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ABSTRACT 

Author: Monica M. Londono 

Title: Determination of stability and control derivatives 

for a modern light composite twin engine airplane 

Institution: Embry-Riddle Aeronautical University 

Degree: Master of Science in Aerospace Engineering 

Year: 2009 

To develop and compare full envelope stability and control derivatives and their 

associated errors for a modern light composite twin engine airplane from flight test data 

and digital DATCOM (Data Compendium). This development is to serve three purposes 

1) to provide data for validation of newer analytical techniques such as Computational 

Fluid Dynamics (CFD), 2) to provide public domain static and dynamic stability and 

control derivatives for a modern twin engine airplane, 3) to analyze the relationship 

between test design and error for both output error and equation error methods. 

A flight test program was conducted on a Diamond Twin Star DA42 with Thielert 

engines and on a DA42 with Lycoming engines by Embry-Riddle Aeronautical 

University. For the theoretical verification the equation error and output error methods in 

both time and frequency domain within System Identification Programs for AirCraft 

(SIDPAC), were used. The DATCOM analysis was based on airplane drawings and 

direct measurement on the DA42 airframe. The results for both methods and error 

associated with SIDPAC were compared to Digital DATCOM results. 
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NOMENCLATURE 

a 
P 
8a 
8e 
6r 

X 
• , e , v | / 
ax> Sy, a z 

b 
c 
CL 
CI 
Cm 
Cn 
CX 
CY 
CZ 
g 
lxx> lyy> tzz 

Axy5 lxz> tyz 

M,L,N 
m 
p > q > r 
PPT 
q 
s 
T 
u, V, w 
V 
X,Y,Z 
xcg 

Xref 

Notation: 

Angle of attack 
Angle of sideslip 
Aileron deflection 
Elevator deflection 
Rudder deflection 
Scale factor error on measured parameter 
Roll, pitch and heading Euler angles 
Components of linear acceleration along the x, y, z body reference axes 
Bias error on measured parameter 
Mean Aerodynamic Chord 
Lift force coefficient 
Rolling moment coefficient 
Pitching moment coefficient 
Yawing moment coefficient 
Force along the x body reference axis 
Force along the y body reference axis 
Force along the z body reference axis 
Acceleration due to gravity 
Moment of inertias about the x, y, z body reference axes 
Products of inertia 
Moments about the x, y, z body reference axes 
Aircraft mass 
Components of angular velocity about the x, y, z body reference axes 
Precision Pressure Transducer 
Dynamic pressure 
Reference wing area 
Aircraft thrust 
Components of linear velocity along the x, y, z body reference axes 
True airspeed 
Forces along the x, y, z body reference axes 
Aircraft center of gravity longitudinal location 
Aircraft reference center longitudinal location 

First derivative with respect to time 
Non-dimensional angular rates 

Subscripts used with coefficients: 

a Derivative with respect to alpha 
(3 Derivative with respect to beta 
8a Derivative with respect to ailerons 
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Derivative with respect to elevator 
Derivative with respect to rudder 
Moment about the center of gravity 
Derivative with respect to roll rate 
Derivative with respect to pitch rate 
Derivative with respect to yaw rate 
Moment about a reference location 
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1. INTRODUCTION 

The proposed thesis topic is to develop and compare a full envelope stability and control 

derivatives and their associated errors for a modern light composite twin engine airplane 

from flight test data and digital DATCOM (Data Compendium). For the theoretical 

verification methods the MATLAB based software System Identification Programs for 

AirCraft (SIDPAC) was used. The methods used include equation error and output error 

in time and frequency domain. The flight test data is based on two flight test projects 

conducted by Embry-Riddle Aeronautical University. The first project took place on Fall 

2007 and involved a DA42 with Thielert engines. In Spring of 2009, the newer version of 

the DA42 was tested. In this version, the Thielert engines were replaced with Lycoming 

engines. 

For the digital DATCOM analysis the drawings and information in the airplane flight 

manual (AFM) and the maintenance manual (AMM) were used. In addition, some direct 

measurements on the airplane were done to gather information on the wing, horizontal 

and vertical tail airfoils. For the comparison the input file for digital DATCOM was set to 

match the flight conditions flown during the flight test program for the DA42TDI. 

The development of this thesis is to serve three purposes 1) to provide data for validation 

of newer analytical techniques such as Computational Fluid Dynamics (CFD), 2) to 

provide public domain static and dynamic stability and control derivatives for a modern 

twin engine airplane, 3) to analyze the relationship between test design and error for both 

output error and equation error methods. 
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1.1 PID Background 

System identification is based on the development of mathematical models that explain a 

system based on imperfect observations of its behavior. A widely accepted definition is 

the one given by Zadeh: 

"System identification is the determination on the basis of observation of input and 

output, of a system within a specified class of systems to which a system under test is 

equivalent" ' 

The main objective is to create a mathematical model that represents the systems 

accurately. A very important application of system identification is the estimation of the 

stability and control derivatives for aircraft. 

Usually the dynamics of an aircraft can be explained using models with known structures, 

making the main goal of system identification the estimation of the parameters within the 

model. For this reason, system identification for aircraft is commonly known as 

parameter identification (PID). 

1.1.1 SIDPAC Background 

SIDPAC is a collection of MATLAB files developed by Dr. Eugene Morelli at NASA 

Langley in 1992. This software has been used to analyze flight test, wind-tunnel and 

simulation data. Some of the functions included in SIDPAC involve algorithms for data 

compatibility, model structure determination, and parameter identification methods on 

both time and frequency domain. 
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1.1.2 Digital DATCOM Background 

Digital DATCOM is a computer program based on the USAF Stability and Control 

DATCOM. This program calculates airplane stability and control derivatives at different 

flight conditions. To estimate the derivatives digital DATCOM requires the user to input 

a flight condition and geometric characteristics of the aircraft. 

1.2 Airplane Information 

The following are general characteristics of the Twin Star DA42 airplane: 

• Mean Aerodynamic chord: 4.167 ft 

• Wing Span: 44ft 

• Wing Area: 175.3 ft2 

• Aspect Ratio: 11.06 

• Empty Weight: 2,804 lbs 

• Max. Take-off Weight: 3,935 lbs 

• Airframe : Carbon Composite 

The aircraft used for the DA42TDI flight test program was: 

Airframe: 

• Manufacturer: Diamond Aircraft Industries GmbH 

• Model: Twin Star DA-42, A57CE 

• Serial Number: 42.213 

Engines: 

• Manufacturer: Thielert 

• Model: TAE 125-01, E00069EN 

• Left Serial Number: 02-01 -1082 
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• Right Serial Number: 02-01 -1084 

Propellers: 

• Manufacturer: MT Propeller Co. 

• Model: MTV-6-A-C-F/CF187-129, P19NE 

• Left Serial Number: 06925 

• Right Serial Number: 06926 

The aircraft used for the DA42L360 flight test program was: 

Airframe: 

• Manufacturer: Diamond Aircraft Industries GmbH 

• Model: Twin Star DA-42L360 

• Serial Number: 42.AC 132 

Engines: 

• Manufacturer: Lycoming Engines 

• Model: Lycoming L/IO-360-M1A 

Propellers: 

• Manufacturer: MT Propeller Co. 

• Model: MTV-12-B-C-F/CF(L)183-59b 

16 



1.3 Sign Convention 

The figure below illustrates the sign convention used in the flight test program and in this 

study. It is such that positive surface deflections yield negative aerodynamic moments. 

All the flight test measurements are in a body axis. 

Figure 1 Control Surface Sign Convention 

Figure 2 Airplane Notation and Sign Convention 
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1.4 Literature Review 

1.4.1 PID methods 

A wide variety of PID methods exist. Three of the most common are: equation error, 

output error and filter error. The main differences between these methods are the 

assumptions that simplify each of them. The filter error is the most general but it is rarely 

use in practice due to its complexity. Equation error and output error are widely used in 

the aerospace industry. 

1.4.2 Equation error 

Equation error is known for its simplicity, it uses the least squares method to minimize 

the error in a given equation. It is also known as linear regression analysis, since it is 

modeling the relationship between the measured variables. 

The first step when using this method is to determine the model or equation. The 

following example shows a possible model for the pitching moment coefficient. 

Cm = Cmaa + Cm^q + CmSeSe + Cm0 + v (1) 

In this equation Cm is the dependent variable, also called the output; a, q and 8e are the 

independent variables, also called regressors. The variable Crrio is the model bias of the 

dependent variable, and it usually represents the trim value. The random error in the 

equation is represented by the variable v. Finally, Cma, Cniq and Cm§e are the parameters 

of the model, also known as the stability and control derivatives for the pitching moment 

coefficient. The objective of the PID analysis is to find estimates for those parameters. It 

is important to notice the output is linear with respect to the parameters. 

The equation error method calculates values for the parameters by minimizing the cost 

function of the equation and the results can be obtained by applying matrix algebra 

18 



operations in a one step computational procedure2. This method is very practical because 

it finds an estimate for the parameters without need for iterations. 

The simplicity of this method is due to several important assumptions. It is very 

important when analyzing data to take into account these assumptions since they can 

affect the results. The main assumptions are: 

• All states and state derivatives are measured directly 

• The independent variables are measured without error 

• The dependent variable is measured with uniformly distributed noise 

• The residuals are assumed to be white 

To account for the last two assumptions the error can be corrected for colored residuals. 

In reality the errors on the independent variables are never zero. This is one of the biggest 

disadvantages of this method. The error within the independent variables can yield biased 

estimation of the parameters". To counteract this assumption the data can be pre-

processed before applying the equation error technique. Some of the pre-processing 

involves smoothing the data and kinematic compatibility analysis. 

