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Year: 1996 

The minimum fuel rendezvous problem between several power-limited 

low-thrust spacecraft neighboring either a circular or an elliptic orbit is 

investigated. Both cooperative and non cooperative maneuvers are studied. The 

maximum principle of Pontryagin is applied to the optimal control rendezvous 

problem of several spacecraft. The gravitational field models investigated are the 

Clohessy-Wiltshire field and the inverse-square gravity field. Numerical solutions 

using a shooting method and the finite difference method are used in order to 

determine the trajectories of the spacecraft. 

Unlike previous investigations, this work is not restricted to a rendezvous of two 

spacecraft around a circular orbit, but a few vehicles will be able to rendezvous 

in space at a fixed-final time, both about a circular orbit and about an elliptic 

orbit. 
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CHAPTER 1 

Introduction 

Historically, spacecraft rendezvous studies involved one thrusting 

(active) vehicle and one coasting (passive) vehicle, also called noncooperative 

rendezvous. The term "cooperative" indicates that each vehicle is active, which 

means capable of providing part or all of the total velocity change necessary to 

obtain a rendezvous. Optimal rendezvous implies that the sum of the final 

masses of the vehicles is maximized or in other words, that the total propellant 

consumption is minimized. A comparison of the costs of cooperative rendezvous 

would be meaningful if all the vehicles have comparable size and the same 

propulsion system. In our research, they are all power-limited. It was shown that 

the cooperative rendezvous presents an important advantage : a reduction in 

total propellant is obtained as compared to the traditional active-passive 

rendezvous when the vehicles are all active [Coverstone, 1992,1993,1994]. 

The problem of finding optimal spacecraft trajectories has received considerable 

attention over the last few decades. Several scientists have studied different 

aspects of optimal rendezvous using optimal control theory. Studying the 

cooperative rendezvous, Prussing and Conway [Prussing, 1989] determined the 

optimal terminal maneuver for a cooperative impulsive rendezvous. They found 

how much of the total required velocity change should be provided by each 

vehicle for two active spacecraft. [Mirfakhraie, 1991] and Mirfakhraie and 

1 
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Conway [Mirfakhraie, 1990] developed a method for determining optimal 

minimum-fuel trajectories for the fixed-time cooperative rendezvous of two 

spacecraft with impulsive propulsion systems. They concluded that a 

cooperative type of rendezvous is advantageous when the time allowed for 

rendezvous is relatively short. Coverstone [Coverstone, 1992, 1993] considered 

the optimal cooperative power-limited rendezvous between two spacecraft 

neighboring a circular orbit. In that problem the motion is not restricted to the 

plane, the z-component is taken in account. Recently, Coverstone-Caroll and 

Prussing [Coverstone, 1994] studied the optimal cooperative power-limited 

rendezvous between circular coplanar orbits for the inverse-square gravity field 

and the Clohessy-Wiltshire field. They concluded that the total propellant used 

for both cooperative and noncooperative rendezvous decreases as total 

maneuver time increases and that the cooperative rendezvous uses less total 

propellant than the corresponding active-passive rendezvous. They noticed also 

that the addition of circular terminal orbit constraints increases total propellant 

consumption when compared to the unsconstrained cooperative rendezvous. 

The word "constraint" means that the circular terminal orbit is specified and is 

always between the two initial orbit radii. However, on the contrary, the word 

"unconstrained" means that the final position is not constrained to occur on a 

given circular trajectory. The final position is not specified. Only the ellapse time 

for the rendezvous is specified. Carter [Carter, 1994] studied the optimal power-

limited rendezvous for linearized equations of motion. The solution is then 

applied to the problem of rendezvous of a spacecraft with an object in the 

vicinity of a nominal Keplerian orbit. He concluded that for rendezvous with 

satellites in elliptical, parabolic, or hyperbolic orbits, the optimal solution is given 

almost in closed form. For rendezvous with satellites in near-circular orbits, 

Carter linearized the problem about a nominal orbit that is circular and solved it 

in closed- form. 
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Carter treated the same problem as the one of Coverstone and Prussing 

described above but the mathematical approach and the method of solution were 

different. Carter and Brient [Carter, 1992] contributed to the related linear 

bounded-thrust rendezvous near an arbitrary Keplerian orbit in fixed time. 

Bounded-thrust fuel optimal spacecraft trajectories are compared for elliptical, 

parabolic and hyperbolic orbits. They developed a transformation from the 

original state vector to a new pseudostate vector. The advantage of this 

transformation is that the new pseudostate vector is constant unless the 

spacecraft thrustors are activated. This approach avoids the problem of 

inverting a fundamental matrix solution. 

In general spacecraft trajectories are classified into two types : high-thrust and 

low-thrust. The high-thrust programs are distinguished from the low-thrust 

programs by examining the ratio of thrust acceleration to gravitational 

acceleration. For high-thrust, this ratio is much greater than one and the thrust 

time is relatively short compared to the time between thrusting. For this reason, 

the high -thrust is also called impulsive thrust. For low-thrust, the ratio is on the 

order of less than one tenth and the thrust level results in prolonged thrusting 

intervals. Dual-thrust programs are also possible. It has been shown that when 

the individual performances are the same, a dual-thrust program is more 

effective than individual high and low-thrust programs [Larson, 1989] [Lembeck, 

1993]. 

Propulsion systems can be further categorized as constant specific impulse (CSI) 

or variable specific impulse (VSI). CSI engines, also called constant exhaust 

velocity engines, modify their thrust levels by varying the mass flow rate. They 

can be either high or low thrust devices. Low-thrust CSI engines are "thrust-

limited". The thrust produced by these engines is limited by a maximum value 
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attainable by the mass flow rate. VSI engines are low-thrust engines. However, 

the thrust is controlled by varying the exhaust velocity. The power available 

from a separate energy source required to run the engine is limited. This kind of 

engine is then referred to as "power-limited" engine. Many papers describe low-

thrust spacecraft maneuvering. Prussing [Prussing, 1993 (a)][Prussing, 1993 (b)] 

obtained the general equations for optimal power-limited spacecraft trajectories. 

The equations of motion and the necessary conditions for an optimal trajectory 

have been combined into a single fourth order differential equation for the 

position vector. Murphy [Murphy, 1992] studied the optimal power-limited 

spacecraft rendezvous trajectories for different gravity fields : free field, constant 

gravity field and linearized gravity field. He could not find any solution for the 

inverse square-gravity field because of a lack of convergence in one of his 

routines. Pardis and Carter [Pardis, 1995] considered the effect of an upper 

bound on the thrust magnitude (thrust saturation) in the linearized power-limited 

rendezvous problem. In addition to a limit on the power, there is a limit on the 

thrust. They presented a necessary condition for a solution of the problem in 

terms of the bound on thrust and the boundary conditions. They also found a 

necessary and sufficient condition for an optimal solution to be fuel efficient in 

terms of the bound on the thrust and the boundary conditions. They concluded 

that the smaller the region of saturation the better; the best situation being a 

totally unsaturated flight. 

Other works described high-thrust spacecraft rendezvous or high and low-thrust 

spacecraft rendezvous. For example, Chiu and Prussing [Prussing, 1986] [Chiu, 

1984] studied the optimal multiple impulse time-fixed rendezvous between 

circular orbits. The coplanar case and a restricted class of noncoplanar cases 

were analysed. In the linearized case, as many as four impulses are required for 

an optimal fixed time rendezvous. In the noncoplanar linearized case, the 
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maximum number of impulses required is six. Prussing and Clifton [Prussing, 

1994] determined the minimum-fuel, impulsive solutions obtained for the evasive 

maneuver of a satellite followed by a rendezvous with the original orbit station 

for both final-time constrained and final-open maneuvers. The returns-on-station 

maneuvers considered are likely the most expensive in terms of fuel compared to 

other maneuvers. Larson-Lembeck and Prussing [Larson, 1989], [Lembeck, 1993] 

worked on an optimal orbital rendezvous using high and low thrust. The high-

thrust program is used first in order to perform an intercept of a predetermined 

position in space in a specified amount of time. Then, the spacecraft returns to 

the original orbit station with a low-thrust propulsion system using optimal 

control. Dual thrust programs seem more effective than individual high and low-

thrust programs. 

In this thesis, the power-limited rendezvous problem is considered. The optimal 

power-limited spacecraft is one which will have many applications as new 

power-limited engines are developed. Since the engines are low-thrust, they will 

be useful in orbit transfers between neighboring orbits, or in deep space orbit 

transfers, when the engine are operated continuously in order to build up the 

acceleration needed. In the first part of this study, we will work on spacecraft 

neighboring circular orbits and in the second and last part, we will consider 

spacecraft neighboring elliptic orbits. Rao and Romanan [Rao, 1992] treated the 

case of optimal rendezvous transfer between coplanar heliocentric elliptic orbits 

using solar sail. They pointed out the effect of the eccentricities of the terminal 

orbits on the time-optimal transfer. The optimal control problem studied is 

converted to a two-point boundary-value problem consisting of a system of 

seven first-order ordinary differential equations. Tschauner [Tschauner, 1967] 

worked on the rendezvous between a spacecraft propelled by engines with 
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restricted thrust and an unpropelled target moving in an elliptic orbit of arbitrary 

eccentricity. Euler [Euler, 1969] studied the coplanar rendezvous maneuver 

between a thrusting vehicle and a passive vehicle in an elliptic orbit. His work 

was limited to a terminal phase of an interception. He calculated an analytic 

solution for the fuel optimal thrust program for power-limited vehicles when the 

time to maneuver is fixed. He realised that the solution to the homogeneous linear 

equations of motion for elliptic target orbits permits the reduction of the low-

thrust rendezvous optimal control problem to quadrature. Wellnitz and Prussing 

[Wellnitz, 1987] studied the optimal trajectories for time-constrained rendezvous 

between arbitrary conic orbits. Primer vector theory is used to determine how the 

cost can be minimized by the addition of initial and final coast periods, and by 

the addition of midcourse impulses. 

Analytical methods, such as the state transition matrix method, for solving 

optimal spacecraft trajectories were used in the past. This kind of problem can 

not be solved analytically when more than two vehicles are involved since it 

becomes too complicated and intractable. For the elliptic orbit problem, an 

analytic solution is also very difficult to obtain because the coefficients of the 

differential equations are time-dependent. In this thesis, numerical solutions are 

used for solving both the circular and the elliptic cases with more than two 

vehicles in two different fields : the CW and the inverse square gravity field. 

Humi [Humi, 1993] studied the fuel optimal rendezvous in a general central force 

field. Only the formulation of the equations of motion and the optimal control for 

the linearized equations of motion were presented. No specific result have been 

obtained. 

In order to obtain minimum-fuel solutions, we apply optimal control theory. The 

optimal controller is determined by using the Pontryagin Minimum Principle 
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[Bryson, 1969]. For convenience, we will use the primer vector described by 

Lawden [Lawden, 1963], [Coverstone, 1992]. Lawden introduced for the first 

time the primer vectors in an optimal control problem in 1963 in the course of his 

pioneering work on minimum-fuel orbital transfers. Lawden used the term 

"primer vector" to describe the adjoint to the velocity vector because of its 

significance for the optimal trajectory. 

Two approaches are considered in order to solve optimal control problems. The 

"indirect" approach uses the calculus of variations to derive the necessary 

conditions of optimality, i.e., the Euler-Lagrange equations. This results in a two 

point boundary-value problem (TPBVP), which may then be solved numerically. 

On the other hand, the "direct" approach uses mathematical programming. It 

consists of transforming the original problem into a parameter optimization 

problem. Explicit integration of the system of differential equations is avoided. 

