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ABSTRACT 

Author : Snorri Gudmundsson 

Title : Nonlinear Analysis of Composite Beams 
Under Random Excitations 

Institution : Embry-Riddle Aeronautical University 

Degree : Master of Science in Aerospace Engineering 

Year : 1995 

The vibration responses of three unsymmetrically 

laminated beams, that are excited with a Gaussian random 

forcing function, are studied in this thesis. The beams are 

analyzed nonlinearly and compared to linear results, 

indicating some important corrections. The solution 

procedure begins with the derivation of the general equation 

of motion using Galerkin's method. Then, two approaches are 

taken in the solution. First, the equation of motion is 

attacked directly employing a real time Runge-Kutta 

numerical analysis. Second, the method of equivalent 

linearization is used. The thesis finds the results from the 

two approaches to be in a close agreement, although some 

discrepancies at high loads could be found. However, the 

most important achievement of the thesis is undoubtedly that 

the same response equation can be used for any type of 

laminate layup, and any of the three types of beams. One of 
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many applications that the solution can be used for is the 

assessment of fatigue tolerances. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introductory Remarks. 

The purpose of this thesis is to study the nonlinear 

dynamic response of composite beams that are excited with 

random forcing functions of predominantly Gaussian 

distribution. Solutions for three types of beams are 

presented in the thesis; a simply-supported, a clamped-

clamped, and a cantilever beam. The random excitation force 

has many practical analogies, turbulent aerodynamic loads 

and jet noise from turbomachinery being only two examples of 

many. The importance of this topic to the aerospace 

industry, in particular, cannot be overemphasized and it has 

a wide range of application. For instance, the methods 

presented in the thesis may aid in determining fatigue life 

of aerospace vehicles and help in the design of structures 

that support random loads. Applications outside of the 
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aerospace industry include wind and gust loads on various 

structures, such as support structures for electrical 

cables, tall buildings etc. Within the aerospace industry, 

modern aircraft design is one of many subjects that the 

results of the thesis can be applied to. An important task 

in the design of any aircraft involves the determination of 

the life-expectancy (or design life) of the airframe. For 

instance, the Anglo-French Concorde, shown in Figure 1 [36] 

is a good example of this. The aircraft is a supersonic 

passenger transport and cruises regularly at an altitude of 

approximately 18 km (60,000 ft), experiencing cyclic 

loading1 unknown to any other present passenger transport. 

Several methods are available to determine the life-

expectancy, as has been documented by many sources. 

References [37], [38], and [39] explain and treat typical 

fatigue problems for isotropic and composite materials. 

Generally, the lifetime of the airframe is decided by the 

designers, and it is frequently based on the mission 

profile. It is expected that an aircraft should tolerate a 

given number of cycles, where each take-off and a subsequent 

landing comprises a cycle [37] .' The concept of a cycle 

indicates that a load is applied to the airframe and then 

removed. 

This loading is a result of cabin pressurization. 



Figure 1. The Anglo-French Concorde is an example of a 
modern transportation aircraft [36]. 

Consider the wings, for instance. While on the ground 

the wings carry their own weight (depending upon wing-

undercarriage configuration), but after take-off they are 

loaded to support almost the entire weight of the aircraft. 

After landing they again carry their own weight - completing 

the so-called ground-air-ground (GAG) cycle. Figure 2 [37] 

shows a typical GAG cycle for a transport aircraft. If the 

aircraft encounters turbulence the mean-to-mean GAG cycle 

for that flight increases. If the GAG-cycle remains 

consistently higher for one of two identical aircraft its 

life-expectancy will be reduced. 



Stress 

Mean Ground Loading 

One flight 

'Mean Flight Loading 

Mean-to-Mean 
GAG cycle 

i. ^ ^ i W W 
-^ 

Time 

Figure 2. A typical ground-air-ground (GAG) cycle, 

It has been found by experiments that most materials, 

when undergoing cyclic loading, break at a lower strength 

than what is to be expected from static loading. For 

instance, a certain type of aluminum might yield at, say, 

48,000 psi static loading, but when repeatedly loaded to 

10,000 psi and then unloaded, it might break after perhaps 

50,000 cycles. This kind of failure is called fatigue 

failure. By performing many such experiments, where 

specimens of metals are loaded to a given stress, a, and 

then the number of cycles-to-break, n, are recorded, it is 

possible to plot a-n diagrams. Figure 3.. shows a typical 

such curve for steel. This figure indicates a large scatter 



of data points, which occurs in practice. Of interest is to 

note the so-called endurance limit for the steel, below 

which no fatigue is experienced. Aluminum alloys do not have 

endurance limits. 

Endurance 
Limit 

0 O ° O 9 ° o ° 
o 

!QJ5QO^O^O )_9X0_00^0-

00 ° ° 

Cycles, n 

Figure 3. An a - n diagram for steel, 

One of the greatest difficulties in assessing the life-

expectancy of an airframe is to take into account the 

various in-flight loads. It can be seen that a typical 

mission of a transportation jet consists of a take-off, 

after which a fairly constant loading of lg is applied to 

the wings. However, changes in loads inevitably occur during 

the flight, as depicted in Figure 2. Turbulent air may for a 

short period of time increase the loading - accelerations up 
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to several times the weight of the aircraft have been 

recorded, although such events are rare. Clear air 

turbulence (CAT) is frequently encountered in high-altitude 

flight and it is known to impose considerable loads on the 

airframe, in extreme cases causing physical damage to 

aircraft. On the other hand, a military aircraft whose 

mission is to fly at tree-top level may encounter turbulence 

more frequently than a high-flying aircraft. Two identical 

aircraft flying at two different flight levels throughout 

most of their operational life show different levels of 

metal fatigue. The one flying in higher turbulence usually 

shows the worse signs. 

The turbulent behavior of air can be approximated using 

a random stationary behavior. Therefore, it is the focus of 

this thesis to introduce solution techniques that best 

describe the behavior of structures under such a loading. 

The solution can then be used to assess, with a greater 

accuracy, the design life of the airframe by enabling a more 

precise dynamic stress analysis. This thesis deals with the 

random behavior of composite beams, of which isotropic beams 

can be considered the simplest case. 

Of particular interest is the random response of 

cantilever beams, which by nature resemble wings flying in 

turbulent conditions. Figure 4 shows a cantilever wing with 

a lift distribution described by P{x,t). If P is allowed to 
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vary randomly with time, the response or the deflection of 

the beam can be analyzed. Once the deflection curve becomes 

known, other important parameters can be retrieved, such as 

bending and shear stresses. 

Figure 4. A cantilever beam analogous to a wing. 

The general solution procedure presented in the thesis 

is the following. In Chapter 2 some preliminary concepts 

used in laminate structural analysis, random analysis, and 

numerical analysis are introduced. In Chapter 3 the general 

equation of motion for any laminated beam is derived and 

pertinent solution techniques are introduced. In Chapter 4, 

the equation of motion is solved for simply supported, 

clamped-clamped, and cantilever beams, respectively. In 

Chapter 5 some numerical examples are presented. Finally, 

Chapter 6 contains some concluding remarks. 
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1.2. Literature Survey. 

The research on nonlinear random response of laminated 

beams is very limited, so a thorough survey including the 

free and harmonic excitation and random excitation is 

conducted in this thesis. In the first section of this 

survey, work on nonlinear free vibrations of isotropic and 

composite beams is cited. In the second section, emphasis is 

placed on the published research of nonlinear forced 

vibrations of beams. Finally, the third section entails the 

publication of research in random analysis. 

1.2.1 Nonlinear Free-Vibration. 

A large number of references exists on nonlinear free 

vibration of isotropic beams, e.g. references [1] through 

[18]. More recently Kapania and Raciti [20] developed a 

simple one-dimensional finite element for the nonlinear 

analysis of symmetrically and unsymmetrically laminated 

composite beams including shear deformation. The formulation 

of the problem, the solution procedure, and the computer 

program were developed for a variety of static and nonlinear 

dynamic problems, including isotropic and symmetrically 

laminated beams. Raciti found that the nonlinear vibration 

had, what he called, "soft spring" behavior for certain 

boundary conditions as opposed to "hard spring" behavior 
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observed in isotropic and symmetrically laminated beams. The 

mid-plane boundary conditions were found to affect the 

nonlinear response significantly. Singh, Rao and Iyengar 

[21] investigated large-amplitude free vibrations of 

unsymmetrically laminated composite beams using von Karman's 

large deflection theory. They applied a one dimensional 

finite element model based on the classical lamination 

theory, first-order shear deformation theory and higher-

order shear-deformation theory having 8, 10, and 12 degrees 

of freedom per node, respectively- This was done to bring 

out the effects of transverse shear on the large amplitude 

vibrations. Bangera and Chandrashekhara [22] developed a 

finite-element model to study the large-amplitude free 

vibrations of generally-layered laminated composite beams. 

They considered the effects of Poisson's ratio by including 

it in the constitutive equations. The direct iteration 

method was used to solve the nonlinear equation at the point 

of reversal of motion. The influence of boundary conditions, 

beam geometry, Poisson's effect, and ply orientation on the 

nonlinear frequencies and mode shapes were demonstrated. 

1.2.2 Nonlinear Forced Vibration. 

Even though the present research focuses on nonlinear 

random vibration of beams, special attention was nonetheless 
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given to the work of harmonic forced vibrations of isotropic 

and composite beams. The survey yielded the following. 

Tseng and Dugundji [23] applied the harmonic balance 

method to solve the problem of a straight isotropic beam 

with fixed ends subjected to a harmonic excitation at its 

supporting ends. Alturi [24] applied the method of multiple 

scales [25] to investigate the response of nonlinear forced 

vibration of a hinged isotropic beam considering nonlinear 

inertia terms. His conclusion demonstrates nonlinearity 

effects of the softening type. Srinivasan [6] solved for 

free and forced responses of isotropic beams subjected to 

moderately large-amplitude steady-state oscillations by the 

Ritz-averaging method. The application of this method 

transforms the partial differential governing equation into 

a system of nonlinear algebraic equations. Srinivasan then 

applied the Newton's method to solve those equations. 

Nayfeh, Mook and Lobitz [26J presented a numerical-

perturbation method for the nonlinear analysis of forced 

vibration of isotropic beams. A multiple-mode expansion in 

terms of the linear mode shapes was considered. The problem 

was then solved using the method of multiple scales, 

considering internal resonance. 

Some research on nonlinear forced vibrations of 

composites beams has also been carried out. Pai and Nayfeh 

[27] investigated the forced nonlinear vibration of a 
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symmetrically laminated graphite-epoxy composite beam. Their 

analysis focused on the case of primary resonance of the 

first flexural-torsional mode. A combination of the 

fundamental-matrix method, a Galerkin procedure and the 

method of multiple scales is used to derive four first-order 

ordinary-differential equations describing the modulations 

of the amplitudes and phases of the interacting modes with 

damping, nonlinearity and resonance. The result shows that 

the motion was non-planar despite a planar input. It was 

further concluded that non-planar responses can be periodic 

motions, as well as amplitude- and phase modulated motions. 

Chandrashekhara [28] considered the flexural analysis 

of fiber-reinforced composite beams based on higher order 

shear deformation theory. A von Karman type nonlinearity is 

incorporated in the formulation of the problem. The finite-

element method is used to solve the nonlinear governing 

equations by a direct iteration. Unlike the conventional 

beam models, Chandrashekhara took into account the 

transverse strains and investigated the differences in the 

solutions for the cross-ply laminates and the angle-ply 

laminates. He concluded that the solution obtained from the 

two approaches differ slightly in the case of the cross-ply 

laminates, but there exists a considerable difference in the 

case of the angle-ply- Also, Kenareh [29] is working on the 

response of a symmetrically and unsymmetrically laminated 
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composite beam subjected to nonlinear forced vibration, 

using a finite element method. 

Some work has also been carried out on nonlinear forced 

vibrations of isotropic and composite plates. Reddy [30] 

investigated forced motion of laminated plates using a 

finite element method that accounts for transverse shear 

deformation, rotary inertia and large rotation (in von 

Karman's sense). In his paper, he presented numerical 

results for the nonlinear analysis of composite plates, and 

pointed out the effects of the plate's thickness, boundary 

conditions and loading on the deflection and stresses. Mei 

and Decha-Umphai [31] extended the finite element method to 

determine the response of large-amplitude forced vibrations 

of thin isotropic plates. A force matrix under uniform 

harmonic excitations was developed for nonlinear forced 

vibration analysis. The results obtained were compared with 

simple elliptic response, perturbation, and other 

approximation solutions. The method of multiple scales in 

conjunction with Galerkin's method was used by Eslami and 

Kandil [32] to analyze the nonlinear forced and damped 

response of a rectangular orthotropic plate subjected to a 

uniformly distributed transverse loading. The analysis 

considered simply-supported as well as clamped panels. By 

using the method of multiple scales, all possible resonances 

were investigated, such as the primary resonance, 
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subharmonic and superharmonic resonance. Hua [33] studied 

the geometric nonlinear forced flexural vibration of 

anisotropic symmetrically laminated composite plates under a 

harmonic force. He presented the effects of angle of 

orientation of the symmetrically laminated plates on the 

amplitude-frequency response. Chiang, Xue and Mei [34] 

presented a finite element formulation for determining the 

large-amplitude free and steady-state forced vibration 

response of arbitrarily laminated anisotropic composite thin 

plates using the Discrete Kirchhoff Theory (DKT) triangular 

elements. Their work focuses only on primary resonance. The 

nonlinear stiffness and harmonic force matrices of an 

arbitrarily laminated composite thin plate element were 

developed for nonlinear free and forced vibration analyses. 

The effects of damping were not included. Huang [35] 

investigated the forced nonlinear axisymmetric vibrations of 

an orthotropic composite plate with fixed boundary 

conditions. The governing nonlinear partial differential 

equations were converted into the corresponding nonlinear 

ordinary differential equations by the elimination of the 

time variable with the Kantorovitch time-averaging method. 

The solutions of the eigenvalue problems were obtained using 

a Newton iteration technique. The results revealed the 

effects of finite amplitude and anisotropy of materials upon 

the fundamental responses. 
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1.2.3 Randomly Forced Vibration. 

Considerable work has been done on random vibrations, 

especially in the field of isotropic beams and plates. 

However, due to limitation of space in the thesis, only work 

that directly pertains to the subject of the thesis is 

included. Seide [45] studied Gaussian vibration in the 

seventies and used a numerical scheme to solve for the 

random response of beams. An important contribution related 

to the material herein is made by Mei and Prasad [44] . They 

solved the Duffing equation for isotropic beams and plates 

(see Section 4.6) using a numerical iteration scheme. Other 

work on random vibration and fatigue include references 

[35], [39], and [49]. Practical work helpful in the random 

analysis of composites include references [37], [46], [47], 

and [48]. Little work has currently been published on random 

vibration of unsymmetrically laminated beams. None was found 

on Gaussian vibration of unsymmetrically laminated beams. 