In addition, from equation (1) it is noticed that the data points required to obtain an 

answer will depend on the number of regressors if v is assumed to be zero. However, on 

practical problems v is never zero requiring more data points. As a result, it becomes an 

over-determined problem to average out the noise effects on the parameter estimation. 

More data points are beneficial to average out the noise which improves parameter 

estimation results . 

This method is characterized by its simplicity and the possibility of analyzing each force 

and moment coefficient individually. These facts make the equation error method very 

useful in the model structure determination and to obtain initial estimates for the 

derivatives. 

19 



1.4.3 Output error 

The output error is a maximum likelihood estimation method with some restrictions. The 

output error parameter estimation is done by minimizing the weighted sum squared errors 

for several outputs at once2, becoming an iterative process. Some of the assumptions for 

the output error method are: 

• There is no process noise in the equations 

• The control variables are measured without error 

• The residuals are uncorrelated 

The first assumption is usually not a critical one. Process noise generally accounts for 

atmospheric turbulence, pilot neuromuscular noise and control input noise . Almost all 

flight test programs try to minimize process noise by flight testing in a very calm 

atmosphere. 

The output error method usually uses the equations of motion so that the lateral or 

longitudinal model parameters are estimated together. The following example illustrates a 

case for a longitudinal PID analysis: 

w -u — u-w 
& = ~r^> ^ ~ + biasa (2) 

6 = qcos((p) — rsin(cf)) + biasg (3) 

<7 = 
\ \ lyy 

+ bias, q 
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q-S-CZ 
+ biasa (5) m 

Where, 

qS x T 
ii = rv-qw + — CX + a • sin(9) + — (6) 

m m 

qS 
w = qu-pv + — CZ + g • cos(0) sin(0) (7) 

m 

ma7 — T 
CX = z_ (8) 

qS 

Cm = Cmaa + Cm^q + Cmge8e (9) 

CZ = CZaa + CZrf + CZSe8e (10) 

The state equations (2), (3) and (4) are integrated and the solution for the parameter is 

found by an iterative nonlinear optimization. As a consequence, the output error can be 

used in nonlinear problems. 

The iterative nature of the output error process can encounter some problems that might 

result in the method diverging, without being able to find a solution for the parameters. 

Some of these problems could be caused by: 

• Having too many parameters and data with not enough useful content. This 

problem is known as over-parameterization. 

• Having two or more parameters-regressors that cause almost the same effects on 

the model. This problem can be avoided by checking the collinearity between the 

regressors before applying the PID method. 

• Not having enough movement on the outputs 
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The output method is a very powerful method that has been used in many different 

programs in the aerospace industry. For final results, engineers usually prefer to use the 

output error method over the equation error method since it produces more accurate 

results. 

1.4.4 Data compatibility 

For parameter identification the quality of the data measured is critical in order to create 

an accurate mathematical model that describes the system. The data required for the 

parameter identification process depends on the method used and the application. Some 

of the most common required parameters for aircraft PID are: 

• Time 

• True airspeed (speed, temperature, pressure altitude) 

• Density (temperature, pressure altitude) 

• Flow angles: alpha and beta 

• Angular rates: p, q, r 

• Mass properties: eg, weight, moments of inertia 

• Body accelerations: ax, ay, az 

• Thrust 

• Euler angles: D, 0, \|/ 

• Control surfaces: 8e, 8a, 8r 

Some common errors found on the measurements are scale factors, biases and time lags. 

There are different ways in which those errors can be found with the objective of 

improving the measurements. One common procedure to achieve this is to run a data 

compatibility check before the PID process. 
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1.4.4.1 Flight path reconstruction 

The flight path reconstruction method uses the aircraft kinematic equations of motion to 

check data computability. It can be used to find scale factors, biases and time lags on the 

data. In the following discussion the focus will be the estimation of scale factors and 

biases. 

The kinematic equations can be used with the output error methods to estimate the biases 

and scale factors on the measurements. This is done the by setting the biases and scale 

factors as the unknown parameters on the output error algorithm. Generally the 

longitudinal motion and the lateral-directional motion data compatibility checks are done 

separately. This is because it is not common to have maneuvers with enough excitation 

on all three axes. The following set of equations is for a longitudinal data compatibility 

analysis1: 

u = (r- br)v -(q- bq)w - gsin(9) + ax - bax 

w = {q- bq)u - (p - bp)v + #cos(0)cos(0) + ay - bay 

6 = cos(0) (g - bq) - sin(0) (r - br) 

Outputs, 

V = (1 - XV) (VU2 + V2 + W2 + V0) + by + V0 + Vy 

a = (1 - K) (tan'1 ( - ) + a 0 ) + ba + a0 + va 

G = (l- Xe)Q + be + ve 

23 



The speed and angle of attack equations are written in a way to try to minimize the 

correlation between the scale factors and the biases. On the example above, the angular 

rates (p, q, r) and the linear accelerations (ax, ay, az) are the inputs to the system. The 

angle of attack (a), speed (V), and theta (0) are the outputs. 

Unfortunately, there is no way of checking the control surface measurements; for this 

reason, special attention should be paid during the calibration of these signals. 
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2. METHODS 

2.1 PID analysis 

The following flowchart describes the process that was used to analyze the flight test data 

collected for the DA42TDI and the DA42L360 programs. The methods used to analyze 

the data were equation error and output error methods in time and frequency domain. In 

the following sections, specific steps of this flowchart are described in detail. 

Input Design 

Flight Test (Record data) 

I 
Correct data for c g position, 

apply calibrations, remove lag. 

v 
Data compatibility 

v 
Calculate forces and moments 

Check correlation 
time domain 

v 
Transfer to frequency domain 

Smooth regressors 

v 
EE time domain 

v 
Check correlation 
frequency domain 

v 
OEtime domain 

v 
EE frequency 

domain 

v 
Correct std errors 

v 
OE frequency 

domain 

v 
Compare results 

Figure 3 PID Analyses Flowchart 
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2.2 Test Input Design 

There are specific flight test maneuvers that are used for PID analysis. Some of these 

maneuvers include the following control inputs: 

• Pulses 

• Steps 

• Multistep 

o Doublets 

o 3-2-1-1 

• Frequency sweeps 

• Multi-sines 

In general the main goal of these inputs is to excite the different dynamic modes of the 

aircraft. Some of the considerations for the input design are to produce maneuvers with: 

• Enough data information (proper mode excitation and high signal-to-noise ratio) 

• Low correlation between parameters 

• Small perturbations around the trim point to remain in the linear region 

• Practical constraints 

Low correlation between the parameter is a key factor of the input design process. In 

general, high correlation is an indication of data collinearity. For PID analysis a 

correlation factor of 0.9 or higher between the regressors usually will result in poor 

parameter estimation1. Independent control inputs are performed to avoid high correlation 

between the control surfaces. 

2.2.1 Longitudinal Inputs 

The excitation of the short period is usually used to estimate the longitudinal stability and 

control derivatives. The short period can be excited with an elevator input or other 
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longitudinal control. Doublets and 3-2-1-1 are usually used as elevator inputs to excite 

the short period. Sometimes, the 3-2-1-1 is preferable for flight test data over the doublet 

since it has a wider frequency band. The wider frequency band is desirable since the 

exact frequency of the short period is unknown. 

During the DA42TDI and the DA42L360 the longitudinal PID maneuver consisted of 3-

2-1-1 at different speeds and angle of attacks. The following figure shows the elevator 

deflection for a 3-2-1-1 pilot input in the DA42TDI flight test program. 

Longitudinal PID input 

o> 3~ 

10 
Time (s) 

Figure 4 DA42TDI/DA42L360 Longitudinal PID Input 

The short period excitation is desirable for some longitudinal PID analysis since there is 

low correlation between angle of attack and pitch rate. In the following figure the time 

histories of these regressors can be compared during a 3-2-1-1 maneuver. 
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4 
Comparison plot 

elv 

0 - . - - ' 

-3 
5 6 7 8 9 10 11 12 

time (sec) 

Figure 5 Longitudinal regressors during 3-2-1-1 maneuver 

2.2.2 Lateral-directional Inputs 

Because of the coupling between the lateral directional motions the stability and control 

derivatives for these modes are usually estimated together. To evaluate the lateral mode a 

bank-to-bank maneuver or aileron doublet can be used. For the directional mode it is 

desired to estimate the dutch-roll. The dutch-roll is a lightly damped mode and generally 

any input will be enough to excite it; rudder doublets are commonly used. It is 

recommended to do the lateral and directional inputs in the same maneuver to minimize 

the correlations between the regressors. 