Instead, algebraic expressions (Hermite cubic polynomials) approximate the 

differential equations locally, and the resulting system of nonlinear simultaneous 

equations is then solved by mathematical programming. A well-known indirect 

approach for solving the optimal control problem that results in a TPBVP is the 

"shooting" method. This method requires a first guess of either the initial or final 

boundary conditions. In order to find the conditions at the other end, the Euler-

Lagrange system is then integrated forward or backward. Adjusting the guess 

and iterating the process, the appropriate conditions that satisfy the problem 

will eventually be found. Colasurdo and Pastrone [Colasurdo, 1993] presented 

an indirect technique that optimizes fixed-time finite-thrust orbit transfers. The 

technique used, which is fairly general and extendible to a wide variety of 

problems, seemed to reduce the sensitivity of the indirect methods to the initial 

value of the adjoint variables. The procedure appeared to be very accurate. 

Hargraves and Paris [Hargraves, 1987] described the direct trajectory 
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optimization using nonlinear programming and collocation. The method employs 

cubic polynomials to represent state variables, linearly interpolates control 

variables, and uses collocation to satisfy the differential equations. The method 

is easy to program for a general trajectory optimization problem. They used an 

implicit integration scheme based on Hermite interpolation to convert the optimal 

control problem to a nonlinear programming problem. Scheel and Conway 

[Scheel, 1994] determined optimum very low-thrust transfer using a direct 

transcription approach to convert the continuous optimal control problem into a 

nonlinear programming problem. Many-revolution spacecraft trajectories are 

considered. They added a parallel Runge-Kutta shooting algorithm in order to 

decrease the size of the nonlinear programming problem resulting from the direct 

transcription process. They demonstrated that Runge-Kutta parallel shooting 

transcription and nonlinear programming method can be successfully applied to 

the optimization of many-revolution orbit raising trajectories about Earth. Also, 

Tang and Conway [Tang, 1995] demonstrated the success of the method of 

direct collocation with nonlinear programming applied to the problem of 

optimization of very low thrust interplanetary transfers. 

The method used in this thesis are the shooting method and the finite difference 

method [Zwillinger, 1989]. For the implementation, we use the Matlab software 

package. Matlab is a technical computing environment for high-performance 

numeric computation and visualization. The advantage of Matlab is its easy 

access to work on matrices and algebra in general. 



CHAPTER 2 

Optimal trajectory 

equations in a general gravity field. 

In this chapter, the equations of motion for a rendezvous of power limited 

vehicles in a general gravitational field will be developed. The cost functional and 

the Hamiltonian will be calculated in order to find the optimal solution of the 

problem. The general equations found in this chapter will be useful for the 

following chapters. In the next chapters, we will study the problem of several 

spacecraft in a cooperative or noncooperative rendezvous for a fixed gravity 

field, and in the vicinity of a circular or elliptic orbit using the optimal equations. 

Although, many spacecraft are considered, the gravitational forces between the 

spacecraft are neglected. Only the gravitational forces between each spacecraft 

and the planet are taken into account. 

2.1 Cost function for an optimal trajectory 

The equations of motion in an inertial frame of reference of a vehicle in terms of a 

general gravitational field [Prussing, 1993 (a),(b)] are : 

r = v 

m= -b<0 

9 
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Where r and v are the position and absolute velocity vectors of the spacecraft, g 

is the gravitational acceleration and T is the thrust acceleration of the engine. 

The mass is denoted by m and b is the mass flow rate of the engine. 

The thrust acceleration magnitude is : 

T 

(2.2) r = — 
m 

The exhaust power of a power limited engine is related to the thrust [Murphy, 

1992] by the following equation : 

(2.3) P = -Tc 
2 

Where P is the exhaust power, T the thrust and c the velocity of the exhaust 

particles. The thrust T may be written in terms of the mass flow rate b as follows 

[Murphy, 1992]: 

(2.4) T = bc with b = -m>0 

where c is the exhaust velocity. 

The thrust acceleration T is then given by : 

(2.5) r = ^ 
m 

Optimizing the fuel cost is equivalent to minimizing the mass of the propellant 

used, or in other words to maximize the final mass. The change in mass is 

expressed as : 
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(2.6) 4f1VZ? = A 
dt\m) m m 

Using (2.3) and (2.4), we find : 

(2.7) b = lL 
c2 

and using (2.3) and (2.5), we get: 

IP 
(2.8) m = — 

Tc 

Using (2.7) and (2.8), the change of mass is : 

d ( \ \ 

dt\m, 
b ip rv r 

2„2 T^2 

x-m2 c2 (2Py IP 

Integrating the equation (2.9) to find the change in mass between the initial and 

final times : 

/ n i m i l l r/r2(o J 
(2.10) = - — — dt 

mr mn 2Jto P(t\ 

Here m 0 is the initial mass of the vehicle, the final mass mf is maximized by 
1 

minimizing ^ . 

(2.M) -U-UIflfw d, 
' mr m* ?.Jfo P(t\ 

The limited power available from a separate power source is usually prescribed 

as an upper bound [Prussing, 1993 (a), (b)] : 

(2.12) P < P m a x 
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The solution to the equation of motion depends only on the initial conditions 

r{tol and v(tG) and the vector ECO Therefore, to minimize the integral term in 

equation (2.11), we choose to set the power to a constant value, its maximum 

value, 

(2.13) P = Pmax. 

Therefore: 

1 1 1 1 f / ^ w 
(2.14) — = — + — J T2(t)dt 

So, from the previous equation, the cost functional to be minimized can be taken 

to be simply [Prussing, 1993 (a), (b)], [Murphy, 1992] : 

1 t«, 
(2.15) J=?jn

r2M 

2.2 Necessary conditions for an optimum 

To apply the necessary conditions for a minimum of cost functional J, we use the 

Hamiltonian function [Murphy, 1992]: 

(2.16) H = L + XTl 

where L is the integrand of the cost functional [Murphy, 1992]. 

(2.17) L = i r 2 

The vector A(f)is a vector of Lagrange multiplier functions (also called adjoint 

variables) and f is the right hand side of the equations of motion (2.1). 
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The adjoint vector can be partitioned into components that will complement the 

state vector [Murphy, 1992] : 

(2.18) A = 

The state vector was defined as follows 

(2.19) x = 

The vector r is the position vector and the vector v is the velocity vector 

(derivative of r). Let's write the thrust acceleration vector is : 

(2.20) E = r« 

where u is the directional unit vector for the thrust. 

According to the equation of motion (2.1) above : 

v = g(r) + Tu 

we can write this equation as a first order system : 

x = f(x,T,u,t) 

(2.21) 
x = .8(r) + Tu_ 

Using equations (2.17) and (2.18) in the Hamiltonian function (2.16), we get 

(2.22) H = ^r2 + Xr
T-v + Xv

T(g(r) + Tu) 

The necessary condition for the adjoint vector is of the general form [Bryson, 

1969] : 

(2.23) ~ dx 
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Applying this equation to the Hamiltonian function found in (2.22), we get: 

(2.24) 

(2.25) 

dr 

dv 

where G is the gravity gradient matrix ___£ . 

The optimal controller is determined by using the Pontryagin Minimum Principle 

[Bryson, 1969]. This theory leads us to choose T and u so that they minimize the 

Hamiltonian H. The value of the Hamiltonian is minimized with respect to the 

thrust direction u by aligning u opposite to the adjoint vector Av [Prussing, 1993 

(a), (b)]. 

(2.26) II = - ^ 

" K 

Introducing the primer vector p_ after Lawden [Lawden, 1963]: 

(2.27) £(0 = -Av(0 

u can be written as : 

(2.28) „ = £ 
P 

The necessary condition on the adjoint vector given in (2.24) and (2.25) leads to 

the equations: 

(2.29) P = kr 

(2.30) £ = G(r)p 

Using the equations (2.27), (2.28) and (2.29) in (2.22), the Hamiltonian can be 

expressed in the form: 
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(2.31) H = ^T2+pTv-pTg-Tp 

According to the minimum principle of Pontryagin, the Hamiltonian equation 

(2.31) is minimized with respect to the thrust acceleration magnitude Tby setting 

(2.32) ~dT= P = 

which yields: 

(2.33) r = p 

The second partial derivative of H with respect to Tis determined to ensure that 

we are in the case of a minimum. 

d2H 

2 = 1 > 0 proves that the H minimum is achieved. 

Using the equations (2.28) and (2.33), we find : 

(2.34) E = r = = p= = p 

p p -

The optimal thrust acceleration vector T is equal to the primer vector p governed 

by the equations (2.27), (2.29) and (2.30). 

In conclusion, the equations that will be used to find an optimal trajectory 

equation for a power limited spacecraft that only involves functions and 

derivatives of the position vector r are equations (2.30) and (2.34) given above : 

L = P 

P = G(r)p 
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2.3 Equation describing an optimal trajectory 

Combining the two first equations of (2.1), we find : 

(2.35) r = g(r) + T 

From equation (2.20): 

Differentiating equation (2.35) twice with respect to time, we obtain : 

(2.36) r / v = | ( r ) + £ 

According to equation (2.30) : 

P = G{r)p 

and to equation (2.34) : 

L = P 

the primer vector p can be expressed as the following using equation (2.35): 

(2.37) P = E = rw = r - g ( r ) 

Therefore from (2.30), f can be written : 

(2.38) t = G(r)p 

Combining equations (2.38) and (2.37) : 

(2.39) £ = G(r)(r-g(r)) 

Substituting equation (2.39) into equation (2.36), we obtain : 

(2.40) LIV =g(r) + G(r)(r-g(r)) 

To find g , we first evaluate g : 

(2.41) d{g(r)) dgdr . . . 
g(l) = —=-,— = ^ = ^ r = G(r) • r(t) 

at dr at 

Differentiating once with respect to time, we obtain : 

(2.42) g(r) = G(r)r(t) + G(r)r(t) 

Substituting (2.42) into (2.40), we get the optimal trajectory equation : 

(2.43) f = G(r)r(t) + G(r)r(t) + G(r)(r(t) - g(r)) 
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Grouping the terms together and simplifying, we get: 

(2.44) rlv = G(r)r(t) + 2G(r)r(t) - G(r)g(r) 

The equation (2.44) is the optimal (miminum fuel) trajectory equation in an 

inertial frame of reference for a power-limited spacecraft given in terms of 

functions and derivatives of the position r. 

The boundary conditions on a rendezvous trajectory are given as a known initial 

vector r(tQ) and a known initial velocity vector v(t0), along with final constraints 

of the form: 

(2.45) V(rLtf),v(tf),T) = 0 



CHAPTER 3 

Numerical Methods 

In order to solve the Boundary Value Problems that occur in the cases of 

spacecraft neighboring circular or elliptic orbits in two different gravity fields, we 

choose different numerical methods. The most popular one, the shooting method 

[Zwillinger, 1989] is one of them. This method consists of guessing the missing 

Boundary conditions and integrates the differential equations until the numerical 

approximations found are very close of the exact values. The Newton's method 

will be used to determine how close the approximations are of these exact 

values. This method is used for all of the rendezvous problems of this thesis. 

The other method is the finite difference technique. Matlab, the Software used for 

solving the rendezvous problem, has already predefined functions that are very 

useful for the type of problems considered. One of these functions solves the 

boundary value problem with a finite difference technique for a general linear 

problem. This problem is particularly well adapted to the case of the CW field 

for either a circular and an elliptic orbits because the differental equations found 

are linear. The other function of Matlab solves the boundary value problem with 

a finite difference technique for simple nonlinear problem. That's the case of the 

inverse-square gravity field for either a circular or an elliptic orbit. The finite 

difference technique for nonlinear problems will also be used for linear problems 

of the CW field type. 
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Let's see in more details all of these three methods. 