1.3 The Scope of the Thesis. 

The purpose of this thesis is to study the nonlinear 

random vibrations of unsymmetrically laminated beams. This 

subject has never before been studied as such, to the best 

knowledge of the author. Considerable amount of work has 

already been done on random analysis of beams, both linear 
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and nonlinear, involving both isotropic and symmetrically 

laminated beams. However, previous work falls short of 

treating unsymmetrically laminated lay-ups. That, in itself, 

attests to the urgent need for research of this sort, as 

does a greater sophistication in the application of 

composite materials in technology and engineering. 

The results of the work presented in this thesis 

enables an analytical treatment of virtually any kind of 

laminated lay-up, whether it be symmetrical or 

unsymmetrical. The solution method treats the governing 

equations of motion by introducing von Karman's geometrical 

nonlinearities. The solution process is implemented by the 

application of Galerkin's method2, which transforms the 

fourth order partial differential equation into an ordinary 

differential equation. This equation is usually referred to 

as the Duffing equation. It is a nonlinear differential 

equation which, in the thesis, is solved by the method of 

equivalent linearization. The solution directly yields the 

deflection response of the beam being studied. 

It turns out that the random response of the simply-

supported, clamped-clamped, and catilever beams can be 

expressed with a single common equation. The only difference 

2 There are other methods besides Galerkin's method that can 

be used to perform such a transformation, but this is the 

simplest one to apply. 
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among the beams is in the expression of various beam 

characteristics, such as the natural frequency, mass, and 

the nonlinearity coefficients. This finding was supported by 

the application of numerical analysis, the result of which 

were in good agreement with the analytical method. 

Furthermore, since the solution is applicable to any lay-up 

method, as well as to isotropic material, the solution was 

compared to the work of Mei and Prasad [44] and Seide [45] 

and found to be in good agreement. 



CHAPTER 2 

PRELIMINARIES 

In this chapter some important concepts used in random 

analysis, the structural analysis of composites, and 

numerical analysis are discussed. 

2.1 Concepts in Random Analysis. 

The following section is intended to introduce some 

concepts and definitions that apply to random or stochastic 

analysis. The definitions and explanations that follow are 

general and as such can be found in most texts on statistics. 

In particular, references [40], [41], [42], and [43] were 

helpful. 

2.1.1 Ensembles and Sample Functions. 

A random process x(t) is a process that cannot be 

described with just one time history, but many which are 

17 
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called a family or an ensemble. Figure 5 shows an ensemble of 

four processes, but to represent any possible outcome an 

infinite number of processes xl» are required. Any individual 

time history, xl», belonging to the ensemble is called a 

sample function. 

Figure 5. An ensemble of four processes 

2.1.2 Random Variable. 

A random variable X is a real-valued function defined on 

a sample space. If the random variable has a finite number of 

values it is said to be a discrete random variable. If it has 

an infinite number of values X is a continuous random 

variable. Continuous random variables are idealizations, but 
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they enable full power of mathematical analysis, not always 

possible with discrete random variables. The random variables 

(for instance the distribution of the random forcing 

function) in this thesis are assumed to be continuous. 

2.1.3 Stationary Random Process. 

A random process is said to be stationary if its 

probability distribution remains unchanged with time. This 

implies that all the averages based upon a given probability 

distribution, p(x), are independent of time. In this thesis 

the random processes are assumed to be stationary. 

2.1.4 Temporal Average. 

Given one sample, x(J), a temporal average is the average 

of that sample along its time-axis. 

2.1.5 Ergodic Process. 

Within the class of stationary random processes there is 

a subclass called an ergodic process. An ergodic process is a 

process in which averages are equal to the corresponding 

temporal averages taken along any representative sample 

function. The random processes treated in the thesis are 

ergodic. 
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2.1.6 Normal or Gaussian Processes. 

Random processes that can be described by a first-order 

normal or Gaussian probability distribution are called normal 

or Gaussian processes. These are described by the expression 

where x(t) is a random process and xx is an abbreviation for 

x(tx), JHĴ  is the mean of the distribution, and a1 is the 

standard deviation of the distribution (see Figure 6). 

The advantage of considering the random processes in 

this thesis as Gaussian is primarily two-fold. First, 

experiments show (see for instance references [42], [48], 

[49], and [51]) that many processes in nature behave in that 

manner. This includes wind loading and noise in general. 

Second, Gaussian random processes allow for some algebraic 

simplification of the equations describing the behavior. 

Consequently, the mathematics is more easily manipulated than 

would be the case for most other random processes. 

(*i-">i) 

2o? 
(2.1) 



p(*l 

Figure 6. Gaussian distribution. 

A convenient way to get a feeling for how a Gaussian 

process manifests itself is to consider the following 

example. Say that we obtain 30 readings from an anemometer 

for wind velocity, each taken 1 second after the previous. 

Let the results be tabulated as follows. 

Table 1. Example readings from an anemometer. 

ig 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

number Time, sec 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Wind speed, m/s 

5. 
5, 
5, 
4, 
4. 
4. 
5, 
6, 
5, 
5, 
5.0 
4.2 
4.0 
4.8 



15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

14 
15 
16 
17 
18 
19 
20 
2V 
22 
23 
24 
25 
26 
27 
28 
29 
Average: 

5.2 
4.7 
5.9 
4.3 
4.5 
5.6 
4.9 
5.2 
5.3 
4.9 
4.6 
4.7' 
5.2 
5.4 
5.1 
5.5 
5.02 

The average of the wind speed measurements in the table 

is 5.02 m/s, with the lowest value being 4.0 and the highest 

value 6.0. Also, it can be seen that six measurements are 

significantly lower or higher than the average (4.0, 4.2, 

4.3, 5.8, 5.9. and 6.0), but the other values are "close" to 

the average. Also, there are three values of 5.0 m/s. This 

behavior is typically Gaussian and the resulting frequency 

distribution is plotted against the Gaussian frequency curve 

in Figure 7. 

The distribution in Figure 7 is characteristic of normal 

or Gaussian processes. In a stationary process, m1 and ox 

remain independent of time (in this case jnx remains at 5.02 

m/s), whereas they depend on time in a non-stationary 

process. 



Frequency of Wind Measurements 

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 

Wind speed, m/s 

Figure 7. Gaussian distribution for wind speed measurements, 

2.1.7 The Mathematical Expectation of a Function. 

Consider that, at a fixed time, a domain of n random 

values of x are associated with a known function g(x). If 

these n values are assumed to adequately represent the 

process that yields the x's, the average of the function g 

can be determined using 

i " 

Average[g(x)] = - X g ( * 0 ) ) 
7=1 

( 2 .2 ) 
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An alternative interpretation of Equation (2.2) is to say 

that it represents a weighted sum of g values, where the 

weighting factor, 1/n, gives the fraction of samples having 

that certain value of g. This interpretation can be used to 

extend to the theoretical case in which there is a continuous 

set of infinitely many samples that are described by the 

first-order probability density p(x) [42] . In this case, the 

fraction of samples that lie between x and x+dx is p(x)dx. 

The average of g over the continuous set may be inferred from 

the discrete average of Equation (2.2), or 

£[#(*)] = j £(*)/>(*)<& (2.3) 

This average is called the mathematical expectation of g(x) 

and the operator E is used3 to denote it. In general, this 

represents the long-run average value that is to be observed. 

2.1.8 Mean and Mean Square. 

When g(x) is taken to be x, Equation (2.3) becomes 

= J xp(x E[x] = I xp(x)dx (2.4) 

3 In addition to E[g{x)) in the literature, one finds g(x) and 
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which defines the mean of x or the expected value of x. When 

g(x) is simply x2, Equation (2.3) becomes 

E[x2] = )x2p(x)dx (2.5) 

and is called the mean square value of x. In addition to this 

the root mean square value, rms, is defined as 

rms = yJE[x2] (2.6) 

2.1.9 Autocorrelation. 

Let xx and x2 be abbreviations for x(t1) and x(t2), 

respectively, and f(x) and g(x) be known functions. Then, the 

ensemble average or mathematical expectation of f(x1)g{x2) is 

given by 

^[/Wsfa)] = J J f(xi)gix2)p(xl,x2)dxl(ic2 (2.7) 

If f{xx) = xx and g(x2) = x2 then Equation (2.7) yields the 

average E[x1x2], which is called the autocorrelation function 
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£[x i*2] = J J xlx2p{x1,x2)dxldx2 (2.8) 

Now, defining x = t2 - tx, the second-order density of a 

stationary process may be written p(t, t +x). With this 

notation the autocorrelation function becomes 

^[xjxj = E[x(t)x(t + x)] = R(x) (2.9) 

2.1.10 Spectral Density. 

A frequency decomposition of R{x) can be made by writing 

/?(x)= fs(a>y"dto (2.10) 
J—00 

where S(&) = (Fourier transform of R{x))/2n, or 

1 fa 

5(00) = — J /?(T>T"DXrfc ( 2 . 1 1 ) 

100 

R(0) is the mean square of the process. According to Equation 

(2.10), R(0) equals S(a))dco, so S(co) can be interpreted as a 

mean square spectral density. The units of S(<o) are mean 

square per unit of circular frequency- The experimental 

spectral density is denoted by W(f) where f is frequency in 



cycles per unit time. The relation between S(<a) and W(r) is 

given by 

W(f) = 4nS(a>) (2.12) 

2.1.11 Properties of Normal Processes. 

A Gaussian process that has a zero mean at all times has 

important properties that can be stated as follows4: 

^ [ x ^ O (2.13) 

£[*1*2]=0 if *1**2 (2.14) 

£ [x 2 ]*0 (2.15) 

£[x3] = 0 (2.16) 

isfxiX^Jfy] = £[*iX2]^[x3*4j + [̂*2X3]-̂ '[JC1JC4] + £[x1X3]£[x2*4] (2.17) 

E[x4] = 3(E[x2]f (2.18) 

£[x5] = 0 (2.19) 

E[x6] = l^E[x2]f (2.20) 

4 These properties are derived in Appendix A. 



2.2 The Application of Practical Units and Their Conversions. 

The preceding discussion would not have any practical 

meaning unless it could be applied to real life problems. 

Thus, the random loading experienced by a structure must be 

related to measurable terms. If the forcing function is 

pressure fluctuations due to noise (for instance jet engine 

noise) or changes in air velocity (turbulences), the loading 

is represented by a so-called pressure spectral density 

(PSD). This requires the commonly applied unit of dB 

(decibels) to be converted to PSD. Figure 8 [36] shows a 

representation of the intensity of sound level ranging from 0 

to 150 dB. 

The following explains how to convert sound spectrum 

level (SSL) given in dB into pressure spectral density. Note 

that the reference pressure, P^, is the lowest audible sound 

sensed by the "average" ear [50]5. 

Step 1: Let SSL be' given in dB. The general relation for SSL 

is [50] 

( nor* V f nQr\\ PSD 
SSL = 10 log10 = 20 log10 

PSD 

V-TREF/ 
(2.21) 

5 This reference pressure is used throughout the text. 
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Figure 8. Sound level intensity [36]. 

where PSD = Pressure Spectral Density, with units [N/m2] or 

[psi], and PREF - Reference sound pressure = 2xl0~5 N/m2 = 

2.9020xl0"9 psi. 

Step 2: Convert SSL into pressure spectral density {PSD) in 

terms of circular frequency, by solving Equation (2.21) for 

PSD as follows. Using the Si-system 

PSD = / W 1055L/20 = 2 x lO^ 2 0 " 5 ) REF (2 .22 ) 

Using t h e UK-system 



PSD = 2.9020 x 1 o(SSL/2°-9) (2.23) 

Step 3: Convert PSD into pressure spectral density (Sp), in 

terms of frequency, as follows 

Sp ( / ) = PSD2 b2 = Pressure2 x area (2 .24) 

The units are [Pa2/Hz] or [psi2/Hz] for plates, but 

[(N/m)2/Hz] or [(lb/in)2/Hz] for beams. Using equations 

(2.22) and (2.23) this becomes, in the Si-system 

PSD2 = ( / W \QSSLI10)2
 = 4 x l0 ( 0 1 5 5 L - 1 0 ) (2 .25) 

In the UK-system 

PSD2 = (2.9020 x io(5SL/2°-9)) = 8.4216 x lO^1™"") (2 .26) 

It is to be noted that, in addition to the above, the 

following relation is used to convert pressure spectral 

density into of circular frequency 

sP(f) 
SJQ)=^-L (2.27) 
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2.3 Concepts in Laminated Structural Analysis. 

The following section is intended to introduce some 

concepts important in the structural analysis of laminate 

structures. The information that follows is described in 

greater detail in references [37] and [47]. 

2.3.1 General on Composites. 

A composite material is defined as a combination of two 

or more constituent materials, such that the resulting 

combination has characteristics of all constituent materials. 

In addition, composite materials often exhibit qualities that 

none of the constituent materials possess. Properties that 

often are improved by forming a composite material include 

(not all are improved simultaneously) 

• Strength 

• Stiffness 

• Corrosion Resistance 

• Wear Resistance 

• Weight 

• Fatigue Life 

• Temperature-Dependent behavior 

• Thermal Insulation 

• Thermal Conductivity 

• Acoustical Insulation 

2.3.2 Types of Composites. 

Three types of composites are predominantly mentioned 

in conjunction with industrial use. Fibrous composites 



consist of fibers in a matrix, for instance fiberglass 

reinforced plastics. Laminated composites consist of layers 

of various materials, for instance fibrous composites in many 

layers. Finally, particulate composites are composed of 

particles in a matrix. Steel reinforced concrete is an 

example of a particulate composite material. The two first 

are the subject of the thesis. 

2.3.3 Mechanical Behavior of Composite Materials. 

Composite materials have many characteristics that are 

different from more conventional engineering materials. Some 

characteristics are a modification of conventional behavior, 

whereas others are entirely new and thus, require new 

analytical and experimental procedures. Composite materials 

are often both inhomogeneous (or heterogeneous) and 

orthotropic (or anisotropic). 

2.3.4 Approaches in the Analysis of Composites. 

There are generally two approaches taken in the analysis 

of composite materials. First, there is the micromechanics 

approach, which is the study of composite material wherein 

the interaction of the constituent materials (i.e. of the 

fibers and matrix) is examined on a microscopic level. This 

type of study predicts the "average" properties (such as 

strength and stiffness) in terms of the properties and 



behavior of the constituent materials. Second, there is the 

macromechanics approach, which is the study of composite 

material wherein the material is presumed homogeneous and the 

effects of the constituent materials are detected only as 

averaged apparent properties of the composite. The approach 

in the thesis is of the microscopic nature. 