On the DA42TDI flight test program the lateral-directional PID maneuver consisted of 

rudder doublet follow by an aileron doublet. In most cases, the pilot waited at least one 

oscillation of the dutch-roll before executing the aileron doublet. It was decided to do the 

rudder input first since it is a slower mode than the roll-mode. 
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Lateral-Directional PID input 

Time (s) 

Figure 6 DA42TDI Lateral-Direction PID input 

On the DA42L360 test program the lateral-directional input was modified by making the 

aileron input longer. The aileron was held until a bank angle of 30 degrees was achieved, 

then opposite aileron was held until bank angle reached the opposite 30 degree point. The 

intention of this modification on the lateral-directional input was to make the aileron 

deflection longer in order to try to capture a yawing moment derivative due to the 

ailerons (Cn<ja). However, estimation of the Cnda is not included on the scope of this 

research project. 
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Figure 7 DA42L360 Lateral-Directional PID Input 

2.3 Flight test data and Instrumentation 

2.3.1 Instrumentation 

The following table is a list of the main raw parameters recorded during each flight test 

program and used in this study. The rate for data collection on the DA42TDI was 20 Hz 

and the rate for the DA42L360 was 50 Hz. 
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Table 1 Flight Test Raw Parameters 
Variable 
Time 
IAS 

OAT 
Altitude (h) 
Alpha (a) 
Beta (p) 
Roll rate (p) 
Pitch rate (q) 
Yaw rate (r) 
Roll angle (D) 
Pitch angle (9) 
Yaw angle (\|/) 
Longitudinal 
acceleration (ax) 
Lateral acceleration (aY) 
Normal acceleration (ax) 
Elevator Surface 
Ailerons surface 
Rudder surface 
RPM 

Percent load output to 
the shaft (% Load) 
Fuel Flow 

Fuel Used 

Instrument 
SPAN GPS/IMU INS 
Honeywell Precision 
Pressure Transducer (PPT) 
GlOOO/Thielert engine 
Honeywell PPT 
Vane/Potentiometer 
V ane/Potentiometer 
SPAN GPS/IMU INS 
SPAN GPS/IMU INS 
SPAN GPS/IMU INS 
SPAN GPS/IMU INS 
SPAN GPS/IMU INS 
SPAN GPS/IMU INS 
SPAN GPS/IMU INS 

SPAN GPS/IMU INS 
SPAN GPS/IMU INS 
String Pot 
String Pot 
String Pot 
Thielert engine 
instrumentation 
Thielert engine 
instrumentation 
Thielert engine 
instrumentation 
Thielert engine 
instrumentation 
(Calculated) 

Accuracy 
20 ns 
0.01 psi 

1 degree C 
0.01 psi 
— 
— 
— 
— 
— 

0.015 deg 
0.015 deg 
0.05 deg 
0.003g 

0.003g 
0.003g 
— 
— 
— 

10 RPM 

Percent 

0.1 GPH 

0.1 Gallon 
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2.3.2 Derived Parameters 

In order to reconstruct forces and moment coefficients it was necessary to derive other 

parameters that could not be measured directly. The following is a list of the main 

derived parameters. 

Table 2 Flight Test Derived Parameters 

Derived 
Parameter 
True airspeed (V) 

Rho(p) 

Dynamic pressure 
(qbar) 
Propeller 
Efficiency (r|) 
Thrust 

pdot 
qdot 
rdot 

Required 
Variables 
IAS, OAT, alt 

OAT, atl 

rho,V 

% Load, RPM, rho, 
V 
% Load, RPM, rho, 
V,n 
P,T 
q,T 
r,T 

Description 

True airspeed corrected for position 
error and density altitude 
Calculated from pressure altitude at the 
boom and OAT 
Dynamic pressure calculated using the 
density and true airspeed parameters 
Computed using engine parameters and 
MT-propeller model 
Computed using the % power reported 
by the engine and propeller efficiency 
Smoothed time derivative of roll rate 
Smoothed time derivative of pitch rate 
Smoothed time derivative of yaw rate 

2.3.3 Mass Properties 

To calculate the mass properties the airplane was weighted before and after each flight. 

To calculate the current weight, the fuel used was subtracted from the initial weight. To 

estimate the C.G. a linear interpolation between the initial and final C.G. was used as a 

function of weight. Also, to estimate the moments of inertia a linear interpolation 

between the gross moments of inertia and the empty moments of inertia was used as a 

function of weight. The gross and empty moments of inertia were calculated using the 

moments of inertia equations provided in reference 4. 
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2.3.4 Test Points 

During each flight test program different flight conditions were flown. The flight 

conditions vary in airspeed, angle of attack and altitude. The following table describes the 

flight conditions on the DA42TDI project. 

Table 3 DA42TDI Test Conditions 

Flight 
Condition 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Airspeed 
(knots) 

100 
99 
107 
103 
108 
118 
130 
139 
152 
168 
161 

Angle of 
Attack 
(deg) 
5.12 
4.89 
4.25 
4.00 
3.19 
1.93 
1.57 
0.84 
0.17 
0.00 
-0.05 

Altitude 
(ft) 

5664 
5717 
5675 
5679 
5690 
5679 
5664 
5635 
5617 
5597 
5603 
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The following table describes the flight conditions on the DA42L360 project. 

Table 4 Test Conditions 

Flight 
Condition 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Airspeed 
(knots) 

85 
91 
93 
95 
97 
103 
109 
114 
119 
124 
129 
130 
139 
141 
154 
145 
151 
147 
162 

Angle of 
Attack 
(deg) 

8.89 

7.20 

6.13 

6.01 

5.69 

4.52 

3.59 

2.93 

2.46 

1.67 

1.56 

1.43 

1.07 

0.67 

0.55 

0.50 

0.43 

0.37 

-0.02 

Altitude 

(ft) 

3687 

3899 

4070 

4098 

4151 

4438 

4709 

4906 

5013 

5085 

5720 

5232 

5805 

5970 

6265 

6085 

5137 

5324 

6288 



2.4 Flight Test Data Corrections 

The following flowchart shows the standard flight test corrections that were applied to 

the flight test data. 

Correct for alpha and beta 
location with respect to the 
aircraft's center of gravity 

y 
Correct accelerometers and 

angular rates/accels with respect 
to the aircraft's center of gravity 

± 
Correct airspeed for airspeed 

position error 

± 
Correct alpha and beta for 

upwash and sidewash, 
respectively 

Figure 8 Flight Test Data Corrections Flowchart 

2.4.1 Flight test Data Calibrations 

Most of the instrumentation like the string pots and the alpha and beta vanes required 

calibrations. The following is an example of the calibration of the string pot used to 

measure the elevator surface deflection on the DA42TDI project. 

The string pot was mounted on the elevator surface as it can be observed in the following 

picture. 
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. f" •* 
Figure 9 Elevator String Pot 

To calibrate the string pot a digital inclinometer was used. With the digital inclinometer 

the elevator deflection was measured in degrees The calibration was done up and down 

of the datum. The datum was found by matching the maximum and minimum surface 

deflections from the type certificate data sheet for the DA42 

km 

Figure 10 Elevator Calibration 
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The elevator deflection in degrees from the digital inclinometer was plotted vs. the 

voltage ratio readings of the string pot to find the relationship between the two readings. 

The calibration equation was approximated with a second order polynomial. 

Elevator Deflection vs. Voltage Ratio 

Voltage Ratio, V/Vex (non-dim) 

Figure 11 Elevator Deflection Angle vs. Voltage Ratio 

2.5 Data Compatibility Results 

Longitudinal and lateral-directional data compatibility (DCMP) analysis was run for each 

individual case. The data compatibility analysis was done for the longitudinal and the 

lateral-directional separately. The reason for this was that during the longitudinal 

maneuvers there was not enough excitation on the lateral- directional parameters to find 

associated errors, and vice versa. 

The following table summarizes the errors found from all the longitudinal PID maneuvers 

analyzed for the DA42TDI project. 
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Table 5 DA42TDI Longitudinal DCMP Results 

FC 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

ax 
bias 
(fps) 

0.25 
0.31 
-0.01 
-0.08 
0.12 
0.03 
-0.04 
-0.13 
0.04 
-0.20 
-0.09 

+/-
ax 

bias 

0.02 
0.03 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 

az 
bias 
(fps) 

-0.04 
-0.15 
-0.06 
0.00 
0.27 
0.13 
0.16 
0.03 
0.18 
-0.05 
-0.03 

+/-
az 

bias 

0.03 
0.02 
0.01 
0.04 
0.06 
0.04 
0.04 
0.05 
0.05 
0.08 
0.07 

q 
bias 
(dps) 

0.00 
-0.05 
0.00 
-0.11 
0.06 
0.05 
-0.08 
0.13 
0.01 
-0.13 
-0.05 

+/-q 
bias 

0.00 
0.00 
0.00 
0.01 
0.01 
0.00 
0.01 
0.01 
0.00 
0.01 
0.01 

AoA 
scale 
factor 

-0.12 
-0.15 
-0.10 
-0.24 
-0.16 
-0.18 
-0.21 
-0.12 
-0.12 
-0.19 
-0.15 

+/-
AoA 
scale 
factor 
0.01 
0.01 
0.01 
0.03 
0.03 
0.02 
0.02 
0.03 
0.02 
0.04 
0.03 

theta 
scale 
factor 

0.00 
0.01 
-0.01 
-0.07 
0.03 
0.04 
-0.04 
-0.04 
0.01 
-0.09 
-0.04 

+/-
theta 
scale 
factor 

0.00 
0.00 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01* 
0.01 
0.01 

The DA42TDI longitudinal DCMP model was also applied on the DA42L360 data. The 

results are summarized on the following table. 