The general procedure will be illustrated with general equations close to the one 

of the problems treated in order to understand the technique. We have two 

coupled differential equations of fourth order. We wish to numerically 

approximate the solution of these equations. 

x(4) + axy
0) + bxx

{2) + cxy + dxx = 0 
( 3 , 1 ) y(4) + a2x

0) + b2y
{2) + c2x + d2y = 0 

with initial conditions: 

x(t0) = A y(f0) = c 
( 3-2 )

 X(t0) = B y(t0) = D 

and final conditions : 

x{tf) = E y(tf) = G 
( 3 3 ) x'(tf) = F y(tf) = H 

where A, B, C, D are given constants for the initial conditions and E, F, G, H are 

given constant for the final conditions. It is important to note that the differential 

equations (3.1) can be either linear or nonlinear equations. 

3.1 The shooting method 

The method consits of taking a intermediary variables called z such that: 

Z{=x z5=y 

(3.4) Z2 = x and z6 = y 

z3=x z7 = y 

zA = x z8 = y 
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So the differential equations (3.1) will be a system of eight single differential 

equations of the form : 

zx=z2 

z3 = ZA 

(3.5) U = "ai^8 - bxz3 " <% " dxzx 

z7 = z8 

<,g — 2^4 2*̂ 7 2^2 2^5 

The procedure is to integrate the system of differential equations (3.5) 

numerically for some arbitrary initial guesses for the missing initial boundary 

conditions and to compare the final conditions obtained with the required final 

conditions in (3.3). We will repeat this process until the final conditions found 

with the differential equations are close enough of the final conditions fixed by 

the problem. Predefined functions of Matlab are used to integrate the system of 

differential equations knowing the initial conditions ( 'ODE45 ') as well as a 

Newton's method function that evaluate how close the approximation are with 

respect to the exact values ('fsolve'). 

3.2 The finite difference technique for the linear problem 

We still have the two same coupled differential equations (3.1) that we can write 

in the form: 

(3.6) y = FWy + 8(x) on the range [a, b] 

and the boundary conditions are expressed in the form : 

(3.7) Cy(a) + Dy(b) = y 
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F(x), C and D are matrices and g(x) and 7 are vectors. 

Once the differential equations (3.1) are written in the form (3.6) and the 

boundary conditions in the form (3.7), the predefined function called ' D02GBF 

' is used to solve the problem. This function is part of the NAG (Numerical 

Algorithms Group Ltd) Toolbox for used with Matlab. 

3.3 The finite difference technique for simple nonlinear problem 

The system of differential equations (3.1) is written in the form : 

(3.8) y = ft(x,y) i=l,2, ..., n on the range [a, b] 

with part of the boundary conditions given at x=a and the other boundary 

conditions at x=b. 

Once the differential equations of (3.1) are in the form (3.8), the predefined 

function of Matlab called ' D02GAF ' is used. This routine uses a Newton 

iteration technique and computes the solution on a mesh of points. 



CHAPTER 4 

Rendezvous of several spacecraft 

neighboring a circular orbit in the 

Clohessy-Wiltshire (CW) field. 

The first case investigated using the optimal control theory is the Clohessy-

Wiltshire gravity field (CW). When the motion of the spacecraft remains in the 

vicinity of a circular orbit at all times, the gravity field can be simplified as will 

be below. This is known as the Clohessy-Wiltshire gravity field. We assume in 

this chapter, that the vehicles neighbor a circular orbit. The case of an elliptic 

orbit will be studied in chapter 5. We will work on the equations of motion and 

the trajectories of the two or more spacecraft for a cooperative and non 

cooperative rendezvous. Different examples based on the number of active 

spacecraft and the location of the spacecraft on the circular orbit will be studied 

using the numerical methods developed in chapter 3. 

4.1 Optimal Trajectory equations in the CW field 

In chapter 2, the equation of motion in the inertial frame was found as : 

(2.35) L = g(r) + r 

We assume the motion of the spacecraft remains in the vicinity of a reference 

circular orbit at all times, see figure 1. 
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Figure 1: Decomposition of the position vectors 

The vector difference between the vehicle position and the reference position is 

known as the relative position vector 8r(t) [Prussing, 1993 (c)]: 

(4.1) 5r(f) = r ( f ) - r* (0 

where r(t) represents the orbit of the vehicle, and r*(t) represents the orbit of a 

reference body in a reference orbit. 

The problem is to find a simple, approximate equation describing 8r(t) and 

according to equation (4.1), the solution to this simple equation can then be 

added to the known vector r*(t) to determine r(t). 

Substituting (4.1) into equation (3.1) yields : 

(4.2) r = r* +Sr = g(r * +8r) + T 

Using the Taylor series to expand the vector g about the reference orbit r*(t), we 

° b t a i n : dg(r*) 
(4.3) £(Z * +Sr.) - g(r*) + - ^ 8r + b 

where the vector b represents second and higher-order terms, (this term will be 

considered negligible). 
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(4.4) 
dg(r*) 

g(r * +or) = g(r*) + - Sr 
• * 

The reference orbit itself also satisfies the equation of motion (2.1), but with 

r = o . 
Therefore, we get [Prussing, 1993 (c)]: 

(4.5) r* = g(r*) 

Substituting equation (4.4) into (4.2), we obtain : 

(4.6) dg(r*) 
S'r = g(r*) + —= Sr + T - r * 

and using (4.5), the equation becomes : 

(4.7) ... dg(r*) s or= 7 or + T 
<?r* 

Since 

(4.8) dr* 
= G(r*) 

equation (4.7) in its final form in the inertial frame can be written as : 

(4.9) 5r = G(r*)Sr + r 

For a circular reference orbit (r*=constant) in a rotating frame (XR,YR,ZR) 

described below, the matrix G(r*) is a constant matrix that has the form : 

"2 0 0 

(4.10) G(r*) = • 
• * 3 

0 - 1 0 

0 0 - 1 

This result for the matrix G(r*) is proved in appendix A. 

A coordinate frame that rotates with the reference radius vector r* is a very 

convenient one in which to express vector components. A frame of this type is 

called the CW frame : 
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ZR 

Figure 2 : Rotating frame ( X R ^ R ^ R ) 

The origin of this frame is at the reference point in the reference orbit, with the x-

axis directed radially outward along the local vertical, the y-axis along the 

direction of motion, and the z-axis normal to the reference orbit plane. 

In order to obtain the final linearized equations of relative motion for a circular 

reference orbit, we need to transform the acceleration Sr of equation (4.9), which 

is relative to an observer in an inertial frame, to the acceleration (SDR, which is 

relative to a rotating observer fixed in the rotating frame. 

The well known transformation to obtain the acceleration relative to an observer 

in an inertial frame is [Prussing, 1993 (c)] : 

(4.11) Sr = (Sr)R +2wx (Sr)R + w x (Sr)R + w x (w x (Sr)R) 

where w represents the angular velocity of the rotating frame with respect to an 

inertial frame (this is the orbital angular velocity in the reference orbit). 

"01 

(4.12) 

(4.13) 

w = 

n2 = " 
* 3 



26 

2w X (Sr)R is the coriolis acceleration. 

wx(wx (8r)R) is the centrifugal acceleration. 

w x (8H)R is the Euler acceleration. 

oL is the acceleration relative to an observer in an inertial frame. 

(8r)R is the acceleration relative to a rotating observer fixed in the rotating frame. 

(4.14) 

(4.15) 

(4.16) 

(Sr)R = 

(Sr)R = 

(Sr)« = 

Substituting (4.12), (4.14), (4.15), (4.16) into (4.11), we find Sr in the inertial 

frame: 

(4.17) Sr = 

x - 2ny - n2x 

y + 2nx-n2y 

z 

According to equation (4.9), the equation of motion in the rotating frame 

(XR,YR /ZR) is: 

(4.18) 8r = G(?)(8r)R + r 

with G(r*) given by equation (4.10). 



Developing equation (4.18), we obtain 

(4.19) 

x - 2ny - n2x 

y + 2nx - n2y 

z 
= n 

2 0 

0 -1 

0 0 

0] 
0 

-lj 

[JC 

\y 

lz. 
+ 

TV 
r, 
J,. 

which gives the acceleration in the rotating frame 

(4.20) {8r)R = \ 
3n2x + 2ny + Tx 

-2ni + r \ 

rn
2z + Tz 

which can be written in the form: 

(4.21) (8r)R = A 5r + B (8r)R +T 

where A is a symmetric matrix and B is skew- symmetric matrix. 

"3n2 0 0 

(4.22) A= 0 0 0 

0 0 -n2 

(4.23) B = 

0 2n 0 

-2n 0 0 

0 0 0 

and 

(4.24) r = 

The details of this calculation are given in Appendix B. 

The primer vector satisfies also the same equation as the variation in 

(4.21) with no thrust [Prussing, 1993 (a), (b)] : 

(4.25) p = Ap + Bp 
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A demonstration of this equation is given in Appendix C 

Knowing that equation (2.34) is : 

L = P 

and combining equations (2.34), (4.25) and (4.21), we obtain the optimal 

trajectory equation for a circular orbit in the CW field : 

(4.26) Sr{4) - 2B8r0) - (2A - B2)8r + (AB + BA)8r + A2Sr = 0 

This equation is the optimal trajectory equation of the spacecraft in the rotating 

frame. The details of this equation are given in Appendix D. 

In order to simplify the problem, the case where the motion of all spacecraft is 

restricted to a plane will be treated. This is known as the coplanar case : z=0. 

In this case, the equations of motion are : 

(4.27) 

with 

(4.13) 

x(4) - 4ny0) - I0n2x + 6n3y + 9n4x = 0 

y(4) + Anx0) - 4n2y - 6n3i = 0 

n2= " 
r *3 

These equations are obtained in Appendix E. 

4.2 Boundary conditions 

For each vehicle, we have two differential equations of the fourth order and 

functions of x and y. These two differential equations are coupled and linear 

with constant coefficients. Part of the boundary conditions are at the initial time 

(position and velocity) and another part are at the final time (position and 

velocity also). Because the optimal trajectory equations found in (4.27) are in the 

rotating frame, the boundary conditions must also be given in the rotating frame. 



29 

The property of the rendezvous concern the final time : the position and velocity 

at this time must be the same for each vehicle participating in the rendezvous. 

In order to find a solution x(t) and y(t) for each vehicle, we will transform each 

of the two fourth order equations in four first order equations. We obtain eight 

first order equations, which means that we need eight boundary conditions. As 

mentioned before, four of the boundary conditions will be at the initial time 

(x(to), y(to), x'(to), y'(to)) and the other four at the final time (x(tf), y(tf), x'(tf), 

y'(tf)). 

The position of each vehicle for the initial and final times is the position of the 

spacecraft in the rotating frame. The velocity of each spacecraft for the initial 

and final times will vary with the position of the spacecraft on the orbit. These 

datas will be found applying (4.28) for each different cases. 

(4.28) Yrela tive=Yacti ve~^rotating_fr ame"i£xIactive / r otating_frame 

where: 

Vactive is the velocity of the active vehicle with respect to an inertial frame. An 

active vehicle is a vehicle that is using thrust for maneuvering. 

Yrotating_frame is the velocity of the rotating frame in an inertial frame. A 

passive vehicle is a vehicle without thrust and therefore it will move along a fixed 

orbit. 

w is the angular velocity of the rotating frame with respect to an inertial frame. 

Iactive/rotating_frame is the position of the active vehicle with respect to the 

rotating frame. 

Let's consider the general case : 

The inertial frame is a fixed frame with the origin at the center of the reference 

orbit (Xi,Yi). The rotating frame (XR, YR) is a frame that rotates with the passive 
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vehicle. Its origin is at the reference point in the reference orbit 

0 is the angle of the passive vehicle in the inertial frame and 9 is the angle of the 

active vehicle in the inertial frame, r* is the radius of the reference orbit, which is 

a constant and v is the initial velocity of the active vehicle on the reference orbit 

and also the velocity of both passive and active vehicles at the final time. The 

velocity v is a constant, determined by the circular orbit, see figure 3. 