2.3.5 Basic Terminology of Composite Materials. 

A lamina is a flat (or curved) arrangement of fibers 

that can be uni-directional or bi-directional (see Figure 9), 

embedded in a matrix that maintains a proper predetermined 

orientation of the fibers. 

Fibers are filaments that are the principal reinforcing 

or load carrying material. The arrangement of the fibers is 

commonly split into the following categories 

• Unidirectional Fibers 

• Bi-directional Fibers 

• Glass Mats (random fiber orientation) 

Uni-directional Bi-directional 

Figure 9. A schematic of typical fiber arrangement. 
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The matrix can be organic, ceramic, or metallic. Its 

function is to support and protect the fibers, and to provide 

a means of distributing the load between the fibers. 

A laminate is a stack of laminae with various 

orientation of principal material directions in the laminae. 

The layers of a laminate are usually bonded together by the 

same matrix material that is used in the laminae. 

2.3.6 Assumptions and Definitions. 

The material is orthotropic and there is no coupling 

between the normal and shear strains, e and y, and the normal 

and shear stresses, o and T, respectively. General directions 

are denoted in Figure 10. 

Figure 10. Principal material directions. 

Material properties in the principal material directions 

1, 2, and 3 are defined as follows 



Elf E2, and J573 = Young's stiffness moduli in the 

principal material directions 

£23/ Gz\, and G2i = Shear stiffness moduli 

Vi-,- = Poisson's ratio for transverse strain in the j -

direction, when stressed in the i-direction. 

2.3.7 Orthotropic Compliance Matrix (Strain-Stress 

Relations). 

Using the above assumptions, the strains are related to 

the applied stresses as follows 

Y23 

Y31 

Y12 

_ __^L _-L31 0 0 0 

'12 

"13 

0 

0 

'23 

0 

0 

£ , 
'32 0 0 0 

0 

1 
G 2 3 

0 

0 

0 

0 

1 

G31 

0 

0 

0 

0 

1 

1 
G, 12 

"23 

"31 

1T12J 

(2 .28 ) 

where the matrix with the material constants is referred to 

as the orthotropic compliance matrix. 



2.3.8 Orthotropic Stiffness Matrix (Stress-Strain Relations). 

If the compliance matrix of Equation (2.28) is inverted 

the resulting matrix becomes 

Q - v ^ ) ^ (v21 + yiiv3.)El (v31 + v21v32)£, 

•"23 

"31 

LX12J 

K 
(V l2+V | 3V32) £ 2 

K 

K 
(l-v13v31)E2 

K 
( V 13 + V 12V23) £ 3 (V23 + V13V2l)^3 

K 
0 
0 

0 

K 
0 
0 

0 

K 
(V32 + Vl2V3l)^2 

K 
(l-v12v21)E3 

K 
0 
0 

0 

0 

0 

0 

G 2 3 

0 

0 

0 

0 

0 

G„ 

0 

0 

0 

0 

0 

0 0 '12 

where K = 1 - v12v21 - v23v32 - v13v31 - v12v23v31 - v13v21v32 

The matrix with the material constants is called the 

orthotropic stiffness matrix. Due to symmetry of the 

compliance matrix the following relation is useful 

°3 

Y23 

Y31 

Y,2 

(2.29) 

U = U3 (2.30) 

2.3.9 Orthotropic Compliance Matrix for Plane Stress. 

In this thesis the stress experienced by the beams can 

be considered one-dimensional. Therefore, two-dimensional 



plane stress suffices to describe the state of stress. 

Consequently, Equation (2.28) can be reduced to 

lY12J 

"12 

o 

"21 

E, 

£, 
0 

1 

G, 12 

1*12. 

(2.31) 

where the matrix with the material constants is referred to 

as the orthotropic compliance matrix. 

2.3.10 Orthotropic Stiffness Matrix for Plane Stress. 

Equation (2.31) inverted results in 

k12 

^ 

-v 1 2 v 2 I 

v,2£i 

v2i£i 
l - v I 2 v 2 1 

l - v 1 2 v 2 1 l - v 1 2 v 2 1 

0 

1 

G 12 
12 J 

[2.32) 

The stiffness matrix is also written in the following 

shorthand notation, which is called the reduced stiffness 

matrix 



{«> 
"12J 

a, a, o 
Qn Q22 0 

.0 0 a 6 

/• \ 

< e, 

12 j 

(2.33) 

2.3.11 Stress-Strain Relations for a Lamina of Arbitrary 

Orientation. 

If the lamina is rotated through an angle 9 with respect 

to the x-y axes, as can be seen in Figure 12, the stresses 

along 1-2 axis are transformed as follows 

°2> = 

"\2 

cos2 9 sin2 9 2 sin 9 cos9 
sin2 9 cos2 9 -2sin9cos9 

• sin 9 cos9 sin 9 cos9 cos2 9 - cos2 9 l^J 

(2.34) 

Figure 11. Schematic of fiber angular orientation. 

A short hand notation for the transformation matrix is 

the following, where cos 9 and sin 9 are denoted by m and n, 

respectively 
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{«} = 

* 

<*2 

.V 
» = 

~/w2 

« 2 

-mn 

n2 

m2 

mn 

Imn 

-2mn 
2 2 

/w - « 

a* 
CT, 

.V 
(2.35) 

where the matrix of m and n is called the transformation 

matrix. 

2.3.12 Stress-Strain Relations for x-y Axis of an Arbitrarily 

Oriented Lamina. 

Stresses along x- and y-axes can be determined using the 

following equation 

{«}= 

ox 

°y 

V 
. = 

fi„ 
2.2 

Q« 

fi.2 

OB 

fi26 

fi,6 

fi26 

o» 

e 
8 

Y; txy) 

(2.36) 

where the matrix with the Q-bars'is called the reduced 

transformed stiffness matrix. The coefficients are given by 

Oi = Qum
4 + 2(fi12 + 2fi66)mV + Q22n

4 

&2 = (fin + fi22 - 4fi66)»*V + fi12(w
4 + «4) 

0~e = (fin - fi.2 - 2fi6>3« + (fi12 - fi22 + 2fi6>w3 

Q^ = Qun
4 + 2(fi12 + 2fi66)roV + Q22m

4 

(L = (fin " fiI2 + 2fi66)/«n3 + (fi12 - fi22 + 2QJm3n 

& = (fin + fi22 - 2fi12 - 2 f i 6 ( >V + Q66(m
4 + n4) 

(2 .37 ) 



Tsai [52] developed a multiple-angle formulation to 

replace equations (2.37). This formulation is called the 

invariant property of an orthotropic lamina. They are well 

suited for computer algorithms because the U's are invariant 

with respect to the axis of rotation. 

fin = £/, + U2 cos29 + U3 cos49 

~Qn=Ux-U2 cos29 + U3 cos49 

0~2=U4-U3cos4Q 

&~6=U5-U3 cos49 

Q^ = }£/2sin29 + £/3sin49 

Q2~6=\U2sm2Q-U3sin4Q 

where 

(2 .38) 

C/,={[3fii1+3fi22+2(212+4e66] 

U2=i[Qn-Q22] 

U3=\[Qn+Q22-2Qn-4Q66] (2.39) 

^4=l[fin+fi22+6fi12-4a6] 

f/5={[fiii+fi22-2fi12+4e66] 

2.3.13 Stress-Strain Relations for the k Lamina. 

Consider the laminate in Figure 13. Stresses along x-

and y-axes for the kth lamina can be determined using the 

following relation 
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Figure 12. A composite laminate constructed from n laminae. 

2.3.14 Laminate Constitutive Equations (A-B-D Matrix). 

The stress and moment resultants for a laminate of n-

plies are frequently written in the following form, which is 

called the laminate constitutive equations, or the A-B-D 

matrix: 

"1_ 
M\ 

\K 
K 
Nx 

K 
K w 

[4. 
A2 

A* 
Bu 

Bn 

k 

A2 

A.2 

Ai 

Bn 

B22 

B26 

Ae 
At 

As 
5,6 

B26 

B66 

Bn 

Bn 

5.6 

A, 
A2 

A* 

Bu 

B22 

B26 

A2 
A2 
D26 

Bl6] 
B26 

Bee 

A. 
A6 

AJ 

\<\ 
K 
y% 

* , 

K, 

K X K 

'A 

B 

B~ 

D 
(2.41) 
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where the coefficients, which are referred to as the laminate 

stiffness, are given by 

Extensional stiffness: 

k=\ 

Coupling stiffness: 

^ t=i 

Bending stiffness: 

J k=\ 

Note that [B] = [0] for isotropic materials (which can be 

considered a special case of composites) and for 

symmetrically laminated composites. 

(2.42) 

(2.43) 



CHAPTER 3 

DERIVATION OF THE NONLINEAR EQUATION OF MOTION FOR AN 

UNSYMMETRICALLY LAMINATED BEAM 

In this chapter the nonlinear equation of motion for an 

unsymmetrically laminated beam is derived. The final general 

nonlinear equation of motion includes the effects of any type 

of boundary conditions and material lay-up. It will be the 

subject of subsequent chapters to modify that equation to 

accommodate specific boundary conditions and lamination lay-

up methods. 

This chapter is also intended to serve as a review for 

the reader as to how the underlying nonlinear theory of 

mechanics of materials is used to set up the equation of 

motion for any beam. The actual derivation of the equation of 

motion is then implemented towards the end of the chapter. 

The process is typically as follows. First the A-B-D matrix 

is modified to entail the two dimensional characteristics of 
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beams (i.e. deflection along one axis depends on position 

along another one, and the two axes are mutually 

perpendicular). Then, the so-called constitutive equations 

are introduced and modified for beams. Once that step is 

accomplished, the equation of motion can be derived. 

3.1 The General Constitutive Relation. 

The stress and moment resultants on an element in any 

composite material is given by (see also Section 2.3.14) 

N 
M 

A B 
B D 

8 (3.1) 

which is also written in expanded form as follows 

X 
Ny 

^ 

Mx 
My 

W»\ 

• — 

Ai 
Ai 
Ae 
Bn 

Bn 
Bie 

Ai 
^22 
4*6 
B\2 

B22 
B26 

Ae 
A26 
^66 
5 l 6 
5 2 6 
B(>6 

Bn 
B\2 

Bl6 

A i 
A2 
A6 

B12 
B22 
B2(, 
Du 

D22 

D26 

Bl6 
B26 
Bn 
Ae 
D26 

Dee 

4 
4 
y% 

K, 

K *y) 

(3.2) 

The strain-displacement and curvature-displacement relations 

are given by von Karman's geometrical nonlinearities 



{.•}-

f -\ 

0 
*x 

Zy 

,0 
b*J 

> _ « 

du0 \fdw 
dx 2\dx 

dv0 ifdw^i 
dy +2{dy) 

du0 dv0 1 dw dw 

dy dx 2 dx dy 

( 3 .3 ) 

M = Ky 

d2 
W 

-2 

dxz 

CTW 

dy2 

d2 
w 

dxdy_ 

(3 .4 ) 

3.2 The Constitutive Relation Modified for a Beam. 

The beam considered here is long in the x-direction 

compared to dimensions in y- and z-directions. Thus, the 

displacements u0, v0, and w are all functions of x only. This 

renders the analysis one-dimensional in the x-direction. The 

simplification begins by rewriting Equations (3.3) and (3.4) 

as follows; 

{••}-
' B ! 

\4 
Y° 

' =' 

du. Udw_ 
dx 2\dx 

0 
dvp 
dx 

( 3 .3 ) 
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and 

M = -

' 

Ky 

.K*y. 

• = • 

(rw 

dx2 

0 
0 

(3.4) 

so Equation (3.2) becomes 

N xy 
Mx 

My 
M xy) 

Ax 
An 

Ae 
Bn 
B\2 

Bie 

Ai 
All 
Aie 
B\i 
B22 

B2e 

Ae 
A2e 
4>6 
B\e 
B2e 
Bee 

Bn 
B\i 
Bie 
A i . 
A i 
Die 

B\2 

B22 
Bie 
A i 
D22 

D2e 

B\e 
B2e 
B ii 
Die 
D2e 
Dee 

du0 ifdw 
dx +2\.dx 

0 
dvQ_ 

dx 
_d2w 

dx2 

0 
0 

( 3 . 2 ) 

Consequently, this can be expanded by writing 

NX = A n 
du0 ifdw 
dx 2\dx 

dVrx d2w 
Udx2 ( 3 .5 ) 

Ny = Al + A [ie 
dvQ 

dx 
- 5 , "w 

12 dx' 
(3.6) 

Ny = Ae 
du0 ifdw 
dx 2\dx 

dVn 
+ A^-^—Bl6 *66 dx 

d2w 

dx2 ( 3 .7 ) 



47 

Mx=Bn 
du0 1 
!)x+2 

'dw}2 

<dx 

dVn d2 
w 

+ Bl6^x~-Dndx2 ( 3 .8 ) 

My=B 12 
dun +-(—T 
fix: 2Vaxry 

dv0 
+ Bid —— — Dyi 

d2w 
>ie dx " dx2 ( 3 . 9 ) 

^ = A6 
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V dvn 

>ee dx 

d2w 
16 dx2 ( 3 . 1 0 ) 
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Ny + V* 

Figure 13. Definition of force and moment resultants. 



3.3 The Governing Equations . 

The governing equations for the element in Figure 13, 

are given by 

dNx dN 
x+—^- = 0 (3 .11) dx dy 

dNxy dNy 
+ — ^ = 0 (3 .12) dx dy 

d2Mx d2Mxy d2M e2w d2w d2w d2w 

dx2 dxdy dy2 dx2 *> dxdy y dy2 dt2 

(3 .13) 

where h is the height of the beam, p is the density, and P is 

the forcing function per unit area (usually time dependent). 

