0,L_eff); 



M_ah=M_ha; 
M_aa=int(lea*(Phi_a)A2,y,0,L_eff); 

% Definition of elastic terms [K]: 
K_hh=(Omega_h)A2*M_hh; 
K_aa=(Omega_a)A2*M_aa; 

% Definition of aerodynamic terms [A]: 
A_hh= CL_a/2*int(c*(Phi_h*Phi_h_l*sin(Delta_ac)+a*Phi_h_lA2*... 

(sin(Delta_ac))A2),y,0,L_eff); 
A_ha=-CL_a/2*int(c*(Phi_h*Phi_a*cos(Delta_ac) +a*Phi_h_l*Phi_a*... 

sin(Delta_ac)*cos(Delta_ac)),y,0,L_eff); 
A_ah=-CL_a/2*int(c*(a*Phi_h_l*Phi_a*sin(Delta_ac)*cos(Delta_ac)),y,0,... 

L_eff); 
A_aa=-CL_a/2*int(c*(a*Phi_aA2*(cos(Delta_ac))A2),y,0,L_eff); 

% Assembly of equations of motion in matrix form: 
K_ll=K_hh*boA2; 
K_12=0; 
K_21=0; 
K_22=K_aa; 

A_ll=A_hh*boA2; 
A_12=A_ha*bo; 
A_21=A_ah*bo; 
A_22=A_aa; 

K=[K_11 K_12; K_21 K_22]; 
A=[A 11 A 12; A 21 A 22]; 

% SOLVER 

\ Solving the characteristic equation, [D]=[K]-q*[A] 

A=A_11*A_2 2-A_l2 *A_21; 
B=-K_11*A_22-K_22*A_11; 
C=K_11*K_22; 

A=double(A) 
B=double(B) 
C=double(C) 

Q_divergence_l=(-B+sqrt(BA2-4*A*C))/(2*A); 
Q_divergence_2=(-B-sqrt(BA2-4*A*C))/(2*A); 

Q_divergence=abs(Q_divergence_l); 

close(WTB) 

O k k ^ i r i , k k ^ ^ i ' ^ k M k * k ^ ^ k k k ^ k ^ k ^ k ^ k k k ^ ^ k k ^ k k k ^ k ^ ^ ^ k ^ ^ k k k ^ ^ ^ ^ k : ^ ^ ^ k k : ^ . k:k^--. 

-. BENDING FREQUENCY BY RAYLEIGH-RITZ METHOD 
9 - * * * * * * * * * * * * # * * * * * -k + k + k k k k-kk + k + k k - k k k k k k k 

function [Omega_bl]=BF_RRM(L_eff, E, Ixx,m) 

.ADMISSIBLE FUNCTIONS. 

Phil=(y/L_eff)A2; \ Admissible functions, Phi(y). 
Phi2=l-cos(pi*y/(2*L_eff)); 

Phil l=diff(Phil,y); - 1st. spatial derivatives. 



Phi2_l=diff(Phi2,y); 

Phil_2=diff(Phil_l,y); % 2nd. spatial derivatives. 
Phi2_2=diff(Phi2_l,y); 

' SOLVER 

c Solution of the eigenvalue problem, which is represented by the 
% expression det ( [N] -w'N2* [ D] ) =0 . 

I Definition of [ N ] matrix: 
N_ll=int(E*Ixx*(Phil_2)A2,y,0,L_eff); 
N_12=int(E*Ixx*(Phil_2)*(Phi2_2),y,0,L_eff); 
N_21=N_12; 
N_22=int(E*Ixx*(Phi2_2)A2,y,0,L_eff); 

N=[N_11 N_12; N_21 N_22]; 
N=double(N); 

Definition of [D] matrix: 
D_ll=int(m*(Phil)A2,y,0,L_eff); 
D_12=int(m*(Phil)* (Phi2),y,0,L_eff); 
D_21=D_12; 
D_22=int(m*(Phi2)A2,y,0,L_eff); 

D=[D_11 D_12;D_21 D_22]; 
D=double(D); 

\ Solution of the characteristic equation; 
AA=D_11*D_22-D_12A2; 
BB=2*N_12*D_12-N_11*D_22-D_11*N_22; 
CC=N_11*N_22-N_12A2; 
DD=BBA2-4*AA*CC; 

OUTPUT 

Omega_bl = sqrt( (-BB-sqrt(DD) )/(2*AA) )/ (2*pi) ; \ 1st bending frequency, [Hz]. 
Omega_b2 = sqrt( (-BB+sqrt(DD) )/(2*AA) )/ (2*pi) ; 2nd bending frequency, [Hz]. 

Omega_bl=double(Omega_bl); 
Omega_b2=double(Omega_b2); 
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I TORSIONAL FREQUENCY BY RAYLEIGH-RITZ METHOD 

function [Omega_tl]=TF_RRM(L_eff,G,J,lea) 

-- ADMISSIBLE FUNCTIONS 

Thetal=(y/L_eff); Admissible functions, Theta(y) [rad]. 
Theta2=sin(pi*y/(2*L_eff)); 

Thetal_l=diff(Thetal,y); 1st. spatial derivatives. 
Theta2_l=diff(Theta2,y); 

\ SOLVEP 

\ Solution of the eigenvalue problem, which is represented by the 



% expression det([D]A(-1)*[N]-wA2*[I])=0. 

% Definition of [N] matrix: 
N_ll=int(G*J*(Thetal_l)A2,y,0,L_eff); 
N__12 = int(G*J*(Thetal_l)*(Theta2_l),y,0,L_eff); 
N_21=N_12; 
N_22=int(G*J*(Theta2_l)A2,y,0,L_eff); 

N=[N_11 N_12; N_21 N_22]; 
N=double(N); 

I Definition of [D] matrix: 
D_ll=int(lea*(Thetal)A2,y,0,L_eff); 
D_12=int(lea*(Thetal)*(Theta2),y,0,L_eff); 
D_21=D_12; 
D_22=int(lea*(Theta2)A2,y,0,L_eff); 

D=[D_11 D_12;D_21 D_22]; 
D=double(D); 

. Solution of the characteristic equation; 
AA=D_11*D_22-D_12A2; 
BB=2*N_12*D_12-N_11*D_22-D_11*N_22; 
CC=N_11*N_22-N_12A2; 
DD=BBA2-4*AA*CC; 

OUTPUT 

Omega_tl=sqrt((-BB-sqrt(DD))/(2*AA))/(2*pi); I 1st torsion frequency, [Hz]. 
Omega_t2=sqrt((-BB+sqrt(DD))/(2*AA))/(2*pi); 2nd torsion frequency, [Hz]. 

Omega_tl=double(Omega_tl); 
Omega_t2=double(Omega_t2); 
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