Yj 

YR 
XR 

Passive vehicle 
at the initial time 

v \ Active vehicle at 
the initial time 

9 
Xj 

Active and 
Passive vehicles 
at the final time 

Figure 3. Position and Velocity of each spacecraft on the circular orbit in the CW 

field. 

At the initial time to : 

""-v • sin cp 

v cos (p 

~-v • sin 9' 

v cos 0 

>*<cos(0-<j0)-l)~ 

-r*-sin(0-(jf>) 

nr *sin(0-<p) 

^active ~~ 

(4.29) 

^rotating_frame = 

£active/rotating_frame 

w x £active/rotating_frame = 

^relative = 

nr*-(cos(0-<jO)-l) 

v.(sin 6 - sin cp) - nr * sin(0 - cp) 

v. (cos cp - cos 0)-nr* <cos( 6 - <p) -1) 
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We obtain: 

(4.30) 

x(to) = r*.(cos(0-(p)-l) 

y(to) = -r*.sin(0 - (f>) 

x' (to) = v.(sin 6 - sin q>) - nr*.sin(0 - (p) 

y' (to) = v.(coscp- cos 9) - nr*.(cos(0 - q>) -1) 

At the final time tf : 

(4.31) 

T = tf-t0 

—active 

—rotating, frame 

-vs in(0 + r)" 

v-cos(0 + r ) 

"-v-sin(0 + ry 

_v-cos(0 + r ) 

0" 
-active / rotating, frame 0 

— x -active / rotating, frame 

—relative 

We obtain : 

(4.32) x(tf)=0 y(tf)=0 x'(tf)=0 y'(tf)=0 

4.3 Transformation to inertial frame. 

The optimal differential equations and the boundary conditions were given in the 

rotating frame but we are interested in finding the trajectory of these spacecraft 

in the inertial frame. So, in order to obtain the trajectories and visualize the 

displacement of the vehicles, we need to transform the rotating coordinates into 

the inertial frame. 
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Figure 4 : Transformation from the rotating frame to the inertial frame for a 

circular orbit. 

The axes of the rotating frame are : (XR,YR,ZR) 

The axes of the inertial frame are : (Xl9Yl9Zt) 

The planar problem is treated, therefore the vectorZR and Zt are the same. The 

angle between the rotating frame and the inertial frame is called ¥ . We can 

transform the coordinates from the rotating frame to the inertial in two steps. 

The first step is to translate the coordinates x(t) and y(t) from the rotating frame 

(XR YR) in the shifted frame (XT, Yj). The second step will be to rotate the 

shifted frame in order to obtain the equations in the inertial frame (Xi, Yj). 

The shifted frame rotates at the same angular velocity as the rotating frame. Its 

center is at point O. XT and XR remain along the same line OXT (or OXR) at all 

times. 
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First Step : 

Figure 5. Transformation from the rotating frame to the shifted frame for a 

circular orbit. 

We have the coordinates of the movement of the vehicle in the rotating frame 

or (8r)R = xxR + yyR 

given: 

(4.33) (&r)R = 

If we apply a translation on these coordinates, we obtain : 

(4.34) (8r)T = 
x + r* 

y 
or (8r)T = (x + r*)xT + yyT 

with 

(4.35) 
0 

Second Step: 

We need now to apply the rotation in order to have the coordinates in the inertial 

frame (Xi, Yi). 
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Xi 

Figure 6. Transformation from the shifted frame to the inertial frame for a 

circular orbit. 

The relations between the vectors of the shifted frame and ones of the inertial 

frame: 

(4.36) 
xT = x, cos y/ + y sin y/ 

y T
 = ~* i s i n W + y c o s ¥ 

So the coordinates of the displacement of the vehicle of the inertial frame are 

(4.37) 

(8r)l =(x + r*) • (x, cos y/ + y sin y/) + y- (-xt sin y/ + y cos y/0 

(5r)f = ((* + r*)cos y/- ysin yO-*, + ((* + r*)sin I/A+ ycos t//).y 

"(x + r*) cos y/ - y sin t//H 
(«£), = (JC + r*)sin y/ + ycos i// 



4.4 The cost 

In this problem, the cost is defined as the total amount of fuel used by all the 

spacecraft during the optimal rendezvous maneuver. 

The cost calculated in chapter 2 is : 

Using the equation (4.21) 

(8r)* = A8r + B(Sr)* + r 

we find the coordinates of T(t) in the rotating frame. 

Developing this equation ior(8r)Rf we found : 

(4.38) E(r) = 
3n2 

0 

0 

0 

0 

0 

0 " 

0 

-n2 

• 

X 

y 
_z_ 

-

0 

-In 

0 

2n 0" 

0 0 

0 0 

x] 

y 

_z_ 

with x, y, z are the coordinates of (Sr)R in the rotating frame. 

x - 3n2x - 2ny 

y + 2nx (4.39) E(0 = 
z + n z 

Considering the coplanar plane, we get: 

(4.40) no= x-3n x-2ny 

y + 2nx 

4.5 Coplanar circular rendezvous 

In all our cases, we took a rendezvous duration time of T=fl. 
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4.5.1 Trajectories of two spacecraft in a noncooperative rendezvous 

For these cases, the study will be done with the shooting method. 

4.5.1.a Case 1 

This case is the trivial case. The passive and the active spacecraft are at the 

same initial position (at a zero angle from the inertial frame ( 0 = <P =0 )) and 

have the same velocity at the initial and final time. We obtain the following 

trajectories: 

o active spacecraft 
passive spacecraft 

i i i , 

-15 -1 -0.5 0 06 I 15 

Figure 7. Spacecraft Trajectories for a circular noncooperative rendezvous : 

case 1. 

4.5.l.b Case 2 

For this case, the passive spacecraft starts at an angle 6= V 4 of the inertial 

frame and the active spacecraft starts at a zero angle ( <P =0) of the inertial 

frame. 
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o active spacecraft 
passive spacecraft 

Figure 8. Spacecraft trajectories for a circular noncooperative rendezvous : case2. 

4.5.1.C Case 3 

In this case, the passive spacecraft starts at a zero angle compared to the inertial 

frame ( 0 =0) and the active spacecraft starts at an angle (p=n/4. compared to 

the inertial frame. 

active spacecraft 
passive spacecraft 

Figure 9. Spacecraft trajectories for a circular noncooperative rendezvous : case 3 
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4.5.2.Trajectories of the two spacecraft in a cooperative rendezvous. 

For these cases, the finite difference method for linear problems was used. 

4.5.2.a Case 1 

In that case, the first spacecraft starts at an angle <P\ =K/8 and the second 

spacecraft at an angle <Pi= 7l/4 from the inertial frame. We obtain the following 

trajectories: 

Figure 10. Spacecraft trajectories for a circular cooperative rendezvous (2 active 

vehicles) : case 1. 

4.5.2.b Case 2 

For this case, the first spacecraft starts at a zero angle of the inertial frame 

( <px =0) and the second spacecraft at an angle of <Pi = V 4 from the inertial 

frame. 



first active vehicle 
second active vehicle 

Figure 11. Spacecraft trajectories for a circular cooperative rendezvous (2 active 

vehicles) : case 2. 

4.5.2.C Case 3 

This is the case where the first spacecraft starts at a zero angle ( <px =0) and the 

second spacecraft starts at an angle (p2=
 n/8. 

first active vehicle 
second active vehicle 

Figure 12. Spacecraft trajectories for a circular cooperative rendezvous(2 active 

vehicles) : case 3. 
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4.5.3 Trajectories of five spacecraft in a cooperative rendezvous 

The five spacecraft are at respectively <P\ =0, (p2
 = 7 C /8 , % =3^/8, 9U =K/2, 

9s =57l/8 from the inertial frame. The method used in this case is the finite 

difference method for nonlinear problems. 

o first active vehicle 
+ second active vehicle 
: third active vehicle 

fourth active vehicle 
fifth active vehicle 

Figure 13. Spacecraft trajectories for a circular cooperative rendezvous (5 active 

vehicles). 

4.6 Results 

The rendezvous problems obtained for spacecraft neighboring a circular orbit in 

the CW field are linear. The three methods obtained in chapter two were used for 

each one of these examples. Similar trajectories were obtainted for each of the 

three methods. However the finite differences methods (for a linear problem and 

a nonlinear problem) are much faster to produce the trajectories than the 

shooting method. 



CHAPTER 5 

Rendezvous of several spacecraft 

neighboring an elliptic orbit in the 

Clohessy-Wiltshire (CW) field. 

This problem is similar to the problem defined in chapter 4. The only difference is 

that the vehicles neighbor an elliptic orbit instead of a circular one. The gravity 

field investigated is the Clohessy-Wiltshire field. The optimal equation in chapter 

four (equation (4.21)) is not correct anymore for the case of an ellipse. The theory 

is similar but the fact that the reference orbit is an ellipse causes a few more 

terms to appear in the equation. 

5.1 Optimal Trajectory Equations in the CW Field. 

The equations (4.1) through (4.10) are valid equations for an elliptic reference 

orbit. The equation of motion in the inertial frame (4.9) as well as the matrix 

G(r*) given in (4.10) are : 

(5.1) 

(5.2) 

8r = G(r* 

<*£*> = • £ 
f 

)8r + T 

"2 0 0" 

0 - 1 0 

0 0 -1_ 

41 
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G(r*) calculated in Appendix A is not a constant matrix anymore. It varies with 

r* given below: 

(5.3) 7"*** — 
a(\-e2) 

l + eCOS<j0 

with: 

a : semimajor axis 

e : eccentricity of the conic ( for an ellipse = 0 < e < 1) 

9 : true anomaly. 

Xi 

Figure 14. Elliptic orbit 

For convenience we will still work in the rotating frame also called the CW frame 

described below: ZR 

Figure 2 : Rotating frame (XR, YR, ZR) 

The equation of motion in the rotating frame is found from the equation of 

motion in the inertial frame (5.1): 



(5.4) 8r = G(r*)(8r)R + T 

with the G(r*) given by equation (5.2) and 

x 

(5.5 ) ($:)* = 

Developing equation (5.4) knowing equation (5.2) and equation (5.5), we obtain 

(5.6) 

with 

(5.7) 

8r = 
2n2x + Tx 

-n2y + T, 

-«2+r 

n2=JL 
r *3 

The well known transformation between the acceleration relative to an observer 

in the inertial frame and the acceleration relative to a rotating observer fixed in 

the rotating frame is : 

(5.8) (^D/? = ^ - 2 w x ( 5 r ) , - w x ( 5 r ) ^ - > v x ( w x ( ( 5 r ) J 

where w represents the angular velocity of the rotating frame with respect to an 

inertial frame. 

"0" 

(5.9) w = 

The details of each term of equation (5.8) are given in chapter 4. We have : 

(5.10) (££)* = 



(5.11) (St)R = 

(5.12) (Sr)* = 

x 
i> 

x 

y 

z 

We will notice that in the case of an ellipse, r* and v are not constant terms 

anymore, so vv * 0 : 

"0" 

(5.13) 

with 

(5.14) 

W: 

3 u r* 
n = !—r— 

2r* 4 n 

The derivation of n is given in Appendix F. 

Substituting (5.9), (5.10), (5.11), (5.12) and (5.13) into equation (5.8), we obtain: 

(5.15) (SDR = 

3n2x + 2ny + ny + Tx 

-2nx-hx + T„ 

-n2z + T7 

The details of the calculation are given in Appendix G. 