3.4 The Governing Equations for a Beam in Terms of Nx and Mx. 

The governing equations for an element of a beam are to 

be derived by simplifying the equations above. Again, the 

variations in the y-direction are negligible, because the 

6 The derivation of the governing equations of motion appears 

in Appendix B. 



structure is assumed to be essetially one-dimensional in the 

x-direction. Therefore, Equations (3.11), (3.12), and (3.13) 

reduce to 

dN 

dx 
* - = <> (3 .14) 

dN xy 

dx 
= 0 (3 .15) 

d2Mx XT d2w n tfw 

—r+N*i^T+p=Ph-zr dx' dx' dtd 
(3 .16) 

Equations, given by (3.14), (3.15), and (3.16), yield 

the equation of motion for the beam. The first step in 

deriving the equation of motion is to determine selected 

terms of Equation (3.16) by using the two other ones. From 

Equation (3.14) 

N, = Constant (3.17) 

From this and Equation (3.5) 

A^ 
d \ d2w dw 

2..) 
dx2 dx2 dx 

d2vn d*w 
x16 

dx1 11 Sx:3 (3 .18) 



From Equations (3.7) and (3.15), 

*16 

d2un c^w dw 

dx2 dx2 dx 

d2vn diw 

dx2 16 dx 16 ^v3 (3 .19) 

From Equation (3.8) 

d2M 

dx' 
X~ = By 

d Ur, d w dw f crw 
+ 5"— + 

dx3 dx3 dx \dx' j 

d \ 
+ Bl6-J--D 

dx3 

d4 
w 

11 a.4 (3 .20) 

3.5 Equations of Motion7 in Terms of Displacements u0, v0, and 

w. 

The occurrence of the midplane displacements u0 and v0 

in the above equations requires their determination. This is 

done in the following manner. Begin by rearranging terms in 

Equations (3.18) and (3.19): 

d2u0 d \ n d3w tfwdw 
iudx2+Al6dx2 =Bndxi-A"dx2dx 

(3.2i; 

d2uQ d2v0 _ dh>_ d2w dw 
Ae~dxT + A(£ dx2 =Bl6 &3 " Al6 dx2 dx 

(3.22) 

7 The equation of motion for an element is derived in 

Appendix C. 
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d1^ 
Solving the two l inea r ly independent equations for —f- and 

dx 

dx2 r e s u l t s in 

(PUQ d^\v_ tfw dw 

dx2 dx3 dx2 dx 

d2vn d3w 
^ = K2 
dx2 dx3 

(3 .23 ) 

(3 .24 ) 

where 

and 

Kx = 

K, 

AeBie~ AeeBn 
\ A2$-AXXA(6 j 

AeBi\- AnBX(i 

V ^16-^11^66 ) 

(3.25) 

(3.26) 

The normal force resultant, Nx, is manipulated in a 

special way, before it can be used in the equation of motion 

(3.16). This is done as follows. First integrate Equation 

(3.5) over the length, L, of the beam: 

jw 4>^rt-tnf)*-<£* 
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Carrying out the first three intergrals, noting Equation 

(3.17) to obtain 

Ai 
N = — x L 

Au , 1 Ae r I An tLfdwY , 5 „ fcd2* 
2L Jo V5x: 

c& 
Z, Jo 3x: 

(3.27) 

The state of the midplane motion is represented by the terms 

[w0(Z,)-w0(0)] and [v0(Z,)-v0(0)], which depends on the type of 

inplane boundary conditions. In this thesis, beams with 

immovable edge conditions are considered. Consequently, the 

first two terms on the right hand of Equation (3.27) vanish. 

Equations (3.23) and (3.24) must be differentiated 

before they can be inserted into Equation (3.20), which in 

turn, is used in Equation (3.16). Carrying out this 

differentiation yields 

d3u0 d^w_ d3w dw (cPw) 
= Kl 

dx dx4 dx3 dx Idx2 
(3 .28 ) 

and 
a3v0 cfiw 

— = K2 dx- dx4 (3 .29) 

Substitution of equations (3.20) and (3.27) into 

equations (3.16) yields 



B, 
d u0 dw dw I 

r 

'd2 
w 

dx* dx \dx2 + B,^-D, — + '16 
dx3 ndx* 

AL 
L 

[Mo(I)-Wo(0)] + ̂ [v0(Z)-v0(0)] + ̂ J o ( j £ ) dx + 

B^_tL^w 
L Jo dx 

d2w _ . d2w 
+ P = ph-

dx dtl 

Rearranging terms and inserting Equations (3.28) and (3.29) 

into the above, then expanding and collecting terms the 

equation of motion of w(x,t) is obtained: 

d*w 
(BnKx+Bx6K2-Du)— 

dx* + 

Ax [L(dw\ thw-^i+tM^^US dx + 

B„ CLd2w 
dx2 

L Jo 
dx 

d2w 

dx2 
d2w 

* dt2 

(3 .30 ) 



CHAPTER 4 

METHOD OF SOLUTION 

In this chapter, a solution to the equation of motion 

(i.e. Equation (3.30)) will be attempted for three specific 

cases; simply-supported, clamped-clamped, and cantilevered 

unsymmetrically laminated beams with immovable edges (see 

Figure 14). 

The solution process is briefly as follows. First, a 

deflection curve that agrees with the geometric and kinematic 

boundary conditions is proposed. Then, the equation of motion 

is simplified to adopt the characteristic of the boundary 

conditions. Next, the proposed solution is inserted into the 

modified equation, which, by the use of Galerkin's method, is 

manipulated to yield the so-called Duffing differential 

equation. The Duffing equation is a nonlinear differential 

equation and is solved using the method of equivalent 

linearization. The solution of this equation directly gives 
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the deflection response of the beam when excited with a 

randomly varying forcing function. 

^mvi'.*****"*""•' i t*ti"** 

Simply-supported 

-»x 

z 

Hii :!• .;i1i: ••• • jiijl ^" ' i ' ' i , - " I ' I I I 1 "XtlTI'tttl"'"" *• 

Clamped-clamped 

"t! i t * 

->x 

- * • * 

z 

Cantilever 

Figure 14. The three boundary conditions considered here 

The solution of the Duffing equation is made even more 

specialized by considering three common material properties 

an isotropic beam, an unsymmetrical angle-ply, and an 

unsymmetrical cross-ply. Furthermore, the responses of the 

beams are compared to that of the linear theory. It is of 



importance to note that it does not serve a purpose to 

present every step of the derivations in this chapter. The 

interested reader can turn to Appendixes A, D, and E to see 

the details of selected steps. 

4.1 The Galerkin Method. 

The solution process for the governing partial 

differential equation of motion begins with the application 

of the Galerkin method. The method transforms a partial 

differential equation into an algebraic equation for a static 

problem and into an ordinary differential equation for a 

dynamic problem. For Equation (3.30) this leads to a 

nonlinear differential (Duffing) equation. The Galerkin 

method has proven successful in treating linear and nonlinear 

problems, as well as stability and buckling problems. 

Galerkin's method can be described as follows. Assume 

that the motion of a beam can be described by: 

L(w,t)-P = 0 (4.1) 

where I is a differential operator, P is forcing function 

acting on the structure, w is the displacement function, and 

t is the time. Let 8w be a small arbitrary variation in the 



displacement of the beam. Then, the external and internal 

work done by the system are given by 

5^, = f (P5w)'dA (4.2) 
J Area v ' 

dWui=$Aea[L(w,i)8w]dA (4.3) 

I f w i s t he s o l u t i o n of equat ion ( 4 . 1 ) , then (4.2) and (4.3] 

must be i d e n t i c a l , so t h a t 

\[L(w,t)-PpvdA = 0 ( 4 . 4 ) 
Area 

Now, assuming that w is expressed in the form 

n 

<Wl + ^ 2 ^ 2 +a3M>3 + ••• a«Vn = ^a,V, ( 4 - 5 ) w 
1=1 

where the a, are unknown constants to be determined and \j/, are 

functions of x and t the variable w satisfying the boundary 

conditions. From Equation (4.5) the virtual displacement is 

given by 

6M' = ̂ 5al\|/l (4.6) 



Substituting Equation (4.6) into (4.4) and requiring the 

equality to be maintained for arbitrary values of 6a, yields 

f [L{w,t)-P]yidA = 0 
J Area J 

JjiM-4^.^0 (4>7) 

J Area 

For a uniform beam dA = width dx, so equations (4.7) simplify 

to the system 

J[l(w,/)-P]-\|/I-<& = 0, i = l,-,w (4.8) 

Substituting 

n 

w = ^ta,-\\f,(x) (4.9) 
1=1 

into Equations (4.8) yields a set of algebraic equations (for 

a static problem) or a set of differential equations (for a 

dynamic problem). The application of this method, in all 

likelihood, will simplify the analytical solution of a 

problem. 



4.2 The Method of Equivalent Linearization. 

As cited above, Galerkin's method transforms the 

governing partial differential equation of motion into an 

ordinary differential equation (i.e. the Duffing equation). 

However, the nonlinearity of the equation, in conjunction 

with the random nature of the forcing function, presents an 

obstacle of considerable difficulty- To ease the analytical 

approach, the equation can be linearized. This is a 

statistical method, which replaces the nonlinear system by a 

linear one. The method is adopted from the so-called Krylov-

Bogoliubov equivalent linearization technique for 

deterministic vibration problems. It minimizes the difference 

between the nonlinear and the linear systems, the error of 

linearization, to achieve the most reasonable solution. This 

concept has found considerable popularity in control theory 

and in the solution of single degree-of-freedom systems. 

In the thesis, this step is implemented Section 4.6, and 

the resulting error, once minimized, is inserted into the 

linearized equation. Since the Duffing equation is also 

solved numerically (see Section 4.3), the difference in the 

above approach can be assessed and in this thesis was found 

to be acceptable (see Chapter 5). 



4.3 A Numerical Solution to the Duffing Equation. 

The Duffing equation can also be solved using numerical 

analysis, primarily for comparison reasons. The numerical 

approach used is a classical Runge-Kutta fourth order scheme 

for a system of equations. For this particular problem the 

system consists of two equations obtained as follows. 

Consider a solution to the differential equation 

.2 2 ,a„3_F(t) q + 2^,(0 0q + (o2
0q + aq2 + \^q3 =—— (4.10) 

m 

dq 
By r e p l a c i n g q=— by z, t h i s can be r e w r i t t e n a s 

at 

z + 2E,<Q0z + (Q2
0q + aq2+$q3 =—™ (4 .11) 

m 

Consequently, Equation (4.10) has been split into two first 

order differential equations, namely 

dq 
-± = z (4.12) 
at 

and 

/*• EVA , , , 

•-2c;av-a)2a-aa2-pY (4.13] 
dz F(t) _ , _ 2 D „ 3 

dt m 



Equations (4.12) and (4.13) are the two equations making up 

the system of equations to which the Runge-Kutta scheme is 

applied. A more detailed description of how this is exactly 

implemented is not appropriate here, but the Windows program 

written to solve this and the source-code can be obtained 

upon request. 

4.4 Boundary Conditions. 

The boundary conditions for the three beams are as 

follows. 

4 . 4 . 1 S imply S u p p o r t e d Beam: 

@ x = 0 w = 0 @ x = L w = 0 

&w 

dx2 

u0 = 0 

v0 = 0 

4 . 4 . 2 Clamped-Clamped Beam: 

@x=L w=0 

w = 

&W 

dx2 

u0 = 
vo = 

0 

0 

0 

@x = 0 w = 0 

dw 

u0 = 0 

v0 = 0 

dw 

~dx~ 

u0 = 

vo = 

= 0 

-0 

= 0 



4.4.3 Cantilever Beam: 

@x=a w=o 
dw 

dx 

«0 = 

vo = 

= 0 

0 

0 

@x = L: Mx = 0 
d2 

w 
dx2 

= 0 

vz = o 
d3w 

dx3 
= 0 

4.5 Assumed Solution. 

The relationships used to describe the deflection must 

obey geometrical, as well as kinematic boundary conditions. 

These are fulfilled by the following relationships, which are 

used to describe the deflection for the three beams: 

4.5.1 Simply Supported Beam: 

w(*,0 = .2j^,«(0sin mux 

m=l 

4.5.2 Clamped-Clamped Beam: 

(4 .14) 

w(x,t) = YdRqm(t{ I-cos 
2mnx 

m=l 
L J 

(4 .15) 



4.5.3 Cantilever Beam: 

K 

Hx,t) = YdRqm{t) 
m=\ 

' miuc 
1-cos—— I (4.16) 
V 2L 

In the above equations R is radius of gyration of the beam 

cross-section8, q{t) is the non-dimensional time-dependent 

amplitude of the mode shape, and k is the number of modes to 

be considered. 

4.6 Determining the Duffing Equation for the Beams. 

The first step in determining the Duffing equation is to 

rewrite Equation (3.30), using each of the three boundary 

conditions, and then, manipulate the result by inserting the 

appropriate derivatives. This process is partly repeated in 

the following pages. 

A77T bf>3 « 
8 For a rectangular cross-section R = s^lA-\TZjT=~j7^' where 

A is the cross-sectional area of the beam, I is the moment of 

inertia of the beam, h is the height of the beam, and b is 

the width of the beam. 



4.6.1 Simply Supported Beam: 

It is important to note that the axial displacement 

u(x, t) is zero since the edges are immovable, i.e. u(0,t) = 

u(L,t)= 0. For a simply supported beam, once the boundary 

conditions in Section 4.4.1 are applied, Equation (3.30) 

becomes 

(BuKl+Bl6K2-Dn)^+ ^ \ [ - dx--f\ -rrdx^j + P-ph-^^0 
2LJo \dx L Jo dx' dx2 dt2 

(4.17) 

After substituting Equation (4.12) this becomes 

(B,A+B16K2 - Ai)2J,xJ qm a n~r+ 
m=l 

tii*2 f i ̂ r^fmnn) , x , x mnx nnx , BuR^(mnY [L mn 

\-m=\ n=l J m=l 

'Shfrm 

-dxt 

mn 1 . mnx 
9m an—-

k 

Z mnx 
qmsm— = 0 

(4.18) 

It is the purpose of this thesis to consider only 

single-mode solution to beam vibration, i.e. k = 1. Thus, 

Equation (4.18) reduces to 



/ \ 7U I 7tX 

(Ai*i+*16*2-Ai)7 ^ s i n — + 

AUR2 f~\2 

2L 

7t Y 2 fL 2TCC , BnRfn Y fL . 7CC , 

d " [ cos Tdx+— U % m T * 

-<fj* TOC 

sin-
TCt 

+ P-phRq sin— = 0 

Performing the integration and simplifying results in 

j^Rq{BuKx+BX6K2-Dxx) sin-
7CC 

L VI. 