38 



Table 6 DA42L360 Longitudinal DCMP Results 

FC 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
18 
19 

ax 
bias 
(fps) 

1.63 
2.16 
1.81 
2.08 
1.87 
1.79 
1.66 
1.78 
1.70 
1.31 
1.55 
1.69 
1.53 
1.80 
2.03 
1.25 
1.66 
2.21 

+/-
ax 

bias 

0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.02 
0.01 
0.02 
0.01 
0.01 
0.02 
0.01 
0.01 
0.02 
0.01 
0.02 

az 
bias 
(fps) 

0.52 
0.14 
0.43 
0.15 
0.17 
0.01 
0.48 
0.21 
-0.03 
-0.03 
-0.41 
0.24 
0.19 
0.07 
-0.35 
0.32 
-0.12 
-0.66 

+/-
az 

bias 

0.02 
0.01 
0.02 
0.02 
0.02 
0.02 
0.02 
0.03 
0.02 
0.03 
0.03 
0.02 
0.02 
0.02 
0.03 
0.03 
0.01 
0.03 

q 
bias 
(dps) 

0.00 
0.01 
-0.01 
0.02 
0.02 
0.01 
0.00 
0.03 
-0.04 
-0.02 
-0.01 
0.02 
0.01 
0.04 
0.02 
-0.02 
-0.09 
0.00 

+/-q 
bias 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

AoA 
scale 
factor 

0.02 
0.01 
0.04 
0.09 
0.10 
0.04 
0.06 
0.05 
0.06 
0.05 
0.03 
0.00 
0.04 
0.01 
0.01 
0.01 
0.02 
0.00 

+/-
AoA 
scale 
factor 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 

theta 
scale 
factor 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.01 
0.01 
0.00 
0.00 
0.01 
0.01 
-0.01 
0.00 
0.00 
0.00 

+/-
theta 
scale 
factor 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

The results from the lateral-directional DCMP analysis for the DA42TDI are summarized 

on the following table. 
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Table 7 DA42TDI Lateral-Directional DCMP Results 

FC 

1 
3 
4 
5 
6 
7 
8 
9 
10 
11 

ay 
bias 
(fps) 

0.02 
0.04 
0.02 
0.01 
-0.12 
-0.01 
-0.12 
-0.09 
0.04 
-0.13 

+/-
ay 

bias 

0.01 
0.02 
0.01 
0.01 
0.01 
0.02 
0.02 
0.02 
0.02 
0.02 

P 
bias 
(dps) 

0.02 
-0.03 
0.01 
0.04 
0.01 
-0.03 
-0.02 
-0.01 
-0.01 
-0.01 

+/-p 
bias 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

r 
bias 
(dps) 

0.02 
0.01 
0.00 
0.00 
-0.02 
0.02 
-0.03 
0.00 
0.01 
-0.01 

+/-r 
bias 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

beta 
scf 

-0.09 
-0.04 
-0.10 
-0.07 
-0.07 
-0.09 
-0.08 
-0.06 
-0.07 
-0.07 

+/-
beta 
bias 
(rad) 
0.01 
0.01 
0.00 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 

phi 
scf 

0.00 
0.00 
0.00 
0.00 
0.01 
-0.02 
-0.01 
-0.01 
-0.01 
-0.01 

+/-
phi 
scf 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

psi 
scf 

0.02 
0.00 
-0.01 
0.00 
-0.01 
0.01 
-0.01 
0.00 
0.00 

o.oo" 

+/-
phi 
scf 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

The DA42TDI lateral-directional DCMP model was also applied on the DA42L360 data. 

The results are summarized on the following table. 
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Table 8 DA42L360 Lateral-Directional DCMP Results 

FC 

1 
2 
3 
4 
5 
6 
7 
8 
10 
11 
13 
14 
16 
15 
17 
18 
19 

ay 
bias 
(fps) 
-0.12 
-0.30 
-0.62 
0.66 
-0.33 
0.10 
-0.25 
-0.01 
-0.26 
0.34 
-0.15 
0.10 
-0.42 
0.54 
0.72 
0.81 
0.55 

+/-
ay 

bias 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.02 
0.02 
0.01 
0.02 

P 
bias 
(dps) 
0.01 
0.02 
0.08 
-0.08 
0.06 
0.03 
0.05 
0.03 
0.02 
0.05 
0.03 
0.06 
0.02 
0.00 
0.00 
0.02 
0.03 

+/-p 
bias 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

r 
bias 
(dps) 
0.00 
0.00 
0.01 
0.01 
0.02 
-0.01 
-0.01 
0.00 
0.02 
0.00 
0.01 
-0.01 
0.00 
0.01 
0.01 
0.00 
0.00 

+/-r 
bias 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

beta 
scf 

-0.03 
-0.08 
-0.04 
-0.05 
0.06 
-0.05 
-0.04 
-0.11 
-0.17 
-0.19 
-0.22 
-0.10 
-0.17 
-0.17 
-0.22 
-0.21 
-0.23 

+/-
beta 
scf 

0.00 
0.01 
0.00 
0.00 
0.00 
0.01 
0.00 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.01 

phi 
scf 

-0.02 
-0.03 
0.00 
0.02 
0.00 
-0.01 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.01 
0.00 
0.00 
0.00 
0.00 

+/-
phi 
scf 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

psi 
scf 

0.00 
0.00 
0.00 
-0.01 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.01 
0.00 
0.00 
0.00 
0.01 
-0.01 

+/-
phi 
scf 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

The biases on the accelerations were expected to be relatively constant for all the cases, 

which disagrees with what was found. A possible explanation for this is that the errors 

related to the ENS parameters are so small that they are not being calculated accurately. 

However, the biases for the accelerometers were still included on the data compatibility 

model to prevent any random walk on the reconstruction of alpha and beta. The following 

graph shows the reconstruction of speed, alpha and theta without any corrections applied. 

In this graph it can be observed that there is almost no random walk in alpha which 

indicates very small biases in the accelerations. 
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Figure 12 Longitudinal parameter reconstruction before DCMP corrections 

The most significant errors found on the data were a scale factors on the angle of attack 

and side slip angle measurement. Usually the scale factor on alpha and beta is created by 

local flow fields at the sensor. The scale factor on alpha and beta are very critical since if 

not corrected that error will transfer directly into the alpha and beta stability derivatives. 

The scale factor also depends on the instrumentation and calibration equations applied to 

alpha and beta. Different calibrations were performed for each flight test program. The 

following plot shows the scale factor for alpha. 
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Figure 13 AoA scale factor from Longitudinal DCMP 

The following plot shows the scale factor for beta. 
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Figure 14 Beta scale factor from Lateral-Directional DCMP 
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2.6 Modification to SIDPAC model 

It was desired to estimate the stability and control derivatives in a wind axis. Usually, 

PID analysis is preferable in a body axis since there is less error in the estimation of the 

force and moment coefficients. This is due to the fact that to be transformed into the 

wind axis they have to be multiplied by alpha and beta. Alpha and beta measurements 

inherently contain error and using them for coordinate transformations introduces that 

error into other parameters. 

The aerodynamic models provided by SIDPAC were modified to change the forces from 

a body axis to a wind axis. The following equations represent the used model. 

ma-
cx = — qS 

CL = CLaa + CLqq + CLSeSe + CL0 

CX • sin (a) — CL 
CZ = 

cos (/?) 

It was also desirable to calculate the pitching moment derivatives about at a reference 

point instead of at the e.g. position. The following equations represent the used model: 

1 
Cmref = — [lyq + {Ix - Iz)pr + Ixz(p

2 - r2)] 

Cmref = Cmcg CZ 
\XCg X-ref) 

— 1 

C 

Cmref = Cmaa + Cmqq + CmSe8e + Cm0 

2.7 Linear Models 

The linear models used on the DA42 PID analysis were chosen using a stepwise 

regression method. The stepwise method can be use to see the correlation between the 
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parameters and other statistical numbers of a specific model. For an example of a 

stepwise regression refer to appendix A. 

The following are the models used in the longitudinal analysis: 

CL = CLaa + CLQ 

Cm = Cmaa + Cmqq + CmSeSe + Cm0 

The following are the models used in the lateral-directional analysis: 

CY = CYp/3 + CY0 

CI = Clpp + Clpp + Cltr + ClSa6a + Cl0 

Cn = Cnp(S + Cripp + Cnff + CnSr8r + Cn0 

2.8 Correlation 

Low correlation between the parameters is very important in the parameter identification 

process. Usually for PID analysis a correlation factor of 0.9 or higher between the 

regressors will result in poor parameter estimation \ Unfortunately some high correlation 

factors were found on data for both DA42 flight test projects. In general, the high 

correlation corresponds to the pitch rate and the elevator regressors for the longitudinal 

maneuvers. On the lateral-directional data, in general the highest correlation was found 

between the roll rate and aileron regressors. This may introduce some error on the 

derivatives of regressors with high correlation. The correlation in the frequency domain 

was expected to be higher than in the time domain, since the input was mainly designed 

for a time domain analysis. The following table shows the highest correlation factor for 

each test in the time domain and frequency domain for the DA42TDI project. 
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Table 9 Highest Correlation factor on the DA42TDI data 

Case 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

TAS 
(Knots) 

100 
99 
107 
103 
108 
118 
130 
139 
152 
168 
161 

AOA 
(deg) 

5.12 
4.89 
4.25 
4.00 
3.19 
1.93 
1.57 
0.84 
0.17 
0.00 
-0.05 

Time Domain 
LON 

max. cor 
0.96 
0.83 
0.95 
0.71 
0.81 
0.83 
0.89 
0.86 
0.91 
0.89 
0.91 

LON 
max. cor 

0.92 
0.93 
0.95 
0.88 
0.87 
0.88 
0.93 
0.93 
0.93 
0.94 
0.95 

Frequency Domain 
LAT 

max. cor 
0.88 
0.89 
0.87 
0.74 
0.83 
0.76 
0.71 
0.74 
0.79 
0.82 
0.81 

LAT 
max. cor 

0.91 
0.98 
0.95 
0.86 
0.89 
0.94 
0.94 
0.88 
0.88 
0.94 
0.92 

The following table shows the highest correlation factor for each test in the time domain 

and frequency domain for the DA42L360 project. 
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Table 10 Highest Correlation factor on the DA42L360 data 

Case 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

TAS 
(knots) 

85 
91 
93 
95 
97 
103 
109 
114 
119 
124 
129 
130 
139 
141 
154 
145 
151 
147 
162 

AOA 
(deg) 

8.891 
7.198 
6.129 
6.011 
5.693 
4.525 
3.589 
2.929 
2.455 
1.671 
1.561 
1.429 
1.067 
0.669 
0.546 
0.499 
0.429 
0.365 
-0.023 

Time Domain 
LON 

max. cor 
0.88 
0.88 
0.92 
0.90 
0.92 
0.90 
0.92 
0.91 
0.89 
0.93 
0.91 
0.92 
0.92 
0.92 
0.92 
0.91 
. . . 