(5.15) can be written in the form : 

(5.16) (8r)* = A'8r + B(8r)* + r 

with 



(5.17) 

(5.18) 

(5.19) 

A' = 
3n n 

-h 0 

0 

0 

B = 

r = 

0 0 -n2 

0 2/i 0" 

-In 0 0 

0 0 0 

r, 
r. 

Decomponing A'=A+R, the primer vector satisfies the following equation : 

(5.20) P = BP +(A-R + B)p 

with B given (5.18) and A, R and B given below : 

(5.21) 

(5.22) 

(5.23) 

A = 

R = 

B = 

~3n2 0 0 

0 0 0 

0 0 -n2 

0 n 0" 

-n 0 0 

0 0 0 

" 0 2n 0 

-2ii 0 0 

0 0 0 

The proof is given in Appendix H. 

Knowing that equation (2.34) is : 

L = p 

and combining (2.34), (5.20) and (5.16), we obtain the optimal trajectory 

equation for an elliptic orbit in the CW field : 



Sr{4) - 2B • Sr{3) + (B2 - A' - A + R - 5) • <5r(2) + 
(5.24) " . : 

(BA' + AB-RB + BB)8r + (AA'-RA' + BA')8r = 0 

Developing the optimal trajectory equation for the coplanar case, we obtain : 

x{4) - Any0) - lOnV2) - 2ny{2) - Ahnx + 6n3y + (9n4 - n2 )x + 3rc2ny = 0 

y4> + 4„y3> + 2hx{2) - 4n2y(2) - 6n3x - Ahny - 3n2wx - h2y = 0 

with n and n described by (5.7) and (5.14). 

The details of these equations are presented in Appendix I. 

5.2 Boundary conditions 

For each vehicle, we obtain a system of two differential equations of fourth order 

with x and y as unknowns. The two differential equations are coupled and linear 

with variable coefficients. The coefficients will vary in function of the position r* 

of the spacecraft on the elliptic reference orbit. In chapter 4, the equations had 

the same form but the coefficients were constants. The term n depending on r* is 

a constant term in a circular orbit. Once again, part of the boundary conditions 

are at the initial time and another part at the final time. The boundary conditions 

will be given in the rotating frame because the equations found in (5.25) are in the 

rotating frame. The same methods as the one in chapter 4 is applied to find the 

BC. 

The equation (4.28) stays correct for the case of an elliptic orbit: 

(5.26) Yrelative=^active"Yrotating_.frame"iv;xractive/rotating_.frame 

where 

Yactive is the velocity of the active vehicle in an inertial frame. 

Yrotating_frame is the velocity of the rotating frame in an inertial frame. 

w is the angular velocity of the rotating frame with respect to an inertial frame. 



Iactive/rotating_frame is the position of the active vehicle with respect to the 

rotating frame. 

The inertial frame is a fixed frame with the origin at the center of the reference 

orbit (Xi,Yi). The rotating frame (XR, YR) is a frame that rotates with the passive 

vehicle. Its origin is at the reference point in the reference orbit 

" is the angle of the passive vehicle in the inertial frame and ^ is the angle of 

the active vehicle in the inertial frame. 

Active vehicle at 
initial time 

Passive vehicle at 
the initial time 

Xi 

Active and 
Passive vehicles> 

at the final time 

Figure 15. Position and Velocity of each spacecraft on the elliptic orbit in the CW 

field. 

At the initial time t0 : 

.Lactive 

- v .. • sin (p 
active r 

v .. • cos (p 
active ^ . 

—rotating, frame 

- v . 4. sin0" 
rotating 

v 4 .. -cos0 
rotating 

(5.27) -active / rotating, frame 

^ x -active / rotating, frame "~ 

r A. * - c o s ( 0 - < p ) - r . .. 
active r rotating 

- r * 4. -sin(0-(Z)) 
active v ^' 

nr' 

nr' 

active 

:
 t. -s in(0-(p) 
active ^ y 

cos(0- cp)-nr* 
rotating 



—relative 

v . .. - s i n 0 - v .. s inoo-nr* A. sin(0-<p) 
rotating active ^ active ^ 

I v cos(2)-v . .. cos0 - rc r* .. -cos(0-<p) + n r* 
L active Y rotating active v r / rotating 

with: 
, 2 1 

active v"\* * 
\ r active a 

(5.28) 

rotating 

. _ a ( l - e 2 ) 
active i + e c o s ( ? 

_ a( l -e 2 ) 
rotating i + e c o s 0 

n 2 = - " 
» . JjJ J 

active 

The velocities are not identical anymore like in chapter four. The velocities 

depend on the position of the spacecraft on the ellipse radius vector r*. 

For the initial time : 

*< t o ) = r Active • « * ( * " V) ~ ' * rotat ing 

(5-29) y(to) = - r * a c t j v e - s in (a -9 ) 

x'(to) = Rotating'sin6~vactive s'm(P~nr*active-sin^"& 

y' W = vactive • C 0 S ^ " Rotating ' C 0 S 6 ~ nr *active C O S ^ " " & + nr "rotating 



At the final time tf : 

T = tf-t0 

(5.30) 

i-active ~~ 
•v .. -sin(0 + ry active v y 

active v .. -cos(0 + :T) 

—rotating, frame 

- v + +. -sin(0 + r y 
rotating v ' 

v . .. -cos(0 + r ) 
rotating v ' 

-active / rotating_ frame 

— -active / rotating, frame 

—relative 

In that case, we have : 

(5.31) 

So, we obtain : 

(5.32) x(tf)=0 y(tf)=0 xr(tf)=0 y'(tf)=0 

v = v 
active rotating 

5.3 Transformation from the rotating frame to the inertial frame 

The optimal differential equations as well as the boundary conditions were given 

in the rotating frame. So, in order to visualize the trajectories of the spacecraft in 

the inertial frame, we apply the same transformation as the one found in chapter 

4. 



Figure 16 : Transformation from the rotating frame to the inertial frame for an 

elliptic orbit. 

The axes of the rotating frame are : (%R*YR>ZR) 

The axes of the inertial frame are : {XnYl9Zt) 

The planar case is treated, therefore the vector ZR and Zx are the same. 

We can transform the coordinates from the rotating frame to the inertial in two 

steps. The first step will be to translate the coordinates x(t) and y(t) from the 

rotating frame (XR YR) to the shifted frame (XT, YT). The second step will be to 

rotate the shifted frame to get the equations in the inertial frame (Xi, Yi)# 

First Step 

Figure 17. Transformation from the rotating frame to the shifted frame for an 

elliptic orbit. 



We have the coordinates of the movement of the vehicle in the rotating frame 

given: 

(5.33) (8r)R = 
y 

or ($r)R = xxR + yy 
±.R 

If we apply a translation on these coordinates for the ellipse, we obtain 

(5.34) (8r)T = rotating or (8r)T =(x + r* A x. )xT + yy„ UL v - ' T v rotatingJ~T J-T 

with 

(5.35) 
rotating 1 + ^cosi/A 

Second Step: 

We need now to apply the rotation in order to have the coordinates in the 

inertial frame (Xi, Yi). . Yj 

Figure 18. Transformation from the shifted frame to the inertial frame for an 

elliptic orbit. 

The relations between the vectors of the shifted frame and ones of the inertial 

frame: 



(5.36) 
xT = x, cos y/ + y sin y/ 

y T = -x t sin yr + y cos t/A 

So the coordinates of the displacement of the vehicle of the inertial frame are : 

(5.37) 

(8r)t =(x + r*rQt J - ^ c o s ^ + ^ s i n ^ J + y - C - i s i n ^ + ^ c o s ^ ) 

(5r)f = ((* + r * r o t a t J n a ) c o s ¥~ ^sin v). *i + ((* + r * tatjna)sin yr + ycos ^).yf 

(«£); = 

rotating 

(x + r* A x. )cosw-ysin y/ rotating T J r 
(x + r* )sinw + ycos w 

rotating T J r 

rotating 

with rotat ing given by (5.35). 

5.4 The cost 

In this problem, the cost is defined as the total amount of fuel used by all the 

spacecraft during the optimal rendezvous maneuver. 

The cost calculated in chapter 2 is : 

2K 
Using the equation (5.16), we obtain the acceleration T(t) : 

(5.38) L(t) = (SD«-A'8r-B(8r)R 

Developping this equation, we obtain : 

(5.39) no= 
3n2 h 0 

-ri 0 0 

0 0 -n 

with x,y,z the coordinates of (8r)R in the rotating frame. 

x - 3n2x -hy- 2ny 

0 

-In 

0 

2n 0" 

0 0 

0 0 

i l 
y\ 

_z\ 

(5.40) no= y + fix + 2nx 

z + n z 

For the coplanar case, we obtain : 

Jc - 3n2x -hy- 2ny 

y + hx + 2nx (5.41) E(0 = 



5.5 Coplanar elliptic rendezvous : trajectories of two spacecraft in a 

noncooperative rendezvous 

Only the shooting method is used in these examples. 

5.5.1.a Case 1 

This case is the trivial case. The passive and the active spacecraft are at the 

same initial position (at a zero angle from the inertial frame) and have the same 

velocity at the initial and final time. The eccentricity is 0.5 and the period of time 

is n . 

We obtain the following trajectories: 

Figure 19. Spacecraft Trajectories for an elliptic noncooperative rendezvous : 

case 1. 



5.5.l.b Case 2 

For this case, the passive spacecraft starts at an angle 0 =7i:/4 of the inertial 

frame and the active spacecraft starts at a zero angle ( 9 =0) of the inertial 

frame. The eccentricity is 0.2 and the time period is 3 IT/4 . 

-0.5 

-^ 

'"ill 

£ illlllftlllllll -°<5 ° Ptf> 

o active spacecraft 
+ passive spacecraft 

Figure 20. Spacecraft trajectories for an elliptic noncooperative rendezvous 

case 2 (eccentricity=0.2). 

The same case as the one above but with an eccentricity of 0.42 and an identical 

time period of 3 n / 4 is presented below. 



o active spacecraft 
+ passive spacecraft 

Figure 21. Spacecraft trajectories for an elliptic noncooperative rendezvous : 

case 2 (eccentricity=0.42). 

This graph is not correct. As we can notice, when the eccentricity became far 

from zero (which means that we are getting further from the circle), the initial 

boundary conditions became incorrect. The initial velocity is expected to be 

tangential to the ellipse and it is not. 

5.5.l.c Case 3 

This case is the case where the passive spacecraft starts at a zero angle ( 0 =0) 

compared to the inertial frame and the active spacecraft starts at an angle 9= 

71 /4 compared to the inertial frame. The eccentricity is 0.2 and the time 

period is II • 



o active spacecraft 
+ passive spacecraft 

•̂5 i i n "°'5 iiiiffliiiiiiiiiiiiiiiiiiiiiii 
Figure 22. Spacecraft trajectories for an elliptic noncooperative rendezvous: 

case 3 (eccentricity=0.2). 

In order to see again the effect of the eccentricity on the spacecraft trajectories, 

we increase the eccentricity to 0.4 and the time period staying the same 

(T= n). 

o active spacecraft 
+ passive spacecraft 

Figure 23. Spacecraft trajectories for an elliptic noncooperative rendezvous: 

case 3 (eccentricity=0.4). 



As we can notice, this graph is not correct either. The initial boundary conditions 

are incorrect. The initial velocity is expected to be tangential to the ellipse but the 

bigger the eccentricity is, the less tangential the initial velocity is from the ellipse. 

5.6 Results 

As we can notice, the shooting method used in the previous examples presents 

some numerical problems when the eccentricity of the ellipse is too high. The 

problems don't follow the boundary conditions of rendezvous problems. 