K]
 Ry\ALRq +

 2Bu . TOT 

sin h 
7t I Z, (4 .19) 

P-phRq sin— = 0 

Galerkin's method requires 

I [Ze/? - /?awo" side of Equation (4.19j] • i?a(f ) sin— jtfe: = 0 

y i e l d i n g 

^Rq(BxxKx + BX6K2 - A l ) | % i n 2 ^ _ Q V a 2 { ^ a + ^ } [ % i n 2 ^ + 

pL -jrx ft, frx 
P(jc,/)sin—dx-phRql sin2—cfo = 0 

Jo L Jo L 

Performing the integration and rearranging terms yields the 

Duffing equation 



«-(AA+fi,A-A,)^+41^T?3
+2SI,0?2=^Ef/'(-.O™fA 

(4 .20) 

To s i m p l i f y t h e e q u a t i o n make t h e f o l l o w i n g d e f i n i t i o n s : 

a ) 2 = ( A i - 5 u ^ i - A 6 ^ 2 ) ^ T < 4 - 2 1> 
phL 

n3R 
a = 2Bn—T (4 .22) 

phL 

. K R 
p = 4 i 7 7 7 4 - (4-2 3> 

4phL 
pL mr 

F{t) = P{x, t) sin—dx (4 .24) 
Jo L 

phRL 
m = ^— (4 .25) 

In t e r m s of t h e above , E q u a t i o n (4 .18) i s w r i t t e n 

- 2 2 n 3 ^ ( 0 
a + co2a + oca2+pa3=—^- (4 .26) 

m 

This equation represents a non-damped vibration of the beam. 

In order to verify the unit consistency of equation (4.26), a 

unit consistency test is applied, which appears in Appendix 

D. 
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Since all structures have internal damping which depends 

on the time-rate-of-change of the vibration, a Coulomb like 

damping terms is added to equation (4.26), so that 

q + 2&0q + (Q2
0q + aq2+Pq3=^>- (4.27) 

m 

4.6.2 Clamped-Clamped Beam: 

As for the simply-supported beam, no relations in the 

axial direction are required for the clamped-clamped beam, 

because the edges are immovable, or constrained against axial 

motion. Thus, Equation (3.30) can be rewritten, using the 

boundary conditions of Section 4.4.2 as follows 

(4.28) 

S u b s t i t u t i n g Equation (4 .15) , performing the i n t e g r a t i o n , and 

s impl i fy ing for a single-mode s o l u t i o n , y i e l d s 

/ \J2K)4 2TCC AnR
3(2n]4 , 2KX n tn( 2mc) 

(Dn-BnKx-Bi6K2)R[-j-j a c o s — + ~^~\-j-j f C M y + / > - p H l ^ l - cos— ) = 0 

(4.29) 

file:///-j-j


Galerkin's method requires 

[Left - hand side of Equation f4.29,)] • Rq(t)\ 1 - cos 
27CC 

dx = 0 

and once the result has been treated similarly as in section 

4.6.1, the Duffing equation for the clamped-clamped beam 

becomes 

167t4 

3pM,4 
/ \ 1071 

q + (Dn-BnKl-Bl6K2)7Z^q + A n ^ ^ q ^ ^ 
4n4R2

 3 2 f̂  
J P(x,t) 

( 2ra0 , 
1-cos—— jax 

(4 .30 ) 

To make the equation more legible, define the following terms 

2 1 6 7 t 

<»o = (DU-BUKY -B16K2) 4 

3p«Z7 
47t4i?2 

P = ^ ^ F 

F(0 = (LP(x,o( l -cos^ dx 

( 4 . 3 1 ) 

(4 .32 ) 

(4 .33) 

m-
3phRL 

(4 .34 ) 

In terms of the above, Equation (4.30) may be written 



.2„,o„3 F{t) 
^+co2a + Pa3=-^- (4.35) 

m 

This equation represents a non-damped vibration of the 

structure. As before, a Coulomb-like damping terms is added 

to Equation (4.35) to obtain 

q + 2EfOQq + (O2
0q + ^q3 = ^ (4.36) 

m 

4.6.3 Cantilever Beam: 

In the case of a cantilever beam, the axial 

displacements cannot be neglected, but they are approximated 

by 

u0(x,t) = u(t)Rsin— (4.37) 

TVC 

v0(x,t) = v(t)Rsin— (4.38) 

The second derivatives of these expressions are 

d \ f n Y , x „ . nx 



Equation (3.30) is solved by applying the boundary 

conditions in Section 4.4.3, where there are four boundary 

conditions listed at x = 0 and at x = L. The conditions on u0 

and v0 at x = L are time dependent and in conjuntion with 

Equations (4.16) and (4.37) through (4.40) are used to derive 

a relationship between u{t) and v(t) and q{t). Thus, one can 

write 

• N • KX TS ( K ^IV 3 , . • mKX 

<t)sm—-Kx[—)ljn qm(t)sm— + 
JM=1 

XT' mux 

and 

in yV 2 / s rmx u V" , s • mKX [ 

4i42y«.<<>cos— L^W^n— 
l. m=l J >- m=l J 

(4.41) 

, x . 7DC ,,(71 IX™' i , x . W7CXT 

v(0sin—-£21— J^™ <7,w(0sin—- = 0 (4.42) \2LJ*-f imy/ 2L 
)M=1 

One can determine the amplitudes u{t) and v(t) by applying 

Galerkin's method to Equations (4.41) and (4.42). Consistent 

with the previous two boundary conditions, only the first 

mode, k = 1, is considered, in which Equations (4.41) and 

(4.42) become 

. . . KX „ f 7C ̂  , x . KX f 71 " L 2r N . 7EX 71X ^ 

B ( 0 s . n - - ^ , [ - J ? W S . n ^ - ^ J % 2 ( 0 S . » i I c o S - = 0 (4.43, 



TVC 

v(t)sin—-K2 & ' ^ ' 
. TtX 

nT ...... sin—r = 0 
\2LJ1K ' 2L 

(4 .44 ) 

Applying Galerkin's method to these equations (recalling 

Equation (4.16)) requires 

I [Left - hand side of Equations (4.43) and (4.44)] • Rq(t)\ 1 - cos 
7CX 

2~Z 
dx = 0 

After some s i m p l i f i c a t i o n s these two equa t ions y i e l d 

rn^-. 2 I it u('H-nr> ^f'" (4 .45) 

and 

71 ^n^" (4 .46) 

Then, s u b s t i t u t e Equations (4.45) and (4.46) i n t o Equat ions 

(4.37) and (4 .38 ) , eva lua ted a t x = I , t o ob t a in 

uQiLj) = umsin^ = {^y2q2^jKxRq (4 .47 ) 

and 

7tZ, ( 7C , 
v0 (L, t) = v(t)R sin— = [^l)K2Rq (4 .48 ) 
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Using the boundary c o n d i t i o n s in Sec t ion 4 . 4 . 3 , Equat ion 

(3.30) can be w r i t t e n 

/ \ d4w (A A A fcfdwY 

(BnKx+Bl6K2-Dxx) —+\-fuo(L) + ̂ voiL) + ̂ -[ [-} dx + 

B„ [t<d2w . l a 2 

L Jo dx 
w d2w 
, +P-ph—r=0 

dx2 K dt2 

Substituting Equations (4.16), (4.47), and (4.48), and then 

expanding, integrating, simplifying, rearranging, and finally 

applying Galerkin's method, results in 

"=«¥1+2*1-!^ <,' + fMi-«.s^>+&=&«^ = o 
: - 8 A 3 8J8pM,4 Jo ^ 2ZJ 2TC 

(4.49) 

V37C-

As before, define the following constants 

CD, (A.-v,-^)^)^ 
16pM7 

a = (4A+4^-^.(^: 
4-7t 1 7t 

8^ SphL4 

0 = 4 
f 4-7C 

\37C-8 

f l 7C/T| 7t3 

- + • \3 SJ SphL4 

m = 
(3n-S)phRL 

27U 

(4.50) 

(4 .51) 

(4.52) 

(4.53) 

file:///37C-8


F(t) = jL
oP(xj{l-cos^jdx (4 .54) 

Equation (4.49) can be written 

1 2 „ 3 ^(0 

q+G)2q + aq2+fiq3=-^-L (4.55) 
m 

Adding Coulomb damping to Equation (4.55) yields 

Fit) 
q + 2^a)0q+O)2q + aq2 + 3q3 =—L-L (4.56) 

4.7 The Application of the Method of Equivalent Linearization. 

The solution to Equations (4.27), (4.36), and (4.56) 

yields q(t), which once inserted into Equations (4.15), 

(4.16), and (4.16), respectively, gives (for k = 1) the time-

dependent deflection of the beam. The method of equivalent 

linearization assumes that an approximate solution to the 

above non-linear differential equation can be obtained from 

the linearized equation 

*2„ F(t) 
q + 2£,®0q + Q:q = -^-L (4.57) 

m 



The difference between Equations (4.27), (4.36), or (4.56) and 

(4.57) is called the error of linearization, and in its most 

general form is given by 

err = ((ol-n2)q+aq2+Pq3 (4.58) 

The mean-square response of the modal amplitude from 

Equation (4.57) is given by 

E[q2] = fSp((d)\H(mfdG> (4.59) 

where Sp(ro) i s the power s p e c t r a l d e n s i t y funct ion and H(co) i s 

c a l l e d the complex frequency response funct ion of the system, 

and i s ob ta ined as fo l lows . S u b s t i t u t i o n of F = mei<ot and q{t) 

= H(co) ei<Bt, i n t o Equation (4.57) r e s u l t s i n 

i2(o2H((o)em' +2Efo0(oH((o)e,s" +Q2H(a>)em = eiat 

o r 

[-co2 +24©0co + Q2]#(co)e"°' = en 

Solving for H{&) results in 



H(p) = r~2—2 T ( 4 - 6 0 ) 

[ir -GT +2/Q0COJ 

The integration of Equation (4.59) can be simplified greatly 

when the spectral density of the excitation varies slowly in 

the neighborhood of Q [53]. In this case the spectral density 

function Sp(co) can be considered a constant, so that the 

integration in Equation (4.59) yields 

4«2h 
TlSpjO) 

4m2£co0n2 

In practice, the spectral density function is given in terms 

of frequency (Hz). Then, the following substitutions can be 

made 

Q = //2TC => Sp(Q) = Sp(f )/2TI 

The units for Sp(f)/2n are Pa2/Hz for plates and (N/m)2/Hz for 

beams. The above can now be rewritten in the following form 

E\q2U t ( / ) 2 = ^ 2 - (4.61) 
1 J 8w2 (̂Oô  ^ 

where 



S = ¥P- (4.62) 
8/M co0 

The coefficient S has units of 1/sec2. From the above 

equations and the preceding text it becomes evident that the 

linearized frequency, Q, introduces the nonlinear effects to 

the response. In order to minimize the error that arises from 

the linearization Equation (4.57) and that of each of the 

original equations (i.e (4.27), (4.36), or (4.56)), the 

conditions for the least error must be determined. A necessary 

condition that includes the effects of both a and (3 and 

minimizes the error has not been determined yet. It will, 

however, be shown in Chapter 5 that the effects of a are 

small, indicating that Equation (4.59) is acceptably accurate 

in most instances. Generally, the error is minimized with 

respect to Q 2 (note that minimizing the error with respect to 

<D2-Q2 yields the same condition) 

£[err2] = 0 (4.63! 
an2 

Inserting Equation (4.58) into (4.63) results in 

*2 E[err2} = ^ [ ( ( a > 5 - O 2 ) a + o a 2
 +Vq3f] 

dLT L J dQ2 



which, expanded and manipulated using the rules of Appendix A, 

reduces to the following relationship between the equivalent 

linear frequency and the mean-square displacement9 

Q2=G>l+3\3E[q2] (4.64) 

Substituting this into Equation (4.61) yields 

E[q^ 
WL2~i*2+3p-E[q

2\) 
(4 .65) 

From which the following re la t ionsh ip i s obtained 

3piE[q2])2
+G>2E[q2}-^0 (4 .66 ) 

whose solut ion i s given by 

* ] = -
cop 

60 

f 2 ̂ 2 

+ • 
3PS 

( 4 . 6 7 ) 

This equation therefore represents the general random 

vibration response of any type of laminate lay-up. When this 

equation is used one should be aware of its limitations, i.e. 

9 See Appendix E. 



that the effects of <x in the equation are nonexistent. 

However, the effects of a nonzero a are implicitly introduced, 

since any laminate lay-up has its own distinguishable value of 

coo and P that will affect the final outcome of Equation 

(4.67). It is the purpose of the following chapter to discuss 

the true limitation of this presentation by comparing the 

solution obtained by the Equation (4.67) to the numerical 

solution of Equation (3.30). 

4.8 The Linear Response. 

In addition to the numerical comparison, it is common to 

compare the nonlinear case to the linear case and study the 

corrections that result. Therefore, well documented results 

for isotropic, angle-ply, and cross-ply laminates are 

presented below for the convenience of the reader. These 

solutions are easily obtained from the linear equations of 

motion. The general random vibration response for the linear 

case is given by: 

c 
Eb2]=7~T (4-68) 



where S is given Equation by (4.62) and c, is the damping 

coefficient. The following specialized cases are given as 

examples of how the theory is applied. 

4.8.1 Isotropic Simply-Supported Beam: 

For isotropic beams, E is the Young's modulus, I is the 

moment of inertia, A is the cross-sectional area, L is the 

length, and p is the density of the beam. For a simply-

supported beam the natural frequency and the mass are given by 

2 7C4£/ 

coo=—7T (4.69) 
pAL 

nphA 

4.8.2 Generally Laminated Simply-Supported Beam: 

For a generally laminated simply-supported beam, h 

represents its height, L its length, and p the density of the 

beam. The natural frequency and the mass are given by: 

®l=(Dxx-BxxKx-BX6K2)-^ (4.71) 

phRL 
w = - (4.72) 



4.8.3 Generally Laminated Clamped-Clamped Beam: 

For a generally laminated clamped-clamped beam, h 

represents its height, L its length, and p the density of the 

beam. The natural frequency and the mass are given by: 

&l=(Dxx-BxxKx-BX6K2)^ (4.73) 

3phRL ,„ _, 
/» = — (4.74; 

4.8.4 Generally Laminated Cantilever Beam: 

For a generally laminated cantilever beam, h is the 

height, L is the length, and p is the density. The natural 

frequency and the mass are given by 

.HVW-«(^)(^) <4.75, 

(3*-8)pM£ 

2TU 

4.9 The Nonlinear Response. 

This section serves partially as a summary of the results 

obtained so far, and partially to introduce some particular 

results. Equation (4.67) gives the general response for any of 



the three beams. Its coefficients, however, depend on the 

different boundary conditions. 

4.9.1 Simply-Supported Angle-Ply Beam: 

An angle-ply is typically laid up in a sequence sucha as: 

[G/-0/0/-0/0/-G/...], and if the number of laminae is even, it is a 

symmetrical laminate. This, regardless of the number of 

laminae, results in the following material properties being 

zero 

Al.6 = "̂ 26 = 0 ' 

B l l = B 12 = •B22 = S 6 6 = °' 

Die = D26 = 0, 

which gives the following coefficients of the Equation (4.27). 