0.94 
0.92 

LON 
max. cor 

0.96 
0.97 
0.93 
0.94 
0.95 
0.93 
0.95 
0.92 
0.91 
0.94 
0.93 
0.94 
0.94 
0.93 
0.97 
0.95 
_._ 

0.98 
0.95 

Frequency Domain 
LAT 

max. cor 
0.81 
0.80 
0.75 
0.85 
0.86 
0.87 
0.90 
0.91 
— 

0.89 
0.91 
_._ 

0.91 
0.91 
0.94 
0.91 
0.91 
0.92 
0.92 

LAT 
max. cor 

0.99 
0.99 
0.99 
0.99 
1.00 
1.00 
1.00 
1.00 
— 

0.99 
0.99 
— 

0.99 
0.99 
0.99 
0.98 
0.99 
0.99 
0.99 

As it can be seen from the tables above the correlation on the DA42L360 project in 

general was higher than for the DA42TDI. The biggest difference can be seen on the 

correlation for the lateral directional regressors. The high correlation factor on the 

DA42L360 corresponds to the aileron and roll rate regressors. Due to the high correlation 

factors on the frequency domain on the DA42L360, the output error on frequency domain 

was not applied to that data. As mentioned above, the aileron input on the DA42L360 

was different from the one used in the DA42TDI program. The following figure is an 

example of the aileron and roll rate time histories for both projects. 
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Figure 15 Aileron and roll rate time histories 

2.9 Digital DATCOM analysis 

The three view drawings provided by the AMM were input into CATIA and scaled 1:1 to 

measure the geometric characteristics of the DA42. Some important remarks about the 

digital DATCOM analysis are: 

• Only 20 section cuts can be used to describe the fuselage 

• Propeller power effects only apply to longitudinal stability 

• Digital DATCOM only supports one ventral fin 

• There is no function to model a rudder 

• Digital DATCOM does not handles multiple bodies and there is no function to 

model the nacelles 

• Wingtips do not affect longitudinal parameters 

The following section shows in detail the information used to create the DATCOM input 

file. The three view drawings, the direct measurements on the airplane and the aiiplane 

specifications were used to create the model. 
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2.10 Flight Conditions (FLTCON) 

In this section the flight conditions are defined. The following table shows all the flight 

condition at which the digital DATCOM model was run. The flight conditions were 

chosen to match the flight test points flown on the DA42TDI project. 

Table 11 Digital DATCOM input file flight conditions 

Case 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Mach 
0.151 
0.149 
0.161 
0.155 
0.163 
0.178 
0.196 
0.210 
0.229 
0.254 
0.243 

Alpha (deg) 
5.12 
4.89 
4.25 
4.00 
3.19 
1.93 
1.57 
0.84 
0.17 
0.00 
-0.05 

Altitude (ft) 
5664 
5717 
5675 
5679 
5690 
5679 
5664 
5635 
5617 
5597 
5603 

Weight (lb) 
3741 
3753 
3759 
3686 
3692 
3701 
3712 
3723 
3734 
3764 
3749 

2.11 Reference Parameters (OPTINS) 

This section was used to define the reference area and lengths. These are the same 

reference values used in the flight test programs. 

Table 12 Digital DATCOM input file reference parameters 

Name 
ROUGFCJ 

SREF 
CBARR 
BLREF 

Value 
0.00025 

175.300 
4.167 
44.000 

Units 
in 

ft2 

ft 
ft 

Description 
Surface roughness factor 

Reference area 
Longitudinal reference length 
Lateral reference length 

Source 
For smooth 
paint4 

AFM 
AFM 
AFM 
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2.12 Synthesis Parameters (SYNTHS) 

In this section the basic configuration synthesis parameter are defined. 

Table 13 Digital DATCOM input file Synthesis Parameters 

Name 
XCG 
ZCG 
XW 
ZW 
ALIW 
XH 
ZH 
AL1H 
XV 
XVF 
ZV 
ZVF 

Value 
9.57 
-0.63 
8.765 
-1.25 
3.00 
24.660 
3.905 
-LOO 
23.086 
17.027 
0.000 
0.345 

Units 
ft 
ft 
ft 
ft 
deg 
ft 
ft 
deg 
ft 
ft 
ft 
ft 

Description 
Longitudinal location of C.G 
Vertical Location of C.G 
Longitudinal location of theoretical wing 
Vertical location of theoretical wing 
Wing root chord incidence angle 
Longitudinal location on horizontal tail 
Vertical location on horizontal tail 
Horizontal tail root chord incidence angle 
Longitudinal location on vertical tail 
Longitudinal location on Ventral Fin 
Vertical location on vertical tail 
Vertical location on Ventral Fin 

Source 
Reference location 
Approximated 
Measured (fig 1) 
Approximated 
AMM 
Measured (fig 1) 
Measured (fig 2) 
AMM 
Measured (fig 2) 
Measured (fig 2) 
Measured (fig 2) 
Measured (fig 2) 

The following figure shows the reference drawings used in this section. 
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Figure 16 Reference drawings for Synthesis Parameters 

2.13 Body Geometric Data (BODY) 

In this section the body (fuselage) is described by using data coordinates. Twenty 

sections were split to define the body (maximum number allow by digital DATCOM). 

The spacing of the cuts is not constant with the intention of having more cuts where the 

slope changes were higher. The following drawing represents the 20 sections used. 

Figure 17 Digital DATCOM body model 

2.14 Wing Planform (WGPLNF) 

In this section the geometry of the wing is described. The wing was approximated using 

the outer section of the DA42 wing. 
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Table 14 Digital DATCOM input file Wing Planform parameters 

Name 
CHRDTP 
SSPNE 
SSPN 

CHRDR 
SAVSI 
CHSTAT 

TWISTA 
DHDAO 
TYPE 

Value 
2.916 
20.145 
22.015 

4.632 
1 
0.0 

0 
5.5 
1 

Units 
ft 
ft 
ft 

ft 
deg 
--

deg 
deg 
__ 

Description 
Tip chord 
Semi-span exposed 
Semi-span from theoretical root 
chord 
Root chord 
Sweep angle 
Reference chord for sweep angle, 
fraction of chord 
Twist angle 
Semi-span dihedral 
Straight tapered planform 

Source 
Measured (fig 1) 
Measured (fig I) 
Measured (fig 1) 

Measured (fig 1) 
AFM 
AFM 

Assumed 
AMM 
— 

The following figure shows the reference drawings used in this section. 

i i 

Figure 18 Reference drawing for wing planform parameters 

2.15 Wing Airfoil (WGSCHR) 

The airfoil shape was approximated by taking measurements on the DA42 wing and the 

airfoil information provided by the AFM. The DA42 airfoil is a Woitmann FX63-137/20-

W4. The following figure shows the airfoil used on the digital DATCOM model. 
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Figure 19 Wing airfoil model 

2.16 Horizontal Tail Planform (HTPLNF) 

In this section the geometry of the horizontal tail is described. 

Table 15 Digital DATCOM input file horizontal tail planform parameters 

Name 
CHRDTP 
SSPXE 
SSPN 

CHRDR 
SAVSI 
CHSTAT 

TWISTA 
TYPE 

Value 
1.414 
5.395 
5.395 

3.072 
13.5 
0.25 

0 
1 

Units 
ft 
ft 
ft 

ft 
deg 
— 

deg 
— 

Description 
Tip chord 
Semi-span exposed 
Semi-span from theoretical root 
chord 
Root chord 
Sweep angle 
Reference chord for sweep angle, 
fraction ol chord 
Twist angle 
Straight tapered planform 

Source 
Measured (fig 1) 
Measured (fig 1) 
Measured (fig 1) 

Measured (fig 1) 
Measured (fig 1) 
— 

Assumed 
— 

The following figure shows the reference drawings used in this section. 
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Figure 20 Reference drawing for horizontal tail parameters 

2.17 Horizontal Tail Airfoil (HTSCHR) 

The airfoil shape was approximated by taking measurements on the DA42 horizontal tail. 

The following figure shows the airfoil used on the digital DATCOM model. 
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Figure 21 Horizontal tail airfoil model 
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2.18 Vertical Tail Planform (VTPLNF) 

In this section the geometry of the vertical tail is described. 

Table 16 Digital DATCOM input file Vertical Tail Planform parameters 

Name 
CHRDTP 
SSPNE 
SSPN 
CHRDR 
SAVSI 
CHSTAT 

TYPE 

Value 
2.857 
3.544 
3.905 
4.703 
28.6 
0.25 

1 

Units 
ft 
ft 
ft 
ft 
deg 
~ 

— 

Description 
Tip chord 
Semi-span exposed 
Semi-span from theoretical root chord 
Root chord 
Sweep angle 
Reference chord for sweep angle, 
fraction of chord 
Straight tapered planform 

Source 
Measured (fig 1) 
Measured (fig 1) 
Measured (fig 1) 
Measured (fig 1) 
Measured (fig 1) 
— 

— 

The following figure shows the reference drawings used in this section. 
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V 

Figure 22 Reference drawing for vertical tail parameters 

2.19 Vertical Tail Airfoil (VTSCHR) 

The airfoil shape was approximated by taking measurements on the DA42 horizontal tail. 

The following figure shows the airfoil used in the digital DATCOM model. 

55 



Figure 23 Vertical tail airfoil model 

2.20 Ventral Fin (VFPLNF) 

A ventral fin was added to model the top fin. The bottom fin was not added to this model 

because the ventral fin on digital DATCOM has to be above the reference line if the 

vertical tail is above the reference line. The following table and figure show the 

parameters used to model the ventral fin. 

Table 17 Digital DATCOM input file Ventral Fin parameters 

Name 
CHRDTP 
SSPNE 
SSPN 
CHRDR 
SAVSI 
CHSTAT 

TYPE 

Value 
0.511 
0.507 
0.841 
6.256 
82.265 
0.25 

1 

Units 
ft 
ft 
ft 
ft 
deg 
— 

— 

Description 
Tip chord 
Semi-span exposed 
Semi-span from theoretical root chord 
Root chord 
Sweep angle 
Reference chord for sweep angle, 
fraction of chord 
Straight tapered planform 

Source 
Measured (fig 1) 
Measured (fig 1) 
Measured (fig 1) 
Measured (fig 1) 
Measured (fig 1) 
— 

— 

The following figure shows the reference drawings used in this section. 