The case of the cooperative rendezvous for spacecraft neighboring an elliptic 

orbit is not studied. The shooting method is sensitive to the initial guesses of the 

missing boundary conditions. If they are too far away from the solution, it will be 

necessary to repeat the process for another choice of initial guesses. This 

problem can be allievated by solving the two point boundary value problem 

(TPBVP) for a shorter time, obtaining a better guess for the missing initial 

conditions. In the next step, the same problem is solved, but for a longer time. 

The research of the initial guesses of the missing boundary conditions became a 

problem with time consuming (for a noncooperative rendezvous and even more 

for a cooperative one). 

The finite difference methods for linear and nonlinear problems don't work 

properly for the case of spacecraft neighboring an elliptic orbit. The initial 

boundary conditions are also incorrect on the graph. The initial velocity 



of the active spacecraft should be tangential to the orbit and it is not. Two 

examples below are demonstrated these problems. 

5.6.1 Case 1 

The case where the passive spacecraft starts at a zero angle ( 0=0) to the inertial 

frame and the active spacecraft starts at an angle (P= K/4 to the inertial frame. 

The method used is the finite difference method for linear problem. The time 

period is II and the eccentricity is 0.5. 

* active spacecraft 
+ passive spacecraft 

Figure 24. Spacecraft trajectories for an elliptic noncooperative rendezvous with 

the finite difference method for linear problems. 



5.6.2 Case 2 

The case where the passive spacecraft starts at an angle 0=7C/4 of the inertial 

frame and the active spacecraft starts at a zero angle ( 9=0) of the same frame. 

The method used is the finite difference method for nonlinear problem. The 

eccentricity is 0.5 and the time period is II. 

Figure 25. Spacecraft trajectories for an elliptic noncooperative rendezvous with 

the finite difference method for nonlinear problems. 

In a future research, it would be interesting to study the trajectory of the same 

two problems with a smaller eccentricity for the first problem and a smaller time 

period for the second problem in order to see how these modifications affect the 

boundary conditions. 



CHAPTER 6 

Rendezvous of several spacecraft 

neighboring a circular or elliptic orbit in the 

Inverse-square gravity field. 

The second case investigated is the inverse-square gravity field. For this case, we 

use directly the optimal trajectory equation found in (2.44). Like in chapter four, 

we treat, at first, the case of a circular reference orbit. The rendezvous problem 

with the reference orbit describing an ellipse is also treated in this chapter. The 

problem in the inverse-square gravity field was solved for more than two 

spacecraft in a cooperative and noncooperative rendezvous. Several examples 

will be studied using some of the numerical methods developed in chapter two 

with different initial positions on the reference orbit and different numbers of 

spacecraft. 

6.1 Optimal Trajectory equations in the Inverse-square gravity field 

From chapter 2, we use the general optimal trajectory equation (2.44) in the 

inertial frame for a power-limited spacecraft: 

(6.1) L
IV = G(r)t(t) + 2G(r)r(t) - G(r)g(r) 

where 

60 
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(6.2) r = 

x 
y 
z 

(6.3) 8(t) = -n^ = - V 
r3 ( J C 2 + / + Z ^ 

This equation is valid for any reference orbit. The rendezvous problem in our case 

will be treated for either a circular or an elliptic orbit of reference. 

The study is restricted to the motion in a plane (z=0). From Appendix J, the 

gravity matrix, in this case, is given by: 

(6.4) G(r) = 

(6.5) G(r) = 

oxx 

8» 

oxx 

* u 

8* 

8» 

8* 

8» 

Developping the optimal trajectory equation (5.1) for the coplanar case, we 

obtain : 

(6.6) 
*(4) " 2g„if - 2gJ - g^x - gj + gxxgx + gx^ = 0 

y(4) - 2g„x - 2gJ - g,xx - gj + gyxgx + g^ = 0 

These equations are the equations of motion in the inertial frame with a reference 

orbit either circular or elliptic. The details of calculation concerning equations 

(6.3), (6.4), (6.5) and (6.6) are also given in appendix J. 
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6.2 Circular and Elliptic orbits 

6.2.a Circular orbit 

Figure 26. Circular orbit. 

For that case, the radius and the velocity are constant values all along the circle 

(6.7) r*=const 

v=const 

6.2.b Elliptic orbit 

/ ^ b 

V a 

Yi 

^ 

Focus J 
Xi 

Figure 14. Elliptic orbit. 
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e : eccentricity of the conic; for an ellipse : 0<e<l. 

a : semimajor axis 

9: true anomaly 

The radius r* of an elliptic orbit is defined by : 

(6.8) r* = aq-e2) 
l + ecos(p 

The velocity along an elliptic orbit is variable and depends on the position of the 

vehicle on the orbit. The general form is obtained from vis-viva equation 

[Prussing, 1993 (c)]. 

(6.9) v = iu(--~) 
V r a 

6.3 Boundary conditions 

For each spacecraft, we have two coupled differential equations of fourth order, 

for x and y. But instead of having constant coefficient like for the case of the CW 

field for the circular orbit in chapter four, here the coefficients are also functions 

of the variables x and y . This makes the problem nonlinear and more difficult to 

solve. Part of the boundary conditions are at the initial time and the rest at the 

final time. To formulate a rendezvous problem, we need to force the spacecraft to 

meet at the final time at the same position and velocity. The numerical methods 

used for the inverse-square gravity field are the ones developed in chapter two 

restricted to a nonlinear problem only. We will decompose the two fourth order 

differential equations into four first order equations. As mentioned in chapter 

four, we will get eight first order equations, so eight boundary conditions will be 

needed. 
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For the inverse-square gravity field problem, we worked only in the inertial frame. 

The initial and final positions and velocities of each spacecraft are calculated 

with respect to the inertial frame and no frame transformation is needed. 

6.3.1 Boundary conditions for a circular orbit 

Yj 

Active and 
Passive vehicles 
at the final time 

XR 

Passive vehicle 
at the initial time 

Active vehicle at 
the initial time 

Xi 

Figure 27. Position and Velocity of each spacecraft on a circular orbit in the 

Inverse-square gravity field. 

(Xi,Yi) unit vectors of the inertial frame. 

W-. angle between the active spacecraft and the inertial frame. 

0 : angle between the passive spacecraft and the inertial frame. 

T=tf-to : total time to perform the rendezvous. 

(6.10) 

At the initial time to : 

x=r* cos 9 

y=r* sin 9 

At the final time tf 

x=r* cos( Q + T) 

y=r* sin {Q + T) 



x'=-v sin 9 

y'=v cos 9 

x'=-v sin ( 0 + T) 

y'=v cos( 0 + T) 

with r*=constant and v=constant. 

The boundary conditions are valid if 9 > 0 , 9 = 0 and (p< 0 

6.3.2 Boundary conditions for an elliptic orbit 

Yi 

Active vehicle at 
the initial time 

Passive vehicle 
at the initial time 

Xi 

Active and Passive 
vehicles at the 
final time 

Figure 28. Position and Velocity of each spacecraft on an elliptical orbit in the 

Inverse-square gravity field. 

(Xi,Yi) unit vectors of the inertial frame. 

^ : angle between the active spacecraft and the inertial frame. 

0 : angle between the passive spacecraft and the inertial frame. 

T=tf-to : total time to perform the rendezvous. 

At the initial time : 

x=r*active cos 9 

(6.11) y=r*active sin 9 
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with : 

x'—vactive sin 9 

y/==vactive cos 9 

_ a ( l - e 2 ) 
active l + ecos<p 

(6.12) 

vactive - i ^ r * J 
V r active a 

Af the final time : 

x=r*activeCOs(^ + 7') 

(6.13) y=r*active sin( 0 + T) 

x'=-vactive s in(0 + T ) 

y'=vactivecos( 9 + T) 

w i t h : * a(l-e2) 
active l + ecos(9 + T) 

(6.14) 

vact ive=Ap(r7^ 7) 
V r active a 

6.4 The cost 

In this problem, the cost is defined as the total amount of fuel used by all the 

spacecraft during the optimal rendezvous maneuver. 
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The cost calculated in chapter two with equation (2.15) is 

7-ijV(,)* 

and using the equation (3.35): 

L = g(r) + r 

we get for the coordinates of E(f) for the coplanar case : 

(6.15) T(t)= X.~8x 

y-gy 

6.5 Coplanar circular rendezvous 

For all the cases presented below, only the shooting method is used and the time 

period is I I . 

6.5.1 Trajectories of two spacecraft in a noncooperative rendezvous 

6.5.l.a Casel 

This case is the trivial case. The passive spacecraft are at the same position (at a 

zero angle from the inertial frame) and have the same velocity at the initial and 

final time. We obtain the following trajectories : 
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active spacecraft 
o passive spacecraft 

Figure 29. Spacecraft Trajectories for a circular noncooperative rendezvous 

case 1 

6.5.1.b Case2 

For this case, the passive spacecraft starts at an angle 0 = ^ / 4 of the inertial 

frame and the active spacecraft starts at a zero angle (9=0) of the inertial frame. 

1.5 r 1 . 

°4 ffdr 

II 
-1-5 Illllitl1llllllllllllnfflrrl!ill 

i 
0 

j 
i.¥i,!ii 

I 
1 

1 15 

active spacecraft 
o passive spacecraft 

Figure 30. Spacecraft trajectories for a circular noncooperative rendezvous : 

case 2. 
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6.5.1.C Case3 

This case is the case where the passive spacecraft starts at a zero angle 

( 0=0) compared to the inertial frame and the active spacecraft at an angle 9= 
n /4 compared to the inertial frame. 

active spacecraft 
passive spacecraft 

~15 l l l l l i "°-5 A£ 

Figure 31. Spacecraft trajectories for a circular noncooperative rendezvous : 

case 3 

6.5.2 Trajectories of two spacecraft in a cooperative rendezvous 

6.5.2.a Casel 

In that case, the first spacecraft starts at an angle 9\ = K /8 , the second 

spacecraft at an angle 92 =
 n /A from the inertial frame. We obtain the following 

trajectories : 
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o first active vehicle 
+ second active vehicle 

Figure 32. Spacecraft trajectories for a circular cooperative rendezvous (2 active 

vehicles) : case 1. 

6.5.2.b Case2 

For this case, the first spacecraft starts at a zero angle ( <px =0) of the inertial 

frame and the second spacecraft at an angle of 9i = K /4 from the inertial 

frame. 

o first active vehicle 
+ second active vehicle 

Figure 33. Spacecraft trajectories for a circular cooperative rendezvous (2 active 

vehicles): case 2. 
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6.5.2.C Case3 

This is the case where the first spacecraft starts at a zero angle ( 9\ =0) and the 

second spacecraft starts at an angle 92 = K /%. 

o first active vehicle 
+ second active vehicle 

"-U ^ Ts 0~~ oV 1 "1 

Figure 34. Spacecraft trajectories for a circular cooperative rendezvous (2 active 

vehicles) : case 3. 

6.5.3 Trajectories of four spacecraft in a cooperative rendezvous 

The four spacecraft are at respectively 9\ =0, 9i = K /8, ^3=3 K /8 and 

94 = 5 ^ /8 from the inertial frame. 

o first active vehicle 
+ second active vehicle 
: third active vehicle 

fourth active vehicle 

Figure 35. Spacecraft trajectories for a circular cooperative rendezvous (4 active 
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vehicles) 

6.6 Coplanar elliptic rendezvous : trajectories of two spacecraft in a 

noncooperative rendezvous 

For all these cases, the shooting method is the one used to solve these problems. 

6.6.l.a Casel 

This is the trivial case. The passive spacecraft are at the same position (at a zero 

angle from the inertial frame) and have the same velocity at the initial time and 

the final time. For this particular case, the eccentricity is 0.5 and the time period 

is I I . We obtain the following trajectories : 

Figure 36. Spacecraft Trajectories for an elliptic noncooperative rendezvous : 

case 1. 