From Equations (4.21) through (4.25) 

cô  =(Dxx-BnKx-Bl6K2)-^ (4.77) 

K3R 

phL4 a = 2Ai-774 (4.78) 

phRL 
m = ^-— (4.80) 



These coefficients are then inserted into Equations (4.62) and 

(4.67) to obtain the dynamic response. 

4.9.2 Simply-Supported Cross-Ply Beam: 

A cross-ply is typically laid up in the sequence 

[900/0°/90°/00/...]. This results in the following material 

properties of the A-B-D matrix being zero 

Al.6 = -̂ 26 = 0' 

B12 = B16 = B26 = B66 ~ °' 

Dis = D26 = 0, 

which results in the following simplifications 

7C4 

fflS = ( A i - A i * i ) - ^ r <4-81> 

7C3i? 
a = 251i-T74- (4 .82) 

pnL 

P=^W (4-83) 

phRL 
m = - (4 .84) 



4.9.3 A Simply-Supported Isotropic Beam: 

The terms of the A-B-D matrix for an isotropic beam, are 

as follows: 

Eh3 

A\ = A2= Eh 

A2 = Ae - Ae ~ 0 
A _ A X X _ E h 

66 2 2 

B, = 0 

A.=A2=^-
A 2 = A 6 = A 6 = o 

D _Dxx_Eh3 

66 2 24 

This gives the following solution for the mean-square response 

of the modal amplitude10 

W={f+ 1 s 1 
3fr1 3) 

(4.85) 

where S is given by Equation (4.62), col by Equation (4.69), 

and m by Equation (4.70). 

4.9.4 Clamped-Clamped Angle-Ply Beam: 

(D2 = (A,-5,6£2)^r (4.86) 
3phL 

10 Note that the answer is merely a modification of Equation 

(4.65) . 
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P = 4 ' W <4'87) 

3phRL IA nftl 

m = — (4.88) 

4.9.5 Clamped-Clamped Cross-Ply Beam: 

< = {DXX-BXXKX)^ (4.89) 
3phL 

p = 4 « w <4-90) 

m.&OZ. (4.91) 

4.9.6 A Clamped-Clamped Isotropic Beam11: 

16;r4£/ 

•i-W" ,4-92: 

/, = 1 ^ = 1 ^ , 4 . 9 3 , 
4 3ya4I4 4 

4V3 
mJ-!** (4 .94) 

1 1 Use w i t h e q u a t i o n ( 4 . 8 3 ) . 
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4.9.7 Cantilever Angle-Ply Beam: 

©r 

m -

- \yxx uX6i ^2\3n-s) l6phL4 

\3n-SJSphL4 

fn-4Yl icFft 7C3 

nV37C-8Jl3 ' 8 J 8pAZ,4 

(3n-S)phRL 

2% 

(4.95) 

(4.96) 

(4.97) 

(4.98) 

4.9.8 Cantilever Cross-Ply Beam: 

<»2
0={DXX-BXXKX)\ 

7C - 4 ^ 7C4 

3TC - SJ l6phL4 ( 4 . 9 9 ) 

a = (AXXKX-BXX)\ 
7C - 4 ^ 7C 

3K-SJ SphL 
( 4 . 1 0 0 ) 

P = 4 
7C-4 

37C-8y V3 SJ 
7C 

SphL4 (4 .101) 

file:///3n-SJSphL4


CHAPTER 5 

NUMERICAL EXAMPLES 

Once a relationship between the random force exciting a 

beam and the mean-square response has been found, a number of 

important characteristics can be determined. Among these are 

the following: 

• Deflection at a given spectral density, 

• Stress at a given spectral density, 

• Strain at a given spectral density. 

These can be found by inserting values for E[q2] into 

Equations (4.14), (4.15), and (4.16) for each of the three 

beams. This yields the deflection equation, which can easily 

be used to determine stress and strain using the theory of 

elasticity-

86 
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The following relation can be used to determine the 

stress in the ktb layer in a laminated beam12: 

w.-^fMfr-yka.t (5.1) 

The strain at the surface of the composite is given by 

\e*)±h/2 ~ 

du0 ifdw 
dx 2\dx -z-

d2w 

dx2 :5.2) 
Jz=±h/2 

The following problems are meant to demonstrate 

applications of the preceding theory, as well as to compare 

it to already established results - such as that of Prasad 

[44]. Note that the presentation of nonlinear results for 

unsymmetrically laminated beams are original. 

5.1 Problem 1: White Noise Exciting an Isotropic Beam. 

5.1.1 Statement of Problem. 

An interesting and important problem that can be studied 

is the deflection caused by noise from a source such as a jet 

engine. The jet engine emits white noise (which has a 

12 Equations (5.1) and (5.2) are derived from Eq. (2.40). 



stationary Gaussian density distribution) which varies in 

strength dependent upon the thrust produced. It is common to 

measure such sound in dB (decibels), so one must convert dB 

into spectral density units, using the method discussed in 

Section 2.2. This problem is presented here to enable 

comparison between Prasad's results [44] and the ones 

obtained by this thesis. 

The problem can be stated as follows. Determine, 

analytically, the value of E[q2] when an isotropic simply-

supported beam is excited by a pressure spectrum level of 100 

dB. The beam has the following properties: 

Young's modulus 

Damping coeffici 

Mass density 

Thickness 

Width 

Length 

ent 

E = 

t, = 

P = 

h = 

b = 

L = 

10.5xl06 psi 

0.01 

2.588x10-4 ib-sec2/in4 

0.064 in 

2 in 

12 in 

( 1^ Noise source, 
emitting white 
noise. 

A - 3 A 
i 
Z 

Figure 15. Problem setup. 
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5.1.2 Solution. 

First, the coefficients for the beam are determined, in 

this case, for a simply-supported isotropic beam. These are 

found using Equations (4.69) and (4.70) 

jfEI 7t4(l0.5x 106)(2 x 0.0643/l2) 

p^ll4 ~ (2.588 x 10"4)(0.064 x 2)(124) 

nohA TC(2.588 x 10^)(0.064)(2 x 0.064) 
m=np™_ = _\ A A i = 4.807 xl0- 7 lbs 2 / in 

8V3 8V3 

Then, t h e s p e c t r a l d e n s i t y i s d e t e r m i n e d u s i n g e q u a t i o n s 

( 2 . 2 6 ) , ( 2 . 2 4 ) , and SSL = 100 dB, r e s p e c t i v e l y 

PSD2 = 8.4216 x IQ(OISSL-1*) = 8.4216 x 10(10_I8) = 8.4216 x 10"8 Ob2 /in4)Hz 

and 

Sp(f) = PSD2 b2 = (8.4216 x 10'8) x (2)2 = 3.3686 x 10"7 (lb / in)2 / Hz 

Then, c a l c u l a t e t h e c o e f f i c i e n t S from E q u a t i o n (4 .62] 

_SP(f) _ 3.3686xlQ-7 _n,AK^ 

Sm2co 0 8 x (4.807 x 10"7 )(255.l) 
714.5 s" 



Finally, this is inserted into Equation (4.83), which was 

specifically derived for isotropic materials and directly 

yields the mean square of the response 

4* 2 l= 2 fJ -+ - J ^T-^ = 0-7150 

The response, therefore, is the root mean square 

rms=ijE[q2] = 0.8455 

5.1.3 Accuracy of Solution. 

The best way of assessing the accuracy of the method is 

by a direct comparison to Prasad [44] and Seide [45]. Prasad 

used equivalent linearization to calculate displacements and 

stresses of simply-supported and clamped-clamped beams. To 

accomplish this he used a numerical iteration scheme on 

Equation (4.65). Seide, also, used a numerical scheme 

obtaining similar results. This thesis, on the other hand, 

attacks Equation (4.65) directly, but this allows for a 

simplified analysis of the mean square response. 

Additionally, the Duffing equation is solved numerically, 

which enables a direct comparison between the analytical and 

numerical results. 
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Figure 16 shows the response of the above beam for a 

spectrum sound level {SSL) from 70 to 130 dB. The nonlinear 

results essentially contain both Prasad's results and those 

obtained by Equation (4.83) (or Equation (4.65) for that 

matter), but each method yields the same results. The scatter 

is the result from several thousand runs of the Runge-Kutta 

code, and underlines the importance of understanding that in 

reality there is a band of solutions and the analytical 

should merely be considered an average, rather than a point 

solution. The figure also identifies an unacceptable over-

estimation of the linear response. 
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Random Response of a Simply-Supported 
Isotropic Beam 

100 T 1 1 1 1 1 1 

001 4 1 i 1 1 1 1 
70 80 90 100 110 120 130 

Spectrum Sound Level (dB) 

Figure 16. Comparison of E[q2] obtained by different methods 
for a 12x2x0.064 inch simply supported isotropic beam. Note 

that E[q2\ is equivalent to £[>»£„ 1. 



5.2 Problem 2: White Noise Exciting an Angle-Ply Beam. 

5.2.1 Statement of Problem. 

Another similarly interesting problem is the deflection 

of a laminated beam laid-up as an angle-ply (see Section 

4.9.1). In this problem all three boundary conditions are to 

be analyzed. The problem can be stated as follows. Determine, 

analytically, the value of E[q2] when simply-supported, 

clamped-clamped, and cantilever beams, fabricated as angle-

plies, are excited by pressure spectral level ranging from 70 

to 130 dB. The beams have the following properties (note that 

the lamination sequence is unsymmetrical) 

Longitudinal stiffness modulus 

Transverse stiffness modulus 

In-plane shear modulus 

Major Poisson's ratio 

Damping coefficient 

Mass density 

Total thickness 

Width 

Length 

Number of layers 

Thickness of a layer 

Lay-up sequence 

Ex = 1 0 . 5 x l 0 6 p s i 

E2 = 2 . 6 2 5 x l 0 6 p s i 

G12 = 1 . 3 1 2 5 x l 0 6 p s i 

V12 = 0 . 2 5 

4 = 0 .01 

lb • sec2 

p = 2.588x10" 
in 

h = 0 .060 i n 

b = 2 i n 

L = 12 i n 

n = 4 

t = 0 .015 i n 

[ 4 5 0 / - 4 5 ° / 4 5 0 / - 4 5 ° ] 



5.2.2 Solution. 

As in Section 5.1.2, the solution process begins by 

calculating beam properties. These are determined using 

Equations (4.21) through (4.25) for the simply-supported 

beam, Equations (4.31) through (4.34) for the clamped-clamped 

beam, and Equations (4.50) through (4.54) for the cantilever 

beam. 

Simply-supported beam: 

Natural frequency, ©0 = 160.5 Hz 

Coefficient a = 0 

Coefficient p = 6778.4 

Moment of inertia, I = 0.000036 in4 

Area, A = 0.12 in2 

R a d i u s of G y r a t i o n , R = 1 .732xl0"2 

Mass, m = 1 .614xl0" 6 

Clamped-clamped beam: 

Natural frequency, co0 = 370.6 Hz 

Coefficient a = 0 

Coefficient p = 36151 

Mass, ai = 4.841xl0"6 



Cantilever beam: 

Natural frequency, ©0 = 31.1 Hz 

Coefficient a = 0 

Coefficient p = 101615 

Mass, m = 7.319xl0"7 

These constants are used with Equation (4.67) to generate 

Figures 17, 18, and 19. Note that Equation (4.67) is plotted 

against results from linear analysis, Runge-Kutta analysis, 

and a curve, based on a best fit correlation of the Runge-

Kutta analysis. 
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Random Response of a Simply-Supported 
Laminated Angle-Ply Beam 

10 

m 
0.1 

0.01 

70 80 90 100 110 120 130 

Spectrum Sound Level (dB) 

Figure 17. Comparison of E[q2] obtained by different methods 
for a 12x2x0.060 inch simply-supported angle-ply beam. 
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Random Response of a Clamped-Clamped 
Laminated Angle-Ply Beam 

1 . 

01 -

Ml1} 

0 01 . 

0.001 . 

t$ 

^ ^ ^ B KKSfe^iiSSSSSSffiaBSiKSi^SM^^SSSgggg^ ^ ^ H 

$ 

*)VSr 

'Sr 

< 

• t*fo^ 

ir 

$j 

A 
/ IS 

/ 4jSj_P 

+ Runge-Kutta 

—0—Nonlinear 

Curve Fitted 

Linear 

/ 
/ / / 

70 80 90 100 110 120 130 

Spectrum Sound Level (dB) 

140 

Figure 18. Comparison of E[q2] obtained by different methods 
for a 12x2x0.060 inch clamped-clamped angle-ply beam. 
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Random Response of a Cantilever Laminated 
Angle-Ply Beam 

100 

m 

0.1 

+ Runge-Kutta 

-0—Nonlinear 

Curve Fitted 

Linear 

70 80 90 100 110 120 130 

Spectrum Sound Level (dB) 

Figure 19. Comparison of E[q2] obtained by different methods 
for a 12x2x0.060 inch cantilever angle-ply beam. 



5.3 Problem 3: White Noise Exciting a Cross-Ply Beam. 

5.3.1 Statement of Problem. 

This problem is identical to Problem 2, except the 

lamination lay-up sequence is that of a cross-ply. In other 

words, the only difference is 

Lay-up sequence [0°/90o/0°/90o] 

5.3.2 Solution. 

The solution process, also, is identical to the one in 

Sections 5.1.2 and 5.2.2. The resulting properties turned out 

to be as follows. 

Simply-supported beam: 

Natural frequency, ffl0 = 184.0 Hz 

Coefficient a = -6004.4 

Coefficient P = 9075.7 

Moment of inertia, I = 0.000036 in4 

Area, A = 0.12 in2 

Radius of Gyrat ion, R = 1.732xl0"2 

Mass, m = 1.614xl0 -6 



Clamped-clamped beam: 

Natural frequency, co0 = 424.9 Hz 

Coefficient a = 0 

Coefficient p = 48404 

Mass, m = 4.841xl0~6 

Cantilever beam: 

Natural frequency, co0 = 35.7 Hz 

Coefficient a = 1.237xl0~12 

Coefficient p = 136054 

Mass, m = 7.319xl0"7 

These constants are used with Equation (4.67) to generate 

Figures 20, 21, and 22. Note that Equation (4.67) is plotted 

against results from linear analysis, Runge-Kutta analysis, 

and a curve, based on a best fit correlation of the Runge-

Kutta analysis. 
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Random Response of a Simply-Supported 
Laminated Cross-Ply 

Figure 20. Comparison of E[q2] obtained by different methods 
for a 12x2x0.060 inch simply-supported cross-ply beam. 
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Random Response of a Clamped-Clamped 
Laminated Cross-Ply 
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Figure 21. Comparison of E[q2] obtained by different methods 
for a 12x2x0.060 inch clamped-clamped cross-ply beam. 