Figure 24 Reference drawing for Ventral Fin parameters 

2.21 Wingtips - Twin vertical panels (TVTPAN) 

The wing tips were approximated as vertical panels on the wigs. The following table 

shows the parameters used to model the wing tips. 

Table 18 Digital DATCOM input file Wingtips parameters 

Name 
BVP 

BV 
BDV 

BH 

SV 

VPHITE 

VLP 

ZP 

Value 
2.444 

2.444 
3.802 

44.03 

2.10 

10.00 

2.146 

2.395 

Units 
ft 

ft 
ft 

ft 

ft" 

deg 

ft 

ft 

Description 
Vertical Panel Span Above 
Lifting Surface 
Vertical Panel Span 
Fuselage depth at quarter chord-
point of vertical panel mean 
aerodynamic chord 
Distance between vertical 
panels 
Planform area of one vertical 
panel 
Total trailing edge angle of 
vertical panel airfoil section 

Distance parallel to long. Axis 
between the e.g. and the quarter 
chord point of the MAC of the 
panel, positive if aft of e.g. 
Distance in the z-direction 
between the e.g. and the MAC 
of the panel, positive above e.g. 

Source 
Measured (fig 1) 

Measured (fig 1) 
Calculated form 
body coordinates 

Measured (fig 1) 

Estimated (fig 1) 

Appr. From 
measurements on 
the DA42 wingtip 
Measured (fig 1) 

Measured (fig 1) 
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The following figure shows the reference drawings used in this section. 

•11 ••>:)_ 

Figure 25 Reference drawings for Wingtip parameters 

2.22 Propeller Power Parameters 

The following table shows the parameters used to for the power model in digital 

DATCOM. 
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Table 19 Digital DATCOM input file Propeller Power parameters 

Name 
AIETLP 

NENGSP 
THSTCP 

PHALOC 
PHAVLOC 

PRPRAD 
ENGFCT 

NOPBPE 

BAPR75 

YP 

Value 
0.0 

2.0 
See Table 
20 
5.253 
0.135 

3.067 
See Table 
20 

3 

See Table 
20 
5.538 

Units 
deg 

— 

— 

ft 
ft 

ft 

— 

Description 
Angle of incidence of engine 
thrust 
Number of engines 
Thrust coefficient 

Axial location of propeller hub 
Vertical location of propeller 
hub 
Propeller radius 
Normal force factor 

Number of propeller blades per 
engine 
Blade angle 

Lateral location of engine 

Source 
Approx. (fig 1) 

— 

FT data 

Measured (fig 1) 
Measured (fig 1) 

AMM 
Approximated 
using Reference 
4 

* 

FT data 

Measured (fig 2) 

Some of the power parameters depended on the flight condition. The power conditions 

were chosen to match the flight test points flown on the DA42TDI project. The following 

table shows the specific parameters used for each case. 

Table 20 Power parameters for each flight condition 

Case 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

AoA (deg) 
5.16 
5.2 

4.32 
3.89 
3.13 
2.01 
1.53 
0.82 
0.21 
-0.05 
-0.12 

THSTCP 
0.0628 
0.0703 
0.0584 
0.0632 
0.0543 
0.0434 
0.0381 
0.0372 
0.0328 
0.0348 
0.0333 

BAPR75 
22.12 
22.20 
22.59 
22.58 
22.88 
24.37 
26.00 
27.29 
28.01 
27.69 
28.26 

ENGFCT 
1.29 
1.32 
1.29 
1.29 
1.26 
1.23 
1.18 
1.18 
1.16 
1.16 
1.16 



The following figure shows the reference drawings used in this section. 

Figure 26 Reference drawing for Propeller Power parameters 

2.23 Elevator - Symmetrical Flaps (SYMFLP) 

The flaps or control surfaces in DATCOM are assumed to be located on the most aft 

lifting surface, in this case the horizontal tail. The following table shows the parameters 

used to model the elevator. The elevator was modeled as a plain flap on the horizontal 

tail. 
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Table 21 Digital DATCOM input file elevator parameters 

Name 
FTYPE 
NDELTA 
DELTA 

PHETE 

PHETEP 

CHRDFI 

CHRDFO 

SPANFI 

SPANFO 

CB 

TC 

NTYPE 

Value 
1 
9 
-15 ,-10,-5,-
2,0,2,5,10,13 
0.1135 

0.0504 

1.057 

0.5881 

0.0 

4.928 

0.220 

0.0737 

1 

Units 
— 
— 

deg 

ft 

ft 

ft 

ft 

ft 

ft 

-

Description 
Plain Flap 
Number of deflection angles 
Deflection angle 

Tangent of airfoil trailing edge 
based on 90 and 99 percent 
chord 
Tangent of airfoil trailing edge 
based on 95 and 99 percent 
chord 
Elevator cord at inboard end of 
elevator 
Elevator cord at outboard end 
of elevator 
Span location of inboard end of 
elevator 
Span location of outboard end 
of elevator 
Average chord of the balance 

Average thickness of the 
control at hinge line 

Source 
— 
— 

— 

Calculated from 
horizontal tail 
airfoil 
Calculated from 
horizontal tail 
airfoil 
Approx. (fig 1-
2) 
Approx. (fig-1-
2) 
Measured (fig 1) 

Measured (fig 1) 

Approx. (fig 1-
2) 
Approx. from 
horizontal tail 
airfoil 
— 
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The following figure shows the reference drawings used in this section. 
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Figure 27 Reference drawings for Elevator parameters 
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2.24 MATLAB model 

The following figure compares the three view drawings from the DA42 AMM with the 

model used for digital DATCOM. Unfortunately, the routine used to create the 3D view 

of the digital DATCOM model does not supports the ventral fin and vertical panels on 

the wings (wingtips). 

Figure 28 Three view model comparison 
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3. ANALYSIS AND RESULTS 

3.1 Longitudinal 

The lift force and pitching moment coefficient derivatives were estimated using the 

longitudinal maneuvers. The following sections show the results for the longitudinal 

mode from the PID analysis and the Digital DATCOM. 

3.1.1 Lift force 

The linear model used on the PID analysis for the lift force coefficient was: 

CL = CLaa + CLQ 
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3.1.1.1 CL« 

The following values were estimated for CL 
«• 

Cl vs AoA 

• U *i ' • * H x 

0 
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EE time 
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V OE time 0 
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Figure 29 CL„ Results 

The CLU value obtained by the digital DATCOM analysis seems to be high considering 

the aspect ratio for the DA42. If the slope of a theoretical airfoil (2*pi) is corrected for 

the DA42 aspect ratio (11.06) the value for CLU will be around 5.3 rad/s. 

The CLa "static" data shown in Figure 29 corresponds to the slope of the weight vs. alpha 

plot for the DA42TDI data during steady state flight. 
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3.1.2 Pitching Moment 

The linear model used on the PID analysis for the pitching moment coefficient was: 

Cm = Cmaa + Cmqq + Cm6e8e + CmQ 

3.1.2.1 Cm„ 

The following values were estimated for Cm,,. 

Cm. vs AoA 
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Figure 30 Cma results 

The Cm,, results indicate an error on some ol the measurements or on the reference 

parameters. Cm,, is a strong function of the longitudinal center of gravity (eg); this 

suggests the main error may be on the e.g. measurements. However, there may be other 

parameters contributing to the discrepancy between digital DATCOM and the PID results 

for Cm,,. The vertical center of gravity was unknown in the flight test data and 

approximated on the digital DATCOM model. Other possible errors could be the 

estimation of the moment of inertia used to estimate the pitching moment coefficient. 
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To quantify the error between the PID and the digital DATCOM results for Cmu. the 

static margin for each case was calculated. The following fisure shows the results. 

• DATCOM 
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w m » 
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Figure 31 Static Margin Results 

From Figure 31 it can be observed that the approximated error between the PID method 

and digital DATCOM is 159K which corresponds to about 7.5in difference in the 

longitudinal e.g. This discrepancy may come from errors on the measurements and 

drawings used for the digital DATCOM model as well as errors on the estimation of the 

eg. position on the flight test data. 
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3.1.2.2 Cm, 

The following values were estimated for Cn\,. 

DATCOM {Cmq} 
DATCOM sCmq+Cmadoi) 
DA42 TDI 
DA4? L360 

7 8 9 

O EE time V OE time '-•"• EE freq A OE freq 

Figure 32 Cm,, Results 

In parameter identification procedures the Cmq and Cma derivatives are usuall> 

calculated as one damping derivative "Cmq". This is due to the high correlation between 

alphadot and pitch rate during PID maneuvers. As a consequence, the sum of the digital 

DATCOM results for Cn\, and CmtT was added to the plot. Significant scatter can be seen 

in Figure 32, especially on the CmM estimate for the DA42TDI. The scatter of the data 

may be explained by a combination of several factors. As it was mentioned before, a high 

correlation between the pitch rate and elevator was found in most of the data files. This 

is an indication of data collinearity between these two regressors, introducing possible 

errors on the estimates ot CmM. Another factor could be a possible time delay in the INS 

data. The following figure shows an alpha reconstruction using INS data and the alpha 

measurement of the vane for the DA42TDI project. 
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Figure 33 show s a phase shift in the reconstruction of alpha This phase shift may be 

caused by errois on the alpha correction to the center of gravity which involves pitch rate 

This calculation was checked and the math was found to be correct, which indicates a 

possible lag on the INS data 
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Figure 33 Alpha Reconstruction 
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3,1,2.3 Crcu 

The following values were estimated for Cm,,,,. 
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Figure 34 Cm^ Results 

The results for Cmoe were consistent with the results for Cm,, in the sense that there 

seems to be an error on certain measurements like longitudinal center of gravity and/or 

moment of inertia. 
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3.2 Lateral - Directional 

The side force, rolling moment and yawing moment coefficient derivatives were 

estimated using the lateral-directional maneuvers. The following sections show the 

results for the lateral-directional mode from the PID analysis and the Digital DATCOM. 