6.6.1.b Case2 

For this case, the passive spacecraft starts at an angle 0 = K / 4 of the inertial 

frame and the active spacecraft starts at a zero angle ( 9 =0) of the inertial 



frame. The period 311 /4 and the eccentricity is still 0.5. 

Figure 37. Spacecraft Trajectories for an elliptic noncooperative rendezvous 

case 2 (T=3 II /4 ). 

The same case is treated below with a time period of II 

Figure 38. Spacecraft Trajectories for an elliptic noncooperative rendezvous 

case2(T= ri). 
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As we can notice the final boundary conditions are incorrect. The final velocity 

should be tangential to the ellipse. For a too big time period, we don't get the 

conditions of a rendezvous. 

6.6.l.c Case3 

This case is the case where the passive spacecraft starts at a zero angle 

( 0 =0) compared to the inertial frame and the active spacecraft at an angle 

9- n /4 compared to the inertial frame. The eccentricity is 0.2 and the time 

period is T= n . 

1.5r 

iL 

0.5^ 

°l 

-0.5^ 

I 
pi 

ft 1 

~^ — 

: ! i | l 

i l l 

active spacecraft 
passive spacecraft 

-1-5 il!!!ll!l i 0 05 1,6 

Figure 39. Spacecraft Trajectories for an elliptic noncooperative rendezvous : 

case 3 (eccentricity=0.2). 

For the same problem, we study a bigger eccentricity (eccentricity=0.5). We notice 

that for this case, the initial boundary conditions are not the ones of a 

rendezvous because the initial velocity is not tangential to the ellipse. 
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* active spacecraft 
o passive spacecraft 

Figure 40. Spacecraft Trajectories for an elliptic noncooperative rendezvous : 

case 3 (eccentricity=0.5). 

6.7 Results 

The equations of the trajectories of spacecraft neighboring a circular or an elliptic 

orbit in the Inverse square gravity field are nonlinear equations. Thus, the finite 

difference method for a linear problem is useless in these cases.The equations 

were solved only with the shooting method. The finite difference method for 

simple nonlinear problem didn't work properly for any of thoses examples for 

either a circular or an elliptic orbit. The trajectories obtained with this method 

were not accurate as we can see in the following example of a noncooperative 

rendezvous of spacecraft neighboring a circular orbit where the passive 

spacecraft starts at a zero angle (0 =0) and the active spacecraft at an 

angle 9 = n /4 compared to the inertial frame. 
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Figure 41. Spacecraft trajectories for a circular noncooperative rendezvous with 

the finite difference method for nonlinear problems. 

The shooting method give us really good results of trajectories for the case of the 

circular orbit. These results are really close of the one found in the rendezvous of 

spacecraft neighboring the circular orbit in the Clohessy-Wiltshire field. 

For the elliptic orbit problems, only the cases of the noncooperative rendezvous 

were treated successfully with the shooting method. However, we also note for 

these cases that if we take a too large time period or a too large eccentricity for 

the ellipse, the trajectories are incorrect. The boundary conditions for the velocity 

are not the one of the rendezvous (either at the initial conditions or at the final 

conditions). 

The problem of cooperative rendezvous for spacecraft neighboring the elliptic 

orbit with the Inverse square gravity field was not treated. As explained in 

five, the shooting method is really sensitive to the initial guesses of the missing 

boundary conditions. If the initial guesses are too far from the missing boundary 

conditions, the method diverges and the trajectories are incorrect. The shooting 

method becomes a time consuming method for a cooperative rendezvous. 



CHAPTER 7 

Conclusion 

This work treats the optimal power-limited rendezvous problem among several 

spacecraft in the neighborhood of either a circular or an elliptic orbit. This is an 

extention of the state of the art, where only the motion of two spacecraft about a 

circular orbit is considered. The method of solution is different from the direct 

collocation technique used by Coverstone-Caroll and Prussing. The methods are 

the shooting method combined with the Newton method or the Levenberg-

Marquard method and the finite difference methods for linear and nonlinear 

problems. 

The first method is applicable to both circular and elliptic reference orbits in two 

different gravity fields (the Clohessy-Wiltshire and the inverse square gravity 

fields). This numerical method used was very well adapted for all these cases 

because it solves boundary value problems for linear or nonlinear differential 

equations. But this method requires a lot of computer time, especially for the 

elliptic orbit problems. If the initial guesses are too far from the correct values, the 

problem does not converge. 

The other methods studied are the finite difference methods for linear and 

nonlinear rendezvous problems. The first one (the linear one) was used only to 

treat the problems with the Clohessy-Wiltshire gravity field because the Inverse 

square gravity field is a nonlinear problem. The second method was used for both 
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gravity fields. These methods are very fast in term of computer time but were not 

very reliable except for the case of the Clohessy-Wiltshire gravity field with 

spacecraft neighboring circular orbit. 

In conclusion, in the future it will be very interesting to study the cooperative 

rendezvous problems of spacecraft neighboring an elliptic orbit in both gravity 

fields (Clohessy-Wiltshire and Inverse square gravity fields) and to calculate the 

total cost in fuel of each of these problems. An extention of this thesis will be 

also to work on the rendezvous problems of spacecraft starting on orbits of 

different radius or eccentricity and meeting on a final one. 



APPENDIX A 

Calculation of the symmetric gravity gradient 

matrix for the case of a circular orbit 

(proof of equation (4.10)). 

G(r) = 

dgx dgx dgx 

dx dy dz 
dg, dg, <9g, 

dx By dz 
dgz dgz dgz 

dx dy dz 

g(r) = -GM^r 

/ ^ ^»Y (x,y,z) g(x,y,z) = -GM{x2+y2+z2?n 

8*=-GM
(xi+y2+z2r 

gv = -GM 
(x2+y2+z2)m 

gz = -GM 
(x2+y2+z2)m 
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Let's calculate the partial derivatives one by one gx, gy, gz with respect of x, y, z. 

= -GM 
dx 

% = 3GM- , , 
dy (x2+y2+z2)5'2 

(x2+y2+z2f2-3x2(x2 + y2+z2yn 

(x2 + y2+z2? 

xy 

dg 
dz 

± = 3GM- xz 
(x2+y2 + z2)512 

d& _ in*, ^ 

dx "WJ" ( 

dg 1 
-^ = -GM\ 
dy \ 

:x2+y2 + z2)5'2 

V + y 2 + z 2 ) 3 / 2 - 3 y V + y2+Z
2)1/2] 

(x2+y2 + z2)3 J 

d^ =3GM , f , ,., 
dz (x2+y2+z2)5'2 

8z = 3GM XZ 

dx (x2 + y2+z2f2 

^=3GM 2 f 25/2 
dy (x2 + y2+z2)5'2 

& = -GM 
dz 

r(x2+y2+z2)3 / 2-3z2(x2 + y2+z2)1/2" 
[ (x2

+y2+z2)3 J 

To explicitly evaluate the elements of the gravity gradient matrix, it is convenient 

to express the vector components in a coordinate frame (XgrYg) described below 

that rotates with the reference radius vector r*. In such a frame r* has the simple 

form: 

0 

0 
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Figure A. Relation between the inertial frame and a rotating frame (Xg, Yg). 

So, in order to calculate G(r*), we plug x=r*, y=z=0. For a circular orbit, G(r*) will 

remain a constant matrix because r* is constant along the cercle. For the elliptic 

orbit, G(r*) is not a constant matrix anymore, it will vary with the radius of the 

ellipse. 

ax 

^ ( r * ) = 3GM[0] = 0 
dy 

y H* *\Y ^ Y "̂  

. #6 

dz 
(r*) = 3GM[0] = 0 

• * 3 
GM 

dg 
-^(r*) = 3GM[0] = 0 
dx 

•*3-o' 
K * 6 

-AL(r*) = -GM 
dy 

dg 
-^(r*) = 3GM[0] = 0 
dz 

-GM 
~*3 
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dx 

dy 

dg 
-^(r*) = -GM 
dz 

(r*) = 3GM[0] = 0 

(r*) = 3GM[0] = 0 

rf_-0 
r*

6 

-GM 
r * 3 

The matrix found is 

(4.10) G(r*) = GM 
• * 3 

2 0 0 ' 

0 - 1 0 

0 0 - 1 

This matrix G(r*) is valid for either circular or an elliptic orbit. The only 

difference is that this matrix remains constant for the circular case and vary with 

the position of the vehicles along the reference orbit for the elliptic case. 

In this appendix, it is also important to mention that although many spacecraft 

are considered, the gravitational forces between the spacecraft are neglected. 

Only the gravitational forces between each spacecraft and the planet are taken 

into account. 



APPENDIX B 

Calculation of the acceleration relative 

to a rotating observer fixed in the CW frame 

for a circular orbit 

(proof of equation (4.21)). 

(4.11) 8'r = (8'r)R + 2wx (8r)* + (wx 8r)R + w x (w x (8r)R) 

(4.12) w = (4.14) (8r)R = 

(4.15) (St)R = (4.16) (8r)R = 

2wx(Sr)* = 2 
i I k 
0 0 n 

x y z 

= 2 

-ny 

nx 

_ 0 

vvx Sr = 

wxSr = 

0 because w= 

i I k 
0 0 n 

x y z 

wx(wxSr) = 

— 

-ny 

nx 

. ° J 
i [ h 
0 0 n 

-n y nx C 

= 0 

t = 

)| 

-n2x 

-n2y 

0 
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Developing equation (4.11), we obtain 

8r = 
X 

y 

Jt_ 
+ 2 

'-ny 

nx 

_ 0 

+ 

-n2x 

-n2y 

0 

Sr = 

x-2ny-n x 

y + 2nx-n2y 

z 

From equation (4.9), the equation of motion in the rotating frame (XR,YR,ZR) 

described below is expressed by : 

(4.18) Sr = G(r*)(Sr)R + T 

with G(r*) in the rotating frame given by (4.10): 

G(r*) = 4 r 
2 0 0 

0 - 1 0 

0 0 - 1 

Xi 

Figure 4. Transformation from the rotating frame to the inertial frame for a 

circular orbit. 

Developing (4.18), we obtain : 



(4.19) 

x - 2ny - n2x 

y + 2nx-n2y 

z 
= n 

2 0 

0 -1 

0 0 

ol 
0 

-lj 

\x 

\y 
\_z_ 

+ 

Putting the second derivatives in the right hand side, 

3n2x + 2ny + Ty 

-2nx + Tv 

-n2z + T7 

(4.20) (Sr)« = \ 

This equation can be written in the following form: 

(4.21) 

with: 

(4.22) 

(8r)R = A 8r + B (8r)R +E 

A = 

3n2 

0 

0 

0 

0 

0 

0 0 -n2 

(4.23) B = 

0 2n 0" 

-2n 0 0 

0 0 0 

(4.24) r = 
r, 
r, 



APPENDIX C 

Calculation of the second order 

primer vector differential equation 

for a circular orbit 

(proof of equation (4.25)). 

The Hamiltonian for a cooperative rendezvous in the CW gravity field can be expressed 

from the Hamiltonian found in chapter 3 : 

(2.22) H = -T2+Xr
T-v + Xv

T(g + Tu) 

Knowing that y = r , we get: 

H = ^T2 + Xr
T-r + Xj(g{r) + Tu) 

and using equation (4.1) 

r = 8r + r* = > t = 8r 

we calculate the Hamiltonian in terms of 8r: 

H = -T2+X?-(8i) + Xv(g(Sr + r*) + Tu) 

with g(8r + r*) = ASr + B(8r)R 

So, we obtain: 

H = - r 2 + X J • Sr + Xj(A8r + B8r + T) 
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Following the same procedure than the one in chapter 2, the differential equations for 

adjoint variables are : 

L=-\ 

dH 
dSr 

dH 
d8r 

= -ATXr 

= -(BTXr + Xr) 

The primer vector was described by Lawden by equations (2.27) and (2.29): 

P(t) = ~kr(t) 

Knowing the fact that A is a symmetric matrix and B is a skew-symmetric matrix and 

using the two equations right above, we get: 

Xr = Ap 

p = Bp + Xr 

Differentiating the last equation with respect to time and substituting this equation in 

the one before last, we obtain : 

(4.25) p=Ap + Bp 



APPENDIX D 

Development of the equation 

of motion in terms of 8r 

for a circular orbit. 