1 

Random Response of a Cantilever 
Laminated Cross-Ply 
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Figure 22. Comparison of E[q2] obtained by different methods 
for a 12x2x0.060 inch cantilever cross-ply beam. 
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5.4 Comparison of Numerical and Analytical Solutions. 

It can be seen that the analytical solution of the 

Duffing equation (Equation (4.67) does not contain the 

coefficient a. Thus, it is of importance to consider the 

effects that the coefficient a has on its solution. The 

application of the Runge-Kutta method enables such a 

comparison. Figure 23 shows two kinds of differences plotted 

versus SSL in dB. The first one is the average difference 

which is determined as follows. The average RMS at a given 

SSL obtained from the Runge-Kutta analysis is determined by 

writing 

(BMSAVERAGE)SSL =—U«MS,)aL ( 5 . 3 ) 
"SSL '=1 

where nSsL is the number of datapoints retrieved from the 

Runge-Kutta analysis. The average difference at this SSL is 

therefore 

(DijfAVERAGE)SSL = (BMSAVERAGE)SSL ~ (BMSANALYTICAL)SSL ( 5 • 4) 

where [RMSJHALYTICAL) is t h e R M S obtained from Equation (4.67) 

at that particular SSL. The second difference is determined 
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by using a least-square curve-fit13 that goes through the 

entire data domain. This curve-fit difference is determined 

as follows 

\DijfCURVE-FIT)SSL = {BMSCURVE_FIT)SSL - (RMSJHMYTJCM)^ ( 5 . 5 ) 

The effects of not having the coefficient a in Equation 

(4.67) are clearly significant from this analysis and are 

discussed in further detail in Chapter 6. 

13 The curve-fit equation is selected from a set of several 

equations; a polynomial, a hyperbolic, semilogarithmic, or 

logarithmic. The one that yielded the best correlation with 

the data domain from the Runge-Kutta analysis was selected. 

These equations appear in Appendix L. 

file:///Dijf
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Difference in Random Responses of a Simply-
Supported Cross-Ply using Analytical and 

Numerical Methods 

1.40 

1.20 

1.00 

0.80 

0.60 
Difference in 

0.20 

0.00 

-0.20 

-0.40 

-0.60 

Spectrum Sound Level (dB) 

Figure 23. Difference between the random responses of a 
simply-supported 12x2x0.06 inch 4-layer cross-ply, using the 
analytical method (with a = 0) and Runge-Kutta numerical 

scheme (with a * 0). 
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5.5 Response Map for an Angle-Ply 

Figure 24 shows a random response map for the simply-

supported angle-ply of Section 5.2. It is generated by 

considering a range of angles, through which the lay-up 

sequence changes, on which a range of pressure spectral 

densities impinge. The advantage of the map is the immediate 

identification of the lay-up techninque for the lowest 

response (or minimum fatigue). 

Figure 25 shows a two dimensional representation of the 

response map at the point where SSL = 100 dB. It can also be 

thought of as a two dimensional plane cutting through the 

response map. 
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Response Map for a Simply-Supported Angle-
Ply versus Lay-up Angles and SSL 

Laminate Lay-up Angle (°) 
Spectrum Sound 

90 Level (dB) 

Figure 24. Random response map for a simply-supported 
12x2x0.06 inch 4-layer angle-ply. 
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Random Response of a Simply- Supported Angle-Ply 
with respect to Angle Orientation at SSL=l00dB 
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0.9 

0.8 

0.7 

0.6 

0.5 

0.3 

0.2 

0.1 

0.0 

10 30 50 70 90 

Angle of Orientation (°) 

Figure 25. Random response behavior versus angle of 
orientation of laminate fibers for a simply-supported 

12x2x0.06 inch 4-layer angle-ply. 



CHAPTER 6 

CONCLUSION 

6.1 Concluding Remarks. 

In this thesis it was shown how the theory of elasticity 

can be used in the analysis of randomly excited composite 

beams. The most important result is the achievement of a 

single generic equation yielding the mean-square deflection. 

This is a considerable simpler approach than Mei and Prasad's 

[44], but their method required a numerical iteration scheme, 

most practically implemented with a computer. Equation (4.67) 

in this thesis, on the other hand, accepts any kind of 

lamination lay-up, unsymmetrically or symmetrically laminated 

or even isotropic. Additionally, it was found that for an 

unsymmetrical angle-ply, an increase in angle of orientation 

results in an increase in random response (i.e. a smaller 

angle yields a stiffer beam - see Figure 21). 
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6.2 Accuracy and Limitations of the Results. 

It must be kept in mind that the results of the 

nonlinear analysis of laminated beams are original, and 

consequently cannot be compared to existing research. 

However, previous research on isotropic materials (Seide [45] 

and Mei/Prasad [44]) is in good agreement with the results 

presented herein. That lends at least some support to the 

results for laminated beams. 

One way of gaining further support is to compare two 

different approaches, as was implemented in the thesis. To 

make a reasonable comparison of the numerical solution of the 

Duffing equation to that of the analytical solution, one must 

make a reference to Figures 13 through 20. The similarity in 

trends and propinquity of values is very evident. 

Nevertheless, these are two different solutions, one 

incorporating a nonzero a (Runge-Kutta solution), the other 

neglecting the effects of a (analytical). The analytical 

solution, although presenting an interesting simplicity in 

use, suffers from the fact that a criteria including the 

coefficient a was not found. This results in a difference 

between the two solution techniques that implies that a 

correction function should be included with Equation (4.67). 

Thus, a more appropriate expression should be 
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^i=-4+i£iT+—+c (6.D 
F 1 6P |̂UpV 3P̂  

where C is the correction function and would ideally be 

dependent upon both a and SSL. The dependency upon a could be 

implicit in that the coefficient a depends on the angle of 

orientation of the laminate. Thus, the correction could be 

formulated by considering the coordinate axes of the response 

map of Figure 21 and as such can be considered a three 

dimensional surface. To obtain the function is not a straight 

forward derivation, although quite possible. However, it 

requires a large number of data points from the Runge-Kutta 

analysis and a criteria that minimizes error, such as a 

least-squares analysis. 

6.3 Recommendations. 

An important area of future improvements is the search 

for a criteria that incorporates the coefficient a in 

Equation (4.67). The effects of a two mode solution is an 

area that should be studied as well, although, Prasad [44] 

showed limited effects of such a solution technique on the 

random response of an isotropic beam. Furthermore, thermal 

and hygrothermal effects call for some attention. 
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Appendix A 

Properties of Normal Processes in Random Analysis 

In general, a normal (or a Gaussian) distribution is given with 

P00 = 
a-j2n 

exp 
2o2 

(A.1) 

where m is the mean of the distribution and s is the standard deviation of the distribution. If the mean is 
zero, i.e. m = 0, then equation (A. 1) becomes 

Pix) = 
1 

Jyf2n 
exp 

2a2 

(A.2) 

The general mathematical expectation of a value x to the power n is given by 

E[x"] = f x"p(x)dx 
(A.3) 

By inserting equation (A.2) into (A.3) for several values of n, and performing the integeration, leads to the 
following relationships 

E[xx] = 0 

E[xxx2] = 0 if xx * x2 

E[xxx2x3] = 0 
E[xxx2x3x4] = £[X,X2]£[JC3X:4] + £ [X 2 X,]£[XJX 4 ] + £[x,x3]£[x2x4] 

.£[*:, ̂ JCjO^Xj] = 0 

E[xx] = E[x2] * 0 

E[x3] = J °x3p(x)dx = 0 
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In general 

E[x4] = fx4
P(x)dx = 1-3. (E[x2])2 = 3(E[xx

2])2 

E[x5] = fx5p(x)dx = 0 

E[x6] = j'x6p(x)dx = 1 • 3 • 5 • (E[XX
2*§ = 15(£[*2])3 

E[x1]=\x7p(x)dx^0 

E[x*] = rx
sp(x)dx = 1 • 3 • 5 • 7 • (£[*i2])4 = 105(^[JC?D'* 

£[*'] = p9/Kx>fe = 0 

E[x10] = p°p(x)dx = 1 3 • 5 • 7 • 9 • (£[x2])5 = 945(£[x2])5 

fO ifnisodd 

V"/2 
4 x " ] - |p -p ( j c ) £ f c = 1.3.5...<»-l).(4xI

2])" ifniseven 



Appendix B 

Derivation of the General Governing Equations of 
Motion for Unsymmetrically Laminated Plates 

B.l Equations of Motion in Terms of Stress Components 
Consider the elemental cube of Figure B.l, which represents the kth layer of a laminate. A right-

handed Cartesian coordinate system is used and is oriented such that the z-direction points downward. 
Then, normal and shear stresses in any of the three directions are analyzed as follows. 

-r -1- a V j 

V + ~dTdz 
dXzy 

V + dz dz 

'yx 

dx 

Xy; Xxz+ dx <** 

dz 

Figure B. 1 The state of stress on a cube. 

B.1.1 Stresses in the x-Directton: 
According to Figure B. 1, the stress components in the x-direction add up as follows 

->2]F , = max = (pdV)-rr = pdxdydz 
dt2 

or 

123 



124 

-a*+|0*+M,fc 
dx 

dydz + -< + \< + ^dz 

-v + 

dxcfy + 

f A,* 
T„ + -

<5y 
</y dxdz = P

kdxdydz^ 

which reduces to 

/ V T * A T * A T * a2 

—^dxdydz + —^dxdydz + -^dxdydz = pkdxdydz^4 
dx dz dy * dt1 (B.l) 

Then, dividing through Equation (B.l) by dxdydz yields the equation of motion in terms of stresses in the 
x-direction 

+ — ^ + — - = p —T-
dx dy dz dt2 

(B.2) 

B.1.2 Stresses in the y-Direction: 

Again, mak ing a reference to Figure B . l , the stress componenets in the ^-direction are added up 
similarly, yielding the equation of motion in terms of stresses in the ^-direction 

dxk da" 
y* ! dt* 

dx dy 
>L + l^- = p* 

dz 

d2v 

dt2 
(B.3) 

B.1.3 Stresses in the z-Direction: 

The stresses in the z-direction is a little 
more involved. Figure B.2 depicts how only the 
stress components acting in the x-direction are 
considered. The resultant force acting in the z-
direction due to ax alone is: 

p=i 

Figure B.2 

p+t£* 

W.. = cZ+—-dx 
dx 

dydz 
dw d2w , 
— + —Tdx 
dx dx2 \ck

xdydz) 
dw 

~dx~ 

datdw kd
2w dax d2w 

H CT_ r - H T-CtX 

dx dx dx2 dx dx2 
dxdydz 

The term —£. dx can be neglected, since it is a higher order term. This leads to 
dx dx2 

(FJ = ±Lk^)dxdydz 
K *'"* dx\ dx) 

(B.4) 
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According to Figure B.3, the resultant force acting in the z-direction 
due to x xz alone is 

(FXm = 
a_ k 

Tl +—z-dz 
dz 

dxdy 
dw d2w J 

—- + dz 
dx dxdz 

\<dxdy)— P = S r^dz 

dx^ dw k d2w dxk d2w J 
——— + t„ + —=- dz 
dz dx dxdz dz dxdz 

dxdydz 

dz 

Figure B.3 

0+g* 

Similarly, this leads to 

(^-K-'-f)*** (B.5) 

The resultant force acting in the z-direction due to T™ alone is (see Figure B.4) 

<r-K -

which becomes 

dy 
dxdz 

~dxk dw k d2w 

——— + Tl 
dy dx v dydx 

dw d2w , 
— + dy 
dx dydx 
. K S2w ^ 

-{<dxdy) 

dy dydx 

tdw 

Ik 

<'•>*-!(<£>** 

P + §dy v g " * 

Figure B.4 

(B.6) 

Considering stress components acting in the ^-direction only. The resultant force acting in the z-direction 
duetooy alone is 

«).. -I 
r *...> 

kdw 
'> dy\ dy) 

dxdydz 

dxdydz 

(B.7) 

(B.8) 

(B.9) 

Finally, consider stress components acting in the z-direction only. The resultant force acting in the z-
direction due to Gy, xxz, and TyZ alone is 

/ ' a . * &1 &* &J *> 
. + _2L + . 

dx dy dz 
dxdydz (B.10) 

The sum of all the forces must equal the mass times acceleration, or 

YtFz=mat=m-^r 
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Therefore, the addition of the results from equations (B.4) through (B.IO) yields the equation of motion in 
the z-direction 

d ( k k&w k dw — x +a — + x — 
dx{ " x dx ^ dy 

where «, v, w are displacements in the x, y, and z directions, respectively and t = time. 