3.2.1 Side Force 

The linear model used on the PID analysis for the side force coefficient was: 

CY = CYpP + CY0 
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3.2.1.1 CY, 

The following values were estimated for CY 

DATCOM 

DATCOM (-s-wmgtips) 

• DA42 TDI 

• DA42 L360 

*-•- — • 
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AoA (deg) 

O EE time V OE time C> EE freq A OE freq 

Figure 35 CYp Results 

As it can be seen on Figure 35, both the PID and the digital DATCOM results show no 

alpha dependency in the CYp derivative. The CYp estimate of digital DATCOM was 

about 25~30</f higher than the one from the PID analysis. This discrepancy on the CYp 

derivative may be caused by digital DATCOM treating the surface as a more flat-sided 

fuselage than the actual DA42 fuselage In addition, it can be observable how the 

wingtips model increased the gap of the digital DATCOM and the PID methods 

estimated of CYp. The results suggest that the wingtip model was misinterpreted by 

digital DATCOM. Also, it is important to remember that the bottom fin of the DA42 was 

not included on the digital DATCOM model, 
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3.2.2 Rolling Moment 

The linear model used on the PID analysis for the rolling moment coefficient was: 

( 7 = C7;,/J + aAi&, + O,. p + CY, /• + C 7(, 

3.2.2.1 Clp 

The follow mg values were estimated for Clp. 

Clbvs AoA 

0 - - - - - -

DATCOM 
• DA42 1DI 

-0 05 • DA42 L360 

-0 1 "• ' * '-' 

A X 
-0 2 

-0 25 ' ; 

- 1 0 1 2 3 4 5 6 7 8 9 
AoA (deg) 

O EE time V OE time - EEfreq A OEfreq 

Figure 36 Clp Results 

The estimation of Clp from the PID methods and digital DATCOM showed no 

dependency on angle of attack. From Figure 36, it can be seen that digital DATCOM 

underestimated the values foi Clp compared to the PID results. The DA42 wings are 

made of carbon fiber and are very flexible which probably created higher dihedral angles 

in flight that diaitul DATCOM is not accounting for. 
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3 2 2 2 CI 

The follow ing values were estimated for CL. 

-o; 

-0 4 

CI vs, AoA 
P 

DATCOM 
• DA42 TDI 
• DA42 L360 

O 

-0 6 

-0 8 WW " w • • 
W A T # 

, " f A 

• • If 
* 

1 2 

0 1 2 3 4 5 
AoA (deg) 

EE time OE time EE freq OE freq 

Figure 37 Clp Results 

The data derivative results for both DA42s and digital DATCOM seem to have the same 

trend with alpha, however, the values from digital DATCOM were underestimated 

compaied to the PID methods. 
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3.2.2.3 Cl r 

The follow mg values weie estimated tot Clr 

Clr vs AoA 

08 

DATCOM 

0 7 • DA42 TDI 
• DA42 L360 

06 

• 

6 / 8 9 

O EE time " OE time 0 EEfreq ^ OE freq 

Figure 38 Clr Results 

The digital DA I COM estimates of CI, laid within the PID lesults. following the same 

tiend An alpha dependency was found on the estimation of CI, Usually the mam 

contnbutois to the CI, denvatne aie the vertical tail and the wings The wing contribution 

tomes horn an tnciease oi decicasc on dynamic pressure on one of the wings due to a 

vaw mtc This wing contnbution to CI, piobably intioduces the alpha dependency 

obseiv able on Figuie 38 
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3.2.2.4 < |(> 

The following values were estimated for C1(H. 

-0 05 

-01 

_P -0 15 
O 

-0 2 

-0?5 

CL vs AoA 
08 

• DA42T 
• DA42L 

% t • 

- 1 0 1 2 3 4 5 6 / 
AoA (deg) 

EE time V OE time v EE freq OE freq 

Figure 39 Clda Results 

The Clw results for the DA42TDI and the DA42L360 weie in agreement. This was 

expected since no modification was performed on the aileron control surfaces. 
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3.3 Yawing Moment 

The linear model used on the PID analysis for the yawing moment coefficient was: 

Cn = Cn»f3 + Cn p + i H, r + Ciit> Sr + C V?0 

3.3.1.1 Cnp 

The following values were estimated for Cnp. 

Cn. vs AoA 

0 1 -

0 09-* 

0 08> 
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• DA42 TDI I 
• DA42 L360 

il t 

0 >-
-1 0 1 2 3 4 5 

AoA (deg) 

EE time V OE time \> EE freq OE freq 

Figure 40 Cnp Results 

The main scatter on the data is due to the disagreement between the EE and OE methods 

estimation of Cnp for the DA42 L360. The discrepancy between the two methods may be 

caused by the high correlation between the regressors on the DA42L360 data. As 

explained before, high correlation generally causes errors on the parameter estimation 

methods. 
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3.3.1.2 Cn, 

The following values were estimated for Cnr 

Cn vs AoA 
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. II I t 
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Figure 41 Cnp Results 

The results from the PID methods and digital DATCOM for Cnp were consistent. All 

methods showed an alpha dependency on the estimation of Cnp. Usually on the presence 

of a roll rate the wings will develop anti-symmetric drag. The mam contributor is the 

induced drag on one wing due to differential angle of attack between the two wings 

caused by a roll rate. 
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3.3.1.3 Cn r 

The following values were estimated for Cn,. 
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Figure 42 Cnr Results 

Figure 42 shows a wide scatter on the PID results for Cnr. This scatter is consistent with 

other rotatory derivatives like Cmq. As it was discussed for Cn\, it is possible that there 

was a lag on the DA42TDI INS data introducing errors on the estimation of C nr with the 

PID methods. In addition, as mentioned before, the results suggested that the wingtips 

model was interpreted incorrectly by digital DATCOM. 
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3.3.1.4 Cn*r 

The following values were estimated for Cn,-,,. 

-0 02> 

-0 0 4 -
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Figure 43 Cn r̂ Results 

The main scatter in the data is due to the disagreement between HE and OE methods on 

the estimation of Cn^, for the DA42 L360. This coincides with the results for Cnp. There 

are no results from digital DATCOM since this program does not support a rudder model. 
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4. CONCLUSION AND CORRELATION 

4.1 Longitudinal Mode 

The following table summarizes the estimated longitudinal derivatives from the PID 

analysis and digital DATCOM. 

EE time 

OE time 

EE freq. 

OE freq. 

DATCOM 

CLa 

DA42 TDI 
0.0771a2-0.4206a + 

4.8388 
0.0888a2-0.5418a + 

5.4997 
0.075a2-0.4031a + 

4.8312 
0.0901a2-0.5638a + 

5.461 
-0.0143a3 + 0.0173a2 + 

0.0841a+ 6.1609 

DA42 L360 

-0.1987a+ 5.3891 
-0.0241a 2 + 0.0205a +• 

5.8401 

-0.2072a+ 5.4167 
-0.0117a2-0.035a + 

5.4657 

Note: In the above equations a is in degrees 

In general, it can be concluded that digital DATCOM overestimated CLa compared with 

the results obtained from the PID analysis. 

Table 22 Summary of Results for CL and Cm derivatives 

EE time 
OE time 
EE freq. 
OE freq. 
DATCOM 

Cma 

DA42 
TDI 
-0.57 
-0.54 
-0.57 
-0.55 
-1.48 

DA42 
L360 
-0.51 
-0.51 
-0.48 
-0.50 

— 

Cmq 

DA42 
TDI 
-6.04 
-11.36 
-7.09 

-13.26 
-15.84 

DA42 
L360 
-9.48 
-9.67 
-11.32 
-13.86 

— 

Cm5e 

DA42 
TDI 
-0.53 
-0.58 
-0.56 
-0.63 
-1.20 

DA42 
L360 
-0.56 
-0.57 
-0.56 
-0.63 

— 
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As it was discussed in the analysis section the biggest scatter in the longitudinal 

parameters was found on the Cmq derivative. A possible explanation for this could be the 

high correlation between pitch rate and the elevator or the presence of lag in the INS data. 

In general, there was a significant difference on the estimated value of the pitch 

coefficient derivatives by DATCOM and the PID methods. Better measurements of the 

airplane geometry and the center of gravity may improve the estimation of these 

derivatives. 

4.2 Lateral-Directional Mode 

The following tables summarize the estimated lateral-directional derivatives from the PID 

analysis and Digital DATCOM. The lateral-directional DA42L360 data could not be 

analyzed using the output error algorithm on the frequency domain due to the high 

correlation between the parameters. 

Table 23 Summary of Results for CY derivatives 

EE time 
OE time 
EE freq. 
OE freq. 
DATCOM 

CYp 
DA42 TDI 

-0.29 
-0.31 
-0.29 
-0.30 
-0.39 

DA42 L360 
-0.25 
-0.28 
-0.23 

— 

— 

The CYp estimate of digital DATCOM was about 25-30% higher than the one from the 

PID analysis. 
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Table 24 Summary of Results for CI derivatives 

EE time 

OE time 

EE freq. 

OE freq. 