(4.21) (Sr)« = ASr + B(Sr)« + r 

(4.25) p = Ap + Bp 

From (4.21) 

==> (*) p = 8'r - ASr - BSr 

because 

(2.34) C = £ 

Plogging (*) in (4.25): 

8rw - A8r - B8r0) = Adr - A2Sr - AB8i + BSr0) - BAdr - B28r 

(4.26) 5rw - 2B8r0) -(2A- B2)8r + (AB + BA)8r + A28r = 0 
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APPENDIX E 

Development of the equation 

of motion in terms of x and y 

for the circular orbit. 

(4.26) <5r(4) - 2B8ri3) - (2A - B2 )8r + (AB + BA)8r + A28r = 0 

~10n2 0 
2A-Bl = 

AB + BA = 

0 An2 

0 6n3 

-6n3 0 

A2 = 

25 = 

8r = 

9n4 0" 

0 0 

' 0 An 

-An 0 

So (4.26) developing for x and y becomes : 

.e»r 

[y 
(4) 

' 0 An 

-An 0 

,(3)1 

,,(3) 

10n2 0 

0 4n2 
• + 

0 

-6n3 

6n3" 

0 _ fl+ bl 
9n 

0 
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(4.27) x(4) - Any0) - \0n2x + 6n3y + 9n4x = 0 

y (4)+4nx<3,-4n2y-6n3;c = 0 



APPENDIX F 

Calculation of the derivation of n 

(proof of equation (5.14)). 

2 A* 
(5.7) " = 7 ^ 

r' 

Taking the derivative both side with respect to time, we obtain : 

2nh = -3-^-rr* 
r * 4 

(5.14) n = -lJL-tl 
2r*4 n 
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APPENDIX G 

Calculation of the acceleration relative 

to a rotating observer fixed in the CW frame 

for an elliptic orbit 

(proof of equation (5.16)). 

(5.8) 8'r = (8r)R + 2wx (Sr)* + (wx 8r)R + wx(wx (8r)R) 

(5.9) w = (5-10) (Sr_)R = 

(5.11) (dt)R = (5-12) (5DR = 

(5.13) w = 

Plogging (5.9), (5.10), (5.11), (5.12) and (5.13) into (5.8), we obtain 

2wX(8r)R = 2 
i j k 
0 0 n 

x y z 

= 2 

-ny 

nx 

_ 0 _ 
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wx Sr = 

wxSr = 

wx(wxSr) = 

i j k 

0 0 h 

x y z 

= 

-hy 

nx 

_ 0 _ 

i I k 
0 0 n 

x y z 

= 

-ny 

nx 

_ 0 _ 

/ 

0 

•ny 

I 
0 

nx 

k 
n 

0 
= 

-n2x 

-n2y 

0 

Developing equation (5.8), we obtain : 

8r = 

X 

y 

l_ 

+ 2 

-ny 

nx 

0 _ 

+ 

-hy 

nx 

_ 0 _ 

+ 

-n2x 

—n2y 

0 

Sr = 

x - 2ny -hy- n2x 

y + 2nx + hx- n2y 

z 

From equation (5.4), the equation of motion in the rotating frame (XR,YR,ZR) 

described below is expressed by : 

(5.4) 8r = G(r*)(8r)R + T 

with G(r*) in the rotating frame given by (5.2): 

Yi XR 

Xi 

Figure 4. Transformation from the rotating frame to the inertial frame for a 

circular orbit. 



(5.2) G(r*) = -£ 
*3 

2 0 0 ' 

0 - 1 0 

0 0 - 1 

Developing (5.4), we obtain : 

x - 2ny -hy- n2x 

y + 2nx + nx - n2y 

z 
-n 

2 0 

0 -1 

0 0 

0" 

0 

-1_ 

X 

y 
_z_ 

+ 
"r," 
rv 

J«-

Putting the second derivatives in the right hand side, we obtain (Sr)R 

(5.15) (8r)* = 

3n2x + 2ny + hy + TY 

-2nx-hx + Ty 

-n2z + T7 

This equation can be written in the following form: 

(5.16) (8'r)R = A' Sr + B (8r)R +T 

with : 

(5.17) A = 

3n h 

-h 0 

0 
0 

0 0 -n2 

(5.18) B = 

' 0 2n 0 

-2/i 0 0 

0 0 0 

(5.19) r = r„ 



APPENDIX H 

Calculation of the second order 

primer vector differential equation 

for an elliptic orbit 

(proof of equation (5.20)). 

The Hamiltonian for a cooperative rendezvous in the CW gravity field can be expressed 

from the Hamiltonian found in chapter 2 : 

(2.22) H = -T2+Xr
T-v + Xv

T(g + Tu) 

Knowing that y = r , we get: 

H = ^r2+^-r + X/(g(r) + Tu) 

and using equation (4.1) still valid for the elliptic case : 

r = 8r + r* => r = Sr + r* 

we calculate the Hamiltonian in terms of dr: 

H = -T2+Xy{8r + i*) + Xv(g(8r + r*) + Tu) 

with 
g(8r +r*) = A8r + B(8r)R 

So, we obtain : 

H = -r2+Xr
T-Sr + Xr

T'r*+Xv
T(A8r+BSr + r) 
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Following the same procedure than the one in chapter three, the differential equations for 

adjoint variables are : 

= -ATX, 

= -(BTXr + Xr) L=-

' dH' 
_d8r_ 

'dH' 
_dSr_ 

The primer vector was described by Lawden by equations (2.27) and (2.29) : 

P = kr 

P(t) = -Xr(t) 

Decomponing A' in A+R, with A, a symmetric matrix and R and B two skew-symmetric 

matrices and using the two equations right above, we get: 

L = (A-R)p 
p = Bp + Xr 

Differentiating the last equation with respect to time and substituting this equation in 

the one before last, we obtain : 

(5.20) p = Bp + (A-R + B)p 



APPENDIX I 

Development of the equation 

of motion in terms of 8r 

for an elliptic orbit. 

(5.16) (Sr)« = A8r + B(8r)* + r 

(5.20) p = Bp + (A-R + B)p 

From (5.16) 

==> (*) p = 8r-A8r-B8r 

because 

(234) r = p 

Hogging (*) in (5.16): 

8r(4) - A 8r(2) - B8r (3) = B(8ri3) - A 8r- B8r{2)) 

+(A - R + B)(8r(2) -A8r- BSr) 

(5.24) 8ri4) - 2B • 8r0) +(B2 -A' -A + R- B)- 5r(2) + 

(BA' + AB - RB + BB) • 8r + (AA' - RA' + BA') • 8r = 0 

Developing the optimal trajectory equation in the coplanar case : 

f 0 -An'\ 
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B2 = 
-An2 0 

0 -An2 

B2-A-A + R-B = 
-10«2 -2/ i ' 

2/i -An2 

BA = 

AB = 

RB = 

BB = 

—2hn 0 

-6ra3 -2/w 

"0 6n3~ 

0 0 

-2/irc 0 

0 -2hn 

-Ann 0 

0 -Ann 

BA+AB-RB + BB = 
-Ann 6/i3 

-6n3 -Ann 

AA' = 

RA = 

BA = 

~9n4 3n2h 

_ 0 0 

-n 2 0 " 

-3n2n -h2 

-2h2 0 

-6n2h -2h2_ 

9n4 - h2 3n2h 
AA -RA +BA = 

-3n h —n 



. r W 

[y 
(4) 

' 0 -An 

An 0 

, ( 3 ) ' 

,,C3> 

-10rc2 -2/i 

2n -4rc2 

^(2)' 

„(2) 

-Ann 6n3 

-6n3 -Ann 

9n4-h2 3n2h 

-3n2h -h2 = 0 

.(4) ,2V(2) „(2) 3 • - 4rc/J) - 10nz;cU) - 2«y^ - Ahnx + 6njy + (9rc4 - ^ )JC + 3nLhy = 0 
k,(3) ,(2) ,2„ (2) /4> + 4 ^ + 2hxU) - Anlfl) - 6n5x - Ahny - 3nlhx -hzy = 0 



APPENDIX J 

Calculation of the optimal trajectory equation (6.6) 

for spacecraft neighboring a circular or elliptic orbit 

in an Inverse-square gravity field. 

In this appendix, the gravitational forces between the spacecraft are neglected, 

only the gravitational forces between each spacecraft and the planet are taken into 

account. 

(6.3) 8(r) = -fl^t 

8t = 

= - A * 

" i " 

(x2 + y2 + z2f 

y 
(x2+y2+z2f 

^tf+yl+W 

G(r) = 

dg* dgx dgx 

dx dy dz 
dg, dgy dg, 

dx dy dz 
dgz dgz dgz 

dx dy dz 
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dx - i " 
' (x* +f +Z

2)A -3x2(x2 + y2 +Z2/2 

(x2+y2+z2)3 ••8x. 

dy = V 
3xy 

(x2
+y2+z2)/2 gx 

dz = H 
3xz 

(x2+y2+z2)/2 = 8, 

dx = V 
3xy 

(X
2

+yl+Z2)A = 8,. 

dy = - i " 
(x2 + y2+z2)/2- 3y2(x2 + y2+ z2/2 

(x2+y2+z2? Su 

dz = P 
3xz 

tf+f+z2/* 
= 8y. 

dx = J « 
3xz 

l(x2+y2+z2)V2J 
= 8* 

dg 
dy 

L. — = j« 
3xz 

(X
2+y2

+Z
2)A = 8* 

dg 
dz 

Z- = — P 
'(x2 + y2 +z2)A -3z2(x2 + y2 +Z2/2 

(x2+y2+z2? = 8* 

Considering the coplanar case, we have z=0 and the matrices G(r) and G(r) . 

g z z is not zero but the fact that we work in a coplanar case, we will not consider that term. 



(6.4) G(r) = 6xx ox^ 

Oyx &\\ 

Oxx ox\ 

o^x o\^ 
(6-5) G(r) = 

Let's calculate G(r) 

8xx=-3p{(xx + yy) 5x2(x2 +y2)~K -(x2 +y2)-5^-2xx(x2 + y2)~5/A 

i « = 3 / i (xy + xy)(x2 + y2 )"5/2 - 5(x2xy + y2yx)(x2 + y2)"% 

% 
gvc =gn= 3/i[(*y + xy)(x2 + y2 )"5/2 - 5(x2xy + y2yx)(x2 + y2)~} 

&, = -3n{{xx + yy)\5y2(x2 + y2)"% -(x2 + y2)~y^-2yy(x2 +y2)'$A]j 

Using the equation (6.1): 

r'v = G(r)i(t) + 2G(r)r(t) - G(r)g(r) 

and substituting G(r) , G(r) and g(r) , we obtain : 

~xw~ 

.y 4 ) . 
= Oxx 

_OVJC 

&n~ 

8»_ 

X 

j . 
+ 2 oxx 

_8u 

8»~ 

8„_ 

X 

J. 

oxx oxv ox 

(6.6) 
x - 28„x ~ 2gny - g„x - gj + gxxgx + g„g, = 0 

y - IgyxX - 2gJ - g,xx - gj + g„gx + g„gy = 0 
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