(B.ll) 

B.2 The Governing Equations of Motion 
Equations (B.2), (B.3) and (B.ll) are the equations of motions in terms of the stress componenets 

in the &"1 layer lamina of a laminate. These equations can be expressed in terms of the resultant forces, 
transverse shear resultants, and resultant bending moments. Integrating equation (B.2) with respect to z 
over the thickness, h, of the laminate, yields 

r 2 fa* J r 2 <*» ., r'2 otz, . r / 2 * sru . 
— x-dz+\ -^dz + l —*-dz = \ p0—rdz 

J-A/2 dx J-h/2 dy J-h/2 dz J-A/2 dx 

(B.12) 

The definition of the resultant force matrix is given by 

[N} = Ny 

N„ 

(•A/2 f A/2 

A/2 
dz (B.13) 

Interchanging the order of differentiation and integration, and by using (B.13) yields a new expression of 
equation (B. 12) 

dNx {dN^_ d \ 

dx dy dt2 

where p stands for the average mass density of the laminate, and is defined by 

•A/2 

(B.14) 

f*/z . 
= [ Podz 

J-h/2 

(B.15) 
-A/2 

Similarly, integrating equation (B.3) yields the following equation 

dx dy dt2 

Finally, integrating equation (B. 11) with respect to z yields 

(B.16) 
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Ar dfw d2w Ar d2w dQ dQ 

dxdy y dy2 dx dy 

MdNx | dNv\ | dwfdNv &f\ d2w 
dx{ dx + dy J + dy{ dx + dy J + P dt2 

(B.17) 

where P is the distributed transverse loading, or in general, it is the sum of the external forces and is 
defined by 

n k\h/2 

P = o\ 
'\-kft 

(B.18) 

In most engineering applications of thin plates, the inplane load inertia effects d2un d2vn 
can dt2 ' dt2 

be neglected because the motion of the plates is predominantly transverse. Under this condition, equations 
(B.14), (B.16), and (B.17) become 

SN, dN 

dx dy 
dN„ dN, 

= 0 

^ + —^ = 0 

,T d2w _ . . 
Nr — - + 2N_ 

dx dy 

d2w M d2w dQx dQ „ ., 
+ #„ 

* dx2 "dxdy " dy2 dx dy 

By definition, the resultant moment can be writen in a matrix form as follows 

dt2 

(B.19) 

(B.20) 

(B.21) 

[M] = 
r^o 

My 

lM>?\ 

(•A/2 

J-h/2 

cr 

ay 

LxJ 
zdz (B.22) 

Then, multiply both sides of equation (B.2) by z and integrate the resulting equation with respect to z over 
the thickness of the plate, and use equation (B.22) to obtain 

dMr dM„ r A/2 dx 
+ — 5 1 + f'2 ™xz J f 

— ^ d z = 
J-h/2 dz J-

1,12 k S2u . 

dx dy J-M2 dz J-h/2 dt 

After some algebraic manipulations, equation (B.23) becomes 

(B.23) 

SAT SM„ 

dx dy -a=o (B.24) 

The integration on the right-hand side of equation (B.23) vanishes due to the fact that it leads to a rotary 
inertia term. Similar operations with equation (B.3) yields 

dM_, dM., -*y , ~" y 

dx dy 
Qy=o (B.25) 

file://'/-kft
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Differentiating equations (B.24) and (B.25) with respect to x andy respectively, yields 

dQx_ = ̂ K+^M^ 9J26) 

dx dx2 dxdy 

*L.*>L.+ *>L. OUT) 
dy dx2 dxdy 

Finally, substituing these equations in equation (B.22) results in 

&K ^M>y d'My „ d2w .__ d2w __ cfw _ 52w , R 

^- + 2 - + vL + Nx—- + 2N3a, + NV—-+P = p—- (B.28) 
dx2 dxdy dy2 x dx2 '"dxdy y dy2 V dt2 

Equations (B.19), (B.20), and (B.28) represent the governing the equations of motion for laminated thin 
plates, and they have the same form of those of classical homogeneous, and isotropic plate theory, note that 
cenerally when these are applied to beams, the density, p, is in N secVm4 or lbf secVin4, so equation (B.28) 
is rewritten as follows 

d2Mx -&M d2My d2w . . . d2w „ d2w ,d2w m 9 g . 
ir- + 2 — + rL + NI—- + 2N„ + NV—T + P = ph—T (B.29) 

dx2 dxdy dy2 z dx2 v dxdy ' dy2 K dt2 



Appendix C 

Derivation of the General Equation of Motion for an 
Unsymmetrically Laminated Beam 

C.l The Nonlinear Equation 
The governing equations, which are given by (3.14), (3.15), and (3.16), yield the equations of motion 

for a beam. The first step in deriving the equation of motion is to determine selected terms of Equation (3.16) 
using Equations (3.14) and (3.15). This is done as follows 

From Equation (3.16) 

From Equation (3.5) 

From Equation (3.7) 

From Equation (3.8) 

dx2 

dx 

dx 

= 0 

• = A; 

N„ = Constant 

— — = A 
dx Al6 

a 2 

a u0 
dx2 

a 2 

d «0 

Lac2 

a2 
0 w dw 

dx 

d w dw 
+ dx2 dx_ 

+ A 16 

52v0 d3w 
- T - ^ — 

dx 

= B, 

B, 

a 3 

a «n 

a 2 

a un 
d w dw 

+ A 66 

a 2 

2 - i » 1 6 

dx dx 
2 dx 

+ Bt 16 

dx' 
a 2 

dx2 " 

a w dw 

dx dx 
3 dx 

a w 

dx* 
+ B 

a3 

d VQ 

16 dx3 

dx3 

d3w 

a c 7 

d3w 

dx3 

a4w 
£» 11 ac4 

(C.1) 

(C2) 

(C.3) 

(C.4) 

The occurrence of the midplane displacements u0 and v0 in the above equations requires their 
determination. This is done in the following manner. Begin by rewriting Equations (3.14) and (3.15) using the 
computed values in Equations (C.l) and (C.2) 

Rearranging the above equations yields 

A, 
a 2 

a «n 
dx 

2 +A16 

a 2 

a vn 
d3w a w dw 

dx 
2 =Bndx3~Audx2 & 

(C.5) 

a un 
M6 

dx 
2 + ^ 6 6 

a 2 

a Vn 
a3w 

dx 
2 = B16 dx3 

•-A 
a w dw 

16 ~dV^ 
(C.6) 

129 



130 

The above equations represent two linearly independent equations. Note that when solving two equations of 
the form 

the solution is given by 

x = 
BF-CE 
BD-AE 

Ax+By = C 

Dx + Ey = F 

and CD-AF 
y= BD-AE 

a2 

When this analogy (i.e. x is analogous to —j- and B is analogous toA16, etc) is used for equations (C.5) and 
dx 

(C.6), the result becomes 

d3w 

dx2 

and 

d2w dw 
dx2 dx 

•AjB, 
d3w 

-A, 
d2w dw] 

16 *.-2 ^ | " 6 6 | " 1 1 ^ 3 - U & 2 & J f 

A\6AX6 - AXXA^ 
A16B16 -A&Bn 

\ as 

V Ae -^n-^66 / 

d3w d2w dw 
dx3 dx2 dx 

d3w 

5V0 HBudx3-A» 
d w dw 

dx2 dx -Ax 
d3W 

Bl6dx3~Al6 

dX A6-^16 ^11 ̂ 66 

Rewriting this in a more compact form 

a3ve d2wdw 

d w dw 
HJS'dx) (AX6Bn-AxxBX6)d

3w 
dx3 

a 2 

a un 
dx 2 =Kxdx3dx2 * 
a 2 

d v0 

dx2 

d*w 
- = £ , 

dx3 

^16 - ^11-^66 

(C.7) 

(C.8) 

where 

and 

Kx = 

K2 = 

f \ 
^16^16 ~ ^ee^u 

< ^16 ^11^66 ' 

A(Pw - A\B\* 

V ^ 1 6 ~ A l ^ 6 6 / 

(C.9) 

(CIO) 

The stress resultant, Nx, is manipulated in a special way before it is used in Equation (3.16). This is 
done as follows. First integrate Equation (C.5) over the length, L, of the beam 

[L [Ldu0 Axx (Hdw)2 [Ldv0j (Ld2
w 

which becomes 
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^^Kw-oH^Kw-voH^f^j^-^f 
a 2 

a w 
dx' 

-dx (CM) 

The state of the midplane, which is represented by the terms [u0(L)-u0(0)] = 0 and [v0(Z,) - v0(0)] = 0, depends 
on the type of beam the equation of motion is being solved for. Therefore, the above equation will be left as 
this for now. Equations (C.7) and (C.8) must be differentiated before they can be inserted into Equation (C.4), 
which in turn, is used in Equation (3.16) 

a 3 
d*W 

( 

dx 
3 ~Kidx< 

3 w dw 

dx 
3 dx 

a w! 

dx' 

= K, 
d4w d3w dw (d2 

d \ 
dx3 

ldx4 dx3 & 

a4w 

v 
{dx ) 

••K. 2dx4 

(C.12) 

(C.13) 

The equation of motion was given by 

d2M_ a2 
8 W a 2 

a W 
d x 2 ' ^ ^ ^ - ^ 2 (3.16) 

Using the previously derived expressions, the equation of motion can now be rewritten as follows 

B n 
a «0 a w dw 

dx3 + dx3 dx' 

a w 

^dx 
+ B, 

a3 

a vn 
sS 

1 6 a * 3 " j D u 3 * 4 + 

Auf , A6I , Au[
L(dw\2 Bxx[

Ld2w )d2w 
-f-[«0(I)-Mo(0)]+^[v0(I)-v0(0)]+-^Jo |^J &--f.Jo p-^J^T-

a 2 

a w 
„2+p=Ph-rr 
dx dt 

Rearranging yields 

B, 
a 3 

a un -+B„ 
a 3 

a v„ -+B, 
d w dw 

• + Bt 

r.2 v a w 
11 a,3 , 6 a* 3 "a*3 & n i^ae2; 

-£>, 
a4w 

u"a7' 

' l , r , A 6 f , A. (L(dw)2 Bxl(
Ld2w )d2w 

-?\uo(L)-uo(0)}+-^[v0W-v0(0)]+-^Jo y A--f-Jo ^ A j p " 
a 2 
a Vf 

ac ar 

Inserting equations (C.7) and (C.8) into the above results and expanding, results in 
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a4w 
•-B, 

a w dw 
BuKldx4~"udx3 &""" 

-B, 
a w 

I, ax 2 ; 

^w d3wdw \d2w] d*w 
+ Bt*K,^T+Bt,^r-z- + Btl\^r\ -D„—7 + '16*2 & 4 ™ 1 1 & 3 ftc™.. 

k&* 
11 ax 4 

^[«o(I)-„0(0)]+%v0(L)-vo(0)]+^ffe)^-%f^ 
V o ^ ' o °* > 

a 2 

a w 
a 2 

a w 
, +P = ph—2-

dx2 dt2 

which simplifies to the general equation of motion for any beam in terms of deflection 

(BUKX+BX6K2-DXX)—+ 

'A\\\ i A\e\ i Axx [
L(dw\2 Bu [Ld2w )d2w 

-f-[«0(L)-«0(0)] + ^ [v o ( L)-v o ( 0)] + -^J o [ - J dx-^ -Tdxj— -

a 2 

a w 
2 + J > - p A — j - = 0 

a*2 a/2 

(C14) 

C.2 The Linear Solution 
Some steps leading to the linear equation of motion are presented here only for the purpose of 

comparison to the nonlinear case. As a start Equation (2.2) becomes 

Ny 

N*y 

M *y 

a12 

12 

16 

*12 

22 A. 

A\6 A2e 

B\\ B\2 

-"22 

B 26 

A 16 

*26 

A 66 

-"16 

B™ B. 26 

B, 66 

* 1 '12 

12 5. 22 

16 "26 

A l DX2 

12 

16 

22 

26 

16 

26 

J>1 

£>. 

D. 

16 

26 

66 

dx 
0 

ax 
a 2 

a w 

o 

(C.15) 

The expressions analogous to Equations (C.7) and (C.8) are 

a 2 

a M0 

ax2 

a 2 

a v0 

ax2 

a3w 

^ a x 3 

a3w 

(C.16) 

(C.17) 

where ATi and K2 are given also by Equations (C.9) and (CIO) . After applying similar process as before, the 

linear equation of motion for a simply supported beam becomes 

i \d*w Aux 
[BXXKX +BX6K2 -Dxx)—+\-f[u0(L) 

i 4«r i #ii fLa2w )d2w 

-«0(o)]+-f[voW-vo(Q)]—f J ~^dxhr 
a 2 

a w 
2 + J p = P / » — 

,ax 2 a 2 

(C.18) 



Appendix D 

A Unit Consistency Test 

The Duffing equations for the simply-supported, clamped-clamped, and cantilever cases are 
given by Equations (4.27), (4.36), and (4.56), respectively. In order to verify the correctness of these 
equations, a unit test can be applied, which shows if the equations are correctly dimensionalized. Here, the 
simply-supported case is used for demonstration purposes. The Duffing equation for this case is given by 

q + 2&0q+a>lq + aq2+pq3 = FQ- (4.27) 
m 

where the corresponding coefficients are given by 

<DJ=(A. "*..*. ~ * . A ) ^ - (4-21) 

t i? . . - - . 
o = 2B„ 7 (4.22) 

phL4 

P^n-^V (4.23) 
4 phL4 

F(r) = fL P(x,t)sin—dx (4.24) 

m ^ (4.25) 

The unit test is applied as follows 

<=(Dxx-BxxKx-BX6K2)-^ = (kg.m/s2) * =± 
phL v [kg/m HmHm I s 

K3R l i\ (m) 1 
UphL4 l }{kglm4){m){,n4) s2 

AphL 

J o L (kg/m4){m)(m)(my<m^2) s2 
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Appendix E 

Minimization of the Error of Linearization 

As stated in Chapter 4, page 76, it is seen that the linearized frequency, Q, introduces the 
nonlinear effects to the response. In order to mininmize the error that arises from the difference between 
the linearized Equation (4.57) and the original Equation (4.27), the conditions for the least error must be 
determined. A necessary condition that includes the effects of both a and p and minimizes the error has 
not been determined yet. Generally, the error is minimized with respect to O2 (note that minimizing the 
error with respect to <o0 -Q2 yields the same condition), or 

£[err2]=0 (E.l) 
an2 

Inserting Equation (4.58) into (E. 1) results in 

a r , i a 

aa2 L ' da" 

2 61 

E\err2\ =—£ ( R -tf)q + aq2 +P?3) 

which expanded gives 

E[err2]=—2E[q2m4
0 -2q2m2

0Q
2 + 2q3a>2

0a + 2q4(o2
QP + q2Q4 -2q3ti2a-2q4n2p + a.2q4 +2ap-qS + $2q 

^E[q2\w4
0-2E[q2\<o2

0Q
2 +2E[q3\(O2

0a+2E[q4]m2
0^+ E[q2]Q4 

-2£ ,[^3]Q2a-2£ ,[?
4]Q2p+a2£ ,[/]+2aP£'[?5] + p2£,[c76]| 

which becomes 

a 

da2 l ' da 

da2 

da2 
E[err2\=-4E[q2yia + 4E\q2\Q3-4E\q3\Q.a.-4E[q4\Q^ 

= -E[q2yo +E[q2]Q2 -E[q3]a-E[q4]p-

= E[q2\(D2
0-E[q2]Q2+E[q3]a. + E[q4\p = 0 

Consequently, there is a relationship between the equivalent linear frequency and the mean-square 
displacement as follows, were the properties of a Gaussian distribution are employed (see appendix A) 

or 

Q242]=co2^2] + p{3(£[,2])2 

Q2=co2+3p£'[?
2] (E.2) 

Consequently, replacing the pertinent terms in Equation (4.61) results in 
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r 21 & s 
E[ql^=^l^E[q2]} 

Manipulating this yields the below quadratic equation 

3p(£ [ f 7
2 ] ) 2

+ o) 2 £[ ?
2 ] - | = 0 

(E.3) 

(E.4) 

whose solution is 

or 

2 . 4 

M-
-Cd0 ±,|<D :-4(3p(-f) 

03 

2(3P) 6p 6p 
12 fs 

36P 

Vh-w 
( 2\2 

^ , m (E.5) 
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