DATCOM 
*Note: In t 

Clp 
DA42 
TDI 

-0.15 

-0.16 

-0.15 

-0.16 

-0.09 
le above 

DA42 
L360 

-0.13 

-0.14 

-0.14 

equatio 

C1D 

DA42 
TDI 

-0.70 

-0.74 

-0.70 

-0.74 

-0.49 
ns a is ir 

DA42 
L360 

-0.76 

-0.70 

-0.75 

i degrees 

a 
DA42 TDI 

-0.0049a2 + 
0.0544a + 

0.0265 
0.0016a2 + 
0.0047a + 

0.1735 

-0.008a 2 + 
0.0737a + 

0.0175 
0.0248a + 

0.1004 
0.0203a + 

0.1741 

DA42 L360 
0.0029a3 

0.0374a2 + 
0.1575a + 

0.1141 
-0.0022a 2 + 
0.0377a + 

0.21 
0.0034a3 

0.045a 2 + 
0.1936a + 

0.1302 

C 
DA42 
TDI 

-0.18 

-0.19 

-0.18 

-0.18 

5a 

DA42 
L360 

-0.20 

-0.19 

-•0.20 

The estimated CI derivatives had the same trend between all the methods, however; in 

general digital DATCOM underestimated the derivative values compared to the PID 

results. 
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Table 25 Summary of Results for Cn derivatives 

EE time 

OE time 

EE freq. 

OE freq. 

DATCOM 
*Note: In t 

Cnp 
DA42 
TDI 

0.051 

0.054 

0.052 

0.056 

0.047 
le above 

DA42 
L360 

0.046 

0.058 

0.048 

equatioi 

CnD 

DA42 
TDI 

0.0016a2 

-0.0182a 
- 0.0436 

-0.011a-
0.0489 

0.0016a2 

-0.0182a 
-0.0411 
-0.0118a 
- 0.0505 
-0.0105a 
- 0.0653 

is a is in c 

DA42 
L360 

0.0006a2 

- 0.0145a 
- 0.0535 

0.0008a2 

-0.0161a 
-0.07 

0.001a2-
0.0161a-

0.0562 

egrees 

Cnr 

DA42 
TDI 

-0.027 

-0.087 

-0.022 

-0.095 

-0.066 

DA42 
L360 

-0.083 

-0.114 

-0.097 

Cn8r 

DA42 
TDI 

-0.050 

-0.053 

-0.050 

-0.056 

DA42 
L360 

0.060 

0.077 

0.064 

__ 

The PID methods used on the estimation of Cnp and Cn§r disagree at low angle of attacks. 

In general, the digital DATCOM results were within or relative close to the PID 

derivative estimates. In addition, the results suggest that the wingtip model was 

misinterpreted by digital DATCOM. 

4.3 Future work 

The data found on this research project raised new questions and opened the door for 

future research projects. 

• Analyze high scale factors on alpha and beta on the data compatibility 

analysis and relate the associated error with the errors on the stability and 

control derivatives estimates. On this research high scale factors up to almost 

25% percent were found. The scale factor on alpha and beta affects directly 

the stability derivative estimates 
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Analyze the relationship between the correlation factors and the stability and 

control derivatives estimated by the parameter identification methods 

Analyze the power effect on the stability and control derivatives using 

theoretical verification methods 

CFD is beginning to play a very important roll on the design of airplanes. The 

results from this research could be compared to other analytical techniques 

such as CFD 

A wide scatter was found on the damping derivatives, some possible causes 

were suggested on this research. However, further analysis could reveal other 

possible causes and ways of improving the data to obtain better estimates of 

the stability and control derivatives 

Improve inputs for better parameter identification by reducing data 

collinearity. Also, there could be some input design before the next flight test 

program to optimize the content on the data and to excite the desired modes 
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6. APPENDIX 1: STEPWISE REGRESSION 

To determine the most significant derivatives the stepwise regression function form 

SIDPAC was used. When running the stepwise regression function close attention was 

paid to the following criteria: 

• R squared value (Should be as close to 100% as possible) 

• F ratio (Should be above 20 for each derivative) 

• PSE number (Should be as small as possible) 

For the longitudinal mode the following regressors were used: 

1 - Alpha 

2- qhat 

3- Elevator 

The following examples were run for the lift and pitching moment coefficients. 

Al. Lift coefficient 

STEP 1 

Plots foi Stepwise Regression Modeling 

0 20 40 60 R0 100 120 M 0 
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Parameters F ratio 
Squared 

Part. Corr. 

No. Estimate 

1 O.DOOOe+000 

2 O.DOOOe+000 

3 0.DOOOe+000 

Change 

O.OQOOe+OOD 

0.DOOOe+000 

O.DOOOe+000 

In 

O.OOOOe+DOO 

O,0000e+D00 

O.OOOOe+ODO 

Out 

0.95424 

0.19242 

0.13801 

constant term = 6.38£4e-001 F cut-off value = 2 0.00 

dependent variable ras value = fi.5516e-001 

fit error = l,467437e-001 or 2 2.40 percent 

P. squared. = 0.00 % PRESS = 2.9Q72&+000 

PSE = 2.1534e-002 

STEP 2 

P ots for Steowtse Regression Modeling 
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Parameters 

No. 

1 

2 

3 

4 

0 

0 

Estimate 

,8178e+000 

.0000e+000 

0000e+000 

Change 

4.8178e+000 

O.OOOOe+000 

0.0000e+000 

F ratio 

In 

2.7529e+003 

0.0000e+000 

0.0000e+000 

Squared 

Part. Corr. 

Out 

0.00000 

0.02456 

0.124SS 

constant term = 3.6488e-001 F cut-off value * 20.00 

dependent variable rats value = 6.5516e-001 

fit error = 3.150795e-002 or 4,81 percent 

R squared = 95.42 % PRESS = 1.3726^-001 

PSE = 1.2993e-003 

STEP 3 

Plots for Stepwise Regression Modeiing 

— — - data 

20 40 60 80 100 120 140 



Parameters F ratio 
Squared 

Part. Corr, 

No. Estimate 

1 4,€978e+000 

2 O.OOOOe+OOO 

3 -2,715Be~-001 

Change 

-1.1999e-001 

O.OODOe+OOO 

-2.7159e-001 

In 

2.c880e+003 

Q.OOOOe+OOQ 

1.8€37e+001 

Out 

0.00000 
0.13283 
0.00000 

cons tan t term = 3.5724e~001 F cut -of f value = 20.00 

dependent v a r i a b l e rms value = £.551€e-001 

i i t e r ro r = 2,959294e-002 or 4.52 percent 

R squared = 95.99 % PRESS = 1.2292e-001 
PSE = 1.3382e-003 

NOTE 
The elevator should not be included because: 

o F ratio less than 20 
o PSE increased 
o regressors 

A2. Pitching Moment coefficient 

STEP1 

-0 ' -
0 

PSots tor Stepwise Regression Model ng 

20 40 60 SO 100 120 '40 

?0 40 60 100 1?0 140 
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Parameters F ratio 
Squared 

Part, Corr. 

No. Estimate Change In Out 

1 0.0000e+000 

2 0.0000e+000 

3 0.0QO0e+000 

0.0000e+000 

0.0000e+000 

O.OOOOe+DOO 

0.0000e+000 

0.0000e+000 

O.OOOOe+OOO 

0.53131 

0.00000 

0.08788 

constant term = 1.43 90e-004 F cut-off value - 20.00 

dependent variable rms value = 2.3840e-002 

fit error = 2.3 92B5Se-002 or 100.37 percent1 

P. squared 0.00 % PPESS = 7.7302e-002 

PSE = 5,7258e-004 

STEP 2 

Piofs foi Stepwise Regression Modehng 
I " J — 
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Parameters F ratio 
Squared 

Part. Corr. 

No. Estimate Change In Out 

1 -5.8e21e-001 

2 0.0000e+000 

3 0.0000e+000 

-5,8£21e-0Ql 

O.OODOe+OOO 

O.OODOe+OOO 

1.49c4e+002 

O.OOODe+000 

0.0000e+000 

O.ODOOO 

0.24168 

0.63693 

constant term = 3.3453e-002 F cut-off value = 2 0.00 

dependent variable rms value = 2.3840e-002 

fit error » 1.644364e-OD2 or 68.98 percent 

R s q u a r e d 53 .13 % PRESS = 3 .7194e-002 
PSE = 2.74£>0e-004 

v_J I. JL-ji J 

Plots for Stepwise Regression Modehng 

r — r ~ " 

„ •—•—- mode! t 

60 80 
tficrex 
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Parameters F ratio 
Squared 

Part. Corr, 

Wo. Estimate Change In Out 

1 -?.2782e-001 

2 O.OODOe+OOO 

3 -3.2054e~001 

-1.41£le-0Dl 

0.DOOOe+000 

-3.20S4e-001 

5.7118e+002 

0.000De+000 

2.2981e+0D2 

0.00000 

0.61508 

D.00000 

constant term = 2.4429e-002 F cut-off value = 20.00 

dependent variable rms value = 2.3 840e-002 

:it error = 9»945933e-0Q3 or 41.72 percent 

R squared ,98 % PRESS 

PSE 
1.3774e-002 

1.0953e-004| 

STEP 4 

Plots foe Stepwise Regression Modeling 

40 80 

—:—: mode! 

100 120 140 
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Parameters F ratio 

Squared 

Part. Corr. 

No. 

1 

2 

3 

Estimate 

-6.2947e-001 

-1.2736e+001 

-6.8731e-001 

Change 

9.8356e-002 

-1.273fie+001 

-3.667Be-001 

In 

9.7520e+002 

2.0773e+002 

5.7539e+002 

Out 

0.00000 

0.00000 

0.00000 

constant term = -9.6994e-004 F cut-off value = 20.00 

dependent variable rms value = 2.3840e-002 

fit error = 6.19435fie-003 or 25.98 percent 

R squared 93.45 k PRESS 

PSE 

5.4545e-003 

5.4316e-005 
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